
Chapter 5

Orthogonal representations and

their dimension

An orthogonal representation of a simple graph G in R
d assigns to each i ∈ V a vector ui ∈ R

d

such that uT

i uj = 0 whenever ij ∈ E. An orthonormal representation is an orthogonal

representation in which all the representing vectors have unit length. Clearly we can always

scale the nonzero vectors in an orthogonal representation this way, and usually this does not

change any substantial feature of the problem.

Note that we did not insist that adjacent nodes are mapped onto non-orthogonal vectors.

If this condition also holds, then we call the orthogonal representation faithful.

Example 5.0.1 For d = 1, the vector labels are just real numbers ui, and the constraints

uiuj = 0 (ij ∈ E) mean that no two nodes labeled by nonzero numbers are adjacent; in other

words, supp(u) is a stable set of nodes. Orthonormal representations are obtained as the

incidence vectors of stable sets, with arbitrary signs.

Since very simple problems about stable sets are NP-hard (for example, their maximum

size), this example should warn us that orthogonal representations can be very complex. �

Example 5.0.2 Every graph has a trivial orthonormal representation in R
V , in which node

i is represented by the standard basis vector ei. (This representation is not faithful unless

the graph has no edges. However, it is easy to perturb this representation to make it faith-

ful.) Of course, we are interested in “nontrivial” orthogonal representations, which are more

“economical” than the trivial one. �

Example 5.0.3 Every graph has a faithful orthogonal representation in R
E , in which we

label a node i by the incidence vector ∇i of the set of edges incident with it. It is perhaps

natural to expect that this simple representation will be rather “uneconomical” for most

purposes. �
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Example 5.0.4 Figure 5.1 below shows that for the graph obtained by adding a diagonal

to the pentagon a simple orthogonal representation in 2 dimensions can be constructed. �

Figure 5.1: An (almost) trivial orthogonal representation

Example 5.0.5 The previous example can be generalized. In an orthogonal representation,

we can label a set of nodes with the same nonzero vector if and only if these nodes form

a clique. Let k = χ(G), and let {B1, . . . , Bm} be a family of disjoint complete subgraphs

covering all the nodes. Let {e1, . . . , em} be the standard basis of Rm. Then mapping every

node of Bi to ei is an orthonormal representation. �

Example 5.0.6 In the introduction we have seen an orthogonal representation with a more

interesting geometric content. The previous example gives an orthogonal representation of

C5 in 3-space (Figure 5.2, left). The “umbrella” representation defined in the introduction

gives another orthogonal representation of C5 in 3-space. �

Figure 5.2: Two orthogonal representations of C5.

Perhaps the most natural way to be “economic” in constructing an orthogonal represen-

tation is to minimize the dimension. We can say only a little about the minimum dimension

of all orthogonal representations, but we get interesting results if we impose some “non-

degeneracy” conditions.

5.1 Minimum dimension with no restrictions

We start with some easy facts about the minimum dimension in which G has an orthonormal

representation. It is trivial that d ≥ α(G), since there are α(G) mutually orthogonal vector

labels.
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The minimum dimension of an orthonormal representation is (loosely) tied to the chro-

matic number of the complement. Let us consider the (infinite) graph Hd, whose nodes are

all vectors in R
d, two of them being adjacent if and only if the vectors are orthogonal. The

chromatic number of this graph is not known precisely, but (for large d) rather good bounds

are known: there is a constant c > 1 for which

cd ≤ χ(Hd) ≤ 4d. (5.1)

Using this, it will be easy to prove the following.

Proposition 5.1.1 The minimum dimension d in which a graph G has an orthonormal

representation satisfies

1

2
logχ(G) ≤ d ≤ χ(G).

Proof. The orthogonal representation of G in R
d gives a homomorphism G → Hd, and

hence

χ(G) ≤ χ(Hd) ≤ 4d,

proving the lower bound in the proposition. On the other hand, the trivial orthonormal

representation in Example 5.0.5 shows that G has an orthonormal representation in dimension

χ(G). �

The bounds above are essentially tight. The Erdős–de Bruijn Theorem implies that Hd

has a finite subgraph H with χ(H) = χ(Hd) ≥ cd (where c > 1 is the constant in (5.1)),

showing that the lower bound is tight up to a constant factor. The graph on d nodes and no

edges shows the tightness of the upper bound.

