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University campus

Northern building

Southern building

Tram lines 4,6

Welcome to Summer School in Discrete Mathematics
2014!

In this short guide we would like to provide you with some
basic information about practical issues as well as a
rather incomplete list of sights, museums, restaurants,
bars and pubs.

If you have any question concerning the summer school
or your stay in Budapest, do not hesitate to ask us!

We wish you a pleasant stay in Budapest!

The Organizers

Venue

The summer school takes place in the Southern building
(“Déli tömb”) at the Lágymányosi Campus of the Eötvös
Loránd University. The lectures are given in room 4-710,
refreshments are provided in room 4-713.

Internet access

Wireless internet connection is available in the lecture
room. Participants also get an account to access the uni-
versity’s network at the computer labs which is on the 3rd
floor of the building (rooms 3-107, 3-111 and 3-114). Your
username and password are included in the package re-
ceived upon arrival.

If you need a scanner or a printer, please contact the orga-
nizers.

Lunch

The registration fee also covers lunches. We will have lunch
together at the cafeteria of the university. The cafeteria
can be found on the ground floor of the Northern building.
In case you are planning to have lunch somewhere else,
please notify the organizers.

Contact

If you have any questions or problems, please contact the
organizers or the lecturers.

István Ágoston

Email: agoston@cs.elte.hu

Tel.: +36 1 372 2500 / 8422

Room: 3-708

Kristóf Bérczi

Email: berkri@cs.elte.hu

Tel.: +36 1 372 2500 / 8582

Room: 3-516

Tamás Héger

Email: hetamas@cs.elte.hu

Tel.: +36 1 372 2500 / 8597

Room: 3-609

Tibor Jordán

Email: jordan@cs.elte.hu

Tel.: +36 1 372 2500 / 8579

Room: 3-504

Gyula Károlyi

Email: karolyi@cs.elte.hu

Tel.: +36 1 372 2500 / 8426

Room: 3-711

György Kiss

Email: kissgy@cs.elte.hu

Tel.: +36 1 372 2500 / 8550

Room: 4-723

Márton Naszódi

Email: nmarci@cs.elte.hu

Tel.: +36 1 372 2500 / 8548

Room: 4-721

Dömötör Pálvölgyi

Email: dom@cs.elte.hu

Tel.: +36 1 372 2500 / 8604

Room: 3-616

Péter Sziklai

Email: sziklai@cs.elte.hu

Tel.: +36 1 372 2500 / 8602

Room: 3-615

Schedule

http://www.bkk.hu/en/maps/
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Getting around by taxi

The taxi fares are uniformly calculated as follows: the
base fee is 450 HUF with an additional 280 HUF/km or
70 HUF/min. Altogether, getting around by taxi is rather ex-
pensive and you might want to consider using public trans-
port instead.

Getting around by bike

You can rent bikes for 2500 - 3500 HUF per day at many
places. Here are some possibilities:

• Budapestbike - http://www.budapestbike.hu/

• Yellow Zebra Bikes and Segways - http://www.

yellowzebrabikes.com/

• Bikebase - http://bikebase.hu/home

• Bestbikerental - http://www.bestbikerental.hu/

Getting around by public transport

The public transportation system in Budapest is a favourite
internal travel option for a number of Budapest visitors.
The system is efficient, inexpensive and runs throughout
all of the major tourist areas of Budapest. The system con-
sists of a combination of the bus, trolley-bus, tram, metro,
and train lines and is streamlined so that tickets for all of
them can generally be purchased at the same locations.

All regular transportation services stop around midnight
(varies by route). However, night buses (blue coloured
buses, marked with black in the schedule, numbered 900-
999 and tram line 6) replace the metro lines, major tram
and bus routes and run through the night until normal ser-
vice resumes in the morning. Separate schedules for night
and day buses are posted at every stop. In the inner areas
buses run very frequently (appr. 10-15 min.) Please note:
there’s front door boarding-only on most lines, except tram
6 and articulated buses.

Budapest currently has four metro lines - M1 (Yellow), M2
(Red), M3 (Blue) and M4 (Green). The Yellow line is the old-
est underground transportation line in continental Europe
and retains much of its old-fashioned charm. Lines M1, M2
and M3 meet at Deák Ferenc Tér in central Pest. Line M4
opened on 28 March 2014 and connects the Kelenföld rail-
way station located in Buda, and the eastern Keleti station
in Pest. Trains run very frequently (3-5 minutes between
rush hours and weekend, 1-3 minutes in rush-hours, 10
minutes late night).

Budapest has an extensive system of above-ground trams.
The most useful lines for tourists are the famous 4 and
6, which follows the large ring road that encircles the Bu-
dapest city center and crosses Margaret bridge before ter-
minating at Széll Kálmán Tér on the Buda side on the North
- and Petőfi bridge before it terminates at Móricz Zsigmond
Körtér, also on the Buda side; no 47 and 49, which runs
through central Pest and across the river to Hotel Gellért;
no. 2, which follows the Danube River on the Pest side; and
no. 19, which follows the Danube River on the Buda Side.

Bus lines of use to most tourists are the 7 and 107 which
connect the busy Keleti railway station and the area around
the Kelenföld railway station on the Buda side. Some other
notable places that they stop along is Blaha Lujza ter (con-
nection to the red M2 metro line, also trams 4 and 6), Fer-
enciek tere (very near Váci utca), and in front of the Rudas
bath and the Gellért Hotel both on the Buda side. Bus 86 is
also very useful as it has a stop near the Gellért Hotel and
runs along the river bank on the Buda side.

All public transport in Budapest is run by the company BKK.
Connections can be easily checked at http://www.bkk.hu/
en/timetables/ or by using the convenient smart phone
apps available for Android or iPhone.

On the metro lines, tickets need to be bought and val-

idated before boarding while on buses and trams you
have to validate your ticket on the spot. For a complete
list of tickets and conditions see http://www.bkk.hu/en/

prices/.

Single ticket 350 HUF
Valid for one uninterrupted trip without change. On the
metro lines the ticket must be validated before the start of
the trip; on other vehicles immediately after boarding or af-
ter the vehicle has departed. Validity period is 60 minutes
after stamping; it is 120 minutes on night services.

Block of 10 tickets 3000 HUF
You can buy 10 tickets in a block with some discount com-
pared to buying 10 single tickets separately.

Transfer ticket 530 HUF
Valid for one trip with one change. Trip interruptions - other
than changes - and return trips are not permitted. The
ticket must be validated at the printed number grids at ei-
ther end: first when starting a trip at one end and at the
other end when changing, with the exception of changes
between metro lines.

Short section metro ticket for up to 3 stops 300 HUF
Valid on the metro for one short trip of up to 3 stops for 30
minutes after validation. Trip interruptions and return trips
are not permitted.

Single ticket for public transport boat 750 HUF
24-hour, 72-hour, 7-day travelcards and Monthly Budapest
pass is valid on weekdays.

Budapest 24-hour travelcard 1650 HUF
Valid for 24 hours from the indicated date and time (month,
day, hour, minute) for an unlimited number of trips.

5/30 BKK 24-hour travelcard 4550 HUF
The 5/30 BKK travelcard consists of 5 slips, each with a va-
lidity period of 24 hours. The block can be purchased with
any starting day with a validity period of 30 days from the
starting day.

Budapest 72-hour travelcard 4150 HUF
Valid for 72 hours from the indicated date and time (month,
day, hour, minute) for unlimited number of trips on the pub-
lic transport services ordered by BKK on tram, trolleybus,
underground, metro, cogwheel railway on the whole length
of the lines on all days; on the whole length of boat services
but only on working days.

Budapest 7-day travelcard 4950 HUF
Valid from 00:00 on the indicated starting day until 02:00

http://www.budapestbike.hu/
http://www.yellowzebrabikes.com/
http://www.yellowzebrabikes.com/
http://bikebase.hu/home
http://www.bestbikerental.hu/
http://www.bkk.hu/en/timetables/
http://www.bkk.hu/en/timetables/
http://bkk.hu/android
http://bkk.hu/ios
http://www.bkk.hu/en/prices/
http://www.bkk.hu/en/prices/
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on the following 7th day for an unlimited number of trips.
The travelcard is to be used only by one person; it is non-
transferable as it is issued specifically for the holder.

Monthly Budapest pass for students 3450 HUF
Valid from 0:00 of the indicated optional starting day to
2:00 of the same day of the following month. Valid for stu-
dents in higher education together with a Hungarian or EU
or ISIC student ID.

Giraffe Hop On Hop Off

Giraffe Hop On Hop Off tours offer 2 bus, 1 boat and 1 walk-
ing tour in Budapest for tourists. They pass several sights
on their way; the RED and YELLOW lines are audio guided
in 20 languages and the BLUE boat line is audio guided in
English and German. The ticket is valid on the day of the
first departure while the next day is free.
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Things to do in Budapest

• Walk along the Danube on the Pest side between
Elisabeth Bridge and Chain Bridge. Then cross the
Danube and continue towards Margareth Bridge to
see the Parliament Building from Batthyány tér.

• Take Metro 1 from Vörösmarty tér to Hősök tere and
see the monument there. You may take a walk in the
City Park (Városliget) or go to the Zoo or the Museum
of Fine Arts.

• After 7:00pm take a short walk along Ráday utca
from Kálvin tér. You may want to enter one of the
cafés or restaurants.

• Go to the Great Market Hall on Vámház körút, close to
Liberty Bridge (Szabadság híd). After all, this is one
of the few things Margareth Thatcher did when she
visited Budapest in the 1980’s (she bought garlic :) ).

• Go to Gellért Hill to get a glimpse of the city from
above.

• Go to a concert in one of the major or smaller concert
halls, churches or open air locations. Some of them
are free.

• Go to Margaret Island and see the fountain on the
southern end or the music tower on the northern end
of the island. In between you will find a garden of
roses and a small zoo.

• Go at night to the Palace of Arts (across Eötvös Uni-
versity, close to Rákóczi Bridge on the Pest side) and
enjoy the view of the National Theatre or of the glass
walls of the Palace of Arts.

• See the bridges at night. You get a good view from
Castle Hill.

• Go to some of the baths in Budapest (Széchenyi bath
in the City park, Rudas bath at the Buda side of Elis-
abeth Bridge or Gellért bath in Hotel Gellért at the
Buda side of Liberty Bridge).

Words of caution

• Don’t go to a restaurant or café without checking the
price list first. A reasonable dinner should not cost
you more than 20 Euros (6000 HUF). (Of course you
may be willing to pay more but you should know in
advance.)

• Don’t leave your valuables unattended, especially
not in places frequently visited by tourists. Be aware
of pickpockets on crowded buses or trams.

• Budapest is relatively safe even at night, neverthe-
less if possible, try to avoid being alone on empty
streets at night. Some pubs should also be avoided.

• Don’t carry too much cash with you: direct payment
banking cards are widely accepted, although credit
cards are not so wide spread. If you withdraw money
from a banking machine, be careful and try to do it in
a public place.

• If you get on a bus, tram, trolley or metro, usually
you have to have a pass or a prepaid ticket which
you have to validate upon boarding (or when enter-
ing the metro station). Most of the tickets are valid
for a single trip only (even if it is only for a short dis-
tance). If you get a pass for a week, you have to en-
ter on the ticket the number of a photo id (passport,
id card) which you have to carry with you when using
the pass. - On some buses you may get a single ticket
from the driver but be prepared to have change with
you. Even tickets bought from the driver have to be
validated.

Shopping centres

Mammut. 1024 Budapest, II. district, Lövőház utca 2, +36
1 345 8000 www.mammut.hu

Westend City Center. 1062 Budapest, VI. district, Váci út
1-3, +36 1 238 7777 www.westend.hu

Corvin Plaza. 1083 Budapest, VIII. district, Futó utca 37,
+36 1 301 0160 corvinplaza.hu

Arena Plaza. 1087 Budapest, VIII. district, Kerepesi út 9,
+36 1 880 7000 www.arenaplaza.hu

Allee. 1117 Budapest, XI. district, Október huszonhar-
madika utca 8-10, +36 1 372 7208 www.allee.hu

Market halls

Batthyány téri Vásárcsarnok. 1011 Budapest, I. district,
Batthyány tér 5

Rákóczi téri Vásárcsarnok. 1084 Budapest, VIII. district,
Rákóczi tér 7-9, Mon–Fri 6:00am–4:00pm, Sat 6:00am–
1:00pm

Vámház körúti Vásárcsarnok. 1093 Budapest, IX. district,
Vámház körút 1-3, Sun–Fri 6:00am–5:00pm, Sat 6:00am–
3:00pm

Fehérvári úti Vásárcsarnok. 1117 Budapest, XI. district,
Kőrösi J. utca 7-9, Mon–Fri 6:30am–5:00pm, Sat 6:30am–
3:00pm

Supermarkets

CBA www.cba.hu/uzletek

CBA Déli ABC Nagyáruház. 1013 Budapest, I. district,
Krisztina krt. 37, Mon–Fri 6:00am–10:00pm, Sat 6:00am–
8:00pm, Sun 7:00am–6:00pm

CBA Ferenciek Tere. 1053 Budapest, V. district, Ferenciek
tere 2, Mon–Fri 6:00am–10:00pm, Sat 7:00am–10:00pm,

www.mammut.hu
www.westend.hu
corvinplaza.hu
www.arenaplaza.hu
www.allee.hu
www.cba.hu/uzletek
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Sun 8:00am–8:00pm

CBA Élelmiszer. 1051 Budapest, V. district, József Attila u.
16, Mon–Fri 6:30am–9:00pm, Sat 7:00am–8:00pm

CBA élelmiszer. 1061 Budapest, VI. district, Anker köz
1, Mon–Fri 6:00am–10:00pm, Sat 6:00am–11:00pm, Sun
7:00am–10:00pm

CBA Millenium Príma élelmiszerüzlet. 1061 Budapest,
VI. district, Andrássy út 30, Mon–Fri 7:00am–10:00pm, Sat
8:00am–10:00pm, Sun 9:00am–10:00pm

CBA Rákóczi út. 1074 Budapest, VII. district, Rákóczi
u. 48-50, Mon–Fri 6:30–9:00pm, Sat 7:00am–8:00pm, Sun
8:00am–7:00pm

Körúti Élelmiszer. 1075 Budapest, VII. district, Károly krt.
9, Mon–Fri 6:30am–10:00pm, Sat 8:00am–10:00pm, Sun
8:00am–7:00pm

Görög Csemege. 1085 Budapest, VIII. district, József krt.
31, Mon–Fri 6:00am–10:00pm, Sat–Sun 8:00am–8:00pm

WADI Kft. 1085 Budapest, VIII. district, József krt 84, Mon–
Sat 6:00am–9:00pm

Corvin Átrium CBA. 1085 Budapest, VIII. district, Futó utca
37, Mon–Fri 7:00am-10:00pm, Sun 8:00am–8:00pm

Bakáts csemege. 1092 Budapest, IX. district, Bakáts tér 3,
Mon–Fri 6:00am–7:30pm, Sat 7:00am–1:00pm

Szatócs delikátesz. 1111 Budapest, XI. district, Bartók
Béla út 32, Mon–Fri 6:30am-8:00pm, Sat 6:30am–1:00pm,
Sun 7:00am–1:00pm

Csemege a Karinthyn. 1111 Budapest, XI. district,
Karinthy Frigyes u. 30, Mon–Fri 6:30am–8:00pm, Sat
6:30am–2:00pm

Spar/Interspar www.spar.hu

SPAR. 1011 Budapest, I. district, Batthyány tér 5-6, Mon–
Fri 6:30am–9:00pm, Sat 8:00am–8:00pm, Sun 8:00am–
5:00pm

SPAR. 1024 Budapest, II. district Lövőház utca 2-6, Mon–
Sat 6:30am–10:00pm, Sun 8:00am–7:00pm

City SPAR. 1052 Budapest, V. district, Károly körút 22-
24, Mon–Fri 7:00am–10:00pm, Sat 8:00am–10:00pm, Sun
8:00am–8:00pm

SPAR. 1066 Budapest, VI. district, Teréz körút 28, Mon–Fri
7:00am-10:00pm, Sun 8:00am–8:00pm

SPAR. 1073 Budapest, VII. district, Erzsébet körút 24, Mon–
Fri 7:00am–10:00pm, Sat 7:00am–7:00pm, Sun 8:00am–
7:00pm

City SPAR. 1076 Budapest, VII. district, Thököly út 8, Mon–

Fri 6:30am–10:00pm, Sat 7:30am–7:30pm, Sun 8:00am–
7:00pm

SPAR. 1085 Budapest, VIII. district, Blaha Lujza tér 1, Mon–
Fri 7:00am–10:00pm, Sat 7:00am–9:00pm, Sun 8:00am–
6:00pm

City SPAR. 1092 BUDAPEST, IX. district, Mester utca
1, Mon–Fri 6:30am–10:00pm, Sat 7:00am–8:00pm, Sun
8:00am–8:00pm

City SPAR. 1092 Budapest, IX. district, Ráday utca 32, Mon–
Fri 7:00am–10:00pm, Sat 7:00am–8:00pm, Sun 8:00am–
7:00pm

SPAR. 1095 Budapest, IX. district, Soroksári út 1, Mon–
Fri 6:30am–9:00pm, Sat 6:30am–5:00pm, Sun 8:00am–
1:00pm

SPAR Market. 1111 Budapest, XI. district, Bartók Béla út
14, Mon–Sun 0:00am–0:00am

SPAR. 1117 Budapest, XI. district, Irinyi József utca
34, Mon–Fri 7:00am–9:00pm, Sat 7:00am–5:00pm, Sun
7:00am–4:00pm

INTERSPAR. 1117 Budapest, XI. district, Október 23-a utca
8-10 (in the basement of the Allee shopping center), Mon–
Sat 7:00am–10:00pm, Sun 8:30am–8:00pm

SPAR. 1123 Budapest, XII. district, Alkotás utca 53, Mon–
Sat 7:30am–10:00pm, Sun 8:00am–8:00pm

Penny Market www.penny.hu

Penny Market. 1085 Budapest, VIII. district, József Körút
45, Mon–Sat 6:00am–9:00pm, Sun 7:00am–6:00pm

ALDI www.aldi.hu

ALDI. 1054 Budapest, V. district, Báthory utca 8, Mon–Sun
7:00am–9:00pm

ALDI. 1081 Budapest, VIII. district, Rákóczi út 65, Mon–Sun
7:00am–10:00pm

ALDI. 1093 Budapest, IX. district, Vámház körút 1-3, Mon–
Sat 6:00am–9:00pm, Sun 8:00am–9:00pm

ALDI. 1094 Budapest, IX. district, Tűzoltó utca 10-16, Mon–
Sun 7:00am–10:00pm

Lidl www.lidl.hu

Lidl. 1060 Budapest, VI. district, Bajcsy-Zsilinszky út 61,
Mon–Sun 7:00am–9:00pm

Lidl. 1082 Budapest, VIII. district, Leonardo Da Vinci utca
23, Mon–Sun 7:00am–9:00pm

Tesco www.tesco.hu

www.spar.hu
www.penny.hu
www.aldi.hu
www.lidl.hu
www.tesco.hu
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Tesco Astoria Szupermaket. 1088 Budapest, VIII. district,
Rákóczi út 1-3, Mon–Sun 6:00am–0:00am

Tesco Expressz. 1088 Budapest, VIII. district, Rákóczi út
20, Mon–Sun 6:30am–10:00am

Tesco Expressz. 1088 Budapest, IX. district, Kálvin tér 7,
Mon–Sun 6:30am–11:00am

Tesco Arena Plaza Hipermarket. 1087 Budapest, VIII. dis-
trict, Kerepesi út 9-11

Tesco Soroksári út. 1097 Budapest, IX. district, Koppány
utca 2-4, Mon–Sun 6:00am–11:00pm

Tesco Új Buda Center. 1117 Budapest, XI. district, Henger-
malom út 19, Mon–Sun 0:00am-0:00am
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Sights

1
Kopaszi-gát. 1117 Budapest, Kopaszi gát 5, Bus
103, 6:00am–10:00pm.

Kopaszi-gát is a beautifully landscaped narrow peninsula
in south Buda, next to Rákóczi Bridge. Nested in between
the Danube on one side and a protected bay, it has a lovely
beach feel. Kopaszi-gát is also a favourite picnic spot and
the park offers lots of outdoor activities from biking to ball
games. The sign in the park says it all: “Fűre lépni szabad!”,
which means “Stepping on the grass is permitted!”

2
Palace of Arts. 1095 Budapest, Komor Marcell
utca 1, Suburban railway 7.

The Palace of Arts in Budapest, also known as MÜPA for
short (Művészetek Palotája), is located within the Millen-
nium Quarter of the city, between Petőfi and Lágymányosi
bridges. It is one of the most buzzing cultural and musical
centres in Budapest, and as such one of the liveliest Bu-
dapest attractions. Think of the Palace of Arts as a cul-
tural complex, which includes the Festival Theatre, the Béla
Bartók National Concert Hall and the Ludwig Museum.

3
National Theatre. 1095 Budapest, Bajor Gizi park
1, Suburban railway 7.

The building lies on the bank of the Danube, in the Fer-
encváros district, between the Soroksári road, the Grand
Boulevard and the Lágymányosi bridge, and is a five-
minute walk from the Csepel HÉV (Suburban railway 7). The
area of the theatre can be functionally separated into three
parts. The central part is the nearly round building of the
auditorium and stage, surrounded by corridors and pub-
lic areas. The second is the U-shaped industrial section
around the main stage. The third section is the park that
surrounds the area, containing numerous memorials com-
memorating the Hungarian drama and film industry.

4

A38 Ship. 1117 Budapest, a little South from Petőfi
bridge, Buda side, Trams 4 and 6 (Petőfi híd, budai
hídfő), Mon–Sun 11:00am–4:00am.

The world’s most famous repurposed Ukrainian cargo ship,
A38 is a concert hall, cultural center and restaurant float-
ing on the Danube near the abutment of Petőfi Bridge on
the Buda-side with a beautiful panorama. Since its opening
it has become one of Budapest’s most important venues,
and according to artists’ feedback, one of Europe’s coolest
clubs.

5
Feneketlen-tó. 1114 Budapest, Bus 86, Tram 19,
49.

Feneketlen-tó, which means bottomless lake, is surrounded
by a beautiful park filled with paths, statues and children’s
playgrounds. The lake is not as deep as its name suggests.
In the 19th century there was a brickyard in its place and
the large hole dug by the workers filled with water when
they accidentally hit a spring. Ever since, locals cherish the
park and they come to feed the ducks, relax on the benches
or take a stroll around the lake. The lake’s water quality in
the 1980s began to deteriorate, until a water circulation
device was built. The lake today is a popular urban place
for fishing.

Restaurants & Eateries

1
Infopark. Next to the university campus, Mon–Fri
8:00am–6:00pm.

Infopark is the first innovation and technology park of Cen-
tral and Eastern Europe. There are several cafeterias and
smaller sandwich bars hidden in the buildings, most of
them are really crowded between 12:00am-2:00pm.

2
University Cafeteria. University campus, Northern
building, Mon–Fri 8:00am–4:00pm.

The university has a cafeteria on the ground floor of the
Northern building. You can also buy sandwiches, bakeries,
etc here.

3
Goldmann restaurant. 1111 Budapest, Goldmann
György tér 1, Mon–Fri 11:00am–3:00pm.

http://www.obol.hu/home.html
https://www.mupa.hu/en
http://www.nemzetiszinhaz.hu/page.php?item=49
http://www.a38.hu/en/
http://visitbudapest.travel/local-secrets/feneketlen-to/
http://www.infopark.hu/article/2010/services/
http://www.goldmann.bme.hu/
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Goldmann is a cafeteria of the Technical University, pop-
ular among students for its reasonable offers. Soups are
usually quite good.

4

Fehérvári úti vásárcsarnok. 1117 Budapest,
Kőrösi József utca 7–9, Mon 6:30am–5:00pm,
Tue–Fri 6:30am–6:00pm, Sat 6:30am–3:00pm.

A farmers market with lots of cheap and fairly good native
canteens (e.g. Marika Étkezde) on the upper floors. You can
also find cheese, cakes, fruits, vegetables etc.

5
Anyu. 1111 Budapest, Bercsényi utca 8, Mon–Fri
8:00am–8:00pm.

Tiny bistro selling home-made soup, sandwiches and cakes.

6
Turkish restaurant. 1111 Budapest, Karinthy
Frigyes út 26, Mon–Sun 10:00am–0:00am.

This tiny Turkish restaurant offers gyros, baklava and sal-
ads at a reasonable price.

7
Stoczek. 1118 Budapest, Stoczek utca 1-3,
Mon–Fri 11:00am–3:00pm.

Stoczek is a cafeteria of the Technical University. It offers
decent portions for good price. There are two floors, a café
can be found downstairs.

8
Allee. 1117 Budapest, Október huszonharmadika
utca 8-10, Mon–Sun 10:00am–10:00pm.

A nearby mall with several restaurants on its 2nd floor.

9
Íz-lelő étkezde. 1111 Budapest, Lágymányosi utca
17, Mon–Fri 11:00am–5:00pm.

Decent lunch for low price, and student friendly atmo-
sphere. Only open from Monday to Friday!

10

Cserpes Milk Bar. 1117 Budapest, Október
Huszonharmadika utca 8-10, Mon–Sat
7:30am–10:00pm, Sun 9:00am–8:00pm.

A milk bar just next to the shopping center Allee. Great
place for having a breakfast or a quick lunch.

11
Wikinger Bistro. 1114 Budapest, Móricz Zsigmond
körtér 4, Mon–Sun 10:00am–21:00pm.

If you are up for hamburgers, Wikinger Bistro offers a huge
selection of different burgers.

12

Hai Nam Bistro. 1117 Budapest, Október
huszonharmadika utca 27, Mon–Sun
10:00am–9:00pm.

If you like Vietnamese cuisine and Pho, this may be the best
place in the city. It is a small place, so be careful, it is totally
full around 1:00pm.

13
Vakvarjú. 1117 Budapest, Kopaszi gát 2, Mon–Sun
11:30am–11:30pm.

Vakvarjú can be found on the Kopaszi gát. It is a nice open-
air restaurant where you can have lunch and relax next to
the Danube for a reasonable price.

Others

14
Gondola. 1115 Budapest, Bartók Béla út 69-71,
Mon–Sun 10:00am–8:00pm.

This is a nice little ice cream shop right next to the
Feneketlen-tó (Bottomless Lake).

Pubs

15
Bölcső. 1111 Budapest, Lágymányosi utca 19,
11:30am–11:00pm.

Bölcső has a nice selection of Hungarian and Czech craft
beers and one of the best all-organic homemade burger
of the city. Other than burgers, the menu contains home-
made beer snacks such as pickled cheese, hermelin (a typ-
ical Czech bar snack), and breadsticks. Bölcső also boasts
a weekly menu that makes a perfect lunch or dinner.

16 Szertár. 1117 Budapest, Bogdánfy utca 10.

Szertár is a small pub close to the university campus. It is
located at the BEAC Sports Center and offers sandwiches
and hamburgers as well. A perfect place to relax after a
long day at the university where you can also play kicker.

17

Pinyó. 1117 Budapest, Karinty Frigyes út 26, Mon
10:00am–0:00am, Tue–Sat 10:00am–1:00am, Sun
4:00pm–0:00am.

Squeezed to a basement, Pinyó looks like being after a tor-
nado: old armchairs, kicker table, tennis racket on the wall,
ugly chairs and tables. It does not promise a lot, but from
the bright side, it is completely foolproof. Popular meeting
place among students.

18
Lusta Macska. 1117 Budapest, Irinyi József utca
38, Mon–Sat 2:00pm–0:00am.

Lusta Macska is a cheap pub for students close to the
Schönherz dormitory of the Technical University. It is a tiny
place with very simple furniture.

