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Preface

This volume contains the more or less faithful lecture notes of five minicourses (consisting of
three 60 minute lectures) of the summer school held at Eötvös Loránd University (ELTE) in
Budapest between June 24 and 28, 2019. The summer school was hosted by the Institute of
Mathematics at ELTE and it was the seventh such event organized by the university. The
topic of the school was well reflected by its title: On the crossroads of topology, geometry
and algebra. The aim of the lectures was to introduce the students – some of them already
experts and some of them “newcomers” – into these exciting intertwined areas of modern
mathematics. Besides the minicourses a special lecture was devoted to the mathematical
ideas which led to the solution of the famous conjecture made by Poincaré more than one
hundred years ago. (This individual lecture is represented in this volume only by a short
abstract.)

The summer school had 36 registered participants from 20 different universities, repre-
senting 12 countries. By counting the home countries of participants, this latter number
climbs to 18. The speakers of the summer school are professors at Eötvös Loránd Univer-
sity (Balázs Csikós, László Fehér, Gábor Moussong, András Némethi, András Szűcs) and at
the Rényi Mathematical Institute (András Stipsicz) in Budapest. Besides the lectures, three
special practice sessions were organized with the help of PhD students at ELTE and the Cen-
tral European University (Tamás Ágoston, Viktória Földvári, Ákos Matszangosz and András
Sándor) and a professor at ELTE (Tamás Terpai). Besides helping with the problem solving
sessions most of the lecture notes were also taken by them. A large part of the TEXnical
editing of the lecture notes was done by Tamás Ágoston while the format of the cover page
is based on the design of Dénes Balázs.

The organizers wish to express their gratitude to all lecturers and contributors of this
volume but also to the audience without whose active participation the summer school would
have been far less successful.

The content of this volume together with the volumes of the previous summer schools can
be downloaded from

http://bolyai.cs.elte.hu/summerschool/?page=download

Budapest, September 6, 2019

The organizers
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Csikós: Curvature and topology

Curvature and topology
By Balázs Csikós

(Notes by Balázs Csikós)

1.1 The “Umlaufsatz”
Proposition 32 in Book I of Euclid’s Elements claims that the sum of the angles of a triangle
in the Euclidean plane is equal to π. This proposition, which is equivalent to Euclid’s fifth
postulate on parallel lines, can be considered as the simplest variant of the theorems we want
to focus on in these notes. The angle of a triangle is a local measure of the curvedness of
the boundary at a vertex. Deforming the shape of the triangle, the angles can change their
values simultaneously, but the sum of the angles is an invariant quantity not sensitive to
these deformations.

The proposition can be extended to simple polygons.

Proposition 1. The sum of the inner angles of a simple n-gon in the Euclidean plane is
(n− 2)π.

Proof. Induction by n. It can be shown that there is a diagonal of the polygon that is lying
in the interior, and cuts the n-gon into a k-gon and an l-gon, where n = k + l− 2. Then the
sum of the angles is (k − 2)π + (l − 2)π = (n− 2)π.

The precise definition of inner angles of a simple polygon rests upon Jordan’s theorem,
which says that a simple closed curve in the Euclidean plane cuts the plane into two parts:
a bounded one, called the interior, and an unbounded one, called the exterior. If a closed
polygon is not simple, then we cannot speak about its interior and inner angles. However,
fixing an orientation of the plane and an orientation of the polygon, we can define the exterior
angles of the polygon properly, assuming that the polygon has no about-turns.

Intuitively, orientation means the following. Given a point in a plane, the plane can be
rotated about the point in two opposite directions. Looking at the plane from a given side,
we can rotate either clockwise or anti-clockwise. An orientation of the plane is a choice of one
of these directions, which is called the positive direction of a rotation. Similarly, we can go
around a closed (possibly self-intersecting) polygon in two opposite direction. An orientation
of the polygon is selecting one of these directions, which will be called the positive direction
of going around the polygon. If the closed polygon is simple, then the orientation of the
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plane induces a compatible orientation of the polygon by the following rule. We say that the
orientation of the polygon is compatible with the orientation of the plane if moving in the
positive direction along a side, the rotation of our velocity vector by +90◦ points towards the
interior of the polygon (locally).

Definition 2. Take an oriented polygon with no about-turns in the oriented Euclidean
plane. Moving around the polygon with unit speed in the positive direction, our velocity
vector is constant while we move along a side, but at each vertex Ai it turns by a signed
angle εi ∈ (−π, π). The angle εi is called the exterior angle at Ai.

It is clear that the sum∑n
i=1 εi of all the exterior angles of a closed polygon with n vertices

measures the total amount of turns made by the velocity vector as we move around the closed
polygon. At the end of the motion the velocity returns back to its original position, so the
total amount of turns is an integer multiple of 2π, that is

n∑
i=1

εi = 2πk

for some k ∈ Z.

Definition 3. The number k in the above equation is the turning number (of the tangent)
of the oriented polygon.

Exercise 4. Construct a closed polygon with turning number k for any integer k.

Exercise 5. How can we determine the turning number of an entangled polygon with many
self-intersections?

Proposition 1 can be rewritten in terms of the turning number.

Corollary 6. The turning number of a simple closed polygon is ±1. It is +1 if and only if
the orientation of the plane and the polygon are compatible.

How can we generalize these propositions for polygons with curved sides? For such poly-
gons, we have to consider also the rotation of the tangent along the sides. The definitions
below tell us how to measure this rotation.
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Definition 7. A regular (parameterized) curve in Rn is a smooth map γ : I → Rn from an
interval I into Rn, for which γ′(t) 6= 0 for all t ∈ I.

For a regular curve γ : I → Σ lying in an oriented plane Σ, we shall use the notation

• v = ‖γ′‖ for the speed of γ,

• T = γ′

v
for the unit tangent vector field of γ, and

• N for the unit normal vector field of γ defined as the pointwise rotation of T within Σ
by +90◦.

Differentiating 〈T,T〉 ≡ 1 we obtain 2〈T,T′〉 ≡ 0. Thus, there is a smooth function κ : I → R
such that 1

v
T′ = κN.

• The function κ is called the curvature of γ.

Exercise 8. Show that 1
v

N′ = −κT.

Choose two orthogonal unit vectors e1, e2 parallel to Σ such that e2 is the +90◦ rotation of
e1. Since T is a smooth unit vector field, there is a smooth direction angle function α : I → R
for T with respect to the reference frame e1, e2. Then

T = (cos ◦α)e1 + (sin ◦α)e2.

Differentiating, we obtain

vκN = T′ = α′
(
(− sin ◦α)e1 + (cos ◦α)e2

)
= α′N,

thus, if I = [a, b], then the total amount of the rotation of T along γ is

α(b)− α(a) =
∫ b

a
κ(t)v(t)dt.

The integral on the right is called the total curvature of the curve γ.
Consider an oriented closed polygon with curved sides lying in an oriented plane Σ.

Parameterize the sides regularly by the maps γi : [ai, bi]→ Σ moving in the positive direction.
Assume that the unit tangents of the sides meeting at a vertex are not opposite to one another.
Then we can define the exterior angles ε1, . . . , εn at the vertices as usual, and the total amount
of the rotation of the unit tangent as we move around the curve is

n∑
i=1

εi +
n∑
i=1

∫ bi

ai
κγi(t)vγi(t)dt.

This number must be an integer multiple of 2π, say 2πk. Just as for ordinary polygons, k is
called the turning number of the curvilinear polygon.

The curved version of Corollary 6 is the famous
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Theorem 9 (Umlaufsatz). The turning number of a simple closed polygon with curved
sides is ±1, that is

n∑
i=1

εi +
n∑
i=1

∫ bi

ai
κγi(t)vγi(t)dt = ±2π.

Proof. We can approximate polygons with curved sides with ordinary polygons with the
same turning number. If a curvilinear polygon is simple, then we can approximate by simple
polygons. Details are left to the reader.

Exercise 10. Let Φ: D1 → D2 be an orientation preserving diffeomorphism between two
open subsets of the plane, both diffeomorphic to an open disk. Show that the turning number
of an oriented curvilinear polygon in D1 coincides with the turning number of its image under
Φ. Is the statement true if D1 and D2 are not necessarily diffeomorphic to a disk?

1.2 Total absolute curvature of closed space curves
What can we say about space curves? In contrast to the planar case, though we can measure
the angle between two non-zero vectors also in the space, there is no natural way to assign
an orientation depending sign to these angles. Due to the lack of sign, exterior angles of a
polygon in space can be defined only as non-negative numbers in the interval [0, π), and a
spatial version of the curvature function will take only non-negative values. For simplicity,
we deal only with the case of smooth closed curves in this section.

Definition 11. Let γ : [a, b] → R3 be a regular space curve. Then the absolute curvature
function k of γ is defined by the equality k = 1

v
‖T′‖, where v = ‖γ′‖, T = γ′

v
. The total

absolute curvature of γ is the integral
∫ b
a k(t)v(t)dt.

The total absolute curvature of a closed smooth regular space curve can change its value
continuously. We can always increase its value and make it as large as we want by making an
arc of it curlier. Thus, we cannot expect that the total absolute curvatures of smooth closed
regular space curves take quantized values, but there is a lower bound for them.

Theorem 12 (Fenchel). The total absolute curvature of a closed smooth regular space curve
is at least 2π. Equality holds exactly for convex plane curves (gone around once).

A closed space curve without self-intersection is a knot. A knot is trivial if it is the
boundary of an embedded topological disk. Simple closed plane curves, in particular convex
plane curves are trivial knots (also called unknots). The complexity of a knot gives a stronger
lower bound for the total absolute curvature.
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Theorem 13 (Fáry–Milnor). If a γ is a regular smooth parameterization of a non-trivial
knot, then its total absolute curvature is greater than 4π.

The weak inequality ≥ 4π is due to Fáry. Shortly after the appearance of Fáry’s paper
Milnor published a paper proving > 4π. Both Fenchel’s and Fáry’s theorems can be proved
by an application of the spherical Crofton formula.
Theorem 14 (Spherical Crofton Formula). Let γ : [a, b]→ S2

be a spherical curve, and define the function m : S2 → N∪ {∞} by
m(u) = #{t ∈ [a, b] : γ(t) ⊥ u}. Then the length of γ is

lγ = 1
4

∫
S2
m(u)du.

Exercise 15. Prove Crofton’s formula for the arcs of a great circle, and for spherical poly-
gons.

Proof of Fenchel’s and Fáry’s theorems (sketch). The total absolute curvature of a
curve is the length of the spherical curve drawn by the unit tangent vectors T, called the
tangent indicatrix. If γ is closed, then T is closed. Almost all great circles intersect a
closed smooth curve in an even number of points. Thus, if the total absolute curvature
of a closed curve were less than 2π, then applying Crofton’s formula, we could find an
open hemisphere centered at u ∈ S2 which contains im T. However, that would mean that
〈γ,u〉′ = v〈T,u〉 > 0, so 〈γ,u〉 would be strictly increasing, but then γ could not be closed,
a contradiction.

If the total absolute curvature of a closed smooth regular curve is less than 4π, then again
by Crofton’s formula, there exists a great circle with spherical center u which intersects the
tangent indicatrix in two points. Thinking of u as the vertical direction, im γ can be split into
two arcs, along which γ moves monotonously up and down respectively. Then the segments
connecting points of equal height of im γ sweep out an embedded disk with boundary im γ.
Thus, im γ is a trivial knot.

Exercise 16. Prove the second part of Fenchel’s theorem on the case of equality.

1.3 Gauss–Bonnet theorem on the sphere
Our goal in this section is to extend the Umlaufsatz to simple closed spherical curves. Spher-
ical geometry is a close relative of Euclidean geometry with many similarities, but also with
many crucial differences. In spherical geometry, the role of straight lines is taken by the great
circles. As any two great circles intersect in exactly 2 points, there are no parallel lines on the
sphere, and we can create a spherical triangle with a given side c and arbitrarily given inner
angles α, β ∈ (0, π) lying on it. In particular, Euclid’s theorem on the sum of the angles of
a triangle is false on the sphere. However, the “error term” has a nice geometrical meaning.
Theorem 17 (Girard). The sum of the angles of a spherical triangle 4
is bigger than π. The excess is proportional to the area of the triangle,
namely, if the angles are α, β, γ, and the radius of the sphere is R, then

α + β + γ − π = 1
R2area(4).
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Observe that Euclid’s theorem can be obtained as the limit of Girard’s formula as R tends
to infinity.

As a consequence of Jordan’s theorem, a simple closed curve on the sphere cuts the
sphere into two parts, both parts are homeomorphic to an open disk. In the case of spherical
triangles, we can define the interior of the triangle as the component having the smaller area,
but polygons with more sides, there is no way to make a natural distinction between the two
parts, unless we make some artificial choices.

An orientation of a surface is a continuous choice of the orientations of its tangent planes.
The sphere has a standard orientation, for which the positive rotation of the tangent planes
are the anti-clockwise rotations looking at the sphere from outside (which coincide with the
clockwise rotations if we look at the tangent plane from inside the sphere). If P is a simple
closed polygon on the sphere, and we choose an orientation of it, then using this orientation,
we can define the interior P+ by the rule that if we move along P in the positive direction,
the +90◦ rotation of our velocity vector should point toward P+ (locally). Then the other
component of the complement P− of P is called the exterior of P . It is clear that flipping
the orientation of P flips the role of P+ and P−.

Once the orientation of P is fixed, we can speak about the inner and exterior angles of P
just as in the Euclidean case. Splitting the interior of the polygonal domain into spherical
triangles by suitably chosen diagonals, we can extend Girard’s theorem to oriented spherical
polygons.

Corollary 18. The sum of the inner angles α1, . . . , αn of an oriented simple spherical n-gon
P is bigger than (n−2)π. The excess is proportional to the area of the interior of the polygon,
that is, (

n∑
i=1

αi

)
− (n− 2)π = 1

R2area(P+).

In terms of (signed) external angles εi = π − αi,
n∑
i=1

εi = 2π − 1
R2area(P+).

To extend this equation to spherical polygons with curved sides, we need a generalization
of the notion of curvature for spherical curves, or more generally, for curves lying on an
oriented surface.

The curvature function of a unit speed curve in R2 is the angular speed of the unit tangent
vector relative to a fixed orthonormal basis.

It is a crucial difference between the Euclidean plane and the sphere that while in the
Euclidean plane, using parallel translation, we can extend an orthonormal basis to a global
orthonormal frame, that is, to two orthogonal unit vector fields, there is no global orthonormal
frame on the sphere. This fact is the consequence of the
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Theorem 19 (Hedgehog Theorem). A continuous tangential vector field on the sphere
S2 must vanish at least at one point.

The hedgehog theorem (called also as the hairy ball theorem) got its name from the popular
formulation that if you take a hirsute hedgehog which has a spine growing out from each
point of its skin, then it is not possible to comb all the spines of the hedgehog into a tangent
direction of the surface of its body in a continuous way. No matter how we try, cowlicks will
appear.

There are two methods to get around this problem, we shall use both. One is that we can
always choose an orthonormal frame locally, on any open set diffeomorphic to a disk. The
other is that given a parameterized curve on a surface, there is a canonical way to transport
a tangent vector “parallelly” along the curve from one curve point to another curve point.
Thus, an orthonormal basis in the tangent plane at a curve point can be extended to a unique
“parallel” orthonormal frame along the curve.
Definition 20. Let γ : I → M ⊂ R3 be a smooth parameterized curve on a surface M ,
X : I → R3 be a tangential vector field along γ. (This means that X(t) ∈ Tγ(t)M for all
t ∈ I, where TpM denotes the tangent plane of M at p ∈M .)

The (Levi-Civita) covariant derivative of X is the tangential vector field ∇γ′X along γ
for which ∇γ′X(t) is the orthogonal projection of X ′(t) onto Tγ(t)M .

Exercise 21. Prove the identity

〈X, Y 〉′ = 〈∇γ′X, Y 〉+ 〈X,∇γ′Y 〉,

where X and Y are arbitrary smooth tangential vector fields along γ.

Exercise 22. Let r : Ω→M be a smooth map defined on an open set Ω ⊂ R2, ∂1r and ∂2r
be its partial derivatives. For (u0, v0) ∈ Ω, let ∇1∂2r(u0, v0) be the value of the covariant
derivative of the vector field u 7→ ∂2r(u, v0) along the curve u 7→ r(u, v0) evaluated at u0, and
define ∇2∂1r(u0, v0) similarly. Prove that

∇1∂2r(u0, v0) = ∇2∂1r(u0, v0).

