
Chapter 6

Orthogonal representations: the

smallest cone

In this chapter we discuss the quantity ϑ(G) we get by asking for the smallest cone in which

a given graph G has an orthogonal representation. This quantity will be related to stability

number, clique number and chromatic number of graphs.

We describe several applications of this graph parameter, of which we mention two prob-

lems in which this parameter yields the only known solution. One of these is the problem

of the Shannon capacity (or zero-error capacity) of a graph, which is a tough parameter to

compute, and whose evaluation even for a small graph like the pentagon needs the theta

function. The other is the computation of clique number and chromatic number for perfect

graphs in polynomial time.

6.1 Orthogonal representations and the theta function

In this chapter we study representations that are “economical” in a different sense. It turns

out that the smallest half-angle φ of a rotational cone (in arbitrary dimension) which contains

all vectors in an orthogonal representation of the graph contains interesting information about

the graph.

To be precise, we will work with a transformed version of this quantity, namely

ϑ(G) =
1

(cosφ)2
= min

u,c
max
i∈V

1

(cTui)2
,

where the minimum is taken over all orthonormal representations (ui : i ∈ V ) of G and all

unit vectors c. We call c the “handle” of the representation. Of course, we could fix c to be

(say) the standard basis vector e1, but this is not always convenient.

The following rather easy inequalities will nevertheless be very important.
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2 CHAPTER 6. ORTHOGONAL REPRESENTATIONS: THE SMALLEST CONE

Theorem 6.1.1 For every graph G,

α(G) ≤ ϑ(G) ≤ χ(G).

Proof. First, let S ⊆ V be a maximum stable set of nodes in G. Then in every orthonormal

representation (ui), the vectors {ui : i ∈ S} are mutually orthogonal unit vectors. Hence

1 = cTc ≥
∑

i∈S

(cTui)
2 ≥ |S|min

i
(cTui)

2, (6.1)

and so

max
i∈V

1

(cTui)2
≥ |S| = α(G).

This implies the first inequality. The second follows from the orthogonal representation

obtained in Example 5.0.5, using c = 1√
m
(e1 + · · ·+ em) as the handle. �

Our examples of orthogonal representations give further upper bounds for ϑ. From the

trivial orthogonal representation we get the trivial bound ϑ(G) ≤ n. Example 5.0.3 leads to

the following construction: Assuming that there are no isolated nodes, we assign to each node

i ∈ V the vector ui = (1/
√
di)∇i ∈ R

E . As a handle, take the vector c = (1/
√
m)1 ∈ R

E .

Then cTui =
√
di/m, and so we get the bound

ϑ(G) ≤ max
i

m

di
=

m

dmin
.

The upper bound m/dmin for the independence number α(G) is easy to prove by counting

edges. From Example 5.0.6 we get by elementary trigonometry that

ϑ(C5) ≤
√
5. (6.2)

Soon we’ll see that equality holds here.

It is clear that if G′ is an induced subgraph ofG, then ϑ(G′) ≤ ϑ(G) (using that an optimal

orthonormal representation of G, restricted to V (G′), is an orthonormal representation of G′).

It is also clear that if G′ is a spanning subgraph of G (i.e., V (G′) = V (G) and E(G′) ⊆ E(G)),

then ϑ(G′) ≥ ϑ(G) (using that an optimal orthonormal representation of G′ is an orthonormal

representation of G).

6.1.1 Duality for theta

The graph parameter ϑ has many equivalent definitions. We are going to state some, which

lead to an important dual formulation of this quantity.

Vector chromatic number. The following geometric definition was proposed by Karger,

Motwani and Sudan. In terms of the complementary graph, this value is called the “vector
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chromatic number”. As a motivation for this name, consider a t-colorable graph (t ≥ 2),

and let us color its nodes by t unit vectors f1, . . . , ft ∈ Rt−1, pointing to the vertices of a

regular simplex. We get a vector labeling w that is not an orthogonal representation of G,

but it is closely related. It is not hard to compute that fTk fl = −1/(t− 1) for k 6= l, and so

wT

i wj = −1/(t− 1) for ij ∈ E.

Now let us forget about the condition that wi must be one of the vectors fk: define a

(strict) vector t-coloring (t > 1) of the graph G as a vector labeling i 7→ wi ∈ Rn such that

|wi| = 1 for all i ∈ V , and wT

i wj = −1/(t−1) for all ij ∈ E. The smallest t ≥ 1 for which the

graph G has a vector t-coloring is called its (strict) vector chromatic number, and is denoted

by Vchr.

The dimension n in the definition above is just chosen to be large enough; allowing a higher

dimension would not make any difference. The definition of vector t-coloring is meaningful

for every real number t > 1. We may even consider it meaningful for t = 1, when it means

that E = ∅, so G is edgeless and χ(G) = 1.

If G is not edgeless, then, trivially, a vector t-coloring of G can exist for t ≥ 2 only. For

t = 2, a vector 2-coloring is necessarily strict, and the endpoints of any edge must be labeled

by antipodal unit vectors. It follows that for every connected component of G is labeled by

two antipodal vectors only, and G is bipartite.

It is clear from the construction above that Vchr(G) ≤ χ(G) for every graph G. Equality

does not hold in general. Labeling the nodes of a pentagon by the vertices of a regular

pentagon inscribed in the unit circle, so that the edges are mapped onto the diagonals, we

see that Vchr(C5) ≤
√
5 < χ(C5) = 3. It is also easy to see that Vchr(G) ≥ ω(G).

Semidefinite optimization. Next, we give a couple of formulas for ϑ in terms of semidefi-

nite matrices. Let

ϑmindiag = min
{
1 + max

i∈V
Yii : Y ∈ R

V×V , Y � 0, Yij = −1 (ij ∈ E)
}

(6.3)

and

ϑmaxsum = max
{ ∑

i,j∈V

Zij : Z ∈ R
V×V , Z � 0, Zij = 0 (ij ∈ E), tr(Z) = 1

}
. (6.4)

It will turn out that these two values are equal. This equality is in fact a special case of the

Duality Theorem of semidefinite optimization. It is not hard to check that (6.3) and (6.4) are

dual semidefinite programs, and the first one has a strictly feasible solution. So the Duality

Theorem of semidefinite programming applies, and asserts that the two programs have the

same objective value. However, we are going to include a proof, to make our treatment

self-contained.

Dual orthogonal representation. We use orthonormal representations of the complemen-
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tary graph to define

ϑdual = max
∑

i∈V

(dTvi)
2, (6.5)

where the maximum extends over all orthonormal representations (vi : i ∈ V ) of the com-

plementary graph G and all unit vectors (handles) d.

The main theorem of this section asserts that all these definitions lead to the same value.

Theorem 6.1.2 For every graph G, ϑ(G) = Vchr(G) = ϑmindiag(G) = ϑmaxsum(G) =

ϑdual(G).

Proof. We prove the circle of inequalities

ϑ(G) ≤ Vchr(G) ≤ ϑmindiag(G) ≤ ϑmaxsum(G) ≤ ϑdual(G) ≤ ϑ(G). (6.6)

To prove the first inequality, let t = Vchr(G), and let (wi : i ∈ V ) be an optimal vector

t-coloring. Let c be a vector orthogonal to all the wi (we increase the dimension of the space

if necessary). Let

ui =
1√
t
c+

√
t− 1

t
wi.

Then |ui| = 1 and uT

i uj = 0 for ij ∈ E, so (ui) is an orthonormal representation of G.

Furthermore, with handle c we have cTui = 1/
√
t, which implies that ϑ(G) ≤ Vchr(G).

Second, let Y be an optimal solution of (6.3). We may assume that all diagonal entries

Yii are the same number t, since we can replace all of them by the largest without violating

the other constraints. The matrix 1/(t − 1)Y is positive semidefinite, and so it can be

written as Gram(wi : i ∈ V ) with appropriate vectors (wi ∈ Rn). These vectors form a

strict vector t-coloring. Since Vchr(G) is the smallest t for which this exists, this proves that

Vchr(G) ≤ t = ϑmindiag.

The main step in the proof is to show that ϑmindiag ≤ ϑmaxsum. Fix any t > ϑmaxsum; it

is easy to see that ϑmaxsum ≥ 1 and hence t > 1. Let Lt denote the linear space of symmetric

V × V matrices satisfying Zij = 0 (ij ∈ E) and (tI − J) ·Z = 0, and let PV denote the cone

of positive semidefinite V × V matrices.

We claim that PV ∩Lt = {0}. Suppose, to the contrary, that there is a symmetric matrix

Z 6= 0 such that Z ∈ PV ∩Lt. Every nonzero positive semidefinite matrix has positive trace,

so tr(Z) > 0; by scaling, we may assume that tr(Z) = 1. Then Z satisfies the conditions in

the definition of ϑmaxsum, and so ϑmaxsum ≥ J · Z = tI · Z = t, contradicting the choice of t.

It follows that there is a hyperplane H through the origin such that Lt ⊆ H and H∩PV =

{0}. Let Y ·X = 0 be the equation of H (where Y 6= 0 is a symmetric V × V matrix); we

may assume that Y ·X ≥ 0 for all X ∈ PV . This means that Y is in the polar cone of PV ,
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which means that Y � 0. Furthermore, Lt ⊆ H means that the equation of H is a linear

combination of the equations defining Lt, i.e., there are real numbers aij (ij ∈ E) and b such

that

Y =
∑

ij∈E

aijEij + b(tI − J).