5.2 General position and connectivity

The first non-degeneracy condition we study is general position: we assume that any d of the

representing vectors in R
d are linearly independent. (This implies that neither one of them is

the zero vector.) Perhaps surprisingly, there is an exact condition for this type of geometric

representability.

Theorem 5.2.1 A graph with n nodes has a general position orthogonal representation in

R
d if and only if it is (n− d)-connected.

It is useful to remark that a graph is (n − d)-connected if and only if its complement

does not contain a complete bipartite graph with more than d nodes (where for a complete

bipartite graph we always assume that its bipartition classes are nonempty). So we could



4 CHAPTER 5. ORTHOGONAL REPRESENTATIONS AND THEIR DIMENSION

formulate this theorem as follows: If a graph contains no complete bipartite subgraph with

more than d+ 1 nodes, then it has a dual orthogonal representation in R
d.

The condition that the given set of representing vectors is in general position is not

easy to check (it is NP-hard). A weaker, but very useful condition will be that the vectors

representing the nodes nonadjacent to any node v are linearly independent. We say that

such a representation is in locally general position. This condition implies that every node

is represented by a nonzero vector unless it is connected to all the other nodes. In this

case there is no condition on the representing vector, so we may assume that all vectors are

nonzero (equivalently, unit vectors).

Theorem 5.2.1 will be proved in the following slightly more general form:

Theorem 5.2.2 If G is a graph with n nodes, then the following are equivalent:

(i) G has a general position orthogonal representation in R
d;

(ii) G has an orthogonal representation in R
d in locally general position;

(iii) G is (n− d)-connected.

We describe the simple proofs of two implications. The third one will take most of this

chapter.

(i)⇒(ii). Note that (i) implies that all degrees are at least n−d. Indeed, if deg(v) < n−d

then consider any set of d non-neighbors S ⊆ N(v), |S| = d. In an orthogonal representation

in general position, the positions of the nodes in S are linearly independent, so they span the

space, and so v cannot be represented by a vector orthogonal to all of them.

This implies that every node has at most d− 1 non-neighbors, which are therefore repre-

sented by linearly independent vectors, so the representation is in locally general position.

(ii)⇒(iii). Let V0 be a cutset of nodes of G, then V = V0 ∪ V1 ∪ V2, where V1, V2 6= ∅, and

no edge connects V1 and V2. This implies that the vectors representing V1 are non-neighbors

of any node in V2, and hence they are represented by linearly independent vectors in an

orthogonal representation in locally general position. Similarly, the vectors representing V2

are linearly independent. Since the vectors representing V1 and V2 are mutually orthogonal,

all vectors representing V1 ∪V2 are linearly independent. Hence d ≥ |V1 ∪V2| = n− |V0|, and

so |V0| ≥ n− d (Figure 5.3).

The difficult part of the proof will be (iii)⇒(i): this requires the construction of a general

position orthogonal representation for (n − d)-connected graphs. We describe and analyze

the algorithm constructing the representation first. As a matter of fact, to describe the

construction is quite easy, the difficulty lies in the proof of its validity.

5.2.1 G-orthogonalization

The following procedure can be viewed as an extension of the Gram-Schmidt orthogonaliza-

tion algorithm. Let G be any simple graph, where V = [n], and let u : V → R
d be any vector
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Figure 5.3: General position orthogonal representation in low dimension implies
high connectivity.

labeling. Let us choose vectors f1, f2, . . . consecutively as follows. Let f1 = u1. Supposing

that the vectors fi (i < j) are already chosen, we define fj as the orthogonal projection of

uj onto the subspace Lj = lin{fi : i < j, ij /∈ E}⊥. The sequence (f1, . . . , fn) is a vector

labeling of G, which we call the G-orthogonalization of the vector labeling u. If E = ∅, then

(f1, . . . , fn) is just the Gram–Schmidt orthogonalization of (u1, . . . ,un). If G is complete,

then (f1, . . . , fn) = (u1, . . . ,un).

It is important to note that the G-orthogonalization of a vector labeling depends on the

ordering of V . In this section we will have to compare G-orthogonalizations obtained through

different orderings of a fixed graph G.

