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MENGERIAN THEOREMS FOR PATHS OF
BOUNDED LENGTH

by

L. LOVASZ (Szeged), V. NEUMANN-LARA (Mexico) and M . PLUMMER (Nashville)

Dedicated to the memory of FERNANDO EscALANTE

1. Introduction

Let u and v be non-adjacent points in a connected graph G . A classical
result known to all graph theorists is that called MENGER's theorem . The point
version of this result says that the maximum number of point-disjoint paths
joining u and v is equal to the minimum number of points whose deletion
destroys all paths joining u and v . The theorem may be proved purely in the
language of graphs (probably the best known proof is indirect, and is due
to DiRAC [3] while a more neglected, but direct, proof may be found in ORE [7]) .
One may also prove the theorem by appealing to flow theory (e.g . BERGE [1],
p. 167) .

In many real-world situations which can be modeled by graphs certain
paths joining two non-adjacent points may well exist, but may prove essentially
useless because they are too long . Such considerations led the authors to
study the following two parameters . Let n be any positive integer and let
u and v be any two non-adjacent points in a graph G .

Denote by A„(u, v) the maximum number of point-disjoint paths joining
u and v whose length (i .e ., number of lines) does not exceed n. Analogously,
let V„(u, v) be the minimum number of points in G the deletion of which
destroys all paths joining u and v which do not exceed n in length., A special
case would obtain when n = p = I V(G)I, and we have by Monger's theorem,
the equality A„(u, v) = V,,(u, v) .

Fig. I
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In general, however, one does not have equality, but it is trivial that
An(u, v) :!E~ Vn(u, v) for any positive integer n . On the other hand, the graph
of Fig. 1 has VS(u, v) = 2, but AS(u, v) = 1 .

We prefer to formulate our work as a study of the ratio
Vn(u, v)

or
A„(u, v)

simply An when the points u and v are understood. For any terminology not
n

defined in this paper, the reader is referred to the book by HARA Y [4] .

2. Bounds for the ratio

As in the introduction we shall assume throughout this paper that
u and v are non-adjacent points in the same component of a graph G . It is

trivial that 1 <
Vn(u, v)

< n - 1 . As usual, d(u, v) denotes the distance
An(u, v)

between points u and v . Our first result involves this distance .

THEOREM 1 . For every positive integer n > 2 and/or each m = n - d(u, v) >

moo, Vn(u,v) <m+ 1 .
An(u, v) -

The construction in Section 3 shows that this bound is sharp .

PROOF. The proof proceeds by induction on m. Hence first let m 0,
i.e., suppose n = d(u, v) = n o. We orient some of the lines of G according
to the following rule : let xy be any line. Then if d(x, v) > d(y, v), orient x to y .
Then, clearly, any u-v geodesic (i .e ., a shortest u-v path) yields a dipath from
u to v . On the other hand, we claim that any u-v dipath must arise from a
geodesic u-v path in G, for just consider our rule of orientation . If (x, y) is a
directed line in our dipath, d(x, v) > d(y, v) and distance decreases by 1 as
we traverse each diline toward v. Hence our dipath cannot have > n lines
and hence must have come from a u-v geodesic .

Thus in the oriented subgraph of G, the u-v paths are exactly the geodesics,
so by Menger's theorem, ,Vn(u, v) = An(u, .. :v) and the case for m = 0 is proved.

. Now by induction hypothesis, assume that the theorem holds for some
mQ > 0 and suppose m = n - d(u, v) 'mo + 1 (and hence that n > d(u, v)) .

Let X be a minimum set of points covering all u-v geodesics . By the
case for m = 0,

X I = Vd(U,n)(u, v) = Ad(U,ro)(u, V) S An(u, V) .

Consider the graph G - X. If dG_x (u, v) > n, X has covered all u-v paths
of length < n and we have, V,,(u, v) = I X I < An(u, v) < mAn(u, v) and we



LOVASZ, NEUMANN-LARA, PLUMMER : PATHS OF BOUNDED LENGTH

done. So suppose dG_x(u, v) < n, say dG_x(u, v) = n - t for some t,
t < m . (Note that t < m for X destroys all u-v geodesics and thus
n - dG-x(u, v) < n - d(u, v) = m) .
So by the induction hypothesis applied to points u and v in graph G-X,

have
V n-x(u, v) < (t + 1) An-x(u, v) .

it we can then cover all n-paths in G joining u and v with a set Y where

I Y I = IXI + ( t + 1) An-"(u,
V)
< I X I + (t + 1) A„(u, v) .

Vn(u, V) < IX I + (t + 1) An(u, v) < (t + 2) An(u, v) < (m + 1)An(u, v)

id the proof is complete .
The next theorem shows that we can do better as far as a bound depend-

.g solely upon n is concerned .

THEOREM 2. For any graph 0, any non-negative integer n, and any two

on-adjacent points u and v, Vn(u, v) < [_JA(u
n

n ,V) .