Definition 23. A tangential vector field X along γ is parallel if ∇γ′X = 0. Any tangent
vector X0 ∈ Tγ(t0)M defines a unique parallel vector field X along γ for which X(t0) = X0.
Then the vector X(t) is called the parallel transport of X0 to γ(t) along γ.
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Exercise 24. Prove that parallel transport along a curve γ : [a, b]→M gives a linear trans-
formation Πγ : Tγ(a)M → Tγ(b) which preserves the length of vectors, and the angle between
vectors.

Definition 25. A smooth parameterized curve on a surface is a geodesic curve if its velocity
vector field γ′ is parallel.

Equivalently, γ is a geodesic curve, if the acceleration vector γ′′ is always orthogonal to the
surface. By Newton’s laws, if no force acts on a point, then the point moves along a straight
line with constant speed, or stays at a given point. Thus, if we want to keep a moving point
on a surface, then we have to apply some force F on it unless the surface contains straight
lines. The force applied to a point is proportional to the acceleration by Newton’s F = mγ′′

equation. Thus, a point moves along a geodesic curve if and only if the force which keeps
the point on the surface is orthogonal to the surface. In particular, the force does not do any
work on the point, hence the kinetic energy 1

2m‖γ
′‖2 of the point is constant.

Exercise 26. Prove that ‖γ′‖ is constant for any geodesic curve.

Exercise 27. Show that a regular spherical curve is a geodesic if and only if it parameterizes
a great circle with constant speed.

Similarly to the planar case, for a regular curve γ : I → M lying on an oriented surface
M , we set

• v = ‖γ′‖, the speed of γ;

• T = γ′

v
, the unit tangent vector field of γ;

• N(t) = the rotation of T(t) within Tγ(t)M by +90◦ using the orientation ofM , the unit
normal vector field of γ.

• Covariantly differentiating 〈T,T〉 ≡ 1 we obtain 2〈T,∇γ′T〉 ≡ 0. Thus, there is a
smooth function κg : I → R such that

1
v
∇γ′T = κgN.

The function κg is called the geodesic curvature of γ.

Exercise 28. Show that 1
v
∇γ′N = −κgT.

Exercise 29. Show that a smooth parameterized curve on a surface is a geodesic curve if
and only if its geodesic curvature is 0.

12
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Exercise 30. Let P1,P2 be a parallel orthonormal frame along γ : [a, b]→M such that P2

is the +90◦ rotation of P1. Then there is a smooth direction angle function α : [a, b] → R
such that T = (cos ◦α)P1 + (sin ◦α)P2. Show that α′ = κgv, hence the change of α along γ
is
∫ b
a κg(t)v(t)dt.

Definition 31. The total geodesic curvature of a regular curve γ : [a, b]→M on an oriented
surface M is the integral

∫ b
a κg(t)v(t)dt.

Exercise 32. Let γ : I → S2
R be a smooth unit speed curve on the sphere of radius R,

t0 ∈ int I. Show that for small |s|, we have

γ(t0 + s) = γ(t0) + sT(t0) + s2

2

(
κg(t0)N(t0)±

√
k2(t0)− κ2

g(t0)γ(t0)
R

)
+O(s3).

Using this, prove that for the exterior angle ε(s) of the spherical broken line γ(t0− s), γ(t0),
γ(t0 + s) at γ(t0), we have

ε(s) = sκg(t0) +O(s2).

A simple spherical n-gon with curvilinear sides can be approximated by simple inscribed
spherical polygons, the vertices of which cut the sides into N equal parts, where N is suf-
ficiently large. Applying Corollary 18 to these polygons and taking the limit as N goes to
infinity, using also Exercise 32, we obtain the following theorem.
Theorem 33 (Gauss–Bonnet theorem on the sphere). Let P ⊂ S2

R

be a simple spherical n-gon with curvilinear sides. Fix an orientation of
the polygon. Let the exterior angles of P be εi and parameterize the sides
of P by the regular curves γi : [ai, bi]→ S2 moving in the positive direction.
Denote by P+ the domain surrounded by P toward which the unit normal
vector fields of the sides γi point. Then

n∑
i=1

εi +
n∑
i=1

∫ bi

ai
κγig (t)vγi(t)dt = 2π − 1

R2area(P+). (1.1)

The left hand side of this formula defined an integer multiple of 2π for any closed curvi-
linear polygon in the Euclidean plane, but it can change continuously in the spherical case if
the area enclosed by the polygon changes. Why is this difference? In the Euclidean case, the
sum of the exterior angles and the total geodesic curvatures of the sides measures the turning
of the unit tangent vector field relative to a globally defined orthonormal frame, while on
the sphere, we use a parallel orthonormal frame along γ as the reference frame. The parallel
transport of an orthonormal basis around a closed loop does not coincide with the original
basis in general. Thus, as we go around the curve, the unit tangent arrives back to its original
position, but the reference frame does not. That is why the turning of the unit tangent of a
closed polygon relative to a parallel frame is not necessarily an integer multiple of 2π.

Definition 34. Let p ∈ M be a point on M , γ : [a, b] → M be a piecewise smooth loop
based at γ(a) = γ(b) = p. The parallel transport Πγ along γ is an element of the orthogonal
group O(TpM), that is either a rotation of a reflection in a line. Parallel transports along all
possible piecewise smooth loops form a subgroup of O(TpM) called the holonomy group of
M at p.

13
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Exercise 35. Show that the parallel transport of a vector around an oriented simple curved
sided polygon P on the sphere is a rotation of the original vector by the angle 1

R2area(P+).

1.4 Local Gauss–Bonnet theorem for surfaces
What can we say about closed curves on an arbitrary surface M ⊂ R3? Assume first that M
is oriented and diffeomorphic to an open disk. Then we can choose a nowhere zero tangential
unit vector field E1 on M . Let E2 be the pointwise rotation of E1 by +90◦ in the tangent
plane. For a regular parameterized curve γ : [a, b]→M , we can compute the rotation of the
unit tangent relative to the frame E1, E2 as follows. There is a smooth function ω : [a, b]→ R
such that

∇γ′E
γ
1 = ωEγ

2 , ∇γ′E
γ
2 = −ωEγ

1 ,

where Eγ
i = Ei ◦ γ, and we can choose a smooth direction angle function α : [a, b]→ R such

that
T = (cos ◦α)Eγ

1 + (sin ◦α)Eγ
2 .

Differentiating covariantly, we obtain

vκgN = T′ = (α′ + ω)N,

which implies
α′ = vκg − ω.

Lemma 36. The turning number of a simple closed positively oriented polygon with curved
sides in M relative to the frame E1, E2 is 1.

Proof. This Lemma is true because of our assumption that M is a diffeomorphic to a disk.
By this assumption, the curve can be shrunk to a point p ∈ M continuously. During the
shrinking, the turning number must change continuously, on the other hand it is an integer
number, so it remains constant. Zooming in onto smaller and smaller neighborhoods of p the
surface looks more and more like a flat plane, and the contracted curve will be closer and
closer to a positively oriented simple curvilinear polygon in that flat plane. Thus, the limit
of the unchanging turning number of these curves is 1 by the Umlaufsatz.

As a consequence,
n∑
i=1

εi +
n∑
i=1

∫ bi

ai
κγig (t)vγi(t)dt−

n∑
i=1

∫ bi

ai
ωγi(t)dt = 2π.

This formula is applicable also in the situation described in the Gauss–Bonnet theorem on
the sphere. If P+ ⊂M ⊂ S2, then comparing the above formula with equation 1.1, we obtain

−
n∑
i=1

∫ bi

ai
ωγi(t)dt = 1

R2area(P+).

14
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A useful tool to compare the geometry of an arbitrary surface to the geometry of a sphere
is the Gauss map.

Definition 37. Let M ⊂ R3 be an oriented surface, n its unit normal vector field for which
looking at the tangent plane TpM facing np, the positive rotation is counter-clockwise. Then
the Gauss map of M is the map n : M → S2, p 7→ np.

The Gauss map has a simple but important property: the tangent plane TpM of M at
p is parallel to the tangent plane TnpS

2 of the sphere at the image point. Thus, the two
tangent planes can be identified by a translation which preserves the given orientations of
these planes. This implies a simple relation between the covariant derivations of M and S2.

Proposition 38. Let M be an oriented surface, n : M → S2 its Gauss map. Then for any
smooth parameterized curve γ : I →M , we can consider its Gauss image γ∗ = n ◦ γ : [a, b]→
S2. Then a map X : [a, b] → R3 is a tangential vector field of M along γ if and only if it is
a tangential vector field of S2 along γ∗, and in that case, we have

∇γ′X = ∇γ∗′X.

The local behaviour of the Gauss map is described by its derivative.

Definition 39. The Weingarten map of the surface at p ∈M is the map

Lp = −Tpn : TpM → TnpS
2 ∼= TpM, v 7→ −∂vn.

Exercise 40. Show that the Weingarten map is self-adjoint. As a consequence, the eigen-
values of Lp are real and TpM has an orthonormal basis consisting of eigenvectors of Lp.
Eigenvalues of Lp are the principal curvatures, (the directions of) the eigenvectors of Lp are
the principal directions of M at p.

Definition 41. The Gauss curvature K(p) of M at p is the determinant of Lp. It is the
product of the principal curvatures.

If the Gauss curvature of a surface is not 0 at a point p, then the Gauss map is a
local diffeomorphism by the inverse function theorem. In other words, we can find open
neighborhoods, D ⊂M and D∗ ⊂ S2 of p and np respectively, such that the Gauss map is a
diffeomorphism between D and D∗. Assume that D is diffeomorphic to a disk.

Take a simple positively oriented n-gon P in D, which bounds the domain P+, and denote
by P ∗ and P ∗+ the Gauss image of P and P+, respectively. P ∗ is a simple polygon in D∗. It is
positively oriented if and only if the Gauss curvature is positive onD. Choose an orthonormal
reference frame E1, E2 on D and let E∗1 , E∗2 be the corresponding reference frame on D∗ given
by E∗i (np) = Ei(p).
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If γi : [ai, bi] → M is a parameterization of a side of P , γ∗i is the parameterization of its
Gauss image, then ωγi = ωγ

∗
i by Proposition 38. For this reason,

n∑
i=1

∫ bi

ai
ωγi(t)dt = −

n∑
i=1

∫ bi

ai
ωγ
∗
i (t)dt = −sgnK · area(P ∗+).

By the multivariable integration by substitution, the area of the image of P+ can be
obtained by integrating over P+ the weight function | det(Tpn)| = |K(p)|, which tells how
the Gauss map stretches or shrinks the area infinitesimally around a point. Hence

area(P ∗+) =
∫
P+
|K|dσ. (1.2)

Thus, we proved

Theorem 42 (Local Gauss–Bonnet Formula). Under the above assumptions on the
surface D and the polygon P , we have

−
n∑
i=1

εi +
n∑
i=1

∫ bi

ai
κγig (t)vγi(t)dt+

∫
P+
Kdσ = 2π.

We proved the local Gauss Bonnet formula only when the Gauss map is a diffeomorphism
between P+ and P ∗+. This condition is, in fact, not necessary, it can be replaced by the weaker
assumption that P+ is diffeomorphic to a disk. We shall discuss this generalization later.

1.5 Euler Characteristic of Simplicial Complexes
A k-dimensional simplex is the convex hull of k + 1 affinely independent points. For k =
0, 1, 2, 3, a k-dimensional simplex is a point, segment, triangle, tetrahedron, respectively.

An l-dimensional face of a simplex is the convex hull of l+ 1 vertices of the simplex. We
say the two simplices are regularly attached if their intersection is a face of both simplices.

Definition 43. A finite simplicial complex is a finite collection P of simplices with the
following properties:

• any two simplices in P are regularly attached;

• if a simplex belongs to P , then so do all its faces.

16
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The union |P| of the simplices of a simplicial complex P is a topological space with the
topology inherited from the ambient affine space. The topological space |P| is called the body
of P .

Definition 44. Let sk denote the number of k-dimensional simplices in the finite simplicial
complex P . Then the Euler characteristic of P is the alternating sum

χ(P) =
∑
k

(−1)ksk.

Homology theory is a branch of algebraic topology. It requires some work to build its
machinery, but once one has it, it provides simple proofs of some otherwise non-trivial theo-
rems. One of the first such consequences of homology theory is the homotopy invariance of
Euler characteristic.

Theorem 45. If the bodies of the finite simplicial complexes P and Q are homotopy equiv-
alent (e.g. if they are homeomorphic), then χ(P) = χ(Q).

According to the theorem, we may define the Euler characteristic of a topological space
X homeomorphic to the body |P| of a finite simplicial complex P by the equation

χ(X) := χ(P).

A useful tool in the computation of the Euler characteristic is the following inclusion-
exclusion formula.

Proposition 46. If K1 and K2 are simplicial subcomplexes of a finite simplicial complex P,
then

χ(K1 ∪ K2) = χ(K1) + χ(K2)− χ(K1 ∩ K2).

Exercise 47. Show that

• χ(k-dimensional simplex) = 1;

• χ(Sk) = χ(boundary of a (k + 1)-dimensional simplex) = 1 + (−1)k;

• χ(|P| × |Q|) = χ(|P|) · χ(|Q|) for any finite simplicial complex P and Q;

• χ(Möbius band) = 0;

• χ(handle) = −1, where a handle is a 2-torus T 2 = S1 × S1 from which an open disk is
removed;

• χ(a sphere from which g disjoint open disks are removed ) = 2− g;

• χ(sphere with g handles) = 2− 2g.

1.6 Gauss–Bonnet theorem for surfaces with boundary
Consider a compact surface M ⊂ R3 with smooth boundary ∂M . Depending on the sign of
the Gauss curvature, a point p ∈ M is called elliptic if K(p) > 0, parabolic if K(p) = 0 and
hyperbolic if K(p) < 0. The surface looks like a bump around an elliptic point, and looks like
a saddle around a hyperbolic point.
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Elliptic and hyperbolic points form two disjoint open subsets ofM separated by the set of
parabolic points. Any surface can be approximated by surfaces for which the set of parabolic
points is a disjoint union of some simple closed curves and some simple arcs with endpoints in
∂M . For this reason, we shall assume that M has this property. Let us take a triangulation
of M , for which the boundary of M and the lines of parabolic points are 1-dimensional
subcomplexes. Then K is either positive or negative on the interior of a triangle of the
triangulation. Refining the triangulation if necessary, we may also assume that the Gauss
map is a diffeomorphism between the interior of any triangle of the triangulation and its
Gauss image. Then the local Gauss–Bonnet theorem is applicable to each of these triangles.

Let 41, . . . ,4f be the triangles of the triangulation, αi, βi, γi be the inner angles of 4i.
Then the local Gauss–Bonnet formula for 4i says

(αi + βi + γi − π) = “sum of the total geodesic curvatures of the sides of 4i” +
∫
4i
K(p) dp.

We remark that M is not assumed to be oriented. A small neighborhood of 4i can be
oriented randomly for the sake of the proof of the formula, but eventually the terms in the
formula do not depend on the choice of the orientation.

Now add the local formulae for all the triangles. If the number of vertices of the trian-
gulation is v = vb + vi, where vb is the number of vertices on the boundary ∂M , vi is the
number of vertices in the interior M \ ∂M , then since the inner angles of all triangles fill a
complete angle at each vertex in M \∂M and a straight angle at each vertex in ∂M , we have

f∑
j=1

(αj + βj + γj − π) = π(2vi + vb − f).

Exercise 48. Show that if4i and4j share a common side, then the total geodesic curvature
of the common side appears in the local Gauss–Bonnet formula for 4i and 4j with opposite
signs.

By the exercise, summing the total geodesic curvatures of the sides of all the triangles,
only the total geodesic curvatures of those sides will not be cancelled, which are lying on ∂M ,
and they add up to the total geodesic curvature of the boundary. Thus we get the formula

π(v0 + 2v+ − f) = “total geodesic curvature of ∂M” +
∫
M
K(p) dp.
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Let’s play a little with the combinatorics of the triangulation. Denote by e = eb + ei the
number of edges, where eb is the number of edges in ∂M . Since every triangle has 3 edges,
3f counts all the edges with some multiplicity: it counts edges on the boundary once all the
other edges twice. Hence 3f = 2ei + eb. Since the boundary of ∂M is the disjoint union of
some circles, χ(∂M) = vb − eb = 0, that is vb = eb. According to these,

vb + 2vi − f = (2v − vb)− 3f + 2f = 2v − (eb + 3f) + 2f = 2(v − e+ f) = 2χ(M).