Considering a positive diagonal entry of Y , we see that b > 0, and since we are free to scale Y

by positive scalars, we may assume that b = 1. But this means that Y satisfies the conditions

in the definition of ϑmindiag, and so ϑmindiag ≤ 1 + maxi Yii = t. Since this holds for every

t > ϑmaxsum, this implies that ϑmindiag ≤ ϑmaxsum.

To prove the fourth inequality in (6.6), let Z be an optimum solution of the program (6.4)

with objective function value ϑmaxsum. We can write Z as Gram(zi : i ∈ V ) where zi ∈ Rn.

Let us rescale the vectors zi to get the unit vectors vi = z0i (if zi = 0 then we take a unit

vector orthogonal to everything else as vi). Define d = (
∑

i zi)
0.

By the properties of Z, the vectors vi form an orthonormal representation of G, and

hence

ϑdual ≥
∑

i

(dTvi)
2.

To estimate the right side, we use the equations

∑

i

|zi|2 =
∑

i

zTi zi = tr(Z) = 1,
∣∣∣
∑

i

zi

∣∣∣
2

=
∑

i,j

zTi zj =
∑

i,j

Zij = ϑmaxsum,

and the Cauchy–Schwarz Inequality:

∑

i

(dTvi)
2 =

(∑

i

|zi|2
)(∑

i

(dTvi)
2
)
≥

(∑

i

|zi|dTvi

)2

=
(∑

i

dTzi

)2

=
(
dT

∑

i

zi

)2

=
∣∣∣
∑

i

zi

∣∣∣
2

= ϑmaxsum.

This proves that ϑdual ≥ ϑmaxsum.

Finally, to prove the last inequality in (6.6), it suffices to prove that if (ui : i ∈ V ) is an

orthonormal representation of G in Rn with handle c, and (vi : i ∈ V ) is an orthonormal

representation of G in Rm with handle d, then

∑

i∈V

(dTvi)
2 ≤ max

i∈V

1

(cTui)2
. (6.7)

The tensor product vectors ui ◦ vi (i ∈ V ) are mutually orthogonal unit vectors. Indeed,

(ui ◦vi)
T(uj ◦vj) = (uT

i uj)(v
T

i vj) = 0, since either ui is orthogonal to uj or vi is orthogonal

to vj . Hence

∑

i

(cTui)
2(dTvi)

2 =
∑

i

(
(c ◦ d)T(ui ◦ vi)

)2 ≤ 1. (6.8)
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On the other hand,

∑

i

(cTui)
2(dTvi)

2 ≥ min
i
(cTui)

2
∑

i

(dTvi)
2,

which implies that

∑

i

(dTvj)
2 ≥ 1

min
i
(cTui)

2
= max

i

1

(cTui)2
.

This proves (6.7) and completes the proof of Theorem 6.1.2. �

Remark 6.1.3 We can state the theorem more explicitly as the following sequence of for-

mulas.

ϑ(G) = min
{
max
i∈V

1

(cTui)2
: u ONR of G, |c| = 1

}
(6.9)

= min
{
t ≥ 2 : |wi| = 1, wT

i wj = −
1

t− 1
(ij ∈ E)

}
(6.10)

= min
{
1 + max

i∈V
Yii : Y � 0, Yij = −1 (ij ∈ E)

}
(6.11)

= max
{ ∑

i,j∈V

Zij : Z � 0, Zij = 0 (ij ∈ E), tr(Z) = 1
}

(6.12)

= max
{∑

i∈V

(dTvi)
2 : v ONR of G, |d| = 1

}
. (6.13)

From this form it is clear (and we have seen this in the proof as well) that the powerful step

in this sequence of formulas is the equality (6.11)=(6.12), where an expression as a minimum

switches to an expression as a maximum. Note that before this equality we have conditions

on the edges of G, which then get replaced by conditions on the edges of G.

6.1.2 Consequences of duality

From the fact that equality holds in (6.6), it follows that equality holds in all of the ar-

guments above. Let us formulate some consequences. Considering the optimal orthogonal

representation constructed in the first step of the proof, we get that in squeezing an orthog-

onal representation into the narrowest possible cone, we may assume that all vectors are on

the boundary: Every graph G has an orthonormal representation (ui) with handle c such

that for every node i,

cTui =
1√
ϑ(G)

. (6.14)

From the fact that equality must hold in (6.8), and from the derivation of this inequality, we

see that for an optimal orthonormal representation (u, c) and an optimal dual orthonormal
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representation (v,d), the unit vector c ◦ d must be a linear combination of the mutually

orthogonal unit vectors ui ◦ vi. The coefficients are easy to figure out, and we get

c ◦ d =
∑

i

(cTui)(d
Tvi)(ui ◦ vi), (6.15)

or in a matrix form

cdT =
∑

i

(cTui)(d
Tvi)uiv

T

i . (6.16)

Applying these matrices to c, we get

d =
∑

i

(cTui)
2(dTvi)vi. (6.17)

Using here an optimal orthonormal representation that satisfies (6.14), we get information

about an optimal orthogonal representation in the dual definition of ϑ(G):

∑

i∈V

(dTvi)vi = ϑ(G)d. (6.18)

Lemma 6.1.4 For every graph G, we have ϑ(G)ϑ(G) ≥ n.

Proof. Let (u, c) be an optimal orthogonal representation of G. Then applying (6.13) to

the complementary graph, we get

ϑ(G) ≥
∑

i

(cTui)
2 ≥ nmin

i
(cTui)

2 =
n

ϑ(G)
. �

Equality does not hold in 6.1.4 in general, but it does when G has a node-transitive

automorphism group. We say that an orthonormal representation (ui, c) in Rd of a graph G

is automorphism invariant, if every automorphism γ ∈ Aut(G) can be lifted to an orthogonal

transformation Oγ of Rd such that Oγc = c and uγ(i) = Oγui for every node i. An optimal

orthonormal representation (say, in the sense of (6.9)) is not necessarily invariant under

automorphisms, but there is always one that is (see Figure 6.1).

Theorem 6.1.5 Every graph G has an optimal orthonormal representation and an optimal

dual orthonormal representation that are both automorphism invariant.

Proof. We give the proof for the dual orthonormal representation. The optimum solutions

of the semidefinite program in (6.3) form a bounded convex set, which is invariant under

the transformations Z 7→ PT

αZPα, where Pα is the permutation matrix defined by an auto-

morphism α of G. If Z is an optimizer in (6.12), then so is PT

αZPα for every automorphism

α ∈ Aut(G), and hence also

Ẑ =
1

|Aut(G)|
∑

α∈Aut(G)

PT

αZPα.
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Figure 6.1: An optimal orthonormal representation of C4 that is not invariant under
its automorphisms, and one that is. The representation on the left is also optimal
with respect to minimizing the dimension.

This matrix satisfies PT

αZPα = Z for all automorphisms α.

The construction of an orthonormal representation of G in the proof of ϑmindiag ≤ ϑmaxsum

in Theorem 6.1.2 can be done in a canonical way: we choose the columns of Z1/2 as the

vectors zi, and use them to construct the dual orthonormal representation with vi = z0i and

d = (
∑

i zi)
0. The optimal dual orthonormal representation constructed this way will be

invariant under the automorphism group of G. �

Corollary 6.1.6 If G has a node-transitive automorphism group, then

ϑ(G)ϑ(G) = n.

Proof. It follows from Theorem 6.1.5 that G has an orthonormal representation (vi,d) in

Rn such that
∑

i(d
Tvi)

2 = ϑ(G), and dTvi is the same for every i. So (dTvi)
2 = ϑ(G)/n for

all nodes i, and hence

ϑ(G) ≤ max
i

1

(dTvi)2
=

n

ϑ(G)
.

Since we already know the reverse inequality (Lemma 6.1.4), this proves the Corollary. �

Corollary 6.1.7 If G is a self-complementary graph with a node-transitive automorphism

group, then ϑ(G) =
√
n. In particular, ϑ(C5) =

√
5.

A further important feature of the theta-function is its nice behavior with respect to

graph product; we will see that this is what underlies its applications in information theory.

There are many different ways of multiplying two simple graphs G and H , of which

we need one in this chapter. The strong product G ⊠ H is defined on the underlying set

V (G) × V (H). Two nodes (u1, v1) and (u2, v2) are adjacent if and only if either ij ∈ E(G)

and uv ∈ E(H), or ij ∈ E(G) and u = v, or i = j and uv ∈ E(H). It is easy to see that

this multiplication is associative and commutative (up to isomorphism). The product of two

complete graphs is a complete graph.
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Theorem 6.1.8 For any two graphs G and H, we have ϑ(G⊠H) = ϑ(G)ϑ(H).

Proof. Let (ui : i ∈ V ) be an optimal orthogonal representation of G with handle c

(ui, c ∈ Rn), and let (vj : j ∈ V (H)) be an optimal orthogonal representation of H with

handle d (vj ,d ∈ Rm). It is easy to check that the vectors ui ◦ vj ((i, j) ∈ V (G) × V (H))

form an orthogonal representation of G⊠H . Furthermore, taking c◦d as its handle, we have

(
(c ◦ d)T(ui ◦ vj)

)2
= (cTui)

2(d ◦ vj)
2 ≥ 1

ϑ(G)
· 1

ϑ(H)
,

and hence

ϑ(G⊠H) ≤ max
i,j

1
(
(c ◦ d)T(ui ◦ vj)

)2 ≤ ϑ(G)ϑ(H).

