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1 Introduction

Trivial: If G is connected and |V | > 1, then V has a partition V = V1 ∪ V2 such that G[Vi]

is connected. It has another partition such that G[V1, V2] is connected. It has a connected

subgraph of every size 1 ≤ k ≤ n.

Can we combine connectivity conditions and size conditions? Yes if we strengthen the

connectivity assumption on G.

Proposition 1.1 Let G = (V,E) be a 2-connected graph and 1 ≤ k ≤ n. Then V has a

partition V = V1 ∪ V2 such that G[Vi] is connected and |V1| = k. If n is even and G is

non-bipartite, then G has another partition such that G[V1, V2] is connected and |V1| = |V2|.

Proof via a discrete version of Bolzano’s Theorem and the following lemma.

Lemma 1.2 Let G = (V,E) be a 2-connected graph and let T1, T2 be two spanning trees.

The T1 can be transformed into T2 by changing a single edge incident with a leaf at each step.

We can fix a root that is not considered as a leaf.

What happens if we need a partition V = V1 ∪ V2 ∪ V3 into sets with prescribed sizes?

We need more involved topology than Bolzano’s Theorem.

2 Combinatorial homotopy theory

2.1 Preliminaries

A simplicial complex K is a finite collection of nonempty finite sets such that X ∈ K, Y ⊆
X 6= ∅ implies Y ∈ K. The union of all members of K is denoted by V (K). The elements of

V (K) are called the vertices of K, the elements of K are called the simplices of K.

The dimension of a simplex S ∈ K is dim(S) = |S| − 1. The dimension of K is the

maximum dimension of any simplex in K. The k-dimensional skeleton of a simplicial complex

K is the simplicial complex K|k = {S ∈ K : |X| ≤ k + 1}. We define the link of a vertex

v ∈ V (K) as the simplicial complex

lkK(v) = {X ⊆ V (K) \ {v} : X ∪ {v} ∈ K}.

Let n = |V (K)|. Embed V (K) in Rn−1 so that the n points representing the vertices

are not contained in one hyperplane. For each simplex S, take the convex hull conv(S) of

the elements in S, and take the union of these simplices. This set G(K) ⊂ Rn−1 is called a

geometric realization of K. The sets conv(S) (S ∈ K) are the faces of G(K). By the “general
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position” assumption on the vertices, it follows that the faces intersect each other in their

common subface only: conv(S1) ∩ conv(S2) = conv(S1 ∩ S2).

If two topological spaces T1, T2 are homeomorphic, then we write T1
∼= T2. It is clear

that all geometric realizations of the same simplicial complex are homeomorphic. We say

that two simplicial complexes are homeomorphic, if their geometric realization are. (We use

similar terminology for other topological properties of geometric realizations of simplicial

complexes.)

Let K1 and K2 be two simplicial complexes and let f : V (K1) → V (K2) be a mapping.

We say that f is simplicial if f(S) ∈ K2 for every simplex S ∈ K1. Every simplicial mapping

can be extended linearly to get a continuous mapping f̂ : G(K1)→ G(K2).

The baricentric subdivision B(K) of a simplicial complex K is obtained as follows. We

create a new vertex vS for every non-empty simplex S (the “baricenter” of S), and define

vS1
, . . . , vSk

to be a simplex for every S1 ⊂ · · · ⊂ Sk. It is easy to see that G(B(K)) is

homeomorphic with G(K). In fact, there is a “canonical” homeomorphism β : G(B(K)) →
G(K), where β(vS) is the baricenter of conv(S) (which is a face of G(K)), and β is extended

linearly over each face in G(B(K)).

Example 2.1 The simplex on a finite set V is the simplicial complex Σ(V ) = 2V \ {∅}.
The boundary of the simplex Σ(V ) is the simplicial complex Γ(V ) = 2V \ {∅, V }. The usual

geometric representation of Σ(V ) is the standard simplex ∆V = {x ∈ RV : xi ≥ 0,
∑
i xi ≤

1}. If |V | = {0, 1, . . . , r}, then we denote Σ(V ) by Σr and Γ(V ) by Γr−1.

The r-dimensional closed unit ball is denoted by Br. Specifically, B0 is a single point

and B1 is a segment. The boundary of Br is the (r− 1)-dimensional unit sphere, denoted by

Sr−1. So S0 consists of two points, and S1 is a circle. Sometimes it is convenient to define

S−1 = ∅. Clearly,

G(Σr) ∼= Br and G(Γr−1) ∼= Sr−1. (1)

�

2.2 Homotopy and homotopy equivalence

Let T1 and T2 be two topological spaces. Two continuous maps f0, f1 : T1 → T2 are

called homotopic (denoted f0 ∼ f1), if they can be deformed into each other. More exactly,

there exists a continuous mapping F : T1 × [0, 1] → T2 such that f0(x) = F (x, 0) and

f1(x) = F (x, 1).

Homotopy of maps is an equivalence relation. In particular, if f1, f2, f3 : T1 → T2 and

f1 ∼ f2 and f2 ∼ f3, then f1 ∼ f3. If f : T1 → T2, g1, g2 : T2 → T3, h : T3 → T4, and

g1 ∼ g2, then f ◦ g1 ◦ h ∼ f ◦ g2 ◦ h.

Example 2.2 Let constp : T1 → T2 denote the map which maps every point to p ∈ T2. For

every convex set K and point p ∈ K, the maps idK , constp : K → K are homotopic. �

We say that T1 and T2 are homotopy equivalent (denoted by T1 ∼ T2), if there exist

continuous maps f : T1 → T2 and g : T2 → T1 such that f ◦ g ∼ idT2
and g ◦ f ∼ idT1

.
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Homotopy equivalence is an equivalence relation. The equivalence classes of this relation are

often called homotopy types.

Example 2.3 Every convex set is homotopy equivalent to a point. An annulus is homotopy

equivalent to a circle. The union of two disjoint disks is not homotopy equivalent to a single

disk. A circle is not homotopy equivalent with the one-point space. �

Let T1 ⊆ T2 be two topological spaces. We say that T1 is a retract of T2 if there is a

continuous map ϕ : T2 → T1 such that ϕ|T1
= idT1

. If there is a homotopy F : T2×[0, 1] such

that F (x, t) = x for all x ∈ T1 and t ∈ [0, 1], F (x, 0) = x for all x ∈ T2 and F (x, 1) = ϕ(x)

for all x ∈ T2, then we call T1 a deformation retract of T2.

Every deformation retract of a space is homotopy equivalent to it. This does not remain

valid for retracts in general.

Example 2.4 Any face of a convex polytope is a retract of the polytope. The 2-point space

consisting of the endpoints of a segment is not a retract of this segment. An arc of a circle

is a retract, but not a deformation retract, of the full circle. �

Example 2.5 The following example will be useful later on. Let A1, . . . , Am be finite sets,

r1, . . . , rk positive integers, let V = A1 ∪ · · · ∪ Am, and let M(A1, . . . , Am) consist of those

subsets X ⊆ V for which |X ∩ Ai| ≤ ri for every 1 ≤ i ≤ m. Then M(A1, . . . , Am) is a

simplicial complex.

An interesting special case is obtained when the sets A1, . . . , Am are disjoint and have two

elements. In this case the simplices ofM(A1, . . . , Am) can be identified with the proper faces

of the m-dimensional cross-polytope Xn = {x ∈ Rn :
∑
i |xi| ≤ 1}. So M(A1, . . . , Am) ∼=

Sm−1.

Suppose that A1, . . . , Am are disjoint, and let A′i ⊆ Ai, thenM(A′1, . . . , A
′
m) is a retract of

M(A1, . . . , Am): we can take any map ϕi : Ai → A′i that is the identity on A′i (i = 1, . . . ,m),

then ϕ = ϕ1 ∪ · · · ∪ ϕm is a simplicial map M(A1, . . . , Am) → M(A′1, . . . , A
′
m) that is a

retraction. �

A topological space T is contractible if it is homotopy equivalent to the space with a single

point. This is equivalent to saying that the map constp (where p ∈ T ) is homotopic to the

identity map idT . This property does not depend on the choice of p.

Any two continuous maps from a topological space into a contractible space are homotopic.

Every convex body is contractible. A simple graph (as a 1-dimensional simplicial complex) is

contractible if and only if it is a tree. If a simplicial complex has a vertex u that is contained

in every maximal simplex, then it is contractible.

The bad news: given a simplicial complex, it is algorithmically undecidable whether it

is contractible. This implies that it is algorithmically undecidable whether two simplicial

complexes are homotopy equivalent, or two simplicial maps are homotopic. It is somewhat

surprising that in spite of these facts, there is a useful combinatorial theory of homotopy

equivalence and contractibility.
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Lemma 2.6 Let T be a topological space and let K be a simplicial complex. Let f, g : T →
G(K) be two continuous maps such that f(x) and g(x) are contained in the same face of

G(K) for all x ∈ T . Then f ∼ g.

Proof. Φ(t, x) = (1− t)f(x) + tg(x) ∈ G(K2) defines a homotopy of f and g. �

Lemma 2.7 Every retract of a contractible space is contractible.

Proof. Let T1 ⊆ T2 be a topological spaces, and let ϕ : T1 → T2 be a retraction. Assume

that T1 is contractible, let p ∈ T1, and let F : T1× [0, 1] be a homotopy such that F (x, 0) = x

and F (x, 1) = p for x ∈ T1. The F ′(x, t) = ϕ(F (x, t)), considered as a map T2 × [0, 1]→ T2,

is a homotopy with F ′(x, 0) = ϕ(F (x, 0)) = ϕ(x) = x and F ′(x, 1) = ϕ(F (x, 1)) = ϕ(p) = p

for x ∈ T2. �

Lemma 2.8 If a topological space T is contractible, then every continuous map f : Sr−1 →
T extends to a continuous map f̂ : Br → T .

Proof. There is a homotopy F : Sr−1× [0, 1] such that F (., 0) is a constant map and F (., 1)

is the identity map. The map f̂(x) = F (f(x/‖x‖), ‖x‖) is a continuous map extending f . �

For simplicial complexes, we can prove a converse.

Lemma 2.9 For a simplicial complex K the following are equivalent:

(i) K is contractible;

(ii) For every finite set V , every continuous map Γ(V ) → G(K) extends to a continuous

map Σ(V )→ G(K).

(iii) If K1 ⊆ K2 are simplicial complexes, then every continuous map G(K1) → G(K)

extends to a continuous map G(K2)→ G(K).

(iv) K is a retract of Σ(V (K)).

Proof. (i)⇒(ii) by Lemma 2.8.

(ii)⇒(iii): Let S be a simplex in K1 \ K2 of minimal dimension. Then Γ(S) ⊆ K1 and

so the map f is already defined on G(Γ(S)). Hence by (ii), f extends to a continuous

map G(K1 ∪ {S}) → G(K). Repeating this argument, we extend f to a continuous map

G(K2)→ G(K).

(iii)⇒(iv): The map idK defines a map G(K)→ G(Σ(V (K))), which by (iii) extends to a

continuous map G(Σ(V (K)))→ G(Σ(V (K))), which is a retraction.

(iv)⇒(i): Since Σ(V ) is contractible, every retract of it is contractible as well. �

Lemma 2.10 Let K be a simplicial complex and U ⊆ V (K). Suppose that K ∩ Σ(U) is

contractible. Then K ∪ Σ(U) ∼ K.
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Proof. By Lemma 2.9, there is a retraction ϕ0 : G(Σ(U)) → G(K ∩ Σ(U)). Define

ϕ : G(K ∪ Σ(U))→ G(K ∪ Σ(U)) by

ϕ(x) =

{
ϕ0(x) if x ∈ G(Σ(U)),

x, otherwise.

Clearly ϕ(x) ∈ G(K) for every x, and ϕ, as a map G(K∪Σ(U))→ G(K), is a retraction. Since

x and ϕ(x) are contained in the same simplex of K ∪ Σ(U), it follows that ϕ ∼ idG(K∪Σ(U)).

Hence ϕ is a deformation retraction, showing that K ∪ Σ(U) ∼ K. �

This lemma generalizes to adding more than one simplex.

Lemma 2.11 Let K be a simplicial complex and let U1, . . . , Um ⊆ V (K). Suppose that for

every 1 ≤ i1 < · · · < ir ≤ m, the restriction K ∩ Σ(Ui1 ∩ · · · ∩ Uir ) is either empty or

contractible. Then K ∼ K ∪ Σ(U1) ∪ · · · ∪ Σ(Um).

Proof. By induction on m. If m = 0, then we have nothing to prove. Let m ≥ 1. By

Lemma 2.10, we have K ∼ K′ = K ∪ Σ(U1). Furthermore,

K′ ∩ Σ(Ui1 ∩ · · · ∩ Uir ) = (K ∩ Σ(Ui1 ∩ · · · ∩ Uir )) ∪ Σ(U1 ∩ Ui1 ∩ · · · ∩ Uir )

is either empty or contractible for every 2 ≤ i1 < · · · < ir ≤ m, again by Lemma 2.10. By

the induction hypothesis, this implies that

K′ ∼ K′ ∪ Σ(U2) ∪ · · · ∪ Σ(Um) = K ∪ Σ(U1) ∪ · · · ∪ Σ(Um).

This proves the Lemma. �

Lemma 2.12 Let K1 and K2 be simplicial complexes. If K1, K2 and K1∩K2 are contractible,

then so is K1 ∪ K2.