PRooF. If d(u, v), ~ n/2 + 1, we are done by Theorem 1 . So suppose
(u, v) < (n + 1)/2 . Choose D such that d(u, v) < D < n and let P0 be a
s-v geodesic in G. Form a new graph--G, from G ' by "removing all interior
points of P 0 . Clearly d0l(u, v)„Z dG(u, v) . . Now remove any u-v geodesic
n G1, say P1 , to obtain G2 . Continue in this manner until we obtain a graph
a-, containing a u-v geodesic P, such that l(P,) < D, but the length of any
c-v geodesic in G,+1 > D. For convenience let us denote G, +1 by G' and
similarly for parameters of this graph . Thus dG, +1 (u, v) = d'(u, v) > D + 1 .

Since we have removed r disjoint u-v paths from G to get G', we have

AnZAn+r,

	

( 1 )

for all discarded paths had length no greater than the length of a u-v geodesic
in G' .

Also
Vn < Vn + r(D - 1) .

	

(2)

Moreover, if G' is connebted, we have by Theorem 1 that

Vn<(n-d'(u,v)+1)An (n-D-1~-1)An (n-D)An .

The combining (2) and (3), we obtain by (1)

Vn< (n - D)A'n + r(D - 1) < (n - D)(A,, -r)+r(D-1)=

=(n-D)An+r(2D-n-1).
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Since r is non-negative, choose D to be the greatest integer so that

2D-n- 1<0 . Hence D S n+ 1
J
and Since D is integral, D= n	2	 1

J
.

Hence n- D= n- C	n 2	1
J= C2J and thus V,, S [2]An .

If 0' is not connected between u and v, we have An = Vn = 0 and
conclude similarly .

The bound in this theorem is sharp for n = 2, 3 and 5 (for n = 5, see
Fig. 1). It is, however, not sharp for n = 4 .

THEOREM 3. For any graph 0 with non-adjacent Paints wand v, V,(u, v)
A4(u, v) .

PROOF . Partition the points of 0 - u - v into disjoint classes (i, j) as
follows : w E (i, j) iff d(u, w) = i and d(w, v) = j. Clearly we may ignore classes
(1, 1) and all (i, j) for i + j > 4. So the remaining graph Q has the appearance
of Figure 2 .

A . U

s It it"4K$AI
Fig. 2

Now construct a di-graph b as follows . Let V(b) = V(O) and
(x, y) E E(b) _iff (1) xy E E(O) and (2) d(u, y) > d(u, x) .

Hence b has the appearance of Figure 3 .

Fig. 3
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Observe that

(a) each dipath in b has _length S 4 and

	

_
(b) each chordless path of G of length S 4 corresponds to a dipath in D.

Let S be a set of V4 points in G - u - v whose deletion destroys all
u-v paths of length S 4 . But then in b - u - v all dipaths from u to v are also
destroyed, so V4 > H(u, v) where H(u, v) denotes the minimum number of
points whose deletion separates u and v in D. But by Menger's theorem applied
to b, H(u, v) (= the maximum number of point-disjoint dipaths from u to v)
S A4, since each set of point-disjoint _dipaths from u to v in b corresponds
to a set of point-disjoint u-v paths in Q of the same cardinality .

273

Thus it will suffice to prove V4 S H(u, v) . Let L be any set of H(u, v)
points in D - u - v whose removal separates u and v . We now claim L meets
all u-v paths in 0 of length S 4 . If not, there is a path P joining u and v with
length :< 4 and (V(P) - u - v) fl L = 0 . We may assume P is chordless . But,
then it translates into a dipath from u to v in b on the same points . L does
not meet this dipath, which is a contradiction .

In the construction of the next section we will have -n =
2

or
n

f I/ 2 + 1 . It is unknown to us where for a fixed n, the value of sup n lies
Ly

	

n

in the interval
ft 21, [2]) .

3. A Construction

We will construct a graph G(n, t) such that given t(> 0), there is an n
and a graph G(n, t) which has 2 distinct non-adjacent points u and v such
that An(u, v) = 1, but Vn(u, v) = t + 1 . Moreover, we will show in addition
that given any integer k(> 1), we can construct a G(n, t, k), which is k-
connected.

For the moment, suppose t is a given positive integer. Choose any
n > t + 1 and fix it. Construct a, path L of length s = n - t joining u and v .
As is customary, we shall refer to paths having at most their endpoints in
common as openly disjoint. Now for each i, 2 S i S t + 1, take every pair
of points a, b on L which are at a distance = i on L and attach a path of length
i + 1 at a and b which is openly disjoint from L. Such paths we shall call
ears . (See Figure 4) .

Now let P be any u-v path of length = s'(S n). P has at least n - t
lines since L is a u-v geodesic .