The last two equations give the following theorem.

Theorem (Global Gauss–Bonnet Theorem). For a compact surface with boundary, the
following equation holds:

2πχ(M) = “total geodesic curvature of ∂M” +
∫
M
K(p) dp.

Corollary 50. If M is a compact surface with no boundary, then

χ(M) = 1
2π

∫
M
K(p) dp.

Let us give a consequence of the last equation. A point u ∈ S2 is said to be a regular
value of the Gauss map n : M → S2, if the preimages of u under n are elliptic, or hyperbolic.
It is a consequence of Sard’s lemma, that almost all points of S2 are regular values of n. A
regular value u can have only a finite number of preimages p1, . . . , pm. The number m can
depend on u, but if we count each preimage pi with the sign of K(pi), then the total number
of signed preimages, that is the sum ∑m

i=1 sgnK(pi) gives a number not depending on the
choice of the regular value u. This is a special case of the first theorems proved in differential
topology and gives rise to the definition of the degree of a map.

Definition 51. The degree of the Gauss map n of a compact surface M with no boundary
is

deg n =
∑

p∈n−1(u)
sgnK(p),

where u is a regular value of n.

If u is a regular value with preimages p1, . . . , pm, then we can find open neighborhoods
U1, . . . , Um ⊂ M of p1, . . . , pm respectively, such that n maps each Ui onto the same open
neighborhood U∗ ⊂ S2 of u, and n−1(U∗) = ⋃m

i=1 Ui. Then applying (1.2), we get∫
n−1(U∗)

K(p)dp =
m∑
i=1

∫
Ui
K(p)dp =

m∑
i=1

sgnK(pi) · area(U∗) = deg n · area(U∗).

With some analysis, we get from this formula the following

Theorem 52. The total Gauss curvature of a closed surface M ⊂ R3 is the product of the
degree of the Gauss map and the total area of the unit sphere, that is∫

M
K(p)dp = 4π deg n.

A comparison of the equation and the Gauss–Bonnet formula yields

Corollary 53.
deg n = 1

2χ(M).
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1.7 Recommended reading
In the above notes, looking for more and more general versions of Euclid’s theorem on the
sum of the angles of a triangle, we arrived at the Gauss–Bonnet theorem for surfaces in R3.
Though the latter is really much more general than Euclid’s theorem, it is not at all the end
of the story. Trying to keep the proofs on an elementary level, the proofs were sometimes
sketchy, skipping the technical details. The references below can be a good source deepening
the knowledge of the interested reader in this direction.

A detailed proof of the Umlaufsatz can be found in [2]. For a proof of the spherical
Crofton formula, Fenchel’s theorem, and the Fáry–Milnor theorem see [1], [6] and [5].

Basic facts on simplicial complexes and the Euler characteristic are proved in [8]. A good
introduction to the techniques of differential topology is [4]

It was understood already at the time of Gauss that one can make a distinction between
the intrinsic and extrinsic geometry of a surface. A notion or quantity belongs to the intrinsic
geometry of a surface, if it can be defined or measured by intelligent creatures who live
inside the surface, and able to measure the lengths of curves on the surface, but can get no
information from the ambient space. When a surface is bent, the lengths of curves on the
surface do not change, so the surface inhabitants do not observe any change in the intrinsic
geometry, however, certain quantities, e.g., the principal curvatures of the surface can change
during the bending. These quantities belong to the extrinsic geometry of the surface. It can
happen, that the definition of a notion uses objects in the ambient space, but it can be defined
also by the creatures living on the surface using intrinsic terms. For example the notions of
Levi-Civita derivation, parallel transport, geodesic curve, geodesic curvature, and holonomy
group belong to the intrinsic geometry of the surface. Theorema Egregium, that is the
“Remarkable Theorem” of Gauss claims that although the principal curvatures are extrinsic,
their product, the Gauss curvature is an intrinsic quantity (see [1]). Riemann announced in
his habilitation thesis the program to work out a higher dimensional generalization of the
intrinsic geometry of surfaces. This led to a new branch of geometry what we call Riemannian
geometry today. As all the quantities that appear in the Gauss–Bonnet formula are intrinsic
quantities, the formula can be generalized and proved for arbitrary compact 2-dimensional
Riemannian manifolds with boundary. An intrinsic proof of the theorem can be found in [3].

The book [9] contains a generalization of the Gauss–Bonnet formula for compact hyper-
surfaces of Rn with no boundary. In this generalization, the Gauss curvature is replaced by
the Gauss-Kronecker curvature defined as the product of the n − 1 principal curvatures of
the hypersurface.

The search for generalizations of the Gauss–Bonnet theorem raises the natural question
how we can extract information on the topology of a manifold, or vector bundle from the
curvature of a connection on it. The answer to this question led to the theory of characteristic
classes, which is a powerful tool of modern differential topology. See Appendix C of [7].
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Problem session
(András Sándor)

Day 1

1. Give a practical way of computing the turning number of an entangled regular plane curve.
In other words, given a drawing of such a curve, how can you tell quickly its turning number?

2. What is the minimal total absolute curvature of a regular plane curve? Prove properly that
your upper bound holds.

3. The Crofton formula shows us a way to compute the length of a spherical curve by integrating
the intersection numbers of the curve with the great circles on the sphere. Precisely

lγ = 1
4

∫
S2
m(u)du

with the notations from the lecture. Let’s prove this!
a) Prove the formula for a segment of a great circle and for spherical polygons.

b) Show that you can approximate a spherical curve with spherical polygons sufficiently.

4. Prove that the area of a spherical triangle on the unit sphere is

α + β + γ − π

expressed in terms of the interior angles of the triangle.
(Hint: First, express the area of a spherical ’biangle’.)
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Day 2

1. What are the geodesic curves on
a) a sphere?

b) a cone?
Consider both embedded in the space. Apply the definition given at the lecture: a curve
is geodesic if its derivative is parallel along the curve, or in other words if the speed vector
changes only perpendicularly to the surface.

2. Consider any circle (not necessarily a great one) on the unit sphere.
a) What is the surface area of the inside of the circle?

b) Compute its geodesic curvature.
Convince yourself that the relation appearing in the lecture is true: the total geodesic cur-
vature of the circle equals 2π minus the area.

3. Consider the torus embedded in the space. Describe its Gauss maps. Is it surjective? How
many preimages do the points of the sphere have?
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Enumerative geometry: classical and new problems
By László Fehér

(Notes by Ákos Matszangosz)

2.1 Motivation
Example 1 (Apollonius circles). How many circles are tangent to 3 given circles in the
plane? (About 2200 years old)

Example 2 (4 lines in space). How many lines intersect four given lines Li in 3-space?

Example 3 (Conics). In how many points do two conics intersect?

Homework 4 (Triangle). How many triangles exist with vertices on given lines and sides
through given points? (Geogebra help for the triangle problem)

Such problems were a starting point for the development of modern algebraic geome-
try. They are also related to algebraic topology, representation theory, algebraic combina-
torics. . . However, developing the precise theory requires a lot of time. In this mini-course we
will sacrifice some of the precision, and rather rely on intuition and black boxes. 1

2.2 Dimension counting
In the example of four lines why do we take 4 lines, and not 3 or 5? The reason is that we
want such questions to have a finite answer. Let us verify this for the four lines problem.
The space parameterizing lines in 3-space is four dimensional: look at the intersection with
two parallel planes, it gives four independent coordinates, see Figure 2.1.

The subspace of lines intersecting a given line Li is given by one condition. One can
expect that each of the conditions reduces the dimension by one, so the number of lines
intersecting four lines is finite.

Figure 2.1: The space of lines is 4 dimensional
1“Behind every successful mathematical idea there is a strong proof” Groucho Marx.
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Problem 5. Find n,m such that the answer to each of the following problems is finite:

• How many conics pass through n given points?

• How many conics are tangent to m conics?

In the following we will always formulate questions in the following manner:

How many

• points/lines/conics

• intersect/are tangent to/pass through

• n generic points/lines/conics

in projective m-space?

Both highlighted conditions eliminate cases which are in some sense degenerate. Now we will
discuss projective space in some more detail.

2.3 Projective space

2.3.1 Definition
As a set,

Pn := {L ≤ Fn+1 lines through the origin}

where F = R or C. What is the topology of this space? For F = R and n = 2, consider
Figure 2.2.

Take a plane parallel to the x, y-plane. Each line which is not parallel to this plane
intersects it in a single point. In this way, we identified an affine plane sitting inside RP 2.
However, RP 2 contains other points, namely the lines parallel to the x, y plane – these are
the ‘points at infinity’. In this way, one can think of RP 2 as obtained by gluing ‘points at
infinity’ to an affine plane. The affine plane is also called an affine chart.

These descriptions using points at infinity also adapt to Pn. The reader is encouraged to
show that

RP 1 ∼= S1, CP 1 ∼= S2, RP 2 ∼= S2
/

(a ∼ −a).

Figure 2.2: Topology of RP 2
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Another equivalent definition of CP n is obtained by taking

CP n = Cn+1\{0}/GL(1).

Homogeneous coordinates parametrize points of CP n (not uniquely!):

x = [x0 : x1 : . . . : xn]

where two such n+ 1-tuple of coordinates x and y corresponds to the same point of CP n iff
x = λ · y for some λ. (We assume that not all xi are zero.)

2.3.2 Subspaces
The same definitions make sense for a vector space V ; its projectivization P(V ) is a dim(V )−1
dimensional projective space. A k + 1-dimensional linear subspace W ≤ V , gives rise to a
k-dimensional projective subspace P(W ) ⊆ P(V ). For example, in the case n = 2 described
above, the lines lying in the plane z = 0 form a projective line (projective 1-dimensional
subspace). Projective subspaces behave similarly to linear subspaces:
Lemma 6. The intersection of projective subspaces is a projective subspace.

Furthermore, if Pa,Pb ⊆ Pn, Pa ∩ Pb = Pc, then c ≥ a+ b− n.
If Pa and Pb are in general position, then c = a + b − n. This can be the definition of

general position in this situation. The expression transversal can also be used. If a + b < n

then transversality implies that the intersection is empty.
Corollary 7. Any two lines in P2 intersect.

2.3.3 Symmetries of projective spaces
The linear invertible transformations GL(n + 1) of Cn+1 send lines to lines; therefore they
also transform Pn. In modern language we say that GL(n + 1) acts on Pn. Notice that the
scalar transformations don’t do anything:

λ · [x0 : x1 : . . . : xn] ∼ [x0 : x1 : . . . : xn],

so in fact, one has an action of the group

PGL(n+ 1) := GL(n+ 1)/{λ IdCn+1}.

Example 8. The GL(2)-action on P1 can be written in coordinates as follows:[
a b

c d

]
[u : v] = [au+ bv : cu+ dv]

On the affine chart x0 = 1 the transformation is[
a b

c d

]
[1 : v] = [a+ bv : c+ dv] =

[
1 : c+ dv

a+ bv

]

Homework 9.

• Show that ‘usually’ such a transformation has two fixed points.

• Let p, q, r ∈ P1 be 3 distinct points. Show that there exists g ∈ GL(2) such that
g(p) = [0 : 1], g(q) = [1 : 0] and g(r) = [1 : 1].
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2.4 Shapes and equations
Let f(x0, x1, . . . , xn) be a homogeneous polynomial (i.e. f(λx) = λdf(x) for all λ for some d
⇔ all monomials have degree d). Although such polynomials are not functions on Pn, they
have a well-defined zero-set:

(f = 0) ⊆ Pn.

One can also consider the zero-set of several homogeneous polynomials f1, . . . , fr. Such zero-
sets are called varieties.

Example 10.

• The line defined by z = 0 is a variety in P2.

• The points satisfying the equations x0x3 = x1x2, x2
1 = x0x2 and x2

2 = x1x3 is a (famous)
curve in P3 (the rational normal curve).

2.5 Classical proof of 4 lines in 3-space
Lemma 11. Given 3 lines L1, L2, L3 in P3, there exists a quadratic surface containing them.

Proof.

i) The space of quadric surfaces is a P9: the coefficients [aij] of

q =
∑
i≤j

aijxixj, (2.1)

or more formally, let V be the vector space of degree 2 homogeneous polynomials and
identify the space of quadric surfaces with P(V ).

ii) The condition ‘containing a line’ defines a P6 in P9. Indeed, take the line L = (x0 =
0, x1 = 0), let q be a quadric equation as in (2.1) and let Q := (q = 0) be its zero-set.
Then

Q ⊇ L ⇐⇒ subs(q, x0 7→ 0, x1 7→ 0) ≡ 0 ⇐⇒ a22 = a23 = a33 = 0

iii) ∩3
i=1P6 6= ∅ by Lemma 6. (And in fact for generic lines Li, there is exactly one inter-

section point: there is exactly one quadric surface containing 3 generic lines.)

Homework 12. Show the converse: Any smooth quadric surface contains 3 disjoint lines.

Lemma 13. Given 2 lines L1 6= L2 and a point p 6∈ L1, L2 there exists a unique line L
incident to them.

Homework 14. Prove Lemma 13.

Corollary 15. A quadric surface Q containing 3 lines in generic position is ruled: a disjoint
union of lines.
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Figure 2.3: Two rulings on a hyperboloid

Proof. Let p ∈ Q. By Lemma 13, there is a unique line L incident to L1, L2 and p.
Claim: If L′ is a line, and |L′ ∩Q| ≥ 3 then L′ ⊆ Q.
Indeed, a degree 2 polynomial has two roots. Applying the claim to L, we get that there

is a unique line through any point of Q which intersects both L1 and L2.

Lemma 16. There is another ruling of the quadratic surface and any two lines from opposite
rulings intersect.

The easy proof is left to the reader. See also Figure 2.3. Where is this sculpture?

Digression: classification of smooth quadric surfaces. See Figure 2.4 for the classifica-
tion of quadric surfaces over R. Over C it is harder to draw. However, topology can help us:
by the previously seen argument, the parameter space of generic configurations is connected,
as the space of degenerate configurations has real codimension 2. Alternatively, one can use
algebra, and show that all non-degenerate quadratic forms are equivalent over C.

Figure 2.4: Classification of real quadrics

Theorem 17. Let L1, L2, L3, L4 be four given generic lines in P3 over F. Then for F = C,
there are exactly 2 lines in P3 intersecting each of these. For F = R, we get either 0 or 2
such lines, depending on the configuration.

Proof. Let L1, L2, L3, L4 be four given generic lines. By Lemma 11 there exists a quadric Q
containing the three lines L1, L2, L3.
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Let the field be C now. Then the intersection of the quadric with the fourth line L4 is
two points, denote them {A,B} := Q ∩ L4. The ruled surface is a disjoint union of lines, so
A and B each determine a line in the same ruling as L1, L2, L3. In the other ruling, there is
also a line passing through each point, which intersects L1, L2, L3 and also L4 (in A,B). So
the answer is 2.

In the real case, the answer depends on the configuration, see Figure 2.5.

Figure 2.5: Four lines: real case

This solution has the advantage that it is elementary, however it is difficult to generalize
to other problems. Topology can be used to deal with the other problems, which is what we
will discuss next.

2.6 Degree and Bézout’s theorem(s)
Definition 18. Let H = (f = 0) be a hypersurface in Pn (i.e. a variety defined by one
equation). Then degH := deg f where we assume that f is minimal, i.e. not a power of an
other polynomial.

Theorem 19 (Bézout 1). Let H = (f = 0) be a hypersurface in Pn (i.e. a variety defined
by one equation) and let L ⊆ Pn be a line. Then for a generic line #(H ∩ L) = deg f .

Proof. The restriction f |L is a polynomial on the line of degree deg f , so by the fundamental
theorem of algebra it has deg f roots. (Think about C versus R!.)

Remark 20. From the proof we see that here generic means that f |L cannot have multiple
roots.

Theorem 21 (Bézout 2). Let C1, C2 be complex plane curves in generic position. Then

#(C1 ∩ C2) = degC1 · degC2.

Notice that this theorem solves Example 3, the intersecting conics.
Proof. (sketch) Let ci := degCi (i = 1, 2). Let Ai be a set of ci many lines. There are c1 · c2

many points of intersection in A1 ∩A2. Ai is a variety given by a polynomial fi of degree ci.
By slightly perturbing the equations fi, one gets two curves, and the points of intersection
are also slightly perturbed (see Figure 2.6). You can also play with Geogebra here.