Proof. Let K = K1 ∪ K2, Vi = V (Ki), V = V1 ∪ V2 and S = V1 ∩ V2. The hypothesis that

K1 ∩ K2 is contractible implies that S is not empty. The proof goes in several steps.

1◦. Assume that K1 ∩K2 = Σ(S). Since Ki is contractible, Lemma 2.9 implies that there

are retractions ϕi : G(Σ(Vi))→ G(Ki). Since ϕi|G(S) = id, we can “glue together” ϕ1 and

ϕ2 to get ϕ = ϕ1∪ϕ2, to get a retraction from G(Σ(V1)∪Σ(V2))→ G(K). Since Σ(V1)∪Σ(V2)

is trivially contractible (any point of S is contained in both maximal simplices), it follows by

Lemma 2.7 that so is K.

2◦. Next, we treat the more general (but still not completely general) case when K1 ∩
Σ(S) = K2 ∩ Σ(S). Then K ∩ Σ(S) = Ki ∩ Σ(S) = K1 ∩ K2 is contractible, and hence

by Lemma 2.10, we have K ∼ K ∪ Σ(S) = (K1 ∪ Σ(S)) ∪ (K2 ∪ Σ(S)). By Lemma 2.10

again, K1 ∪ Σ(S) and K2 ∪ Σ(S) are contractible, hence by the first part of the proof, so is

(K1 ∪ Σ(S)) ∪ (K2 ∪ Σ(S)), and hence so is K.

3◦. Finally, in the general case, consider the baricentric subdivisions B(Ki). These are

contractible, and so is B(K1) ∩ B(K2) = B(K1 ∩ K2). Furthermore, we have V (B(K1)) ∩
V (B(K2)) = K1 ∩ K2, and the restriction of B(Ki) to this is B(K1 ∩ K2) for i = 1, 2. Hence

the previous special case applies, and we get that B(K1)∪B(K2) = B(K1∪K2) is contractible.

This implies that K1 ∪ K2 is contractible. �
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Corollary 2.13 Let K be a simplicial complex and v ∈ V (K). Suppose that both K \ v and

lkK(v) are contractible. Then K is contractible.

Let K be a simplicial complex, and let f : U → V (K) be any mapping. Define the

simplicial complex

f−1(K) = {X ⊆ U : f(X) ∈ K}.

Lemma 2.14 (Contractible Carrier Lemma) Let K1 and K2 be simplicial complexes

and let f : V (K1) → V (K2) be a surjective simplicial map. Suppose that for every sim-

plex S ∈ K2, the complex K1 ∩ Σ(f−1(S)) is contractible. Then K1 ∼ K2.

The proof will show that it would suffice to require that K1 ∩ Σ(f−1(S)) is contractible

for every simplex S that is the intersection of maximal simplices.

Proof. We start with proving the special case when K1 = f−1(K2). In this case f−1(S) ∈
K1 for every S ∈ K2, so the contractibility condition is trivially satisfied. By the definition

of f−1(K2), the mapping f : V (K1)→ V (K2) is simplicial, and so it extends to a continuous

mapping f̂ : G(K1)→ G(K2).

For every u ∈ V (K2), let g(u) ∈ G(K1) be the center of gravity of the simplex f−1(u) ∈ K1.

If S = {u1, . . . , ud} ∈ K2, then f−1(S) ∈ K1, and hence g(u1), . . . , g(ud) are contained in the

face conv(f−1(S)) of G(K1). Hence we can extend the map g linearly to a continuous map

ĝ : G(K2)→ G(K1).

It is clear that ĝ ◦ f̂ = idG(K2). On the other hand, let x ∈ G(K1), say x ∈ conv(S),

where S ∈ K1. Then both x and f̂(ĝ(x)) are contained in the face conv(f−1(f(S)), and

hence f̂ ◦ ĝ ∼ idG(K1) by Lemma 2.6. This proves that K1 ∼ K2.

Now in the general case, we already know that f−1(K2) ∼ K2. Let S1, . . . , Sm be the

maximal simplices in K2, and let Ui = f−1(Si). Then

K1 ∩ Σ(Ui1 ∩ · · · ∩ Uir ) = K1 ∩ Σ(f−1(Si1 ∩ · · · ∩ Sir ))

is contractible for every 1 ≤ i1 < · · · < ir, and hence by Lemma 2.11,

K1 ∼ K1 ∪ Σ(U1) ∪ · · · ∪ Σ(Um) = Σ(U1) ∪ · · · ∪ Σ(Um) = f−1(K2)

Thus K1 ∼ f−1(K2) ∼ K2. �

2.3 The Nerve Theorem

Let G = (V,E) be a bipartite graph with bipartition V = U ∪W . The neighborhood complex

NU = NU (G) of G is the simplicial complex consisting of all subsets A of U such that the

elements of A have a common neighbor. The neighborhood complex NW = NW (G) is defined

analogously.

Lemma 2.15 The two neighborhood complexes of a bipartite graph are homotopy equivalent.
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Proof. For every simplex S ∈ NU , let f(S) ⊆ W denote the set common neighbors of

nodes in S. Clearly f(S) ∈ NW , so f : NU → NW . We define g : NW → NU analogously.

If S1 ⊂ · · · ⊂ Sk, then f(S1) ⊃ · · · ⊃ f(Sk), and hence f is a simplicial map between the

baricentric subdivisions: f : V (B(NU )) = NU → V (B(NW )) = NW . We define g : NW →
NU analogously. We claim that f and g certify the homotopy equivalence of B(NU ) and

B(NW ).

The composite map h = f ◦ g : NU → NU is a simplicial map B(NU ) → B(NU ), and

so it defines a continuous map ĥ : G(B(NU )) → G(B(NU )). There is a canonical map

α : G(B(NU ))→ G(NU ), and so ĥ ◦ α : G(B(NU ))→ G(NU ) is a continuous map.

The map h has the property that h(S) ⊇ S for every S ∈ NU . Hence if S1 ⊂ · · · ⊂ Sk is

a simplex of B(NU ), then S1, . . . , Sk as well as h(S1), . . . , h(Sk) are subsets of h(Sk). This

implies that for every x ∈ G(B(NU ), the points ĥ ◦ α(x) and α(x) are both contained in the

same face G(h(Sk)). By Lemma 2.6, this implies that ĥ◦α ∼ α, and hence ĥ = (ĥ◦α)◦α−1 ∼
α ◦ α−1 = id.

We argue similarly about g◦f , and so B(NU )) ∼ B(NW ), which is equivalent toNU ∼ NW .

�

Let H be a hypergraph consisting of nonempty sets. The nerve of H is defined as the

simplicial complex nerve(H) whose vertices are the sets in H, and {X1, . . . , Xr} ∈ nerve(H)

if and only if X1, . . . , Xr ∈ H and X1 ∩ · · · ∩Xr 6= ∅.

Corollary 2.16 Let K be a simplicial complex, and assume that H ⊆ K contains all maximal

simplices in K. Then K ∼ nerve(H). In particular, K ∼ nerve(K).

More generally:

Theorem 2.17 (Nerve Theorem) Let K be a simplicial complex and let K1, . . . ,Km be

subcomplexes such that K = K1 ∪ · · · ∪ Km. Assume that Ki1 ∩ · · · ∩ Kir is either empty or

contractible for every 1 ≤ i1 < · · · < ir ≤ m, r ≥ 1. Then K ∼ nerve{K1, . . . ,Km}.

Proof. Let Vi = V (Ki). First, we prove the case when Ki = K ∩ Σ(Vi). In this case

Ki1∩· · ·∩Kir = K∩Σ(Vi1∩· · ·∩Vir ). Lemma 2.11 implies that K ∼ K∪Σ(V1)∪· · ·∪Σ(Vm) =

Σ(V1) ∪ · · · ∪ Σ(Vm). By Corollary 2.16, we have Σ(V1) ∪ · · · ∪ Σ(Vm) ∼ nerve{V1, . . . , Vm},
which proves the theorem in this case.

For the general case (when Ki may be smaller than K ∩ Σ(Vi)), we replace each Ki by

B(Ki) as in the proof of Lemma 2.12. �

To formulate another important consequence of the Nerve Theorem, we need a construc-

tion of simplicial complexes generalizing baricentric subdivisions. Let P = (V,≤) be a poset

(partially ordered set), and let C(P ) be the set of all nonempty chains (totally ordered sub-

sets) of P . Clearly C(P ) is a simplicial complex, called the chain complex of P .

Example 2.18 If K is a simplicial complex and P = (K,⊆), then C(P ) is just the baricentric

subdivision of K. �
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A cross-cut in a poset P is an antichain that meets every maximal chain. For example,

if P is the set of all subsets of a finite set ordered by inclusion, then all sets of a given size

form a crosscut. The following theorem, which concerns the case when P is obtained from a

finite lattice, can be considered as a further version of the Nerve Theorem.

Theorem 2.19 (Cross-Cut Theorem) Let L be a finite lattice with operations ∧ and ∨,

let P = L \ {0, 1}, and let S be a cross-cut in P . Then the simplicial complex

AS = {X ⊆ S : ∨X 6= 1 or ∧X 6= 0}

is homotopy equivalent to C(P ).

Proof. For s ∈ S, let Bs ⊆ C(P ) denote the set of those chains X ⊆ P that contain s, or are

contained in such a chain. The assumption that S is a cross-cut implies that C(P ) = ∪s∈SBs.
For T ⊆ S, let BT = ∩s∈TBs.

Claim 2.20 BT 6= ∅ if and only if T ∈ AS.

Suppose that BT 6= ∅, and let x ∈ BT . Then x is comparable with every s ∈ T , and since

S is an antichain, either x ≥ s for every s ∈ T , or x ≤ s for every s ∈ T . Hence both ∧T
and ∨T are comparable with x, and either ∧T 6= 0 or ∨T 6= 1, implying that T ∈ AS . The

converse follows similarly.

This argument also gives that if BT 6= ∅, then it has a vertex contained in every maximal

simplex, and hence it is contractible. Thus the Nerve Theorem 2.17 applies, and gives that

C(P ) = ∪s∈SBs ∼ nerve{Bs : s ∈ S} ∼= AS . �

Corollary 2.21 Let L be a finite lattice, P = L \ {0, 1}, and let A be the set of atoms of L.

Then the simplicial complex

A = {X ⊆ A : ∨X 6= 1}

is homotopy equivalent to C(P ).

The complex AS can be defined for a set S ⊆ P in an arbitrary poset P : it consists of

those subsets X of S that are bounded from either below or above in P . One might think

that this leads to a generalization of the Cross-Cut Theorem. However, the poset obtained

from a 2-element chain by doubling every element shows that the theorem is not true for

posets in general.

3 Brouwer’s fixed point theorem

A simplicial complex K such that G(K) ∼= Sr is called a triangulation of the sphere Sr. For

a coloring of its vertices, a simplex is called colorful if all its vertices get different colors.

Lemma 3.1 Let K be a simplicial complex homeomorphic to the sphere Sr. In every coloring

of the vertices of K with r+ 1 colors, the number of r-dimensional colorful simplices is even.
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Proof. Let us count the number of colorful (r − 1)-simplices with colors 1, . . . , r. Every

colorful r-simplex contains one such simplex. If a non-colorful r-simplex contains colorful

(r − 1)-simplex with colors 1, . . . , r, then it contains exactly two such simplices. Since every

colorful (r − 1)-simplex with colors 1, . . . , r is counted exactly twice (for the two r-simplices

on both sides), we must get an even number. Hence the number of colorful r-simplices must

be even. �

This lemma is often formulated differently. Let ∆r denote the r-dimensional regular

simplex with edge length 1, and let Φ0, . . . ,Φr be its facets. By a triangulation of ∆r we

mean a family F of r-dimensional simplices such that ∪F = ∆r and A ∩B is a face of both

A and B for any two A,B ∈ F . Such a triangulation defines a simplicial complex K.

Lemma 3.2 (Sperner’s lemma) Let K be a triangulation of ∆r. Let us color the vertices

of K with r + 1 colors {0, 1, . . . , r} so that vertices on face Φi are never colored with color i.

Then there must be a colorful r-simplex in K.

Proof. We prove by induction on r that the number of colorful r-simplices is odd (and hence

nonzero). Create a new vertex v, and add to K all simplices consisting of v and a simplex

of K on one of the faces Φi. This way we get a simplicial complex K′ homeomorphic to Sr.

Let us color v with 0. By Lemma 3.1, we will have an even number of colorful r-simplices.

Those colorful r-simplices that contain v must contain a colorful (r − 1)-simplex from face

F0; the number of these is odd by induction. Hence the number of colorful r-simplices not

containing v is odd as well. These are exactly the colorful r-simplices in K. �

The following theorem is an infinite version of Sperner’s Lemma.

Theorem 3.3 Let A0, . . . , Ar ⊆ ∆r be closed sets such that A0∪· · ·∪Ar = ∆r and Ai∩Φi =

∅. Then A0 ∩ · · · ∩Ar 6= ∅.

Proof. Assume that A0∩· · ·∩Ar = ∅. Let d(x,Ai) denote the distance of point x from Ai,

then for every point x ∈ ∆r, we must have max(d(x,A0), . . . , d(x,Ar)) > 0. Since the left

side is a continuous function of x, there is an ε > 0 such that max(d(x,A0), . . . , d(x,Ar)) > ε

for every x.

