
Chapter 1

Introduction: Why are
representations interesting?

To represent a graph geometrically is a natural goal in itself, but in addition it is an important

tool in the study of various graph properties, including their algorithmic aspects. We describe

three examples of increasing complexity, and then discuss some goals of this book.

1. Disjoint paths. Let us start with a very simplified example. Suppose that we have a

2-connected graph G and two specified nodes s and t. Two “requests” come in for two nodes

x and y, and we have to find two disjoint paths connecting s and t to x and y (it does not

matter which of x and y will be connected to s). This can be computed by one of zillions of

flow or connectivity algorithms in reasonable time.

Now suppose that we have to compute such paths for many requests {x, y}. Do we have to

repeat the computation each time? We can do much better if we use the following theorem:

Given a 2-connected graph and two specified nodes s and t, we can order all nodes so that s is

first, t is last, and every other node v has a neighbor that comes earlier as well as a neighbor

that comes later. Such an ordering is called an s-t numbering.

Once we know an s-t numbering, and a request {x, y} comes in, it is trivial to find two

disjoint paths: let (say) x precede y in the ordering, then we can move from x to an earlier

neighbor x′, then to an even earlier neighbor x′′ of x′ etc. until we reach s. Similarly, we can

move from y to a later neighbor y′, then to an even later neighbor y′′ of y′ etc. until we reach

t. This way we trace out two paths as requested.

The ordering can be thought of as representing the nodes of G by points on the line,

and the easy procedure to find the two paths uses this geometric representation. Of course,

one-dimensional geometry is not “really” geometry, and we better give a higher-dimensional

example.

2. Monotone paths. The following was proved in [?]: Let V = {1, . . . , n}, and let
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f :
(
V
2

)
→ R. Let us call a sequence 1 ≤ k0 < k1 < · · · < kr ≤ n such that

f(k0, k1) ≤ f(k1, k2) ≤ · · · ≤ f(kr−1, kr),

a monotone increasing path of length r. We define monotone decreasing paths analogously.

The result of Chvátal and Komlós asserts that it if the maximum length of a monotone

increasing path is p, and the maximum length of a monotone decreasing path is q, then

n ≤
(
p+q
p

)
. (The result’s background is in combinatorial geometry, for which we refer to the

original paper.)

The proof uses a geometric representation of the data. For 1 ≤ u < v ≤ n, let g(u, v)

be the maximum length of a monotone increasing path starting with the pair (u, v), and let

h(u, v) be the maximum length of a monotone decreasing such path. Thus each pair u < v is

represented by a point (g(u, v), h(u, v)) in the plane. By hypothesis, these points all belong

to the rectangle [1, p]× [1, q].

For 1 ≤ v < n, let Pv = {(g(v, w), h(v, w)) : v < w ≤ n}, and let P v consist of all

maximal elements of Pv (with respect to the partial ordering (x, y) ≤ (x′, y′) iff x ≤ x′ and

y ≤ y′). We claim that the sets P v are different. For suppose that P v = Pw, where v < w.

Then (g(v, w), h(v, w)) ∈ Pv, so by the definition of P v, there is a point (x, y) ∈ P v such

that g(v, w) ≤ x and h(v, w) ≤ y. Since P v = Pw, there is an integer s, w < s ≤ n,

such that g(w, s) = x and h(w, s) = y. Without loss of generality, we may assume that

f(v, w) < f(w, s). But then we get a monotone increasing path if we start with v, followed by

a monotone increasing path of length x starting with (w, s). This shows that g(v, w) ≥ 1+x,

contradicting the definition of x.

All that remains is to count how many sets come into consideration as P v. Clearly

every such set is of the form {(x1, y1), . . . , (xk, yk)}, where 1 ≤ x1 < · · · < xk ≤ p and

q ≥ y1 > · · · > yk ≥ 1. The number of ways to choose these values is∑
k≥0

(
p

k

)(
q

k

)
=

∑
k≥0

(
p

k

)(
q

q − k

)
=

(
p+ q

p

)
,

which completes the proof.

Perhaps this example is still not completely convincing: we use two dimensions, but only

ordering of the coordinates, no “true” geometry. So we continue with an application of a

3-dimensional geometric representation with more geometric content. (Relax, there will be

no fourth example using 4-dimensional geometry.)