It is trivial that f is an orthogonal representation of G, and it follows by straightforward

induction on j that for every j ∈ [n],

lin{u1, . . . ,uj} = lin{f1, . . . , fj}.

From now on, we start with a random vector labeling u: this means that the vectors ui

are random, chosen independently and uniformly from Sd−1. Its G-orthogonalization with

respect to an ordering σ of V can be considered as a mapping fσ : V → R
d, which can

also be considered as a single point in the dn dimensional space R
d × V . It is important to

remember that fσi denotes the vector assigned to the node i, and not to the i-th node in the

ordering σ. It will be convenient to define Nσ(i) and N
σ
(i) as the set of preceding i in the

ordering σ that are adjacent and nonadjacent to i, respectively.

If every node of an ordered graph G has degree at least n − d, then the vectors in the

G-orthogonalization of a random vector labeling u are almost surely nonzero. Indeed, for

any node i, |N
σ
(i)| ≤ d − 1, hence the vectors fσj , j ∈ N

σ
(i) don’t span R

d, and hence

almost surely ui is linearly independent of them, and then its projection onto lin(N
σ
(i))⊥ is

nonzero.

The main fact we want to prove is the following. (This will complete the proof of Theorem

5.2.2.)

Lemma 5.2.3 If an ordered graph G is (n−d)-connected, and u is a random vector labeling

of V (G), then the vectors in its G-orthogonalization are almost surely in general position.
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Let us consider a simple example.

Example 5.2.4 Let V = {a, b, c, d} and E = {ac, bd}. Consider a random vector labeling

u in R
3 and compute its G-orthogonalization f , associated with the given ordering. Since

every node has degree 1, the vectors fi are nonzero almost surely. We have fa = ua, fb ∈ f⊥a ,

and fc ∈ f⊥b ; almost surely, fc will not be parallel to fa, so together they span the plane f⊥b .

This means that fd, which is orthogonal to both fa and fc, must be parallel to fb, no matter

what ud is.

Now suppose that we reverse the order of the nodes. Let f ′d, f
′
c, f

′

b, f
′
a be the vectors

obtained by the G-orthogonalization in this order. Almost surely f ′d will not be parallel to f ′b,

but f ′c will be parallel with f ′a. So not only are the two distributions different, but a particular

event, namely fb‖fd, occurs with probability 0 in one and probability 1 in the other.

Let us modify this example by connecting b and c by an edge. Processing the vectors in

the order (a, b, c, d) again, the vectors fa = ua and fb will be orthogonal again. No condition

on fc, so almost surely fc = uc will be linearly independent of fa and fb, but not orthogonal

to either one of them. The direction of fd is still determined, but now it will not be parallel to

fb; in fact, depending on fc, it can have any direction in f⊥a . Doing this in the reverse order,

we get vectors f ′d, f
′

c, f
′

b, f
′

a that have similar properties. The distributions of (fd, fc, fb, fa) and

(f ′d, f
′

c, f
′

b, f
′

a) are still different, but any event that occurs with probability 0 in one will also

occur with probability 0 in the other (this is not quite obvious). �

This example motivates the following considerations. As noted, the distribution of the

G-orthogonalization may depend on the ordering of the nodes; the key to the proof will be

that this dependence is not too strong. To define what this means, consider two random

variables X and Y with values in R
M . We say that these are mutually absolutely continuous,

if for every Borel set B,

P(X ∈ B) = 0 ⇔ P(Y ∈ B) = 0.

Informally, if a “reasonable” property of X almost surely holds (for example, its coordinates

satisfy an algebraic inequality), then this is also true for Y , and vice versa.

We need the following property of being mutually absolutely continuous. (The property

is quite natural, and not hard to prove, but we don’t prove it, since we have not developed

the necessary measure theoretic foundations of probability theory.) Consider two random

variables, each of which consist of two components: X = (A,B) and X ′ = (A′, B′), where

A,A′ ∈ R
M and B,B′ ∈ R

N . Assume that A and A′ are mutually absolutely continuous.