Let K be a triangulation of ∆r such that the diameter of simplices in K is at most

ε/(d+1). Color each vertex u by one of the numbers i for which u ∈ Ai. Then the conditions

of Sperner’s Lemma are met, and hence there is a colorful r-simplex B. But then for any

point x ∈ B, we have max(d(x,A0), . . . , d(x,Ar)) ≤ ε, a contradiction. �

Theorem 3.4 (Brouwer’s fixed point theorem) Every continuous map Br → Br has a

fixed point.

Proof. We may replace Br by ∆r, since they are homeomorphic. Let f : ∆r → ∆r

be a continuous map, and suppose it has no fixed point, then there is an ε > 0 such that

|f(x) − x| > ε for every x ∈ ∆r. Let ei denote the outward oriented normal vector of unit

length of the facet Φi. Let Ai = {x ∈ ∆r : (f(x)− x) · ei ≥ ε/r}. Then:
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— Ai is closed (trivially).

— Ai ∩ Φi = ∅, since |f(x)− x| > 0 (as f has no fixed point), but (f(x)− x) · ei ≤ 0 for

x ∈ Φi.

— A0 ∪ · · · ∪ Ar = ∆. Let x ∈ ∆r. The inequalities y · ei ≤ |f(x) − x|/r define a

regular simplex centered at the origin with an inscribed ball of radius |f(x) − x|/r, and

hence this simplex is contained in a ball with radius |f(x)− x|, which means that the point

y = f(x)− x is either outside this simplex or on its boundary. Thus there is an i for which

(f(x)− x) · ei ≥ |f(x)− x|/r, i.e., x ∈ Ai.
— A0 ∩ · · · ∩Ar = ∅, since

∑
i ei = 0, hence

∑
i(f(x)− x) · ei = 0 for every x ∈ ∆r, and

so there must be an i for which (f(x)− x) · ei ≤ 0, and so x /∈ Ai.
These four observations contradict Theorem 3.3. �

There are a number of equivalent assertions.

Corollary 3.5 (a) If K is a contractible simplicial complex, then every continuous map

G(K)→ G(K) has a fixed point.

(b) Sr−1 is not a retract of Br.

(c) Every continuous map f : ∆r → ∆r such that f(Φi) ⊆ Φi for every 0 ≤ i ≤ r is

surjective.

Proof. (a) Let f : G(K)→ G(K) be a continuous map. By Lemma 2.9, there is a retraction

ϕ : G(Σ(V (K))) → G(K). The map ϕ ◦ f : G(Σ(V (K))) → G(Σ(V (K))) has a fixed point

x by Theorem 3.4. Clearly x ∈ G(K), and x = f(ϕ(x)) = f(x).

(b) Assume that there is a retraction ϕ : Br → Sr−1, then x 7→ −ϕ(x) is a map Br → Br

with no fixed point, a contradiction.

(c) Suppose that a ∈ ∆r is not in the range of f . Since f(∆r) is closed, there is a

neighborhood of a disjoint from f(∆r), and so we may assume that a is an internal point of

∆r. For x ∈ ∆r, let g(x) be the point where the semiline from f(x) through a meets the

boundary of ∆r. Since a /∈ f(∆r), the function g : ∆r → ∆r is well defined and continuous,

and hence it must have a fixed point y by Theorem 3.4. Since y = g(y), it must be on the

boundary of ∆r, i.e., y ∈ Φi for some 0 ≤ i ≤ r. By hypothesis, f(y) ∈ Φi, which contradicts

the definition of g. �

We also need the following group-theoretic corollary of Brouwer’s Fixed Point Theorem.

Corollary 3.6 Let T be a compact contractible topological space and let G be a finite cyclic

group acting on T . Then the elements of G have a common fixed point.

Proof. Let ϕ be the action of a generator of G. Then ϕ has a fixed point by Corollary 3.5,

and this is a fixed point of every other element of G as well. �

This last corollary does not remain valid for all finite groups, but it does remain valid for

certain non-cyclic finite groups. One such class of finite groups is the following.
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Theorem 3.7 [43] Let T be a compact contractible topological space and let Γ be a finite

group acting on T . Assume that Γ has a normal p-subgroup Γ1 such that Γ/Γ1 is cyclic.

Then the elements of G have a common fixed point. �

Example 3.8 To illustrate how to apply these results, let us return to Example 2.5. We

show that if |Ai| ≥ 2 for all 1 ≤ i ≤ m, then M(A1, . . . , Am) is not (m− 1)-connected. Let

A′i = {ui, vi} ⊆ Ai. The embedding M(A′1, . . . , A
′
m) → M(A1, . . . , Am) gives continuous

map of f : ∂Xn → G(M(A1, . . . , Am)). Suppose that f extends to a map f̂ : Xn →
G(M(A1, . . . , Am)). Since M(A′1, . . . , A

′
m) is a retract of M(A1, . . . , Am), we may assume

that f̂ maps into G(M(A′1, . . . , A
′
m)) = ∂Xn. But this means that ∂Xn is a retract of Xn, a

contradiction. �

3.1 Evasive graph properties and Boolean functions

Consider any property Pn of graphs with n nodes (we assume that if a graph has this property

then every graph isomorphic with it also has it). We say that Pn trivial, if either every graph

has it or no one has it. A graph property is monotone if whenever a graph has it each of its

subgraphs has it. For most graph properties that we investigate (connectivity, the existence

of a Hamiltonian circuit, the existence of perfect matching, colorability, etc.) either the

property itself or its negation is monotone.

We say that a property Pn of n-node graphs is evasive, if every algorithm computing it

has to look up, in the worst case, the adjacency of all pairs of nodes. Since we don’t care

about other resources of the algorithm (time, memory etc.), we can formalize this as follows.

We consider a rooted binary tree T where each internal node is labeled by an unordered pair

{i, j}, 1 ≤ i, j ≤ n, each edge is labeled by 0 or 1, and each leaf is labeled by 0 or 1. For each

internal node, one of its children is connected to it by an edge labeled 1 and the other child,

by an edge labeled 0. Given a graph G on V = {1, . . . , n}, we enter the tree at the root and

walk down to a leaf. At an internal node labeled {i, j}, we we check whether nodes i and

j are adjacent in G, and continue on the edge labeled 1 or 0 accordingly. When we reach a

leaf, we must see a label 1 if and only it G has property Pn. If this holds for every graph G,

we say that T is a decision tree for Pn.

In this language, a property of n-node graphs is evasive, if it cannot be computed by a

decision tree of depth less than
(
n
2

)
. The Aanderraa–Rosenberg–Karp conjecture says that

every nontrivial monotone graph property is evasive. This conjecture is unsolved, but it has

been proved for a number of specific graph properties (connectivity, planarity etc.) Here we

prove the following general theorem.

Theorem 3.9 (Kahn, Saks, Sturtevant) Every nontrivial monotone property of graphs

on n nodes, where n is a prime power, is evasive.

The analogous theorem is also proved for bipartite graphs (Yao). See also http://www.

cs.elte.hu/~lovasz/complexity.pdf and http://arxiv.org/abs/cs/0205031 for other

special cases, provable by topology or other tools.
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Before proving this theorem, it will be useful to generalize it. We consider Boolean

functions f : {0, 1}n → {0, 1}. We say that the function f is monotone decreasing (or

just “monotone” for this section), if f(x1, . . . ,n ) ≤ f(y1, . . . , yn) whenever xi ≥ yi for all

1 ≤ i ≤ n. A decision tree for f is defined just like for a graph property, except that the

internal nodes are labeled by the variables. Given a values for the variables, we walk down

the tree, turning at each node depending on the value of that variable, and read off the value

of the function from the label of the leaf. We say that a Boolean function with n variables is

evasive, if it cannot be computed by a decision tree of depth less than n.

We define the automorphism group of a Boolean function as the set of permutations of the

variables that does not change the value of the function. This permutation group is called

transitive, if for any two variables x and y there is an automorphism that moves x to y.

To see how graph properties fit in, let G be graph with V = V (G) = {1, . . . , n}. For every

pair i, j ⊆ V , let us introduce a Boolean variable xij with value 1 if i and j are adjacent and

0 if they are not. In this way, any property of n-point graphs can be considered as a Boolean

function with
(
n
2

)
variables. This Boolean function has a transitive automorphism group: for

any two pairs of nodes there is a permutation of the nodes taking one into the other, which

leads to an isomorphic graph and hence does not change the value of the Boolean function.

The following Generalized Aanderaa–Rosenberg–Karp Conjecture is open: If the auto-

morphism group of a non-constant monotone Boolean function is transitive, then the function

evasive. We prove it in a special case.

Theorem 3.10 If the automorphism group of a non-constant monotone Boolean function f

contains a transitive subgroup Γ, and Γ has a normal subgroup ∆ of prime power order such

that Γ/∆ is cyclic, then f is evasive.

Corollary 3.11 If the automorphism group of a non-constant monotone Boolean function

is transitive, and it is a cyclic group, then it is evasive.

Corollary 3.12 If the automorphism group of a non-constant monotone Boolean function

is transitive, and the number of its variables is a prime power, then it is evasive.

Next, we describe how evasiveness relates to topology. Let f : {0, 1}n → {0, 1} be

a monotone decreasing Boolean function that is not identically 0. For x ∈ {0, 1}n, let

supp(x) = {i ∈ {1, . . . , n} : xi = 1}. We associate with f the following simplicial complex:

Kf =
{

supp(x) : x ∈ {0, 1}n, x 6= 0, f(x) = 1
}
.

Lemma 3.13 If f is non-evasive, then Kf is contractible.

Proof. If f is non-evasive, then there is decision tree computing f with depth at most

n − 1. This decision tree starts with checking a variable, say x1. The two branches of the

tree compute the Boolean functions f0(x2, . . . , xn) = f(0, x2, . . . , xn) and f1(x2, . . . , xn) =

f(1, x2, . . . , xn). Since the depth of these branches is at most n− 2, the functions f0 and f1

are non-evasive. By induction, we may assume that Kf0 and Kf1 are contractible.
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Let K′f1
= Kf1

∪ {X ∪ {1} : X ∈ Kf1
}, then all maximal simplices of K′f1

contain 1, and

so K′f1
is contractible. We have Kf0

∪ K′f1
= K and Kf0

∩ K′f1
= Kf1

, and so Lemma 2.12

implies that K is contractible. �

Next, we observe the following.

Lemma 3.14 If f is a nonconstant monotone Boolean function with a transitive automor-

phism group Γ, then Γ acts on G(Kf ) and has no fixed point.

Proof. It is clear that every automorphism γ of f is a simplicial map γ : Kf → Kf , and

this extends to a continuous map γ̂ : G(Kf )→ G(Kf ).

We claim that these maps have no common fixed point. Suppose that x ∈ G(Kf ) satisfies

γ̂(x) = x for every γ ∈ Γ. There is a unique smallest simplex S such that x ∈ conv(S). Then

x = γ̂(x) ∈ conv(γ(S)), so by the minimality of S, we must have γ(S) = S. Since the group

γ is transitive, this can only happen for every γ ∈ Γ if S = V (Kf ). But then the function is

identically true. �

Proof of Theorem 3.10. If f is non-evasive, then G(Kf ) is contractible by Lemma 3.13.

If f is nontrivial, then Γ acts on G(Kf ) without fixed points. But this contradicts the

following theorem of Oliver from topology: If Γ is a finite group that has a normal subgroup

∆ of prime power order such that Γ/∆ is cyclic, then every continuous action of Γ on a

contractible simplicial complex has a fixed point. �

Proof of Theorem 3.9. We consider V (G) as the set of elements of a finite field Fq (where q

is any prime poser), and define Γ as the group of linear transformations of the form x 7→ ax+b,

where a, b ∈ Fq and a 6= 0. Then Γ acts on pairs {i, j} ⊆ Fq transitively. Furthermore, if ∆

denotes the subgroup of Γ of transformations of the form x 7→ x+ b, then |∆| = q is a prime

power, and Γ/∆ ∼= F ∗q (the multiplicative group of nonzero elements of Fq), which is cyclic

by basic results in algebra. So Theorem 3.10 applies and proves the theorem. �

3.2 Topological connectivity

For the next application of Brouwer’s Fixed Point Theorem, we need to generalize the notion

of contractibility. A topological space is k-connected (k ≥ 0) if for every 0 ≤ r ≤ k, every

continuous map f : Sr → T extends to a continuous map f : Br+1 → T . Equivalently, f is

homotopic to a constant map. Sometimes it is convenient to define (−1)-connected as “non-

empty”. From the results in Section 2.2 it follows that a topological space is contractible if

and only if it is k-connected for every k.

An important use of connectivity is the following extension property of maps, which

follows along the lines of Lemma 2.8.

Lemma 3.15 Let K is a (k + 1)-dimensional simplicial complex, let K′ be a subcomplex of

K, and T a k-connected space. Then every continuous map f : G(K′) → T extends to a

continuous map G(K)→ T .
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Most of the other lemmas from the previous sections can also be generalized, with some

care, from contractibility to k-connectivity.

Lemma 3.16 Let K be a simplicial complex and k ≥ 0. Then the following are equivalent:

(a) K is k-connected.

(b) The (k + 1)-dimensional skeleton K|k+1 is k-connected.

(c) K|k+1 is a retract of Σ(V (K))|k+1.

Lemma 3.17 Let K be a simplicial complex and U ⊆ V (K).

