Selected topics in graph theory

László Lovász Fall 2016

Homework 2.

(Corrected version)

Submission deadline: Friday, November 25. Solutions can be submitted on paper or by email, in English or Hungarian.

1 Let G be a simple 3-connected planar map. A *corner* is determined by a face and one of its nodes. Prove that we can assign each corner either to its country or to its node so that each country is assigned to 2 corners, two nodes are not assigned to any corner, and each of the remaining nodes is assigned to 2 corners.

2 Prove that every graph on $n \ge 3$ nodes contains two nodes *i* and *j* with $|N(i) \triangle N(j)| \le (n+1)/2$. Show that for infinitely many *n*, this bound cannot be improved to (n-3)/2.

3 Construct a graph on 2^r nodes $(r \ge 2, \text{ even})$ with no twin nodes, whose adjacency matrix has rank r over the 2-element field GF(2).

4 Let *M* be a real $n \times n$ matrix. Recall that we have defined

$$||M||_1 = \frac{1}{n^2} \sum_{i,j} |M_{ij}|, \text{ and } ||M||_{\square} = \frac{1}{n^2} \max_{S,T \subseteq \{1,\dots,n\}} \Big| \sum_{\substack{i \in S \\ j \in T}} M_{ij} \Big|.$$

(a) Prove that $||M||_1 \leq 2n ||M||_{\Box}$. (b)[Bonus problem] Prove that $||M||_1 \leq 2\sqrt{n} ||M||_{\Box}$.

5 Prove that if a graph G on n nodes has a partition \mathcal{P} into k classes such that $d_{\Box}(G, G_{\mathcal{P}}) = \varepsilon$, then it has a partition \mathcal{Q} into k^2 classes with either $\lfloor n/k^2 \rfloor$ or $\lceil n/k^2 \rceil$ elements such that $d_{\Box}(G, G_{\mathcal{Q}}) \leq \varepsilon + O(1/k)$.