Selected topics in graph theory

LÁSZLÓ LOVÁSZ
Fall 2016

Homework 3.

Submission deadline: Monday, December 19. Solutions can be submitted on paper (to Lilla Tóthmérész) or by email, in English or Hungarian.

1 If $\vartheta(\bar{G})=2$, then G is bipartite.
2 (a) If H is an induced subgraph of G, then $\vartheta(H) \leq \vartheta(G)$. (b) If H is a spanning subgraph of G, then $\vartheta(H) \geq \vartheta(G)$.

3 Prove that the minimum dimension in which a graph G has an orthonormal representation is at least $\vartheta(G)$.

4 Prove that the vertices of the polytope $\operatorname{FSTAB}(G)$ (see lecture notes) are halfintegral, and show by an example that they are not always integral.

5 The fractional chromatic number $\chi^{*}(G)$ is defined as the least real number t for which there exists a family $\left(A_{j}: j=1, \ldots, p\right)$ of stable sets in G, and nonnegative weights $\left(\tau_{j}: j=1, \ldots, p\right)$ such that $\sum_{j} \tau_{j}=t$ and $\sum_{j} \tau_{j} \mathbf{1}_{A_{j}} \geq \mathbf{1}_{V}$. The fractional clique number $\omega^{*}(G)$ is the largest real number s for which there exist nonnegative weights $\left(\sigma_{i}: \quad i \in V\right)$ such that $\sum_{i} \sigma_{i}=s$ and $\sum_{i \in A} \sigma_{i} \leq 1$ for every stable set A.
(a) Prove that $\omega(G) \leq \omega^{*}(G)$ and $\chi(G) \geq \chi^{*}(G)$.
(b) Prove that $\chi^{*}(G)=\omega^{*}(G)$.
(b) Prove that $\vartheta(\bar{G}) \leq \chi^{*}(G)$.