(a) If K is k-connected and K∩Σ(U) is (k− 1)-connected, then K∪Σ(U) is k-connected.

(b) If K ∪ Σ(U) and K ∩ Σ(U) are k-connected, then K is k-connected.

Lemma 3.18 Let K1 and K2 be two k-connected simplicial complexes and assume that K1∩
K2 is (k − 1)-connected. Then K1 ∪ K2 is k-connected.

The Nerve Theorem 2.17 has the following version for k-connectivity.

Theorem 3.19 (Connectivity Nerve Theorem) Let K be a simplicial complex and let

K1, . . . ,Km be subcomplexes such that K = K1 ∪ · · · ∪ Km. Assume that Ki1 ∩ · · · ∩ Kir is

either empty or (k − r + 1)-connected for every 1 ≤ r ≤ k + 1 and 1 ≤ i1 < · · · < ir ≤ m.

Then K is k-connected if and only if the nerve of {V (K1), . . . , V (Km)} is k-connected.

Example 3.20 As an application of this theorem, we analyze the connectivity of the simpli-

cial complex M(A1, . . . , Am) from Example 2.5. If |Ai| = 1 for some i, then every maximal

simplex contains the single element of Ai, and hence M(A1, . . . , Am) is contractible. If

|Ai| ≥ 2 for every i, then M(A1, . . . , Am) is (m − 2)-connected. This is trivial if m ≤ 1,

so we may assume that m ≥ 2. Let Mx be the set of all simplices in M(A1, . . . , Am) that

contain x or can be extended to contain x. ThenMx is contractible by the argument above.

Furthermore,

M(A1, . . . , Am) =
⋃
x∈A1

Mx.

Clearly

Mx1
∩ · · · ∩Mxr

=M(A2, . . . , Am)

if x1, . . . , xr are distinct elements of A1 (r ≥ 2). The complex Mx1
∩ · · · ∩ Mxr

is (m −
3)-connected by induction. The Connectivity Nerve Theorem 3.19 applies, and gives that

M(A1, . . . , Am) is (m− 2)-connected. �

Example 3.21 Let V = {1, . . . , n}, let 0 ≤ a ≤ b ≤ n, and consider the bipartite graph G

between color classes U =
(
V
a

)
and W =

(
V
b

)
, where X ∈ U is adjacent to Y ∈W if and only

if X ⊆ Y . We claim that the neighborhood complexes NU = NU (G) and NW = NW (G) are

(b− a− 1)-connected.

We know that NU ∼ NW (Lemma 2.15), so it suffices to prove that NU is (b − a −
1)-connected. This is trivial in some cases: if a = b (recall that (−1)-connected means
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non-empty); if a = 0 (a one-point space is contractible); and if b = n (a full simplex is

contractible). So we may assume that 0 < a < b < n.

For every i ∈ V , let Ui =
(
V \{i}
a

)
and let Ki = NU ∩ Σ(Ui). Since b < n, we have

NU = ∪iKi. By induction on n, we know that Ki is (b− a− 1)-connected.

More generally, let 1 ≤ i1 < · · · < ir ≤ n. If r ≤ n − b, then Ki1 ∩ · · · ∩ Kir is

just the neighborhood complex of the bipartite graph between levels
(
V ′

a

)
and

(
V ′

b

)
, where

V ′ = V \ {i1, . . . , ir}. Hence by induction, Ki1 ∩ · · · ∩ Kir is (b − a − 1)-connected. If

n − b ≤ r ≤ n − a, then Ki1 ∩ · · · ∩ Kir is a full simplex, so it is contractible. If r > n − a,

then Ki1 ∩ · · · ∩ Kir = ∅. So the Connectivity Nerve Theorem 3.19 applies, and we get that

NU is (b− a)-connected. �

Example 3.22 Let P be the poset consisting of levels a, a + 1, . . . , b of a finite Boolean

algebra on a set V . Adding ∅ and V , we get a lattice, hence Corollary 2.21 implies that C(P )

is homotopy equivalent to the complex KU considered in Example 3.21. In particular, it is

(b− a− 1)-connected. �

3.3 Partitioning a graph into connected pieces

Theorem 3.23 Let G be a k-connected graph on n nodes, v1, . . . , vk ∈ V , and n1, . . . , nk,

positive integers with n1 + · · ·+ nk = n. Then there exists a partition V (G) = V1 ∪ · · · ∪ Vk
such that vi ∈ Vi and |Vi| = ni for all 1 ≤ i ≤ k.

It will be convenient to rephrase this theorem as follows. Let G be a simple graph, and

let v ∈ V (G) have degree k. Let N(v) = {u1, . . . , uk}. For every spanning tree T of G and

every 1 ≤ i ≤ k, let ni(T ) denote the number of nodes w ∈ V (G) for which the w-v path in T

passes through the edge vui (this may be 0 if vui /∈ E(T )). Let n(T ) = (n1(T ), . . . , nk(T )).

Theorem 3.24 Let G be a k-connected simple graph on n nodes, and let v ∈ V (G) with

N(v) = {u1, . . . , uk}. Let n1, . . . , nk be nonnegative integers with n1 + · · ·+nk = n−1. Then

G has a spanning tree T such that ni(T ) = ni for all 1 ≤ i ≤ k.

Let G be a connected (not necessarily simple) graph and let v ∈ V (G) be a specified

“root”. Let S = S(G) denote the set of spanning trees of G. We define a simplicial complex

T = T (G, v) on vertex set S as follows: for a nonempty set X = {T1, . . . , Tr} of spanning

trees, let its kernel TX be the connected component of T1 ∩ · · · ∩ Tr containing v (i.e., the

largest common subtree of them containing v). Let the set X form a simplex, if every node in

V (G) \ V (TX) has degree 1 in every Ti. Note that this implies that every x ∈ V (G) \ V (TX)

is adjacent to a node of TX in Ti.

Lemma 3.25 Let G be a k-connected graph and v ∈ V (G), then T (G, v) is (k−2)-connected

for every v ∈ V (G).

We need to strengthen the lemma to facilitate induction. First, we allow multiple edges

(these would be irrelevant in Theorem 3.24). Second, we need the following relaxation of the

condition of k-connectivity:

(Ak): every cutset of fewer than k nodes contains v.
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Lemma 3.26 If a multigraph G and v ∈ V (G) satisfy (Ak), then T (G, v) is (k−2)-connected

for every v ∈ V (G).

In particular, if G is k-connected (as a graph), then T (G, v) is (k − 2)-connected (as a

simplicial complex). As a special case, if v is adjacent to every node of V (G)\{v}, then (Ak)

is satisfied for every k, and hence T (G, v) is contractible.

Proof. Let N(v) = {u1, . . . , um}. Let Se be the set of spanning trees containing e ∈ ∇(v),

and set Te = T ∩ Σ(Se).

We have to distinguish two cases, depending on whether or not N(v) = V (G) \ {v}. The

proof in these two cases will be similar but slightly different.

Case 1. N(v) = V (G) \ {v}. For S ⊆ ∇(v), let G/S denote the graph obtained from G by

contracting every edge ei to a single node (keeping multiple edges, but we may delete the

resulting loops if we wish). We denote by v the image of v in such a contraction.

Let U denote the set of spanning trees in which every node except v is a leaf. (Since we

allow multiple edges, there may be more than one such tree.) By hypothesis, U is non-empty,

and U ∈ T . Let T0 = T ∩ Σ(U). We claim that

T =
⋃

e∈∇(v)

Te ∪ T0. (2)

Indeed, if X ∈ T , then either its kernel TX has no edge, and then X ∈ Σ(U), or e ∈ E(TX)

for some e ∈ ∇(v), and then X ∈ Σ(Se).

We verify that the decomposition (2) satisfies the conditions of the Nerve Theorem 2.17.

For any set of edges e1, . . . , er ∈ ∇(v), Te1 ∩ · · · ∩ Ter 6= ∅ if and only if e1, . . . , er go to

different nodes in N(v). If this happens, then

Te1 ∩ · · · ∩ Ter ∼= T (G/{e1, . . . , er}, v).

Since v is connected to every node in G/{e1, . . . , er}, we may assume by induction that

T (G/{e1, . . . , er}, v) is contractible. Hence Te1 ∩ · · · ∩ Ter is contractible. Furthermore,

Te1 ∩ · · · ∩ Ter ∩ T0 is a simplex, and hence contractible.

So the Nerve Theorem 2.17 applies, and we get that T ∼ nerve({Te : e ∈ ∇(v)} ∪ {T0}).
But observe that if Te1 ∩ · · · ∩ Ter 6= ∅ then also Te1 ∩ · · · ∩ Ter ∩ T0 6= ∅, which means

that T0 is a vertex of every maximal simplex of this nerve. This implies that the nerve of

{Te : e ∈ ∇(v)} ∪ {T0} is contractible.

Case 2. N(v) 6= V (G)\{v}. Then N(v) is a cutset, and condition (Ak) implies that m ≥ k.

In this case {v} cannot be the kernel of any simplex in T , and so

T =
⋃

e∈∇(v)

Te.

For e1, . . . , er ∈ ∇(v), we have

Te1 ∩ · · · ∩ Ter ∼= T (G/{e1, . . . , er}, v).
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Since G/{e1, . . . , er} satisfies condition (Ak) (with root v), we may assume by induction that

T (G/{e1, . . . , er}, v) is (k − 2)-connected. Hence the conditions of the Connectivity Nerve

Theorem 3.19 are satisfied, and so it suffices to prove that the nerve of {Te : e ∈ ∇(v)} is

(k − 2)-connected.

Observe that Te1 ∩ · · · ∩ Ter 6= ∅ if and only if e1, . . . , er connect v to different nodes in

N(v). Hence nerve
(
{Te : e ∈ ∇(v)}

) ∼= M(Eu1v, . . . , Eumv), where Euiv is the set of edges

connecting v and ui. This last complex is (m− 2)-connected, as discussed in Example 3.20.

Since m ≥ k, this completes the proof. �

Proof of Theorem 3.24. We want to prove that if G is k-connected, then for every vector

z ∈ Zk such that zi ≥ 0 and
∑
i zi = n− 1 there is a spanning tree T with z = n(T ).

Let us extend the map T 7→ n(T ) to a continuous map g : G(T (G, v))→ Rk linearly. It

suffices to prove the following two facts:

Claim 3.27 Every point of the simplex ∆ = {x ∈ Rn : xi ≥ 0,
∑
i xi = n − 1 is in the

range of g.

Claim 3.28 If a point z ∈ ∆∩Zk is contained in f(conv(S)) for some simplex S ∈ T (G, v),

then z = n(T0) for some spanning tree T0.

Proof of Claim 3.27. For every ∅ 6= X ⊆ U = {1, . . . , k}, let GX = G\{uiv : i /∈ X}. The

graphGX is trivially |X|-connected, and hence S(GX , v) = {T ∈ S(G) : ni(T ) = 0 for i /∈ X}
induces a subcomplex T (GX , v) ⊆ T (G, v) that is (|X| − 2)-connected.

We define a continuous map f : G(Σ(U)) → G(T (G, v)) so that for each S ∈ Σ(U),

f(conv(S)) ⊆ G(T (GS , v)). First, for every vertex i ∈ U = V (Σ(U)), let f(i) be any spanning

tree T with ni(T ) = n−1 (and so nj(T ) = 0 for j 6= i). Such a tree clearly exists. We extend

f step-by-step to the faces of G(Σ(U)). Let S ⊆ U be a smallest simplex for which f is

not yet defined on conv(S). Then f is defined on G(Γ(S)), and f(G(Γ(S))) ⊆ G(T (GS , v)).

Since T (GS , v) is (|S| − 2)-connected, we can extend f to conv(S) as desired.

Now the composite map n ◦ f maps the geometric simplex conv(U) into the geometric

simplex ∆ so that the image of every face of conv(U) is contained in the corresponding face

of ∆. Corollary 3.5 implies that n ◦ f is surjective, which completes the proof of Claim 3.27.

Proof of Claim 3.28. Let S = {T1, . . . , Tm}, and let T be the kernel (largest common

subtree) of S. Let Wi be the set of nodes of T separated from the root by the the edge uiv.

Let V (G) \ V (T ) = {q1, . . . , qt}. Let us construct an auxiliary bipartite graph H with color

classes {u1, . . . , uk} and {q1, . . . , qt}, where uiqj ∈ E(H) if and only if there is an edge of G

connecting qj to Wi.

We know that there are real numbers a1, . . . , am such that ar ≥ 0,
∑
r ar = 1 and∑

r arn(Tr) = z. Define

βij =
∑
{ar : Tr connects qj to Wi}.

Then (βij) is a weighting of the edges of H such that∑
i

βij = 1 (j = 1, . . . , t),
∑
j

βij = zj − |Wi| (i = 1, . . . , k)
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Since the matrix of this system of equations is totally unimodular, it has a solution β′ij in

nonnegative integers. Connecting qj to Wi by β′ij edges (this number is trivially 0 or 1),

together with T we get a spanning tree T0 such that n(T0) = z. �

4 The Borsuk–Ulam Theorem

4.1 Many forms of the Borsuk–Ulam Theorem

Let T be a topological space. An antipodality on T is a homeomorphism α : T → T such

that α ◦ α = idT (α is an involution) and α has no fixed points. Sometimes we denote α(x)

by −x. The space T , together with the antipodality α, is called an antipodality space. An

antipodal map between antipodality spaces T1 and T2 is a continuous map f : T1 to T2 that

satisfies f(−x) = −f(x).

