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4.2 Voronoi cells and regularity partitions

Now we are ready to tie regularity partitions to geometric representations. We define the 2-

neighborhood representation of a graph G as the map i 7→ ui, where ui = A2ei is the column

of A2 corresponding to node i (where A = AG is the adjacency matrix of G). Squaring the

matrix seems unnatural, but it is crucial. We define a distance between the nodes, called the

2-neighborhood distance (or similarity distance), by

d(s, t) =
1

n2
|us − ut|1.

This normalization makes it sure that the distance of any two nodes is at most 1. We need

some more notation: For a nonempty set S ⊆ V , we consider the average distance from S:

d(S) =
1

n

∑
i∈V

d(i, S) =
1

n

∑
i∈V

min
j∈S

d(i, j).

Example 4.2.1 To illustrate the substantial difference between the 1-neighborhood and 2-

neighborhood metrics, let us consider a random graph with a very simple structure: Let

V (G) = V1 ∪ V2, where |V1| = |V2| = n/2, and let any node in V1 be connected to any node

in V2 with probability 1/2. With high probability, the ℓ1 distance of any two columns of the

adjacency matrix is of the order n (approximately n/2 for two nodes in different classes, and

n/4 for two nodes in the same class). But if we square the matrix, the ℓ1 distance of two

columns in different classes will be approximately n2/4, while for two columns in the same

class it will be O(n3/2). With the normalization above, the two classes will be collapsed to

single points (asymptotically, of course), but the distance of these two points will remain

constant. So the 2-neighborhood distance reflects the structure of the graph very nicely! �

Let V be any set, together with a metric d. We define the Voronoi partition induced by

a subset S ⊆ V as the partition that has a partition class (“cell”) Vs for each s ∈ S, and

every point v ∈ V is put in a the cell Vs for which s ∈ S is a point of S closest to v. For

our purposes, ties can be broken arbitrarily. If the metric space is a euclidean space, then

Voronoi cells have many nice geometric properties (for example, they are convex polyhedra;

see Figure 4.1 for a picture in two dimensions). In our case the Voronoi cells will not be so

nice, but there is no principal difference.

Theorem 4.2.2 Let G be a simple graph, and let d(., .) be its 2-neighborhood distance.

(a) The Voronoi cells of a nonempty set S ⊆ V define a partition P of V such that

d�(G,GP) ≤ 8d(S)1/2.

(b) For every partition P = {V1, . . . , Vk} we can select elements si ∈ Vi so that S =

{s1, . . . , sk} satisfies d(S) ≤ 4d�(G,GP).
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Figure 4.1: Voronoi cells of a finite point set in the plane in Euclidean and Man-
hattan distance

Proof. In both parts of the proof we work with linear algebra, using the adjacency matrix

A = AG. In both parts we consider a particular partition P = {V1, . . . , Vk}. We will be

interested in the “error” matrix R = A−AP = A− PAP , for which ∥R∥� = d�(G,GP).

(a) Let S = {s1, . . . , sk}, and let P be the partition of V defined by the Voronoi cells of

S (where si ∈ Vi). Recall the definition

∥R∥� =
1

n2
max

x,y∈{0,1}V
|xTRy|.

Let x,y be the maximizers on the right, and let w = x − xP and z = y − yP . The crucial

equation is

xTRy = xTAy − xTAPy = xTAy − xT
PAyP = xTAz+ yT

PAw,

which implies that

|xTRy| ≤ |x| |Az|+ |yP | |Aw| ≤
√
n(|Aw|+ |Az|). (4.1)

To estimate |Az| (say), let ϕ(v) = st for v ∈ Vt. The fact that we have a Voronoi partition

means that d(v, S) = d(v, ϕ(v)) for every node v. We have

A2z =
∑
v

zvuv =
∑
v

zv(uv − uϕ(v))

(since
∑

v∈Vt
zv = 0). Using that |zv| ≤ 1 for all v ∈ [n], we get

|Az|2 = zT
(∑

v

zv(uv − uϕ(v))
)
≤

∣∣∣∑
v

zv(uv − uϕ(v))
∣∣∣
1
≤

∑
v

|uv − uϕ(v)|1

= n2
∑
v

d(v, ϕ(v)) = n2
∑
v

d(v, S) = n3d(S).

We get the same upper bound for |Aw|. Combining with (4.1), we get

d�(G,GP) =
1

n2
|xTRy| ≤ 1

n3/2
(|Aw|+ |Az|) ≤ 2

√
d(S).
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(b) Let i, j be two nodes in the same partition class of P, then Pei = Pej , and hence

A(ei − ej) = R(ei − ej). Thus

d(i, j) = |A2ei −A2ej)|1 = |AR(ei − ej)|1 ≤ |ARei|1 + |ARej |1. (4.2)

For every set Vt ∈ P, choose a point st ∈ Vt for which |ARei|1 is minimized over Vt by i = st,

and let S = {s1, . . . , sk}. The following (somewhat peculiar) inequality relating three matrix

norms is not hard to prove:

∥AB∥1 ≤ 4n∥A∥�∥B∥∞ (B ∈ Rn×n). (4.3)

Then using (4.2) and (4.3),

d(S) ≤ 1

n

k∑
t=1

∑
i∈Vt

d(i, st) ≤
1

n3

k∑
t=1

∑
i∈Vt

(
|ARei|1 + |ARest |1

)
≤ 2

n3

∑
i

|ARei|1 =
2

n
∥AR∥1 ≤ 4∥R∥� = 4d�(G,GP). �

Combining with the Weak Regularity Lemma, it follows that every graph has an “average

representative set” in the following sense.

Corollary 4.2.3 For every simple graph G and every k ≥ 1, there is a set S ⊆ V of k nodes

such that d(S) ≤ 16/
√
log k.