We claim that this implies the theorem for generic curves. The key idea is that the
parameter space of degree d curves is a CPN (show that N =

(
d+1

2

)
− 1), and the subset

of curves in generic position with a fixed curve in CPN is connected, since the set of non-
generic ones is a subvariety (defined by polynomial equations) and any subvariety has complex
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Figure 2.6: Bézout 2 proof

codimension at least 1, therefore real codimension at least 2. This is the essential point where
we use that we are in the complex situation and which is not true in the real situation.

We arrive at a central definition:

Definition 22 (Degree). Let X ⊆ Pn be a variety of dimX = d. Let Pn−d ⊆ Pn be in
generic position. The degree of X is

degX := #(X ∩ Pn−d)

Notice that this is indeed a generalization of Definition 18.

Theorem 23 (Bézout in higher dimensions). Let X1, X2 ⊆ Pn be complex subvarieties
in generic position. Then

deg(X1 ∩X2) = deg(X1) · deg(X2).

This can be proved by induction. This is not enough for our purposes; the parameter
space of our objects is not always a projective space. For example,

{conic curves} ∼= P5,

{quadric surfaces} ∼= P9,

but
{lines in P3} 6∼= P4,

so we will need to generalize Bézout’s theorem to more general spaces.

2.7 Cohomology
LetM be a topological space. Then one can associate to it a graded ring called the cohomology
ring of M

H∗(M) =
⊕
i

H i(M).

The elements of H∗(M) are called cohomology classes. For us, M is a smooth variety. (We
will not define smoothness.) Using cohomology rings, one has extra geometry:

Given a subvariety X ⊆ M , one can associate to it a cohomology class [X] ∈ H2k(M),
where k = codimC(X ⊆M).

Theorem 24 (Cohomology Bézout). If X1 t X2 (read: intersect transversally) then

[X1 ∩X2] = [X1] · [X2]. (2.2)
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2.7.1 CW-complexes and their cohomology

Theorem 25. Suppose M is a disjoint union of ‘complex cells’: M = ∐
Bi where Bi

∼= Cni

are 2ni-cells. Then H2k(M) is freely generated by the classes [Bi], where k = dimCM − ni.

Example 26. CP n = CP n−1∐Cn where Cn are the ordinary points and CP n−1 are the
points at infinity. Iterating,

CP n = Cn
∐

Cn−1∐ . . .
∐

C0

Claim 27.
H∗(CP n) ∼= Z[g]/gn+1

Proof. (idea) Let g := [CP n−1] ∈ H2(CP n) and use Cohomology Bézout.

Remark 28. If X ⊆ CP n, codimCX = d, then [X] = deg(X) · gd, so the higher dimensional
Bézout is a special case of the Cohomology Bézout.

2.7.2 Grassmannians and their cell decomposition

Definition 29 (Grassmannian).

Grk(Cn) := {k-dimensional subspaces in Cn}

For example, Pn = Gr1(Cn+1). Now we have a name for the space of projective lines in
P3: Gr2(C4).

Fix the reference flag in Cn

F• = (F1 = 〈e1〉 ≤ F2 = 〈e1, e2〉 ≤ . . . ≤ Fn = Cn)

(an ordered set of subspaces). We will decompose the Grassmannian into subsets, according
to their relative position with respect to F•. Given V ∈ Grk(Cn), introduce the dimension
vector :

diV (i) := dimC(V ∩ Fi).

Figure 2.7: A ‘flag’ in P3
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Proposition 30.

i) Let f : {1, . . . , n} → {1, . . . , k} be a monotonic function. Then

{V ∈ Grk(Cn) : diV = f} (2.3)

is a cell, i.e. it is isomorphic to Cd, for some d, or empty.

ii) Every such cell, which is nonempty, contains exactly one coordinate k-space.

Proof. Essentially Gauss elimination.

Homework 31.

1. Check Proposition 30 for Pn.

2. What are the possible dimension vectors?

By the Proposition, to index the cells, one has to index the coordinate subspaces. For
example, in Gr2(C4), there are

(
4
2

)
= 6 coordinate 2-planes in C4: Vij = 〈ei, ej〉. More

generally one has VI for I ∈
(
n
k

)
. The dimension function is given for some I in Table 2.1.

i 1 2 3 4
diV24(i) 0 1 1 2
diV13(i) 1 1 2 2

Table 2.1: Dimension function

The cells given by (2.3) are called Schubert cells:

ΩI := {V ∈ Grk(Cn) : diV = diVI}

Remark 32. In an alternative formulation, the action of GL(n) on Cn induces a GL(n)-action
on the Grassmannian. The Schubert cells are the orbits of the subgroup of upper triangular
matrices B+ ≤ GL(n).

The closures σI of the Schubert cells ΩI are called Schubert varieties (show that they are
unions of Schubert cells).

2.7.3 Schubert varieties in Gr2(C4)
We explicitly determine the Schubert varieties for Gr2(C4). We will think of it as projective
lines in P3. Recall that [F1] is a point, [F2] a line, [F3] a plane in [F4] = P3. Now we describe
the Schubert varieties in Gr2(C4) (for the moment ignore the boxes on the right-hand side).

The smallest Schubert variety is a point:

σ12 = {V12} = {[F2]}

σ13 = {L ≤ P3 : [F1] ⊆ L ⊆ [F3]}
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This is isomorphic to P1, namely, P(F3/F1).

σ14 = {L ≤ P3 : [F1] ⊆ L}

i.e. projective lines passing through a point, which can be identified with a projective plane
P2, namely P(C4/F1).

σ23 = {L ≤ P3 : L ⊆ [F3]}
i.e. projective lines contained in a plane, which can be identified with a projective plane P2,
namely the dual of P(F3).

σ23 = {L ≤ P3 : L ∩ [F2] 6= ∅}

This is less straightforward to identify; it is the cone of the quadric surface P1 × P1 (so this
is the first example of a non-smooth Schubert variety). Finally,

σ34 = Gr2(C4) •

Comparing the dimensions of the cells to the cell-decomposition of P4, we see that Gr2(C4)
has an extra cell in dimension 2.

2.7.4 Schubert varieties in Grk(Cn)
As we have mentioned above, we can index the cells in an alternative way. Let

I = (i1 < . . . < ik) ∈
(
n

k

)
.

Set
λi = n− k + j − ij,

for i = 1, . . . , k. The sequence of λi’s forms a partition: a non-strictly decreasing sequence of
nonnegative integers

λ = (λ1 ≥ λ2 ≥ . . . ≥ λk).
The partitions obtained from I ∈

(
n
k

)
also satisfy λ1 ≤ n − k. To such a partition, one

can associate a Young diagram by drawing λi boxes in the ith row; see the Schubert cells
of Gr2(C4) for the two kinds of indexing. The condition λ1 ≤ n − k implies that Schubert
cells are indexed by partitions that fit in a k× (n− k) box. The complex codimension of the
Schubert variety σλ is the area of the Young diagram, which we will denote

|λ| =
∑

λi.

Recall, that given a subvariety σλ ⊆ Grk(Cn), one can associate to it a cohomology class

[σλ] ∈ H2|λ|(Grk(Cn)).

As we have seen in Theorem 2.2, the product of such classes (under some genericity
conditions), corresponds to the class of their intersection. To give some motivation for the
upcoming calculations, let us state that in H∗(Gr2(C4))

[σ ]4 = u · [σ ],

and u is the answer to the four-line problem! Indeed, as we saw σ is the set of projective
lines intersecting [F2], so the cohomology Bézout implies the statement above. Keeping this
in mind, we will examine the multiplication table of H∗(Gr2(C4)).
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2.7.5 Cohomology of Gr2(C4)
We will determine the multiplication table using the geometric description of Schubert vari-
eties in Section 2.7.3. First, by Theorem 2.2.

[σ ]2 = [σ (F•) ∩ σ (F ′•)] = [{lines in two planes}] = [σ ] = [pt]. (2.4)

Similarly,
[σ ]2 = [σ ] = [pt]. (2.5)

[σ ] · [σ ] = [σ ] · [σ ] = [σ (F•) ∩ σ (F ′•)] = 0, (2.6)

since for generic flags F•, F ′•, F1 6≤ F ′3 (and H2∗ is commutative).

Proposition 33.
[σ ]2 = [σ ] + [σ ]. (2.7)

Proof. Write
[σ ]2 = a[σ ] + b[σ ].

Notice, that Lemma 13 (Figure 2.8) together with (2.5) and (2.6) can be used to determine
a:

a[pt] = [σ ]2[σ ] = [σ (F•) ∩ σ (F ′•) ∩ σ (F ′′• )] = [pt]

Similarly, one can show b = 1.

Theorem 34. Given four generic lines in P3, there are 2 lines passing through each one.

Proof. Using equations (2.4)–(2.7):

[σ ]4 = ([σ ] + [σ ])2 = 2[pt].

Homework 35. Determine the rest of the multiplication table.

It is not difficult to see that the complex dimension of Grk(Cn−k) is k(n−k). For example,
dimC Gr2(C5) = 6.

Problem 36. Find the number n of planes in P4 intersecting 6 given lines! Answer: [σ ]6 =
n[pt].

We will return to this problem a little later.

Figure 2.8: Proof of Lemma 13
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2.7.6 Schubert calculus
The general multiplication table of [σλ] ∈ H∗(Grk(Cn)) is also called Schubert calculus. With-
out proof, we now state the general rules of the multiplication table.

Theorem 37 (Giambelli formula).

[σλ] = det([σλi+j−i]) =

∣∣∣∣∣∣∣∣∣∣∣

[σλ1 ] [σλ1+1] . . . [σλ1+k−1]
[σλ2−1] [σλ2 ] . . . [σλ2+k−2]

... ... . . . ...
[σλk−k+1] . . . . . . [σλk ]

∣∣∣∣∣∣∣∣∣∣∣
=: ∆λ(σ) (2.8)

For example [σ ] = [σ ]2 − [σ ].

Theorem 38 (Pieri formula). Given a partition λ ⊆ k × (n− k) and µ ∈ Z,

[σλ] · [σµ] =
∑
λ′∈L

[σλ′ ]

where L consists of all Young diagrams λ′ obtained by adding µ boxes to λ by the following
rules:

• no two squares in the same column,

• λ′ ⊆ k × (n− k),

• has to be a valid Young diagram.

Figure 2.9: Pieri rule

Using Pieri formula, one can solve Problem 36:

6 =
(

+
)3

=
(

+ + 2 · +
) (

+
)

= (1 + 2 + 1 + 1)[pt] = 5[pt].

Alternatively,
3 =

(
+

)
· = + + + ,

where = 0, since 6⊆ . Using that H3 is self-dual, we get that the answer is 22 + 1 = 5.

Remark 39. It is not difficult to show that if σλ and σµ are half dimensional, then

[σλ] · [σµ] = δλ,µ[pt].

This is what I meant on self-duality.

Homework 40. Find out and solve an enumerative problem using Schubert calculus.

34



Fehér: Enumerative geometry

Homework 41**. Generalization of four lines: Given 4 projective 2n− 1-dimensional sub-
spaces Vi in P4n−1. How many 2n − 1-dimensional subspaces intersect all Vi in an n − 1-
dimensional subspace? (Try n = 2 first.)

More generally, one can multiply any two Schubert classes, and express them in a basis:

[σλ] · [σµ] =
∑

cνλµ[σν ].

The cνλµ are called Littlewood-Richardson coefficients. They can be calculated using the
Giambelli and Pieri formulas. A faster direct method is enumerating Young tableaux.

2.8 Symmetric polynomials
Recall that the symmetric group Sn acts on the polynomial ring Z[z1, . . . , zn] by permuting the
variables. The subring of invariant polynomials is called the ring of symmetric polynomials.
It is generated as a ring by the elementary symmetric polynomials Ei = Ei(z1, . . . , zn):

Z[z1, . . . , zn]Sn = Z[E1, . . . , En]

Recall their definition:
n∏
i=1

(1 + tzi) =
n∑
i=0

Eit
i.

For example,

E1 = z1 + z2 + . . . zn, E2 = z1z2 + z1z3 + . . .+ zn−1zn.

Another convenient additive basis in the ring of symmetric polynomials is given by Schur
polynomials. Schur polynomials

sλ(z) ∈ Z[z1, . . . , zn]Sn

are indexed by partitions λ and are defined by

sλ(z) := ∆λT (E)

where λT denotes the mirror of λ (see Figure 2.10) and recall (2.8) for the definition of the
polynomial ∆λ (the variables were named [σi], and now Ei).

Theorem 42.
sλsµ =

∑
cνλµsν

where cνλµ are the Littlewood-Richardson coefficients introduced above, and the sum is for all
partitions of |λ|+ |µ|.

Figure 2.10: λ⇒ λT
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2.9 Representation theory
It is a fact, that irreducible complex representations Vλ of SL(n) can be parametrized by
partitions λ of length n. Given such a representation

ρλ : SL(n)→ GL(Vλ),

its character can be written as

χλ =
det |zλj+n−ij |

det |zn−ij |

Theorem 43 (Jacobi formula).

χλ(z) = sλ(z)

This has the representation theoretic consequence that

ρλ ⊗ ρµ =
⊕

cνλµρν .

Let us examine the three flavours of what we have seen so far through an example.

Example 44.

i) Schubert calculus:
2 = + .

ii) Symmetric polynomials:
s2

1 = s1,1 + s2,

since Ei = s1i , so s1 = E1 = (z1 + . . .+ zn), s1,1 = E2 = ∑
i<j zizj and s2 = ∑

i≤j zizj.

iii) Representation theory:

V ⊗ V = Sym2 V ⊕ Λ2V.

2.10 Real enumerative problems
The 4 spaces problem of Homework 41 can be solved also by using linear algebra. This can
be used to study the question over the reals. E.g. for n = 2 the complex answer is 6, the real
is 2 or 6. For more details, see [2]. Notice that in the real case the answer to an enumerative
problem is not a number but a set of numbers. The reason for this phenomenon was discussed
in the proof of Theorem 21.

An other classical problem is the Steiner problem: how many conics is tangent to 5 conics?
It has a fascinating story see e.g [1]. Steiner’s original argument was the following: the set of
conics tangent to a given conic is defined by a single degree 6 equation (try to prove this!).

Remark 45. Theorem 19 implies that this degree being 6 is equivalent to the fact that there
are six members of a generic pencil of conics tangent to a given conic, see Figure 2.11.
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Figure 2.11: 6 ellipses of a pencil tangent to an ellipse

Applying Bézout’s theorem Steiner claimed the answer should be 65. The answer is wrong,
since these 5 degree 6 hypersurfaces will not be in generic position (double lines are conics,
and they are tangent to all conics!). The correct answer is that in general there are 3264
smooth conics tangent to 5 smooth conics.

The real case is not completely understood. The maximum 3264 can be obtained by [3].
For the small solution numbers we know that the answer can be 0: five concentric circles.
It can be 32: e.g. five small circles in the vertices of a pentagram. On Figure 2.12 you
can see six ellipses symmetric to the vertical symmetry axis, you can rotate them 5 ways,
and you have a circle tangent to the small circles from the inside and one from the outside:
6 · 5 + 2 = 32. Notice that 32 = 25: given any subset of the 5 small circles the is a solution
containing exactly them (Notice the similarity to the Apollonius circle problem!). We are
working on this problem with Tamás Ágoston. We recently found a configuration with 16
solutions.
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Figure 2.12: 6 of the 32 conics

Problem session
(Ákos Matszangosz)

Day 1

1. How many triangles exist with vertices on given lines and sides through given points?
Geogebra help: https://www.geogebra.org/m/u379yjtw

2. Find n,m such that the answer to each of the following problems is finite:
a) How many conics pass through n given points?

b) How many conics are tangent to m conics?

3. a) Show that ‘usually’ the GL(2)-action on P1 has two fixed points.

b) Let p, q, r ∈ P1 be 3 distinct points. Show that there exists g ∈ GL(2) such that
g(p) = [0 : 1], g(q) = [1 : 0] and g(r) = [1 : 1].

4. Prove that given 2 lines L1 6= L2 and a point p 6∈ L1, L2 in P3 there exists a unique line L
incident to them (p ∈ L,Li ∩ L 6= ∅).

Day 2

1. Identify the cells in Pn given by the general cell decomposition of Grassmannians (i.e. using
the dimension vector diV (i) = dim(V ∩ Fi) with respect to a reference flag F•).