Example 4.1 The unit sphere Sd−1 in Rd, endowed with the map x 7→ −x, is an antipodality

space. The unit ball Bd, however is not: the origin is a fixed point of the map x 7→ −x.

Note that there are many other antipodalities on Sd−1. For example, we can project Sd−1

onto itself from any interior point of the ball. �

For a simplicial complex K, an involution α : V (K) → V (K) that is simplicial and

α(S) ∩ S = ∅ for every S ∈ K is called an antipodality of K. It is easy to see that every

antipodality of K extends to an antipodality of G(K) that is affine on the faces.

Example 4.2 The convex hull Bd of the set {±ei}, where {e1, . . . , ed} is the standard basis

in Rd is called the cross-polytope. The involution x 7→ −x is an antipodality on the boundary

∂Bd. �

Lemma 4.3 Let K be a simplicial complex with antipodality α, and let (T, β) be an antipo-

dality space. If K is d-dimensional and T is (d − 1)-connected, then there is an antipodal

map G(K)→ T .

Proof. As mentioned before, we can extend α to an antipodality on G(K). We construct

the map f : G(K) → T step by step, starting with the vertices and working up on the

dimension. We pick any vertex v of G(K), and let f(v) ∈ T be an arbitrary point. We

are now forced to define then f(α(v)) = β(f(v)). Continuing, at every step we consider a

simplex S ∈ K with lowest dimension on which f is not yet defined. Then f is defined on

the boundary ∂G(S), and so by the (d − 1)-connectivity of T , it can be extended to G(S).

We are forced now to extend f to G(α(S)) by f(G(α(x)) = β(f(x)). Repeating this, we get

the extension to G(K). �

Corollary 4.4 If T is a k-connected antipodality space, then there exists an antipodal map

of (Sk+1,−) into T .

The three assertions in the following theorem are all essentially equivalent to each other,

and are called the Borsuk–Ulam Theorem.
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Theorem 4.5

(a) There is no antipodal map from Sr into Sr−1 (r ≥ 1).

(b) For every continuous map f : Sr → Rr there exists an x ∈ Sr such that f(x) = f(−x).

(c) If Sr is covered by r + 1 sets, and either each of these is closed or each of these is open,

then one of these sets contains an antipodal pair of points.

4.2 *A polyhedral Borsuk–Ulam Theorem

The Borsuk–Ulam Theorem has the following following discrete version. Let P be a full-

dimensional convex polytope in Rd. We say that two faces A and B of P are opposite if

there exists a linear function ` : Rd → R that is maximized by the set of points in A and

minimized by the set of points in B.

Theorem 4.6 [6] Let P be a full-dimensional convex polytope in Rd and f : P → Rd−1.

Then P has two opposite faces A and B such that f(A) ∩ f(B) 6= ∅.

The following slight extension of this theorem will be needed later. We say that the map

f : P → Rd−1 is generic if for every pair of faces A and B with dim(A) + dim(B) < d− 1,

we have f(A)∩f(B) = ∅, and for every pair of faces A and B with dim(A)+dim(B) = d−1,

the set f(A) ∩ f(B) is finite.

Theorem 4.7 [38] Let P be a full-dimensional convex polytope in Rd and let f : P → Rd−1

be a generic map. Then P has two opposite faces A and B such that dim(A)+dim(B) = d−1

and |f(A) ∩ f(B)| is odd.

We say that the polytope P in Rd is generic, if for every two opposite faces A and B,

dim(A) + dim(B) = d− 1.

Theorem 4.8 Let P be a generic full-dimensional convex polytope in Rd and let f : P →
Rd−1 be a generic map. Then∑

|f(A) ∩ f(B)| ≡ 1 (mod 2),

where the summation extends over all pairs of opposite faces A and B of P .

4.3 *A linked Borsuk–Ulam theorem

Let U and W be two disjoint embedded copies of Sr in R2r+1. Then we define their (modulo

2) linking number `(U,W ) as follows. Let f : Sr → U be a homeomorphism. We extend f to

a continuous mapping F : Br+1 → R2r+1 such that the number of points x ∈ Br for which

F (x) ∈ W is finite; and then let `(U,W ) be this number. It can be shown that `(U,W ) is

independent of the choice of f and F , and `(U,W ) = `(W,U).

Theorem 4.9 Let P be a convex polytope in R2d+1 and let f be an embedding of the (d−1)-

dimensional skeleton of P in R2d−1. Then there exists a pair of opposite faces A and B with

dim(A) = dim(B) = d such that f(∂A) and f(∂B) are linked.
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Theorem 4.10 Let P be a generic convex polytope in R2d+1 and let f be an embedding of

the (d− 1)-dimensional skeleton of P in R2d−1. Then∑
`(∂A, ∂B) ≡ 1 (mod2),

where the summation extends over all pairs of opposite faces A and B with dim(A) =

dim(B) = d.

4.4 The Ham Sandwich Theorem

Theorem 4.11 Let A1, . . . , Ad be measurable sets in Rd with finite measure. Then there

exists a closed halfspace H such that µ(H ∩Ai) = 1
2µ(Ai) for all i.

Proof. For every vector v = (v0, v1, . . . , vd) ∈ Sd, we define

fi(v) = λ{x ∈ Ai : v0 + v1x1 + · · ·+ vdxd ≥ 0}−λ{x ∈ Ai : v0 + v1x1 + · · ·+ vdxd ≤ 0}

(where λ is the Lebesgue measure). The map v 7→ (f1(v), . . . , fd(v)) is antipodal, so by the

Borsuk-Ulam Theorem there is a v ∈ Sd such that f1(v) = · · · = fd(v) = 0. But then the

halfspace H defined by the inequality v0 + v1x1 + · · · + vdxd ≥ 0 satisfies the conditions of

the Theorem. (We need that the hyperplane v0 + v1x1 + · · ·+ vdxd = 0 has measure 0.) �

4.5 The Necklace problem

Theorem 4.12 Consider an (open) necklace consisting of pearls of k colors. Suppose that

there is an even number of pearls of each color. Then we can split the necklace at k points,

and divide the arising pieces between two robbers so that each robber gets exactly half of the

pearls of each color.

Theorem 4.13 (Continuous version) Let A1 ∪ · · · ∪Ak be a partition of [0, 1] into mea-

surable parts. Then there is a partition J1 ∪ · · · ∪ Jk+1 of [0, 1] into intervals, and a set

I ⊆ {1, . . . , k + 1} such that∑
r∈I

λ(Jr ∩Ai) =
1

2
λ(Ai)

for every i = 1, . . . , k.

Proof. For z ∈ Sk, let J1(z) ∪ · · · ∪ Jk+1(z) be the partition of [0, 1] into intervals with

λ(Ji(z)) = z2
i . Define

fi(z) =

k+1∑
r=1

sgn(zr)λ(Ai ∩ Jr(z)) (i = 1, . . . , k).

Then fi is continuous (this needs a little argument), and fi(−z) = −fi(z). Hence by the

Borsuk-Ulam Theorem, there is a z ∈ Sk such that f1(z) = · · · = fk(z) = 0. Then I =

{j : sgn(zr) = 1} satisfies the requirements of the theorem. �
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5 Homomorphisms, chromatic number, and topology

5.1 The Hom set, the Hom graph and the Hom complex

Let F and G be two simple graphs. A map ϕ : V (F ) → V (G) is called a homomorphism,

if for every edge ij ∈ E(F ) we have f(i)f(j) ∈ E(G). In this case we write ϕ : F → G.

We denote by hom(F,G) the number of such homomorphisms F → G. This number is a

very important parameter in graph theory. We mention two special cases: hom(G,Kr) is

the number of r-colorations of G; hom(Ck, G) = tr(AkG) =
∑
i λ

k
i . (Here Kr is the complete

r-graph, Ck is the cycle on k nodes, AG is the adjacency matrix of G, and λ1, λ2, . . . are the

eigenvalues of AG). The first example above shows that to decide whether hom(F,G) 6= 0 is

NP-complete.

We go on in a different direction: we define a graph on the set of homomorphisms F → G,

by joining ϕ,ψ : V (F ) → V (G) by an edge if |{i ∈ V (F ) : ϕ(i) 6= ψ(i)}| = 1. We denote

this graph by Hom(F,G).

Example 5.1 If G is connected, then Hom(K2, G) has at most 2 components. Hom(K2, G)

is connected if and only if G is not bipartite. �

The following theorem (cited without proof), due to Brightwell and Winkler [17], shows

that the connectivity of the graphs Hom(F,G) is connected to the chromatic number of G

in the case of higher chromatic numbers as well.

Theorem 5.2 If Hom(F,G) is connected for every connected graph F with degrees at most

2d, the χ(G) ≥ d+ 2.

The set Hom(F,G) of homomorphisms F → G can be equipped with a topological struc-

ture. We say that a set of homomorphisms ϕ1, . . . , ϕk : F → G is a cluster if for every edge

uv ∈ E(F ) and any 1 ≤ i < j ≤ k, we have ϕi(u)ϕj(v) ∈ E(G). It is clear that these clusters

are closed under taking subsets, and hence they form a simplicial complex H(F,G).

This construction is “functorial”, which means that every homomorphism ψ : G1 →
G2 induces a simplicial map ψ̂ : H(F,G1) → H(F,G2) in a canonical way: For every

homomorphism ϕ : F → G1, we define ψ̂(ϕ) = ϕψ. It is trivial that this map from

V
(
H(F,G1)

)
= Hom(F,G1) to V (H

(
F,G2)

)
= Hom(F,G2) maps clusters onto clusters.

Similarly, H(., .) is a “contravariant functor” in its first variable, which means that every

homomorphism ξ : F1 → F2 induces a simplicial map ϕ̌ : H(F2, G)→ H(F1, G).

The complex H(K2, G) plays a special role. We will denote it by H(G). The points of

H(G) can be thought of as ordered pairs (u, v), where u and v are adjacent nodes of G. Each

edge of G has two orientations, and so it contributes two vertices toH(G). A set X of oriented

edges forms a simplex if they are the edges of a a complete bipartite subgraph oriented from

one bipartition class to the other, or a subset of such a set. The simplicial complex H(G) has

a natural antipodality: α(u, v) = (v, u) defines a simplicial map H(G)→ H(G) that extends

to a bijective and fixed-point-free involution α̂ : G(H(G)) → G(H(G)). If G1 → G2 is a

graph homomorphism, then the map H(K2, G1)→ H(K2, G2) it induces is antipodal.

Let G = (V,E) be any graph. The neighborhood complex N (G) of G is the simplicial

complex consisting of all subsets A of V such that the elements of A have a common neighbor.
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For a bipartite graph, the neighborhood complex consists of two components.

Example 5.3 The complex N (Kn) is homeomorphic to the (n − 2)-dimensional sphere:

N (Kn) = Σ(V ) \ {V } (here V = V (Kn) = {1, . . . , n}).
The complex H(Kn) is homotopy equivalent to the (n − 2)-dimensional sphere. Define

a map f : G(H(Kn)) → Rn as follows. Let e1, . . . , en be the standard basis in Rn. For

(u, v) ∈ V (H(Kn)), let f(u, v) = ev − eu. Extend f linearly over G(H(Kn)).

We claim that the origin is not in the range of f . Indeed, consider a point x ∈
conv(f(u1, v1), . . . , f(um, vm)), where {(u1, v1), . . . , (um, vm)} ∈ H(Kn). Note that this im-

plies that ui 6= vj for 1 ≤ i, j ≤ m. If f(x) = 0, then there are real numbers ai ≥ 0,∑
i ai = 1, such that

∑
i aif(ui, vi) = 0, and hence

m∑
i=1

aievi =

m∑
i=1

aieui
.

Since there are different basis vectors on the left and on the right, this implies that all

coefficients are zero, which is a contradiction.

It follows that x 7→ f(x)/‖f(x)‖ is well defined, and gives an antipodal map G(H(Kn))→
Sn−1. Since the range is contained in the hyperplane H = {x :

∑
i xi = 0}, this map goes

into Sn−1 ∩H, which is a copy of Sn−2.

The construction of the inverse map is not given here (we will need this map only). �

It is not a coincidence that H(Kn) and N (Kn) turned out to be homotopically equivalent,

as this is shown by the following lemma.

Lemma 5.4 For every graph G, the complexes H(G) and N (G) are homotopy equivalent.

Proof. We define a simplicial map f : V (H(G)) → V (N (G)) as follows: For every

(u, v) ∈ V (H(G)) we let f(u, v) = u. It suffices to show that this map satisfies the conditions

of Lemma 2.14: for every simplex S ∈ N (G), the complex H(G)∩Σ(f−1(S)) is contractible.

For every T ∈ N (G), let Q(T ) denote the set of nodes adjacent to every node of T . Then

Q(T ) 6= ∅ by definition, and T ×Q(T ) ∈ H(G). For a given S ∈ N (G), we have

H(G) ∩ Σ(f−1(S)) =
⋃

T∈Σ(S)

Σ(T ×Q(T )), (3)

and hence by Corollary 2.16,

H(G) ∩ Σ(S ×Q(S)) ∼ nerve{T ×Q(T ) : T ∈ Σ(S)} (4)

Now it is easy to see that for T1, . . . , Tr ⊆ S, we have

(T1 ×Q(T1)) ∩ · · · ∩ (Tr ×Q(Tr)) 6= ∅ ⇔ T1 ∩ · · · ∩ Tr 6= ∅. (5)

Indeed, the implication⇒ is trivial, and if T1∩ · · · ∩Tr 6= ∅ than (u, v) ∈ (T1×Q(T1))∩ · · · ∩
(Tr ×Q(Tr)) for any u ∈ T1 ∩ · · · ∩ Tr and v ∈ Q(S). Thus

nerve{T ×Q(T ) : T ∈ Σ(S)} = nerve(Σ(S)) ∼ Σ(S).