To prove that equality holds, we use the duality established in Section 6.1.1. Let (vi,d)

be an orthonormal representation of G which is optimal in the sense that
∑

i(d
Tvi)

2 = ϑ(G),

and let (wj , e) be an orthonormal representation of H such that
∑

i(e
Twi)

2 = ϑ(H). It is

easy to check that the vectors vi ◦wj form an orthonormal representation of G⊠H , and so

using handle d ◦ e we get

ϑ(G⊠H) ≥
∑

i,j

(
(d ◦ e)T(vi ◦wj)

)2
=

∑

i,j

(dTvi)
2(eTwj)

2 = ϑ(G)ϑ(H).

We already know the reverse inequality, which completes the proof. �

6.1.3 Eigenvalues and theta

To motivate the identities and inequalities to be proved in this section, let us survey some of

the classical results which use spectral properties of graphs, or more generally linear algebra

techniques, to bound quantities like the independence number α = α(G), the clique number

ω = ω(G), or the chromatic number χ = χ(G). It turns out that several of these results

could be used to define ϑ(G), if generalized appropriately.

Let us start with an almost trivial inequality:

ω ≤ 1 + λmax(AG). (6.19)

In terms of the complementary graph,

α ≤ 1 + λmax(AG). (6.20)

Indeed, the matrix AG + I contains an ω × ω submatrix Jω of 1’s, so 1 + λmax(AG) =

λmax(AG + I) ≥ λmax(Jω) = ω. Note that in this argument, only the matrix entries in

adjacent and diagonal positions are used. We could substitute arbitrary real numbers for the

remaining entries (which are originally zeroes), to minimize the bound λmax(A) + 1. (We
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keep A symmetric, to have real eigenvalues.) What is the best bound on ω we can obtain

this way?

The following lower bound on the chromatic number of a graph is more difficult to prove:

χ(G) ≥ 1− λmax(AG)

λmin(AG)
(6.21)

(note that λmin(AG) < 0 if G has at least one edge, which we may assume). We will not

go through the proof; but if you do, you realize that it uses only the 0’s in the adjacency

matrix, so we can play with the 1’s to get the sharpest possible lower bound. What is the

best bound on χ we can obtain this way?

Hoffman (unpublished) proved the following upper bound on α, somewhat analogous to

the bound (6.21): If G is a d-regular graph, then

α(G) ≤ −nλmin(AG)

d− λmin(AG)
=

−nλmin(AG)

λmax(AG)− λmin(AG)
. (6.22)

Looking at the proof, one realizes that we use here where the 0’s of AG are, and also the

fact that all row sums are the same; but not the actual values of the entries corresponding

to edges. What is the best bound we can obtain by playing with the entries in adjacent

positions?

Perhaps it is not surprising that the answer the first two questions posed above is ϑ(G).

This will follow from the next identities.

Proposition 6.1.9 For every graph G,

ϑ(G) = min
A

λmax(A), (6.23)

where A ranges over all V × V -matrices with Aij = 1 for ij ∈ E and also for i = j.

Furthermore,

ϑ(G) = max
B

λmax(B), (6.24)

where B ranges over all positive semidefinite V × V -matrices with Bij = 0 for ij ∈ E and

Bii = 1 for i ∈ V . Furthermore,

ϑ(G) = 1 +max
C

λmax(C)

−λmin(C)
, (6.25)

where C ranges over all symmetric nonzero V ×V -matrices with Cij = 0 for ij ∈ E and also

for i = j.

Note that (6.24) can be written as

ϑ(G) = max
v

λmax(Gram(v)), (6.26)
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where v ranges over dual orthonormal representations of G.

Proof. By (6.11),

ϑ(G) = min
{
1 + max

i∈V
Yii : Y � 0, Yij = −1 (ij ∈ E)

}
.

Let Y be a minimizer matrix in this formula, let D be the diagonal matrix obtained from Y

by changing all off-diagonal entries to 0, and define A = I + D − Y . Then A satisfies the

conditions in the Proposition, and (using that Y � 0)

λmax(A) ≤ λmax(I +D) = 1 +max
i∈V

Yii = ϑ(G).

The reverse inequality follows similarly, by starting with a minimizer in (6.23), and consid-

ering Y = λmax(A)I −A.

To prove (6.24), we use (6.12):

ϑ(G) = max
{ ∑

i,j∈V

Zij : Z � 0, Zij = 0 (ij ∈ E), tr(Z) = 1
}
.

Let Z be a minimizer here, and define a V × V matrix B by

Bij =
1√

ZiiZjj

Zij .

Then B satisfies the conditions in (6.24). Define a vector x ∈ RV by xi =
√
Zii, then x is a

unit vector and

λmax(B) ≥ xTBx =
∑

i,j

Zij = ϑ(G).

The reverse inequality follows similarly, by starting with an optimizer B in (6.24), and

scaling its rows and columns by the entries of an eigenvector belonging to λmax(B).

Finally, to prove (6.25), consider an optimizer C in it, then B = I − 1
λmin(C)C is positive

semidefinite, has 0′s in adjacent positions and 1’s on the diagonal. Hence by (6.24), we have

ϑ(G) ≥ λmax(B) = 1− λmax(C)

λmin(C)
.

The reverse inequality follows by a similar argument. �

Proposition 6.1.9 can be combined with different known estimates for the largest eigen-

value of a matrix. As an example, using that the largest eigenvalue of a matrix is bounded

above by the largest ℓ1-norm of rows, we get that for every optimal dual orthogonal repre-

sentation (vi),

ϑ(G) ≤ max
i

∑

j

|vT

i vj |. (6.27)

Finally, we show how a strengthening of Hoffman’s bound (6.22) can be derived from

Proposition 6.1.9. This gives an upper bound on ϑ in terms of the eigenvalues of the adjacency

matrix.
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Lemma 6.1.10 Let G be a d-regular graph. Then for every symmetric nonzero V ×V -matrix

M such that Mij = 0 for ij ∈ E and also for i = j, and M has equal row-sums, we have

ϑ(G) ≤ −nλmin(M)

λmax(M)− λmin(M)
.

If the automorphism group of G is transitive on the nodes, then there is such a matrix M

attaining equality. If the automorphism group is transitive on the edges, then equality holds

for M = AG.

Proof. Let M have eigenvalues λ1 = d ≥ λ2 ≥ · · · ≥ λn. The matrix J − tM satisfies the

conditions in (6.23) for every value of t. Using the condition that all row-sums of M are the

same, we see that 1 is a common eigenvector of J and M , and it follows that all eigenvectors

ofM are eigenvectors of J as well. Hence the eigenvalues of J−tM are n−td,−tλ2, . . . ,−tλn.

The largest one is either n− td or −tλmin, and we get the best bound if we choose t so that

these two are equal: t = n/(d− λmin), giving the bound in the lemma.

We can see just as in the proof of Theorem 6.1.5 that there is an optimizing matrix A in

(6.23) that is invariant under the automorphisms. So if G has a node-transitive automorphism

group, then the row-sums of this matrix are equal, and the same holds for M = J −A. This

matrix M satisfies the conditions in the lemma, and attains equality.

If G has an edge-transitive automorphism group, then all nonzero entries of M are the

same, and hence M = tA for some t 6= 0. The value of t cancels from the formula, so M = AG

also provides equality. �

6.1.4 Examples

We compute the theta-function of several classes of graphs, to illustrate the use of the results

presented above.

Example 6.1.11 (Cycles) Even cycles are trivial: If n is even, then α(Cn) = ϑ(Cn) =

χ(Cn) = n/2. To derive the theta function on odd cycles, we can use Lemma 6.1.10: The

eigenvalues of Cn are 2 cos(2kπ/n) (k = 0, 1, . . . , n−1), of which k = 0 gives the largest (which

is 2) and k = (n − 1)/2 gives the smallest one (which is 2 cos((n − 1)π/n) = −2 cos(π/n).
Hence

ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
.

Since Cn has a node-transitive automorphism group, this implies that

ϑ(Cn) = 1 +
1

cos(π/n)
.

�
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Example 6.1.12 (Kneser graphs) The Kneser graph Kn
k is defined on node set

(
[n]
k

)
, by

connecting two k-sets if and only if they are disjoint (1 ≤ k ≤ n). Let us assume that n ≥ 2k

to exclude the trivial case of a graph with no edges. The set of k-sets containing any fixed

element of [n] is stable, hence α(Kn
k ) ≥

(
n−1
k−1

)
. The Erdős–Ko–Rado Theorem asserts that

this is the exact value; this fact will follow from our considerations below.

To compute the theta-function of this graph, we need the eigenvalues of its adjacency

matrix. These are well known from coding theory:

(−1)t
(
n− k − t

k − t

)
, (t = 0, 1, . . . , k).

The multiplicity of the eigenvalue with parameter t is
(
n
t

)
−
(

n
t−1

)
, but this is not important

here. The largest eigenvalue in
(
n−k
k

)
(the degree of each node), while the smallest is the

next one, −
(
n−k−1
k−1

)
.

We apply the formula in Lemma 6.1.10, and get

ϑ(Kn
k ) ≤

n
(
n−k−1
k−1

)
(
n−k
k

)
−
(
n−k−1
k−1

) =

(
n− 1

k − 1

)
. (6.28)

Comparing with the lower bound on α(Kk
n), we see that

ϑ(Kn
k ) = α(Kn

k ) =

(
n− 1

k − 1

)
. (6.29)

In particular, the Petersen graph K5
2 has ϑ(K5

2 ) = 4. �

Example 6.1.13 (Paley graphs) The Paley graph Palp is defined for a prime p ≡ 1

(mod 4). We take the {0, 1, . . . , p−1} as nodes, and connect two of them if their difference is

a quadratic residue. It is clear that these graphs have a node-transitive automorphism group,

and it is easy to see that they are self-complementary. So Corollary 6.1.7 applies, and gives

that ϑ(Palp) =
√
p. To determine the stability number of Paley graphs is a difficult unsolved

number-theoretic problem; it is conjectured that α(Palp) = O((log p)2). �

Example 6.1.14 (Cycles with diagonals) For graphs with a node-transitive automor-

phism group, the existence of automorphism-invariant optima can be very useful. We illus-

trate this on the graph Wn obtained of an even cycle Cn with its longest diagonals added. In

fact, we can restrict our attention to the case when n = 4k is a multiple of 4, since otherwise

Wn is bipartite and ϑ(G) = 2k. We can observe the easy bounds 2k− 1 ≤ ϑ(Wn) ≤ 2k, since

Wn has 2k − 1 independent nodes and can be covered by 2k edges.

