4.2 Voronoi cells and regularity partitions

Now we are ready to tie regularity partitions to geometric representations. We define the 2neighborhood representation of a graph G as the map $i \mapsto \mathbf{u}_i$, where $\mathbf{u}_i = A^2 \mathbf{e}_i$ is the column of A^2 corresponding to node i (where $A = A_G$ is the adjacency matrix of G). Squaring the matrix seems unnatural, but it is crucial. We define a distance between the nodes, called the 2-neighborhood distance (or similarity distance), by

$$d(s,t) = \frac{1}{n^2} |\mathbf{u}_s - \mathbf{u}_t|_1.$$

This normalization makes it sure that the distance of any two nodes is at most 1. We need some more notation: For a nonempty set $S \subseteq V$, we consider the average distance from S:

$$\overline{d}(S) = \frac{1}{n} \sum_{i \in V} d(i, S) = \frac{1}{n} \sum_{i \in V} \min_{j \in S} d(i, j).$$

Example 4.2.1 To illustrate the substantial difference between the 1-neighborhood and 2neighborhood metrics, let us consider a random graph with a very simple structure: Let $V(G) = V_1 \cup V_2$, where $|V_1| = |V_2| = n/2$, and let any node in V_1 be connected to any node in V_2 with probability 1/2. With high probability, the ℓ_1 distance of any two columns of the adjacency matrix is of the order n (approximately n/2 for two nodes in different classes, and n/4 for two nodes in the same class). But if we square the matrix, the ℓ_1 distance of two columns in different classes will be approximately $n^2/4$, while for two columns in the same class it will be $O(n^{3/2})$. With the normalization above, the two classes will be collapsed to single points (asymptotically, of course), but the distance of these two points will remain constant. So the 2-neighborhood distance reflects the structure of the graph very nicely!

Let V be any set, together with a metric d. We define the Voronoi partition induced by a subset $S \subseteq V$ as the partition that has a partition class ("cell") V_s for each $s \in S$, and every point $v \in V$ is put in a the cell V_s for which $s \in S$ is a point of S closest to v. For our purposes, ties can be broken arbitrarily. If the metric space is a euclidean space, then Voronoi cells have many nice geometric properties (for example, they are convex polyhedra; see Figure 4.1 for a picture in two dimensions). In our case the Voronoi cells will not be so nice, but there is no principal difference.

Theorem 4.2.2 Let G be a simple graph, and let d(.,.) be its 2-neighborhood distance.

(a) The Voronoi cells of a nonempty set $S \subseteq V$ define a partition \mathcal{P} of V such that $d_{\Box}(G, G_{\mathcal{P}}) \leq 8\overline{d}(S)^{1/2}$.

(b) For every partition $\mathcal{P} = \{V_1, \ldots, V_k\}$ we can select elements $s_i \in V_i$ so that $S = \{s_1, \ldots, s_k\}$ satisfies $\overline{d}(S) \leq 4d_{\Box}(G, G_{\mathcal{P}})$.

Figure 4.1: Voronoi cells of a finite point set in the plane in Euclidean and Manhattan distance

Proof. In both parts of the proof we work with linear algebra, using the adjacency matrix $A = A_G$. In both parts we consider a particular partition $\mathcal{P} = \{V_1, \ldots, V_k\}$. We will be interested in the "error" matrix $R = A - A_{\mathcal{P}} = A - PAP$, for which $||R||_{\Box} = d_{\Box}(G, G_{\mathcal{P}})$.

(a) Let $S = \{s_1, \ldots, s_k\}$, and let \mathcal{P} be the partition of V defined by the Voronoi cells of S (where $s_i \in V_i$). Recall the definition

$$||R||_{\Box} = \frac{1}{n^2} \max_{\mathbf{x}, \mathbf{y} \in \{0,1\}^V} |\mathbf{x}^{\mathsf{T}} R \mathbf{y}|.$$