Furthermore, assume that both B and B′ can be conditioned on every a ∈ R
M . (Informally,

this means that we generate X by generating a value a ∈ R
M of A, and then depending on

this, we generate a value b of the random variable B|a.) We also assume that for every a,

B|a and B′|a are mutually absolutely continuous. Then X and Y are mutually absolutely

continuous. This is not hard to prove, using measure theory.
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Observe that the probability that the first d vectors in a G-orthogonalized random repre-

sentation are linearly dependent is 0. We are going to show that this event has probability 0

if the G-orthogonalization is carried out in any other order. Since we can start the ordering

with any d-tuple of nodes, this will imply that the representation is almost surely in general

position, proving Lemma 5.2.3.

So it suffices to prove the the following.

Lemma 5.2.5 (Main Lemma) If G is (n−d)-connected, then for any two orderings σ and

τ of V , the random variables fσ and fτ are mutually absolute continuous.

Proof. It suffices to prove this in the case when τ is the ordering obtained from σ by

swapping the nodes in positions j and j + 1 (1 ≤ j ≤ n− 1). Let us label the nodes so that

σ = (1, 2, . . . , n).

Clearly fσi = fτi for i < j. The main part of the proof is to show that the distributions of

(fσ1 , . . . , f
σ
j+1) and (fτ1 , . . . , f

τ
j+1) are mutually absolute continuous. We prove this by induction

on j, distinguishing several cases.

Case 1. j and j + 1 are adjacent in G. In this case the vector fj+1 does not depend on

uj and vice versa, so fσj = fτj and fσj+1 = fτj+1.

Case 2. j and j+1 are not adjacent, but they are connected by a path that lies entirely

in {1, . . . , j, j + 1}. Let P be a shortest such path and let t be its length (number of edges),

so 2 ≤ t ≤ j. We argue by induction on t (and on j). Let i be any internal node of P . We

swap j and j + 1 by the following steps (Figure 5.4):

(1) Interchange i and j, by several swaps of consecutive elements among the first j.

(2) Swap i and j + 1.

(3) Interchange j + 1 and j, by several swaps of consecutive elements among the first j.

(4) Swap j and i.

(5) Interchange j + 1 and i, by several swaps of consecutive elements among the first j.

In each step, the new and the previous distributions of the G-orthogonalized vectors are

mutually absolute continuous: In steps (1), (3) and (5) this is so because the swaps take place

among the first j nodes, and we can invoke induction on j; in steps (2) and (4), because the

nodes swapped are at a smaller distance than t in the graph distance, and we can invoke

induction on t.

Case 3. There is no path connecting j to j+1 within {1, . . . , j+1}. This case is tedious

but not particularly deep. It suffices to show that the distributions of (fσj , f
σ
j+1) and (fτj , f

τ
j+1),

conditioned on the previous vectors v1, . . . ,vj−1, are mutually absolute continuous.

For S ⊆ V , let lin(S) denote the linear subspace of Rd generated by the vectors {fi : i ∈

S}. Clearly V \ {1, . . . , j+1} is a cutset, whence by our hypothesis on the connectivity of G
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Figure 5.4: Interchanging j and j + 1.

it follows that n− j − 1 ≥ n− d and so j ≤ d− 1. Let B = lin{v1, . . . ,vj−1} and C = B⊥,

then t = dim(C) = d− dim(B) ≥ d− (j − 1) ≥ 2.

The random vector vj can be decomposed as vj = sin(θj)bj + cos(θj)cj , where bj ∈ B,

cj ∈ C, |bj | = |cj | = 1, and 0 ≤ θj ≤ π/2. The unit vectors bj and cj are uniformly

distributed on the unit sphere of B and C, respectively, and θj has some distribution which

depends on the dimensions, but what is important for us is that it has a positive and con-

tinuous density function on (0, π/2).

The subspace which is orthogonal to all previous non-neighbors of j (in the ordering σ)

is Lj = (N
σ
(j))⊥. Thus C ⊆ Lj. Let b′

j be the orthogonal projection of bj onto Lj. Since

bj is orthogonal to C, so is b′

j , thus b
′

j ∈ B.

We define Lj+1 similarly for the node j+1 and ordering τ , along with the decomposition

vj+1 = sin(θj+1)bj+1 + cos(θj+1)cj+1, and the orthogonal projection b′

j+1 of bj+1 onto L.