2. Verify and complete the geometric description of the cells in Gr2(C4) seen in class (again,
using the dimension vector).
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From Poincaré to Thurston and Perelman: one
hundred years of a conjecture

By Gábor Moussong

Abstract:
Modern-day topology grew out of the mathematical works of Henri Poincaré. His famous con-
jecture, put forward in 1904, was about characterizing the three-dimensional sphere in terms
of its homotopy type. The Poincaré conjecture withstood all attempts of proof for nearly
100 years, and functioned as the primary motivating force behind many new developments
in twentieth century topology and geometry.

The lecture will explain the conjecture and its significance in the topology of manifolds. A
few historically famous unsuccessful early attempts to prove the conjecture will be mentioned.
In the 1980’s Thurston’s theory of geometrization generalized the Poincaré conjecture in a
geometric context, and opened up new directions for proving it. Without going into techni-
calities, the lecture will sketch Hamilton’s program and Perelman’s results which in the early
2000’s led to the proof of both Thurston’s and Poincaré’s conjectures.
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Projective algebraic plane curves
By András Némethi

(Notes by Tamás Ágoston)

4.1 Intersection theory of algebraic curves
In algebraic geometry we study algebraic varieties. Over the course of these lectures we will
be working with 1-dimensional varieties: algebraic curves. We will denote the base field with
k, which will usually be C (in general the same question could be studied over any field, for
example R, Fp etc.). Let us first recall the basic terminology.

4.1.1 Basics
Definition 1. The affine plane over k is

A2 = k2 = {(x, y) |x, y ∈ k} .

An affine algebraic plane curve is a subset

C =
{

(x, y) ∈ k2
∣∣∣ f(x, y) = 0

}
⊂ A2

for some polynomial f ∈ k[x, y]. (The ring k[x, y] is called the coordinate ring of A2.)
The degree of the curve is deg C = deg f .

Example 2. The following all define plane curves:
a) x2 + y2 − 4 = 0 in R2 (a circle with radius 2)
b) x+ y = 10 in R2 (a line)
c) x10 + πy200 + e = 0.
Our main goal in today’s lecture is to understand how curves intersect each other.

Example 3. Let us look at the simplest case: the intersection of lines L1 6= L2. We have 2
cases:

a) L1 ∩ L2 = {P} for some point P ;

b) L1 ∩ L2 = ∅ (they are parallel).
To get rid of the exceptional case b), we consider the projective plane:

Definition 4. The projective plane over k is

P2 = k3 \ {0}
/
x ∼ λx (λ ∈ k∗)

(the space of lines in k3 through the origin). A projective algebraic plane curve is a subset

C =
{

[x, y, z] ∈ P2
∣∣∣ f(x, y, z) = 0

}
⊂ P2

for some homogeneous polynomial f ∈ k[x, y, z]. Note that this is well-defined: for f homo-
geneous, f is 0 at the same time on the points of a line through the origin in k3. (The graded
ring k[x, y, z] is called the homogeneous coordinate ring of P2.)

The degree of the curve is deg C = deg f .
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Remark 5. This can also be considered as P2 = A2 ∪L∞ where L∞ is the line at infinity, via
the identification

A2 3 (x, y) 7→ [x, y, 1] ∈ P2.

(points of type [x, y, 0] ∈ P2 form L∞).
Then the homogeneous equation f(x, y, z) = 0 on P2 defines the affine curve f(x, y, 1) = 0

on A2. Conversely, an affine curve g(x, y) = 0 of degree d can be considered as a projective
curve of the same degree by filling up the monomial terms with enough z’s that it becomes
homogeneous of degree d.

Example 6. The homogeneous equations for the curves in Example 2 are:

x2 + y2 − 4z2 = 0, x+ y − 10z = 0, x10z190 + πy200 + ez200 = 0.

Note that when we consider projective plane curves of degree 1 (projective lines) L1 6= L2,
we always have L1 ∩ L2 = {P} (parallel lines in A2 intersect on L∞).

Both k[x, y] and k[x, y, z] are unique factorization domains, so any polynomial f can be
written in the form

∏
i

fαii with fi irreducible. These fi define the components of the curve

C = {f = 0} =
⋃
i

{fi = 0}, and the αi can be interpreted as some kind of multiplicities of

these components (though we will mostly assume f to be square-free). The curve C is said
to be irreducible if f is.

Example 7.

x=0

y=0

x2 + y2 − 1 irreducible xy has 2 components

To better understand intersections, we wish to look at small neighborhoods of points on a
curve instead of the global picture. For example consider the following 2 curves at the origin:

Example 8.

xy = 0

(0, 0)

x3 + y3 + xy = 0

(0, 0)

Ideally, we would find that the two are “the same” near (0, 0), since there are two “smooth”
branches with the same tangents in both cases – or at the very least, we should see that
x3 + y3 + xy = 0 has two local components near the origin.

It turns out that the way to do this is to consider the defining function f as an element
of the local coordinate ring k Jx, yK instead of k[x, y]. Indeed it is a UFD as well, so the
definition of components carries over: the curve germs, defined by elements of k Jx, yK split
into components too.
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Remark 9. The ring k Jx, yK is a local ring: the non-invertible elements form the unique
maximal (proper) ideal m. The invertible elements in this case are the f ∈ k Jx, yK with
nonzero constant term, and the rest (where the corresponding curve goes through the origin)
clearly form an ideal. This corresponds to the fact that analytic functions f not vanishing
at (0, 0) are locally invertible there.

The above described connection between the affine, projective and local geometry, and
the algebraic properties of the respective coordinate rings are summarized below:

Geometry Algebra

A2 k[x, y] coordinate ring
C affine curvey

C = ⋃
i
Ci irred. components

f ∈ k[x, y]yUFD

f = ∏
i
fαii

P2 k[x, y, z] homog. coordinate ring
C projective curvey

C = ⋃
i
Ci irred. components

f ∈ k[x, y, z] homogeneousyUFD

f = ∏
i
fαii

(A2, 0) k Jx, yK local coordinate ring
C curve germy

C = ⋃
i
Ci irred. components

f ∈ k Jx, yKyUFD

f = ∏
i
fαii

As we noted in Remark 5, the affine and projective curves roughly correspond to each
other, and they also have matching components – with the exception that if the homogeneous
equation f = 0 of a projective curve contains z as a factor (maybe multiple times), then it
gets lost upon transition to the affine plane; in other words, if L∞ is a component of {f = 0}
then it disappears when we view the affine equation, since A2 ∩ L∞ = ∅.

The situation changes though in the case of the local picture: an irreducible affine (or
projective) curve may have multiple local components:

Exercise 10. Verify that among the curves in Example 8, xy has the same irreducible
components in k[x, y] and k Jx, yK, but while x3+y3+xy is irreducible in k[x, y], it decomposes
in k Jx, yK. Furthermore, the components are associated elements to the two components of
xy.

4.1.2 Intersections and singularities

Let us now resume working towards our previously stated aim of understanding the intersec-
tion of curves. We already reviewed the simplest case in Example 3, so let us move on to a
slightly more interesting example:

42



Némethi: Projective algebraic plane curves

Example 11. Let L be a line and C a conic (degL = 1, deg C = 2). They may intersect
each other in 0 or 2 points as shown below:

L ∩ C = ∅ |L ∩ C| = 2

This only happens for k = R though – for k = C, in the projective plane we almost always
have 2 intersection points (due to C being algebraically closed). In particular we always
have at least 1. The exceptional case being when L is tangent to C – but then we feel that
this point should have multiplicity 2 (among other things, slightly moving either L or C will
result in 2 intersection points near the original point of tangency). So the number of points
in L ∩ C, counted with multiplicity is always 2.

Because of what we see here, from now on we assume k = C, and we are working in the
projective plane P2 = CP2 (or locally at a point). (It would in fact be enough to assume that
k is algebraically closed, and char k = 0.) And then the following will be true in general:

Theorem 12 (Bézout). Let C,D ⊂ P2 projective curves, deg C = c, degD = d. If they
have no common irreducible component then

∑
P∈C∩D

iP (C,D) = cd

where iP (C,D) is the intersection multiplicity defined below.

Definition 13. Let f, g ∈ k Jx, yK. The intersection multiplicity at the point P of the curve
germs defined by f and g is iP (f, g). For P = 0,

i0(f, g) = dimk
k Jx, yK
(f, g)

where (f, g) is the ideal generated by f and g, and for general P = (a, b), let iP (f, g) =
i0
(
f(x+ a, y + b), g(x+ a, y + b)

)
.

Remark 14. If either curve does not contain 0, then f or g is invertible, and (f, g) = k Jx, yK,

hence i0(f, g) = 0. Otherwise (f, g) ⊂ m, so i0(f, g) ≥ dim k Jx, yK
m

= 1.

Let us look at some examples of how this definition works:

Example 15. Let C = {x = 0}, D = {y = 0}. Then (x, y) consists of those f ∈ k Jx, yK
where all monomial terms are divisible by either x or y – in other words where the constant
term is 0, hence (x, y) = m. So

i0(x, y) = 1.

The allowed monomial terms in (x, y) can be visualized as those below x and y in the following
diagram:
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0

C

D

1
x y

x2 xy y2

x3 x2y xy2 y3

Example 16. Let C = {x = 0}, D = {x− y2 = 0}. Then (x, x − y2) = (x, y2) consists of
those f ∈ k Jx, yK where all monomial terms are divisible by either x or y2. The quotient ring
k Jx, yK
(x, y2) is generated as a k-vector space by the monomials not under either of them in the
below diagram: 1 and y.

0

C
D

1
x y

x2 xy y2

x3 x2y xy2 y3

Therefore
i0(x, x− y2) = 2.

Exercise 17. Calculate i0(x2 + y3, x3 + y2) = 4.

Exercise 18. Show that iP (f1f2, g) = iP (f1, g) + iP (f2, g).

Another local property we will be looking at more deeply later on is whether for a point P
on a single curve {f = 0}, it is smooth (as all points of a circle for instance, like in Example
7), or singular (like the origin on curves xy or x3 + y3 + xy, as in Example 8). We should
first define though what exactly we mean by that.

Definition 19. Let f ∈ k Jx, yK be a curve germ, and write it as the sum of homogeneous
parts: f = f0 + f1 + f2 + · · · where fd ∈ k[x, y] is homogeneous of degree d. This is actually
the Taylor expansion of f :

fd =
d∑

k=0

1
k! · (d− k)!

∂df

∂xk∂yd−k
(0) · xkyd−k.

Assume f0 = 0 (i.e. that 0 ∈ C = {f = 0}). Then 0 is called a smooth point of C if f1 6= 0,
i.e. if grad f(0) 6= 0. It is called a singular point otherwise.

The definition can be naturally extended to define when a point P = (a, b) on a curve
{f = 0} is smooth or singular (consider the germ of f(x + a, y + b) at 0, or rather simply
look at grad f(P )). A curve C is said to be smooth if all of its points are smooth, singular
otherwise.

Remark 20. Note that if P is a smooth point of a curve C = {f = 0}, then grad f(P ) 6= 0,
so by the implicit function theorem C at P as embedded in A2 is locally diffeomorphic to a
line in the plane – hence the name smooth point.

Essentially, smooth points are most often considered “boring” in a sense: the structure
of the curve is simple at these points. The global structure of a smooth curve can still be of
interest though.
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Example 21. The following curves are both singular at 0:

x3 + y3 + xy = 0

0

x3 − y2 = 0

0

Another property inspired by this, differentiating certain singular points is the following:

Definition 22. For 0 6= f ∈ k Jx, yK, let the multiplicity of f at 0 be

mult(f) = min {d | fd 6= 0} .

The multiplicity of a point P on an affine/projective curve {f = 0} can again be naturally
defined as before. (Then P is on {f = 0} if multP (f) ≥ 1, and P is a singular point of this
curve if multP (f) ≥ 2.)

Remark 23. Clearly multP (fg) = multP (f) + multP (g).

Corollary 24. If the projective curve C is reducible then it is singular.

Proof. Suppose C decomposes as C1 ∪ C2. Then by Bézout’s theorem there is a P ∈ C1 ∩ C2.
This satisfies

multP (C) = multP (C1) + multP (C2) ≥ 1 + 1 = 2,

so C is singular at P .

Multiplicity is also connected to intersection multiplicity:

Exercise 25. Let f, g ∈ k Jx, yK. Then i0(f, g) ≥ mult(f) ·mult(g).

Example 26. Consequently, given for example f = x + y2 and g = x2 + y3 + x10y1000, we
can conclude that i0(f, g) ≥ 1 · 2 = 2.

It is also worth observing that for deg C = 2, the only way C can be singular is as in
Corollary 24 (not so for degC ≥ 3, as evidenced by Example 21):

Corollary 27. All degree 2 irreducible projective curves are smooth.

Proof. Suppose C is a projective curve, deg C = 2, and P ∈ C singular. Then let Q ∈ C,
Q 6= P , and take the line L through P and Q. We thus have

iP (L ∩ C) + iQ(L ∩ C) ≥ multP (L) ·multP (C) + 1 ≥ 1 · 2 + 1 = 3,

so by Bézout’s theorem we have a common component. Hence C has L as a component,
making it reducible.

To finish today’s lecture, we will prove a statement that will prove to be of crucial im-
portance later on:
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Theorem 28 (Splitting Lemma). Let C,D ⊂ P2 projective curves, deg C = degD = d,
and suppose they do not have common components. Then by Bézout, C ∩D = P1 + · · ·+ Pd2

(meaning the set of these points, listed with proper multiplicities).
Assume that for some irreducible curve E with deg E = e, we have P1, · · · , Pde ∈ E. Then

there is a curve F with degF = d− e such that Pde+1, . . . , Pd2 ∈ F .

Remark 29. This is automatically satisfied if D decomposes in the form E ∪F for some curve
F of degree d− e.

Corollary 30 (Pascal’s theorem). Let Q be a smooth degree 2 curve (a conic), and
A,B,C,A′, B′, C ′ ∈ Q distinct points. Define X, Y, Z as intersection points of lines according
to the diagram. Then X, Y, Z are collinear.

A
B

C

A′
B′

C ′

X Y Z

Proof. Let the union of the 3 red lines be the cubic curve C, that of the 3 green lines be D,
and E = Q. Then applying the splitting lemma, the 9 points are A,B,C,A′, B′, C ′, X, Y, Z,
and E contains A,B,C,A′, B′, C ′, so the degree 1 curve must contain X, Y and Z – exactly
what we wanted to prove.

Remark 31. Pappus’ theorem follows via a similar argument: instead of the irreducible conic
Q we need to consider a reducible one, the union of 2 lines.

Proof (Theorem 28).

P1 P2 · · · Pd2

C

D

Let C = {f = 0} and D = {g = 0} (we have deg f = deg g = d). Let us now consider linear
combinations of these, forming a so-called pencil of curves of degree (at most) d:

P1 3 [α, β] 7→ {αf + βg = 0} = C[α,β].

This is well-defined, since {αf + βg = 0} = {λαf + λβg = 0} for λ ∈ C∗.
It is obvious that these curves all contain all the Pi’s, since f and g both vanish at

these points. Furthermore for any Q 6∈ {P1, . . . , Pd2} there is a unique [α, β] ∈ P1 such that
Q ∈ C[α,β]: we merely need to solve the equation αf(Q) +βg(Q) = 0, which we can uniquely
do since f(Q) and g(Q) are not both 0.
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Let us now fix a point Q ∈ E \ {P1, . . . , Pde}, and take a curve H = C[α,β] 3 Q. We then
have H∩E ⊇ {P1, . . . , Pde, Q} (as a multiset), and by Bézout, H and E must have a common
component. But E is irreducible, so E is a component of H, hence H = E ∪F for some curve
F of degree d− e, and this will satisfy our requirements.

4.2 Group structure on elliptic curves
In this lecture, we will be working with smooth cubic curves: so-called elliptic curves. We
will construct an abelian group operation on points of such a curve, making it a Lie group.

Definition 32. Let C ⊂ P2 be a smooth (in particular irreducible) projective curve, deg C =
3, and fix a point O ∈ C. For any points X, Y ∈ C, let LXY denote the line through them –
or if X = Y then the tangent TXC. Also, we set LXY ∩ C = {X, Y, T (X, Y )} as a multiset
(in other words, T (X, Y ) is the third intersection point of LXY with C).

Take any two points A,B ∈ C. Then let H = T (A,B), and A⊕OB = T (H,O) (or simply
A⊕B for ease of notation).