19
Kocka. 1111 Budapest, Warga László út 1, Mon–Fri
6:30am–7:50pm.

Nearby the campus, the Kocka Pub is cool during the sum-
mer with its benches.

http://4sq.com/ca1mtU
https://www.facebook.com/anyulevesesszendvics
http://melodin.hu/etterem/stoczek-menza/
http://www.allee.hu/index
http://www.izlelo-etkezde.hu/
http://www.cserpestejivo.hu/index-en.php
http://wikinger.hu/en.index.html
https://www.facebook.com/HaiNamBistro
http://beach.vakvarju.com/
http://www.gondolacukraszda.hu/
https://www.facebook.com/bolcsobar
https://www.facebook.com/KlubPinyo
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Sights

1

Great Market Hall. 1093 Budapest, Vámház körút
1-3, Metro 4, Mon 6:00am–5:00pm, Tue–Fri
6:00am–6:00pm, Sat 6:00am–3:00pm.

Central Market Hall is the largest and oldest indoor market
in Budapest. Though the building is a sight in itself with its
huge interior and its colourful Zsolnay tiling, it is also a per-
fect place for shopping. Most of the stalls sell fruits and
vegetables but you can also find bakery products, meat,
dairy products and souvenir shops. In the basement there
is a supermarket.

2
Károlyi Garden. 1053 Budapest, Károlyi Mihály
utca 16, Metro 2, Tram 47, 49.

Károlyi Garden is maybe the most beautiful park in the cen-
ter of Budapest. It was once the garden of the castle next
to it (Károlyi Castle, now houses the Petőfi Literature Mu-
seum). In 1932 it was opened as a public garden. In the
nearby Ferenczy utca you can see a fragment of Budapest’s
old town wall (if you walk in the direction of Múzeum körút).

3
Gellért Hill and the Citadel. 1118 Budapest,
Metro 4, Bus 7, 86, 173.

The Gellért Hill is a 235 m high hill overlooking the Danube.
It received its name after St. Gellért who came to Hun-
gary as a missionary bishop upon the invitation of King St.
Stephen I. around 1000 a.d. If you approach the hill from
Gellért square, you can visit the Gellért Hill Cave, which is
a little chapel. The fortress of the Citadel was built by the
Habsburgs in 1851 to demonstrate their control over the
Hungarians. Though it was equipped with 60 cannons, it
was used as threat rather than a working fortification.
From the panorama terraces one can have a stunning view
of the city, especially at night. By a short walk one can
reach the Liberation Monument.

4

National Museum. 1088 Budapest, Múzeum körút
14-16, Metro 3, 4, Tram 47, 49, Tue–Sun
10:00am–6:00pm, 1100 HUF.

An 500-metre long route in a cave with narrow, canyon-like
corridors, large level differences, astonishing stone forma-
tions, drip stones, glittering calcium-crystals and prints of
primeval shells. Even with the 120 steps and the ladder that
have to be mounted, the whole tour can easily be fulfilled in
normal clothes and comfortable shoes.

5

Rudas Gyógyfürdő és Uszoda. 1013 Budapest,
Döbrentei tér 9 (a little South from Erzsébet bridge,
Buda side), Buses 5, 7, 8, Trams 18, 19, Mon–Sun
6:00am–8:00pm; Night bath: Fri–Sat
10:00pm–4:00am, 1500–4200 HUF.

Centered around the famous Turkish bath built in the 16th
century, Rudas Spa offers you several thermal baths and
swimming pools with water temperatures varying from 16
to 42 Celsius degrees.

6

Gellért Gyógyfürdő és Uszoda. 1118 Budapest,
Kelenhegyi út 4 (at Gellért tér), Metro 4, Buses 7,
86, Trams 18, 19, 47, 49, Mon–Sun
6:00am–8:00pm, 4900–5500 HUF.

Gellért Thermal Bath and Swimming Pool is a nice spa in the
center of the city.

7

Sziklatemplom (Cave Church). 1111 Budapest,
Szent Gellért tér, Metro 4, Tram 18, 19, 41, 47, 49,
Bus 7, 86, Mon–Sat 9:30am–7:30pm, 500 HUF.

The Cave Church, located inside Gellért Hill, isn’t your typ-
ical church with high ceilings and gilded interior. It has a
unique setting inside a natural cave system formed by ther-
mal springs.

Restaurants & Eateries

1
Pagony. 1114 Budapest, Kemenes utca 10,
Mon–Sun 10:00am–1:00am.

http://en.wikipedia.org/wiki/Great_Market_Hall_(Budapest)
http://welovebudapest.com/budapest.and.hungary/sights.1/karolyi.kert.karolyi.garden
http://www.budapestinfo.org/citadel.html
http://www.hnm.hu/
http://en.rudasfurdo.hu/
http://www.gellertbath.hu/
http://visitbudapest.travel/local-secrets/cave-church/
http://pagonykert.hu/
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If you are looking for a cool spot in the blazing summer heat
of Budapest, look no further. This joint was created by its
resourceful proprietor by converting an unused toddler’s
pool section of the Gellért bath into a trendy pub. While
there is no water (yet) in the pools, you can definitely find a
table with comfy chairs which are actually in a wading pool.

2

Hummus Bar. 1225 Budapest, Bartók Béla út 6,
Mon–Fri 10:00am–10:00pm, Sat–Sun
12:00am–10:00pm.

The famous homemade Hummus can be enjoyed in variety
of different dishes. The menu offers everything from a wide
variety of quality salads, soups, desserts, meats and veg-
etarian dishes. The food is prepared with great care using
only high quality products, and focusing on the simplicity of
preparation - thus allowing affordable pricing.

3

Főzelékfaló Ételbár. 1114 Budapest, Bartók Béla
út 43–47, Mon–Fri 10:00am–9:30pm, Sat
12:00–8:00pm.

Főzelékfaló Ételbár boasts a selection centered on főzelék,
a Hungarian vegetable dish that is the transition between a
soup and a stew, but you can get fried meats, several side
dishes, and desserts as well.

4

Főzelékfaló Ételbár. 1053 Budapest, Petőfi Sándor
utca 1 (Ferenciek tere), Mon–Fri 10:00am–8:00pm,
Sat 12:00–8:00pm.

Főzelékfaló Ételbár boasts a selection centered on főzelék,
a Hungarian vegetable dish that is the transition between a
soup and a stew, but you can get fried meats, several side
dishes, and desserts as well.

5
Púder. 1091 Budapest, Ráday utca 8, Sun–Thu
12:00am–1:00am, Fri–Sat 12:00am–2:00am.

Restaurant and bar with a progressive, eclectic interior that
was created by Hungarian wizards of visual arts. Its back
room gives home to a studio theatre. Many indoor and out-
door cafés, bars, restaurants and galleries are located in
the same street, the bustling neighborhood of Ráday Street
is often referred to as “Budapest Soho”.

Cafés

6
CD-fű. 1053 Budapest, Fejér György utca 1,
Mon–Sat 4:00pm–12:00pm.

As the third teahouse of Budapest, CD-fű is located in a
slightly labyrinth-like basement. With its five rooms it is a
bit larger than usual, and also gives place for several cul-
tural events.

7
Hadik kávéház. 1111 Budapest, Bartók Béla út 36,
Mon–Sat 9:00am–11:00pm.

A lovely place to relax and soak up the atmosphere of pre-
war years in Budapest. Hadik is a pleasant, old-fashioned
café serving excellent food.

8
Sirius Teaház. 1088 Budapest, Bródy Sándor utca
13, Mon–Sun 12:00am–10:00pm.

Sirius teahouse has the perfect atmosphere to have a cup
of tea with your friends, but it is better to pay attention to
the street numbers, this teahouse is very hard to find, there
is no banner above the entrance. Customers can choose
from 80 different types of tea.

Pubs

9

Mélypont Pub. 1053 Budapest, Magyar utca 23,
Mon–Tue 6:00pm–1:00am, Wed–Sat
6:00pm–2:00am.

Basement pub in the old city center. Homey atmosphere
with old furniture.

10

Trapéz. 1093 Budapest, Imre utca 2, Mon–Tue
10:00am–0:00am, Wed–Fri 10:00am–2:00am, Sat
12:00am–2:00am.

Nice ruin pub in an old house behind the Great Market Hall
which also has an open-air area. You can watch sports
events and play kicker on the upper floor.

11
Élesztő. 1094 Budapest, Tűzoltó utca 22, Mon–Sun
3:00pm–3:00am.

Élesztő is the Gettysburg battlefield of the Hungarian craft
beer revolution; it’s a like a mixture of a pilgrimage site for
beer lovers, and a ruin-pub with 17 beer taps, a home brew
bar, a theater, a hostel, a craft pálinka bar, a restaurant and
a café.

12
Mr. & Mrs. Columbo. 1013 Budapest, Szarvas tér
1, Mon–Sat 4:00pm–11:00pm.

A nice pub with excellent food and czech beers. Their her-
melin is really good.

13

Aréna Corner. 1114, Budapest, Bartók Béla út 76,
Sun–Thu 12:00am–0:00am, Fri–Sat
12:00am-2:00am.

A nice place to watch World Cup matches while drinking
Czech beer.

Others

14
Mikszáth square. 1088 Budapest, Mikszáth
Kálmán tér.

Mikszáth tér and the surrounding streets are home to many
cafés, pubs and restaurants usually with nice outdoor ter-
races. Many places there provide big screens to watch
World Cup matches.

http://www.hummusbar.hu/eng
http://fozelekfaloetelbar.hu/
http://fozelekfaloetelbar.hu/
http://puderbar.blogspot.hu/
http://www.cdfu.hu [www.cdfu.hu]
http://www.facebook.com/hadikkavehaz [www.facebook.com]
http://www.sirius-se.hu/teahaz/teahaz_en.php
http://trapezkocsma.hu/
https://www.facebook.com/elesztohaz
http://www.cafecolombo.hu/
http://www.arenacornercsehsorozo.hu
http://visitbudapest.travel/local-secrets/mikszath-square/
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1

St. Stephen’s Basilica. 1051 Budapest, Szent
István tér 1, Tram 2, Guided tours Mon–Fri
10:00am–3:00pm, 1600 HUF, student 1200 HUF.

This Roman Chatolic Basilica is the most important church
building in Hungary, one of the most significant tourist at-
tractions and the third highest building in Hungary. Equal
with the Hungarian Parliament Building, it is one of the
two tallest buildings in Budapest at 96 metres (315 ft) -
this equation symbolises that worldly and spiritual thinking
have the same importance. According to current regula-
tions there cannot be taller building in Budapest than 96
metres (315 ft). Visitors may access the dome by eleva-
tors or by climbing 364 stairs for a 360° view overlooking
Budapest.

2

Opera. 1061 Budapest, Andrássy út 22, Metro 1,
Tours start at 3:00pm and 4:00pm, 2900 HUF,
Students: 1900 HUF.

The Opera House was opened in 1884 among great splen-
dour in the presence of King Franz Joseph. The building was
planned and constructed by Miklós Ybl, who won the tender
among other famous contemporary architects.

3
Kossuth Lajos Square. 1055 Budapest, Metro 2,
Tram 2.

The history of Kossuth Lajos Square goes back to the first
half of the 19th century. Besides the Parliament, other at-
tractions in the square refer to the Museum of Ethnogra-
phy (which borders the square on the side facing the Parlia-
ment) and to several monuments and statues. The square
is easily accessible, since the namesake metro station is lo-
cated on the south side of the square.

4

Parliament. 1055 Budapest, Kossuth Lajos tér 1-3,
Metro 2, Tram 2, Mon–Fri 8:00am–6:00pm, Sat–Sun
8:00am–4:00pm, 3500 HUF, EU citizens and
students 1750 HUF, EU students 875 HUF.

The commanding building of Budapest Parliament
stretches between Chain Bridge and Margaret Bridge
on the Pest bank of the Danube. It draws your atten-
tion from almost every riverside point. The Gellért Hill
and the Castle Hill on the opposite bank offer the best
panorama of this huge edifice. The Hungarian Parliament
building is splendid from the inside too. You can visit it
on organised tours. Same-day tickets can be purchased
in limited numbers at our ticket office in the Museum
of Ethnography. Advance tickets are available online at
www.jegymester.hu/parlament.

5

Buda Castle and the National Gallery. 1014
Budapest, Szent György tér 2, Bus 16, Funicular,
Tue–Sun 10:00am–6:00pm, 900 HUF.

Buda Castle is the old royal castle of Hungary, which was
damaged and rebuilt several times, last time after World
War II. Now it houses the Széchényi Library and the Na-
tional Gallery, which exhibits Hungarian paintings from the
middle ages up to now. The entrance to the castle court is
free (except if there is some festival event inside). One of
the highlights of the court is the Matthias fountain which
shows a group of hunters, and the monument of Prince Eu-
gene Savoy. From the terrace of the monument you have a
very nice view of the city.

6

Fishermen’s Bastion. 1014 Budapest, Hess Andras
Square 1-3, Bus 16, 16A, 116, all day, tower: daily
9:00am–11:00pm, free, tower: 700 HUF, students:
350 HUF.

On the top of the old fortress walls, the Fishermen’s Bastion
was only constructed between 1895-1902. It is named af-
ter the fishermen’s guild because according to customs in
the middle ages this guild was in charge of defending this
part of the castle wall. As a matter of fact it has never had a
defending function. The architect was Frigyes Schulek, who
planned the building in neo-gothic style.

http://en.bazilika.biz/
http://www.opera.hu/en/operalatogatas
http://en.wikipedia.org/wiki/Kossuth_Lajos_t�r,_Budapest
http://www.parlament.hu/english-page
www.jegymester.hu/parlament
http://en.wikipedia.org/wiki/Buda_Castle
http://www.fishermansbastion.com/
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7

Matthias Church. 1014 Budapest, Szentháromság
tér 2, Bus 16, 16A, 116, Mon–Fri 9:00am–5:00pm,
Sat 9:00am–1:00pm, Sun 1:00pm–5:00pm,
1200 HUF, students: 800 HUF.

Matthias Church (Mátyás-templom) is a Roman Catholic
church located in front of the Fisherman’s Bastion at the
heart of Buda’s Castle District. According to church tradi-
tion, it was originally built in Romanesque style in 1015.
The current building was constructed in the florid late
Gothic style in the second half of the 14th century and was
extensively restored in the late 19th century. It was the
second largest church of medieval Buda and the seventh
largest church of medieval Hungarian Kingdom.

8
Heroes Square. 1146 Budapest, Hősök tere, Metro
1.

The monumental square at the end of Andrássy Avenue
sums up the history of Hungary. The millennium memorial
commemorates the 1000th anniversary of the arrival of the
Hungarians in the Carpathian Basin.

9 Városliget. 1146 Budapest, Városliget, Metro 1.

Városliget (City Park) is a public park close to the centre of
Budapest. It is the largest park in the city, the first trees and
walkways were established here in 1751. Its main entrance
is at Heroes Square, one of Hungary’s World Heritage sites.

10

Vajdahunyad vára. 1146 Budapest, Városliget,
Metro 1, Courtyard always open, Castle Tue–Sun
10:00am-5:00pm, Courtyard free, Castle 1100 HUF.

Vajdahunyad Castle is one of the romantic castles in Bu-
dapest, Hungary, located in the City Park by the boating
lake / skating rink. The castle, despite all appearances, was
built in 1896, and is in fact a fantasy pastiche showcasing
the architectural evolution through centuries and styles in
Hungary. The castle is the home of several festivals, con-
certs and the exhibitions of the Hungarian Agricultural Mu-
seum.

11

Museum of Fine Arts (Szépművészeti Múzeum).

1146 Budapest, Dózsa György út 41, Metro 1,
Tue–Sun 10:00am–6:00pm, 1800 HUF.

The Museum of Fine Arts is a museum in Heroes’ Square,
Budapest, Hungary. The museum’s collection is made up of
international art (other than Hungarian), including all pe-
riods of European art, and comprises more than 100,000
pieces. The Museum’s collection is made up of six depart-
ments: Egyptian, Antique, Old sculpture gallery, Old painter
gallery, Modern collection, Graphics collection.

12

Zoo Budapest (Fővárosi Állat és Növénykert).

1146 Budapest, Állatkerti körút 6-12,
+36 1 273 4900, Metro 1, Mon–Thu
9:00am–6:00pm, Fri–Sat 9:00am–7:00pm,
1900 HUF.

The Budapest Zoo and Botanical Garden is one of the oldest
in the world with its almost 150 years of history. Some of
its old animal houses were designed by famous Hungarian
architects. Nowadays it houses more than 1000 different
species. Currently the greatest attraction is Asha, the child
elephant.

13

Holnemvolt Park. 1146 Budapest, Állatkerti körút
6-12, Metro 1, Mon–Thu 10:00am–6:00pm, Fri–Sat
10:00am–7:00pm, 500 HUF.

Holnemvolt Park is situated next to the Zoo. It opened re-
cently in the place of the old amusement park. It can either
be visited with a Zoo ticket, or separately. Besides some lo-
cal and some exotic species, it offers entertainment rides,
some of which are nearly a hundred years old, and have
been inherited from the oldest amusement parks of the
city (wooden roller coaster, traditional carousel, enchanted
castle).

14
Great Synagogue. , Metro 2, Bus 7,9, Tram 47,49,
Sun–Thu 10:00am–4:00pm, 3000 HUF.

The Great Synagogue in Dohány Street is the largest Syna-
gogue in Europe and the second largest in the world. It can
accommodate close to 3,000 worshipers. It was built be-
tween 1854 and 1859 in Neo-Moorish style. During World
War II, the Great Synagogue was used as a stable and as
a radio communication center by the Germans. Today, it’s
the main center for the Jewish community.

15
Millenáris. 1024 Budapest, Kis Rókus utca 16–20,
Tram 4, 6 (Széna tér), Fri–Sun 6:00am–11:00pm.

Located next to the Mammut mall, at the site of the one-
time Ganz Electric Works, Millenáris is a nice park and
venue for exhibitions, concerts, performances. You can
also see a huge hyperbolic quadric and its two reguli.

16
Batthyány tér. 1011 Budapest, Metro M2, Tram 19,
41, Bus 86, Suburban railway 5.

Batthyány square has a great view on the beautiful Hungar-
ian Parliament, one of Europe’s oldest legislative buildings,
a notable landmark of Hungary.

17
Erzsébet tér. 1051 Budapest, Tram 47, 49, Metro 1,
2, 3.

Erzsébet Square is the largest green area in Budapest’s in-
ner city. The square was named after Elisabeth, ’Sisi’, wife
of Habsburg Emperor Franz Joseph, in 1858. The square’s
main attraction is the Danubius Fountain, located in the
middle of the square, symbolizing Hungary’s rivers. One of
the world’s largest mobile Ferris wheels can be also found
on the square. The giant wheel offers fantastic views over
Budapest day and night. Standing 65 meters tall, the wheel
with its 42 cars is Europe’s largest mobile Ferris wheel.

18
Hungarian Academy of Sciences. 1051
Budapest, Széchenyi István tér 9, Tram 2.

The Hungarian Academy of Sciences is the most important
and prestigious learned society of Hungary. Its seat is at
the bank of the Danube in Budapest.

19 Playground for adults. 1124 Budapest, Vérmező.

A playground for adults? Yes, this indeed exists and can be
found in a nice park on the Buda side, close to the castle.

Restaurants & Eateries

1

Onyx restaurant. 1051 Budapest, Vörösmarty tér
7, Tue–Fri 12:00am–2:30pm, 6:30pm–11pm; Sat
6:30pm–11:00pm.

Exclusive atmosphere, excellent and expensive food – Onyx
is a highly elegant restaurant with one Michlein Star. Do
not forget to reserve a table.

http://www.matyas-templom.hu/
http://www.budapestinfo.org/herossquare.html
http://varosliget.info/
http://www.vajdahunyadcastle.com/
http://www.szepmuveszeti.hu/main
http://www.zoobudapest.com/en
http://www.zoobudapest.com/en/holnemvolt-park
http://www.dohanystreetsynagogue.hu/
http://welovebudapest.com/budapest.and.hungary/sights.1/millenaris.park
http://visitbudapest.travel/local-secrets/batthyany-square/
http://visitbudapest.travel/local-secrets/erzsebet-square/
http://mta.hu/english/
http://jatszoterkereso.hu/i-kerulet/vermezo-felnott-jatszoter/
http://www.onyxrestaurant.hu/ [www.onyxrestaurant.hu]
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2
Pizza King. 1072 Budapest, Akácfa utca 9,
Mon–Sun 10:00am–9:00pm.

During lunchtime on weekdays offers nice menus for
900 HUF, and you can buy cheap pizza there at any time
of the day. Also runs pizza takeaways at many locations in
the city.

Pubs

3
Snaps Galéria. 1077 Budapest, Király utca 95,
Mon–Fri 2:00pm–0:00am, Sat 6:00pm–0:00am.

Snaps is a tiny two-floor pub located in the sixth district.
From the outside it is nothing special, but entering it has a
calm atmosphere. The beers selection - Belgian and Czech
beers- is quite extraordinary compared to other same level
pubs.

4

Noiret Pool and Darts Hall, Cocktail Bar and Pub.

1066 Budapest, Dessewffy utca 8-10, Mon–Sun
10:00am–0:40am.

A good place to have a drink and play pool, darts, snooker,
or watch soccer.

5
Szimpla Kert. 1075 Budapest, Kazinczy utca 14,
Mon–Sun 12:00am–3:00am.

Szimpla Kert (Simple Garden) is the pioneer of Hungarian
ruin pubs. It is really a cult place giving new trends. Un-
doubtedly the best known ruin pub among the locals and
the tourists, as well.

Others

6

Mammut Shopping and Entertainment Centre.

1024 Budapest, Lövőház utca 2, Fri–Sat
10:00am–9:00pm, Sun 10:00am–6:00pm.

A twin mall in the heart of Buda.

7
WestEnd City Center. 1062 Budapest, Váci út 1-3,
Mon–Sun 8:00am–11:00pm.

A big mall with stores, restaurants etc. and a roof garden.

8
Corvintető. 1085 Budapest, Blaha Lujza tér 1,
Mon–Sun 6:00pm–6:00am.

Situated on the rooftop of once-glorious Corvin Department
Store, Corvintető offers world-class DJs and concerts every
day of the week. Recommended by The New York Times. Do
not mess it up with Corvin Negyed, another stop of trams 4
and 6.

http://pizza-king.hu/cod-pizzaking/page-home_page/lang-en/
http://www.snapsgaleria.hu/index.php
http://www.noiret.hu [www.noiret.hu]
http://www.szimpla.hu/en
http://www.mammut.hu/lang/en/
http://www.westend.hu/
http://corvinteto.hu/en
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Margaret Island (Margitsziget) is the green heart of Budapest. It lies in the middle of the Danube between Mar-

garet Bridge and Árpád Bridge. Apart from a couple of hotels and sport facilities, there are no buildings on the

Island, it is a huge green park with promenades and benches, great for a date or a picnic. Everyone can find

their own cup of tea here: there is the Hajós Alfréd National Sports Swimming Pool, the Palatinus and the running

track for the sporty, the petting zoo, the music fountain and the Water Tower for families, and we recommend the

Japanese Garden or a ride on a 4-wheel bike car for couples. If you’re hungry for culture, check out the open-air

stages and the medieval ruins of the Island.

Sights

1
Entrance of Margit-sziget. Budapest, Margit híd,
Trams 4 and 6 (Margit híd, Margit-sziget).

Here you can enter the beautiful Margit-sziget (Margaret Is-
land) on foot. However, you may also take bus 26 to get to
the Island.

2

Kiscelli Múzeum. 1037 Budapest, Kiscelli utca
108, Bus 17, 160, 260, Tue–Sun 10:00am–6:00pm,
500 HUF.

Kiscelli Múzeum is located in a beautiful baroque
monastery in Old-Buda. It offers exhibitions on the
history of Budapest between the 18–21. centuries.

3

Görzenál. 1036 Árpád fejedelem útja 125, Bus 29,
Suburban railway 5, Mon–Fri 2:00pm–8:00pm,
Sat–Sun 9:30am–8:00pm, Mon–Fri 500 HUF,
Sat–Sun 900 HUF.

Görzenál currently is the biggest outdoor roller skating
rink in Europe. The skating surface of the Gorzenal Roller
Skate and Recreational Park is 14,000 square meters. This
rink, which is located in picturesque surroundings along the
Danube and Margaret Island, has a skating track as well as
park structures for aggressive roller sports and BMX.

4
Pál-völgyi Cave. 1025 Budapest, Szépvölgyi út
162, Bus 65, Tue–Sun 10:00am–4:00pm, 1300 HUF.

An 500-metre long route in a cave with narrow, canyon-like
corridors, large level differences, astonishing stone forma-
tions, drip stones, glittering calcium-crystals and prints of
primeval shells. Even with the 120 steps and the ladder that
have to be mounted, the whole tour can easily be fulfilled in
normal clothes and comfortable shoes.

5

Gül baba’s türbe. 1023 Budapest, Mecset utca 14
(entrance: Türbe tér 1), Tram 4, 6, Tue–Sun
10:00am–6:00pm, free.

The tomb of Gül Baba, “the father of roses”, who was a
Turkish poet and companion of Sultan Suleiman the Magnif-
icent. He died shortly after the Turkish occupation of Buda
in 1541 and his tomb is said to be the northernmost pil-
grimage site of the muslims in the world. It is located on
a hilltop, surrounded by a beautiful garden which offers a
nice view of the city.

Bars

1

Holdudvar Courtyard. 1138 Budapest,
Margitsziget, Mon–Tue 11:00am–0:00am, Wed
11:00am–2:00am, Thu 11:00am–4:00am, Fri–Sat
11:00–5:00, Sun 11:00–0:00am.

A great entertainment spot in Budapest where everybody
finds something to do: an open-air cinema, café, bar. The
gallery exhibits works of contemporary fine art. Holdudvar
hosts fashion shows and various cultural events.

http://www.kiscellimuzeum.hu/
http://www.gorzenal.hu/
http://dinp.nemzetipark.gov.hu/index.php?pg=menu_2080
http://en.wikipedia.org/wiki/Tomb_of_G�l_Baba
https://www.facebook.com/holdudvaroldal
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1 Edmonds’ theorems

LetD = (V ,A) be a directed graph with designated root-node r. An arborescence is a directed tree in which every
node is reachable from a given root node. We sometimes identify an arborescence (U,F) with its edge-set F and
will say that the arborescence F spans U . An arborescence F with root node r is called an r-arborescence.
We call D rooted k-edge-connected if for each v ∈ V , there exist k edge-disjoint directed paths from r to v. By
Menger’s theorem, this is equivalent to %(X) ≥ k whenever ∅ ⊂ X ⊆ V − r. A fundamental theorem on packing
arborescences is due to Edmonds who gave a characterization of the existence of k edge-disjoint spanning
arborescences rooted at the same node [6].

Theorem 1.1 (Edmonds’ theorem, weak form). Let D = (V ,A) be a digraph with root r. D has k edge-disjoint
spanning r-arborescences if and only if D is rooted k-edge-connected.

This result inspired great many extensions in the last three decades. Edmonds actually proved his theorem in
a stronger form where the goal was packing k edge-disjoint branchings of given root-sets. A branching is a
directed forest in which the in-degree of each node is at most one. The set of nodes of in-degree 0 is called the
root-set of the branching. Note that a branching with root-set R is the union of |R| node-disjoint arborescences
(where an arborescence may consist of a single node and no edge but we always assume that an arborescence
has at least one node). For a digraph D = (V ,A) and root-set ∅ ⊂ R ⊆ V a branching (V ,B) is called a spanning

R-branching of D if its root-set is R. In particular, if R is a singleton consisting of an element r, then a spanning
branching is a spanning r-arborescence.

Theorem 1.2 (Edmonds’ theorem, strong form I.). In a digraph D = (V ,A), let R = {R1, . . . ,Rk} be a family of k
non-empty (not necessarily disjoint or distinct) subsets of V . There are k edge-disjoint spanning branchings of
D with root-sets R1, . . . ,Rk , respectively, if and only if

%D(X) ≥ p(X) for all ∅ ⊂ X ⊆ V (1)

where p(X) denotes the number of root-sets Ri disjoint from X.

