
Chapter 4

Regularity partitions

4.0.1 Regularity Lemmas

In order to formulate this application of geometric representations, we have to collect some

facts about regularity lemmas. The original Regularity Lemma of Szemerédi has been the

key to many proofs in extremal graph theory, graph algorithms, number theory, the theory

of graph limits, and more. It has formulations not only in graph theory but in analysis and

information theory as well. Its applications often depend on different versions of the Lemma,

which are not equivalent. A version that is weaker than the original but gives much better

bounds was found by Frieze and Kannan, and this is the version we need.

Let G be a graph on n nodes. For two sets S, T ⊆ V , let eG(S, T ) denote the number of

edges ij ∈ E with i ∈ S and j ∈ T . We need this definition in the case when S and T are

not disjoint; in this case, edges induced by S ∩ T should be counted twice. We also use this

notation in the case when G is edge-weighted, when the weights of edges connecting S and

T should be added up. (An unweighted edge will be considered as an edge with weight 1.)

We come to an important definition of this section: We define, for two edge-weighted

graphs G and H on the same set of n nodes, their cut-distance by

d�(G,H) = max
S,T⊆V

|eG(S, T )− eH(S, T )|
n2

.

This is, of course, not the only way to define a meaningful distance between two graphs;

for example, the edit distance |E(G)4E(H)| is often used. For us, the cut-distance, which

measures a certain global similarity, will be more important.

Let P = {V1, . . . , Vk} be a partition of V into nonempty sets. We define the edge-

weighted graph GP on V by taking the complete graph and weighting its edge uv by

eG(Vi, Vj)/(|Vi| |Vj |) if u ∈ Vi and v ∈ Vj . The case i = j takes some care: we then count

edges twice, so eG(Vi, Vi) = 2|E(G[Vi])|, and we include the case u = v, so GP will have

loops. Informally, GP is obtained by averaging the adjacency matrix over sets Vi × Vj .
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The Regularity Lemma says, roughly speaking, that the node set of every graph has a

partition P into a “small” number of classes such that GP is “close” to G.

Lemma 4.0.1 (Weak Regularity Lemma) For every simple graph G and every k ≥ 1,

the node set V has a partition P into k classes such that

d�(G,GP) ≤ 4√
log k

. �

We do not require here that P be an equitable partition; it is not hard to see that this

version implies that there is also a k-partition in which in addition all partition classes are

almost equal in the sense that they have bn/kc or dn/ke elements, and which satisfies the

same inequality as in the lemma, just we have to double the error bound.

It will be useful to reformulate this lemma in terms of matrices. For two matrices A,B ∈
Rn×n, we define their inner product

〈A,B〉 =
1

n2

n∑
i,j=1

AijBij .

For S, T ⊆ {1, . . . , n}, we need the special matrix 1S×T defined by

(1S×T )i,j =

{
1, if i ∈ S and j ∈ T ,

0, otherwise.

This is a 0-1 matrix of rank 1. For a matrix A ∈ Rn×n and S, T ⊆ {1, . . . , n}, we define

A(S, T ) =
∑

i∈S, j∈T
Ai,j = n2〈A,1S×T 〉

We define the norm

‖A‖2 =

√√√√ 1

n2

n∑
i,j=1

A2
i,j .

The cut-norm is less standard, and is used mostly in combinatorics. It is defined as follows:

‖A‖� =
1

n2
max

S,T⊆[n]
|AS,T | = max

S,T⊆[n]
〈A,1S×T 〉. (4.1)

Applying this notation to the adjacency matrices of two graphs G and H on the same set of

n nodes, we get

d�(G,H) = ‖AG −AH‖�.

For a matrix A ∈ Rn×n and partition P = {V1, . . . , Vk} of {1, . . . , n}, we define the matrix

AP ∈ Rn×n by

(AP)u,v =
A(Vi, Vj)

|Vi| |Vj |
for u ∈ Vi, v ∈ Vj .
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In words, the matrix AP is obtained by averaging the entries of A over every block Vi × Vj .

If A is the adjacency matrix of a simple graph G, then AP is the weighted adjacency matrix

of GP .

Using the cut norm, we can re-state the Weak Regularity Lemma as follows. In fact, we

state it in three versions, to make the proof easier to follow. Let as say that B ∈ Rn×n is

a P-matrix (where P = {U1, . . . , Uk} is a partition of {1, . . . , n}), if B is constant on every

block Ui × Uj , i.e., BP = B.

Lemma 4.0.2 Let A ∈ Rn×n and k ≥ 1.

(a) There are 2k sets S1, . . . , Sk, T1, . . . , Tk ⊆ [n] and k real numbers ai such that

∥∥∥A− k∑
i=1

ai1
T
Si×Ti

∥∥∥
�
≤ 1√

k
‖A‖2.