Since Σ(S) is contractible, this proves the Lemma. �
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Remark 5.5 It would be tempting to try a shorter argument and use the formula

H(G) =
⋃

T∈N (G)

Σ(T ×Q(T )),

which implies

H(G) ∼ nerve{T ×Q(T ) : T ∈ N (G)}.

But the nerve on the right is difficult to handle, since (5) does not remain valid if T1, . . . , Tr

are not faces of the same simplex.

5.2 Topological connectivity and chromatic number

Theorem 5.6 [34] If the neighborhood complex N (G) of a graph G is k-connected (equiva-

lently, the homomorphism complex H(K2, G) is k-connected), then χ(G) ≥ k + 3.

Proof. By Lemma 4.3 there is an antipodal map Sk+1 → H(K2, G). Suppose that

χ(G) ≤ k + 2, then there is a homomorphism G → Kk+2, which induces an antipodal

map H(K2, G) → H(K2,Kk+2). As we have seen in Example 5.3, there is an antipodal

map H(K2,Kk+2) → Sk. Composing these maps, we get an antipodal map Sk+1 → Sk,

contradicting the Borsuk-Ulam Theorem. �

The following related theorem (quoted without proof) shows how using the homomor-

phism complex leads to further results of this type.

Theorem 5.7 [4]. If H(C2r+1, G) is k-connected as a topological space for some r ≥ 1, then

the chromatic number of G is at least k + 4.

5.3 Borsuk graphs and Kneser graphs

As an application of the general bound in the previous section, we prove a result about the

chromatic number of a a couple of interesting special classes of graphs.

A Borsuk graph is defined on a finite subset V ⊆ Sd−1, where we connect two points by

an edge if and only if their spherical distance is at least 2 − 2ε for a given ε > 0 (they are

“almost antipodal”). We assume that V is dense enough so that every cap of spherical radius

ε contains at least one point of V .

Theorem 5.8 The chromatic number of the Borsuk graph (as defined above) is at least d+1.

Proof. Let α : V → {1, . . . , d} be any coloring of V ; we want to prove that there is an

edge connecting two nodes with the same color. Let Ai be the set of points of Sd−1 for which

one of closest points in V has color i (1 ≤ i ≤ d). Then Ai is closed and ∪iAi = Sd−1, so

one of the sets Ai (say, A1) contains two antipodal points x and −x by Theorem 4.5(c). The

closest point of V to x is at distance at most ε, and this (or, if there are more such points,

one of these) has color 1. Similarly, there is a point of V of color 1 at distance at most ε

from −x. These two points of color 1 are adjacent. �

24



Remark 5.9 Borsuk graphs are interesting because they don’t contain any odd cycle shorter

than 1/ε. The next, combinatorially defined graphs have a similar feature.

The Kneser graph Kn
k is defined as the graph whose nodes are all k-subsets of an n-set,

and two are adjacent if and only if they are disjoint (n ≥ k).

Theorem 5.10 [34] For n ≥ 2k, the chromatic number of the Kneser graph Kn
k is n−2k+2.

Corollary 5.11 If all k-element subsets of a (2k + r − 1)-element set are divided into r

classes, then one of the classes contains two disjoint k-sets.

By Theorem 5.6, it suffices to prove the following:

Lemma 5.12 The N (Kn
k ) is (n− 2k − 1)-connected.

Proof. The neighborhood complex N (Kn
k ) can be described as follows: its vertices are

all k-subsets of V = {1, . . . , n}, and vertices S1, . . . , Sm} form a simplex if any only if

|S1 ∪ · · · ∪ Sm| ≤ n − k. It was shown in Example 3.21 that this complex is (n − 2k − 1)-

connected. �

Corollary 5.13 If the k-subsets of an n-set are colored with n−2k+1 colors (n > 2k), then

one of the colors contains two disjoint sets.

6 *Linklessly embedable graphs

Let G = (V,E) be a graph. An embedding of a graph G in R3 is called linkless if each pair

of disjoint circuits in G are unlinked closed curves in R3. G is linklessly embedable if G has

a linkless embedding in R3.

A Y∆ transformation of a graph means deleting a vertex of degree 3, and making its

three neighbors mutually adjacent. ∆Y is the reverse operation (applied to a triangle). The

Petersen family consists of all graphs obtainable from K6 by the so-called ∆Y- and Y∆-

operations. One can check that this family consists of seven graphs (and it includes the

Petersen graph).

Theorem 6.1 (Robertson, Seymour and Thomas) A graph is linklessly embedable if

and only if it does not contain any graph in the Petersen family as a minor.

We call a linear subspace L of RV a connected representation if for each x ∈ L, supp+(x)

is nonempty and supp+(x) induces a connected subgraph of G. (For a vector x ∈ RV ,

supp(x) is the support of x, that is, supp(x) := {v ∈ V |x(v) 6= 0}. The positive support is

supp+(x) := {v ∈ V |x(v) > 0} and the negative support is supp−(x) := {v ∈ V |x(v) < 0}.)
We define λ(G) as the maximum dimension of any connected representation L of G. It is

easy to see that λ(G) is monotone under taking minors.

Theorem 6.2 (Van der Holst, Laurent and Schrijver) (a) λ(G) ≤ 1 if and only if G

is a forest;

(b) λ(G) ≤ 2 if and only if G is series-parallel;

(c) λ(G) ≤ 3 if and only if G is a subgraph of a clique sum of planar graphs.
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Theorem 6.3 [38] If G is linklessly embedable, then λ(G) ≤ 4.

Among the graphs in the Petersen family, K6 has λ = 5, but all other graphs have λ = 4,

so the theorem above does not provide a characterization of linklessly embedable graphs.

The following invariant was introduced by Colin de Verdière.

Let G = (V,E) be an undirected graph, V = {1, . . . , n}. Then µ(G) is the largest corank

of any symmetric real-valued n× n matrix M = (mi,j) satisfying the following conditions:

(i) M has exactly one negative eigenvalue, of multiplicity 1;

(ii) for all i 6= j, mi,j < 0 if i and j are adjacent, and mi,j = 0 if i and j are nonadjacent,

(iii) there is no nonzero symmetric n× n matrix X = (xi,j) such that MX = 0 and such

that xi,j = 0 whenever i = j or mi,j 6= 0.

There is no condition on the diagonal entries mi,i. (The corank corank(M) of a matrix

M is the dimension of its kernel.) Condition (iii) is called the Strong Arnold Property.

Theorem 6.4 [18, 19] (a) µ(G) ≤ 1 if and only if G is a path;

(b) µ(G) ≤ 2 if and only if G is outerplanar;

(c) λ(G) ≤ 3 if and only if G is planar.

The following lemma shows that for a matrix M in the definition of µ(G), Ker(M) is

almost a connected representation for G; that this is not always true is shown by the Petersen

graph.

For any graph G = (V,E) and U ⊆ V , let N(U) be the set of vertices in V \ U that are

adjacent to at least one vertex in U . For any V × V matrix and I, J ⊆ V , let MI×J denote

the submatrix induced by the rows in I and columns in J , and let MI := MI×I . For any

vector z ∈ RI and J ⊆ I, let zJ be the subvector of z induced by the indices in J .

Lemma 6.5 [25] Let G be a connected graph, let M be a matrix satisfying (i)–(iii), and let

x be a vector in Ker(M) with G|supp+(x) disconnected. Then there are no edges connecting

supp+(x) and supp−(x), and each component K of G|supp(x) satisfies N(K) = N(supp(x)).

Theorem 6.6 [38] µ(G) ≤ 4 if and only if G is linklessly embedable.

7 *Equivariant maps

Let G be a finite group acting on a topological space T . We say that the action is free if

no element of G other than the identity has a fixed point. A G-space is a topological spaces

with a free G action. We are mostly concerned with the case when G = Zk, the cyclic group

with k elements. For k = 2, this specializes to the notion of antipodality spaces.

Example 7.1 Let S0
k consist of k points in a fixed cyclic order. Then this is a Zk-space. �

Example 7.2 Let S1
k be S1, on which Zk acts by rotation by 2π/k. �

Example 7.3 Let T k = conv{e1, . . . , ek} and P k−1
k be the boundary of T k, with Zk acting

through a cyclic permutation of the coordinates. This action is free if and only if k is a prime.

�
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The join T1∨T2 of two topological spaces T1 and T2 is obtained by taking T1×T2× [0, 1],

and shrinking T1×{x2}×{0} to a single point for all x2 ∈ T2, and also shrinking {x1}×T2×{0}
to a single point for all x1 ∈ T1.

Let K1 and K2 be two simplicial complexes; assume that V (K1)∩V (K2) = ∅. Then their

join K1 ∨ K2 is defined as the simplicial complex consisting of all sets A1 ∪ A2, Ai ∈ Ki. It

is straightforward that G(K1 ∨ K2) ≈ G(K1) ∨ G(K2). The join of boundary complexes of

simplicial convex polytopes is the boundary of a simplicial convex polytope.

Free Zk-actions on two simplicial complexes give free Zk action on the join.

Example 7.4 If n is odd, then Snk is defined as the join of (n + 1)/2 copies of S1
k. If n is

even, then Snk is the join of n/2 copies of S1
k and one copy of Sk0 . �

Lemma 7.5 For odd n, Snk is homeomorphic with Sn. For even n, Snk is homeomorphic

with the space obtained by gluing together p copies of Bn along their boundaries.

Corollary 7.6 Snk is n-dimensional and (n− 1)-connected.

Lemma 7.7 If T is any (n− 1)-connected space with a Zk action, then Snk has a covariant

map into T .

Lemma 7.8 If K is any n-dimensional simplicial complex with a free Zk action, then G(K)

has a covariant map into Snk .

Lemma 7.9 Let n be even. Then every covariant map of Snk into itself has index 1 (mod p).

Theorem 7.10 Snk has no covariant map into Sn−1
k .

Corollary 7.11 If T is any (n − 1)-connected space with a free Zk action, and K is an

(n − 1)-dimensional simplicial complex with a free Zk action, then T has no covariant map

into G(K).

Theorem 7.12 [8] Let p be a prime. Then for every continuous map f : S
d(p−1)
p → Rd

there is a point x ∈ Sd(p−1)
p such that f is constant on the orbit of x.

7.1 Kneser hypergraphs

An r-graph (or r-uniform hypergraph) is a pair (V,H) where V is a finite set and H ⊆
(
V
r

)
.

The elements of V are called nodes, the elements of H are called edges.

A subset A ⊆ V in an r-graph (V,H) is independent, if it does not contain any edge. The

chromatic number of an r-graph (V,H) is the least integer k such that there is a partition

V = A1 ∪ · · · ∪Ak into independent sets.

An r-box is an r-graph defined by V = V1∪· · ·∪Vr and H = V1×· · ·×Vr, where V1, . . . , Vr

are disjoint finite sets, and the order of elements in edges is ignored.

We define the box complex B of an r-graph (V,H) as the simplicial complex whose vertices

are the ordered edges, and where a set of ordered edges forms a simplex if and only if it is a

subset of an r-box contained in (V,H). Note that this generalizes the complex H(K2, G).
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The group Zr acts on Ĥ by cyclically permuting the nodes in every ordered edge. So if ω

is the generator of Zr then ω(v1, . . . , vr) = (v2, . . . , vr, v1). Clearly, this action is simplicial

on B and so it defines an action on G(B). It is also easy to see that this action is free.

Theorem 7.13 [3] If the box complex of an r-graph (V,H) is t(r − 1) − 2-connected, then

its chromatic number is at least t+ 1.

Theorem 7.14 [3] If all k-element subsets of an (rk+(r−1)(t−1))-element set are divided

into t classes, then one of the classes contains r disjoint k-sets.

The k-subsets of a set S with only rk + (r − 1)(t − 1) − 1 elements can be divided into

t classes so that none of the classes contains r disjoint k-sets. Let S = S1 ∪ . . . Sk, where

|S1| = · · · = |St−1| = r − 1 and |St| = rk − 1. For i = 1, . . . , t − 1, let Hi be the set of

k-subsets of S intersecting Si but not S1, . . . , Si−1. Let Ht be the rest, i.e., the set of all

k-subsets of St.

The Kneser hypergraph K(n, k, r) = (V,H) is defined as follows. Let S be an n-set and

V =
(
S
k

)
. Let

H =
{
{A1, . . . , Ar} : Ai ∈ V, Ai ∩Aj = ∅ for all i 6= j

}
.

Then theorem 7.14 (along with the remark following it) can be restated as follows:

Theorem 7.15 Let n = rk + (r − 1)(t − 1). Then the chromatic number of K(n, k, r) is

t+ 1.

This is first proved for the case when r = p is a prime. Using theorem 7.13, it suffices to

show the following two facts.

Lemma 7.16 Let p be a prime, and n = pk + (p − 1)(t − 1). Then the box complex of

K(n, k, p) is (at least) t(p− 1)− 2-connected.