Suppose P uses r ears. Since replacing an ear by the corresponding
segment of L shortens the length by > 1, we have s'> n - t + r. Hence

2 Periodica Math . 9 (4)



274 LOVASZ, NEUMANN-LARA, PLUMMER : PATHS OF BOUNDED LENGTH

. . . o--OV

length (L)=s=n-t
Fig . 4

r < t . Since each ear has S t + 1 interior points, P has S r(t + 1) points
not on L. So the number of points of P onL-is (not including u and v)

>(s'-1)-r(t+1)Zn-t+r-1-r(t+1)=
=n-(r+1)t-1>n-(t+1)t-1 .

If n - (t + 1) t - 1 >
2

(the number of inner points of L), then any two such

paths P must have an interior point in common . Note that the number of
inner points of L = n - t - 1 . Thus what we need is that n (t + 1) t - 1

I (n - t - 1), i .e ., n Z 2t2 + t + 2 . If n is given, the best t satisfying this

inequality is either
L
2 - 1 or

C
2

J
. Then with such an n, any two u-v

paths of length S n must have some inner point of L in common ; i .e .,
A,,(u, v) = 1 .

We now proceed to show that V,,(u, v) Z t + 1 . Suppose there is a set
T of t points which cover all u-v paths of length S n. We may assume all
points of T lie on L, for otherwise move right on the "offending ear" until
L is reached and use the point of L thus encountered in place of the original
T-point. If the ear ends at v take the left-hand end point on L . Note also that
u, v are joined by no one ear by our choice of n.

Let us call the sets of points of T which are consecutive on L the blocks
of T. There are no more than t such blocks. Recall that L contains n - t + 1
points where n - t + 1 = (n + 1) - t > 3 and hence n - tZ 2. Thus we can
form a new u-v path Q by jumping each block of T with an ear. This new path
Q then misses T and we have added exactly one to the length of L for each
block jumped. It follows that Q has length < s + t = n - t + t = n. Hence,
there is a u-v path Q of length S n which misses T contradicting the definition
of T. Thus V„(u, v) > t + 1 .

6
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We know at this point that G(n, t) is at least 2-connected. Let k be any
integer ~ 2. We now proceed to modify the graph G(n, t) constructed above
so that the resulting graph G(n, t, k) retains the properties that A„ (u, v) = 1,
V„ > t + 1 and in addition is k-connected.

The idea is to construct a new graph H, join it to G(n, t) by suitably
chosen lines so that the resulting graph is k-connected, but also so that no new
"short" u-v paths are introduced .

Let the points of G(n, t) be w1 , . . ., WN. Further, let M = k + n . Form
a path ofMN points plp2 . . PMN and then replace each p; with a clique, Kk,
on k points where each point of Kk is joined to each point of Kk+ l. Now join
wl to exactly one point of each of Kk, . . ., Kk ; w2 to exactly one point of
K,M+1, , KM+k; and, in general, w1 to exactly one point of K(kJ-1)M+i, . . .

Kkj-1>M+k for j = 1, . . ., N . It is now easily seen that no new path joining
any w; and wj is of length < n + 1 . It is clear that A„ = 1 and V„ = t + 1 in
this new graph for any path of length < n joining u and v must lie entirely
within the original G(n, t) part of this new graph . It is equally clear that the
new graph G(n, t, k) is k-connected .

4. A different type of Mengerian result

In this section we take a different approach . Recall that V„ (u, v) > A„(u, v)
and moreover, strict inequality can occur . One's intuition may indicate that
even in this case, if the subscript on A„ is allowed to increase to some new
value n' one can always obtain V„ < A,,, . The next theorem says that such
a conjecture is not only appealing, but true .

THEOREM 4. Let n and h be positive integers . Then there is a constant
f (n, h) such that if V,, (u, v) Z h, then Af(,,,h) (u, v) > h .

In the proof we need the following result .

THEOREM 5 (BoLLOBks [2], KATONA [6], JAEGFER^-PAYAN [5]) . Given any
family o f r-sets which needs at least t points to cover, then there exists a sub family,

-
with < r + t 1

r

	

elements which still needs t points to cover .

REMARK . It is trivial to see that instead of "r-sets" one can say "sets
of size at most r" .

PROOF of Theorem 4 . Consider sets of interior points of u-v paths of length
< n. By the assumption we need > h points to cover the members of this
family. By the preceding theorem and the remark following it we can select
(n+h-21
l

	

J
paths of length < n such that we still need h points to cover these

n-1

2*
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paths. So let Gl be the union of these paths and apply Menger's theorem to
Gl to see that there are > h openly disjoint u-v paths. So how long can a

h-2
longest path in G1 be? We have

n +

	

paths of length < n .
n-1
nh-

So Gl - u - v has < (n - 1)
+

	

2 ) points . Now among all sets of
n-1

Z h openly disjoint u-v paths in G1 , the longest path one could find would be
-

of length (n - 1)
n + h

2 - (h - 1)+ 1 . (This of course happens when one
n-1

has h - 1 paths of length 2 and a single long path of the above length .)

N

+
-1
h - 2

Thus set f (n, h) = (n - 1)

	

~-
h + 2 and we have Af(, , h)(u, v) > h .

Nn-1
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