Let V (Wn) = {0, 1, . . . , n − 1}, where the nodes are labeled in the order of the original

cycle. There exists an optimizing matrix A in (6.23) that is invariant under rotation, which

means that it has only three different entries:

Auv =





1 + a, if u− v ≡ ±1 (mod 4k),

1 + b, if u− v ≡ 2k (mod 4k),

1, otherwise.
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It is easy to see that for every (4k)-th root of unity ε, the vector (1, ε, ε2, . . . εn−1) is an

eigenvector of A. (This is a complex vector, so if we want to stay in the real field, we have

to consider its real and imaginary parts; but it is more convenient here to compute with

complex vectors.) The eigenvalue λr corresponding to ε = e2πir/n is easy to compute:

λ0 = 4k + 2a+ b,

and

λr = 1 + aε+ ε2 + · · ·+ bε2k + ε2k+1 + · · ·+ aεn−1 = a(ε+ ε) + bε2k

= 2a cos
rπ

2k
+ b(−1)r (r > 0).

We want to minimize maxr λr. Each λr = λr(a, b) is a linear function of a and b, so we can

find ϑ as the optimum of the linear program in 2 variables:

ϑ(Wn) = min
a,b

max
r

λr(a, b). (6.30)

There are many ways to do a back-of-the-envelope computation here; one gets that a = −k,
b = −k + k cos(π/k) is an optimal solution, giving

ϑ(Wn) = k + k cos
π

k
. (6.31)

The main point in this example is to illustrate that for graphs with a node-transitive au-

tomorphism group, the value of the theta function can be computed by a linear program,

analogous to (6.30), where the number of unknowns is the number of orbits of the automor-

phism group on the edges. This may or may not lead to simple formula like in this case, but

the computation is easy to perform, often even by hand. �

Example 6.1.15 (Self-polar polytopes) A polytope P ⊆ Rd is called self-polar, if P ∗ =

−P . Note that this condition implies that for each vertex v, the inequality (−v)Tx ≤ 1

defines a facet Fv of P , and we obtain all facets this way. We call two vertices v and v′ of P

opposite, if v′ lies of Fv. In other words, vTv′ = −1, which shows that this is a symmetric

relation. We call the polytope strongly self-polar, if it is inscribed in a ball centered at the

origin, in other words, there is an r > 0 such that |v| = r for all vertices v. For two opposite

vertices we have 1 = vTu < |v| |u| = r2, and hence r > 1. It also follows that the distance

of any facet from the origin is 1/r, so the sphere with radius 1/r about the origin touches

every facet.

In dimension 2, regular polygons with an odd number of vertices, with appropriate edge

length, are strongly self-polar. It is known that for every dimension d and ε > 0 there exist

strongly self-polar polytopes inscribed in a sphere with radius r < 1 + ε.

Let P be a strongly self-polar polytope in Rd, and let G be the graph on V (G) = V (P ),

in which two vertices are connected if and only of they are opposite. It is known that
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χ(G) ≥ d+1. (The proof of this would lead us to a different area of advanced combinatorial

methods, the use of algebraic topology.)

We can estimate ϑ(G) and ϑ(G) as follows. Let us label each vertex v of P with the

vector

uv =
1√

r2 + 1

(
v

1

)
.

This is trivially a unit vector in Rd+1, and uv ⊥ uv
′ for opposite vertices v and v′. So u is

an orthonormal representation of G. Using the vector ed+1 as handle, we see that

ϑ(G) ≤ max
v

1

(eTd+1uv)2
= r2 + 1,

and

ϑ(G) ≥
∑

v

(eTd+1uv)
2 =

n

r2 + 1
.

In particular, we see that χ(G) can be arbitrarily large while ϑ(G) can be arbitrarily close

to 2. �

6.2 Random graphs

It is a nontrivial problem to determine the theta function of a random graph. To start

with a heuristic, recall Corollary 6.1.7: a self-complementary graph G with a node-transitive

automorphism group has ϑ(G) =
√
n.

Consider the most basic random graph G(n, 1/2). This is, of course, not self-

complementary, and its automorphism group is trivial, with high probability. However,

its distribution is invariant under complementation and also under all permutations of the

nodes. Informally, it is difficult to distinguish it from its complement (as it is difficult to

distinguish any two random graphs with the same edge-density), and apart from a little vari-

ance in the degrees, it is difficult to distinguish any two nodes. So perhaps it does behave

like a self-complementary graph with a node-transitive automorphism group would!

This heuristic predicts the right order of magnitude of ϑ(G(n, 1/2)), namely it is of the

order
√
n. However, no proof is known that would build on the heuristic above.

Theorem 6.2.1 With high probability,

1

3

√
n < ϑ(G(n,

1

2
)) < 3

√
n.

The method extends to estimating ϑ(G(n, p)) (as usual, G(n, p) denotes a random graph

on n nodes with edge probability p): if p is a constant and n→∞, then with high probability,

1

3

√
pn

1− p
< ϑ(G(n, p)) < 3

√
(1− p)n

p
.
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Proof. First we prove the upper bound. Let A be the matrix defined by

Aij =

{
−1, if ij ∈ E,

1, otherwise.

Note that E(Aij) = 0 and A2
ij = 1 for i 6= j. The matrix A satisfies the conditions in

Proposition 6.1.9, and hence we get that ϑ(G) ≤ λmax(A), where λmax(A) is the largest

eigenvalue of A.

To estimate λmax(A), we fix an integerm = Θ(n1/6), and note that λmax(A)
2m ≤ tr(A2m).

Our next goal is to estimate the expectation of tr(A2m). This trace can be expressed as

tr(A2m) =
∑

i1,...,i2m∈V

Ai1i2 . . . Ai2m−1i2mAi2mi1 =
∑

W

A(W ),

where W = (i1, . . . , i2m, i1) is a closed walk on the complete graph (with loops) on n nodes.

If we take expectation, then every term in which the defining walk traverses a non-loop edge

an odd number of times gives 0. This implies that for the remaining terms, the number of

different non-loop edges that are traversed is at most m, and since the graph traversed is

connected, the number of different nodes that are touched is at most m+1. Let V (W ) denote

the set of these nodes.

The main contribution comes from walks with |V (W )| = m+1; in this case no loop edges

are used, the subgraph traversed is a tree, and every edge of it is traversed exactly twice.

The traversing walk corresponds to selecting a starting node, drawing the tree in the plane

as a rooted tree, and walking around it, keeping it on our right. It is well known that the

number of different rooted plane trees with m + 1 nodes is given by the Catalan number
1

m+1

(
2m
m

)
. The walk determines a unique order of the m + 1 nodes, corresponding to the

order in which they are first encountered. We can associate these m+1 nodes with nodes in

V in n(n− 1) . . . (n−m) ways, and so the contribution of these terms is

T =
1

m+ 1

(
2m

m

)
n(n− 1) . . . (n−m) ≤ 1

m
4mnm+1 =

n

m
(4n)m. (6.32)

Those walks with |V (W )| ≤ m will contribute less, and we need a rather rough estimate

of their contribution only. Consider a walk W = (i1, . . . , i2m, i1) which covers a graph H on

nodes V (H) = V (W ) = [r] that is not a tree. There is a non-loop edge (it, it+1) that is not

a cut-edge of H . If it is traversed (at least) twice in the same direction, then we can write

W = W1 + (it, it+1) +W2 + (it, it+1) +W3, where W1 is a walk from i1 to it, W1 is a walk

from it+1 to it, and W3 is a walk from it+1 to i1 (Figure 6.2). Define a walk

W ′ = W1 + (it, r + 1, it) +
←−
W 2 +W3,

where
←−
W 2 is the walk W2 in reverse order.

If (it, it+1) is traversed once in each direction, then we have W = W1 + (it, it+1) +W2 +

(it+1, it) +W3, where W1 is a walk from i1 to it, W2 is a walk from it+1 to it+1, and W3 is
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Figure 6.2

Figure 6.3

a walk from it to i1 (Figure 6.3). Furthermore, the two closed walks W1 +W3 and W2 must

have a node v in common, since otherwise itit+1 would be a cut-edge of H . Reversing the

order on the segment of W between these two copies of v, we get a new walk W0 that has

the same contribution, and which passes itit+1 twice in the same direction, and so W ′
0 can

be defined as above. Let us define W ′ = W ′
0.

In both cases, the new closed walk W ′ covers r + 1 nodes. Furthermore, by simple

computation,

E(A(W )) ≤ 2E(A(W ′)).