Lemma 7.17 If Theorem 7.14 is true for two values r = r′ and r = r′′, then it is also true

for r = r′r′′.

8 Colored Tverberg Theorem

8.1 The chessboard complex

Let n,m ≥ 1. The chessboard complex ∆m,n is defined on the fields of an m× n chessboard,

and consists of all sets of fields such that no two are in the same row or column.

Lemma 8.1 [15] The chessboard complex ∆m,n is (at least) (ν − 2)-connected, where

ν = min

{
m,n, bm+ n+ 1

3
c
}
.

8.2 Colored Tverberg Theorem

Theorem 8.2 [51] Let p be a prime, d ≥ 1 and let A0, . . . , Ad ⊆ Rd, |Ai| ≥ 2p. Then one

can select from each Ai p distinct points ai1, . . . , a
i
p ∈ Ai such that

∩pj=1conv{a0
j , a

1
j , . . . , a

d
j} 6= ∅.
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8.3 An application: bisecting hyperplanes

([32, 7, 51])

9 Euler characteristic

The Euler characteristic of a simplicial complex is defined by χ(K) =
∑
S∈K(−1)|S|−1. This

is known to be a topological invariant, i.e., if K ∼= K′, then χ(K) = χ(K′). More generally,

Theorem 9.1 If K1 and K2 are homotopy equivalent, then χ(K1) = χ(K2). In particular,

if K is contractible, then χ(K) = 1.

Consider a finite family F of (non-empty) polytopes (convex, closed, bounded polyhedra)

such that

(1) if Q ∈ F , then every face of Q is in F ;

(2) the intersection of any two members of F is a face of both.

Such a family is called a convex cell complex. Clearly the geometric realization of a

simplicial complex can be considered as a convex cell complex (where all cells are simplices).

All faces of a convex polytope form a convex cell complex.

The union P = ∪F is called a polyhedron, and we call F a convex cell decomposition of

P . We define the Euler characteristic of F by

χ(F) =
∑
Q∈F

(−1)dim(Q).

It is known that this quantity depends on the union P = ∪F only, and we denote it by χ(P ).

Example 9.2 The Euler characteristic of any polyhedron homeomorphic to a ball is 1 (in

particular, a convex polytope has Euler characteristic 1), of a polyhedron homeomorphic to

the d-dimensional sphere is 1 + (−1)d. �

9.1 The k-equal problem

Given n real numbers x1, . . . , xn (called weights), decide if some k of them are equal. Our

access to information about the weights is to make pairwise comparisons: is xi < xj , xi = xj ,

or xi > xj?

This problem has a trivial solution in O(n log n) steps: just sort the weights, and compare

the i-th element with the (i + k − 1)-st for every i. For k = 2, this is the best we can do:

if any sequence of comparisons applied to n distinct weights concludes that they are indeed

distinct, then it must sort them, since if the order of two elements is not determined, then

these tests allow that they are equal.

For large values of k, the complexity of this problem does decrease. To show this, assume

(for simplicity) that n = 2mk. We start with determining the median (the (2m−1k)-th

largest weight); this takes O(n) comparisons. Then we go on with finding (2m−2k)-th largest

elements among those smaller and also among those larger than this element (ties are broken

arbitrarily). In the j-th phase, those elements found so far split all elements into blocks of
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size 2m−jk, and we find the element of each block which splits it into two equal parts (where

each element is counted in the block immediately before it).

Afterm phases, we have found the k-th, (2k)-th, . . ., 2mk-th largest elements. Now if there

are k equal elements, then one of these special elements must occur among them; therefore it

is enough to compare each of them with 2k other elements (in the blocks immediately before

and after them) to see if indeed this is the case.

Each phase takes O(n) comparisons, so the total number of comparisons needed is

O(nm) = O(n log(n/k)). We are going to prove that (up to a constant factor) this is best

possible.

9.2 Linear decision trees

Let P be a polyhedron in Rn. We want to test whether a given vector x ∈ Rn belongs to

P . A linear decision tree is a rooted ternary tree T , where each node v is associated with a

linear function `v(x) =
∑
i aixi + b, and the three edges connecting an interior node to its

descendants are labeled “+”, “0” and “−”. Starting from the root, we move down the tree;

at each internal node v, we check the sign of `v(x) and follow the appropriately labeled edge.

Leaves are labeled YES and NO, and arriving at a leaf we read off the answer to the question

“is x ∈ P?”.

Let W−(T ) and W+(T ) be the sets of NO-leaves and YES-leaves, respectively. Let, for

each leaf w, Pw denote the set of inputs leading to leaf w. Each set Pw is a convex subset of

Rn, and P is the union of all cells Pw with w ∈W+.

To illuminate the connection between linear decision trees and topology, we start with a

simple inequality:

Proposition 9.3 Let P ⊆ Rd be the union of N disjoint (closed) polyhedra. Then every

linear decision tree for P has at least N YES-leaves.

Proof. Let P = ∪Ni=1Qi, where the Qi are disjoint polyhedra. For every YES-leaf w, Pw

must be contained in one of the Qi, and hence every Qi must be the union of one or more

polyhedra Pw, where w is a YES-leaf. So there are at least N YES-leaves. �

The following inequality (which is often much sharper) gives a general lower bound on

the number of leaves of a linear decision tree for membership in a polyhedron P in terms of

its Euler characteristic.

Theorem 9.4 For every linear decision tree for a bounded polyhedron P in Rn, the number

of YES-leaves is at least |χ(P )|.

Proof. Let T be a linear decision tree for P . Each set Pw is a convex polytope, but not

necessarily closed. In fact, Pw is open in its affine hull: the affine hull Aw of Pw is obtained

as the intersection of those hyperplanes lu(x) = 0 which tested with equality along the path

from the root to w, and the remaining strict inequalities along this path define Pw. We

denote by P̄w the closure of Pw and by ∂Pw, the boundary of Pw in Aw. Clearly P̄w is a

convex polytope and ∂Pw is homeomorphic to sphere.
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We have P = ∪{Pw : w ∈ W+}. Unfortunately, the polyhedra P̄w (even together with

their faces) do not form a convex cell decomposition in general. To relate to the Euler

characteristic, we consider the following finer decomposition. Our linear decision tree T

determines a family of affine hyperplanes AT = {Hu}, where Hu = {x ∈ Rn : `u(x) = 0} for

each inner node u of T . These hyperplanes subdivide Rn into a number of relatively open

convex polyhedra, which we call cells. These cells, together with their faces, partition Rn

(points in the same class behave the same way in all tests on the tree). The closures of cells

in P form a convex cell decomposition of P , and hence∑
C⊆P

(−1)dim(C) = χ(P ).

We can partition this sum according to the YES-leaves:

χ(P ) =
∑

w∈W+

∑
C⊆Pw

(−1)dim(C) =
∑

w∈W+

 ∑
C∈P̄w

(−1)dim(C) −
∑

C∈∂Pw

(−1)dim(C)


=

∑
w∈W+

(
χ(P̄w)− χ(∂Pw)

)
=

∑
w∈W+

(−1)dim(Pw) ≤ |W+|.

Here we have used that the cells contained in P̄w form a convex cell decomposition of P̄w, he

cells of ∆ contained in ∂Pw form a convex cell decomposition of ∂Pw, and P̄w and ∂Pw are

homeomorphic to a ball and a sphere, respectively. �

Corollary 9.5 Every linear decision tree for a bounded polyhedron P in Rn has depth at

least log3 |χ(P )|.

The Euler characteristic of a polyhedron may be small even if its structure is very com-

plicated. For example, if the polyhedron is star-shaped (i.e. it has a point v such that the

segment connecting v to any other point is contained in the polyhedron), then its Euler

characteristic is 1.

9.3 Mathematical tools

In order to apply our general topological bounds to the k-equal problem, we need some more

advanced mathematical tools, which we collect here.

A sequence of polynomials. We sum up some properties of the polynomials

pk(x) =

k∑
j=0

xj

j!
(6)

Let α1, . . . , αk be the roots of pk, where α1 has the smallest absolute value. We have |α1| < k,

since
∏
i αi = ±k!. For the derivative we have

p′k(x) = pk−1(x) = pk(x)− xk

k!
,

and hence

p′k(αi) = −α
k
i

k!
.
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It follows that pk has no multiple roots. We can also use this formula to compute the partial

fraction expansion

1

pk(x)
=

k∑
i=1

1

p′k(αi)(x− αi)
= k!

k∑
i=1

1

αki (x− αi)
. (7)

We also need the estimate

|pk(x)| ≤
k∑
j=0

|x|j

j!
≤
∞∑
j=0

|x|j

j!
= e|x|. (8)

The Möbius function. Let (P,≤) be a finite poset, where |P | = n. We say that an n× n
real matrix A is a P -matrix, if its rows and columns are indexed by the elements of P , and

Axy = 0 unless x ≤ y in the poset order. It is easy to prove then the sum and product of

two P -matrices are P -matrices, and the inverse of an invertible P -matrix is a P -matrix.

We will need three special P -matrices: the identity matrix I, the matrix Z defined by

Zx,y =

{
1, if x ≤ y,
0, otherwise,

and the matrix M = Z−1. A usual notation for the entries of M is Mx,y = µ(x, y), where µ

is called the Möbius function of the poset. It is easy to see that M has integral entries. The

basic equations MZ = I and ZM = I can be written as∑
x: a≤x≤b

µ(a, x) =

{
1, if a = b,

0, otherwise,
(9)

and ∑
x: a≤x≤b

µ(x, b) =

{
1, if a = b,

0, otherwise,
(10)

for all a, b ∈ P .

Using these conditions, it is easy to verify the formulas given below for the Möbius

functions of some basic examples.

Example 9.6 Let L be the lattice of all subsets of a finite set V , then its Möbius function

is given by

µ(X,Y ) =

{
(−1)|Y \X|, if X ⊆ Y ,
0, otherwise.

�

Example 9.7 Let L be the lattice of integers {1, . . . , n}, in increasing order. Clearly the

x ∧ y = min{x, y} and x ∨ y = max{x, y}. Then the Möbius function is given by

µ(x, y) =


1, if x = y,

−1, if x = y − 1,

0, otherwise.

�
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Example 9.8 Let L be the set of integers {1, . . . , n}, partially ordered by divisibility. Let

ω(x) denote the number of different prime divisors of the integer x. Then

µ(x, y) =

{
(−1)ω(y/x) if x | y and y/x is square-free,

0, otherwise.

We see that µ(x, y) depends on the ratio y/x only, and so it can be expressed by the classical

number-theoretic Möbius function, which is defined as a single-variable function

µ(x) =

{
(−1)ω(x) if x is square-free,

0, otherwise.

�

Let f : P → R be any function. We define its summation function by

g(x) =
∑
y≤x

f(y).

This summation function determines the original:

f(x) =
∑
y≤x

µ(0, y)g(y). (11)

Expression 11 is called the Möbius Inversion Formula. The proof of (11) is immediate if we

write these equations and g = Z>f and f = M>g.

We can express M by Z. Let U = Z− I. Every nonzero entry of U is above the diagonal,

which implies that Un = 0. We claim that

M =

n−1∑
k=0

(−1)kUk. (12)

Indeed,

Z
(n−1∑
k=0

(−1)kUk
)

= (I + U)
(n−1∑
k=0

(−1)kUk
)

= I + (−1)n−1Un = I.

There are many useful identities for the Möbius function, in particular when the poset is

a finite lattice L. We only state one (see e.g. [46, 31] for more). Let a ≤ b < 1, then∑
x∧b=a

µ(x, 1) = 0. (13)

This can be proved by induction on the number of elements between a and b. If b = a, then

the identity is a special case of (9). If a < b, then we have∑
x≥a

µ(x, 1) =
∑
a≤c≤b

∑
x∧b=c

µ(x, 1).

The left side is 0 by (9), while all terms on the right with c > a are 0 by induction. So the

term with c = a must be zero as well.
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Möbius function and Euler characteristic. For us, the most important consequence of

(12) is that the Möbius function is related to the Euler characteristic. Let (P,≤) be a finite

poset with Möbius function µ. For x, y ∈ P , let Pxy = {z ∈ P : x < z < y}. Then

µ(x, y) = χ(C(Pxy))− 1. (14)

Indeed, (12) can be written as

µ(x, y) =

n−1∑
k=0

∑
x<z1<···<zk−1<y

(−1)k. (15)

This shows that the (x, y) entry of Uk counts chains of k − 1 elements in Pxy, so the (x, y)

entry on the right side of (12) is just one larger than the Euler characteristic of C(Pxy).

(The difference of 1 comes from the convention that we did not include the empty set in a

simplicial complex.)

In the special case when the poset is a finite lattice L, we can use Corollary 2.21. Let A

be the set of atoms of L and A = {X : ∅ 6= X ⊆ A : ∨X 6= 1}. Then

µ(0, 1) = χ(C(L \ {0, 1}))− 1 = χ(A)− 1 =
∑

X: ∨X 6=1

(−1)|X|−1. (16)

Note that we could also write this as

µ(0, 1) =
∑

X: ∨X=1

(−1)|X|, (17)

since trivially∑
X: ∨X 6=1

(−1)|X|−1 −
∑

X: ∨X=1

(−1)|X| =
∑
X

(−1)|X|−1 = 0.