Observe that in the special case of Theorem 1.2 when each root-setRi is a singleton consisting of the same node
r, we are back at Theorem 1.1. Conversely, when the Ri ’s are singletons (which may or may not be distinct), then
Theorem 1.2 easily follows from Theorem 1.1. Indeed, add a new node r and directed arcs rri to the digraph
(where Ri = {ri}) and simply apply Theorem 1.1. However, for general Ri ’s no reduction is known.

Theorem 1.2 can be reformulated in terms of extending k arborescences that are partially built up.

Theorem 1.3 (Edmonds’ disjoint arborescences theorem, strong form II.). Let D = (V ,A) be a digraph with r ∈ V
and F = {F′1, . . . ,F

′
k} be a family of edge-disjoint –not necessarily spanning– arborescences rooted at r. There

are edge-disjoint spanning r-arborescences F1, . . . ,Fk such that F′i ⊆ Fi if and only if

%(X) ≥ pF (X) for all ∅ , X ⊆ V − r,

where pF (X) = |{i : V (F′i )∩X = ∅}|.

It is easy to see that Theorems 1.2 and 1.3 are equivalent. Indeed, Theorem 1.2 follows from Theorem 1.3 by
taking Ri := V (F′i ). The other direction can be shown by adding a new node r to the graph and taking arc sets
F′i := {rv : v ∈ Ri} as starting arborescences.

Another possible way of stating Edmonds’ strong theorem is as follows.

Theorem 1.4 (Edmonds’ theorem, strong form III.). LetD = (V ,A) be a digraph whose node set is partitioned into
a root-set R = {r1, . . . , rk} (of distinct roots) and a terminal set T . Suppose that no edge of D enters any node of
R. There are k disjoint arborescences F1, . . . ,Fk in D so that Fi is rooted at ri and spans T + ri for each i = 1, . . . , k
if and only if %D(X) ≥ |R−X | for every subset X ⊆ V for which X ∩ T , ∅.
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This follows from Theorem 1.2 by applying it to the subgraph D ′ of D induced by T with choice Ri = {v :
there is an edge riv ∈ A} (i = 1, . . . , k). The same construction shows the reverse implication, too.

The proofs of Theorems 1.1-1.4 are omitted here as in Section 3 we prove an abstract generalization of these
results.

2 Direct extensions

The following proper extension of Theorem 1.4 was derived in [2] with the help of a theorem of Frank and Tar-
dos [10] on covering supermodular functions by digraphs.

Theorem 2.1 (Frank and Tardos). Let D = (V ,A) be a digraph whose node set is partitioned into a root-set
R = {r1, . . . , rq} and a terminal set T . Suppose that no edge of D enters any node of R. Let m : R → Z+ be a
function and let k = m(R). There are k disjoint arborescences in D so that m(r) of them are rooted at r and
spanning T + r for each r ∈ R if and only if

%D(X) ≥m(R−X) for every subset X ⊆ V for which X ∩ T , ∅. (2)

One way to extend Edmonds’ theorems is to decrease the size of the node sets spanned by the arborescences
in question. However, it is not easy to find such a generalization as one can easily run into difficult questions.
The next theorem shows that even an apparently slight weakening of the reachability conditions result in NP-
complete problems.

Theorem 2.2. Let D = (V ,A) be a digraph with u1,u2,v1,v2 ∈ V and let U1 = V , U2 = V − v1. The problem of
finding two edge-disjoint arborescences rooted at u1,u2 and spanning U1,U2, respectively, is NP-complete.

Proof. Let D ′ be a digraph with u1,u2,v1,v2 ∈ V . It is well-known that the problem of finding edge-disjoint u1v1
and u2v2 paths is NP-complete. We may suppose that the in-degree of v1 and v2 is one. Let D denote the graph
arising from D ′ by adding arcs v1v and v2v to A for each v ∈ V except for the arc v2v1. Clearly, there are edge-
disjoint directed u1v1 and u2v2 paths in D ′ if and only if there are two arborescences F1,F2 in D such that Fi is
rooted at ui and spans Ui .

In 2009, Kamiyama, Katoh and Takizawa [17] were able to find a surprising new proper extension of Edmonds’
strong theorem which implies Theorem 2.1 as well.

Theorem 2.3 (Kamiyama, Katoh and Takizawa). Let D = (V ,A) be a digraph and R = {r1, . . . , rk} ⊆ V a list of k
(possibly not distinct) root-nodes. Let Si denote the set of nodes reachable from ri . There are edge-disjoint
ri-arborescences Fi spanning Si for i = 1, . . . , k if and only if

%D(Z) ≥ p1(Z) for every subset Z ⊆ V (3)

where p1(Z) denotes the number of sets Si for which Si ∩Z , ∅ and ri < Z.

The original proof of Theorem 2.3 is more complicated than that of Theorem 1.2 due to the fact that the corre-
sponding set function p1 in the theorem is no more supermodular. Based on Theorem 2.3, Fujishige [11] found
a further extension. For two disjoint subsets X and Y of V of a digraph D = (V ,A), we say that Y is reachable

from X if there is a directed path in D whose first node is in X and last node is in Y . We call a subset U of nodes
convex if there is no node v in V \U so that U is reachable from v and v is reachable from U .

Theorem 2.4 (Fujishige). Let D = (V ,A) be a directed graph and let R = {r1, . . . , rk} ⊆ V be a list of k (possibly
not distinct) root-nodes. Let Ui ⊆ V be convex sets with ri ∈ Ui . There are edge-disjoint ri-arborescences Fi
spanning Ui for i = 1, . . . , k if and only if

%D(Z) ≥ p1(Z) for every subset Z ⊆ V (4)

where p1(Z) denotes the number of sets Ui ’s for which Ui ∩Z , ∅ and ri < Z.
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Note that the set of nodes reachable from an ri form a convex set, hence Theorem 2.3 immediately follows from
Theorem 2.4. It has been showed recently in [18] that these results are in fact equivalent.

3 Abstract extensions

There is another line of results which extends Edmonds’ theorems in a different direction. Frank observed that
Edmonds’ weak theorem can be reformulated in terms of covering intersecting set families and thus gave an
abstract extension of Edmonds’ results [8]. Given a directed graph D = (V ,A), a family F ⊆ 2V of subsets of V
is called intersecting if X,Y ∈ F and X ∩ Y , ∅ implies X ∩ Y ,X ∪ Y ∈ F . We say that an arc a ∈ A covers a set
X ∈ F if a enters X, that is, the tail of a is outside of X while the head of A is inside X. A subset of edges A′ ⊆ A
covers an intersecting family F if each member of F is covered by at least one arc from A′ .

Theorem 3.1 (Frank). Let D = (V ,A) be a digraph and F ⊆ 2V be an intersecting family. Then there are pairwise
disjoint arc-sets A1, . . . ,Ak such that Ai covers F for i = 1, . . . , k if and only if

%(X) ≥ k for all X ∈ F .

By choosing F = 2V−r − ∅, we immediately obtain the weak form of Edmonds’ disjoint arborescences theorem.
However, a weakness of Frank’s result is that it does not imply the strong form. This was overcome in [20] by
Szegő, who introduced the notion of mixed intersection property. Given a digraph D = (V ,A) and k intersecting
families F1, . . . ,Fk ⊆ 2V , we say that these families satisfy the mixed intersection property if X ∈ Fi ,Y ∈ Fj ,X ∩
Y , ∅ implies X ∩Y ∈ Fi ∩Fj .

Theorem 3.2 (Szegő). Let D = (V ,A) be a digraph and F1, . . . ,Fk ⊆ 2V be intersecting families satisfying the
mixed intersection property. Then there are pairwise disjoint arc sets A1, . . . ,Ak ⊆ A such that Ai covers Fi if and
only if

%(X) ≥ p(X) for all X ⊆ V , (5)

where p(X) denotes the number of Fi ’s containing X.

Proof. We will need the following preparatory lemma.

Lemma 3.3. If p(X) > 0, p(Y ) > 0 and X ∩ Y , ∅, then p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). Moreover, if there is an
Fi for which X ∩Y ∈ Fi and X,Y < Fi , then strict inequality holds.

Proof. Consider the contribution of one family Fi to the two sides of the claimed inequality. If this contribution to
the left hand side is two, that is, if both X and Y are in Fi , then so are X∩Y and X∪Y and hence the contribution
to the right hand side is also two. Suppose now that X belongs to Fi but Y does not. Since p(Y ) > 0 is assumed,
Y belongs to an Fj . But then X ∩Y belongs to Fi due to the mixed intersection property, that is, in this case the
contribution of Fi to the right hand side is at least one. An Fi with the properties in the second part contributes
only to the right hand side ensuring this way the strict inequality.

Condition (5) is clearly necessary. We prove the sufficiency by induction on
∑
i |Fi |. There is nothing to prove if

this sum is zero so we may assume that F1, say, is non-empty. LetU be a maximal member of F1. Call a set tight
if %(X) = p(X) > 0.

Claim 3.4. There is an edge e entering U in such a way that each tight set covered by e is in F1.

Proof. Suppose indirectly that no such an edge exists. Then each edge e entering U enters some tight set
M < F1. By the mixed intersection property, we cannot have M ⊆ U . Select a minimal tight set M < F1 which
intersects U . Since p is monotone non-increasing, we know that p(U ∩M) ≥ p(M). Here, in fact, strict inequality
must hold since U ∩M ∈ F1 and M < F1. The inequality p(U ∩M) > p(M) implies that D has an edge f = uv for
which u ∈M −U, v ∈U ∩M. By the indirect assumption, f enters some tight set Z < F1. Lemma 3.3 implies that
the intersection ofM and Z is tight. Since neither ofM and Z is in F1, the second part of the lemma implies that
M ∩Z is not in F1 either, contradicting the minimal choice of M.



Kristóf Bérczi

24
Kristóf Bérczi

24
Kristóf Bérczi

24

Let e be an edge ensured by Claim 3.4. Let F ′1 := {X ∈ F1 : e does not enter X}. Then F ′1 is an intersecting family.
We claim that the mixed intersection property holds for the families F ′1 ,F2, . . . ,Fk . Indeed, let X ∈ F ′1 and Y ∈ Fi
be two intersecting sets for some i = 2, . . . , k. Since F ′1 ⊆ F1, one has X ∩ Y ∈ Fi . If indirectly X ∩ Y is not in F ′1 ,
then e enters X ∩ Y . Since e enters U and U was selected to be maximal in F1, it follows that X ⊆ U . But then e
must enter X as well, contradicting the assumption X ∈ F ′1 .

Let p′(X) denote the number of these families containing X (that is, p′(X) = p(X)−1 if X ∈ F1 and e enters X and
p′(X) = p(X) otherwise). Let %′ denote the in-degree function with respect to D ′ := D − e. The choice of e implies
%′ ≥ p′ . By induction, the edge set of D ′ can be partitioned into k parts F′1, . . . ,Fk in such a way that F′1 covers F1
and Fi covers Fi for i = 2, . . . , k. By letting F1 := F′1 + e, we obtain a partition of A requested by the theorem.

When the k families are identical, we are back at Theorem 3.1. When Fi = 2V−Ri −{∅}, we obtain Edmonds’ strong
theorem (Theorem 1.2). The proof of Szegő is based on the observation that the mixed intersection property
implies that p is positively intersecting supermodular and this is why the above approach works.

Although Szegő’s theorem provides a common extension of Edmonds’ and Frank’s results, it does not seem to
easily imply the result of Kamiyama et al. The problem with the natural choice Fi = 2Ui−ri − ∅ (i = 1, . . . , k) is that
an arbitrary edge set Ai covering Fi does not necessarily contain an ri-arborescence spanning Ui . Indeed, it
may happen that a set in 2Ui−ri − ∅ is covered in Ai by an edge which has a tail outside of Ui and hence can not
be added to such an arborescence.

To circumvent this problem, a bi-set counterpart of Szegő’s theorem was proved in [2]. Given a digraph D =
(V ,A), a bi-set is a pair X = (XI ,XO) such that XI ⊆ XO ⊆ V where XI and XO are called the inner and the outer

set of X, respectively. We will identify a bi-set X = (XO,XI ) for which XO = XI with the simple set XI and hence
the following notation can be also interpreted for sets. The set of all bi-sets on ground-set V is denoted by
P2(V ) = P2. The intersection and union of bi-sets can be defined in a straightforward manner: for bi-sets X and
Y , we define X ∩Y = (XI ∩YI ,XO ∩YO) and X ∪Y = (XI ∪YI ,XO ∪YO). An edge a ∈ A enters or covers a bi-set X
if its head is in XI and its tail is outside XO. A subset of edges A′ ⊆ A covers a bi-set family F if each member
of F is covered by at least one arc from A′ . The set of arcs entering a bi-set X is denoted by ∆in(X), while the
number of arcs entering X is denoted by %(X). An arc is contained in bi-set X if its tail is in XO and its head is
in XI . We say that X ⊆ Y if XI ⊆ YI and XO ⊆ YO. Two bi-sets are intersecting if XI ∩YI , ∅. A family F of bi-sets
is called intersecting if X,Y ∈ F ,XI ∩YI , ∅ implies X ∩Y ,X ∪Y ∈ F .

A bi-set function is a function p : P2→ R. A bi-set function p is called fully supermodular (respectively, inter-
secting supermodular) if

p(X) + p(Y ) ≤ p(X ∩Y ) + p(X ∪Y )

for X,Y ∈ P2 (respectively, for intersecting X,Y ∈ P2). If the reverse inequality holds, we call p fully submodular.
A basic example for a submodular bi-set function is the in-degree function %. We call p positively intersecting

supermodular or positively intersecting submodular if the corresponding inequality holds whenever X and Y
are intersecting and p(X),p(Y ) > 0.

We say that the bi-set families F1, . . . ,Fk satisfy the mixed intersection property if X ∈ Fi ,Y ∈ Fj ,XI ∩ YI , ∅
implies X ∩Y ∈ Fi ∩Fj . The following theorem extends the result of Szegő to bi-set families.

Theorem 3.5 (Bérczi and Frank). LetD = (V ,A) be a digraph and F1, . . . ,Fk be intersecting bi-set families satisfy-
ing the mixed intersection property. Then there are pairwise disjoint arc-sets A1, . . . ,Ak ⊆ A such that Ai covers
Fi if and only if

%(X) ≥ p2(X) for all X ∈ P2,

where p2(X) denotes the number of Fi ’s containing X.

4 Arborescences with arbitrary root nodes

LetD = (V ,A) be a digraph. We call a vector z : V → {0,1, . . . , k} a root-vector if there are k edge-disjoint spanning
arborescences in D so that each node v is the root of z(v) arborescences. From Edmonds’ theorem one easily
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gets the following characterization of root-vectors.

Theorem 4.1. Given a digraphD ′ = (V ′ ,A′), a vector z is a root-vector if and only if z(V ′) = k and z(X) ≥ k−%D ′ (X)
for every non-empty subset X ⊆ V ′ .

Proof. The necessity of both conditions is evident. For the sufficiency, extend D ′ with a node r and z(v) parallel
edges from r to v for each v ∈ V ′ . In the resulting digraph D the out-degree of r is exactly k and %D(X) =
z(X) + %D ′ (X) ≥ k holds for every non-empty X ⊆ V ′ . By Edmonds’ theorem, D contains k edge-disjoint spanning
arborescences of root r. Since δD(r) = k, each of these arborescences must have exactly one edge leaving r and
therefore their restrictions to A′ form k arborescences of D ′ of root-vector z.

By combining Theorem 4.1 with an earlier result of Frank and Tardos [9], one arrives at the following result
appeared in [4, 7].

Theorem 4.2 (Cai, Frank). In a digraph D = (V ,A) there exist k edge-disjoint spanning arborescences so that

1. each node v is the root of at most g(v) of them if and only if

t∑
i=1

%D(Xi) ≥ k(t − 1) (6)

holds for every subpartition {X1, . . . ,Xt} of V , and

g(X) ≥ k − %D(X) (7)

for every ∅ ⊂ X ⊆ V ;

2. each node v is the root of at least f (v) of them if and only if f (V ) ≤ k and

t∑
i=1

%D(Xi) ≥ k(t − 1) + f (X0) (8)

holds for every partition {X0,X1, . . . ,Xt} of V for which t ≥ 1 and only X0 may be empty;

3. each node v is the root of at least f (v) and at most g(v) of them if and only if the lower bound problem and
the upper bound problem have separately solutions.

Two interesting special cases are as follows.

Corollary 4.3. A digraph D = (V ,A) includes k edge-disjoint spanning arborescences (with no restriction on

their roots) if and only if
t∑
i=1

%D(Xi) ≥ k(t − 1) for every subpartition {X1, . . . ,Xt} of V .

Corollary 4.4. A digraph D = (V ,A) includes k edge-disjoint spanning arborescences whose roots are distinct

if and only if |X | ≥ k − %D(X) holds for every non-empty subset X ⊆ V set and
t∑
i=1

%D(Xi) ≥ k(t − 1) for every

subpartition {X1, . . . ,Xt} of V .

Theorem 4.2 characterized root-vectors satisfying upper and lower bounds. One may be interested in a possible
generalization for the framework described in Theorem 2.1. We show that this problem is NP-complete. Indeed,
let D = (V ,A) be a digraph whose node set is partitioned into a root-set R = {r1, . . . , rq} and a terminal set T .
Suppose that no edge of D enters any node of R.

Theorem 4.5. The problem of deciding whether there are k disjoint arborescences so that they are rooted at
distinct nodes in R and each of them spans T is NP-complete.
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Proof. Let T be a set with even cardinality and let R = {R1, . . . ,Rq} be subsets of T so that |Ri | ≥ 2 for i = 1, . . . , q.
It is well-known that the problem of deciding whether T can be covered with k members of R is NP-complete.
Let DT be a directed graph on T with %DT (Z) = k − 1 for each Z ⊆ T , |Z | = 1 or |Z | = |T | − 1 and %DT (Z) ≥ k
otherwise. Such a graph can be constructed easily as follows. Take the same directed Hamilton cycle on the
nodes k − 2 times, then add the arcs vivi+ |T |2

to the graph for each i = 0, . . . , |T | − 1 where v0, . . . , v|T |−1 denote the

nodes according to their order around the cycle (the indices are meant modulo |T |). The arising digraph satisfies
the in-degree conditions.

Extend the graph with R = {r1, . . . , rq} and with a new arc riv for each v ∈ Ri . Let ri1 , . . . , rik ∈ R be a set of dis-
tinct root-nodes. Edmonds’ disjoint branchings theorem implies that there are edge-disjoint ri-arborescences Fi
spanning ri + T for i = i1, . . . , ik if and only if %DT (Z) ≥ p(Z) for each ∅ ⊂ Z ⊆ T where p(Z) denotes the number of
Ri ’s (with i ∈ {i1, . . . , ik}) disjoint from Z. For a subset Z with |Z | ≥ 2 the inequality holds automatically because
of the structure of DT and |Ri | ≥ 2. Hence one only has to care about sets containing a single node and so the
existence of the arborescences is equivalent to cover T with Ri1 , . . . ,Rik .

The observation above means that T can be covered with k members of R if and only if the digraph includes k
arborescences rooted at different nodes in R.

5 Other notions of connectivity

5.1 Rooted node-connectivity

A natural idea is to reformulate Edmonds’ theorem to the node-connected case. Let D and r denote a digraph
and a root-node as previously, then D is called rooted k-node-connected (or rooted k-connected, for short)
if there exist k internally node-disjoint directed paths from r to v for each v ∈ V , that is, any two of the paths
have only r and v in common. The maximum number of node-disjoint r − v paths is denoted by κ(r,v). For an
r-arborescence F, a node u is an F-ancestor of another node v if there is a directed path from u to v in F. We
denote this unique path by F(u,v). For example, the root is the F-ancestor of all other nodes. The maximum

number of edge-disjoint r − v paths is denoted by λ(r,v). We say that a node w dominates a node v if every
path from r to v includes w. We denote the set of nodes dominating v by dom(v). Clearly, r and v are in dom(v).

Note that two r-arborescences F1 and F2 are edge-disjoint if and only if for each v ∈ V the two paths F1(r,v) and
F2(r,v) are edge-disjoint. That gives the idea of the following definition: we call two spanning r-arborescences
F1 and F2 independent if F1(r,v) and F2(r,v) are internally node-disjoint for each v ∈ V .

As a node-disjoint counterpart of Edmonds’ theorem, Frank conjectured that in a rooted k-connected graph
there exist k independent arborescences (see eg. [19]). The case k = 2 was verified by Whitty [23], but for k ≥ 3
the statement does not hold as was shown by Huck [13]. However, Huck also proved that the conjecture is true
for simple acyclic graphs [14] and verified it for planar multigraphs except for a few values of k [15].

Theorem 5.1.

1. (Whitty) Let D = (V ,A) be a digraph with root r. D has two independent spanning r-arborescences if and
only if D is rooted 2-connected.

2. (Huck) Let D = (V ,A) be an acyclic digraph with root r such that D − r is simple. D has k independent
spanning r-arborescences if and only if D is rooted k-connected.

3. (Huck) Let D = (V ,A) be a directed multigraph with root r and k ∈ {1,2} ∪ {6,7,8, . . .} such that D is planar if
k ≥ 6. D has k independent spanning r-arborescences if and only if D is rooted k-connected.
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5.2 Strongly arc-disjoint arborescences

In [5], Colussi, Conforti and Zambelli introduced another type of disjointness concerning arborescences, which
put slightly stronger restrictions on the paths than edge-disjointness. In a digraph we call two arcs symmetric

if they share the same endnodes but have opposite orientations. Two edge-disjoint arborescences F1,F2 rooted
at r are called strongly edge-disjoint if the paths F1(r,v),F2(r,v) do not contain a pair of symmetric arcs. In [5],
the following strengthening of Edmonds’ theorem was proposed.

Conjecture 5.2 (Colussi, Conforti, Zambelli). Let D = (V ,A) be a digraph with root r. D has k strongly edge-
disjoint spanning r-arborescences if and only if D is rooted k-edge-connected.

For k = 2, the conjecture was verified in [5]. As Colussi et al. note, the motivation of the problem is the following. It
is easy to see that a similar statement holds for strongly edge-disjoint directed s−t paths. Hence the conjecture,
if it were true, could be considered as a common generalization of Edmonds’ disjoint arborescences theorem
and Menger’s theorem. Note that the arborescences in the conjecture are allowed to contain pairs of symmetric
arcs, only the paths in question are required not to do so.

In what follows, we give a generalization of the case k = 2 and show that the conjecture does not hold for k ≥ 3 .
As a side result, we get a new proof of a theorem of Georgiadis and Tarjan.

Disjoint Steiner-arborescences

For a digraphD = (V +r,A) with root r and terminal set T ⊆ V , an r-arborescence spanning T is called a Steiner-

arborescence. Two Steiner-arborescences F1 and F2 are called edge-independent if the paths F1(r, t),F2(r, t)
are edge-disjoint for every terminal t ∈ T . Independent Steiner-arborescences can be defined in a straight-
forward manner. Note that paths corresponding to non-terminal nodes are allowed to violate the disjointness
condition hence the arborescences are not necessarily edge-disjoint.

Z. Király asked whether the existence of k edge-independent Steiner-arborescences is ensured by λ(r, t) ≥ k
for each t ∈ T . As Frank’s conjecture on independent arborescences would follow from such a result, Huck’s
counterexample shows that k = 2 is the only case when this statement may hold. The following example shows
that even acyclicity is not satisfactory for the existence of edge-independent Steiner-arborescences [16].

Theorem 5.3 (Kovács). There is an acyclic graph for which there are three internally node-disjoint paths to all
of the terminals but there are no three edge-independent Steiner-arborescences.

Proof. The terminal set of the example consists of two nodes t1, t2 (see Figure 1). It can be easily checked that
three edge-disjoint paths can be chosen only one way for both terminals but these cannot be partitioned into
three arborescences.

Concerning the case when k = 2, the following theorem appeared in [16].

Theorem 5.4 (Kovács). Let D = (V + r,A) be a digraph with root r, terminal set T ⊆ V and λ(r, t) ≥ 2 for each
t ∈ T . Then there exist two edge-independent Steiner-arborescences.

The node-independent version of the theorem is also of interest. The following result of Georgiadis and Tarjan
in [12] is a generalization of Theorem 5.1 (1).

Theorem 5.5 (Georgiadis and Tarjan). LetD = (V +r,A) be a digraph with root r, terminal set T ⊆ V and κ(r, t) ≥ 2
for each t ∈ T . Then there exists two independent Steiner-arborescences.

In fact, it can be showed that Theorems 5.4 and 5.5 are equivalent. By following the train of thoughts of both [12]
and [16] one can prove the next theorem.
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Figure 1: An example without three edge-independent Steiner-arborescences

Theorem 5.6 (Georgiadis and Tarjan, Kovács). Let D = (V ,A) be a digraph with root r. There exist two arbores-
cences F1 and F2 such that for each v ∈ V − r, the paths F1(r,v) and F2(r,v) intersect only at the nodes of dom(v).

This theorem is the base of our proof for a slight generalization of Conjecture 5.2 when k = 2.

A generalization

Note that a pair of symmetric arcs can be considered as a directed cycle. This gives the idea of the following
definition. Let D = (V + r,A) be a digraph with root r and terminal set T ⊆ V . We call two edge-independent
Steiner-arborescences F1 and F2 dicycle-disjoint if for each t ∈ T the union F1(r, t)∪ F2(r, t) does not contain
a directed cycle. The motivation of this definition is the following: if T = V and the arborescences are dicycle-
disjoint then they are also strongly edge-disjoint.

The following theorem generalizes the theorem of Colussi, Conforti and Zambelli for k = 2.

Theorem 5.7. Let D = (V ,A) be a directed graph with root r and terminal set T . There exist two dicycle-disjoint
Steiner-arborescences if and only if λ(r, t) ≥ 2 for each t ∈ T .

Proof. The necessity is clear, we prove sufficiency. Consider the arborescences provided by Theorem 5.6. We
claim that these arborescences are dicycle-disjoint.

Assume indirectly that there is a node t ∈ T such that the union of the paths F1(r, t) and F2(r, t) contains a
directed cycle. Let r = x1,x2, . . . ,xp = t and r = y1, y2, . . . , yq = t denote the nodes along these paths. As the union
of the paths contains a cycle, there are indices i1, i2, j1, j2 such that xi1 = yj2 , xi2 = yj1 and i1 < i2, j1 < j2. Let
xi1 = yj2 = w and xi2 = yj1 = z. The choice of F1 and F2 implies w,z ∈ dom(t). Now consider the graph G − z. Then
the union F1(r,w)∪F2(w,t) contains a path from r to t, which contradicts to z ∈ dom(t).

Disproof of Conjecture 5.2 for k ≥ 3

We give a counterexample for k = 3 based on a graph given by Huck [13], for other values a similar construction
works. Let D be the graph of Figure 2. It is easy to check that D is rooted 3-edge-connected. The set of nodes
in V − r is partitioned into three blocks B1,B2 and B3. There is one arc from r to Bi , and there are two arcs from
Bi to Bi+1 for each i (the indices are meant modulo 3 plus 1) such that together they form two directed cycles of
length three. The edges of these triangles are denoted by e12, e23, e31 and f12, f23, f31, respectively (see Figure 2).

Assume that there exist three strongly edge-disjoint arborescences F1,F2 and F3. Clearly, each Fi contains an
edge from r to one of the blocks, say Fi contains the one that goes to Bi , and it uses exactly one of eii+1 and fii+1
and the same holds for ei+1i+2 and fi+1i+2. Also, at least one of the arborescences has to use the pair eii+1, fi+1i+2
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Figure 2: Counterexample for Conjecture 5.2

or fii+1, ei+1i+2. Assume that F1 does so. But that implies that F1 and F2 can not be strongly edge-disjoint as they
have to share a symmetric pair in B2 that they use when going to B3, so for any node v ∈ B3 the paths F1(r,v)
and F2(r,v) contain a pair of symmetric arcs.

5.3 Further remarks

Edmonds’ theorem gives a characterization of the existence of k edge-disjoint arborescences. On the other
hand, we have seen that the analogue statement about independent arborescences does not hold. The notion
of strongly edge-disjointness somehow lies between these two types of disjointness, but, as we showed, the
conditions of Edmonds’ theorem do not ensure the existence of such arborescences. So a natural idea is to turn
to the other ‘extremity’ concerning the necessary conditions, and formulate the following conjecture.

Conjecture 5.8. LetD = (V +r,A) be a digraph with root r and assume that κ(r,v) ≥ k for each v ∈ V . Then there
exist k dicycle-disjoint arborescences.

6 In- and out-arborescences

Let now D = (V ,A) be a digraph without loops, but D may have parallel arcs. We assume that D is weakly
connected, that is, the underlying undirected graph is connected (which also implies |V | − 1 ≤ |A|). For each
a ∈ A, we denote by t(a) and h(a) the tail and the head of a, respectively. From now on we distinguish two types
of arborescences: in- and out-arborescences. An r-out-arborescence is just the same as an r-arborescence
defined earlier, that is, it is a directed tree in which the edges are directed away from the root node r. An r-in-
arborescence is a directed tree in which the edges are directed toward the root node r, so the reversal of its
edges results in an out-arborescence.

The problem of finding k arc-disjoint spanning r-out-arborescences for a given root r ∈ V is very important not
only from the theoretical viewpoint but also from practical viewpoints, and it has been extensively studied. It
is known that this problem can be solved in polynomial time, and several extensions have been considered.
However, in many situations, we have to simultaneously consider not only an in-arborescence but also an out-
arborescence. For example, in evacuation situations, an in-arborescence represents roads which refugees use.
On the other hand, an out-arborescence represents roads used by emergency vehicles. Unfortunately, it is
known [1] that the problem of finding a pair of arc-disjoint spanning r1-in-arborescence and r2-out-arborescence
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for given roots r1, r2 ∈ V is NP-complete even if r1 = r2. As a special case, it is only known [1] that this problem in
a tournament can be solved in polynomial time. In [3], the following results was proved.

Theorem 6.1. Given a directed acyclic graph D = (V ,A) with roots r1, r2 ∈ V , we can discern the existence of a
pair of arc-disjoint spanning r1-in-arborescence and r2-out-arborescence, and find such arborescences if they
exist, in O(|A|) time.

The main idea of the proof of Theorem 6.1 is the definition of an associated bipartite graph, given in the next
section.

6.1 An associated bipartite graph

We define a bipartite graph GD = (X,Y ;E) associated with our problem for a directed acyclic graph D = (V ,A),
and we show that our problem in D is equivalent to the problem of finding a matching that covers all nodes of
Y in GD . In the sequel, we assume without loss of generality that δD(r1) = 0 and %D(r2) = 0 holds. Note that if
δD(r1) , 0 or %D(r2) , 0 holds, there exists no feasible solution since D is acyclic.

Define a bipartite graph GD = (X,Y ;E) with two node sets X and Y and an edge set E between X and Y as
follows.

(i) Node set X is given by X = {x(a) | a ∈ A}, where |X | = |A|.
(ii) Node set Y consists of two disjoint sets Y + and Y − given by Y + = {y+(v) | v ∈ V \ {r1}} and Y − = {y−(v) | v ∈

V \ {r2}}.
(iii) For each a ∈ A, we have two edges in E: one connects x(a) and y+(t(a)) and the other connects x(a) and

y−(h(a)). That is, E = {(x(a), y+(t(a))) | a ∈ A} ∪ {(x(a), y−(h(a))) | a ∈ A}.

For example, for a directed graph D in Figure 3 (a) the bipartite graph GD becomes the one as illustrated in
Figure 3 (b).

(a)
(b)

Figure 3: (a) An input directed graph D. (b) The bipartite graph GD associated with D.

Now we are ready to show the equivalence between our problem for D and the problem of finding a matching in
GD which covers all nodes of Y .

Lemma 6.2. Given a directed acyclic graph D = (V ,A) with roots r1, r2 ∈ V , there exists a pair of arc-disjoint
spanning r1-in-arborescence F1 and r2-out-arborescence F2 if and only if there exists a matching M in GD =
(X,Y ;E) which covers all nodes of Y . Furthermore, we can construct a pair of such F1 and F2 from a matching
M in O(|A|) time.

Proof. Since it is not difficult to see the ‘only if’ part of the lemma, we show the ‘if’ part. Let M be a matching
in GD which covers all nodes of Y . Let A+ (resp. A−) be the set of arcs a ∈ A such that x(a) is connected with
some node of Y + (resp. Y −) by an edge ofM. Let T1 (resp. T2) be the subgraph (V ,A+) (resp. (V ,A−)) of D. Since
M covers all nodes of Y , |δT1(v)| = 1 (resp. |%T2(v)| = 1) holds for each v ∈ V \ {r1} (resp. V \ {r2}). Thus, since
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D is acyclic, T1 and T2 are a spanning r1-in-arborescence and a spanning r2-out-arborescence, respectively.
Furthermore, since M is a matching, A+ and A− are disjoint, which implies T1 and T2 are arc-disjoint. This
completes the proof of the ‘if’ part.

The latter half of the lemma immediately follows from the proof of the ‘if’ part.

By Lemma 6.2, we can discern the existence of a pair of arc-disjoint spanning r1-in-arborescence and r2-out-
arborescence, and find such arborescences if they exist, by computing a maximum matching of GD . Hence, we
can solve our problem in polynomial time by using bipartite-matching algorithms. However, it can be shown that
we can discern the existence of a matching of GD which covers all nodes of Y and find such a matching if one
exists, in O(|A|) time.

6.2 An extension to multiple roots

Now we consider the case where we have multiple roots for in-arborescences and out-arborescences, respec-
tively. Suppose that we are given a directed acyclic graph D = (V ,A), two disjoint finite index sets I1 and I2, and
a root ri ∈ V for each i ∈ I1 ∪ I2, where we allow ri = rj for distinct i, j. We assume without loss of generality
that δD(ri) = 0 (resp. %D(ri) = 0) holds for each i ∈ I1 (resp. i ∈ I2). Let R1 (resp. R2) be the set {ri | i ∈ I1}
(resp. {ri | i ∈ I2}). Then we consider the problem of discerning the existence of a set of arc-disjoint ri-in-
arborescences Fi (i ∈ I1) and ri-out-arborescences Fi (i ∈ I2) such that for each i ∈ I1 (resp. i ∈ I2) the node set
of Fi is (V \R1)∪ {ri} (resp. (V \R2)∪ {ri}).

In the same manner as in Section 6.1, we can see that there exist desired arborescences if and only if there
exists a matching which covers all nodes of Y in a bipartite graph GD = (X,Y ;E) defined as follows.

(i′) Node set |X | is given by X = {x(a) | a ∈ A}, where |X | = |A|.

(ii′) Node set Y consists of disjoint sets Y +
i (i ∈ I1) and Y −i (i ∈ I2). For each i ∈ I1 (resp. i ∈ I2) , Y +

i (resp. Y −i ) is
given by {y+i (v) | v ∈ V \R1} (reps., {y−i (v) | v ∈ V \R2}).

(iii′) The edge set E consists of two sets E+ and E−. For each a ∈ A with h(a) < R1 (resp. t(a) < R2) and i ∈ I1
(resp. i ∈ I2), we connect x(a) and y+i (t(a)) (resp. y−i (h(a))) by an edge in E+ (resp. E−). For each a ∈ A with
h(a) ∈ R1 (resp. t(a) ∈ R2), we connect x(a) and y+i (t(a)) (resp. y−i (h(a))) for i ∈ I1 with h(a) = ri (resp. i ∈ I2
with t(a) = ri). The edge sets E+ and E− contain no other edge.

We can discern the existence of desired arborescences and find them if they exist, by computing a maximum
matching in GD . However, notice that dGD (x) ≥ 3 may hold for each x ∈ X, which is different from the case of
the problem of finding a pair of an in-arborescence and an out-arborescence. It is left open whether we can find
desired arborescences more efficiently than by using existing bipartite matching algorithms.

6.3 Thomassen’s conjecture

As we have already mentioned, the problem of finding disjoint in- and out-arborescences for a given root node
is NP -complete. The following conjecture was proposed by Thomassen [21]. Recall that a digraph D is k-edge-
connected if λ(u,v) ≥ k for each u,v ∈ V .

Conjecture 6.3 (Thomassen). There exists a value k so that in every k-edge-connected directed graph D =
(V ,A) and for every node v ∈ V , there are disjoint spanning in- and out-arborescences rooted at v.

It is known that Conjecture 6.3 is not true for k = 2, but it is still open for k = 3. Assume that D = (V ,A′) is a
directed graph and r ∈ V is a designated root-node for which D − r is acyclic. Then the existence of disjoint
spanning in- and out-arborescences rooted at r can be decided easily with a slight modification of the bipartite
graph defined in 6.1.
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Define a bipartite graphG = (V +∪V −,A;E) where V + and V − are two copies of V −r, each node inA corresponds
to an arc of D and E contains the edges av+ and au− for each uv = a ∈ A′ (if u,v , r, in other case one of the
edges is missing from E). Since D − r is acyclic, a matching covering V + ∪V − corresponds to a pair of disjoint
spanning in- and out-arborescences, hence Hall’s theorem gives a necessary and sufficient condition. However,
as each node in A has degree at most 2, it is easy to see that -for example- %(v),δ(v) ≥ 2 ∀v ∈ V − r ensures the
existence of such arborescences in this very special case.

7 Covering by arborescences

When can a digraph D = (V ,A) be covered by k spanning arborescences of root r? For any subset X of nodes,
let Γ −(X) = {v ∈ X: there is an edge uv ∈ A for which u ∈ V \X} and call this set the entrance of X. That is, the
entrance consists of the head nodes of edges entering X. The following result of [22] may be considered as a
covering counterpart of Edmonds’ disjoint arborescences theorem.

Theorem 7.1 (Vidyasankar). Let r be a root node of a digraph D = (V ,A) so that no edge enters r. It is possible
to cover the edge set of D by k r-arborescences if and only if

%(v) ≤ k for every v ∈ V − r (9)

and
k − %(X) ≤

∑
[k − %(v) : v ∈ Γ −(X)] (10)

for every ∅ ⊂ X ⊆ V − r, where Γ −(X) is the entrance of X.

Proof. As each arborescence contains one arc entering a node v, (9) is clearly necessary. Assume that there
exist k r-arborescences covering A. Let z(e) denote the number of arborescences containing edge e minus 1.
Then z ≥ 0, %z(X) + %(X) ≥ k for each ∅ , X ⊆ V − r and %z(v) + %(v) = k for each v ∈ V − r. As each edge entering
X has its head in Γ −(X), we get %z(X) ≤

∑
[%z(v) : v ∈ Γ −(X)] and so k − %(X) ≤ %z(X) ≤

∑
[%z(v) : v ∈ Γ −(X)] =∑

[k − %(v) : v ∈ Γ −(X)], showing the necessity of (10).

To see sufficiency, we will use Edmonds’ weak theorem. For each node v ∈ Vr add a copy of v to D denoted by
v′ . Add k parallel arcs from v to v′ and k − %(v) parallel arcs from v′ to v. Moreover, for each arc uv ∈ A add k
parallel arcs from u to v′ . Let D ′ = (V ′ ,A′) denote the digraph thus obtained.

If there are k edge-disjoint r-arborescences in D ′ then the corresponding arborescences in D covers A. Oth-
erwise, by Edmonds’ weak theorem, there is a set X ′ ⊆ V ′ − r such that %D ′ (X ′) < k. Let X = {v ∈ V : v ∈ X ′},
Z = {v ∈ V : v ∈ X ′ ,v′ < X ′}. The construction of D ′ implies that if v′ ∈ X ′ then v ∈ X ′ . Also, if uv enters X then
v ∈ Z and so Γ −(X) ⊆ Z. Hence we have

k > %D ′ (X
′) = %(X) +

∑
[k − %(v) : v ∈ Z] ≥ %(X) +

∑
[k − %(v) : v ∈ Γ −(X)],

contradicting (10).

One may be interested in a similar covering counterpart of Theorems 2.3 and 2.4 as well. The following theorem
shows that such a generalization of Theorem 7.1 is indeed valid.

Theorem 7.2. Let D = (V ,A) be a digraph and {r1, . . . , rk} = R ⊆ V be a set of (not necessary distinct) root-nodes.
Let Ui ⊆ V be convex sets with ri ∈ Ui . The edge set A can be covered by ri-arborescences Fi not leaving Ui if
and only if

%(v) ≤ p1(v) for each v ∈ V (11)

and
p1(X)− %(X) ≤

∑
[p1(v)− %(v) : v ∈ Γ −(X)] (12)

for every ∅ ⊂ X ⊆ V , where Γ −(X) denotes the entrance of X and p1(X) denotes the number of setsUi ’s for which
Ui ∩X , ∅ and ri < X.

The proof goes along the same way as that of Theorem 7.1 and uses Theorem 2.4 when proving sufficiency.
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1 Strongly regular graphs

Throughout this lecture G = (V ,E) denotes a simple, undirected graph (so there are no multiple edges or loops
in G) with vertex set V and edge set E. The complete graph (where every pair of vertices are connected by an
edge) on n vertices is denoted by Kn. A graph is empty if it has no edges. If two vertices, u and v are connected
by an edge, we call them adjacent or neighbors, and we may write u ∼ v. A graph G is called k-regular, if every
vertex of G has precisely k neighbors.

Figure 4: This is the famous Petersen-graph. It is 3-regular on 10 vertices. Moreover, if two vertices are adjacent,
then they have no common neighbors; if two vertices are not adjacent, then they have exactly one common
neighbor.

Definition 1.1. A graphG is called a strongly regular graph with parameters (n,k,λ,µ) (in notation: SRG(n,k,λ,µ))
if the following properties hold:

1. G has n vertices and G is k-regular;

2. if two distinct vertices are adjacent, then they have λ common neighbors;

3. if two distinct vertices are nonadjacent, then they have µ common neighbors;

4. G is not complete, nor empty (that is, 1 ≤ k ≤ n− 2).

For example, the Petersen-graph is an SRG(10,3,0,1). Sometimes the 4th point is omitted from the definition.
Note that if we did not require this property, the parameters λ and µ would not be well defined; for example, the
complete graph Kn would be an SRG(n,n− 1,n− 2,µ) for arbitrary µ, since there are no non-adjacent vertices in
Kn.

Exercise 1.2. Determine which cycles are strongly regular, and determine their parameters.

Exercise 1.3. Show that if a k-regular bipartite graph is strongly regular, then either k = 1 (so the graph consists
of independent edges) or it is isomorphic to Kk,k . (Kk,k is the complete bipartite graph on k + k vertices; that is,
both vertex classes have k vertices and any two vertices from different classes are adjacent.)

Exercise 1.4. Show that the Petersen-graph is the unique SRG(10,3,0,1).

Exercise 1.5. Construct an SRG(16,5,0,2) and show that it is unique. (This graph is called the Clebsch-graph.
Hint: the Petersen-graph is a subgraph of it.)

Exercise 1.6. Construct an SRG(16,6,2,2).

Clearly there are some restrictions on the parameters of a strongly regular graph; for example, one must have
λ ≤ k − 1 and µ ≤ k. Next we establish a connection among the parameters, which shows that any three of them
determines the fourth.
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Theorem 1.7. Suppose that an SRG(n,k,λ,µ) exists. Then

k(k − 1−λ) = (n− 1− k)µ.

Proof. Fix a vertex u and count the triplets {(u,v,w) : uv ∈ E, vw ∈ E, uw < E, u , w} (which we may call cherries).
We may choose v in k different ways, and after that there are k − 1−λ suitable neighbors of v for the choice of
w. Thus the number of such triplets is k(k −1−λ). On the other hand, if we choose w first (n−1− k possibilities),
then we have µ choices for v.

Recall that the complement of a graph G has the same vertex set as G, and two vertices are adjacent in it if and
only if they are not adjacent in G.

Theorem 1.8. IfG is an SRG(n,k,λ,µ), then its complement, denoted byG, is an SRG(n, k̄, λ̄, µ̄), where k̄ = n−k−1,
λ̄ = n− 2k +µ− 2, µ̄ = n− 2k +λ.

Proof. It is clear that G is (n − k − 1)-regular. Let u and v be two adjacent vertices in G. Then the number of
vertices not adjacent to u nor v in G is n− 2k + µ− 2, which is just the number of common neighbors of u and v
in G. Now suppose that u and v are non-adjacent in G. Then, similarly, they have n− 2k +λ common neighbors
in G.

Note that the above theorem yields further restrictions on the parameters: by λ̄ ≥ 0 and µ̄ ≥ 0 we obtain µ ≥
2k −n+2 and λ ≥ 2k −n. Next we show that disconnected strongly regular graphs are not too interesting.

Theorem 1.9. Suppose that G is a disconnected strongly regular graph. Then it is the union of some complete
graphs of the same size.

Proof. Let G be an SRG(n,k,λ,µ) that is disconnected. Take two vertices from two distinct components. Then
they cannot have a common neighbor, thus µ = 0. Consider a connected component. If there were two vertices
in it at distance at least two, then we found easily two vertices at distance exactly two, in contradiction with
µ = 0. Hence every component is a complete graph, namely Kk+1. We remark that n = c · (k +1) for some integer
c ≥ 2, and λ = k − 1.

Example 1.10. Consider the graph on 2n vertices that consists of n independent edges (that is, the graph is the
union of n disjoint K2-s). This is called the ladder graph. Its complement (also strongly regular) is called the
cocktail party graph.

By Theorem 1.9, we see that it is enough to treat connected strongly regular graphs whose complement is also
connected.

Exercise 1.11. Consider the two element subsets of {1;2;3;4;5} as vertices, and join two of them if and only if
they are disjoint. Do you know this graph? (You do.)

Example 1.12. The lattice-graph L(m) is defined as follows. Consider an m ×m grid, whose m2 points are the
vertices of L(m), and two vertices are adjacent if and only if they are in the same row or column. Formally, let
V = {1,2, . . . ,m} × {1,2, . . . ,m}, and (i, j) is adjacent to (i′ , j ′) if and only if i = i′ or j = j ′ . L(m) is an SRG(m2,2(m−
1),m− 2,2).

As we have seen in the case of the Petersen-graph, sometimes the parameters of a strongly regular graph
uniquely determine the graph, but this is not true in general.

Exercise 1.13. Prove that for every 4 ,m ≥ 2, the only SRG(m2,2(m− 1),m− 2,2) is the lattice graph L(m).

The next exercise shows that Exercise 1.13 does not hold if m = 4.
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Exercise 1.14. Let V be the vertex set of the lattice graph L(4), and let S be the set of the four diagonal vertices.
We define a new graph G (the Shrikhande-graph) on the set V . Let u, v be two distinct vertices of V . If u < S and
v < S, then uv is an edge in G if and only if uv is an edge in L(4). If u ∈ S and v < S, then uv is an edge in G if and
only if uv is not an edge in L(4). No two vertices of S are adjacent. Show that G is a strongly regular graph with
the same parameter set as L(4), but G is not isomorphic to L(4).

Example 1.15. The triangular graph T (m) is defined as follows. Let the vertex set V of T (m) be the set of two-
element subsets of {1,2, . . . ,m}, and let two of them be adjacent if their intersection is of size one. Then T (m) is
an SRG(m(m−1)

2 ,2(m− 2),m− 2,4).

Note that in Exercise 1.11 we have already encountered the complement of T (5).

Exercise 1.16. Consider the even element subsets of {1,2,3,4,5} (including the empty set) and let two be adja-
cent if their symmetric difference has four elements. Prove that the arising graph is strongly regular. Do you
know this graph?

Exercise 1.17. Construct an SRG(35,18,9,9).

Exercise 1.18. Construct an SRG(120,56,32,28).

Exercise 1.19. Let p be a prime such that p ≡ 1 (mod 4). The Paley-graph P (p) is defined in the following way:
its vertex set is {0,1, . . . ,p − 1}, and two distinct vertices u and v are connected if and only if u − v is a quadratic
residue modulo p. (A number n is a quadratic residue modulo p if n ≡ x2 (mod p) for some integer x.) Prove that
P (p) is an SRG(p, p−12 , p−54 , p−14 ). (Hint: use automorphisms; consider also P (p).)

Exercise 1.20. Is it possible to color the edges of K10 with three colors so that the edges of each color form a
Petersen-graph?

2 Linear algebraic techniques for graphs

Next we associate a matrix to a graph, which allows us to use linear algebraic techniques and results. Through-
out 1 denotes the all-one vector (of suitable dimension), I is the identity matrix, J is the all-one matrix.

Definition 2.1. Let G = (V ,E) be a graph, and suppose that V has some ordering, V = {v1,v2, . . . , vn}. The adja-
cency matrix of G is the matrix A ∈Rn×n, where Aij = 1 if vi and vj are adjacent, and zero otherwise.

Note that the adjacency matrix of a graph is symmetric, and it has zeros in the diagonal.

Example 2.2.

1

2

34

5

6

7

89

10

The Petersen-graph and its adjacency matrix.
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A graph is completely described by its adjacency matrix, so information on one of them gives information on the
other one. We will examine the adjacency matrix of graphs, in particular the eigenvalues and the eigenvectors
of it. First we consider some facts from linear algebra. Recall that the trace of a (square) matrix A is the sum of
the entries on its diagonal.

Theorem 2.3. Let A ∈Rn×n with eigenvalues λ1, . . . ,λn. Then
∏n
i=1λi = det(A) and

∑n
i=1λi = trace(A).

We remark that the trace of the adjacency matrix of a (loopless) graph is zero.

Theorem 2.4. Let A ∈Rn×n be a symmetric matrix. Then there is an orthonormal eigenbasis v1, . . . , vn of Rn with
respect to A; that is,

• v1, . . . , vn is a basis of Rn;

• Avi = λivi for some λi ∈R (1 ≤ i ≤ n);

• vTi vj = 0 for all 1 ≤ i < j ≤ n;

• vTi vi = 1 for all 1 ≤ i ≤ n.

Note that the above theorem implies that a real symmetric matrix has real eigenvalues.

Definition 2.5. The spectrum of a matrix is the multiset of its eigenvalues. The spectrum of a graph is that of
its adjacency matrix. If the matrix is of dimension n × n, we usually order its eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn.
We may indicate the multiset of eigenvalues as a set in which the elements have an exponent, which refers to
the multiplicity of the eigenvalue.

Exercise 2.6. Show that the spectrum of a graph is the union of the spectra of its connected components.

One may think of an eigenvector and the corresponding eigenvalue of a graph in the following way. Let A be
the adjacency matrix of the graph G on n vertices and let v be an eigenvector of A with eigenvalue λ; that is,
Av = λv. For any 1 ≤ i ≤ n the ith coordinate of the left-hand-side is (Av)i =

∑
vk∈V : vk∼vi

vk , while the ith coordinate

of the right-hand-side is λvi . So if we write the entries of the eigenvector v on the corresponding vertices of G,
and then replace every entry by the sum of the entries on the neighboring vertices (in the same time), then we
get the original value multiplied by λ on all vertices. For an illustration, see Figure 5.

Theorem 2.7. A graph is regular if and only if 1 is an eigenvector of its adjacency matrix. The eigenvalue of 1
is the common degree of the vertices.

Proof. Trivial.

Theorem 2.8. Let A ∈ Rn×n be a symmetric matrix, and let λ1 be its largest eigenvalue. Then for all u ∈ Rn we
have

uTAu ≤ λ1|u|2.
Equality holds if and only if u is an eigenvector of A with eigenvalue λ1.

Proof. Let v1, . . . , vn be an orthonormal eigenbasis as in Theorem 2.4. Then u =
∑n
i=1αivi for some αi ∈ R, and

|u|2 = uT u =
∑
i,j αiαjv

T
i vj =

∑n
i=1α

2
i . Thus

uTAu =

 n∑
i=1

αiv
T
i

A
 n∑
j=1

αjvj

 = n∑
i=1

αiv
T
i

n∑
j=1

αjAvj =

n∑
i=1

n∑
j=1

αiαjλjv
T
i vj =

n∑
i=1

α2
i λi ≤ λ1|u|

2.

Equality holds if and only if λi < λ1 implies αi = 0, thus u is in the subspace generated by the eigenvectors with
eigenvalue λ1.
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Figure 5: The cycle of length four has spectrum {21,02,−21}. On the left part we depicted the eigenvector, on
the right part we depicted the result after adding up the entries of the neighbors. Ordering the vertices from the
top-left corner clockwise, the four eigenvectors are (1;1;1;1), (1;−1;1;−1), (0;1;0;−1), (1;1;−1;−1).

Theorem 2.9. Let G be a graph with average degree d̄ and maximum degree ∆. Then d̄ ≤ λ1 ≤ ∆.

Proof. Let e denote the number of edges in G. Then d̄ = 2e/n. Suppose that Av = λv, v = (v1, . . . , vn) , 0. We may
assume that v1 ≥ v2 ≥ · · · ≥ vn and v1 > 0 (as −v is also an eigenvector). Then λv1 = (Av)1 ≤ ∆v1. On the other
hand, Theorem 2.8 yields 2e = 1TA1 ≤ λ1n.

The next theorem establishes the connection of the structure of the graph and the powers of its adjacency
matrix.

Theorem 2.10. (Am)ij is the number of walks of length m from vi to vj .

Proof. By induction. The cases m = 0,1 are trivial. (Recall that A0 = I by definition.) We prove the theorem by
induction on m. Now

(Am)ij = (Am−1A)ij =
m∑
k=1

(Am−1)ikAkj =
∑

k : vk∈N (vj )

(Am−1)ik ,

which (by the inductive hypothesis) is the number of walks of length m− 1 from vi to some neighbor of vj , which
is just the number of walks of length m from vi to vj .

Next we give a characterization of bipartite graphs in terms of their spectrum. Note that if v is an eigenvector of
A with eigenvalue λ, then v is also an eigenvector of Ak with eigenvalue λk (as Akv = λAk−1v etc.). We say that
the spectrum of a matrix A is symmetric, if whenever λ is an eigenvalue of A with multiplicity m, then −λ is also
an eigenvalue of A with multiplicity m.

Theorem 2.11. Let G be a graph on n vertices, and let A be its adjacency matrix. Then G is bipartite if and only
if the spectrum of A is symmetric.
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Proof. Let G have n vertices. G is bipartite if and only if the number of closed walks of length m in G is zero for
all odd integer m, equivalently, if trace(Am) = 0 for all odd integer m. This holds if and only if sm :=

∑n
i=1λ

m
i = 0

for all odd integer m. If the spectrum is symmetric, this holds trivially. Now suppose that, say, λ1 > −λn. Then
limk→∞ s2k+1 =∞. Thus λ1 = −λn. After that, λ2 = −λn−1 also follows etc.

The following theorem is a consequence of the more general Frobenius–Perron theorem. We only formulate the
results for adjacency matrices of graphs.

Theorem 2.12 (Frobenius–Perron). Let A be the adjacency matrix of a connected, undirected graph G. Then

• the largest eigenvalue λ1 of A has multiplicity one;

• the components of an eigenvector of A with eigenvalue λ1 are either all positive or all negative;

• for the smallest eigenvalue λn, we have |λn| ≤ λ1.

As an illustration, we prove a stronger version Theorem 2.11. Recall that vTAv ≤ λ1|v|2 for all vectors v.

Theorem 2.13. Let G be a connected graph on n vertices, and let A be its adjacency matrix. Then G is bipartite
if and only if λ1 = −λn.

Proof. As λ1 = 0 if and only if G has no edges, we may assume that this is not the case. Suppose that G is
bipartite on n+m vertices, where the two classes have n and m vertices, respectively, and let A be its adjacency
matrix. Let v = (v1, . . . , vn+m) be an eigenvector of A with eigenvalue λ. By a proper ordering we may assume
that the first n coordinates correspond to the vertices of first vertex class. Let v̄ = (−v1, . . . ,−vn,vn+1, . . . , vn+m).
Then v̄ is also an eigenvector of A with eigenvalue −λ, hence the spectrum of A is symmetric, and, in particular,
λ1 = −λn.
Now suppose that λ1 = −λn. Let v be an eigenvector of length |v| = 1 with eigenvalue λn, and let the vector u be
defined by ui = |vi | (1 ≤ i ≤ n+m). Then also |u| = 1. As

λn = v
TAv =

n∑
i=1

n∑
j=1

Aijvivj ,

we have

λ1 = |λn| =

∣∣∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Aijvivj

∣∣∣∣∣∣∣∣ ≤
n∑
i=1

n∑
j=1

Aij |vi ||vj | = uTAu ≤ λ1.

It the second estimate equality holds if and only if u is an eigenvector with eigenvalue λ1 (Theorem 2.8). By the
Frobenius–Perron theorem we have that all components of u are positive. As equality holds in the first estimate
(triangle-inequality), either vivj = |vi ||vj | or vivj = −|vi ||vj | for all pairs i and j such that the corresponding vertices
are adjacent. As λn < 0, the second option holds. Thus two vertices may be adjacent only if the corresponding
components of v have different signs; that is, the signs of the components of v yield a bipartition.

3 The spectrum of strongly regular graphs.

Theorem 3.1. Let G be a graph, and let A be its adjacency matrix. Then the following are equivalent:

1. G is an SRG(n,k,λ,µ);

2. A2 + (µ−λ)A− (k −µ)I = µJ .
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Proof. The entry (A2)ij is the inner product of the vectors corresponding to vi and vj , which is just the number
of common neighbors of vi and vj . Thus G is an SRG(n,k,λ,µ) if and only if this quantity is k if i = j; λ if vi and
vj are adjacent; and µ otherwise. In other words, A2 = kI +λA+ µ(J − I −A), which is equivalent to the formula
stated.

Theorem 3.2. Let G be an SRG(n,k,λ,µ), and let A be its adjacency matrix. Then

1. the spectrum of A is {k1, rf , sg }, where r > s (r = k may occur);

2. rs = µ− k and r + s = λ−µ;

3. f ,g = 1
2

n− 1± (n− 1)(µ−λ)− 2k√
(µ−λ)2 +4(k −µ)

 are non-negative integers.

Proof. It is clear that 1 is an eigenvector with eigenvalue k. Let v be an eigenvector of A with eigenvalue x and
1T v = 0. Then Jv = 0. As A2 + (µ−λ)A− (k −µ)I = µJ , we obtain

x2v + (µ−λ)xv − (k −µ)v = 0,

thus x2 + (µ−λ)x − (k −µ) = 0. Thus

x =
λ−µ±

√
((µ−λ)2 +4(k −µ))

2
.

The two roots r and s are different as (µ−λ)2 = 4(µ− k) would contradict µ ≤ k and λ ≤ k − 1. Thus the first two
points follow. As f + g = n− 1 and trace(A) = k + f r + gs = 0, the last assertion can also be obtained easily.

The third point of the above theorem is a strong restriction on the parameters of strongly regular graphs, and it
is called the integrality or rationality condition.

Exercise 3.3. Let G be an SRG(n,k,λ,µ) with three distinct eigenvalues, k > r > s. Show that (k − r)(k − s) = nµ.

Exercise 3.4. Let G be an SRG(n,k,λ,µ). Show that either (n,k,λ,µ) = (4t +1,2t, t − 1, t) for some integer t or the
eigenvalues of G are integral. (An SRG(4t +1,2t, t − 1, t) is called a conference graph.)

Exercise 3.5. Let G be an SRG(n,k,λ,µ), where n = p is a prime. Show that G is a conference-graph.

Exercise 3.6. We are about to show that the edges of K10 cannot be partitioned into three Petersen-graphs in
terms of their adjacency matrices: the adjacency matrix of K10 is J − I , and our aim is to show that it cannot be
expressed as A+B+C, where A, B and C are adjacency matrices of Petersen-graphs.

• Show that the eigenvalue 1 of a Petersen-graph has multiplicity five.

• Show that the eigensubspaces belonging to the eigenvalue 1 in two edge-disjoint Petersen-graphs inter-
sect nontrivially. (Hint: there is a 9-dimensional subspace containing both.)

• Show that ifA and B are the adjacency matrices of two edge-disjoint Petersen-graphs, then −3 is an eigen-
value of C, so C is not the adjacency matrix of a Petersen-graph.

3.1 The Hoffman–Singleton theorem

In the sequel we treat the famous Hoffman–Singleton theorem on strongly regular graphs of girth five, that is,
SRGs with λ = 0 and µ = 1. (The girth of a graph is the length of the shortest cycle in it.) Note that Theorem 1.7
yields n = k2 +1 for this case. First let us see the background of this theorem.

Exercise 3.7. • Let G be a graph of diameter two and maxmimal degree at most k. Show that G has at most
k2 +1 vertices, and in case of equality G is an SRG(k2 +1, k,0,1).



Tamás Héger, Péter Sziklai

42
Tamás Héger, Péter Sziklai

42
Tamás Héger, Péter Sziklai

42

• Let G be a k-regular graph of girth five. Show that G has at least k2 +1 vertices, and in case of equality G
is an SRG(k2 +1, k,0,1).

Theorem 3.8 (Hoffman–Singleton). Let G be an SRG(n,k,0,1). Then k = 2,3,7 or 57.

Proof. By the integrality condition we have that

1
2

n− 1± (n− 1)(µ−λ)− 2k√
(µ−λ)2 +4(k −µ)

 = 1
2

(
k2 ± k

2 − 2k
√
4k − 3

)
are non-negative integers. Then either k2 − 2k = 0, thus k = 2, or

√
4k − 3 is an integer dividing k(k − 2). Then

4k−3 divides k2(k−2)2, so it also divides 256k2(k−2)2− (64k3−208k2+100k+75)(4k−3) = 225 = 32 ·52. As 4k−3
is a square, 4k − 3 ∈ {9; 25; 225} follows, which proves the assertion.

For k = 2 and 3, the unique SRG(k2 + 1, k,0,1) graphs are the pentagon and the Petersen-graph. For k = 7 we
will show a construction of an SRG(50,7,0,1), which is called the Hoffman–Singleton-graph. The existence of an
SRG(3250,57,0,1) is still an open question.

3.2 The Hoffman–Singleton-graph

The next construction is due to Robertson. Let Pm be a pentagon, and let Qx be a pentagram as seen in Figure
6, 0 ≤ m ≤ 4, 0 ≤ x ≤ 4. Let the vertex labelled b of Pm be denoted by the pair [m,b], and let the vertex labeled y
of Qx be denoted by (x,y). Besides the edges of the pentagons and the pentagrams, add an edge between (x,y)
and [m,b] if and only if y ≡mx+ b (mod 5).
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3
Q

4
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Figure 6: The pentagons and the pentagrams in Robertson’s construction for the Hoffman–Singleton-graph.

It is clear that there is precisely one edge between any pentagon and pentagram, so the resulting graph is 7-
regular. It is also clear that the graph does not contain any triangle. Suppose that we have a quadrangle. Then
its four vertices are of form [m1,b1], [m2,b2], m1 ,m2, (x1, y1), (x2, y2), x1 , x2, where

y1 ≡ m1x1 + b1 (mod 5) (13)

y2 ≡ m1x2 + b1 (mod 5) (14)

y1 ≡ m2x1 + b2 (mod 5) (15)

y2 ≡ m2x2 + b2 (mod 5). (16)

Then (13)− (14)− (15)+ (16) ≡ 0 (mod 5), thus

(m1 −m2)(x1 − x2) ≡ 0 (mod 5),

a contradiction.
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Exercise 3.9. Let P be any subgraph of the Hofmann–Singleton-graph isomorphic to the Petersen-graph. Show
that each vertex not in P has exactly one neighbor in P .

Exercise 3.10. Let F be a subset of the vertices of the Hoffman–Singleton-graph that span an empty graph.
Show that |F| ≤ 15 and if |F| = 15 then each vertex not in F has precisely three neighbors in F.

Acknowledgement.
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Throughout these notes F denotes an arbitrary field, which we later specify, according to the nature of the
application, as the real number field R, the complex number field C or a finite field Fp for some prime number p,
obtained from the ring of integers by modulo p arithmetic. According to Fermat’s little theorem, every 0 , a ∈ Fp
satisfies ap−1 = 1. In a more abstract way, it follows from Lagrange’s theorem, applied to the multiplicative group
of Fp.

1 The Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz, formulated by Noga Alon [1] in the late nineties, describes, in an efficient
way, the structure of multivariate polynomials whose zero-set includes a Cartesian product over F .

Theorem 1.1. Let f = f (x1, . . . ,xn) be a polynomial in F [x1, . . . ,xn]. Let S1, . . . ,Sn be nonempty subsets of F and
define gi(xi) =

∏
s∈Si (xi − s). If f (s1, . . . , sn) = 0 for all si ∈ Si , then there exist polynomials h1, . . . ,hn ∈ F [x1, . . . ,xn]

satisfying deg(hi) ≤ deg(f )−deg(gi) such that f =
∑n
i=1higi .

Example. Here n = 2 and for simplicity we denote the variables x1,x2 by x and y. Take F = R and consider the
points (0,0), (0,1), (1,0), (1,1) in the euclidean plane; they form the vertex set of a square. More formally, they
are the points of the Cartesian product S1 × S2, where S1 = S2 = {0,1}. The polynomial f (x,y) = (y − x)(y + x − 1)
attains the value 0 at each point (x,y) ∈ S1 × S2. Thus, we define g1(x) = x(x − 1) and g2(y) = y(y − 1). Here each
polynomial is of degree 2, and f = h1g1 + h2g2 indeed holds with the constant polynomials h1 = 1, h2 = −1.

Theorem 1.1 immediately implies the following non-vanishing criterion that we will refer to as the Polynomial
Lemma. Informally, it is a strong multivariate analogue of the well-known fact that a univariate polynomial of
degree d over a field cannot have more than d roots.

Theorem 1.2. Let f = f (x1, . . . ,xn) be a polynomial in F [x1, . . . ,xn]. Suppose that there is a monomial
∏n
i=1 x

di
i

such that
∑n
i=1di equals the degree of f and whose coefficient in f is nonzero. If S1, . . . ,Sn are subsets of F with

|Si | > di , then there are s1 ∈ S1, . . . , sn ∈ Sn such that f (s1, . . . , sn) , 0.

A standard application of the polynomial method to prove a combinatorial hypothesis works as follows. Assum-
ing the falsity of the hypothesis, build a polynomial whose values are all zero over a large Cartesian product,
then compute the coefficient of the appropriate leading term. If that coefficient is not zero, the criterion leads to
the desired contradiction. The difficulty often lies in the computation of that coefficient. This is where the power
of the following Coefficient Lemma, formulated independently by Lasoń [17] and by Karasev and Petrov [12],
comes into play.

Theorem 1.3. Let f ∈ F [x1, . . . ,xn] be a polynomial of degree deg(f ) ≤ d1+ · · ·+dn. For arbitrary subsets S1, . . . ,Sn
of F with |Si | = di +1, the coefficient of

∏
xdii in f can be written as∑

s1∈S1

∑
s2∈S2

. . .
∑
sn∈Sn

f (s1, s2, . . . , sn)
g ′1(s1)g

′
2(s2) . . . g

′
n(sn)

,

where gi(x) =
∏
s∈Si (x − s).

A close relative of the Combinatorial Nullstellensatz, this result also implies the Polynomial Lemma: If this coef-
ficient is nonzero, then one of the summands must be nonzero, hence the existence of si ∈ Si with f (s1, . . . , sn) , 0.
Thus we have

CN ⇒ P L⇐ CL.

Both the CN and the CL are relatively easy consequences of the multivariate extension of the Lagrange inter-
polation formula. Simple as stated, they provide a powerful algebraic tool to attack various problems in discrete
mathematics. They lead to proofs of sheer beauty and elegance which we intend to demonstrate through a set
of diverse examples.
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2 Additive Combinatorics I

Given two nonempty sets of integers A = {a1, . . . , ak} and B = {b1, . . . , bl}, their sumset is defined as

A+B = {ai + bj | 1 ≤ i ≤ k,1 ≤ j ≤ l}.

Assuming a1 < · · · < ak and b1 < · · · < bl one can argue that

a1 + b1 < a2 + b1 < . . . < ak + b1 < ak + b2 < . . . < ak + bl ,

thus A+B has at least k + l − 1 different elements. In the particular case when

A = {1,2, . . . , k}, B = {1,2, . . . , l},

the sumset A+B = {2,3, . . . , k + l} has exactly k + l − 1 elements.

What happens, if instead of integers we consider the integers modulo a prime p? Thus, we are working in the
cyclic group Z/pZ. Such groups, having no proper nontrivial subgroups have the simplest possible structure
among all nontrivial groups. They are exactly the additive structures underlying the finite fields Fp. The problem
is that working modulo p we lose the natural ordering of the integers, so the above simple argument does not
work. There is of course no way to establish the same result, as the simple example A = B = A + B = Z/pZ
indicates.

Nevertheless the lower bound remains valid if k, l are not too large, namely when k + l − 1 ≤ p. This was first
established by Cauchy [5] in 1813 in relation to Lagrange’s four-square theorem (every nonnegative integer can
be represented as the sum of 4 perfect squares) and rediscovered by Davenport [7] more than 100 years later.
Note that A′ ⊇ A, B′ ⊇ B implies A′ +B′ ⊇ A+B, therefore it follows that A+B =Z/pZ holds whenever k+ l−1 ≥ p.
The fact thatZ/pZ is the additive group of the field Fp opens up the possibility to apply Theorem 1.2 with F = Fp,
which we indicate below; it is probably one of the most straightforward applications of the Polynomial Lemma.

Theorem 2.1. LetA andB be nonempty subsets ofZ/pZ, with |A| = k and |B| = l. If p ≥ k+l−1, then |A+B| ≥ k+l−1.

Proof. Assume for a contradiction that |A+B| < k+ l −1. Then A+B is contained in a set C ⊆Z/pZ of cardinality
|C| = k + l −2 = (k −1)+ (l −1). We will apply the Polynomial Lemma with F = Fp, S1 = A, S2 = B. As in the example
in Section 1, we denote the variables x1,x2 by x and y, respectively. Consider the polynomial

f (x,y) =
∏
c∈C

(x+ y − c) ∈ Fp[x,y];

then f (a,b) = 0 for every pair a ∈ A, b ∈ B. The degree of this polynomial is (k−1)+(l−1) and it vanishes on A×B,
which is a k × l Cartesian product. But the coefficient of the leading term xk−1yl−1 is

(k+l−2
k−1

)
, which is different

from 0 in Fp, given that k + l − 2 < p. This contradicts the Polynomial Lemma.

Of course the arguments of Cauchy and Davenport were entirely different, rather combinatorial in nature. You
may try to reconstruct their way of thinking, but be aware, it is not that easy!

3 Geometry I

Let Cn = {0,1}n be the vertex set of the unit cube in euclidean n-space. It is obvious that one can cover all the
vertices by two hyperplanes: take for example those two whose equations are x1 = 0 and x1 = 1, respectively.
Suppose next that we want to cover all vertices except the origin by a set of m hyperplanes H1, . . . ,Hm. We have
the conditions

Cn \ {0} ⊂
m⋃
i=1

Hi , 0 <Hi for i = 1, . . . ,m.
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This is how to do it with m = n hyperplanes: let Hi be the hyperplane whose equation is xi = 1. An entirely
different way to do it is letting Hi be the hyperplane of all points satisfying

x1 + x2 + · · ·+ xn = i.

It was conjectured by Komjáth that less than n hyperplanes will never suffice.

Theorem 3.1. If the hyperplanes H1, . . . ,Hm satisfy the above conditions, then m ≥ n.

Proof. Here we follow a simplified version of Alon and Füredi [3], based on an application of Theorem 1.2 with
F =R. Note thatCn = S1×S2×· · ·×Sn with Si = {0,1} for 1 ≤ i ≤ n. Suppose that on the contrary,m < n. Since none
of the hyperplanes passes through the origin, they are affine but not linear subspaces, hence are determined by
linear equations in the normalized form

Hi :
n∑
j=1

aijxj = 1.

Consider the polynomial f ∈R[x1, . . . ,xn] defined as

f (x1, . . . ,xn) =
m∏
i=1

 n∑
j=1

aijxj − 1

− (−1)m−n n∏
j=1

(
xj − 1

)
.

The first term in the right-hand side vanishes at every point of Cn \ {0} because each such point satisfies the
equation of at least one of the hyperplanesHi . Its value at 0 is (−1)m. The second term is also 0 at every point of
Cn \{0} for all of them have at least one coordinate equal to 1. Its value at 0 is also (−1)m; the coefficient (−1)m−n
was designed so as to achieve this. Therefore f , which is the difference of these two terms, vanishes at every
point of Cn.

By the assumption m < n, the degree of f is n and the coefficient of the leading term x1x2 . . .xn is −(−1)m−n,
which is different from 0. According to the Polynomial Lemma, f cannot vanish on the whole Cartesian product
Cn = S1 × · · · × Sn. This contradiction proves that indeed it must be m ≥ n.

Suppose that m = n and the hyperplanes H1, . . . ,Hn do the job. Consider the n × n matrix A =
(
aij

)
. A closer

inspection of the above proof reveals that the permanent of the matrixAmust be equal to 1. This is a necessary,
but alas!, not a sufficient condition; we do not have a complete description of these extremal structures.

4 Graph Theory

Let G = G(V ,E) be a simple graph, where V and E stands for the set of vertices and edges, respectively. It is
k-regular, if each vertex has the same degree k:

|{u ∈ V | uv ∈ E}| = k

for every v ∈ V . A subgraph ofG is a graphG′ = G′(V ′ ,E′) with V ′ ⊆ V , E′ ⊆ E. Note that we are not talking about
induced subgraphs here. For example, the 4-regular complete graph K5 on 5 vertices has a 3-regular subgraph
isomorphic to K4. In fact, every 4-regular simple graph has a 3-regular subgraph (see Tashkinov [19]). With
the help of the Polynomial Lemma it is easy to prove a slightly weaker result: If G is obtained from a 4-regular
graph by adding an extra edge to the set of edges, then it contains a 3-regular subgraph. It is an immediate
consequence of a special case (p = 3) of the following more general theorem of Alon, Friedland and Kalai [2].

Theorem 4.1. If p is a prime and G a simple graph of average degree > 2p − 2 and maximum degree ≤ 2p − 1,
then G contains a p-regular subgraph.
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Proof. The goal is to assign to each edge of G 0 or 1 such a way, that there is at least one edge assigned with 1
(to exclude the empty graph), and for every vertex, the number of edges starting at that vertex and having the
value 1 is either 0 or p. In view of the assumption on the maximum degree we can rephrase the second condition:
the number of such edges must be divisible by p for every vertex. In such an assignment, the edges assigned
with 1 form a p-regular subgraph.

If G = G(V ,E), the incidence matrix of G is the 0–1 matrix (ave)v∈V ,e∈E , where ave = 1 if and only if the vertex v is
incident to the edge e. Thus, if we introduce a 0–1 variable xe for every edge e ∈ E, the second condition can be
formulated as ∑

e∈E
avexe = 0 in Fp. (17)

Accordingly, we consider the following polynomial f ∈ Fp[xe | e ∈ E]:

f (xe | e ∈ E) =
∏
v∈V

1−
∑
e∈E

avexe

p−1
−∏

e∈E
(1− xe).

Since the average degree of G is > 2p−2, that is, (2p−2)|V | < 2|E|, we have (p−1)|V | < |E|, thus degf = |E|. Then∏
e∈E xe is a leading monomial with coefficient −(−1)|E| , 0. By the Polynomial Lemma, f cannot vanish on {0,1}|E|.

This means that we have a choice se ∈ {0,1} for each xe such that f (se | e ∈ E) , 0. Were se = 0 for every e ∈ E, the
value of the polynomial would also be 0. So this cannot be the case; at least one edge is assigned with 1. It also
follows that

∏
e∈E(1 − se) = 0, hence

∏
v∈V

(
1− (

∑
e∈E avese)

p−1) must be different from 0. In view of Fermat’s little
theorem this means that condition (17) is satisfied for every vertex v.

5 Algebraic Combinatorics

A Laurent polynomial is like a polynomial except that the exponents of the indeterminates may also be negative
integers. For example,

x2y3z4 − 2x−1y6z−4 +13y−5z − 21

is a Laurent polynomial in the variables x,y,z; its constant term, that is, the coefficient of x0y0z0 being −21.

For Laurent polynomials given in a product form, the constant terms often have combinatorial interpretation.
More surprisingly, their systematic study originates in statistical mechanics. Perhaps the most famous constant
term identity is the one associated with the name of Freeman Dyson. In his seminal paper [8] dated back to
1962, Dyson proposed to replace Wigner’s classical Gaussian-based random matrix models by what now is
known as the circular ensembles. The study of their joint eigenvalue probability density functions led Dyson to
the following conjecture. Consider the family of Laurent polynomials

D(x;a) :=
∏

1≤i,j≤n

(
1− xi

xj

)ai
parameterized by a sequence a = (a1, . . . , an) of nonnegative integers, where x = (x1, . . . ,xn) is the sequence of
indeterminates. Denoting by CT[L(x)] the constant term of the Laurent polynomial L = L(x), Dyson’s hypothesis
can be formulated as the identity

CT[D(x;a)] = (a1 + a2 + · · ·+ an)!
a1!a2! . . . an!

.

Using the shorthand notation D(x;k) for the equal parameter case a = (k, . . . , k), the constant term of D(x;k) for
k = 1,2,4 corresponds to the normalization factor of the partition function for the circular orthogonal, unitary
and symplectic ensemble, respectively.
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Dyson’s conjecture was confirmed independently by Gunson and Wilson (who 20 years later won the Nobel
Prize for his work on the renormalization group) in the same year. The most elegant proof, based on Lagrange
interpolation, is due to Good [10]. His proof exploits the recursive nature of the multinomial coefficients.

Theorem 1.3 leads to a short direct proof of the equal parameter case. Note that the k = 0 case is trivial.

Theorem 5.1. For arbitrary integers n ≥ 2 and k ≥ 1,

CT[D(x1, . . . ,xn;k)] =
(nk)!
(k!)n

.

Proof. Multiplying D(x;k) by M =
∏
x
(n−1)k
i one finds that the the constant term equals the coefficient of the

monomial M in the homogeneous polynomial ∏
1≤i,j≤n

(xj − xi)k ,

which is the same as the coefficient of M in

f (x) =
∏

1≤i<j≤n

k−1∏
u=0

(xj − xi −u)
k∏
v=1

(xi − xj − v)

 .
We may apply the Coefficient Lemma with di = (n− 1)k and the choice

Si = {0,1, . . . , (n− 1)k}

for i = 1, . . . ,n. Suppose that f (s1, . . . , sn) , 0 for some si ∈ Si , then |sj − si | ≥ k for every i , j, thus the numbers
s1, s2, . . . , sn, in some order, must coincide with the numbers 0, k,2k, . . . , (n− 1)k. Moreover, it must be the natural
order, for if si > sj for some i < j, then si − sj ≥ k + 1, otherwise f (s1, . . . , sn) would be zero. Accordingly, the
complicated summation formula in Theorem 1.3 in this case reduces to one nonzero summand,

f (0, k, . . . , (n− 1)k)
g ′(0)g ′(k) . . . g ′((n− 1)k)

,

where g(x) = x(x − 1) . . . (x − (n− 1)k). The actual substitution can be left to the reader.

The above idea is from Karasev and Petrov [12]. Can you reconstruct their proof of the full Dyson conjecture?

6 Additive Combinatorics II

According to a recent result of Preissmann and Mischler [18], seating n couples around the King’s round table
according to a certain royal protocol is always possible if p = 2n+1 is a prime number. The precise mathematical
formulation is as follows.

Theorem 6.1. Let p = 2n + 1 be an odd prime and let t1, . . . , tn be arbitrary nonzero elements of Fp. Then the
nonzero elements of Fp can be enumerated as a1, . . . , an,b1, . . . , bn such that bi − ai = ti holds for every i = 1, . . . ,n.

For example, if t1 = · · · = tn = 1, then ai = 2i − 1, bi = 2i will do. The below argument, based on the Polynomial
Lemma, is again due to Karasev and Petrov [12].

Proof. Consider the polynomial

f (x) =
∏

1≤i<j≤n
(xj − xi)(xj + tj − xi)(xi + ti − xj )(xi + ti − xj − tj ) ∈ Fp(x);
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it is homogeneous of degree n(2n − 2) = n(p − 3). The coefficient of the monomial M =
∏
x
p−3
i is the same as in

the polynomial ∏
1≤i,j≤n

(xj − xi)2,

which, according to Theorem 5.1, is

CT[D(x1, . . . ,xn;2)] =
(2n)!
(2!)n

=
(p − 1)!
2n

, 0.

Consider the sets Si = {1,2, . . . ,p − 1} \ {−ti}, then |Si | > p − 3. According to the Polynomial Lemma, there are
elements si ∈ Si such that f (s1, . . . , sn) , 0. Put ai = si , bi = si + ti ; then bi − ai = ti as required. By the choice of si ,
neither ai nor bi is zero. Since f (s1, . . . , sn) , 0, the elements a1, . . . , an,b1 . . . ,bn are pairwise different.

7 Geometry II

As we have seen in Section 3, covering the vertex set Cn of the hypercube with hyperplanes is simple: two
hyperplanes suffice in every dimension, whereas it is never possible using only one hyperplane. In general we
address the following problem. Recall that Cn is a 2 × 2 × · · · × 2 Cartesian product. Now let Si = {ai1, . . . , aik}
be k-element subsets of R for i = 1,2, . . . ,n, and consider their Cartesian product C = S1 × · · · × Sn in euclidean
n-space. It is easy to cover C with a set of k hyperplanes, all parallel to the same coordinate hyperplane. Indeed,
for any 1 ≤ i ≤ n one can take the system of hyperplanes

Hi = {Hij : xi = aij (j = 1,2, . . . , k)}.

Less than k hyperplanes will never do, for |C| = kn, and |H ∩C| ≤ kn−1 for any hyperplane H , as one can prove it
by induction on the dimension n. (How?)

Now consider a system H of k hyperplanes which cover C. What can we say about its structure? Is it true
that H necessarily coincides with one of the n axis-parallel systems described above? Well, not exactly: the
example in Section 1, which is easy to generalize to arbitrary dimensions, demonstrates that it is not true when
k = 2, and the situation is even worse for k = 1. The Combinatorial Nullstellensatz reveals that there are no
counterexamples for larger values of k.

Theorem 7.1. Let k ≥ 3 and let H = {H1, . . . ,Hk} be a system of hyperplanes in Rn. If C ⊂ H1 ∪ · · · ∪Hk , then
H =Hi for some i ∈ {1,2, . . . ,n}.

Proof. For simplicity, we prove the result for n = 2 and write

S1 = {a1, a2, . . . , ak}, S2 = {b1,b2, . . . , bk}.

As before, we denote the coordinates by x and y. IfHi is the line of equationAix+Biy+Ci = 0, then the polynomial

f (x,y) =
k∏
i=1

(Aix+Biy +Ci)

vanishes on the k×k Cartesian product C = S1×S2. Applying Theorem 1.1 for this situation, the degree condition
implies that the polynomials h1,h2 have degree 0. Accordingly, there exist real numbers α,β such that

f (x,y) = α
k∏
i=1

(x − ai) + β
k∏
i=1

(y − bi).
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Comparing the degree k homogeneous parts of the two representations of f we find that

k∏
i=1

(Aix+Biy) = αx
k + βyk .

By symmetry, we may assume that α , 0. As α =
∏
Ai , it follows that Ai , 0. Thus, putting y = 1 we obtain

k∏
i=1

(
x+

Bi
Ai

)
= xk +

β

α
.

The polynomial on the left-hand side splits into linear factors over R. On the other hand, if β , 0, then the roots
of the polynomial on the right-hand side form the vertex set of a regular k-gon on the plane of the complex
numbers, of which at most 2 can lie on the real line. Since k ≥ 3, the polynomial on the right-hand side splits
into linear factors if and only if β = 0. It follows that B1 = · · · = Bk = 0, reducing the equation ofHi to Aix+Ci = 0.
That is, the lines Hi are all parallel to the y-axis and then it must be H = H1. Similarly, the assumption β , 0
leads to H =H2.

From this proof we can extract the hidden algebraic reason: If α , 0, then the polynomial xk + α has at most
two roots in R. The following example shows that Theorem 7.1 fails if one replaces the real number field by the
complex number field.

Example. Let ε = e2πi/3 = cos120◦ + i sin120◦. Consider the Cartesian product

C = {0,1,−ε} × {0,−1, ε} ⊂ C2.

One readily checks that it is contained in the union of the following three lines:

H1 : x+ y = 0, H2 : x+ εy = −ε, H3 : x+ ε
2y = 1.

Getting back to Rn and analyzing the previous proof one finds that the ‘hidden algebraic reason’ can be gener-
alized to a great extent.

Lemma 7.2. Consider a polynomial f (x) = c0xd + c1xd−1 + · · ·+ cd−1x + cd ∈ R[x] with c0 , 0. If ce−2 = ce−1 = 0 and
ce , 0 for some e, then the polynomial does not split into linear factors over R.

Proof. Assume that on the contrary, f has d real roots (counted with the appropriate multiplicities). If α is a root
of multiplicity m > 1, then α is also a root of f ′ with multiplicity m − 1. Thus, it follows from Rolle’s mean value
theorem that f ′ has d − 1 real roots. Iterating this d − e times, after normalization we obtain a polynomial

g(x) = c∗0x
e + c∗1x

e−1 + · · ·+ c∗e−1x+ c
∗
e

with c∗e−2 = c
∗
e−1 = 0 and c∗0, c

∗
e , 0, which has e nonzero real roots. The reciprocal polynomial

c∗ex
e + c∗e−1x

e−1 + · · ·+ c∗1x+ c
∗
0

also has e nonzero roots α1, . . .αe ∈R. According to Viète’s formulas,

σ1 = α1 +α2 + · · ·+αe = −
c∗e−1
c∗e

= 0

and

σ2 = α1α2 +α1α3 + · · ·+αe−1αe =
c∗e−2
c∗e

= 0.

Consequently,
α2
1 +α

2
2 + · · ·+α

2
e = σ

2
1 − 2σ2 = 0,

implying α1 = α2 = · · · = αe = 0, a contradiction.
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Alternatively, one may apply Descartes’ rule of signs to prove the above lemma. This tool makes it possible to
prove the following stability result, a very strong version of Theorem 7.1. Note that the condition on m cannot
be improved upon.

Theorem 7.3. Letm ≤ 2k−3 and letH = {H1, . . . ,Hm} be a system of hyperplanes inRn. If C ⊂H1∪· · ·∪Hm, then
H contains a system of k hyperplanes that already covers C. That is, H ⊇Hi for some i ∈ {1,2, . . . ,n}.

Proof. We may assume that the system H is irredundant, that is, no hyperplane Hu occurs twice, and each of
them intersects C. Writing the equation of Hu in the form

∑n
j=1Aujxj +Bu = 0, the polynomial

f (x) =
m∏
u=1

 n∑
j=1

Aujxj +Bu


vanishes on C = S1×· · ·×Sn. According to Theorem 1.1 there exist polynomials hi ∈R[x] with deghi ≤m−k ≤ k−3
such that

f (x) =
n∑
i=1

hi(x)
k∏
j=1

(xi − aij ).

From each hi , collect the monomial terms of degree m − k and denote the resulting polynomials by h̃i ; each of
them is either homogeneous of degree m− k or identically zero. Thus we have

m∏
u=1

 n∑
j=1

Aujxj

 = n∑
i=1

xki h̃i(x).

Without any loss of generality we may assume that h̃1 , 0. Rewrite the above equation in the form

m∏
u=1

 n∑
j=1

Aujxj

 = h̃(x) + g̃(x), (18)

where

h̃(x) = xk1h̃1(x) =
m∑
i=k

g̃i(x2 . . . ,xn)x
i
1

and

g̃(x) =
n∑
i=2

xki h̃i(x) =
k−3∑
i=0

g̃i(x2 . . . ,xn)x
i
1

with some polynomials g̃i ∈ R[x2, . . . ,xn]. By the assumption h̃1 , 0, there is a largest d with k ≤ d ≤ m such that
g̃d , 0. We will argue that g̃ = 0.

Suppose that, on the contrary, there is a smallest e with d ≥ e ≥ d − k + 3 such that g̃d−e , 0. Then there exist
s2, . . . , sn ∈R such that

g̃d(s2, . . . , sn) , 0 and g̃d−e(s2, . . . , sn) , 0.

Writing gi(s2, . . . , sn) = cd−i , specializing at xj = sj for 2 ≤ j ≤ n, equation (18) reads as

m∏
u=1

Au1x1 + n∑
j=2

Aujsj

 = c0xd1 + · · ·+ cd−kxk1 + cexd−e1 + · · ·+ cd .

In particular, exactly d of the coefficients Au1 are different from zero. According to Lemma 7.2, the polynomial
on the right-hand side does not split into linear factors over R, whereas the polynomial on the left-hand side
obviously does. This contradiction proves that indeed g̃ = 0, as claimed.
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All in all, we see from (18) that the nonzero polynomial

m∏
u=1

 n∑
j=1

Aujxj


is divisible by xk1. By unique factorization in R[x] it follows that (at least) k of the above factors are in the form
Au1x1 with Au1 , 0. The corresponding hyperplanes Hu , having equation in the form Au1x1 + Bu = 0 are all
orthogonal to the x1-axis. By the irredundancy hypothesis, they must form the system H1.

The results of this last section are from [4]. Note that it is possible to prove the above theorems by purely
elementary arguments. The point is: The application of the Combinatorial Nullstellensatz made it possible to
discover these results in the first place.

8 Further Reading

For a proof of the Combinatorial Nullstellensatz as well as for a wealth of applications, see Alon’s original paper
[1]. To read more about constant term identities, their relevance in statistical physics and their connection
to the Selberg integral, see [16] and the references therein; it contains many applications of the Coefficient
Lemma, including additive combinatorics. For the latter subject, we also refer to the expository paper [13] and
the recent monograph [11]. See [9, 14, 15] for more delicate applications of Theorem 1.1. The manuscript [6] is
probably the most recent advance on the topic of these notes.
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1 Introduction

In the network localization problem the locations of some nodes (called anchors) of a network as well as the
distances between some pairs of nodes are known, and the goal is to determine the location of all nodes. This
is one of the fundamental algorithmic problems in the theory of wireless sensor networks, see for example [1].

A natural additional question is whether a solution to the localization problem is unique. The network, with the
given locations and distances, is said to be uniquely localizable if there is a unique set of locations consistent
with the given data. The unique localizability of a two-dimensional network, whose nodes are ‘in generic posi-
tion’, can be characterized by using results from graph rigidity theory. In this case unique localizability depends
only on the combinatorial properties of the network and can be tested by efficient algorithms.

The goal of this series of lectures is to explore the combinatorial background of this characterization and the
corresponding algorithms. After proving some of the classical results of combinatorial rigidity theory and dis-
cussing the necessary algorithmic tools, we shall investigate several versions and extension of the network
localization problems and their solutions.

1.1 Basic definitions

In what follows we shall summarize the basic concepts and some of the key preliminary results. See the Appendix
for more definitions concerning graphs and matroids.

As we shall see, unique localizability (in the ‘generic case’) is determined completely by the distance graph of
the network and the set of anchors, or equivalently, by the grounded graph of the network and the number of
anchors. The vertices of the distance and grounded graph correspond to the nodes of the network. In both
graphs two vertices are connected by an edge if the corresponding distance is explicitly known. In the grounded
graph we have additional edges: all pairs of vertices corresponding to anchor nodes are adjacent. The grounded
graph represents all known distances, since the distance between two anchors can be obtained from their lo-
cations. Before stating the basic observation about unique localizability we need some additional terminology.
It is convenient to investigate localization problems with distance information by using frameworks, the central
objects of rigidity theory.

A d-dimensional framework (also called geometric graph or formation) is a pair (G,p), where G = (V ,E) is a
graph and p is a map from V to Rd . We consider the framework to be a straight line realization of G in Rd .
Two frameworks (G,p) and (G,q) are equivalent if corresponding edges have the same lengths, that is, if ||p(u)−
p(v)|| = ||q(u)− q(v)|| holds for all pairs u,v with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd . Frameworks
(G,p), (G,q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u,v with u,v ∈ V . This is the same as
saying that (G,q) can be obtained from (G,p) by an isometry of Rd . We shall say that (G,p) is globally rigid, or
that (G,p) is a unique realization of G, if every framework which is equivalent to (G,p) is congruent to (G,p), see
Figure 7.

The next observation shows that the theory of globally rigid frameworks is the mathematical background which
is needed to investigate the unique localizability of networks.

Theorem 1.1. LetN be a network inRd consisting ofm anchors located at positions p1, ...,pm and n−m ordinary
nodes located at pm+1, ...,pn. Suppose that there are at least d + 1 anchors in general position. Let G be the
grounded graph of N and let p = (p1, ...,pn). Then the network is uniquely localizable if and only if (G,p) is
globally rigid.
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Figure 7: Two realizations of the same graph G in R2: F1 is globally rigid; F2 is not since we can obtain a realiza-
tion of G which is equivalent but not congruent to F2 by reflecting p2 in the line through p1,p5,p3.

1.2 Generic frameworks

It is a hard problem to decide if a given framework is globally rigid. Indeed Saxe [8] has shown that this problem
is NP-hard even for 1-dimensional frameworks. The problem becomes more tractable, however, if we assume
that there are no algebraic dependencies between the coordinates of the points of the framework.

A framework (G,p) is said to be generic if the set containing the coordinates of all its points is algebraically inde-
pendent over the rationals. (Recall that a set {α1,α2, . . . ,αt} of real numbers is algebraically independent over the
rationals if, for all non-zero polynomials with rational coefficients p(x1,x2, . . . ,xt), we have p(α1,α2, . . . ,αt) , 0.)
Restricting to generic frameworks gives us two important ‘stability properties’. The first is that, if (G,p) is a
globally rigid d-dimensional generic framework then there exists an ε > 0 such that all frameworks (G,q) which
satisfy ||p(v) − q(v)|| < ε for all v ∈ V are also globally rigid. The second, which follows from a recent result
of Gortler at al. [4], is that if some d-dimensional generic realization of a graph G is globally rigid, then all
d-dimensional generic realizations of G are globally rigid.

2 Rigidity and global rigidity of graphs

Rigidity, which is a weaker property of frameworks than global rigidity, plays an important role in the exploration
of the structural results of global rigidity as well as in the corresponding algorithmic problems. Intuitively, we can
think of a d-dimensional framework (G,p) as a collection of bars and joints where vertices correspond to joints
and each edge to a rigid bar joining its end-points. The framework is rigid if it has no continuous deformations.
Equivalently, and more formally, a framework (G,p) is rigid if there exists an ε > 0 such that, if (G,q) is equivalent
to (G,p) and ||p(u)− q(u)|| < ε for all v ∈ V , then (G,q) is congruent to (G,p).

Rigidity, like global rigidity, is a generic property of frameworks, that is, the rigidity of a generic realization of
a graph G depends only on the graph G and not the particular realization. We say that the graph G is rigid,
respectively globally rigid or uniquely realizable, in Rd if every (or equivalently, if some) generic realization of G
in Rd is rigid, respectively globally rigid.

The problem of characterizing when a graph is rigid in Rd has been solved for d = 1,2. We refer the reader
to [5, 10, 11] for a detailed survey of the rigidity of d-dimensional frameworks. A similar situation holds for
global rigidity: the problem of characterizing when a generic framework is globally rigid in Rd has also been
solved for d = 1,2.

We shall state these characterizations and study their algorithmic implications. Here we only mention a general
necessary condition, due to Hendrickson, which is valid in all dimensions. We say that G is redundantly rigid in
R
d if G − e is rigid in Rd for all edges e of G.

Theorem 2.1. [6] Let (G,p) be a generic framework in Rd . If (G,p) is globally rigid then either G is a complete
graph with at most d +1 vertices, or G is (d +1)-connected and redundantly rigid in Rd .
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3 Rigidity matrices and matroids

A matroid is an abstract structure which extends the notion of linear independence of vectors in a vector space.
We will see that many of the rigidity properties of a generic framework (G,p) are determined by an associated
matroid defined on the edge set of G. (See the Appendix for the basic definitions and [7, 9] for more information
on matroids.)

Let (G,p) be a d-dimensional realization of a graph G = (V ,E). The rigidity matrix of the framework (G,p) is the
matrix R(G,p) of size |E| × d|V |, where, for each edge e = vivj ∈ E, in the row corresponding to e, the entries in
the two columns corresponding to vertices i and j contain the d coordinates of (p(vi)− p(vj )) and (p(vj )− p(vi)),
respectively, and the remaining entries are zeros. See [5,10] for more details. The rigidity matrix of (G,p) defines
the rigidity matroid of (G,p) on the ground set E where a set of edges F ⊆ E is independent if and only if the rows
of the rigidity matrix indexed by F are linearly independent. Any two generic d-dimensional frameworks (G,p)
and (G,q) have the same rigidity matroid. We call this the d-dimensional rigidity matroid Rd(G) of the graph G.
We denote the rank ofRd(G) by rd(G).

As an example, consider a 1-dimensional framework (G,p). In this case, the rows of R(G,p) are just scalar
multiples of a directed incidence matrix of G. It is well known that a set of rows in this matrix is independent if
and only if the corresponding edges induce a forest in G. ThusR1(G) is the cycle matroid of G.

Gluck characterized rigid graphs in terms of their rank.

Theorem 3.1. [3] LetG = (V ,E) be a graph. ThenG is rigid inRd if and only if either |V | ≤ d+1 andG is complete,
or |V | ≥ d +2 and rd(G) = d|V | −

(d+1
2

)
.

This characterization does not give rise to a polynomial algorithm for deciding whether a graph is rigid in Rd .
The problem is that to compute rd(G) we need to determine the rank of the rigidity matrix of a generic realization
of G in Rd . There is no known polynomial algorithm for calculating the rank of a matrix in which the entries are
linear functions of algebraically independent numbers.

We say that a graph G = (V ,E) is M-independent in Rd if E is independent in Rd(G). Knowing when subgraphs
of G are M-independent allows us to determine the rank of G (and hence determine whether G is rigid), since
we can construct a base for Rd(G) by greedily constructing a maximal independent set of Rd(G). This follows
from axiom (M3) which guarantees that an independent set which is maximal with respect to inclusion is also an
independent set of maximum cardinality. For example, when d = 1, we have seen that a subgraph is independent
if and only if it is a forest. Thus we can determine the rank of G by greedily growing a maximal forest F in G. By
Theorem 3.1, G is rigid if and only if F has |V | − 1 edges, i.e. F is a spanning tree of G.

4 Warm up exercises

The following exercises may help warm up for these lectures.

Exercise 4.1. Show that a framework (G,p) is rigid in R1 if and only if G is connected.

Exercise 4.2. Characterize the redundantly rigid graphs in R1 and develop an efficient algorithm for testing
whether a given graph has this property.

Exercise 4.3. Construct two-dimensional frameworks (G,p) on n vertices for all n ≥ 2 which are rigid and have
2n−3 edges. Define a family of graphs which contains a rigid graph in R2 on n vertices and with 2n−3 edges for
all n ≥ 2.

Exercise 4.4. Construct two-dimensional frameworks (G,p) on n vertices for all n ≥ 4 which are rigid and have
2n− 4 edges. Can you do that so that the framework is in generic (or general) position?

Exercise 4.5. Construct globally rigid graphs in R2 on n vertices for all n ≥ 2. Try to do it so that the number of
edges is as small as possible.
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5 Appendix

In what follows we introduce the basic graph (and matroid) theoretical notions. For more details see for example
[2].

A graph G = (V ,E) consists of two sets V and E. The elements of V are called vertices (or nodes). The elements
of E are called edges. Each edge e ∈ E joins two vertices from V , which are called the endvertices of e. The
notations V (G) and E(G) are also used for the vertex- and edge-sets of a graph G. If vertex v is an endvertex of
edge e then v is said to be incident with e and e is incident with v. A vertex v is adjacent to vertex u if they are
joined by an edge. A graph is simple if the pairs of endvertices of its edges are pairwise distinct.

The degree of a vertex v in a graph G, denoted by dG(v), is the number of edges incident with v. A graph is
regular if every vertex is of the same degree. It is k-regular if every vertex is of degree k.

A path in a graph G from vertex u to vertex v is an alternating sequence of vertices and edges, which starts and
ends with u and v (which are its initial and final vertices, respectively), and for which consecutive elements are
incident with each other and no internal vertex is repeated. A cycle is a path which contains at least one edge
and for which the initial vertex is also the final vertex. A graph is connected if between every pair of vertices
there is a path.

A subgraph of a graphG is a graphH with V (H) ⊆ V (G) and E(H) ⊆ E(G). In a graphG the induced subgraph on a
set X of vertices, denoted byG[X], has X as its vertex set and it contains every edge ofG whose endvertices are
in X. A subgraph H is a spanning subgraph if V (H) = V (G). A component of a graph G is a maximal connected
subgraph. A k-factor of a graph G is a k-regular spanning subgraph.

The operation of deleting a vertex set X ⊆ V (G) from a graph G removes the vertices in X from V (G) and also
removes every edge which has an endvertex in X from E(G). The resulting graph is denoted by G−X (or G−x, if
X = {x} is a single vertex). The operation of deleting an edge set F ⊆ E(G) from a graph G removes the edges in
F from E(G). The resulting graph is denoted by G −F (or G − f , if F = {f } is a single edge).

A forest is a graph without cycles and a tree is a connected forest. A spanning tree of a graph G is a spanning
subgraph which is a tree.

A graph is a complete graph if each pair of its vertices is joined by an edge. A complete graph on n vertices is
denoted by Kn. A graph is bipartite if its vertices can be partitioned into two sets in such a way that no edge joins
two vertices in the same set. A complete bipartite graph is a bipartite graph in which each vertex in one partite
set is adjacent to all vertices in the other partite set. If the two partite sets have cardinalititesm and n, then this
graph is denoted by Km,n. A graphG on n vertices is a wheel, denoted byWn, if it has an induced subgraph which
is a cycle on n− 1 vertices and the remaining vertex is joined to all vertices of this cycle.

A k-vertex-cut in a graph G is a set X ⊆ V (G) of k vertices for which G−X is not connected. A k-edge-cut is a set
F ⊆ E(G) of k edges for which G −F is not connected. A graph is called k-vertex-connected (or k-connected) if it
has at least k + 1 vertices and contains no l-vertex-cut for l ≤ k − 1. A graph is k-edge-connected if it contains
no l-edge-cuts for l ≤ k − 1.

Two paths are called openly disjoint if they have no common internal vertex. They are called edge disjoint if they
have no common edge. A fundamental theorem of Menger states that if u and v are non-adjacent vertices in
graph G then the smallest integer k for which there is a k-vertex-cut X in G such that u and v are in different
components of G −X is equal to the maximum number of pairwise openly disjoint paths from u to v. The edge
disjoint version of Menger’s theorem is as follows. For any pair of vertices u,v in G the smallest integer k for
which there is a k-edge-cut F inG such that u and v are in different components ofG−F is equal to the maximum
number of pairwise edge disjoint paths from u to v.

An isomorphism between two graphs G and H is a vertex bijection φ : V (G)→ V (H) such that uv ∈ E(G) if and
only if φ(u)φ(v) ∈ E(H). A graph automorphism is an isomorphism of the graph to itself. The orbit of a vertex u
of a graph G is the set of all vertices v ∈ V (G) such that there is an automorphism φ such that φ(u) = v. A graph
is vertex-transitive if all the vertices are in the same orbit.



Combinatorial rigidity: graphs and matroids in the theory of rigid
frameworks

59

Combinatorial rigidity: graphs and matroids in the theory of rigid
frameworks

59

Combinatorial rigidity: graphs and matroids in the theory of rigid
frameworks

59

The incidence matrix of a graph G = (V ,E) is an |E| × |V |matrix I where the entry in the row of edge e and vertex
v is equal to 1 if e is incident with v, and 0 otherwise. The directed incidence matrix of G is obtained from I by
replacing exactly one of the two 1’s in each row of I by −1.

5.1 Matroids

A matroid is an ordered pairM = (E,I )where E is a finite set, and I is a family of subsets of E, called independent
sets, which satisfy the following three axioms.

(M1) ∅ ∈ I ,
(M2) if I ∈ I and D ⊆ I then D ∈ I ,
(M3) for all F ⊆ E, the maximal independent subsets of F have the same cardinality.

The fundamental example of a matroid is obtained by taking E to be a set of vectors in a vector space and I to
be the family of all linearly independent subsets of E.

Given a matroid M = (E,I ), the cardinality of a maximum independent subset of a set F ⊆ E is defined to be
the rank of F and denoted by r(F). The rank of E is referred to as the rank ofM. A base ofM is a maximum
independent subset of E. A subset of E which is not independent is said to be dependent. A circuit of M is
a minimal dependent subset of E. The matroid M is said to be connected if every pair of elements of E are
contained in a circuit.

Given a graphG = (V ,E), we may define a matroidM = (E,I ) by letting I be the family of all edge sets of forests
in G. The rank of a set F ⊆ E is given by r(F) = |V | − k(F), where k(F) denotes the number of connected compo-
nents in the graph (V ,F). A base ofM is the edge set of a forest which has the same number of components as
G. A circuit ofM is the edge set of a cycle ofG, andM is connected if and only ifG is 2-connected. This matroid
is called the cycle matroid of G.
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These are notes for my 2 × 90 minutes minicourse. I included all the definitions and theorems, but most of
the examples and exercises will be presented at the lectures. A list of detailed reference books and papers for
suggested further reading is given at the end of the notes.

1 Introduction

In this section we introduce finite affine and projective planes. Their basic combinatorial properties are pre-
sented and some interesting point-sets are studied.

1.1 Affine planes

Let us start with classical geometry what we know from high school. The points and lines of the classical eu-
clidean plane can be described in the following way:

points: (a,b) a,b ∈R
lines: [c], [m,k] c,m,k ∈R
incidence: (a,b) I [c] ⇐⇒ a = c,

(a,b) I [m,k] ⇐⇒ b =ma+ k.

If we replace R by any (commutative) field K, then we get the points and lines of the affine plane AG(2,K) :

points: (a,b) a,b ∈K
lines: [c], [m,k] c,m,k ∈K
incidence: (a,b) I [c] ⇐⇒ a = c,

(a,b) I [m,k] ⇐⇒ b =ma+ k.

We say, that the line [m,k] has equation Y = mX + k, while the line [c] has equation X = c. Two lines are said to
be parallel, if they do not have any point in common, or if they coincide.

One can prove the following incidence properties by solving sets of linear equations.

• E1. For any two distinct points there is a unique line joining them.

• E2. For any non-incident point-line pair (P ,e) there is a unique line f such that P If and e∩ f = ∅.

In the case K = GF(q), we get AG(2,q), the finite affine plane of order q. The points of AG(2,q) are the ordered
pairs (a,b), where a,b ∈ GF(q), hence there are q2 points on the plane. The lines of AG(2,q) are of two types: the
non-vertical lines are the ordered pairs [m,k], where m,k ∈ GF(q), in this case m is called the slope of the line;
and the vertical lines, these are the elements [c], where c ∈GF(q). Hence there are q2 + q lines on the plane. The
point (a,b) is on the line [m,k] if and only if b =ma+ k holds in GF(q), and is on the line [c] if and only if a = c.
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Figure 1, AG(2,3)

Using properties E1 and E2 we define the abstract affine plane.

Definition 1.1. Let P andL be two distinct sets, the elements of P are called points, the elements ofL are called
lines. Let I ⊂ (P × L) ∪ (L × P ) be a symmetric relation, called incidence. The triple (P ,L, I) is called an affine
plane if it satisfies the following axioms.

• A1. For any two distinct points there is a unique line joining them.

• A2. For any non-incident point-line pair (P ,e) there is a unique line f such that P If and e∩ f = ∅.

• A3. There exist three non-collinear points.

1.2 Projective planes

The classical projective plane is an extension of the euclidean plane. It contains all points and lines of the
euclidean plane and some extra points, called points at infinity and an extra line, called the line at infinity. The
points at infinity correspond to the classes of parallel lines of the euclidean plane. Each line of the euclidean
plane is incident with exactly one point at infinity in such a way that two euclidean lines have the same point
at infinity if and only if they are parallel, while the line at infinity contains all points at infinity and no euclidean
point.

The classical projective plane has simpler incidence properties than the euclidean plane, namely:

• C1. For any two distinct points there exists a unique line incident with both of them.

• C1. For any two distinct lines there exists a unique point incident with both of them.

Starting from an abstract affine plane, A, in the same way we can construct the projective closure of A. Each
projective closure satisfies C1 and C2. We define the abstract projective planes using these properties.

Definition 1.2. Let P andL be two distinct sets, the elements of P are called points, the elements ofL are called
lines. Let I ⊂ (P ×L)∪ (L×P ) be a symmetric relation, called incidence. The triple (P ,L, I) is called a projective
plane if it satisfies the following axioms.
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• P1. For any two distinct points there is a unique line joining them.

• P2. For any two distinct lines there is a unique point of intersection.

• P3. Each line is incident with at least three points and each point is incident with at least three lines.

E

A a B
1.1. ábra

D

Figure 2, The Fano plane

1.3 Homogeneous coordinates, PG(2,K)

The standard example of projective planes is the vector space model. Let V3 be a 3-dimensional vector space
over the field K. The points of the projective plane PG(2,K) are the 1-dimensional subspaces of V3, the lines of
PG(2,K) are the 2-dim subspaces of V3 and the incidence is the set theoretical inclusion.

The relation ∼
x ∼ y⇐⇒∃0 , λ ∈K : x = λy

is an equivalence relation on the elements of V3. The equivalence class of the vector v ∈ V3 is denoted by [v].

We introduce the homogeneous coordinates in the following way.

• Each 1-dimensional subspace can be represented by any of its generating vectors. If a point P is rep-
resented by the class of vectors [v] and 0 , v = (v0,v1,v2), then the homogeneous coordinates of P are
(v0 : v1 : v2),

• Each 2-dimensional subspace can be represented by any generating vectors of its orthogonal comple-
ment. If a line ` is represented by the class of vectors [u] and 0 , u = (u0,u1,u2), then the homogeneous
coordinates of ` are [u0 : u1 : u2].

The incidence is the set theoretical inclusion, hence

P I` ⇔
2∑
i=0

uivi = 0.

It is easy to give the collinearity condition of points in PG(2,K). Three distinct points X = [x], Y = [y] and Z = [z]
are collinear if and only if their coordinate vectors are linearly dependent.
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∃ α, β ∈K : x = αy+ βz.

It happens if and only if

∣∣∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣∣∣ = 0.

It is easy to check that the projective closure of AG(2,K) is PG(2,K). The following table gives the correspon-
dence.

Cartesian coordinates homogeneous coordinates

(a,b) (1 : a : b)
(m) (0 : 1 :m)
(∞) (0 : 0 : 1)
[m,k] [k :m : −1]
[c] [c : −1 : 0]
[∞] [1 : 0 : 0]

1.4 Basic combinatorial properties

Theorem 1.3. LetΠ be a projective plane. IfΠ has a line which is incident with exatly n+1 points, then

1. each line is incident with n+1 points,

2. each point is incident with n+1 lines,

3. the plane contains n2 +n+1 points,

4. the plane contains n2 +n+1 lines.

The number n is called the order of the plane.

Proof. It follows from P1 and P2 that if (P ,`) is a non-incident point-line pair, then there is a bijection between
the set of points on ` and the set of lines through P

Fi I`⇐⇒ P Fi .

Hence the number of points on ` is the same as the number of lines through P .

Let now ` be the line which has exatly n+1 points. If A is any point not on `, then the number of lines through A
is n+ 1. Let m be an arbitrary line of the plane different from `. Let P be the point ` ∩m. It follows from P3 that
there is a third line, say k, through P which is different from both ` and m, and there is a point Q on k which is
different from P . Q is neither on `, nor on m, hence the number of lines through Q is the same as the number of
points on ` and the same as the number of points on m. So m also has n+1 points, we proved (1).

Next we show (2). Let R be an arbitrary point of the plane. It follows from P3 that there exists a line m which is
not incident with R. We have proved that there are n+1 points on m, thus R is incident with n+1 points.

Now we count the total number of points and lines of the plane. Let H be any point of the plane. By (2) there
are n+1 lines through H. Since any two points of the plane are joined by a unique line, every point of the plane
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except H is on exactly one of these n+1 lines. By (1) each of these lines contains n points distinct from H. Thus
the total number of points is 1+ (n+1)n = n2 +n+1.

Let h be any line of the plane. By (1) there are n + 1 points on h. Since any two lines of the plane intersect in a
unique point, every line of the plane except h is on exactly one of these n+1 points. By (2) each of these points
is incident with n lines distinct from h. Thus the total number of lines is 1+ (n+1)n = n2 +n+1.

The last two paragraphs of the previous proof illustrate an interesting and important property of the projective
planes, the Principle of Duality. Let T be any theorem about the incidence of points and lines of projective
planes. If T ∗ is the statement obtained by interchanging the words "point" and "line", then T ∗ is also a theorem
about projective planes. This follows from the fact that the axioms P1 and P2 are duals of each other, while the
axiom P3 is self–dual.

In general the existence problem of projective planes with a given order is an unsolved problem. (And it seems
to be hopeless to solve.) If q is a power of a prime then the vector space model guarantees the existence
of a projective plane of order q. There are some more partial results. The first number which is not a prime
power is six, and we know that there is no projective plane of order six [2]. It was proved in 1989 that there is no
projective plane of order 10 [13]. The next number which is not a prime power is 12, and we do not know whether
a projective plane of 12 exists or does not exist.

For n ≤ 8 the projective planes of order n are unique up to isomorphism. It is not too difficult to prove it for n ≤ 5.
The cases n = 7 and n = 8 are much more complicated, the proofs can be found in [14] and [5]. For n = 9 there
are four non-isomorphic planes, their constructions can be found in [9].

1.5 Arcs, ovals and hyperovals

Definition 1.4. A k-arc is a set of k points no three of them are collinear.

A k-arc is complete if it is not contained in any (k +1)-arc.

Definition 1.5. Let K be a k-arc and ` be a line. Then ` is called

– a secant to K if |K∩ `| = 2,

– a tangent to K if |K∩ `| = 1,

– an external line to K if |K∩ `| = 0.

Theorem 1.6 (Bose). If there exists a k-arc in a finite plane of order n, then

k ≤
{
n+1 ifnodd,
n+2 ifneven.

Proof. If the points P1, P2, . . . , Pk form a k-arc, then the lines P1Pi are distinct lines through P1. But there are n+ 1
lines through P1, hence k ≤ n+2.

Assume that the points P1, P2, . . . , Pn+2 form an (n+2)-arcH. Then each line of the plane meetsH in either 0 or 2
points, henceH contains an even number of points, so n must be even.

Definition 1.7. An (n+1)-arc in a projective plane of order n is called oval.

An (n+2)-arc in a projective plane of order n is called hyperoval.

It follows from the Theorem of Bose that here are no hyperovals in planes of odd order.

Theorem 1.8. There are ovals in PG(2,q) for all q. If q is even then PG(2,q) contains hyperovals, too.
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Proof. Consider the conic C having equation X2
1 = X0X2. Then

C = {(1 : t : t2) : t ∈GF(q)} ∪ {(0 : 0 : 1)}.

We show that no three points of C are collinear. It is enough to prove that∣∣∣∣∣∣∣∣
1 t1 t21
1 t2 t22
1 t3 t23

∣∣∣∣∣∣∣∣ , 0 and

∣∣∣∣∣∣∣∣
1 t1 t21
1 t2 t22
0 0 1

∣∣∣∣∣∣∣∣ , 0
if ti , tj . The second condition obvious, while the first one follows from the properties of the Vandermonde
determinants. Hence C is an oval for any q.

Elementary calculation shows that the equation of the tangent line to C at the affine point (t0, t
2
0) is

Y − t20 = 2t0(X − t0).

If q is even then 2 = 0, and the equation becomes Y = t20 . The tangent line to C at the point (0 : 0 : 1) is the line at
infinity. Hence each tangent contains the point (0 : 1 : 0). Thus C ∪ {(0 : 1 : 0)} is a hyperoval if q is even.

Theorem 1.9. Let Ω be an oval in the plane Πn, n odd. Then the points of Πn \Ω are divided into two classes.
There are (n+1)n/2 points which lie on two tangents toΩ (external points), and there are (n−1)n/2 points none
of which lie on a tangent toΩ (internal points).

Proof. Let ` be the tangent toΩ at P and P1, P2, . . . , Pn be the other points of `. Let ti be the number of tangents
to Ω through Pi . Ω contains an even number of points, hence ti > 0 must be an even number, too. There are n
tangents toΩ distinct from `, each of these meets ` in a unique point, hence

∑
(ti − 1) = n. Thus ti = 2 because

of the Pigeonhole Principle.

So the number of external points is (n+1)n/2, while the number of internal points is n2+n+1−(n+1)−(n+1)n/2 =
(n− 1)n/2.

Theorem 1.10. Let Ω be a hyperoval in the plane Πn, n even. Then the lines of Πn \Ω are divided into two
classes. There are (n+2)(n+1)/2 secants toΩ, and there are (n− 1)n/2 external lines toΩ.

2 How can we organize a soccer championship?

Let G = (V ,E) be a simple graph. A one-factor of G is a set of pairwise disjoint edges of G such that every vertex
of G is contained in exactly one of them. A one-factorization of G is a decomposition of E into edge-disjoint
one-factors.

Not every graph has a one-factor. Obviously necessary condition that a graph with a one-factor must have an
even number of vertices. However this is not sufficient.

A graphG = (V ,E) has a one-factor if and only if for each subsetW ⊂ V the number of the components ofG−W
having an odd number of vertices is less than or equal to the number of the vertices of W. For more on graph
factorizations we refer to [16].

In particular, the complete graph on 2n vertices, K2n, has a one-factor, and it is easy to see that it has a lot of
one-factorizations, too.

The one-factorizations ofK2n have an interesting and important application. Suppose that several soccer teams
play against each other in a league (e.g. 18 teams in Serie A). The competition can be represented by a graph
with the teams as vertices and games as edges (the edge uv corresponds to the game between the two teams
u and v). If every pair of teams plays exactly once, then the graph is complete. Several matches are played
simultaneously, every team must compete at once, the set of games held at the same time is called a round.



Finite geometries: from definitions to applications

67
Finite geometries: from definitions to applications

67
Finite geometries: from definitions to applications

67

Thus a round of games corresponds to a one-factor of the underlying graph. The schedule of the championship
is the same as a one-factorization of K2n.

If n is small then it is easy to organize the championship. The bigger n the more difficult schedule. There are
several methods of constructions of one-factorization of K2n. Now we present two constructions, both of them
are based on the geometric properties of complete arcs in finite planes.

2.1 Schedule from an oval

Suppose that the projective planeΠ2n−1 contains an ovalΩ = {P1, P2, . . . , P2n}. Take the points ofΩ as the vertices
of K2n. Let E be an external point of Ω. Then E defines a one-factor F of K2n in the following way: F consists
of the edges PjPk if the points Pj , Pk and E are collinear, and the edge P`Pm if the lines EP` and EPm are the two
tangent lines toΩ through E.

Let ` be the tangent line to Ω at the point P2n, let L1,L2, . . . ,L2n−1 be the points on ` distinct from P2n, and let Fi
be the one-factor belonging to the point Li .

Lemma 2.1. The union of the one-factors Fi gives a one-factorization of K2n.

The edge P2nPk belongs to Fk . If i , 2n , j and i , j then there is a unique point of intersection of the lines PiPj
and `, say Lk . Hence there is a unique one-factor Fk containing the edge PiPj .

___P.•..l__ Pj"

Figure 3

This construction works on arbitrary projective planes of odd order which contains an oval (although all the
known planes have prime power order), in particular for q = 17 the plane PG(2,17) contains an oval and our
method gives a possible schedule for important championships, e.g. Serie A and Bundesliga. In the case q = 19
the plane PG(2,19) also contains an oval and we get a schedule for Primera Division.

2.2 Schedule from a hyperoval

The following similar construction gives a one-factorization of K2n if there exists a projective plane of order
2n− 2 which contains a hyperovalH = {P1, P2, . . . , P2n} (again, all the known examples have prime power order).

Take the points P1, P2, . . . , P2n as the vertices of K2n. Let ` be an external line to H and let L1,L2, . . .L2n−1 be the
points of `.

The one-factor Fi belonging to the point Li is defined to consist of the edges PjPk if the points Pj , Pk and Li
are collinear. The union of the one-factors Fi is a one-factorization of K2n because there is a unique point of
intersection of the lines PiPj and `.
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Figure 4

If n = 16, then the plane PG(2,16) contains hyperovals with 18 points, so we can make the schedule for Serie A
and Bundesliga in this way, too.

3 How can we win on football pool games?

Football pool game (Totocalcio) is very popular in many countries. There is an organizer and there are play-
ers. The organizer assigns some matches (throughout this section n denotes the number of matches), and the
players try to guess the outcomes of the competitions. The players do not have to guess the exact final score,
the number of possible outcomes is only three: the home team wins, loses or plays a draw, usually these pos-
sibilities are denoted by 1,2 and x, respectively. The players make forecasts (a forecast is a sequence of length
n, each of its element is 1,2 or x), and pay a fixed amount per forecast for the organizer. The more to pay, the
bigger chance to win. After the matches have been played an entirely correct forecast wins the first prize, and
in general a forecast with (i − 1) incorrect guesses wins the ith prize. Furthermore, the amount of the ith prize
depends on the number of forecasts winning this prize. The organizer uses a fixed percentage of the stakes to
pay the prizes (in Hungary, approximately 45 %), so it seems to be better to be the organizer than to be a player.
Unfortunately to organize a football pool game is a monopoly of the state, so we cannot become rich in this
way. There is really nothing one can do to get more money than one invested. Of course, there are some dirty
possibilities. If the game between the teams A and B is assigned, and our guess is 1, then we can offer some
money to the forwards of team A for playing extremely well, or we can offer some money to the goalkeeper of
team B for playing not so well, or offer some money to the referee for making "good" decisions. But these are
unfair things. We are interested in fair matches. We assume that each of the three possible outcomes has the
same probability.

We try to construct suitable systems to win some prize by using as little money as possible. This is the classical
football pool problem.

From now on we will write 0 instead of x. We can formulate our problem in the following way:

Let n and k be positive integers. Let En denote the set of all (0,1,2)-sequences of length n. We consider En as
the set of elements Zn3. Find the smallest subset T ⊂ En with the following property: for each e ∈ En there exists
t ∈ T such that they differ from each other in at most k positions.

In another point of view this is a special case of the covering radius problem of coding theory, it has been widely
studied in information theory. For more on this subject, we refer to [1]. Some notations come from this field. The
elements of En will be called words. If

e = (e1, e2, . . . , en)

is an element of En, then ei will be called the ith coordinate of e.
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3.1 The Hamming distance

The number of mistakes in a forecast is the number of coordinates in which the forecast and the result differ
from each other. Thus the following definition is a natural measure of the correctness of forecasts.

Definition 3.1. Let x = (x1,x2, . . . ,xn) and y = (y1, y2, . . . , yn) be two elements of En. Their Hamming distance,
d(x,y), is the number of indices i for which xi , yi .

Proposition 3.2. The pair (En,d) is a metric space. This means that for all x,y,z ∈ En:

1. d(x,y) ≥ 0, and equality holds if and only if x = y.

2. d(x,y) = d(y,x).

3. d(x,y) + d(y,z) ≥ d(x,z).

Proof. The first and second statements are trivially true. The proof of the third (the triangle inequality) as
follows.

Let d(x,z) = m, then there are exactly m indices i1, i2, . . . , im for which xij , zij . Consider the corresponding coor-
dinates of y. For all j at least one of the two conditions xij , yij and zij , yij is satisfied. Hence the number of
indices for which y differs from x or z (or both) is at least m. This proves the third statement.

If there is a distance, then we can define the spheres (balls) in the usual way.

Definition 3.3. Let c ∈ En be a given word and 0 ≤ r be a given integer. Then the sphere with centre c and radius
r is the subset B(c,r) ⊂ En which contains those elements of En whose Hamming distance from c is at most r.
Thus:

B(c,r) = {x ∈ En : d(c,x) ≤ r}.

The number of words contained in a sphere is depend on only the radius of the sphere:

Proposition 3.4. A sphere of radius 0 ≤ r ≤ n contains exactly

r∑
i=0

(
n
i

)
· 2i

words from En. This number does not depend on the centre of the sphere.

Proof. Let c be the centre of the sphere. Then the sphere contains those words, which differ from c not more
than r coordinates. If a word differs from c in exactly i coordinates, then we have

(n
i

)
possibilities to choose these

i positions, and we can write two possible numbers into each of these coordinates independently.

If we would like to guarantee the (n−k+1)st prize, then we have to construct a system ofm forecasts {t1,t2, . . . ,tm}
such that the union of the spheres of radius (n−k) centered at the words ti contains En. Because if it holds, then
for each word e ∈ En there exists at least one forecast ti such that d(ti ,e) ≤ n− k, thus the forecast contains at
least n− (n− k) = k correct guesses, hence guarantees at least the (n− k +1)st prize.

From this observation we get the following theorem, the so-called sphere covering bound.
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Theorem 3.5. If the system of forecasts T guarantees the (n− k + 1)st prize, and |T | denotes the cardinality of
T , then

|T | ≥ 3n∑n−k
i=0

(n
i

)
· 2i

.

Proof. Proposition 3.4 states that each sphere of radius n − k contains
∑n−k
i=0

(n
i

)
· 2i words. If T guarantees the

(n−k+1)st prize, then the union of spheres of radius (n−k) centered at the elements of T must contain En, hence
the number of the words in the union of these spheres is greater than or equal to the number of elements of En,
that is 3n.

3.2 Good forecasts

First consider two trivial cases.

If a set of forecasts T guarantees the first prize, then the spheres of radius 0 centered at the words of T must
contain each elements of En. But a sphere of radius 0 consists of only its centre, hence T must contain each
element of En. (Of course, we have already known it before we defined the Hamming distance and the spheres.)

If n = 13 (this is the most important case in practical point of view, because in lot of countries, e.g. Hungary and
Italy, there are 13 matches on the official football pool game), and we would like to guarantee the 9th prize, we
can do it easily. For i = 0,1,2 let ti be the word whose each coordinate is i. This set of three forecasts guarantees
the 9th prize, because each word of length 13 contains at least 5 coordinates which are equal. (Otherwise the
length of the word would be at most 3× 4 = 12.) Using the spheres, our statement is:

2⋃
i=0

B(ti ,8) ⊃ E13.

Unfortunately the 9th prize does not pay any money. Usually we can win only with the first, second and third
prizes. Hence the really interesting cases are those, when n− k is small. From now on we introduce the notation
n − k = r. If we would like to guarantee the (r + 1)st prize, then the number 0 ≤ r ≤ n is an upper bound on the
cardinality of bad guesses.

To find the smallest subset which guarantees the (r + 1)st prize is open in general, also for r = 1. For the best
currently known systems and estimates we refer to [6]

The constructions often arise from finite geometry. Now we construct an optimal system in the case n = 4 and
r = 1. This construction is based on the geometric properties of the finite affine plane of order three, AG(2,3).
Let us denote this plane byH. As we have already seen there are 3× 3 = 9 points and 3× 3+ 3 = 12 lines on the
plane. Each line ofH contains three points and there are four lines through each point ofH. The lines ofH can
be divided into four classes, each class contains three parallel lines.

The forecasts correspond to the points ofH. For each point P we associate a word of length four in the following
way: Consider the lines passing through P . There are four lines, one from each parallel clases. If the equations
of these lines are

X = c, Y = d, Y = X + e and Y = 2X + f ,

respectively, then let the word associate to P be

P 7→ p = (c,d,e, f ).

If P and Q are distinct points of H and the associated words are p and q, then there is exactly one subscript
1 ≤ i ≤ 4 for which pi = qi holds, because there is a unique line joining P and Q. Hence their Hamming distance
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d(p,q) = 3. This implies that the spheres of radius 1 centered at the words corresponding to the points ofH are
pairwise distinct. Because if k would be a common point of the spheres centered at p and q, then applying the
triangle inequality we would get

3 = d(p,q) ≤ d(p,k) + d(q,k) ≤ 1+1 = 2,

contradiction.

Each sphere contains 1+4 ·2 = 9 words, hence the union of the 9 spheres associated to the points ofH contains
9 · 9 = 81 = 34 words. But E4 has 81 elements, thus each element of E4 belongs to the union of the spheres. So
the following system of nine forecasts guarantees the second prize:

(0,0,0,0) (0,1,1,1) (0,2,2,2)
(1,0,2,1) (1,1,0,2) (1,2,1,0)
(2,0,1,2) (2,1,2,0) (2,2,0,1)

The words correspond to the points ofH, the notation comes from Figure 1.



Bibliography

72

[1] Baumert, L.D.: Cyclic difference sets, Lecture Notes in Mathematics 182, Springer, Berlin, 1971.

[2] Bichara, A.: An elementary proof of the nonexistence of a projective plane of order six, Mitt. Math. Sem.
Giessen 192 (1989), 89–93.

[3] Cameron, P.J. and Van Lint J.H.: Designs, graphs, codes and their links, vol. 22 of London Mathematical
Society Student Texts, Cambridge University Press, Cambridge, 1991.

[4] Conway, J.H. and Sloane, N. J. A.: Sphere Packings, Lattices and Groups, Springer-Verlag, Berlin-New York,
1988.

[5] Hall, M., Swift, J.D. and Walker, R.J.: Uniqueness of the projective plane of order eight, Math. Tables Aids
Comput. 10 (1956), 186–194.

[6] Hämäläinen, H., Honkala, I., Lytsin, S. and Östergård, P.: Football Pools - A Game for Mathematicians,
American Math. Monthly, August-Sept. 1995, 579-588.

[7] Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.

[8] Hirschfeld, J.W.P. and Thas, J.A.: General Galois Geometries, Clarendon Press, Oxford, 1989.

[9] Kárteszi, F.: Introduction to finite geometries, Akadémiai Kiadó, Budapest, 1976.

[10] Kiss, Gy.: One-factorizations of complete multigraphs and quadrics in PG(n,q), J. Combin. Designs 19
(2002), 139–143.

[11] Kiss Gy.: Hogyan nyerjünk a TOTÓ-n?, (in Hungarian,) Középiskolai Mat. Fiz. Lapok 57 (2007), 267-273.

[12] Kiss, Gy. and Szőnyi, T.: Véges geometriák (in Hungarian), Polygon Kiadó, Szeged, 2001.

[13] Lam, C.W.H. and Thiel, L.H.: The nonexistence of finite projective planes of order 10, Canad. J. Math. 41
(1989), 1117–1123.

[14] Pickert, G.: Projektive Ebenen, Springer, Berlin, 1955.

[15] Segre, B.: Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414–416.

[16] W.D. Wallis, One-Factorizations, Mathematics and its Applications, vol. 390, Kluwer Academic Publisher
Group, Dordrecht, 1997.



Márton Naszódi - Probabilistic methods in discrete
geometry

73

When probability meets geometry, seemingly unlikely things happen. As a warm-up, we will discuss Bertrand’s
paradox, and show that 1/2=1/3=1/4 – or not?

Then, we will move on to consider classical problems in geometric probability. What is the probability that the
convex hull of a number of points randomly selected from a circle will contain the center? Will a grid catch
needles thrown at it at random? These are problems where the goal is to understand the result of a random
algorithm that generates a geometric configuration. Through these problems, we will introduce the basics of
probabilistic constructions in discrete geometry.

Finally, we will discuss a construction of Erdős and Füredi that shows that one can find surprisingly many vectors
in Euclidean d-space that are pairwise almost orthogonal.

The main goal in the selection of the topics is to present a diverse set of methods and thus invite you to a field
where combinatorics, probability and analysis all come together.

All proofs are accessible at the BSc. level and yet, lead to current research, and thus, are aimed at graduate
students as well.

1 Bertrand’s Paradox

Joseph Bertrand posed the following problem in 1889 in his book Calcul des probabilités [3].

What is the probability that a randomly chosen chord of the unit circle is longer than the side of the equilateral
triangle inscribed in that circle?

He computed this probability by three equally legitimate methods. The problem is not the problem itself, but the
fact that the three answers are different.

Method 1. We pick the two endpoints of the chord on the circle independently according to the uniform distribu-
tion. It is not hard to see that the probability in question is 1/3. (Check it yourself.)

Method 2. We pick a point P on the circle according to the uniform distribution. Then, we consider the radius
OP , and randomly select a point on this segment, according to the uniform distribution on the segment. It is not
difficult to see that now, the desired probability is 1/2. (Check it yourself.)

Method 3. We pick a point P in the unit disk according to the uniform distribution, and draw the chord whose
mid-point is P . (In the case when P is the center –which case is of zero probability– we take any fixed diameter).
The chord will be longer than the side of the triangle if, and only if, P falls inside the inscribed disk of the triangle,
which is of radius 1/2. Its area is one quarter of the area of the unit disk. Thus now, the probability is 1/4.

The solution of the paradox is, as you may already expect, that the question itself is not well posed. “Choosing
a chord at random” does not determine a probability distribution on the set of all chords. The three methods
above are three interpretations of the phrase “at random”, and yield three distinct distributions on the set of
chords.

The message is simple: when dealing with probability, one has to make clear what distribution is used or as-
sumed in the process.

2 Buffons’s Needle Problem

A century before Bertrand, in 1777, Georges-Louis Leclerc, Comte de Buffon asked the following simple sounding
question.

Assume we have a floor made of parallel strips of wood, each of the same width. We drop a needle onto the
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floor. What is the probability that the needle will lie across a line between two strips?

Having learnt the lesson from Bertrand (thanks to living yet another century later), we will first specify the
random process by which the needle is dropped. On the coordinate plane, we are given the lines x = k, where
k ∈ Z. First, we will specify where the left end of the needle lies. Since only the x-coordinate matters, and it
only matters modulo one, we will choose a number t in the interval [0,1] with the uniform distribution. Then
independently, we choose the angle of the needle with the horizontal direction (ie. the x-axis). That is a number
α chosen in the interval [−π/2,π/2] with the uniform distribution.

Suppose that the length ` of the needle is ` < 1. Let an angle Θ ∈ [−π/2,π/2] be given. Then the probability that
the needle hits a line under the condition α =Θ is

P(the needle hits a line | α =Θ) = ` cosΘ.

Thus,

P(the needle hits a line) =
1
π

∫ π/2

−π/2
` cosΘ dΘ =

2`
π
. (19)

A nice interpretation of (19) is that π can can be measured: Do the experiment a large number of times, and you
obtain an approximation of π.

We leave the case of the long needle as an exercise.

Exercise 2.1. Prove that if ` ≥ 1 then

P(the needle hits a line) =
2`
π
− 2
π

(√
`2 − 1+ arcsin(1/`)

)
+1.

A variation of the question is Buffon’s noodle problem. Now we are throwing a rectifiable curve of length ` on the
ruled plane. Clearly, the probability that this curve hits a line depends on its shape. However, as we will see, the
expectation of the number of intersection points of the curve and the lines does not. The computation is very
simple but demonstrates the use of a fundamental property of the expected value: its additivity which holds for
non-independent random variables, too.

Let us approximate the given curve γ by a polygonal curve Γ of n short line segments. Denote byXi the indicator
of the event that the ith segment intersects a line, that is Xi is 1 if the ith segment intersects a line, and Xi is 0
otherwise. Then for the expectation of the number of intersection points of Γ with the lines we have

E

(
#
(
γ ∩

(
∪
k∈Z
{x = k}

)))
= E

 n∑
i=1

Xi

 =
n∑
i=1

P(the ith segment intersects a line) =
n∑
i=1

2`i
π
.

By taking the limit for a series of polygons that approximates γ , we obtain

Theorem 2.2. In the above setting, the expectation of the number of intersection points of γ with the lines is

2 · length(γ)
π

independently of the shape of γ .
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3 Wendel’s Problem

Our next random geometric construction is even simpler than the previous ones, and at the same time, it is one
of the first questions in a field of strong current interest, the study of random polytopes.

Theorem 3.1 (J.G. Wendel [12]). We choose n points of the unit circle uniformly and independently. Then the
probability that their convex hull contains the center is 1− 2n

2n .

Proof. Let Q1, . . . ,Qn be random points of the unit circle chosen uniformly and independently. We will apply the
following simple, but very powerful symmetrization technique: take your vectors, add some coin tosses, and the
computation will be nicer. Slightly more precisely, let ε1, . . . , εn be random Bernoulli variables with values 1 and
−1, each of probability 1/2. Let Pi = εiQi (i = 1, . . . ,n).

Now, the Pis are independent and are chosen uniformly on the circle. Furthermore, with probability one,
Q1, . . . ,Qn,Qn+1 := −Q1, . . . ,Q2n := −Qn are 2n distinct points.

We fix n points q1, . . . , qn on the unit circle, no two of which forming a opposite pair. Let x denote the number of
those n-element subsets of {q1, . . . , qn,−q1, . . . ,−qn} that are contained in an open half-plane whose bounding line
passes through the origin. Clearly, x = 2n.

The probability that the origin is not in the convex hull of the Pis under the condition that Q1 = q1, . . . ,Qn = qn is
easy to compute:

P (o < conv{P1, . . . , Pn} | Q1 = q1, . . . ,Qn = qn) =
x
2n

=
2n
2n
.

The main thing to notice here is that it is independent of the choice of the qis. Thus,

P (o < conv{P1, . . . , Pn}) =
2n
2n
,

as needed.

Exercise 3.2. Solve the same problem with the following modification: We now pick the points uniformly on the
disk and not on the unit circle.

Exercise 3.3. Alice and Bob each go to the grocery store independently at a random time between noon and
one in the afternoon, and spend 5 minutes there. What is the probability that they will meet?

4 Antipodal Sets

The following question was asked by Erdős [5] in 1957. How many points can we find in Euclidean d-space, Rd

such that no three determine an obtuse (ie. larger than a right angle) angle? A stricter version of the question
prohibits right angles as well.

Definition 4.1. A hyperplane is said to support a set X in Rd if the set lies in one of the closed half-spaces
bounded by the hyperplane. A set X in Rd is antipodal, if for any two points x1,x2 ∈ X there is a pair of distinct
parallel hyperplanes through x1 and x2 supporting X. Furthermore, X is strictly antipodal, if for any x1 and x2,
the supporting hyperplanes H1 and H2 of X can be chosen such that X ∩H1 = {x1} and X ∩H2 = {x2}.

Antipodal sets were defined by Klee in [10], where he posed the problem of finding the maximum cardinality of
such a set.

Exercise 4.2. Show that any set that satisfies Erdős’ original condition (resp., the strict version of his condition)
is antipodal (resp., strictly antipodal).