A

B H

A⊕B
O

Proposition 33. This operation has the following properties:

1) A⊕B = B ⊕ A,

2) O ⊕ A = A,

3) ∀A∃B : A⊕B = O,

4) (A⊕B)⊕ C = A⊕ (B ⊕ C).

Proof. Part 1) is of course trivial since LAB = LBA, so T (A,B) = T (B,A).
Part 2) is also easy, since A,O and H = T (A,O) are collinear by the notation used in the

definition above.
For part 3), consider K = T (O,O). Then let A ∈ C, and B = T (A,K). It is straightfor-

ward to check that A⊕B = O, since we get T (A,B) = K, and then T (K,O) = O.

A

B K

O

O

A

B

C P

R

A⊕B

B ⊕ C

T = T ′
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Lastly, let A,B,C ∈ C and verify 4). Use the notation P = T (A,B), R = T (B,C). Then
A⊕B = T (P,O) and B ⊕ C = T (R,O). Let T = T (A⊕B,C) = T and T ′ = T (A,B ⊕ C).
Since (A⊕B)⊕C = T (T,O), A⊕(B⊕C) = T (T ′, O), and conversely T = T

(
O, (A⊕B)⊕C

)
,

T ′ = T
(
O,A⊕ (B ⊕ C)

)
, we simply need T = T ′.

Once again, we can apply the Splitting Lemma. The two curves in this case are C and
LA,B ∪ LO,B⊕C ∪ LA⊕B,C . The intersection points are A,B,C,O, P,R, T,A⊕ B,B ⊕ C. We
then get that A,B ⊕ C, T must be collinear, therefore T = T ′ indeed.

Thus (C,⊕O, O) forms an abelian group, where −A = T (A,K) with K = T (O,O).
Clearly the operations are smooth, so
Proposition 34. (C,⊕O, O) is a Lie group.

Corollary 35. (C,⊕O, O) ' S1 × S1 (where S1 is the multiplicative group of the complex
unit circle).

Proof. Since C = {f = 0} is smooth, 0 is a regular value of f , so C topologically is 2-
manifold. Being defined by a complex equation automatically implies orientability, and a Lie
group has Euler characteristic 0, so C is a topological torus. All Lie group structures on the
torus are isomorphic, so we are done.

This implies that for O,O′ ∈ C we have (C,⊕O, O) ' (C,⊕O′ , O′). It is not obvious though
what the isomorphism actually is.
Exercise 36. Construct an isomorphism Φ : (C,⊕O, O)→ (C,⊕O′ , O′).

From now on fix a point O ∈ C and a corresponding group operation ⊕ = ⊕O. Let us
also fix the notation K = T (O,O) as before.

The group structure allows us to rephrase certain properties of points on C, and prove a
number of interesting statements seemingly unrelated to it.
Proposition 37. Let A,B,C ∈ C. Then

C = T (A,B) (i.e. A,B,C are collinear) ⇐⇒ A⊕B ⊕ C = K.

Proof. If T (A,B) = C, so A⊕B = T (O,C). Then

(A⊕B)⊕ C = T
(
T (A⊕B,C), O

)
= T

(
T
(
T (O,C), C

)
, O
)

= T (O,O) = K.

Conversely, let C ′ = T (A,B). Then by the previously proved direction, K = A⊕B⊕C ′.
But we also have K = A⊕B ⊕ C, so C = K 	 A	B = C ′. Thus C = T (A,B).

Definition 38. A smooth point A on a curve C is called an inflection point if the tangent
TAC intersects C with multiplicity at least 3. (In this case, C is an irreducible cubic, so the
multiplicity has to be exactly 3 by Bézout’s theorem.)

A
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Remark 39. By Proposition 37, A ∈ C is an inflection point if and only if A⊕ A⊕ A = K.

Proposition 40. C has exactly 9 inflection points.

Proof. Since (C,⊕) ' S1 × S1, we can identify the points on C with pairs (x, y) where
x, y ∈ S1 – let A = (a1, a2) and K = (k1, k2). Then by the previous statement, we simply
need to solve the equation

(3a1, 3a2) = (k1, k2)
for a1, a2 ∈ S1. Clearly, both a1 and a2 can have 3 distinct values independently of each
other, so altogether we get 9 solutions.

Proposition 41. Let A ∈ C. If A is not an inflection point then there are exactly 5 lines
L 3 A that are tangent to C. If it is, then there are 4.

Proof. The line L can be tangent either at A or at another point. In other words, if
L ∩ C = {A,X, Y } as a multiset then we need 2 of the points A,X and Y to be equal.

If A = X or A = Y then we get the tangent line TAC (and the third point is K 	 A	 A
by Proposition 37).

If on the other hand X = Y then similarly to the previous proof, we need to solve the
equation

A⊕X ⊕X = K ⇐⇒ (2x1, 2x2) = (k1 − a1, k2 − a2)
where A,X and K correspond to (a1, a2), (x1, x2) and (k1, k2) respectively in S1 × S1. We
always get 4 solutions here.

But if A is an inflection point then X = A is one of these solutions, so we already counted
that. Otherwise, all the solutions result in new lines. This completes the proof.

Exercise 42. Prove that if I1, I2 ∈ C are inflection points then T (I1, I2) is one too.
We will now state Splitting Lemma in a slightly different form (provable in the same way):

Theorem 43. Let C,D ⊂ P2 projective curves, deg C = c, degD = d, and C ∩ D =
{P1, . . . , Pcd} as a multiset. Assume that P1, . . . , Pd ∈ L for some line L. Then there is
a curve F of degree c− 1 such that Pd+1, . . . , Pcd ∈ F .

As a consequence of that, we can prove the following statement on elliptic curves:
Theorem 44. Let C be a smooth cubic as before, and D a complex projective curve of degree
d, for which C ∩ D = {P1, . . . , P3d}. Then

P1 ⊕ P2 ⊕ · · · ⊕ P3d = K ⊕ · · · ⊕K︸ ︷︷ ︸
d

.

Proof. We prove by induction on d. For d = 1 we already know the statement by Proposition
37, so assume d ≥ 2, and that we know the statement for all smaller d’s.

Y
Z

X

P1
P2

P3
P4
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Let X = T (P1, P2), Y = T (P3, P4), Z = T (X, Y ), and consider D′ = D ∪ LXY , a curve of
degree d + 1. Then apply the previous theorem for C,D′ and L = LP1P2 . This yields the
d-curve E containing P3, P4, . . . , P3d, Y, Z.

Apply the splitting lemma again to C, E and LP3P4 to get the (d− 1)-curve F containing
P5, . . . , P3d, Z.

Then by induction

P5 ⊕ · · · ⊕ P3d ⊕ Z = K⊕(d−1),

P1 ⊕ P2 ⊕X = K,

P3 ⊕ P4 ⊕ Y = K.

Putting them all together yields

P1 ⊕ · · · ⊕ P3d ⊕X ⊕ Y ⊕ Z = K⊕(d+1).

Subtracting X ⊕ Y ⊕ Z = K, we get the statement, finishing the inductive step.

Corollary 45. Let C,D be smooth cubics, and C ∩ D = {P1, . . . , P9}. Assume E is also a
cubic containing P1, . . . , P8. Then we also must have P9 ∈ E.

Proof. Either E contains – in this case implying being equal to – the irreducible cubic C,
making the statement obvious, or the 9th intersection point P ′9 (existing by Bézout) satisfies

P1 ⊕ · · · ⊕ P8 ⊕ P ′9 = K⊕3 = P1 ⊕ · · · ⊕ P8 ⊕ P9,

implying P ′9 = P9 and completing the proof.

The statement Theorem 44 also answers the following natural question when C is a smooth
cubic.

Question 46. Given a curve C of degree c and an integer d > 0, can we get any set of
points {P1, . . . , Pcd} as C ∩ D for some curve D of degree d? (Essentially, is the statement
of Bézout’s theorem all we can say on the intersection?)

As we see, for C being a smooth cubic, the answer is negative for any d. There are two
main ways we could investigate this further: we could consider other curves C, or we could
ask if the condition of Theorem 44 is sufficient. For example:

Question 47. Given a line L ⊂ P2 and P1, . . . , Pd ∈ L, is there curve D of degree d such
that L ∩ D = {P1, . . . , Pd}?

Question 48. Given a smooth conic Q ⊂ P2 and P1, . . . , P2d ∈ Q, is there curve D of degree
d such that Q∩D = {P1, . . . , P2d}?

The answer to the first one is trivially positive. We can assume L to be the x-axis, and
then we take D to be the graph of a polynomial with roots at the x-coordinates of the Pi’s.
It is an easy exercise to show that the second question has a positive answer too. It will not
be so though for c ≥ 3.

As for the sufficiency of the sum property for a smooth cubic C, it is trivially so for d = 1
by Proposition 37. For d = 2 and 3 we also get that P1 ⊕ · · · ⊕ P3d = K⊕d is enough to
ensure the existence of a curve D. For d = 4, let us entertain the original question for one
more moment:
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Question 49. Let C be a smooth cubic, and P1, . . . , P12 ∈ C. Is there a curve D of degree 4
such that C ∩ D = {P1, . . . , P12}?

Answer. Clearly, as we observed before, the answer is NO, since we must have P1 ⊕ · · · ⊕
P12 = K⊕4 (and equality does not always hold, the sum can be any point on C).

On the other hand, the answer is YES. The moduli space of degree 4 curves is the
14-dimensional projective space, as these curves are defined by equations of the form

a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3+
+a11x

4 + a12x
3y + a13x

2y2 + a14xy
3 + a15y

4 = 0.

The coefficient vectors a = (a1, . . . , a15) are nonzero, and the curve is invariant up to multi-
plication of this vector with nonzero scalars, so we get P14 = A15

/
x ∼ λx (λ 6= 0) .

The condition that a point Pi = (xi, yi) is on such a curve D means that substituting
(xi, yi), the equation is satisfied. This is a homogeneous linear equation on a, so it defines a
projective hyperplane Hi ⊂ P14. Then we need

D ∈
12⋂
i=1
Hi.

The intersection is not empty (in fact it is infinite), so there is such a D.

Exercise 50. Resolve the apparent contradiction in the above argument.

4.3 Topology of complex plane curves
In this last lecture we will try to understand how the topology of complex projective curves,
in particular singular curves, behaves, and make an effort to classify the singularities.

Let C = {f = 0} ⊂ CP2 be a projective algebraic curve of degree d, f =
∑

i+j+k=d
ai,j,kx

iyjzk.

If C is smooth then it is a closed manifold with (real) dimension 2 embedded in the
closed 4-manifold CP2. Being defined by complex algebraic equations automatically implies
orientability, so the topology of C is determined by the genus g ≥ 0 (the number of “holes”
in the surface).

Theorem 51 (Genus formula). If the C is a smooth complex projective curve of degree
d > 0 then it has genus

g = (d− 1)(d− 2)
2 .

Example 52. For d = 3 this implies that a cubic curve is topologically a torus (which we
have proved before in Corollary 35).

This theorem solves the question for smooth curves. We also want to understand however
how this topology changes when

Sing C =
{

[a, b, c]
∣∣∣∣∣ f(a, b, c) = ∂f

∂x
(a, b, c) = ∂f

∂y
(a, b, c) = ∂f

∂z
(a, b, c) = 0

}
6= ∅.
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Remark 53. Observe that for a homogeneous polynomial f of degree d > 0,

d · f(x, y, z) = x · ∂f
∂x

(x, y, z) + y · ∂f
∂y

(x, y, z) + z · ∂f
∂z

(x, y, z),

so
[a, b, c] ∈ Sing C ⇐⇒ ∂f

∂x
(a, b, c) = ∂f

∂y
(a, b, c) = ∂f

∂z
(a, b, c) = 0.

Example 54. Consider f = xy and C = {f = 0}. Here C has two components: L1 = {x = 0}
and L2 = {y = 0}. These are intersecting (complex projective) lines.

Locally at 0, C then looks like two 2-dimensional disks intersecting each other at one point
in the interior (since complex lines have real dimension 2).

Globally, Li ' CP1 ≈ S2. So we get C ≈ S2 ∨ S2.

(Here X ∨ Y , the wedge sum of topological spaces X and Y means gluing together a single
point on each. We would generally need to choose these basepoints, but for homogeneous
spaces like S2, we get the same space regardless.)

Example 55. Consider ft = xy + tz2 and Ct = {ft = 0}. It is easy to see that for t 6= 0, Ct
is smooth. So by Theorem 51, Ct ≈ S2 for t 6= 0, and C0 ≈ S2 ∨ S2 by the previous example.
We can then ask how the sphere S2 degenerates into S2 ∨ S2 as t→ 0.

It turns out that the process can be visualized as illustrated below: the equator of the
sphere (blue) gets gradually thinner, until it collapses into a single point, which will be the
glued together point in the wedge sum.

Exercise 56. Verify that (as stated above) ft = xy + tz2 defines a smooth curve for t 6= 0.

Example 57. Now let ft = x3 + y3 + xyz + tz3 and Ct = {ft = 0}. For small t 6= 0 we have
Ct smooth, but C0 has a unique singular point at [0, 0, 1]. Then as t → 0, Ct ≈ S1 × S1 by
Theorem 51, and we would like to know what the topology of C0 is.
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The first homology group of the torus is H1(S1 × S1;Z) ' Z2: the two generators (red
and blue) are seen above. What happens in this case is that one of the generating cycles (the
blue one) collapses into a point: we get H1(C0;Z) ' Z.

Example 58. Let ft = x2z + y3 + tz3 and Ct = {ft = 0}. This curve is smooth for all t 6= 0,
and C0 again has the unique singular point [0, 0, 1]. This time however both generators of
H1(S1 × S1;Z) collapse into a point – C0 will be homeomorphic to S2.

We see that the topology of a singular curve is not uniquely determined by the degree,
as was the case with smooth curves. If we converge towards said curve with smooth ones,
the topology can degenerate in different ways. The exact way this happens is related to the
so-called Milnor number, defined below:
Definition 59. Let C = {f = 0} be an affine plane curve and P ∈ C. The Milnor number
of C at P is

µ(f, P ) = iP

(
∂f

∂x
,
∂f

∂y

)
.

In particular for P = 0 we have

µ(f, 0) = i0

(
∂f

∂x
,
∂f

∂y

)
= dimk

k Jx, yK(
∂f
∂x
, ∂f
∂y

) .
Remark 60. If P is a smooth point of C then grad f 6= (0, 0), hence µ(f, P ) = 0. Otherwise(
∂f
∂x
, ∂f
∂y

)
is contained in the maximal ideal m of k Jx, yK so µ(f, P ) ≥ 1.

Theorem 61. Let C = {f = 0} be an affine plane curve and P ∈ Sing C. Let Ct = {f = t}
for all t ∈ C. Then for all sufficiently small t 6= 0 we have that Ct is smooth. Additionally,
looking at a small neighborhood of P we find that for all ε > 0 small enough and all (depending
on ε) sufficiently small t 6= 0 we have

H1(Ct ∩B(P, ε);Z) ' Zµ(f,P ).

Therefore the number of vanishing cycles, i.e. the rank of this homology group (all of whose
generators collapse into a point as t→ 0) is µ(f, P ).
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Example 62. Let us check the previous examples:

µ(xy, 0) = dim C Jx, yK
(x, y) = 1

µ(x3 + y3 + xy, 0) = dim C Jx, yK
(3x2 + y, 3y2 + x) = 1

µ(x3 + y2, 0) = dim C Jx, yK
(3x2, 2y) = 2

More generally, it is an easy exercise to check that for a, b > 0 and f = xa + yb we have

µ(f, 0) = dim C Jx, yK
(xa−1, yb−1) = (a− 1)(b− 1).

In our goal to characterize all degree d plane curves with singularities, this results in a
useful theorem. Namely, it turns out that if f is irreducible of degree d then all P ∈ Sing C
will kill µ(f, P ) distinct generators of H1({f = t} ;Z) (for a small t 6= 0). Here the genus of

{f = t} is g = (d− 1)(d− 2)
2 , so H1({f = t} ;Z) ' Z2g = Z(d−1)(d−2). As a consequence, we

have that

Theorem 63. For an irreducible plane curve {f = 0} of degree d,∑
P∈Sing C

µ(f, P ) ≤ (d− 1)(d− 2).

This will allow us to easily eliminate certain configurations of singularities. For example,
we instantly get

Corollary 64. Let {f = 0} be an irreducible plane curve of degree d. Then Sing C is finite,
in particular

|Sing C| ≤ (d− 1)(d− 2).