The following observation will be important:

b′

j ⊥ b′

j+1. (5.2)

Here we have to use that there is no path in J connecting j and j +1. This implies that the

set {1, . . . , j − 1} has a partition W ′ ∪W ′′ so that Nσ(j) ⊆ W ′, N τ (j +1) ⊆ W ′′, and there

is no edge between W ′ and W ′′. Let B′ = lin(W ′) and B′′ = lin(W ′′), then B′ ⊥ B′′, and

Lj ⊥ B′′, which implies that b′

j ∈ B′. Similarly, b′

j+1 ∈ B′′, which implies (5.2).

To get fσj , we have to project vj onto Lj ; using that C ⊆ Lj , the component of vj in C

remains unchanged, and this projection can be expressed as

fσj = sin(θj)b
′

j + cos(θj)cj (5.3)
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Similarly, we have

fτj+1 = sin(θj+1)b
′

j+1 + cos(θj+1)cj+1. (5.4)

To describe the other two orthogonalized vectors, notice that the only difference between

fτj+1 and fσj+1 is that we have to make fσj+1 orthogonal to fσj as well. Since the vectors b′

j

and b′

j+1 are already orthogonal to each other, as well as to all vectors in C, this simply

means that we have to modify (5.4) by replacing cj+1 by its projection onto the orthogonal

complement of cj . So we can write

fσj+1 = sin(θj+1)b
′

j+1 + cos(θj+1) cos(φ)dj+1, (5.5)

where dj+1 ∈ C is the unit vector pointing in the direction of the component of cj+1 orthog-

onal to cj , and φ = ∡(cj , cj+1). Similarly

fτj = sin(θj)b
′

j + cos(θj) cos(φ)dj . (5.6)

We can generate the vectors fσj , fσj+1, fτj+1 and fτj+1 as follows. First we generate

v1, . . . ,vj−1 and the unit vectors bj ,bj+1 ∈ B. We select two orthogonal random unit

vectors cj and dj+1 in C. We choose φ from the appropriate distribution, and obtain cj+1

by rotating cj in the plane of cj and dj+1 by an angle of φ in the direction of dj+1.

From this, we can construct the vectors b′

j , b
′

j+1 and dj+1. Note that the distribution of

the pair (cj ,dj+1) is the same as that of (dj , cj+1), independently of the angle φ: uniform

on all orthogonal pairs of unit vectors in C.

Now we come to the scalars: the pair of coefficients (cos(θj), cos(θj+1) cos(φ)) has a density

function that is positive on the unit square, and so does the pair (cos(θj) cos(φ), cos(θj+1)).

It follows that these pairs are mutually absolutely continuous, which implies that so are

(fσj , f
σ
j+1 and (fτj , f

τ
j+1).

Thus we know that the distributions of (fσ1 , . . . , f
σ
j+1) and (fτ1 , . . . , f

τ
j+1) are mutually ab-

solute continuous. The remaining vectors fσk and fτk are generated in the same way from these

two sequences, and hence the distributions of fσ and fτ are mutually absolutely continuous.

This completes the proof of Lemma 5.2.5 and of Theorem 5.2.2. �

5.3 Faithfulness

An orthogonal representation is faithful if adjacent nodes are represented by non-orthogonal

vectors. It is probably difficult to decide whether a given graph has a faithful orthogonal

representation in a given dimension. In other words, we do not know how to determine the

minimum dimension of a faithful orthogonal representation. What we can do is to give a

not-quite-trivial lower bound, and—as an application of the results in the previous section—a

nontrivial upper bound.

Let us start with some examples.



10 CHAPTER 5. ORTHOGONAL REPRESENTATIONS AND THEIR DIMENSION

Example 5.3.1 We have constructed orthogonal representations from cliques covering the

nodes of a graph (Example 5.0.5). These representations are far from being faithful in general.

However, using a family of cliques covering all edges, we get a faithful representation. Let

{B1, . . . , Bk} be any family of complete subgraphs covering all edges of a graph G. We can

construct the vector labeling u in R
k, defined by (ui)j = 1(i ∈ Bj). Then u is a faithful

orthogonal representation of G: if i and j are adjacent nodes, then they are contained in

one of the cliques Bi, and hence uT

i uj > 0; if they are nonadjacent, then their supports are

disjoint, and so uT

i uj = 0.