Lattices of partitions. Let V = {1, . . . , n}. A partition of V is a family P = {A1, . . . , Ak} of

disjoint nonempty subsets (partition classes) such thatA1∪· · ·∪Ak = V . IfQ = {B1, . . . , Bm}
is another partition of V , then we say that P is finer than Q, in notation P ≤ Q, if every

partition class Ai is a subset of one of the classes Bj . We also say that Q is rougher than P .

The meet P ∧ Q of two partitions is the partition consisting of the nonempty intersections

Ai ∩ Bj . The join P ∨ Q is the finest partition that is rougher than both P and Q (this

is uniquely determined). The finest partition of V is the discreet partition 0̂, consisting of

singleton sets; the roughest one is the indiscrete partition 1̂, consisting of a single class. To

sum up, partitions of V form a lattice, denoted by Πn.

Let us call a partition special, if every partition class is either a singleton or has at least

k elements. Let Πn,k ⊆ Πn denote the set of special partitions of V . With the same order as

in Πn, the poset Πn,k is a lattice. The join of two special partition is the same as their join

in Πn. For P ∈ Πn, let P ′ denote the partition obtained by splitting every class with fewer

than k elements into singletons. Then P ′ is the unique largest special partition less than P .

Based on this, we can describe the meet of two special partitions P,Q ∈ Πn,k as (P ∧ Q)′.

Note that the two extreme partitions 0 and 1 are elements of Πn,k.
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Generating function of partition numbers. Let Sk(n, j) denote the number of partitions

of an n-set into j parts of size at most k. Clearly Sk(n, j) = 0 if n > kj or n < j. We can

choose such a partition by first choosing the size r ≤ k of a partition class, then choosing the

elements in this class, and then partitioning the remaining elements into j − 1 classes of size

at most k. Each partition is counted j times. This gives the recurrence

Sk(n, j) =
1

j

k∑
r=1

(
n

r

)
Sk(n− r, j − 1). (18)

We need the following formula for the exponential generating function of these numbers:

∞∑
n=0

Sk(n, j)
xn

n!
=

1

j!
(pk(x)− 1)j . (19)

This follows from (18) by induction. For j = 0 the assertion is trivial. Let j > 0, then

∞∑
n=0

Sk(n, j)
xn

n!
=

1

j

∞∑
n=0

k∑
r=1

(
n

r

)
Sk(n− r, j − 1)

xn

n!

=
1

j

k∑
r=1

xr

r!

∞∑
n=0

Sk(n− r, j − 1)
xn−r

(n− r)!
=

1

j
pk(x)

1

(j − 1)!
(pk(x)− 1)j−1

= (pk(x)− 1)j .

The Möbius function of partition lattices. The Möbius function µ of the partition

lattice Πn is known: for every partition Q,

µ(Q, 1) = (−1)|Q|−1(|Q| − 1)! (20)

This follows by induction. Merging the classes of Q into singletons changes nothing, so we

may assume that Q = 0. Let B be the partition {{1}, {2, . . . , n}}. Then∑
P :B∧P=0

µ(P, 1) = 0.

It is easy to see that B ∧ P = 0 means that either P = 0 or P has one class of the form

{1, i} and the other classes are singletons. In this latter case, µ(P, 1) = (−1)n−2(n − 2)!

by induction. Thus µ(0, 1) + (n − 1)(−1)n−2(n − 2)! = 0, which proves that µ(0, 1) =

(−1)n−1(n− 1)!.

Using (20), the more general Möbius function values µ(P,Q) are easy to figure out, but

we will not need them.

Our main tool will be a formula for the Möbius function µk of Πn,k. We get there

through a sequence of formulas for µn,k = µk(0, 1) (it would be easy to extend the argument

to determine µk(P,Q) in general). Our first expression relates µk and µ.

µn,k =
∑

R∈Πn
R′=0

µ(R, 1). (21)

Indeed, using the basic equations (9) and (10) for both µk and µ,∑
R∈Πn
R′=0

µ(R, 1) =
∑
R∈Πn

µ(R, 1)
∑

Q∈Πn,k
Q≤R′

µk(0, Q) =
∑

Q∈Πn,k

µk(0, Q)
∑

R∈Πn
R≥Q

µ(Q,R) = µk(0, 1).
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(We have used the fact that for a partition R and special partition Q, the relation Q ≤ R′ is

equivalent to Q ≤ R.) By (20), this can also be written as

µn,k =
∑
Q′=0

µ(Q, 1) =
∑
Q′=0

(−1)|Q|−1(|Q| − 1)!. (22)

Collecting terms with the same number of classes, we get

µn,k =

n∑
j=1

(−1)j−1(j − 1)!Sk−1(n, j). (23)

Our next goal is to determine the generating function

Fk(x) =

∞∑
n=0

µn,k
xn

n!
.

This can be done using (23) and (19):

Fk(x) =

∞∑
n=0

µn,k
xn

n!
=

∞∑
n=1

n∑
j=1

(−1)j−1(j − 1)!Sk−1(n, j)
xn

n!

=

∞∑
j=1

∞∑
n=j

(−1)j−1(j − 1)!Sk−1(n, j)
xn

n!
= −

∞∑
j=1

1

j
(1− pk−1(x))j

= ln pk−1(x).

From this nice explicit formula for the generating function, we can extract the coefficients.

Let α1, . . . , αk−1 be the roots of pk−1, where α1 has the smallest absolute value. It will be

easier to work with the derivative:

F ′k(x) =
p′k−1(x)

pk−1(x)
= 1− xk−1

k!pk−1(x)
= 1− xk−1

k−1∑
i=1

−1

αk−1
i (x− αi)

= 1− xk−1
k−1∑
i=1

1

αki

1

1− (x/αi)

= 1− xk−1
k−1∑
i=1

1

αki

∞∑
h=0

(
x

αi

)h

= 1−
∞∑

n=k−1

xn−1
k−1∑
i=1

α−ni .

Comparing the coefficients of xn on both sides, we get the following identity, which has been

our main goal in this section:

µn,k = −(n− 1)!

k−1∑
i=1

α−ni . (24)

9.4 Linear decision trees for the k-equal problem

For the k-equal problem, we consider the polyhedron

Q = {x ∈ [0, 1]n : there are k equal entries in x}

The algorithm above determines a linear decision tree for Q with depth O(n log(n/k)) and

(consequently) with size (n/k)O(n).
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Theorem 9.9 Every linear decision tree for the k-equal-problem has size (n/k)Ω(n) and (con-

sequently) depth Ω(n log(n/k)).

Let V = {1, . . . , n}. For every set S ∈
(
V
k

)
, let LS = {x ∈ [0, 1]n : xi1 = · · · = xik}; thus

Q = ∪SLS . Clearly LS is a linear subspace of dimension n− k+ 1, intersected with the unit

cube. The k-equal problem is to decide whether x ∈ Q for points x ∈ [0, 1]n.

We cannot apply Theorem 9.4 directly, because the segment x1 = · · · = xn is contained

in every LS , and so Q is contractible, and so Theorem 9.4 gives a trivial bound. We get

around by restricting our interest to weights satisfying x1 + · · ·+xn−1− (n−1)xn = 1 (which

excludes the inputs with x1 = · · · = xn).

So let AS = {x ∈ LS : x1 + · · · + xn−1 − (n − 1)xn = 1}, let H denote the family of

all convex sets AS , and let P = ∪H. If we have a decision tree T to check whether x ∈ Q,

then we can check x ∈ P by checking whether x1 + · · · + xn−1 − (n − 1)xn = 1 holds. This

extended decision tree has the same number of YES-leaves. So Theorem 9.4 implies that

Corollary 9.10 For every decision tree for the k-equal problem, the number of YES-leaves

is at least |χ(P )|.

Our next task is to compute χ(P ).

Theorem 9.11 The Euler characteristic of P can be expressed in terms of the Möbius func-

tion of Πn,k as χ(P ) = µn,k−1 + 1.

Proof. We can apply the Nerve Theorem to the family H, because every intersection of

convex sets is either empty or contractible. We get that P is homotopy equivalent to the

nerve of the family H.

This nerve is not hard to describe. Every subset Y ⊆ H can be viewed as a k-uniform

hypergraph HY = (V, Y ).

Claim 9.12 We have Y ∈ N (Y ⊆ H, Y 6= ∅) if and only if HY is disconnected.

First, suppose that Y ∈ nerve(H), then there is a point x ∈ ∪S∈YAS . This means that

for every S ∈ Y , xi has the same value. But the equation x1 + · · · + xn−1 − (n − 1)xn = 1

implies that not all xi have the same value, so HY cannot be connected.

Second, suppose thatHY is disconnected, and let V = V1∪V2 be a partition into nonempty

sets such that every set S ∈ Y is fully contained in one of them. We may assume that n ∈ V2,

and let r = |V1|. The vector

xi =

{
1/r for i ∈ V1,

0, otherwise.

is then contained in every subspace AS (S ∈ Y ), and hence ∩S∈YAs 6= ∅, so Y ∈ nerve(H).

This proves the Claim.

This Claim implies that

χ(P ) = χ(nerve(H)) =
∑

HY disconnected

Y 6=∅

(−1)|Y |−1. (25)
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We can translate this expression in terms of the lattice Πn,k of special partitions. Let A

denote the set of atoms of Πn,k. Every partition Q ∈ A consists of a single class of size

k and n − k singleton classes; this means that it can be identified with an element of
(
V
k

)
.

Furthermore, a set Y ⊆
(
V
k

)
gives rise to a disconnected hypergraph HY if and only if the

join of the corresponding atoms is not 1. Hence

χ(P ) =
∑
∅6=Y⊆A
∨Y 6=1

(−1)|Y |−1 = µn,k + 1.

proving the theorem. �

Combining with (24), we get

χ(P ) = 1− (n− 1)!

k−1∑
i=1

α−ni . (26)

How large is this expression? The largest term corresponds to the smallest root (in absolute

value) of pk. Thus the largest term has absolute value

(n− 1)!|α1|−n > (n− 1)!
(1

k

)n
>
( n

3k

)n
,

which would be good enough for the proof of Theorem 9.9. Unfortunately, it can happen (as

shown by numerical computations) that the other, smaller terms in (26) cancel this largest

one.

The remedy is to show that this cannot happen for too many consecutive values of n.

Lemma 9.13 For all n, k with 1 ≤ k ≤ n/2 there exists an integer m such that n− k+ 1 ≤
m ≤ n and |µm,k| > (m− 1)!k−m−1.

Proof. Consider the polynomial q(x) =
∏k−1
i=2 (x − αi). The coefficients can be calculated

explicitly from the expansion

q(x) = (k − 1)!
pk−1(x)

x− α1
= −(k − 1)!

1

α1

(k−1∑
t=0

xt

t!

)( ∞∑
r=0

xr

αr1

)
and so for j < k − 1, the coefficient of xj is

bj = −(k − 1)!
1

α1

j∑
t=0

1

t!

1

αj−t1

= −(k − 1)!α−j−1
1 pj(α1), (27)

from which we only need the estimate

|bj | < (k − 1)!|α1|−j−1e|α1| < kk|α1|−j−1.

Furthermore, we have

k−2∑
j=0

bj
µn−j,k

(n− 1− j)!
= −

k−2∑
j=0

k−1∑
i=1

bjα
−n+j
i = −

k−1∑
i=1

q(αi)α
−n
i

= −q(α1)α−n1 = −(k − 1)!p′k−1(α1)α−n1 = αk−1−n
1 .

38



Hence there is a j, 0 ≤ j ≤ k − 1, such that∣∣∣∣bj µn−j,k
(n− j − 1)!

∣∣∣∣ > 1

k
|α1|k−1−n.

and hence for m = n− j,

|µm,k| >
1

k − 1
(m− 1)!|α1|k−1−n|bj |−1 ≥ k−k−1(m− 1)!|α1|k−1−m ≥ (m− 1)!k−m−1.

�

Proof of Theorem 9.9. It is easy to see that for fixed k, the minimum number of YES

leaves for the k-equal problem increases with n. For k ≥ n/10 we need to prove a bound of

Ω(n) for the depth of the tree, which follows by the above remark. So we may assume that

k < n/10.

Let m be the number in Lemma 9.13, then the number of YES-leaves in a linear decision

tree is at least

(m− 1)!k−m−1 − 1 >
(m− 1

3k

)m−1

≥
(n− k

3k

)n−k
,

and hence the depth of the tree is at least

(n− k) log3

n− k
3k

= Ω
(
n log

n

k

)
.
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Möbius functions, in: Proc. 24th ACM SIGACT Symp. on Theory of Computing, 170–

177.

[14] A. Björner, L. Lovász, Linear decision trees, subspace arrangements, and Möbius func-
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Journal of Combinatorial Theory, Series B 50 (1990) 11–21.

[19] Y. Colin de Verdière, On a new graph invariant and a criterion for planarity, in: Graph

Structure Theory (N. Robertson, P. Seymour, eds.), Contemporary Mathematics, Amer-

ican Mathematical Society, Providence, Rhode Island, 1993, pp. 137–147.

[20] A. Dold: Lectures on Algebraic Topology, Springer-Verlag, 1972.

[21] A. Dold: Parametrized Borsuk–Ulam theorems, Comment. Math. Helv. 63 (1988) 275–

285.

[22] J. Folkman, The homology groups of a lattice, J. Math. Mech. 15 (1966) 631–636.

[23] M. Goresky and R. MacPherson: Stratified Morse Theory, Ergebnisse, Band 14,

Springer-Verlag, Berlin (1988)
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