Remark 65. Finiteness of Sing C holds for C reducible as well, since the number of intersection
points of the components can be bounded by Bézout’s theorem.

At the very least, as far as the Milnor numbers are concerned there are only finitely many
ways the singularities of a degree d curve can look like.

If we want to move further, we need to understand what we mean by describing a local
singularity type. The Milnor number is relevant information, but does not (necessarily)
describe the local topology fully. The tool generally used to grasp this topology is the link
of the singularity which we will define shortly. But let us first recall what a knot is:

Definition 66. A knot is an embedding K : S1 ↪→ S3. Two knots K1 and K2 are consid-
ered isotopic if one can move one continuously to the other while preserving the embedding
property throughout the process. In precise terms, we need a map ϕ : S1 × [0, 1]→ S3 such
that

ϕ(p, 0) = K1(p), ϕ(p, 1) = K2(p) and S1 3 p 7→ ϕ(p, t) ∈ S3 is a knot for all t ∈ [0, 1].

A link is an embedding L :
k⊔
i=1

S1 ↪→ S3, with link isotopy defined the same way as for knots.
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Let us now consider a plane curve singularity at 0 corresponding to f ∈ C Jx, yK. In some
small neighborhood of 0, C will be smooth everywhere except at 0, so C \ {0} is a (smooth)
2-manifold locally. By intersecting it with a small sphere centered at 0, we would expect to
get a 1-dimensional manifold. Indeed:

Theorem 67. Let f ∈ C Jx, yK irreducible, 0 ∈ {f = 0} = C. For ε > 0 let Lεf = S3
ε ∩ C.

For sufficiently small ε, this is a smooth compact 1-manifold, and the diffeomorphism type of
(S3

ε , L
ε
f ) is invariant in ε. Furthermore – again for sufficiently small ε –,

(
B(0, ε), B(0, ε)∩C

) homeo≈ C(S3
ε , L

ε
f ) and

(
B(0, ε)\{0} , B(0, ε)∩C\{0}

) diff
≈ (S3

ε , L
ε
f )×(0, 1)

where C(X, Y ) denotes the cone over the pair Y ⊂ X.

Definition 68. Using the above notations, we define the link of f at 0 as Lf = Lεf , together
with its embedding into S3 for sufficiently small ε > 0.

{f = 0}
S3
ε

Lf

Remark 69. This theorem and definition works for higher dimensions as well – for an n-
dimensional complex algebraic variety its link at an isolated singularity will be a (2n − 1)-
dimensional manifold.

The link of a plane curve singularity is thus a compact 1-manifold, i.e. the disjoint union
of circles embedded into S3 – that is a link as per Definition 66. The consequence of Theorem
67 is that studying the link is for all intents and purposes equivalent to studying the local
singularity type as far as topology is concerned.

Example 70. Let f = x. Then C is a 2-plane in the 4-space, and Lf ↪→ S3 is the unknot
(the standard embedding S1 ↪→ R2 ↪→ R3).

R2
S1

Example 71. Let f = xy. As we have ascertained in Example 54, locally C looks like two
disks intersecting each other at their centers. Therefore Lf = S1 t S1. The two circles are
embedded in a way that their linking number is 1.

S3

{x = 0}

{y = 0} {y = 0}

{x = 0}
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Example 72. Consider f = x3 − y2. Its link is Lf ≈ S1, the embedding S1 → S3 being the
torus knot T (2, 3), i.e. the trefoil.

This can be derived as follows. Consider – instead of the actual geometric ball – the body
Bε = {(x, y) | |x| < ε2, |y| < ε3} and its boundary Rε for small ε > 0. Note that Bε ≈ D4

and Rε ≈ S3. In fact, the disjoint union of the surfaces Rε′ for ε′ < ε is Bε, in the same way
concentric spheres form a ball.

x

y

S1 ×D2

D2 × S1

Here we have

Rε =
{

(x, y)
∣∣∣ |x| = ε2, |y| ≤ ε3

}
∪

S1
ε2×S

1
ε3

{
(x, y)

∣∣∣ |x| ≤ ε2, |y| = ε3
}

= (S1×D2) ∪
S1×S1

(D2×S1),

i.e. the surface Rε ≈ S3 can be written as two solid tori glued together on their boundary: a
torus Tε. It is clear that {f = 0} ∩Rε ⊂ Tε. Furthermore

{f = 0} ∩Rε =
{

(ε2e2α, ε3e3α)
∣∣∣α ∈ [0, 2π)

}
⊂ Tε,

which is indeed exactly the trefoil knot embedded in a torus in the 3-sphere.
It is an easy exercise to show that we can construct a diffeomorphism Rε → S3

ε that
also maps points of the curve {f = 0} on one surface to those on the other, which implies
that even when considering the actual geometric sphere S3

ε , we really get the knot T (2, 3)
for Lf ↪→ S3. (An isomorphism between the two trivial fibrations Bε \ {0} → (0, ε) and
D4
ε \ 0 → (0, ε), which further maps points of the curve in one set to those in the other can

also be constructed – the before mentioned diffeomorphism is obtained by restricting to one
of the fibers Rε.)

Remark 73. Generally, for any f ∈ C Jx, yK (locally) irreducible we have that Lf is a knot.
In fact, it is a so-called iterated torus knot: we can get the embedding by taking a torus
knot T (a1, b1) then drawing a sufficiently thin “pipe”, i.e. an embedded torus along it, and
drawing a torus knot with (a2, b2) on that etc. In finitely many steps we can get the link of
any irreducible algebraic curve singularity.

Remark 74. If f is reducible then each irreducible component will correspond to a connected
component of the link. The linking numbers will be equal to the respective intersection
multiplicities (with the sign dependent on the orientation of the circles).
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We could then ask
Question 75. Given a finite list of iterated torus knots, when does there exist a degree d
curve C with singularities isotopic to the elements of this list respectively?

A necessary condition arises from the following:
Theorem 76. Let f define a locally irreducible singularity at 0. Then

deg ∆(Lf ↪→ S3) = µ(f, 0)

where ∆ denotes the Alexander polynomial of a knot (see the lecture of András Stipsicz).
From now on we will also refer to this simply as the Alexander polynomial of the singularity.

Corollary 77. Let C = {f = 0} be an irreducible plane curve of degree d, Sing C = {P1, . . . , Pk}
and ∆1, . . . ,∆k the Alexander polynomials at each Pi. Then by Theorem 63,

k∑
i=1

deg ∆i ≤ (d− 1)(d− 2).

Question 78. If the list of knots in Question 75 satisfies the above condition, does there
always exist a corresponding degree d curve C? What if we only fix the Alexander polynomials,
but not the knots themselves?

The Alexander polynomial happens to be rather difficult to work with in this situation,
hence we will introduce another, related invariant:
Theorem 79. Let ∆(t) be the Alexander polynomial of a locally irreducible plane curve
{f = 0} at P , multiplied by a power of t to have no negative exponents and a nonzero constant
term. Then

∆(t)
1− t =

∑
s∈S

ts ∈ Z JtK

for some S ⊆ Z≥0, which will form a semigroup under addition.

Definition 80. We call the above defined S the semigroup of {f = 0} at P .

Example 81. Let us calculate the semigroup of a singularity with link T (2, 3), i.e. the trefoil
(for example that of f = x3 − y2 at 0). The normalized Alexander polynomial is (as shown
in the lecture of András Stipsicz)

∆(t) = 1− t+ t2.

So we get
∆(t)
1− t = 1

1− t − t = 1 + t2 + t3 + t4 + · · · =
∑
s∈S

ts,

thus S = 〈2, 3〉 ⊂ Z≥0.
If we considered the torus knot T (a, b) instead (with (a, b) = 1), we would get

∆(t) = (tab − 1)(t− 1)
(ta − 1)(tb − 1)

and
S = 〈a, b〉 .

It is true in general, and can also easily be verified for the above examples that
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Theorem 82. Let S and ∆ be the semigroup and Alexander polynomial of a locally irreducible
plane curve singularity {f = 0} at P . Then

2 · |Z≥0 \ S| = µ(f, P ) = deg ∆.

Armed with this tool we will attempt to classify all rational, unicuspidal curves C =
{f = 0} of degree d. Here rational means that equality holds in Theorem 63, i.e.

∑
P∈Sing C

µ(f, P ) = (d− 1)(d− 2),

so C homeo≈ S2 since all 1-cycles vanish. And unicuspidal means that the curve has a single
singularity, and that is locally irreducible. Hence, we have a unique singular point P , and

µ(f, P ) = (d− 1)(d− 2).

Taking into account Theorem 82, we can then ask the following:

Question 83. Given an integer d > 0 and a semigroup S ⊂ Z≥0 satisfying

2 · |Z≥0 \ S| = (d− 1)(d− 2), (∗)

when is there a rational, unicuspidal curve C with degree d and semigroup S? What is the
case if we actually fix a knot whose semigroup has the property (∗), and want the curve to
have that knot as the link?

When a knot can or can not be achieved for a given degree d can be quite complicated.

Example 84. Let d = 5, and consider a torus knot T (a, b). We want to find out for what
values of a and b does there exist a rational unicuspidal curve of degree 5 with this link. By
Theorem 76 and Example 81 we have

(d− 1)(d− 2) = µ = deg ∆(t) = deg (tab − 1)(t− 1)
(ta − 1)(tb − 1) = ab+ 1− a− b = (a− 1)(b− 1).

(Confirm also the last part of Example 62. The curve xa + yb will actually have T (a, b) as a
link, by basically the same reasoning as that seen in Example 72 for x3 − y2.)

So (a − 1)(b − 1) = 12, and without loss of generality we can assume a < b. Thus we
can have (a, b) = (2, 13), (3, 7) or (4, 5). By the above remark we get that x4 + y5 realizes
T (4, 5). It is also possible to have T (2, 13) as the link. It turns out however that this is not
the case for T (3, 7): there is not rational, unicuspidal curve of degree 5 with this link.

Observe that by Example 81 we have S = 〈a, b〉, which satisfies (∗) for all these pairs, so
that condition is not enough to guarantee the existence of a curve.

We have seen that the set of good pairs (a, b) for a given degree d can be highly nontrivial
to describe. For instance in the case d = 5 above, there is no clear reason to distinguish
(3, 7) from the other possible pairs – not even a simple bound, since it is in the middle.
Nonetheless, a complete characterization does exist, as follows:
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Theorem 85. Let (Fn)n≥0 be the Fibonacci sequence:

F0 = F1 = 1, ∀n ≥ 0 : Fn+2 = Fn+1 + Fn.

Given integers d > 0 and a, b > 1 with (a, b) = 1, the torus knot T (a, b) is realized as the link
of a rational unicuspidal curve of degree d in exactly the following cases:

(1) (a, b) = (d, d− 1);

(2) (a, b) = (d2 , 2d− 1) with d even;

(3) (a, b) = (F 2
n−1, F

2
n+1), d = F 2

n + 1 with n ≥ 4 even;

(4) (a, b) = (Fn−2, Fn+2), d = Fn with n ≥ 5 odd;

(5) (a, b) = (F4, F8 + 1) = (3, 22) with d = F6 = 8;

(6) (a, b) = (2F4, 2F8 + 1) = (6, 43) with d = 2F6 = 16.

Surprisingly enough, there is also a general description for any knot, underlying this
theorem.

Definition 86. Let S ⊆ Z≥0 be a semigroup under addition, and fix an integer d > 0. We
say that S satisfies the semigroup distribution property with respect to d if all of the following
are true:

|S ∩ (−∞, 0]| = 1
|S ∩ (0, d]| = 2
|S ∩ (d, 2d]| = 3

...∣∣∣S ∩ (d2 − 2d, d2 − d]
∣∣∣ = d

Note that if these equalities are satisfied then (d2 − 2d,∞) ⊂ S clearly follows since S is
closed under addition and contains an element 1 ≤ k ≤ d.

Theorem 87. Let K : S1 ↪→ S3 be an algebraic knot, S the corresponding semigroup, and
d > 0 an integer. If there exists a rational unicuspidal curve of degree d with link K then S
satisfies the semigroup distribution property with respect to d.

Remark 88. Observe that this property trivially implies the equality (∗) in Question 83, since
altogether there are

(d− 2) + (d− 3) + · · ·+ 1 = (d− 1)(d− 2)
2

nonnegative numbers left out.

This is a very strong restriction on the semigroup, and checking whether or not it is
satisfied can be highly nontrivial, as exemplified by Theorem 85 – which is essentially the
case of S having 2 generators.
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Example 89. We can verify that in Example 84, out of the 3 considered semigroups 〈2, 13〉,
〈3, 7〉 and 〈4, 5〉, the first and last ones satisfy the semigroup distribution property with
respect to d = 5, but 〈3, 7〉 does not:

S = 〈2, 13〉 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]( ]( ]( ](
1 2 3 4 5
S = 〈3, 7〉 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]( ]( ]( ](
1 1 4 4 5

S = 〈4, 5〉 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]( ]( ]( ](
1 2 3 4 5

Problem session
(Tamás Ágoston)

Day 1

1. a) Let f = x2 + y3 and g = x2 − y3. What is i0(f, g)?

b) Let f, g ∈ k[[x, y]] be relatively prime. Show that k[[x, y]]/(f, g) is a finite dimensional
vector space over k.

2. a) Given P1, P2 ∈ P2, P1 6= P2, find the number of lines L with Pi ∈ L.

b) Given P1, . . . , P5 ∈ P2, find the number of curves C with deg C = 2 such that Pi ∈ C
for all i.

c) Given P1, . . . , P9 ∈ P2, find the number of curves C with deg C = 3 such that Pi ∈ C
for all i.

3. Let C be a smooth, projective curve in CP2. Prove:
a) If deg C = 1 then C ' CP1 (top∼ S2).

b) If deg C = 2 then C ' CP1.

4. a) Let C be smooth, deg C = 2 and fix P 6∈ C. Find the number of tangent lines L of C
such that P ∈ L.
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b) Let C be smooth, deg C = 2 and fix P ∈ C. Find the number of tangent lines L of C
such that P ∈ L.

c) Solve the same questions for deg C = 3.
5. If deg C = c, degD = d, C smooth, then C ∩ D = {P1, . . . , Pcd}. Is it true that for any fixed

choice of points P1, . . . , Pcd on C there exists a D of degree d such that C ∩D = {P1, . . . , Pcd}.
Case 1: c = 1, d points on a line, does there exist an equation of degree d with given d

roots?

Case 2: c = 2?

Case 3: c = 3?

Day 2

1. Let C ⊂ P2 be a smooth degree 3 curve, O,O′ ∈ C and ⊕,⊕′ the corresponding group
operations. Give an isomorphism

Φ : (C, O,⊕) −→ (C, O′,⊕′).

2. Show that a compact, positive dimensional Lie group G (i.e. a smooth manifold with a group
structure where multiplication and taking inverse are smooth) has Euler characteristic 0.

3. LetQ ⊂ P2 be a smooth conic, and fix the points 0, 1,∞ ∈ Q. Define the following operations:

P = L∞,∞ ∩ LX,Y = P, X ⊕ Y = L0,P ∩Q (X, Y ∈ Q \ {∞}
P = L0,∞ ∩ LX,Y , X � Y = L1,P ∩Q (X, Y ∈ Q \ {0,∞})

Show that these define groups on Q \ {∞} and Q \ {0,∞} respectively. What are these
groups?

4. Let C ⊂ P2 be smooth, deg C = 3, I1 6= I2 inflection points and LI1I2 ∩ C = {I1, I2, X} (with
multiplicity). Show that X is also an inflection point.

5. What is the problem with the contradicting proofs at the end of the lecture?

Day 3

1. Confirm that ft = xy+ tz2 and gt = x3 + y3 +xyz+ tz3 both define smooth projective curves
for all t 6= 0 and sufficiently small t 6= 0 respectively.

2. Find the singular points and their respective Milnor numbers of the projective plane curve
f = (x2 + y2)3 + (x3 + z3)2.

3. Let a ≥ 2 be an integer, and d = a2 + 1. Verify that

S =
〈
a2 − a, a2, a3 + 2a+ 1

〉
defines a semigroup satisfying the semigroup distribution property with d as the degree.
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Invariants of knots: polynomials and homologies
By András Stipsicz

(Notes by Viktória Földvári)

5.1 Knot invariants

5.1.1 Introduction
Definition 1. A knot K is a C∞ function K : S1 → S3(= R3 ∪ {∞}), where S1 = {(x, y) ∈
R2|x2 + y2 = 1}. K has three C∞ coordinate functions (x(ϑ), y(ϑ), z(ϑ)) giving embeddings,
that is, K is an embedding of the circle into the 3-sphere/ S1 into S3.