As a special case, we get a faithful orthogonal representation in dimension n − 1 of the

path Pn with n nodes. The path Pn has no faithful orthogonal representation in lower

dimension. Indeed, in any faithful orthogonal representation (vi : i ∈ V (Pn), for every

1 ≤ k ≤ n−1, the vector vk+1 is orthogonal to v1, . . . ,vk−1, but not orthogonal to vk, which

implies that vk is linearly independent of v1, . . . ,vk−1. Hence the vectors v1, . . . ,vn−1 are

linearly independent, and so the ambient space must have dimension at least n− 1. �

This example motivates the following lower bound on the dimension of a faithful or-

thogonal representation. It is trivial that α(G) is a lower bound on the dimension of any

orthogonal representation by nonzero vectors (faithful or not). To strengthen this bound in

the case of faithful representations, we say that a subset S ⊆ V (G) is almost stable, if for

every connected subgraph H of G[S] with at least one edge there is a node j ∈ V (G) \V (H)

that is adjacent to exactly one node in V (H). (The node j may or may not belong to S.) It

is trivial that every stable set is almost stable.

Proposition 5.3.2 The dimension of any faithful orthogonal representation of a graph G is

at least as large as its largest almost stable set.

Proof. Let v be a faithful orthogonal representation of G in dimension d, and let S be

an almost stable set. We prove by induction on |S| that the vectors in v(S) are linearly

independent. If S is a stable subset of V (G), then this is trivial. Else, let H be a connected

component of G[S] with at least one edge, and let j /∈ V (H) be a node adjacent to a unique

node i ∈ V (H). The set S′ = S \ {i} is almost stable, and hence the vectors in v(S′) are

linearly independent by the induction hypothesis.

Next, observe that the vectors v(V (H) \ {i}) cannot span vi; this follows from the fact

that vj is orthogonal to each of these vectors, but not to vi. Since the vectors vk with

k ∈ S \ V (H) are all orthogonal to every vector vk with k ∈ V (H), it follows that S′ cannot

span vi. This proves that v(S) = v(S′) ∪ {vi} is a linearly independent set of vectors. �

From the results in Section 5.2.1, it is easy to derive an upper bound on the minimum

dimension of faithful orthogonal representations.
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Proposition 5.3.3 Every (n− d)-connected graph on n nodes has a faithful orthogonal rep-

resentation in R
d.

Proof. It suffices to show that in aG-orthogonalized random representation, the probability

that two adjacent nodes are represented by orthogonal vectors is zero. By the Lemma 5.2.5,

it suffices to prove this for the G-orthogonalization based on an ordering starting with these

two nodes. But then the assertion is obvious. �

Using that a graph with minimum degree D cannot contain a complete bipartite graph

with more than 2D nodes, Proposition 5.3.3 implies the following bound.

Corollary 5.3.4 If the maximum degree of a graph G is D, then G has a faithful dual

orthogonal representation in 2D dimensions.

It is conjectured that the bound on the dimension can be improved to D+1. Proposition

5.3.3 shows that the conjecture is true if we strengthen its assumption by requiring that G

is (n−D)-connected.

We conclude this section with two examples illustrating the use (and insufficiency) of the

upper and lower bounds above.

(a) (b)

Figure 5.5: The graph V8 and the triangular grid ∆6.

Example 5.3.5 Let V8 denote the graph obtained from the cycle C8 by adding its longest

diagonals (Figure 5.5(a)). This graph is 3-connected, and hence by Proposition 5.3.3, it has a

faithful orthogonal representation in R
5. It does not have a faithful orthogonal representation

in R
4. On the other hand, it does not have an almost stable set of size 5. (The last two facts

need some case analysis, not reproduced here.) So the lower bound in Proposition 5.3.2 does

not always give the right value. �

Example 5.3.6 (Triangular grid I) Consider the triangular grid ∆k with k > 2 nodes

along the bottom line Figure 5.5(b)). This graph has n =
(

k+1

2

)

nodes. The dark triangles

form a family of cliques covering all edges, so the construction in Example 5.3.1 yields a

faithful orthogonal representation in dimension is n− k, the number of dark triangles. This

is much better than the upper bound from Proposition 5.3.3, which is n− 2.
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This dimension is in fact the smallest possible; this follows by Proposition 5.3.2, since it

is easy to see that the set of nodes above the bottom line is almost stable, and hence the

minimum dimension of a faithful representation is n− k. �


