Selected topics in graph theory

László Lovász Fall 2016

Homework 3.

Submission deadline: Monday, December 19. Solutions can be submitted on paper (to Lilla Tóthmérész) or by email, in English or Hungarian.

1 If $\vartheta(\overline{G}) = 2$, then G is bipartite.

2 (a) If *H* is an induced subgraph of *G*, then $\vartheta(H) \leq \vartheta(G)$. (b) If *H* is a spanning subgraph of *G*, then $\vartheta(H) \geq \vartheta(G)$.

3 Prove that the minimum dimension in which a graph G has an orthonormal representation is at least $\vartheta(G)$.

4 Prove that the vertices of the polytope FSTAB(G) (see lecture notes) are halfintegral, and show by an example that they are not always integral.

5 The fractional chromatic number $\chi^*(G)$ is defined as the least real number t for which there exists a family $(A_j : j = 1, ..., p)$ of stable sets in G, and nonnegative weights $(\tau_j : j = 1, ..., p)$ such that $\sum_j \tau_j = t$ and $\sum_j \tau_j \mathbf{1}_{A_j} \ge \mathbf{1}_V$. The fractional clique number $\omega^*(G)$ is the largest real number s for which there exist nonnegative weights $(\sigma_i : i \in V)$ such that $\sum_i \sigma_i = s$ and $\sum_{i \in A} \sigma_i \le 1$ for every stable set A.

- (a) Prove that $\omega(G) \leq \omega^*(G)$ and $\chi(G) \geq \chi^*(G)$.
- (b) Prove that $\chi^*(G) = \omega^*(G)$.
- (b) Prove that $\vartheta(\overline{G}) \leq \chi^*(G)$.