Every closed walk covering [r+1] arises at most 4m3 ways in the form of W ′: we can get W

back by identifying r + 1 with one of the other nodes (r ≤ m choices), and then flipping the
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segment between two occurrences of the same node (fewer than 4m2 choices). Hence

∑

|V (W )|=r

E(A(W )) =

(
n

r

) ∑

V (W )=[r]

E(A(W )) ≤ 2

(
n

r

) ∑

V (W )=[r]

E(A(W ′))

≤ 8m3

(
n

r

) ∑

V (W )=[r+1]

E(A(W ))

= 8m3

(
n

r

)(
n

r + 1

)−1 ∑

|V (W )|=r+1

E(A(W ))

=
8(r + 1)m3(m+ 1)

n− r

∑

|V (W )|=r+1

E(A(W ))

≤ 1

2

∑

|V (W )|=r+1

E(A(W )),

by the choice of m, if n is large enough. This implies that

E(tr(A2m)) =
∑

W

E(A(W )) ≤
m∑

j=0

T

2j
< 2T.

Hence by Markov’s Inequality and (6.32),

P

(
λmax(A) ≥ 3

√
n
)
= P

(
λmax(A)

2m ≥ (9n)m
)
≤ P

(
tr(A2m) ≥ (9n)m

)

≤ E(tr(A2m))

(9n)m
≤ 2T

(9n)m
= o(1).

This proves that with high probability, λmax(A) < 3
√
n as claimed.

To prove the lower bound, it suffices to invoke Lemma 6.1.4:

ϑ(G(n,
1

2
)) = ϑ(G(n,

1

2
)) ≥ n

ϑ(G(n, 1
2 ))

>
n

3
√
n
=

1

3

√
n

with high probability. �

6.3 Polyhedral combinatorics of the theta function

6.3.1 Polarity and antiblocking

Polarity. Let K be a convex body containing the origin as an interior point. The polar of

K is defined by

K∗ = {x ∈ R
d : xTy ≤ 1 ∀y ∈ P}.

It is clear that K∗ is a convex body as well, containing the origin in its interior. For every

convex body K we have (K∗)∗ = K.
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The polar of a polytope (containing the origin) is a polytope. For every vertex v of P ,

the inequality vTx ≤ 1 defines a facet of P ∗, and vice versa. The vector v is a normal vector

of the facet vTx ≤ 1. More generally, if v0, . . . ,vm are the vertices of a k-dimensional face

F of P , then

F⊥ = {x ∈ P ∗ : vT

0x = 1, . . . ,vT

mx = 1}

defines a d− k − 1-dimensional face of P ∗. Furthermore, (F⊥)⊥ = F .

For every convex cone C, we can form its polar cone C∗, defined by

C∗ = {x ∈ R
n : xTy ≥ 0 ∀y ∈ C}.

This is again a convex cone. If C is closed (in the topological sense), then we have (C∗)∗ = C.

The polar cone of the cone of semidefinite matrices (within the space of symmetric n× n

matrices) is itself.

Antiblocking. A closed convex set K is called a convex corner, if K ⊆ Rd
+ and whenever

x ∈ K, y ∈ Rd and 0 ≤ y ≤ x then y ∈ K. A polytope which is a convex corner will be

called a corner polytope. The antiblocker of a convex corner K is defined by

Kabl = {x ∈ R
d
+ : xTy ≤ 1∀y ∈ K}

(see Figure 6.4).

Figure 6.4: A 2-dimensional corner polytope and its antiblocker

The antiblocker of a convex corner is a convex corner. The antiblocker of a corner polytope

is a corner polytope. For every convex corner K, we have (Kabl)abl = K.

The correspondence between faces of a corner polytope P and Pabl is again a bit more

complicated than for the polars. The nonnegativity constraints xi ≥ 0 always define facets,

and they don’t correspond to vertices in the antiblocker. All other facets of P correspond to

vertices of Pabl. Not every vertex of P defines a facet in Pabl. The origin is a trivial excep-

tional vertex, but there may be further exceptional vertices. We call a vertex v dominated,

if there is another vertex w such that v ≤ w. Now a vertex of P defines a facet of P ∗ if and

only if it is not dominated.
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6.3.2 The stable set polytope

Stable sets and cliques give rise to important polyhedra associated with graphs. After sum-

marizing those basic properties of these polyhedra that we need, we show that orthogonal

representations provide an interesting related convex body, with nice duality properties.

The stable set polytope STAB(G) of a graph G is the convex hull of incidence vectors of

all stable sets. This gives us a polytope in R
V . The stability number α(G) can be obtained

by maximizing the linear function
∑

i∈V xi over this polytope, which suggests that methods

from linear programming can be used here.

With this goal in mind, we have to find a system of linear inequalities whose solution set

is exactly the polytope STAB(G). It would be best to find a minimal such system, which is

unique. If we can find this system, then the task of computing the stability number α(G) of

G reduces to maximizing
∑

i∈V xi subject to these constraints, which means solving a linear

program. Unfortunately, this system of linear inequalities is in general exponentially large

and very complicated. But if we find at least some linear inequalities valid for the stable set

polytope, then solving the linear program we get an upper bound on α(G), and for special

graphs, we get the exact value.

So we want to find linear inequalities (constraints) valid for the incidence vector of every

stable set. We start with the trivial non-negativity constraints:

xi ≥ 0 (i ∈ V ). (6.33)

The fact that the set is stable is reflected by the edge constraints:

xi + xj ≤ 1 (ij ∈ E). (6.34)

Inequalities (6.33) and (6.34) define the fractional stable set polytope FSTAB(G). Integral

points in FSTAB(G) are exactly the incidence vectors of stable sets, but FSTAB(G) may have

other (non-integral) vertices, and is in general larger than STAB(G). The case of equality

has a nice characterization.

Proposition 6.3.1 STAB(G) = FSTAB(G) if and only if G is bipartite. �

Let αf (G) denote the maximum of
∑

i xi over x ∈ FSTAB(G). Trivially α(G) ≤ αf (G),

and αf (G) is computable in polynomial time (since (6.33) and (6.34) describe a linear program

defining αf ).

We can strengthen the edge constraints if the graph has larger cliques. Every clique B

gives rise to a clique constraint:
∑

i∈B

xi ≤ 1. (6.35)

Inequalities (6.33) and (6.35) define a polytope QSTAB(G), the clique-constrained fractional

stable set polytope of G. Since cliques in G correspond to stable sets in G and vice versa, it

is easy to see that QSTAB(G) is just the antiblocker of STAB(G).
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Again, we can introduce a corresponding relaxation of the stability number, namely the

quantity α∗(G) defined as the maximum of
∑

i xi over x ∈ QSTAB(G). This quantity is a

sharper upper bound on α(G) then αf , but it is NP-hard to compute.

The polytope QSTAB(G) is contained in FSTAB(G), but is still larger than STAB(G) in

general. The case of equality leads us to an interesting and rich class of graphs, of which we

give a very brief survey.

6.3.3 Perfect graphs

A graph G is called perfect, if for every induced subgraph G′ of G, we have ω(G′) = χ(G′).

Every bipartite graph is perfect, since they satisfy ω(G) = χ(G) = 2 (if they have an edge)

or ω(G) = χ(G) = 1 (if they have no edge), and their induced subgraphs are also bipartite.

Figure 6.5 shows some perfect and non-perfect graphs.

Figure 6.5: Some perfect graphs (first row) and some non-perfect graphs (second
row).

To be perfect is a rather strong structural property; nevertheless, many interesting classes

of graphs are perfect (bipartite graphs, their complements and their linegraphs, interval

graphs, comparability and incomparability graphs of posets, chordal graphs, split graphs,

etc.).

The following deep characterization of perfect graphs was conjectured by Berge in 1961

and proved by Chudnovsky, Robertson, Seymour and Thomas in 2006.

Theorem 6.3.2 (The Strong Perfect Graph Theorem) A graph is perfect if and only

if neither the graph nor its complement contains a chordless odd cycle longer than 3. �

As a corollary we can state the “The Weak Perfect Graph Theorem”:

Theorem 6.3.3 The complement of a perfect graph is perfect. �

From this theorem it follows that in the definition of perfect graphs we could replace the

equation ω(G′) = χ(G′) by α(G′) = χ(G′). Perfectness can also be characterized in terms of

the stable set polytope:
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Theorem 6.3.4 STAB(G) = QSTAB(G) if and only if G is perfect. �

Based on our remark above, the condition STAB(G) = QSTAB(G) is equivalent to saying

that STAB(G) and STAB(G) are antiblockers, which is a condition symmetric in G and G.

So Theorem 6.3.4 implies Theorem 6.3.3.

6.3.4 Orthogonality constraints

For every orthonormal representation (ui, c) of G, we consider the linear constraint

∑

i∈V

(cTui)
2xi ≤ 1, (6.36)

which we call an orthogonality constraint. The solution set of non-negativity and orthogonal-

ity constraints is denoted by TSTAB(G). It is clear that TSTAB is a closed, full-dimensional,

convex set. The orthogonality constraints are valid if x is the indicator vector of a stable set

of nodes (cf. (6.1)), and therefore they are valid for STAB(G). Furthermore, every clique con-

straint is an orthogonality constraint. Indeed, for every clique B, the constraint
∑

i∈B xi ≤ 1

is obtained from the orthogonal representation

i 7→
{
e1, i ∈ B,

ei, otherwise,
c = e1.

Hence

STAB(G) ⊆ TSTAB(G) ⊆ QSTAB(G) (6.37)

for every graph G.

