4.2 Voronoi cells and regularity partitions

Now we are ready to tie regularity partitions to geometric representations. We define the 2neighborhood representation of a graph G as the map $i \mapsto \mathbf{u}_{i}$, where $\mathbf{u}_{i}=A^{2} \mathbf{e}_{i}$ is the column of A^{2} corresponding to node i (where $A=A_{G}$ is the adjacency matrix of G). Squaring the matrix seems unnatural, but it is crucial. We define a distance between the nodes, called the 2 -neighborhood distance (or similarity distance), by

$$
d(s, t)=\frac{1}{n^{2}}\left|\mathbf{u}_{s}-\mathbf{u}_{t}\right|_{1}
$$

This normalization makes it sure that the distance of any two nodes is at most 1 . We need some more notation: For a nonempty set $S \subseteq V$, we consider the average distance from S :

$$
\bar{d}(S)=\frac{1}{n} \sum_{i \in V} d(i, S)=\frac{1}{n} \sum_{i \in V} \min _{j \in S} d(i, j)
$$

Example 4.2.1 To illustrate the substantial difference between the 1-neighborhood and 2neighborhood metrics, let us consider a random graph with a very simple structure: Let $V(G)=V_{1} \cup V_{2}$, where $\left|V_{1}\right|=\left|V_{2}\right|=n / 2$, and let any node in V_{1} be connected to any node in V_{2} with probability $1 / 2$. With high probability, the ℓ_{1} distance of any two columns of the adjacency matrix is of the order n (approximately $n / 2$ for two nodes in different classes, and $n / 4$ for two nodes in the same class). But if we square the matrix, the ℓ_{1} distance of two columns in different classes will be approximately $n^{2} / 4$, while for two columns in the same class it will be $O\left(n^{3 / 2}\right)$. With the normalization above, the two classes will be collapsed to single points (asymptotically, of course), but the distance of these two points will remain constant. So the 2-neighborhood distance reflects the structure of the graph very nicely!

Let V be any set, together with a metric d. We define the Voronoi partition induced by a subset $S \subseteq V$ as the partition that has a partition class ("cell") V_{s} for each $s \in S$, and every point $v \in V$ is put in a the cell V_{s} for which $s \in S$ is a point of S closest to v. For our purposes, ties can be broken arbitrarily. If the metric space is a euclidean space, then Voronoi cells have many nice geometric properties (for example, they are convex polyhedra; see Figure for a picture in two dimensions). In our case the Voronoi cells will not be so nice, but there is no principal difference.

Theorem 4.2.2 Let G be a simple graph, and let d(.,.) be its 2-neighborhood distance.
(a) The Voronoi cells of a nonempty set $S \subseteq V$ define a partition \mathcal{P} of V such that $d_{\square}\left(G, G_{\mathcal{P}}\right) \leq 8 \bar{d}(S)^{1 / 2}$.
(b) For every partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ we can select elements $s_{i} \in V_{i}$ so that $S=$ $\left\{s_{1}, \ldots, s_{k}\right\}$ satisfies $\bar{d}(S) \leq 4 d_{\square}\left(G, G_{\mathcal{P}}\right)$.

Figure 4.1: Voronoi cells of a finite point set in the plane in Euclidean and Manhattan distance

Proof. In both parts of the proof we work with linear algebra, using the adjacency matrix $A=A_{G}$. In both parts we consider a particular partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$. We will be interested in the "error" matrix $R=A-A_{\mathcal{P}}=A-P A P$, for which $\|R\|_{\square}=d_{\square}\left(G, G_{\mathcal{P}}\right)$.
(a) Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$, and let \mathcal{P} be the partition of V defined by the Voronoi cells of S (where $s_{i} \in V_{i}$). Recall the definition

$$
\|R\|_{\square}=\frac{1}{n^{2}} \max _{\mathbf{x}, \mathbf{y} \in\{0,1\}^{\vee}}\left|\mathbf{x}^{\top} R \mathbf{y}\right| .
$$

Let \mathbf{x}, \mathbf{y} be the maximizers on the right, and let $\mathbf{w}=\mathbf{x}-\mathbf{x}_{\mathcal{P}}$ and $\mathbf{z}=\mathbf{y}-\mathbf{y}_{\mathcal{P}}$. The crucial equation is

$$
\mathbf{x}^{\top} R \mathbf{y}=\mathbf{x}^{\top} A \mathbf{y}-\mathbf{x}^{\top} A_{\mathcal{P}} \mathbf{y}=\mathbf{x}^{\top} A \mathbf{y}-\mathbf{x}_{\mathcal{P}}^{\top} A \mathbf{y}_{\mathcal{P}}=\mathbf{x}^{\top} A \mathbf{z}+\mathbf{y}_{\mathcal{P}}^{\top} A \mathbf{w}
$$

which implies that

$$
\begin{equation*}
\left|\mathbf{x}^{\top} R \mathbf{y}\right| \leq|\mathbf{x}||A \mathbf{z}|+\left|\mathbf{y}_{\mathcal{P}}\right||A \mathbf{w}| \leq \sqrt{n}(|A \mathbf{w}|+|A \mathbf{z}|) . \tag{4.1}
\end{equation*}
$$