3. Shannon capacity. The following problem in information theory was raised by Claude

Shannon, and it motivated the introduction of orthogonal representations [?] and several of

the results to be discussed in this book.

Consider a noisy channel through which we are sending messages composed of a finite

alphabet V . There is an output alphabet U , and each v ∈ V , when transmitted through
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the channel, can come out as any element in a set Uv ⊆ U . Usually there is a probability

distribution specified on each set Uv, telling us the probability with which v produces a given

u ∈ Uv, but for the problem we want to discuss, these probabilities don’t matter. As a matter

of fact, the output alphabet will play no role either, except to tell us which pairs of input

characters can be confused: those pairs (v, v′) for which Uv ∩ Uv′ ̸= ∅.
We want to select as many words of length k as possible so that no two can possibly be

confused. As we shall see, the number of words we can select grows as Θk for some Θ ≥ 1,

which is called the Shannon zero-error capacity of the channel. A simple and natural way

to create such a set of words is to pick a non-confusable subset of the alphabet, and use

only those words composed from this set. So if we have α non-confusable characters in our

alphabet, then we can create αk non-confusable messages of length k. But, as we shall see,

making use of other characters in the alphabet we can create more! How much more, is the

issue in this discussion.

One way to model the problem is as follows: We consider V as the set of nodes of a graph,

and connect two of them by an edge if they can be confused. This way we obtain a graph G,

which we call the confusion graph of the alphabet. The maximum number of non-confusable

messages of length 1 is the maximum number of nonadjacent nodes (the maximum size of a

stable set) in the graph G, which we denote by α(G).

Let us look at two simple examples (Figure 1.1.

Figure 1.1: Two confusion graphs. In the alphabet {p, q, b, d} two letters that are
related by a reflection in a horizontal or vertical line are confusable, but not if they are
related by two such reflection. The confusability graph of the alphabet {m,n, u, v, w}
is only convincing a little in handwriting, but this graph plays an important role in
this book.

Example 1.0.1 Let us consider the simple alphabet (p, q, d, b), where the pairs {p, q}, {q, d},
{d, b} and {b, p} are confusable (Figure 1.1, left). We can just keep p and d (which are not

confusable), which allows us 2k non-confusable messages of length k. On the other hand, if

we use a word, then all the 2k words obtained from it by replacing some occurrences of p and

q by the other, as well as some occurrences of b and d by the other, are excluded. Hence the

number of messages we can use is at most 4k/2k = 2k. �

Example 1.0.2 (5-cycle) If we switch to alphabets with 5 characters, then we get a much

more difficult problem. Let V = {m,n, u, v, w} be our alphabet, with confusable pairs
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{m,n}, {n, u}, {u, v}, {v, w} and {w,m} (Figure 1.1, right; we refer to this example as the

“pentagon”). Among any three characters there are two that can be confused, so we have

only two non-confusable characters, and restricting the alphabet to two such characters (say,

m and v), we can for 2k non-confusable messages of length k.

But we can do better: the following 5 messages of length two are non-confusable: mm,

nu, uw, vn and wv. This takes some checking: for example, mm and nu cannot be confused,

because their second characters, m and u, cannot be confused. If k is even, then we can

construct 5k/2 non-confusable messages, by concatenating any k/2 of the above 5. This

number grows like (
√
5)k ≈ 2.236k instead of 2k, a substantial gain! �

Can we do better by looking at longer messages (say, messages of length 10), and by some

ad hoc method finding among them more that 55 non-confusable messages? We are going to

show that we cannot, the use of 5 messages of length 2 is optimal.

The trick is to represent the alphabet in a different way. Let us assign to each character

i ∈ V a vector ui in some euclidean space Rd. If two characters are non-confusable, then we

represent them by orthogonal vectors. Figure 1.2 shows such an assignment of vectors to the

5-element alphabet in Example 1.0.2.

Figure 1.2: An umbrella representing the pentagon.

If a subset of characters S is non-confusable, then the vectors ui (i ∈ S) are mutually

orthogonal unit vectors, and hence for every unit vector c,∑
i∈S

(cTui)
2 ≤ 1.

Hence |S|mini∈S(c
Tui)

2 ≤ 1, or

|S| ≤ max
i∈S

1

(cTui)2
≤ max

i∈V

1

(cTui)2
.