There are several other characterizations of TSTAB. These are based on an extension of

the theta-function to the case when we are also given a weighting w : V → R+. Generalizing

the formulas in Remark 6.1.3, the quantity ϑ(G,w) can be defined by any of the following

formulas:

ϑ(G,w) = min
{
max
i∈V

wi

(cTui)2
: u ONR of G, |c| = 1

}
(6.38)

= min
{
t ≥ 2 : |yi|2 = t− wi, yT

i yj = −√wiwj (ij ∈ E)
}

(6.39)

= min
{
max
i∈V

(Yii + wi) : Y � 0, Yij = −√wiwj (ij ∈ E)
}

(6.40)

= max
{ ∑

i,j∈V

wiwjZij : Z � 0, Zij = 0 (ij ∈ E),
∑

i

Zii = 1
}

(6.41)

= max
{∑

i∈V

wi(d
Tvi)

2 : v ONR of G, |d| = 1
}
. (6.42)

The equivalence of (6.38)–(6.42) can be obtained extending the proof Theorem 6.1.2 to the

node-weighted version (at the cost of a little more computation).
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For every orthonormal representation u = (ui : i ∈ V ) with handle c, we call the vector

((cTui)
2 : i ∈ V ) the profile of the orthogonal representation. We can state two further

characterizations of TSTAB(G):

Proposition 6.3.5 (a) x ∈ TSTAB(G) if and only if ϑ(G,x) ≤ 1.

(b) The body TSTAB(G) is exactly the set of profiles of dual orthonormal representations

of G.

Proof. (a) follows from (6.42).

(b) The profile of every dual orthonormal representation belongs to TSTAB(G); this is

equivalent to (6.8). Conversely, let x ∈ TSTAB(G). Then ϑ(G,x) ≤ 1 by (a), so (6.38)

implies that there is a dual orthonormal representation v of G with handle d for which

xi ≤ dTvi for all nodes i ∈ V . Thus the vectors v′
i = (xi/d

Tvi)vi satisfy dTv′
i = xi. The

vectors v′
i are not of unit length, but the vectors

v′′
i =

(
v′
i√

1− |v′
i|2ei

)
and d′′ =

(
d

0

)

form a dual orthonormal representation of G with profile x. �

The last characterization of TSTAB(G) is equivalent to the following duality result.

Corollary 6.3.6 TSTAB(G) is the antiblocker of TSTAB(G). �

Before stating the next theorem, recall that a vertex of a convex body K is a boundary

point v that is the unique point of intersection of all hyperplanes supporting K at v. This

means that there is a pointed convex cone containing K with v as its vertex. This is to be

distinguished from an extreme point, which is the unique point of intersection of a hyperplane

supporting K with K.

Theorem 6.3.7 The vertices of TSTAB(G) are exactly the incidence vectors of stable sets

in G.

Does this imply that TSTAB(G) = STAB(G)? Of course not, since TSTAB(G) (as every

convex body) is the convex hull of its extreme points, but not necessarily of its vertices.

Proof. The vector 1A, where A is a stable set of nodes, is the unique common point of

the supporting hyperplanes xi = 1 (i ∈ A) and xi = 0 (i ∈ V \ A), and so it is a vertex of

TSTAB(G).

Conversely, let z = (zi : i ∈ V ) be a vertex of TSTAB(G). If zi = 0 for some node i, then

we can delete i: We get a graph G′ for which TSTAB(G′) = TSTAB(G) ∩ {zi = 0}, and so

z |V \{i} is a vertex of TSTAB(G′), and we can proceed by induction.

So we may assume that zi > 0 for all i ∈ V . Since z ∈ TSTAB(G), we can write

zi = (dTvi)
2 for some dual orthonormal representation (vi : i ∈ V ) of G and unit vector d.
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Let aTx ≤ 1 be a hyperplane that supports TSTAB(G) at z. Then a ∈ TSTAB(G) by

Corollary 6.3.6, and hence there is an orthonormal representation (ui : i ∈ V ) of G and unit

vector c such that ai = (cTui)
2. By the same argument as in the derivation of (6.17), we get

d =
∑

i

(cTui)
2(dTvi)vi.

Multiplying by any vector y, we get

dTy =
∑

i

(cTui)
2(dTvi)(v

T

i y) =
∑

i

ai(d
Tvi)(v

T

i y).

Thus if y is not orthogonal to c, then the point z′ defined by z′i = (dTvi)(v
T

i y)/(d
Ty)

is contained in the supporting hyperplane
∑

i aixi = 1. This holds for every supporting

hyperplane at z. Since z is a vertex, the only common point of hyperplanes supporting

TSTAB(G) at z is z itself (here we use that z is a vertex, not just an extreme point). Thus

z′ = z, which means that vT

i y = (dTvi)(d
Ty) for all i (here we use that zi 6= 0 for all i). This

linear equation must also hold for the vectors y orthogonal to c. So we get that vi = (dTvi)d,

and since vi is a unit vector, we get vi = d. So no two vectors vi are orthogonal, and thus

G has no edges. So z = 1V is the incidence vector of a stable set as claimed. �

Example 6.3.8 Consider the graph C5, with node set {1, . . . , 5}. The polytope STAB(C5)

has 11 vertices (the origin, the basic unit vectors, and the incidence vectors of non-adjacent

pairs of nodes). The facets are defined by the non-negativity constraints, edge constraints,

and single further inequality

x1 + x2 + x3 + x4 + x5 ≤ 2. (6.43)

Since C5 has no triangles, we have QSTAB = FSTAB. This polytope has a single vertex

(12 , . . . ,
1
2 ) in addition to the incidence vectors of stable sets.

Turning to TSTAB, we know by Theorem 6.3.7 that it has 11 vertices, the same vertices

as STAB. The umbrella construction we have used before gives a point

( 1√
5
, . . . ,

1√
5

)T

∈ TSTAB(C5) (6.44)

which is not in STAB(G) by (6.43). Applying the umbrella construction to the complement,

and scaling, we get an orthogonality constraint

x1 + · · ·+ x5 ≤
√
5, (6.45)

showing that the special vertex of FSTAB(C5) does not belong to TSTAB(C5). �

This example shows that not every orthogonality constraint follows from the clique con-

straints. In fact, the number of essential orthogonality constraints is infinite unless the graph

is perfect.
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Proposition 6.3.9 TSTAB(G) is polyhedral if and only if the graph is perfect.

Proof. If G is perfect, then STAB(G) = QSTAB(G) by Theorem 6.3.4, and (6.37) implies

that TSTAB(G) = STAB(G) = QSTAB(G), so TSTAB(G) is polyhedral. To prove the con-

verse, suppose that TSTAB(G) is polyhedral, then Theorem 6.3.7 implies that TSTAB(G) =

STAB(G). We can apply this argument to G, since TSTAB(G) = TSTAB(G)abl is also

polyhedral; we get that

TSTAB(G) = TSTAB(G)abl = STAB(G)abl = QSTAB(G).

So STAB(G) = TSTAB(G) = QSTAB(G), which implies that G is perfect by Theorem 6.3.4.

�

6.4 Applications

6.4.1 Shannon capacity

In the introduction, we have described how to use orthogonal representations to determine the

Shannon zero-error capacity of the pentagon. What happens with other confusion graphs?

Let V be an alphabet with confusion graph G = (V,E). To describe the confusion graph

of longer messages, we use the strong product of two graphs. In these terms, α(G⊠k) is the

maximum number of non-confusable words of length k: words composed of elements of V ,

so that for every two words there is at least one i (1 ≤ i ≤ k) such that the i-th letters are

different and non-adjacent in G, i.e., non-confusable. It is easy to see that

α(G⊠H) ≥ α(G)α(H). (6.46)

This implies that

α(G⊠(k+l)) ≥ α(G⊠k)α(G⊠l), (6.47)

and hence

α(G⊠k) ≥ α(G)k. (6.48)

The Shannon capacity (zero-error capacity, if we want to be pedantic) of a graph G is the

value

Θ(G) = lim
k→∞

α(G⊠k)1/k. (6.49)

Inequality (6.47) implies, via Fekete’s Lemma, that the limit exists, and (6.48) implies that

Θ(G) ≥ α(G). (6.50)
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Rather little is known about this graph parameter for general graphs. For example, it is not

known whether Θ(G) can be computed for all graphs by any algorithm (polynomial or not),

although there are several special classes of graphs for which this is not hard. The behavior

of Θ(G) and the convergence in (6.49) are rather erratic.

Let us describe a few facts we do know. First, let us generalize the argument from the

Introduction bounding Θ(C4). Let χ(G) denote the minimum number of complete subgraphs

covering the nodes of G (this is the same as the chromatic number of the complementary

graph.) Trivially

α(G) ≤ χ(G). (6.51)

Any covering of G by χ(G) cliques and of H by χ(H) cliques gives a “product covering” of

G⊠H by χ(G)χ(H) cliques, and so

χ(G⊠H) ≤ χ(G)χ(H). (6.52)

Hence

α(G⊠k) ≤ χ(G⊠k) ≤ χ(G)k,

and thus

Θ(G) ≤ χ(G). (6.53)

It follows that if α(G) = χ(G), then Θ(G) = α(G); for such graphs, nothing better can be

done than reducing the alphabet to the largest mutually non-confusable subset. In particular,

this answers the Shannon capacity problem for perfect graphs.

Instead of χ, we can use ϑ to bound the Shannon capacity:

α(Gk) ≤ ϑ(Gk) ≤ ϑ(G)k,

which implies

Proposition 6.4.1 For every graph G,

Θ(G) ≤ ϑ(G).

Since ϑ(C5) =
√
5, we get that Θ(C5) =

√
5. This argument can be generalized to an

infinite class of graphs:

Corollary 6.4.2 If G is a self-complementary graph with a node-transitive automorphism

group, then Θ(G) =
√
n.