(b) There is a partition P of {1, . . . , n} into k classes, and a P-matrix B, for which

‖A−B‖� ≤
2√

log k
‖A‖2.

(c) There is a partition P of {1, . . . , n} into k classes for which

‖A−AP‖� ≤
4√

log k
‖A‖2.

Note that 1Si×Ti is just a 0-1 matrix of rank 1, showing that Lemma 4.0.2(a) gives a

low-rank approximation of A. The important fact about version (a) of the lemma is that the

number of terms (k) and the error bound (1/
√
k) are polynomially related.

Proof. (a) Let A be an arbitrary n×n matrix, and let S, T ⊆ {1, . . . , n} be two nonempty

sets such that

‖A‖� =
1

n2
|A(S, T )| = |〈A,1S×T 〉|.

We claim that

‖A− a1S×T ‖22 ≤ ‖A‖22 − ‖A‖2�, (4.2)

where

a =
A(S, T )

|S| |T |
=

n2

|S| |T |
〈A,1S×T 〉

(the value of a will not be relevant in the sequel). Indeed,

‖A− a1S×T ‖22 = ‖A‖2 + a2‖1S×T ‖2 − 2a〈A,1S×T 〉

= ‖A‖2 − n2

|S| |T |
〈A,1S×T 〉2 ≤ ‖A‖22 − ‖A‖2�.
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Repeated application of this inequality gives a sequence of matrices

Ar = A−
r∑

k=1

ak1Si×Ti (r = 0, 1, . . . , k),

where A0 = A and

‖Ar+1‖22 ≤ ‖Ar‖22 − ‖Ar‖2�.

Hence

‖Ak‖22 ≤ ‖A‖22 −
k−1∑
r=0

‖Ar‖2�.

Since the left side is nonnegative, there must be an index r for which

‖Ar‖2� =
∣∣∣A− r∑

k=1

ak1Si×Ti

∣∣∣2
�
≤ 1

k
‖A‖22.

Replacing the remaining coefficients ar+1, . . . , ak−1 by 0, we get the decomposition in (a).

(b) Consider the decomposition as in (a), and the partition into the atoms of the Boolean

algebra generated by all the sets Si and Ti.

(c) This follows by (b) and the following observation: for every matrix A ∈ Rn, every

partition P of {1, . . . , n} and every P-matrix B,

‖A−AP‖� ≤ 2|A−B|. (4.3)

Indeed,

‖A−AP‖� ≤ |A−B|+ |B−AP | = |A−B|+ |BP−AP | = |A−B|+ |(B−A)P | ≤ 2|A−B|.

�

Remarks. 1. There are many alternative ways to define the cut-norm, or norms that

are closely related. We could define it by

‖A‖� =
1

n2
max{|xTAy| : x,y ∈ [0, 1]n}. (4.4)

If we maximize instead over all vectors in [−1, 1]n, we obtain a norm that may be different,

but only by a factor of 4:

‖A‖� ≤
1

n2
max{|xTAy| : x,y ∈ [−1, 1]n} ≤ 4‖A‖�. (4.5)

We can also play with the sets S and T in the definition. For example,

1

2
‖A‖� ≤

1

n2
max
S⊆[n]

|A(S, S)| ≤ ‖A‖�. (4.6)
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and

1

4
‖A‖� ≤

1

n2
max

|S|,|T |≥n/2
|A(S, T )| ≤ ‖A‖�. (4.7)

2. In (a), one could require in addition that
∑

r a
2
r ≤ 4, at the cost of increasing the error

bound to (4/
√
k)‖A‖2. The trick is to use maximizing sets in (4.7).

3. The original Regularity Lemma measures the error of the approximation A ≈ AP

differently. Again there are different versions, closest to ours is the following: For a matrix

A ∈ Rn×n and partition P = {V1, . . . , Vk} of {1, . . . , n}, and for every 1 ≤ i, j ≤ k, we choose

the sets Sij ⊆ Vi and Tij ⊆ Vj which maximize the “local error” 〈A,1Sij×Tij
〉. The total

error is the sum of these:

e(P) =

n∑
i,j=1

|〈A−AP ,1Sij×Tij
〉| =

∣∣∣〈A−AP ,

n∑
i,j=1

1Sij×Tij

〉∣∣∣.
A version of the proof above gives the following: There is a partition P of {1, . . . , n} into k

classes for which

e(P) = O
( 1

log∗ k
‖A‖2

)
.

(Here log∗ k is a very slowly decreasing function, defined as the number of times we have to

apply the log function to k to get a negative number.) This bound is also known to be best

possible.
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