So if we find a representation u and a unit vector c for which the squared products (cTui)
2

are all large (which means that the angels ](c,ui) are all small), then we get a good upper

bound on |S|. Let us denote the best bound we can get this way by ϑ. We call the vector c

the handle.
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For the alphabet in Example 1.0.2 (the pentagon), we use the vectors in Figure 1.2. To

describe these, consider an umbrella in R3 with 5 ribs of unit length. Open it up to the point

when non-consecutive ribs are orthogonal. This way we get 5 unit vectors um,un,uu,uv,uw,

assigned to the nodes of the pentagon so that each ui forms the same angle with the “handle”

c and any two non-adjacent nodes are labeled with orthogonal vectors. With some effort,

one can compute that (cTui)
2 = 1/

√
5 for every i, and so ϑ =

√
5, and we get that |S| ≤

√
5

for every non-confusable set S. Since |S| is an integer, this implies that |S| ≤ 2.

This is ridiculously much work to conclude that the 5-cycle does not contain 3 non-

adjacent nodes! But the vector representation is very useful for the handling of longer

messages. We define the tensor product of two vectors u = (u1, . . . , un) ∈ Rn and v =

(v1, . . . , vm) ∈ Rm as the vector

u ◦ v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, . . . , unv1, . . . , unvm)T ∈ Rnm.

It is easy to see that |u ◦ v| = |u| |v|, and (more generally) if u,x ∈ Rn and v,y ∈ Rm,

then (u ◦ v)T(x ◦ y) = (uTx)(vTy). For a k ≥ 1, if we represent a message i1 . . . ik by the

vector ui1 ◦ · · · ◦uik , then non-confusable messages will be represented by orthogonal vectors.

Indeed, if i1 . . . ik and j1 . . . jk are not confusable, then there is at least one subscript r for

which ir and jr are not confusable, hence uT
ir
ujr = 0, which implies that

(ui1 ◦ · · · ◦ uik)
T(uj1 ◦ · · · ◦ ujk) = (uT

i1uj1) . . . (u
T
ik
ujk) = 0.

As for handle, we use c◦· · ·◦c (k factors), where c is the optimal handle for single characters.

We get that for any set S of non-confusable messages of length k,

|S| ≤ max
i1,...,ik

1

((c ◦ · · · ◦ c)T(ui1 ◦ · · · ◦ uik))
2
= max

i1,...,ik

1

(cTui1)
2 . . . (cTuik)

2
= ϑk.

In particular, for the pentagon, every set of non-confusable messages of length k has at most

(
√
5)k elements. We have seen that this bound can be attained, at least for even k. Thus we

have established that the Shannon zero-error capacity of the pentagon is
√
5.

We will return to this topic in Sections ?? and ??, where the zero-error capacity problem

will be discussed for general confusability graphs, both in classical and quantum information

theory.

4. Proofs, algorithms and geometry. There are several levels of this interplay between

graph problems and geometry.

— Often the aim is to find a way to represent a graph in a “good” way. We refer to

Kuratowski’s characterization of planar graphs, to its more recent extensions (most notably

the work of Robertson, Seymour and Thomas), and to Steinitz’s theorem representing 3-

connected planar graphs by 3-dimensional polyhedra. Many difficult algorithmic problems

in connection with finding these representations have been studied.
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— In other cases, graphs come together with a geometric representation, and the issue is

to test certain properties, or compute some parameters, that connect the combinatorial and

geometric structure. A typical question in this class is rigidity of bar-and-joint frameworks,

an area whose study goes back to the work of Cauchy and Maxwell.

— Most interesting are the cases when a good geometric representation of a graph not

only gives a useful way of understanding its structure, but it leads to algorithmic solutions of

purely graph-theoretic questions that, at least on the surface, do not seem to have anything

to do with geometry. The first simple example above illustrates this point: a geometric

structure (ordering) provides a good data structure for computing the required paths.

This book will contain many more applications of geometric representation in proofs and

algorithms (the list is far from complete): rubber band representations can be used in pla-

narity testing and graph drawing; repulsive springs lead to approximating the maximum cut;

coin representations can be used in approximating optimal bisection; nullspace representa-

tions provide 3-polytopes with specified skeleton graphs; orthogonal representations play a

role in algorithms for graph connectivity, graph coloring, finding maximum cliques in per-

fect graphs, and estimating capacities of channels in information theory; volume-respecting

embeddings are used in approximation algorithms for bandwidth.