Proof. The diagonal in G⊠G is stable, so α(G⊠G) = α(G⊠G) ≥ n, and hence Θ(G) ≥ √n.
On the other hand, Θ(G) ≤ ϑ(G) =

√
n by Corollary 6.1.7. �



6.4. APPLICATIONS 27

Example 6.4.3 (Paley graphs II) Paley graphs form a class of graphs to which this corol-

lary applies, and whose Shannon capacity can be determined exactly: Θ(Palp) = ϑ(Palp) =√
p. Assuming that the stability number of a Paley graph is polylogarithmic in p (as con-

jectured), for this infinite family of graphs the Shannon capacity is much higher than the

stability number. �

The tensor product construction in the proof of Theorem 6.1.8 shows that if G has an

orthonormal representation in dimension c, and H has an orthonormal representation in

dimension d, the G⊠H has an orthonormal representation in dimension cd. It follows that

the minimum dimension of any orthonormal representation is an upper bound on Θ(G). It

is not hard to show that this bound is never better than ϑ(G). However, if we consider

orthogonal representations over fields of finite characteristic, then the analogue of ϑ is not

defined, but the minimum dimension provides a better bound on the Shannon capacity than

ϑ in some cases.

We’ll return to the Shannon capacity in a quantum communication setting in last section

of this chapter.

6.4.2 Coloring perfect graphs

Perhaps the most important consequence of the formulas proved in Section 6.1 is that the

value of ϑ(G) is polynomial time computable. More precisely,

Theorem 6.4.4 There is an algorithm that computes, for every graph G and every ε > 0, a

real number t such that

|ϑ(G)− t| < ε.

The running time of the algorithm is polynomial in n and log(1/ε).

Algorithms proving this theorem can be based on almost any of our formulas for ϑ. The

simplest is to refer to Theorem 6.1.2 giving a formulation of ϑ(G) as the optimum of a

semidefinite program (6.3), and the polynomial time solvability of semidefinite programs.

The significance of this fact is underlined if we combine it with Theorem 6.1.1: The two

important graph parameters α(G) and χ(G) are both NP-hard, but they have a polynomial

time computable quantity sandwiched between them. This fact in particular implies:

Corollary 6.4.5 The stability number and the chromatic number of a perfect graph are poly-

nomial time computable.

Using the algorithms of Corollary 6.4.5 one can compute more than just these values: one

can compute a maximum stable set and an optimal coloring in a perfect graph in polynomial

time.
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Theorem 6.4.4 extends to the weighted version of the theta function. Maximizing a linear

function over STAB(G) or QSTAB(G) is NP-hard; but, surprisingly, TSTAB behaves much

better: Every linear objective function can be maximized over TSTAB(G) (with an arbitrarily

small error) in polynomial time. This applies in particular to ϑ(G), which is the maximum

of
∑

i xi over TSTAB(G).

6.5 Orthogonal representations and quantum physics

We conclude our treatment of orthogonal representations with sketching some applications

of them in quantum physics. As it happens, the applications we are going to discuss are all

about entanglement, so let us introduce this notion first.

As the basic setup in quantum physics, the state of a physical system can be described

by a vector of unit norm in a (complex) Hilbert space. In the simple systems we need, this

space will be finite dimensional, so it may be considered as Cd for an appropriate nonnegative

integer d. We write u · v for the inner product of two vectors u,v ∈ Cd, to emphasize that

it is used in the Hilbert space sense: u · v =
∑

i uivi.

A measurement on a quantum state u is performed by applying a self-adjoint linear

operator A to it. The simplest measurement is the orthogonal projection of the state vector

onto a one-dimensional subspace. If a is the vector generating this subspace (which is unique

up to a scalar of absolute value 1), then the projection is (u · a)a. Such an experiment can

be thought of as checking a particular property of u, and the probability that the property

checks out is |a · u|2.
The fact that we assign vectors to discrete objects like properties suggests analogies with

orthogonal representations (and perhaps other representations treated in this book). As

it turns out, this is more than just an analogy; we describe three special problems, where

quantum physics makes strong use of the theory of orthogonal representations. It is quite

possible that other connections can be found.

6.5.1 Capacity of quantum channels

The most successful area of applying quantum physics in computer science, at least so far,

is quantum information theory. Using phenomena of quantum physics (for example, entan-

glement of particles), one can create communication channels that are more efficient than

classical communication channels.

Consider two quantum physical systems A and B. Separately, the their states can be

described by unit vectors x and y in a complex Hilbert space Cd. (For these applications,

we may restrict our attention to finite dimensional state spaces, and we simplify notation by

assuming that both systems have a d-dimensional state space.) The state of the union of the

two systems can be described by a vector in the tensor product Cd ⊗Cd. If the two systems



6.5. ORTHOGONAL REPRESENTATIONS AND QUANTUM PHYSICS 29

in states x and y are “independent” (unentangled), their joint state is x ◦ y. However, this

will not be the case in general, as a vector z ∈ Cd ⊗ Cd cannot be written as the tensor

product of two vectors in Cd. In this case, the state z is called entangled. Such a state can

be written as

z =

d∑

u,v=1

Suv(eu ◦ ev),

where {e1, . . . , ed} is the standard basis in Cd, and the coefficients Suv are complex numbers

with
∑

u,v |Suv|2 = 1. Sometimes it is convenient to describe z by the d× d complex matrix

S = (Sij). A maximally entangled state is

z =

d∑

i=1

1√
d
ei ◦ ei.

Entanglement leads to rather paradoxical behavior of particles; this was pointed out by

Einstein, Podolsky and Rosen in 1935. Consider a pair of maximally entangled particles with

a 2-dimensional state space: say two electrons, whose spin can be either “up” or “down”.

Their maximally entangled state is 1√
2
e1 ◦ e1 + 1√

2
e2 ◦ e2. Such a pair is often called an

Einstein–Podolsky–Rosen pair or EPR pair.

Suppose that Alice and Bob split an EPR pair between themselves (while it remains in

the same entangled state), and they travel to different far away places. If Alice measures the

state of her electron, she will find it in one of the states e1 and e2 with the same probability.

Say it is in state e1, then the entangled state collapses to e1 ◦ e1 immediately. This is long-

range action faster than light, so it contradicts special relativity—but only almost. If Bob

measures the state of his electron, then it will be in state e1; but if they do the measurements

in different order what they observe will come out the same. You can play around with more

EPR pairs to convince yourself that no information can be transmitted between Alice and

Bob.

But such a strange behavior can be utilized, in particular in information theory and

computer science. In the example above, Alice and Bob do obtain the same random bit,

which is very secure, since by the principles of quantum physics, nobody can learn this bit

without destroying the entanglement.

One can ask for analogues of the Shannon capacity in quantum information theory. It

turns out that ϑ provides an upper bound for the quantum physical version Shannon capacity

just like it does for classical channels.

Example 6.5.1 While entanglement does not allow to send information directly (faster

than the speed of light) between two people, it does allow to make better use of classical

communication channels.

We need a graph G with the following properties: (a) its node set can be partitioned into q

complete d-subgraphs H1, . . . , Hq; (b) there are further complete d-subgraphs Hd+1, . . . , Hr
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such that every edge of G belongs to one of H1, . . . , Hr; (c) α(G) < q; (d) G has a dual

orthonormal representation v in Rd. Several constructions of such graphs are known, it is

perhaps easiest to describe such a graph with d = 4 and q = 6. The node set of this graph

can be defined as the set of vectors in R4 with coordinates 0, 1 or −1, where the number of

nonzero coordinates is 1, 2 or 4, and of vectors that are negatives of each other we only keep

one. We connect two of these by an edge if they are orthogonal. By definition, this graph

has a dual orthonormal representation in R4. To verify that properties (a)–(d) above are

satisfied is left to the reader.

Next we construct a (noisy) classical communication channel. Its input alphabet is V , its

output alphabet is [r], and on input a ∈ V it outputs one of the indices i for which a ∈ V (Hi).

The output i is chosen randomly and uniformly from all such i. Thus two inputs a and b are

confusable if and only if there is a chance that they lead to the same output, i.e., if there

is an i such that a, b ∈ V (Hi). This is equivalent to ab ∈ E, so the confusability graph of

the channel is G. The number of inputs that can be used without any danger of confusion is

α(G) < q.

We use the dual orthonormal representation to show that in the presence of entanglement,

one can safely transmit q different one-letter messages. We construct two copies a quantum

system with a d-dimensional state space Cd, and prepare them by bringing them to the

maximally entangled state

u =
d∑

i=1

1√
d
ei ◦ ei.

Alice and Bob get one of the two copies each. Now if Alice wants to send message m

to Bob (1 ≤ m ≤ q), then she measures the state of her side in the orthonormal basis

{vs : s ∈ V (Hm)}. The result of the measurement will be a random element vs of this basis.

After that, the entangled system will be in the state vs ◦ vs.

Alice sends s to Bob through the noisy channel. Bob receives an index i for which

s ∈ V (Hi). Since Hi is complete, Bob can measure the state of his side in the orthonormal

basis {vt : t ∈ V (Hi)}, and determine s. Since there is a unique m, 1 ≤ m ≤ q, for which

s ∈ V (Hm), he determines m. �

So we see that using an entangled state can improve the zero-error capacity of a noisy

channel. How much is the improvement? It turns out that the theta function is still an upper

bound. One can use an entanglement-assisted channel repeatedly to gain in its capacity just

like in the classical case. Since the theta function is multiplicative, it remains an upper bound

on the zero-error capacity.

Theorem 6.5.2 Suppose that Alice and Bob are connected by a classical noisy channel,

where the input alphabet has confusability graph G. In addition, there is an entangled state

u ∈ Cd ◦ Cd, where Alice has access to the first factor and Bob has access to the second
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factor. Then the maximum number of one-letter messages that Alice can transmit without

the possibility of confusion is bounded by ϑ(G).