Let \mathbf{x}, \mathbf{y} be the maximizers on the right, and let $\mathbf{w} = \mathbf{x} - \mathbf{x}_{\mathcal{P}}$ and $\mathbf{z} = \mathbf{y} - \mathbf{y}_{\mathcal{P}}$. The crucial equation is

$$\mathbf{x}^{\mathsf{T}} R \mathbf{y} = \mathbf{x}^{\mathsf{T}} A \mathbf{y} - \mathbf{x}^{\mathsf{T}} A_{\mathcal{P}} \mathbf{y} = \mathbf{x}^{\mathsf{T}} A \mathbf{y} - \mathbf{x}_{\mathcal{P}}^{\mathsf{T}} A \mathbf{y}_{\mathcal{P}} = \mathbf{x}^{\mathsf{T}} A \mathbf{z} + \mathbf{y}_{\mathcal{P}}^{\mathsf{T}} A \mathbf{w},$$

which implies that

$$|\mathbf{x}^{\mathsf{T}} R \mathbf{y}| \le |\mathbf{x}| |A \mathbf{z}| + |\mathbf{y}_{\mathcal{P}}| |A \mathbf{w}| \le \sqrt{n} (|A \mathbf{w}| + |A \mathbf{z}|).$$

$$(4.1)$$

To estimate $|A\mathbf{z}|$ (say), let $\phi(v) = s_t$ for $v \in V_t$. The fact that we have a Voronoi partition means that $d(v, S) = d(v, \phi(v))$ for every node v. We have

$$A^{2}\mathbf{z} = \sum_{v} z_{v}\mathbf{u}_{v} = \sum_{v} z_{v}(\mathbf{u}_{v} - \mathbf{u}_{\phi(v)})$$

(since $\sum_{v \in V_t} z_v = 0$). Using that $|z_v| \le 1$ for all $v \in [n]$, we get

$$\begin{aligned} A\mathbf{z}|^2 &= \mathbf{z}^{\mathsf{T}} \Big(\sum_{v} z_v(\mathbf{u}_v - \mathbf{u}_{\phi(v)}) \Big) \leq \Big| \sum_{v} z_v(\mathbf{u}_v - \mathbf{u}_{\phi(v)}) \Big|_1 \leq \sum_{v} |\mathbf{u}_v - \mathbf{u}_{\phi(v)}|_1 \\ &= n^2 \sum_{v} d(v, \phi(v)) = n^2 \sum_{v} d(v, S) = n^3 \overline{d}(S). \end{aligned}$$

We get the same upper bound for $|A\mathbf{w}|$. Combining with (4.1), we get

$$d_{\Box}(G, G_{\mathcal{P}}) = \frac{1}{n^2} |\mathbf{x}^{\mathsf{T}} R \mathbf{y}| \le \frac{1}{n^{3/2}} (|A \mathbf{w}| + |A \mathbf{z}|) \le 2\sqrt{\overline{d}(S)}.$$

4.2. VORONOI CELLS AND REGULARITY PARTITIONS

(b) Let i, j be two nodes in the same partition class of \mathcal{P} , then $P\mathbf{e}_i = P\mathbf{e}_j$, and hence $A(\mathbf{e}_i - \mathbf{e}_j) = R(\mathbf{e}_i - \mathbf{e}_j)$. Thus

$$d(i,j) = |A^{2}\mathbf{e}_{i} - A^{2}\mathbf{e}_{j})|_{1} = |AR(\mathbf{e}_{i} - \mathbf{e}_{j})|_{1} \le |AR\mathbf{e}_{i}|_{1} + |AR\mathbf{e}_{j}|_{1}.$$
(4.2)

For every set $V_t \in \mathcal{P}$, choose a point $s_t \in V_t$ for which $|AR\mathbf{e}_i|_1$ is minimized over V_t by $i = s_t$, and let $S = \{s_1, \ldots, s_k\}$. The following (somewhat peculiar) inequality relating three matrix norms is not hard to prove:

$$||AB||_1 \le 4n ||A||_{\square} ||B||_{\infty} \qquad (B \in \mathbb{R}^{n \times n}).$$
(4.3)

Then using (4.2) and (4.3),

$$\overline{d}(S) \leq \frac{1}{n} \sum_{t=1}^{k} \sum_{i \in V_{t}} d(i, s_{t}) \leq \frac{1}{n^{3}} \sum_{t=1}^{k} \sum_{i \in V_{t}} \left(|AR\mathbf{e}_{i}|_{1} + |AR\mathbf{e}_{s_{t}}|_{1} \right)$$
$$\leq \frac{2}{n^{3}} \sum_{i} |AR\mathbf{e}_{i}|_{1} = \frac{2}{n} ||AR||_{1} \leq 4 ||R||_{\Box} = 4d_{\Box}(G, G_{\mathcal{P}}).$$

Combining with the Weak Regularity Lemma, it follows that every graph has an "average representative set" in the following sense.

Corollary 4.2.3 For every simple graph G and every $k \ge 1$, there is a set $S \subseteq V$ of k nodes such that $\overline{d}(S) \le 16/\sqrt{\log k}$.