Danzer and Grünbaum [4] gave a complete answer to Klee’s question.
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Theorem 4.3 (Danzer–Grünbaum, [4]). The maximum cardinality of an antipodal set in Rd is 2d , which is only
attained by the set of vertices of an affine image of a cube.

Proof. Let X = {x1, . . . ,xn} ⊂Rd be an antipodal set. First, observe that X is in convex position, that is, no point of
X is contained in the convex hull of the others. (Observe it.)

Consider the convex set K = convX. (It is the convex hull of finitely many points in Rd , and thus, is called a
polytope.) I will assume that the affine hull of X is Rd (ie., X does not lie in the translate of a proper linear
subspace of Rd), and leave the verification of the other case to you.

Now, contract K by factor one half with center xi to obtain Ki for i = 1, . . . ,n. From the assumption that X is
antipodal, it follows that the Kis are pairwise non-overlapping, that is, the interiors of any two are disjoint.
(Check it.) On the other hand, since K is convex, Ki ⊂ K for each i.

A simple volume argument finishes the proof of the upper bound:

vol(K) ≥
n∑
i=1

volKi = n
volK
2d

. (20)

The case of equality is treated by the following result of Groemer.

Lemma 4.4 (Groemer [8]). Let K be the convex hull of x1, . . . ,x2d in Rd . Suppose that K =
2d⋃
i=1

1
2 (K + xi). Then K is

a parallelotope with vertices x1, . . . ,x2d .

Exercise 4.5. Prove Lemma 4.4.

The question of the maximal cardinality of a strictly antipodal set remains. Clearly, it is at most 2d − 1 by
Theorem 4.3. In fact, that is all we know.

Danzer and Grünbaum conjectured that the cardinality of a strictly antipodal set in Rd is at most 2d − 1, and
Grünbaum [8] gave a proof of this conjecture for d = 3. The conjecture, however, turned out to be wrong, in fact,
by a large margin.

Theorem 4.6 (Erdős–Füredi [6]). There is a d0 > 0 such that for every d > d0, there is a set in Rd of cardinality
1.15d with the property that no three points of the set determine a non-acute angle (ie. all angles are smaller
than a right angle).

Open problem 4.7. Is there a c < 2 such that the cardinality of a strict antipodal set in Rd is at most cd?

Proof of Theorem 4.6 by David Bevan [1]. Letm :=
⌊√

6
9

(
2√
3

)d⌋
. We will show that one can find a strictly antipodal

subset of the vertices of the [0,1]d cube, which is of cardinality 2m.

Exercise 4.8. Prove that no three points of {0,1}d determine an obtuse triangle.

Let x1, . . . ,x3m be 3m randomly chosen elements of {0,1}d . Consider a triple, xi ,xj ,xk . When is ^(xi ,xj ,xk) =⊥?

^(xi ,xj ,xk) =⊥ if, and only if, 0 = (xi−xj )(xk−xj ). The latter is
∑d
`=1(x

`
i −x

`
j )(x

`
k−x

`
j ), where upper index ` denotes the

`th coordinate. However, each summand is non-negative, thus the sum will be zero only if, for each ` = 1, . . . ,d,
we have that x`i = x

`
j or x`k = x

`
j .

Thus, the probability that i, j,k is a “bad triple” is

P(^(xi ,xj ,xk) =⊥) =
(3
4

)d
.
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There are N := 3
(3m
3
)

triples in total. Let ξ1, . . . ,ξN be indicators for the event that the first, second,...,N th triple
is bad, ie. ξt = 1 if the tth triple is bad, and ξt = 0 otherwise. Now, the expected number of bad triples is

E(ξ1 + . . .+ ξN ) =
N∑
t=1

E(ξt) =
N∑
t=1

P(the tth triple is bad) =

N
(3
4

)d
< 3

(3m)3

6

(3
4

)d
≤m.

It follows that with non-zero probability the number of bad triples in the chosen 3m points is less thanm. Consider
such a choice of 3m points and for each bad triple leave out one of the points in the triple. Thus, at least 2m
points remain, and they are such that no three form a bad triple, ie. no three are vertices of a right triangle. That
proves the Theorem.

5 Almost Orthogonal Vectors

Exercise 5.1. Prove that any set of pairwise orthogonal vectors in Rd is of cardinality at most d.

Exercise 5.2. Show that the maximum cardinality of a set of vectors in Rd whose pairwise angles are all obtuse
is d +1.

What happens if we relax the condition in Exercise 5.1, and require only that the vectors be pairwise close to
orthogonal? A surprise again, one which can be obtained by a probabilistic argument: there are exponentially
many such vectors.

Theorem 5.3 (Füredi-Lagarias-Morgan [7]). For any ε > 0 there is a c = c(ε) > 1 such that, for any sufficiently
large d, there is a set of N ≥ cd unit vectors x1, . . . ,xN in Rd with π

2 − ε < ^(xi ,xj ) <
π
2 + ε.

We will give a probabilistic construction, ie. choose vectors in Sd−1 randomly, and show that with non-zero
probability, we obtain a desired set of vectors. But what probability distribution can we use on Sd−1? I will give
two equivalent answers, pick the one dearest to you (or, just pick one randomly).

5.1 A Probability Distribution on the Sphere

First, we define the angular distance on the sphere: for two points x,y ∈ Sd−1, their distance is the angle ^(x,y)
of their position vectors. This turns Sd−1 into a metric space. Balls in this metric space are often referred to as
spherical caps, and we denote them by C(x,φ) := {y ∈ Sd−1 : ^(x,y) < φ}.

One way to measure sets on the sphere is to introduce the surface area, or, using its more elegant name, the
(d − 1)-dimensional Lebesgue measure on Sd−1. We will denote it by λd−1. We will not build λd−1 here, as it
would be a long analytical argument, instead, we will assume that you have at least an intuitive understanding
of measuring the surface area of a the sphere itself, and of its (Lebesgue measurable) subsets. Then, for any
Lebesgue measurable set A ⊆ Sd−1 let

σ (A) = λd−1(A)/λd−1
(
S
d−1

)
. (21)

In this manner, we obtain a probability measure σ on Sd−1.

Another approach is slightly more abstract but a good deal more general. If you find it a bit too difficult to follow
at this point, then skip the rest of this subsection freely and proceed to the proof of Theorem 5.3.

Let (M,ρ) be a compact metric space. We call a Borel measure on M regular, if µ(M) <∞, µ(U ) > 0 for all open
subsets U ⊆M, µ(E) = inf{µ(U ) : E ⊆U,U open} and µ(E) = sup{µ(K) : K ⊆ E,K compact}.
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Let G be a subgroup of the isometry group of (M,ρ), that is, ρ(g(a), g(b)) = ρ(a,b) for every a,b ∈ M and every
g ∈ G.

We call a measure µ onM left-invariant with respect to G, if for any measurable subset A ⊆M and any g ∈ G we
have µ(gA) = µ(A), where gA = {ga : a ∈ A}.

Theorem 5.4 (Haar, 1933, Weil, 1940). Let (M,ρ) be a compact metric space, and G a subgroup of its isometry
group. Then there is a left-invariant regular Borel measure on M with respect to G. This measure is unique up
to a constant factor.

A measure whose existence is guaranteed by this theorem is called a Haar measure on M with respect to G.

We will not provide a proof here, it can be found in several books, cf. [11].

Now, we apply this result to the metric space M = Sd−1 and its full isometry group, G = O(d) (the group of real
d×d orthogonal matrices), and we normalize the Haar measure so that the measure of the whole sphere is one.
This way we obtain a probability measure σ on Sd−1.

Exercise 5.5. Show that the Haar probability measure on Sd−1 is identical to measure σ defined in (21).

5.2 Proof of Theorem 5.3

The main tool in the proof is an estimate on the measure of caps in the unit sphere Sd−1 of Rd .

Lemma 5.6. Let 0 < φ < arccos 1√
d

, and x ∈ Sd−1 an arbitrary point. Then

σ (C(x,φ)) <
sind−1φ√

2π(d − 1)cosφ
.

Now, the proof is simple. We pickN random vectors x1, . . . ,xN independently according to σ on Sd−1. For any two
xi ,xj , the probability that they are a “bad pair” is

P

(
^(xi ,xj ) >

π
2
+ ε or ^(xi ,xj ) <

π
2
− ε

)
= 2σ

(
C

(
x,
π
2
− ε

))
.

Denote by T := sin
(
π
2 − ε

)
. Thus, the probability that no two of the N chosen points is a bad pair is

P

(π
2
− ε < ^(xi ,xj ) <

π
2
+ ε for all i, j

)
> 1−N2 T d−1√

2π(d − 1)cos
(
π
2 − ε

)
Let c be a number strictly between one and 1√

T
, and let N = bcdc. We obtain that if d is large enough, then the

right hand side is positive, and thus, with non-zero probability, the set x1, . . . ,xN is as promised by the Theorem.

Exercise 5.7. Prove that for any ε > 0 there is a c = c(ε) > 1 such that, for any sufficiently large d, there is a set
of N ≥ cd points x1, . . . ,xN in Rd such that the angle determined by any three of them is at most π/3+ ε.

6 Looking Further

In the examples that we have discussed so far, the question was the (likely) result of a probabilistic algorithm
in some geometric setting. These types of questions, however, go beyond the goal of understanding the prob-
abilistic question itself. In the theory of convex bodies, often it is the bodies, ie., the geometric setting that we
need to understand, and probability is a tool, or a language to do that. We give a simple example here.

Let K be an origin-symmetric convex body, ie. K = −K , in Rd . Then K defines a norm on Rd as ‖x‖K = inf{λ ≥
0 : x ∈ λK}. We now pick two points uniformly and independently from K . What is the likely distance of the two
points with respect to the norm ‖.‖K? See more on this problem in [2], and in references given therein.
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Exercise 6.1. Show that if K is the Euclidean ball than the distance of the two points is very likely to be around√
2. More precisely, for every ε > 0 there is a c = c(ε) < 1 such that, for any sufficiently large d, we have

P(|‖x − y‖K −
√
2| > ε) < cd . (22)

Exercise 6.2. Show that if K is the cube [−1,1]d than
√
2 is replaced by 2 in (22), ie., the following holds.

P(|‖x − y‖K − 2| > ε) < cd . (23)

Inequalities (22) and (23) show a true geometric difference between the Euclidean ball and the cube.
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The lectures focus on two interesting results and their corollaries from the field of algorithms in geometry. They
do not build on each other, so missing a class is no problem.

First, I present a simple algorithm that draws a planar graph with n vertices onto a (2n− 4)× (n− 2) grid.

Second, I will talk about online competitive algorithms focusing on the k-server problem. Here we have a graph
on n vertices, with given edge lengths and some information in each vertex. We can move k servers that can
read out and transfer the information. At every step one of the data is requested and our goal is to move the
servers such that the sum of the distances they travel is minimized. How much does it help if we know the
queries in advance? It turns out that it helps at most a constant factor.

1 Embedding planar graphs on a small grid

1.1 Planar graphs

A graph is planar if it can be embedded in the plane such that its vertices are points and its edges are non-
crossing simple curves. We call an already embedded graph a plane graph. Planar graphs have several useful
properties, maybe the most well-known is Euler’s formula: v(G)−e(G)+f (G) ≥ 2 where equality holds if and only if
G is connected. Here v(G) is the number of vertices, e(G) the number of edges and f (G) the number of faces, so
we can already conclude that the number of faces does not depend on the embedding, only on the graph. From
the formula we can also reduce that if G has at least 3 vertices, then e(G) ≤ 3v(G)−6 and f (G) ≤ 2v(G)−4 where
equality holds for triangulated graphs, i.e. if all faces of the graph have 3 sides. Another simple consequence is
that the chromatic number of any planar graph G, χ(G) is at most 5. The strengthening of this, χ(G) ≤ 4, is the
famous Four color theorem that was a conjecture for a long time.

Here we will focus on straight-line drawings, i.e. when every edge is embedded as a straight-line segment. The
existence of such an embedding was discovered independently by Fáry, Tutte and Wagner. We will give a different
proof of this result. In our case not only the edges will be straight-line segments, but even the vertices will have
small, integer coordinates. This has applications in computer science to draw a graph on a screen or can be
used in theoretical computer science to give a polynomial witness of the planarity of a graph.

1.2 Canonical ordering

We need the following observation.

Lemma 1.1. Let G be a plane graph, whose exterior face is bounded by a cycle u1,u2, . . . ,uk . Then there is a
vertex ui (i , 1, k) not adjacent to any uj other than ui−1 and ui+1.

Proof. If there are no two non-consecutive vertices along the boundary of the exterior face that are adjacent,
then there is nothing to prove. Otherwise, pick an edge uiuj ∈ E(G), for which j > i +1 and j − i is minimal. Then

ui+1 cannot be adjacent to any element of
{
u1, . . . ,ui−1,uj+1, . . . ,uk

}
by planarity, nor can it be adjacent to any

other vertex of the exterior face different from ui and ui+2, by minimality of j − i.

Theorem 1.2 (Canonical Ordering). Let G be a triangulation of n vertices, with exterior face uvw. Then there is
an ordering of the vertices v1 = u,v2 = v,v3, . . . , vn = w satisfying the following conditions for every k (4 ≤ k ≤ n):

(i) the boundary of the exterior face of the subgraph Gk−1 of G induced by {v1,v2, . . . , vk−1} is a cycle Ck−1
containing the edge uv;

(ii) vk is in the exterior face ofGk−1, and its neighbors in V (Gk−1) are some (at least two) consecutive elements
along the path obtained from Ck−1 by removal of the edge uv. (See Figure 8)
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Figure 8: Gk−1 and vk in the exterior

Proof. The vertices vn,vn−1, . . . , v3 will be defined by reverse induction. Set vn = w, and let Gn−1 be the graph
obtained fromG by the deletion of vn. SinceG is a triangulation, the neighbors ofw form a cycle Cn−1 containing
uv, and this cycle is the boundary of the exterior face of Gn−1.

Let 4 ≤ k ≤ n be fixed and assume that vn,vn−1, . . . , vk have already been determined so that the subgraph Gk−1
induced by V (G)\{vk ,vk+1, . . . , vn} satisfies condition (i) and (ii). LetCk−1 denote the boundary of the exterior face
of Gk−1. Applying Lemma 1.1 to Gk−1, we obtain that there is a vertex u′ on Ck−1, different from u and v, which
is adjacent only to two other points of Ck−1 (i.e., to its immediate neighbors). Letting vk−1 = u′ , the subgraph
Gk−2 ⊆ G induced by V (G) \ {vk−1,vk , . . . , vn} obviously meets the requirements.

Using this theorem, we can easily prove the main result of this section.

Corollary 1.3. Every planar graph has a straight-line embedding in the plane.

Proof. It is sufficient to show that the statement is true for triangular planar graphs.

Let G be any triangulation with the canonical ordering v1 = u, v2 = v, v3, . . . , vn = w, described above. We will
determine the positions f (vk) = (x(vk), y(vk)) of the vertices by induction on k.

Set f (v1) = (0,0), f (v2) = (2,0), f (v3) = (1,1). Assume that f (v1), f (v2), . . . , f (vk−1) have already been defined for
some k ≥ 4 such that, connecting the images of the adjacent vertex pairs by segments, we obtain a straight-
line embedding of Gk−1, whose exterior face is bounded by the segments corresponding to the edges of Ck−1.
Suppose further that

x(u1) < x(u2) < . . . < x(um),

y(ui) > 0 for 1 < i < m,
(24)

where u1 = u, u2, u3, . . . , um = v denote the vertices of Ck−1 listed in cyclic order. By condition (ii) of Theorem
1.2, vk is connected to up, up+1, . . . , uq for some 1 ≤ p ≤ q ≤m. Let x(vk) be any number strictly between x(up) and
x(uq). If we choose y(vk) > 0 to be sufficiently large and connect f (vk) = (x(vk), y(vk)) to f (up), f (up+1), . . . ,f (uq) by
segments, then we obtain a straight-line embedding of Gk meeting all the requirements (including the auxiliary
Hypothesis (24) for the vertices of Ck).

1.3 Embedding on the grid

Now we shall restrict our attention to straight-line drawings, where each point is mapped into a grid point, i.e.
a point with integer coordinates. Our goal is to minimize the size of the grid needed for the embedding of any



Geometric algorithms
83

Geometric algorithms
83

Geometric algorithms
83

planar graph of n vertices. The set of all grid points (x,y) with 0 ≤ x ≤m, 0 ≤ y ≤ n is said to be an m×n grid.

Theorem 1.4. Any planar graph with n vertices has a straight-line embedding on the 2n− 4 by n− 2 grid.

Proof. It suffices to prove the theorem for triangulations. Let G be a triangulation with exterior face uvw, and
let v1 = u, v2 = v, v3, . . . , vn = w be a canonical labelling of the vertices (see Theorem 1.2).

We are going to show by induction on k that Gk , the subgraph of G induced by {v1,v2, . . . , vk}, can be straight-line
embedded on the 2k − 4 by k − 2 grid, for every k ≥ 3. Let f3 be the following embedding of G3:

f3(v1) = (0,0), f3(v2) = (2,0), f3(v3) = (1,1).

Suppose now that for some k ≥ 4 we have already found an embedding fk−1(vi) = (xk−1(vi), yk−1(vi)), 1 ≤ i ≤ k −1,
with the following properties:

(a) fk−1(v1) = (0,0), fk−1(v2) = (2k − 6,0);

(b) If u1 = u, u2, . . . , um = w denote the vertices of the exterior face of Gk−1 in cyclic order, then

xk−1(u1) < xk−1(u2) < . . . < xk−1(um);

(c) The segments fk−1(ui)fk−1(ui+1), 1 ≤ i < m, all have slope +1 or −1.

Note that (c) implies that the Manhattan distance |xk−1(uj )− xk−1(ui)|+ |yk−1(uj )− yk−1(ui)| between the image of
any two vertices ui and uj on the exterior face of Gk−1 is even. Consequently, if we take a line with slope +1
through ui and a line with slope −1 through uj , then they always intersect at a grid point P (ui ,uj ).

Let up,up+1, . . . ,uq be the neighbours of vk in Gk (1 ≤ p < q ≤ m). Clearly, P (up,uq) is a good candidate for fk(vk),
except that we may not be able to connect it to e.g. fk−1(up) by a segment avoiding fk−1(up+1). To resolve this
problem, we have to modify fk−1 before embedding vk . We shall move the image of up+1,up+2, . . . ,um one unit to
the right, and then move the images of uq,uq+1, . . . ,um to the right by an additional unit. That is, let

x̃k(ui) =


xk−1(ui), for 1 ≤ i ≤ p,
xk−1(ui) + 1, for p < i < q,

xk−1(ui) + 2, for q ≤ i ≤m,

yk(ui) = yk−1(ui), for 1 ≤ i ≤m,

and let fk(vk) be the point of intersection of the lines of slope +1 and −1 through fk(up) and fk(uq), respectively.
Of course, fk(vk) is a grid point that can be connected by disjoint segments to the points fk(ui) = (xk(ui), yk(ui)),
p ≤ i ≤ q, without intersecting the polygon fk(u1)fk(u2) . . . fk(um). However, as we move the image of some ui ,
it may be necessary to move some other points (not on the exterior face) as well, otherwise we may create
crossing edges.

In order to tell exactly which set of points has to move together with the image of a given exterior vertex ui , we
define recursively a total order ’≺’ on {v1,v2, . . . , vn}. Originally, let v1 ≺ v3 ≺ v2. If the order has already been
defined on {v1,v2, . . . , vk−1}, then insert vk just before up+1. According to this rule, obviously

u1 ≺ u2 ≺ · · · ≺ um .

Now we can extend the definition of fk to the interior vertices of Gk−1, as follows. For any 1 ≤ i ≤ k − 1, let

x̃k(vi) =


xk−1(vi), if vi ≺ up+1,
xk−1(vi) + 1, if up+1 � vi ≺ uq,
xk−1(vi) + 2, if uq � vi ,
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yk(vi) = yk−1(vi) .

Evidently, fk satisfies conditions (a),(b) and (c).

To complete the proof, it remains to verify that fk is a straight-line embedding, i.e., no two segments cross each
other. A slightly stronger statement follows by straightforward induction.

Lemma 1.5. Let fk−1 = (xk−1, yk−1) be the straight-line embedding ofGk−1, defined above, and let α1,α2, . . . ,αm ≥
0. For any 1 ≤ i ≤ k − 1, 1 ≤ j ≤m, let

x(vi) = xk−1(vi) +α1 +α2 + · · ·+αj if uj � vi ≺ uj+1 ,

y(vi) = yk−1(vi) .

Then f ′k−1 = (x,y) is also a straight-line embedding of Gk−1 .

The claim is trivial for k = 4. Assume that it has already been confirmed for some k ≥ 4, and we want to prove
the same statement for Gk . The vertices of the exterior face of Gk are u1, . . . ,up,vk ,uq, . . . ,um. Fix now any
nonnegative numbers α(u1), . . . ,α(up),α(vk),α(uq), . . . ,α(um). Applying the induction hypothesis to Gk−1 with α1 =
α(u1), . . . ,αp = α(up),αp+1 = α(vk)+1,αp+2 = · · · = αk−1 = 0,αq = α(uq)+1,αq+1 = α(uq+1), . . . ,αm = α(um), we obtain
that the restriction of f ′k to Gk−1 is a straight-line embedding. To see that the edges of Gk incident to vk do not
create any crossing, it is enough to notice that fk and f ′k map {up+1, . . . ,uq−1} into congruent sets.

2 Online competitive algorithms

2.1 Baby example

As an example, consider the following problem. When a baby is born, the parents need a baby scale to measure
how much she eats. To get a baby scale, they have three options.
1) Buy one for 30e.
2) Rent one for 5e/month.
3) Borrow one from a friend.

Let us rule out the mathematically less fascinating third option and suppose they only have the first two options.
It is not hard to decide which to choose if they know for how long they need the scale; for less than five months
rent and for more months buy. (Here we suppose that the scale will have no value for them later - we could
easily modify this condition by subtracting the price for which they can sell it later from the initial price.) But
what if they have no clue at all? One option would be to guess and calculate some expected values from the
probabilities. However, there can be too many factors (how well the baby is gaining weight, number of future
children) to make any reasonable estimates. Another option is to try to minimize their later regrets, to make
sure they could not have done much better.

For example if they decide to buy one (30e) and need it for only one month (5e), then their competitive ratio
is 6:1 (compared to the best possible choice they could have made). However, if they decide to rent and are
blessed with many children and, say, 18 months of scale usage (90e), their ratio becomes 3:1 and could be even
worse. So what should they do to minimize the competitive ratio?

The answer first might seem counterintuitive but the best is to mix the above strategies - first rent for a while,
then buy. After a little thinking, we can realize that in fact this is the only thing that makes sense and turns out
to be not that a crazy idea after all. Now the only thing left to decide is for how long to rent before buying.

Suppose we rent for R month and then buy if we still need the scale. This way we spend 5i if we need it for i ≤ R
months and 5R+30 if we need it for at least R+1. The best option would be either to rent the whole time (for 5i
if we need it for i ≤ 6 months) or to buy immediately (for 30 if we need it for at least 6 months). Our ratio against
the renting option is worst if we need the scale for exactly R + 1 months, in this case we get 5R+30

5R+5 . Our ratio
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against the buying option is of course also worst if we need the scale for at least R+ 1 months, in this case we
get 5R+30

30 . So our goal is to minimize max(5R+305R+5 ,
5R+30
30 ) by suitably choosing R. For this we solve 5R+30

5R+5 = 5R+30
30

which gives R = 5, so we have to buy in the sixth month, which is exactly what we would have done with my wife,
but we needed the scale for only five month. So with the next child, we buy from the start...

2.2 k-server problem

In the k-server problem we control k servers each of which occupies one point in a given finite metric space from
which it can move to another one for the cost of the distance between them. There is a series of requests, each
of which is a point where we have to move a server (if there is no server present there at the moment). Our
goal is to keep our total cost as small as possible. Since we do not know anything against the requests, the
best we can try is to minimize the competitive ratio of our algorithm against the cost of what would have been
the best sequence of moves, known as the offline optimum. It is conjectured that there is an algorithm that is
k-competitive1 but the best known algorithm is only 2k − 1-competitive. An interesting special case is when all
distances are the same is called the k-paging problem. First we show that already in this case we cannot hope
to have a < k-competitive algorithm.

Claim 2.1. No online algorithm can achieve a better competitive ratio than k for the k-paging problem if the
metric space has at least k +1 points.

Proof. Suppose that the space has exactly k + 1 points (if it has more, we never request them). Every time we
request the point that has no server on it (no optimal algorithm would put two servers to the same point, so
we can suppose that there is exactly one such point). This way after R requests, the cost of the algorithm is
R. However, the best choice would be at each step to move the server whose location would be requested the
latest, so after at least k − 1 further requests. Thus the offline optimum is at most dRk e.

Next we present an algorithm that for a space with k + 1 points achieves a competitive ratio of k. Denote by
D(i) the distance traveled by server i before the request and by d(i) the distance of server i from the requested
location. The algorithm called BALANCE has the following simple rule:

Always move the server for which D(i) + d(i) is minimized.

So if e.g. we have three servers, the first has traveled 3, the second 4 and the third 6 units until the query, which
is at distance 4 from the first, at distance 2 from the second and at distance 1 from the third server. In this case
BALANCE moves the second server, as that gives a minimum distance of 6 after the move, while the other two
would give 7.

Proof. We can suppose that the request is always the only unoccupied location. First we need to make some
definitions. Define d(i, j) as the distance between location i and j. Let Rt be the t-th request. Let optti be the
offline optimum of the first t requests that has no server on location i (if Rt = i, i.e. the last request was i, then
an extra move must be made after it to move away the server from it). Finally, let Dti be the distance traveled by
the server at location i after t requests (if i , Rt+1, since that place is unoccupied).

Observation 2.2. optt+1i = optti if i , Rt+1 and
optt+1Rt+1 =mini,Rt+1opt

t
i + d(i,R

t+1).

Lemma 2.3. For every i , Rt+1 we have Dti ≤ opt
t
i .

Proof. We prove this by induction on t. Let h = Rt+1 and m denote the location for which Dtm + d(m,h) is minimal
(in fact m = Rt+2). If i , m,h, then Dt+1i = Dti and since optt+1i ≥ optti , we are done. Otherwise, we have Dt+1h ≤
Dti + d(i,h) for all i , h, by the choice of the server we moved to the empty position. But using induction we have

1Here in the definition of the ratio we are interested in the asymptotic behavior and ignore additive constants.
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Dti + d(i,h) ≤ opt
t
i + d(i,h) and using the previous observation there is an i , h for which optti + d(i,h) = opt

t+1
h .

Putting the inequalities together, we get exactly what we wanted, Dt+1h ≤ optti + d(i,h).

From here the proof of the theorem follows from
∑
iD

t
i ≤

∑
i opt

t
i ≤ k · (offline optimum + largest distance).

2.3 Randomization

Another, very interesting problem emerges if we allow randomized online algorithms. Here we can measure the
competitiveness depending on what kind of offline optimum we take. We imagine that the requests are given by
some adversary and we distinguish the three following types.

Oblivious: The requests are generated in advance.

Adaptive Online: The requests are generated depending on the moves so far but the adversary must also make
its moves online.

Adaptive Offline: The requests are generated depending on the moves so far and the adversary can decide its
moves after all the requests are made.

By definition, we have the following relations among the respective competitive ratios: COB ≤ CADON ≤ CADOFF ≤
CDET .

While COB can be much smaller than CDET (e.g. about logk for the k-paging problem with k + 1 locations), the
other two quantities are not that far. We can prove this through a few simple statements.

Claim 2.4. If for G and H algorithms we have CADON (G) ≤ α and COB(H) ≤ β, then CADOFF(G) ≤ αβ.

Claim 2.5. If there are finitely many options at each request, then CADOFF = CDET .

Corollary 2.6. If there are finitely many options at each request, then CDET ≤ (CADON )2.
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