Proof. Let the noisy channel have input alphabet X and output alphabet Z. For each

input x, let Zx ⊆ Z be the set of outputs that occur with positive probability. (Since we are

interested in zero-error, the actual probabilities don’t matter.) Two elements x and y are

confusable if and only if Zx ∩ Zy 6= ∅.
The other part of the equipment, the shared entangled state can be described by a vector

in Rd ⊗ Rd, which we consider as a d × d complex matrix S such that S · S = tr(SS
T

) =
∑

u,v |Suv|2 = 1.

If Alice wants to transmit a message i ∈ [m], then she performs a measurement on her

half of u depending on i, and transmits a message x ∈ X that depends on i and the result of

the measurement. The measurement i leading to message x is an orthogonal projection Ax
i

onto a subspace of Cd. The fact that always exactly one message x ∈ X must be sent means,

by the laws of quantum physics, that Ax
i A

y
i = 0 for x 6= y and

∑
i A

x
i = I for each x ∈ X .

This measurement collapses u to the state u′ described by the matrix Ax
i S.

Once Bob gets the message (more exactly, he gets some message z ∈ Zx), he performs a

measurement on u′ (depending on z), which has m possible outcomes; the outcome of this

measurement is supposed to coincide with Alice’s intended message i.

Bob’s measurements consist of m orthogonal projections Bz
1 , . . . , B

z
m onto appropriate

subspaces of Cd. Similarly as before, we have Bz
i B

z
j = 0 for i 6= j and

∑
iB

z
i = I. Measure-

ment Bz
j collapses the state to Ax

i SB
z
j . The fact that Bob is able to recover i means that

Ax
i SB

z
j = 0 if z ∈ Zx and i 6= j.

We claim that

(Ax
i S) · (Ay

jS) = 0 (6.54)

in the following cases: (a) i = j, x 6= y; (b) i 6= j, x = y; (c) i 6= j, xy ∈ E. Case (a) is easy,

since we can write (Ax
i S) · (Ay

i S) = tr(S
T

Ax
i A

y
i S), and, as we have seen, Ax

i A
y
i = 0. In cases

(b) and (c) there is an element z ∈ Zx ∩ Zy, which gives

(Ax
i S) · (Ay

jS) = tr(Ay
jSS

T

Ax
i ) = tr

(
Ay

jS
(∑

k

Bz
k

)
S
T

Ax
i

)
=

∑

k

tr
(
Ay

jSB
z
kS

T

Ax
i

)
= 0,

since for every k, either Ay
jSB

z
k = 0 or Bz

kS
T

A
x

i = 0. This proves (6.54).

Define an X ×X matrix M by

Mx,y =

m∑

i,j=1

(Ax
i S) · (Ay

jS).

If xy ∈ E, then Mx,y = 0, since every term is zero by conditions (a) and (c) above. It is easy
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to see that M is positive semidefinite. Furthermore, using (b),

tr(M) =
∑

x

m∑

i,j=1

(Ax
i S) · (Ax

jS) =
∑

x

S · S = m,

and

tr(JM) =
∑

x,y,i,j

tr
(
S
T

Ax
i A

y
jS

)
=

∑

i,j

tr
(
S
T(∑

x

Ax
i

)(∑

y

Ay
j

)
S
)
= m2tr(S

T

S) = m2.

This shows that the matrix 1
mM almost fulfils definition 6.12 of ϑ, except that it is not

necessarily real. But 1
2m (M + M

T

) is real, and has the same trace and sum of entries, so

ϑ(G) ≥ m. �

One can consider quantum physical communication channels more general than

entanglement-assisted classical channels. The theta-function can be generalized to such chan-

nels, so that it remains an upper bound on the zero–error capacity of the channel.

6.5.2 Contextuality

We describe a connection between the theta function and a rather fundamental issue in quan-

tum physics. Consider a quantum system, and let e1, . . . , en be observable events. Construct

a graph G on V = [n] in which ij ∈ E if and only if ei and ej are exclusive (cannot occur

simultaneously). We call G the exclusivity graph of the system e1, . . . , en of events.

We start the system in a state u, and observe an event ei. As we know, this observation

changes the state, so we cannot observe all of the other events. But we assume that we can

restart from the same state u, and then we can observe other events. Repeating this many

times, we can find the probability Pi that event ei occurs.

What can we say about the sum P1 + · · ·+ Pn? In the classical setting, when e1, . . . , en

are observable events in a probability space, the sum P1 + · · · + Pn would be the expected

number of events that occur simultaneously. It is trivial that this number is at most α(G),

so we get the inequality

P1 + · · ·+ Pn ≤ α(G). (6.55)

The same inequality can be derived in quantum physics, if we assume its “hidden variable”

interpretation. This interpretation arose from the objection to the nondeterministic–random

interpretation of quantum events: it suggests that if we knew the exact state of each particle

(its “hidden parameters”), then we could predict quantum events with certainty. Another

consequence would be that even if we are not able to observe certain events simultaneously,

they do actually occur. In the well known parable of Schrödinger’s cat, the cat in the closed

chamber at a given moment in time is either dead or alive—we just don’t know which.

Similarly, if for each experiment a definite subset of the events ei occurs (of which we only
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know the outcome of one), then the calculation of the expected number of events that occur

goes just like above, and we get (6.55).

Bell was the first to suggest that “Bell Inequalities” related to (6.55) could be experi-

mentally verified (or rather falsified); since their derivation depends on the theory of hidden

variables, disproving such an inequality would disprove the hidden variable theory (at least

in its simplest form).

From basic quantum physical principles (not using hidden variables) one can only derive

the weaker inequality

P1 + · · ·+ Pn ≤ ϑ(G). (6.56)

Indeed, state u is a unit vector in a complex Hilbert space H . Observing the event ei means

projecting u to a one-dimensional subspace, spanned by a unit vector ai ∈ H ; the probability

that the event occurs is just the squared length of the projection. Thus Pi = |u · ai|2, and

P1 + · · ·+ Pn =
∑

i

|u · ai|2.

Now two events that exclude each other must correspond to projections onto orthogonal

vectors, and hence a is a dual orthogonal representation of G in a Hilbert space. This is a

complex Hilbert space, but it is not hard to see that the value of the maximum in definition

(6.5) of the theta function does not change if we take complex Hilbert space instead of the

real. Hence we get

P1 + · · ·+ Pn =
∑

i

|u · ai|2 ≤ ϑ(G).

From even weaker (simpler) principles, one gets an even weaker inequality. The exclusivity

principle says that the sum of probabilities of mutually exclusive events is at most 1. This

implies the inequality

∑

i∈B

Pi ≤ 1

for every clique B in G; in the language of Section 6.3.2, the vector (P1, . . . , Pn) must belong

to the clique-constrained fractional stable set polytope QSTAB(G), and so it follows that

P1 + · · ·+ Pn ≤ α∗(G). (6.57)

Two special cases have been studied extensively. In the Clauser–Horne–Shimony–Holt

version of the Bell experiment, one creates two maximally entangled electrons, whose spins

can be both “up” or both “down”. These are sent in opposite directions to two far away

observers, called (as usual) Alice and Bob. Alice has two possible settings a and a′ of her

equipment measuring the spin, and Bob has similarly two settings b and b′. Let (a+b+) denote
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the event that Alice measures in setting a, Bob in setting b, and they both measure “up”.

We have 16 analogous events. Repeating the experiment many times, they can determine

the probabilities of these events.

The Clauser–Horne–Shimony–Holt–Bell inequality is a linear inequality concerning these

probabilities, which can be derived from the assumption of hidden variables. Since there are

trivial linear equations relating these probabilities, this inequality can be written in several

equivalent forms. For us, the following form will be relevant:

P (a+b+) + P (a−b−) + P (a′+b+) + P (a′−b−) + P (a+b
′
+) + P (a−b

′
−)

+ P (a′+b
′
−) + P (a′−b

′
+) ≤ 3 (6.58)

(note the twist in the last two terms!). This is a special case of (6.55), applied to the exclusiv-

ity graph G of the 8 events (a+b+), (a−b−), (a′+b+), (a
′
−b−), (a+b

′
+), (a−b

′
−), (a

′
+b

′
−), (a

′
−b

′
+).

This graph is depicted in Figure 6.6(b); looking at the picture, it is easy to see that α(G) = 3.

Furthermore, we have ϑ(G) = 2 +
√
2 ≈ 3.414 . . . (see Example 6.1.14), so the inequality

P (a+b+) + P (a−b−) + P (a′+b+) + P (a′−b−) + P (a+b
′
+) + P (a−b

′
−)

+ P (a′+b
′
−) + P (a′−b

′
+) ≤ 2 +

√
2 (6.59)

follows by (6.56) without the hypothesis of hidden variables, just by the laws of quantum

physics.

Figure 6.6: The exclusivity graph V8 of the Clauser–Horne–Shimony–Holt exper-
iment. The edge between (say) a

′

−b
′

+ and a−b
′

− indicates that they cannot occur
simultaneously: for these two events, test b′ returns different results.

The Klyachko-Can-Binicioğlu-Shumovsky experiment works in a similar spirit, and leads

to a more complicated measurement for a simpler graph, namely C5.

Which of these bounds is the “truth”? After a long line of increasingly sophisticated

experiments, recent reports by several groups claim to have eliminated all the implicit as-

sumptions (“loopholes”), and show that the bound (6.58) does not hold in general. This can

be considered as a disproof of the “hidden variable” interpretation of quantum physics.

It can also be shown that (6.56) is best possible in the sense that for every simple graph

G one can construct mathematical models of quantum physical systems in which equality

holds.