To estimate $|A \mathbf{z}|$ (say), let $\phi(v)=s_{t}$ for $v \in V_{t}$. The fact that we have a Voronoi partition means that $d(v, S)=d(v, \phi(v))$ for every node v. We have

$$
A^{2} \mathbf{z}=\sum_{v} z_{v} \mathbf{u}_{v}=\sum_{v} z_{v}\left(\mathbf{u}_{v}-\mathbf{u}_{\phi(v)}\right)
$$

(since $\sum_{v \in V_{t}} z_{v}=0$). Using that $\left|z_{v}\right| \leq 1$ for all $v \in[n]$, we get

$$
\begin{aligned}
|A \mathbf{z}|^{2} & =\mathbf{z}^{\top}\left(\sum_{v} z_{v}\left(\mathbf{u}_{v}-\mathbf{u}_{\phi(v)}\right)\right) \leq\left|\sum_{v} z_{v}\left(\mathbf{u}_{v}-\mathbf{u}_{\phi(v)}\right)\right|_{1} \leq \sum_{v}\left|\mathbf{u}_{v}-\mathbf{u}_{\phi(v)}\right|_{1} \\
& =n^{2} \sum_{v} d(v, \phi(v))=n^{2} \sum_{v} d(v, S)=n^{3} \bar{d}(S)
\end{aligned}
$$

We get the same upper bound for $|A \mathbf{w}|$. Combining with (4. (1)), we get

$$
d_{\square}\left(G, G_{\mathcal{P}}\right)=\frac{1}{n^{2}}\left|\mathbf{x}^{\top} R \mathbf{y}\right| \leq \frac{1}{n^{3 / 2}}(|A \mathbf{w}|+|A \mathbf{z}|) \leq 2 \sqrt{\bar{d}(S)}
$$

(b) Let i, j be two nodes in the same partition class of \mathcal{P}, then $P \mathbf{e}_{i}=P \mathbf{e}_{j}$, and hence $A\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=R\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)$. Thus

$$
\begin{equation*}
\left.d(i, j)=\mid A^{2} \mathbf{e}_{i}-A^{2} \mathbf{e}_{j}\right)\left.\right|_{1}=\left|A R\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|_{1} \leq\left|A R \mathbf{e}_{i}\right|_{1}+\left|A R \mathbf{e}_{j}\right|_{1} \tag{4.2}
\end{equation*}
$$

For every set $V_{t} \in \mathcal{P}$, choose a point $s_{t} \in V_{t}$ for which $\left|A R \mathbf{e}_{i}\right|_{1}$ is minimized over V_{t} by $i=s_{t}$, and let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. The following (somewhat peculiar) inequality relating three matrix norms is not hard to prove:

$$
\begin{equation*}
\|A B\|_{1} \leq 4 n\|A\|_{\square}\|B\|_{\infty} \quad\left(B \in \mathbb{R}^{n \times n}\right) \tag{4.3}
\end{equation*}
$$

Then using (4.2) and (4.3),

$$
\begin{aligned}
\bar{d}(S) & \leq \frac{1}{n} \sum_{t=1}^{k} \sum_{i \in V_{t}} d\left(i, s_{t}\right) \leq \frac{1}{n^{3}} \sum_{t=1}^{k} \sum_{i \in V_{t}}\left(\left|A R \mathbf{e}_{i}\right|_{1}+\left|A R \mathbf{e}_{s_{t}}\right|_{1}\right) \\
& \leq \frac{2}{n^{3}} \sum_{i}\left|A R \mathbf{e}_{i}\right|_{1}=\frac{2}{n}\|A R\|_{1} \leq 4\|R\|_{\square}=4 d_{\square}\left(G, G_{\mathcal{P}}\right) .
\end{aligned}
$$

Combining with the Weak Regularity Lemma, it follows that every graph has an "average representative set" in the following sense.

Corollary 4.2.3 For every simple graph G and every $k \geq 1$, there is a set $S \subseteq V$ of k nodes such that $\bar{d}(S) \leq 16 / \sqrt{\log k}$.