Definition 2. Two knots K0 and K1 are isotopic if there is a smooth map K : S1× [0, 1]→
R3 × [0, 1], such that

• Kt = K |S1×{t} is a knot,

• for t = 0 and 1, K0 and K1 are the given knots.

This means that K0 can be moved into K1 without cutting.

The main problem of knot theory is to distinguish knots from each other. There are
several ways to study them: the most topological one is to view knots as subspaces of R3,
while a rather combinatorial idea is to consider their projection to a plane. For a generic
choice of this plane, we can assume that the projection of the knot has at most double
points. Moreover, it is an immersion with finitely many double points. At the double points,
we illustrate the strand passing under as an interrupted curve segment, see Figure 5.1. The
resulting diagram D is called the knot diagram of K, and the neighborhood of a double point
a crossing. It is obvious that the knot diagram determines the knot up to isotopy.

Figure 5.1: Crossing in a diagram

The trivial knot is usually called the unknot and is denoted by U . Figure 5.2 shows two
diagrams of U .

Figure 5.2: Two diagrams of the unknot
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R1 R1

R2

R3

Figure 5.3: Reidemeister moves

Definition 3. An l-component link is the disjoint union of l knots.
There are three important local modifications of a knot diagram, called the Reidemeister

moves, shown on Figure 5.3:

• R1: Twisting or untwisting a strand,

• R2: Moving a loop over another strand or removing it from that,

• R3: Sliding a string over or under a crossing

The other parts of the diagram stay unchanged. It is easy to see that the Reidemeister
moves preserve the knot up to isotopy, but also more is true:
Theorem 4 (Reidemeister). Two knot diagrams D1 and D2 represent equivalent knots if
and only if they can be transformed to each other by a finite sequence of Reidemeister moves
and planar isotopies.

To classify knots, is very useful to introduce quantities that stay unchanged under isotopy.
These are called knot invariants. In this series of lectures we observe how knot theory and
knot invariants has evolved in the past years. Our main goal is to measure the complexity
of knots. To this, we focus on the following questions:

1. How to identify the unknot U? Can we give an invariant that detects U? (We are going
to see such an example.)

2. If a knot is not the trivial one, how far is it from being the unknot? To determine this,
we introduce three numbers:

(a) The unknotting number u(K)
u(K) is the minimal number of crossing changes needed to transform K to U . It
can be shown as an exercise, that u(K) always exists.
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(b) The crossing number cr(K)
cr(K) is the minimal number of crossings K has in any diagram. The crossing
number is always a non-negative integer, and equals 0 if and only if K is the
unknot.

Remark 5. There is no non-trivial knot with 1 or 2 crossings.

(c) The genus (Seifert genus) g(K)
According to Seifert’s theorem, every knot bounds a surface in R3. What is more,
there is always a diagram for K for which this surface is orientable. We call an
embedded, oriented, connected surface Σ, such that δΣ = K a Seifert surface of
K.
Let g(Σ) denote the genus of the surface Σ. The Seifert genus of a knot is g(K) =
min{g(Σ)|Σ is a Seifert surface of K}.

These provide upper bounds on the complexity of knots. However, to obtain more
precise results, for example to know the minimal values of the above numbers, we need
lower estimates too. Now we show some ways to get lower bounds.

5.1.2 Three-colorings
Definition 6. A diagram D is three-colorable if we can associate a color out of {red, white,
green} to every arc of D such that
• we use at least two colors,

• at each crossing either only one or all the three colors are used to color the meeting
arcs.

Example 7. The following diagrams of the unknot and the figure-8 knot are not three-
colorable, while the ones for the left-handed and the right-handed trefoil are.

Figure 5.4: Not three-colorable diagrams of the unknot and the figure-8 knot

Figure 5.5: Three-colorable diagrams of the left-handed and the right-handed trefoil knot

It is obvious that this property depends on the chosen diagram of the knot. But how
do we know in case of a not three-colorable diagram if there exists another choice of the
projection that is three-colorable?
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Theorem 8. If D1 and D2 are two diagrams corresponding to the same knot, then D1 is
three-colorable if and only if D2 is three-colorable.

Proof. Isotopies obviously do not change this property of a diagram. Therefore it is enough
to check that nor do Reidemeister moves, see Figure 5.6.
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Figure 5.6: Invariance of three-colorability under Reidemeister moves

As a consequence, we see that there are at least two different knots: the unknot is not
three-colorable, while the trefoil knot is.

We can improve this idea by using more colors, as follows:

Definition 9. Let q be an odd prime. A diagram D is q-colorable if the arcs of D can be
colored by {0, ..., q − 1} such that

• we use at least two colors,

• at each crossing colored with a, b and c, a+ c ≡ 2b (mod q).

Example 10. The trefoil knot is not 5-colorable, but the figure-8 knot is.

Example 11. For p and q odd primes the diagram with p twists in Figure 5.7 admits a
q-coloring if and only if p = q.

We start coloring the arcs with colors a and b according to the figure. Then, at the first
crossing we have to use color 2b−a to satisfy a+c ≡ 2b (mod q). At the next crossing we can
only choose color 3b− 2a, etc. After reaching the last crossing, we get that the first colored
arcs have to be of the colors pb− (p− 1)a and (p+ 1)b− p. These give us two equations:

pb− (p− 1)a ≡ a (mod q)

(p+ 1)b− p ≡ b (mod q).

We get p(b− a) ≡ 0 (mod q), that is, q|p(b− a). This means that either q|b− a, meaning
that all the arcs were of the same color, or q|p, meaning that p = q.

We can generalize the idea of q-colorings by allowing to use only one color. Let C(q,K)
denote the set of all generalized q-colorings.
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Figure 5.7: This diagram admits a q-coloring if and only if p = q.

Theorem 12.

• C(q,K) forms a vector space over the finite field Fq = {0, ..., q − 1}.

• C(q,K) is independent of the choice of D, so it is a knot invariant.

• There exists a q-coloring if and only if dim C(q,K) > 1.

• dim C(q,K1#K2) = dim C(q,K1) + dim C(q,K2)− 1

• For the trefoil knot T and the connected sum operation #,

nT = T#T# · · ·#T︸ ︷︷ ︸
n

has dim C(3, nT ) = n+ 1 - different for every value of n. Therefore, the knots obtained
this way are all different.

Theorem 13. For the unknotting number u(K) ≥ dim C(3, K)− 1.

The idea of the proof is that a crossing change can change C(3, K) by at most 1 dimension.
As a corollary, we get that nT has u(nT ) ≥ n.

Now we introduce a more systematic knot invariant:

5.1.3 The Alexander polynomial

The Alexander polynomial is one of the first knot invariants. The definition presented here
relies on the introduction of Kauffman states and a state sum formula.

An explicit expression for the Alexander polynomial can be given in terms of a diagram
D for the oriented knot K, equipped with the following additional choice. Distinguish an
edge in D by marking it with a point p. The diagram, together with this choice of edge, is
called a marked diagram (D, p).

Let Cr(D) denote the set of crossings in the diagram and let Dom(D) denote the set of
domains in the plane (i.e. the connected components of the complement of D) which do not
contain the marking p on their boundary.
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Proposition 14.

• For a knot K the cardinality |Cr(D)| is equal to |Dom(D)|.

• For a disconnected diagram of a split link L we have |Cr(D)| 6= |Dom(D)|.

Definition 15. A Kauffman state is a map that associates to each crossing in Cr(D) one
of the four quadrants around that crossing, so that the induced map κ : Cr(D) → Dom(D)
is a bijection. The set of Kauffman states in a decorated marked diagram (D, p) is denoted
Kauf(D).

When illustrating Kauffman states, we mark the quadrant associated to the crossing in
the diagram, as shown in Figure 5.8.

p

Figure 5.8: A Kauffman state of a marked diagram of the left-handed trefoil knot.
The Kauffman state is indicated by a dot placed in the chosen quadrant at each crossing.
The arrow indicates an orientation on the knot.

Remark 16. If K admits a diagram with a single Kauffman state then K is the unknot.

Remark 17. The diagrams of the trefoil knots shown in Figure5.5 have 3 Kauffman states.

Two quantities can be associated to a Kauffman state κ of D:

A(κ) =
∑

ci∈Cr(D)
A(κ(ci)); M(κ) =

∑
ci∈Cr(D)

M(κ(ci)),

where the local coefficients A(κ(ci)) ∈ {0,±1/2} and M(κ(ci)) ∈ {0,±1} for κ ∈ Kauf(D)
at a crossing ci ∈ Cr(D) are shown in Figure 5.9.

0 0 0 0 0 0 0 0A : M :

−

1

2

1

2

1

2

−

1

2

0 0

−1 1

Figure 5.9: Local coefficients A and M at a crossing ci.

The Alexander polynomial for K can be expressed in terms of Kauffman states, as follows:

Proposition 18. Let K be an oriented knot, and consider a marked diagram (D, p) for K.
Then, the Alexander polynomial is computed by the expression

∆K(t) =
∑

κ∈Kauf(D)
(−1)M(κ) · tA(κ) ∈ Z[t, t−1]. (5.1)
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Example 19.

∆Unknot = 1,
∆RH trefoil = t− 1 + t−1,

∆Figure−8 = −t+ 3− t−1.

Theorem 20. The Alexander polynomial is a knot invariant (and is independent of the
choice of a marked knot diagram).

We will prove this using an alternate perspective on the Alexander polynomial. Note that
the Alexander polynomial has a natural generalization for oriented links.

Consider the polynomial A(D, p) associated to a marked knot diagram (D, p), defined
by the expression from Equation (5.1), verify that the sum is invariant under Reidemeister
moves and the placement of the marked point p, and verify that the resulting oriented knot
invariant satisfies the following equation, called the skein relation:

Proposition 21. Let L+, L− and L0 be oriented links that differ in a single crossing accord-
ing to Figure 5.10. Then, the Alexander polynomials of these three links are related by the
skein relation

∆L+(t)−∆L−(t) = (t 1
2 − t−

1
2 )∆L0(t). (5.2)

L+ L
−

L0

Figure 5.10: Local picture of the links in the skein relation

Proof. The diagram L+ (and similarly of L−) admits two types of Kauffman states, depend-
ing on the behaviour of the state at the crossing in the skein relation.
If the state is in the West or East quadrant, then the two states appear with the same con-
tribution in A(L+, p) and A(L−, p), hence in the formula they cancel.
If the state is in the North or South quadrant, then the state gives rise to a unique state in
L0 as well, and indeed all Kauffman states of L0 arise in this way.
Computing the local contributions, the formula follows.

The skein relation is a very useful tool to compute the Alexander polynomial.
Now we turn to the proof of the invariance:

Proposition 22. Let (D, p) be a marked diagram for an oriented knot K. The function
A(D, p) is independent of the choice of diagram for K, giving an oriented knot invariant ∆K

that satisfies the skein relation and the normalization ∆Unknot(t) = 1.

Proof. First we show that the polynomial is invariant under those Reidemeister moves which
do not contain the marked point p.

For the first Reidemeister move R1 creating a new crossing, it is easy to see that the
Kauffman states before and after the move are in bijection. The newly created crossing is
the only crossing in the newly created domain, and the local contributions here are trivial
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Figure 5.11: Kauffman states and the first and second Reidemeister moves. The contribution
change under the first Reidemeister move is clearly zero. In the second Reidemeister move
the groups in the boxes provide vanishing contribution.

(M = 0 and A = 0); the remaining crossings correspond, along with their local contributions,
to the Kauffman states before R1.

For invariance under the second Reidemeister move R2, there are two cases, corresponding
to the relative orientations of the two strands. The two verifications are similar, and we
discuss only one. The projection having the extra two crossings has two types of Kauffman
states, which we call symmetric and asymmetric ones, depending on the local structure at
the two new crossings. The symmetric Kauffman states are in one-to-one correspondence
with the Kauffman states before R2 (so that all the local contributions coincide), while the
asymmetric ones come in pairs as instructed by Figure 5.11.

Their contributions to A(D, p) cancel within these pairs: their A-values coincide and their
M values differ by one.

In studying the invariance under the third Reidemeister move R3 there are a number of
cases for the possible orientations of the arcs. We will discuss only one such choice (and leave
the analysis of the rest of the cases to the reader).

First notice that in the disk around the move there are seven domains and three cross-
ings (and recall that the marking p is not in the disk). Therefore four of the domains get
their markings (which can be the p, or a marking at a crossing) from outside the disk. We
distinguish three cases, depending on whether these four domains are consecutive, three are
next to each other and one is separated, or are grouped in two groups having two adjacent
domains each. (See the domains containing empty circles in the projections of Figure 5.12.)
In the first case (with four consecutive marked regions) the markings in the disk are unique,
and their contributions coincide before and after the move.
In the second case (three consecutive domains and one separated) there is either one Kauff-
man state or there are three; the contributions again coincide.
Finally in the third case (two pairs of consecutive domains) we have two Kauffman states be-
fore and after the move, with coinciding contributions. (See Figure 5.12 for some orientation
of the link, other orientations differ only in the actual values of the contributions.)

Next we show that the polynomial is invariant under moving the marking p under (or over)
a crossing. To this end, we note that we can consider the knot diagram (i.e. the projection
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Figure 5.12: Kauffman states and the third Reidemeister move.

to a plane) as a map to the sphere S2 in S3 rather to plane R2 in R3, still picturing the
part of the projection in the ’finite’ part R2 ⊂ S2. Although moving a strand across the
point at infinity seems like an additional move, it is not hard to see that it can be given as
a composition of Reidemeister moves, see Figure 5.13(a).

Choose a projection to S2 with the property that c is mapped into the point at infinity.
Perturbing the strand without p into the two possible directions, and applying our previous
observation, the claim easily follows, see Figure 5.13(b).

For a knot K the above principle of moving p across a crossing shows that the value of
the invariant is independent of the chosen arc distinguished by p. For an oriented link one
need additional work to move the marking from one component to the other - using the skein

KKK

K

K

K

K

(b)(a)

Figure 5.13: Moving a strand across the point at infinity. In (a) we show the two
possibilities when perturbing the arc passing through the point at infinity. These diagrams
can be transformed into each other by Reidemeister moves. In (b) we show how by moving
the crossing through the point at infinity, we can move the marking through a crossing.
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relation the independence follows by induction on the number of component:
For knots this has been already established.

An n-component link can be easy put into a skein triple with the two other knots having
(n−1)-components, for which the invariance follows by induction, and since their polynomials
determine the value for the n-component link, the moving of the distinguished point follows.

Finally, we need to show that the polynomial is unchanged under any Reidemeister moves.
Indeed, if the marking is in the disk in which the Reidemeister move is to be performed, then
first move p away, perform the Reidemeister move and then move p back. With this last
assertion the proof of independence is complete.

The claim about the polynomial of the unknot U follows easily:
take the diagram D of U which has no crossings. The single Kauffman state of this decorated
projection (the bijection between the two empty sets Cr(D) and Dom(D)) has A- and M -
values equal to zero, giving A(D, p) = (−1)0 · t0 = 1.

Next we summarize some further facts about the Alexander polynomial.

Proposition 23.

• ∆K(t) = ∆K(t−1), so ∆K(t) = a0 +
d∑
i=0

ai(ti + t−i) where ad 6= 0 and d =deg∆.

• deg(∆) ≤ g(K), i.e. the Alexander polynomial gives the desired lower bound.

• If K is alternating, meaning that in its diagram undercrossings and overcrossings al-
ternate one after the other, then deg∆=g(K).

• If K admits a q-coloring for a prime q, then q||∆K(−1)| =det(K).

5.2 The Jones polynomial
The Alexander polynomial used to be the most powerful knot invariant until around 1985,
when Jones introduced a new one: his polynomial was able to distinguish the right-handed
trefoil knot from the left-handed one.

0-resolution

1-resolution

Figure 5.14: The two ways of resolving a crossing

The first idea of the definition is to turn the diagram of the knot K into a diagram of
(maybe more) unknots by resolving its crossing. A resolution means that we eliminate the
crossing by connecting the participating arcs in a different way. We have two choices to
do this, shown in Figure 5.14. These two types are called 0-resolution and 1-resolution. If
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Figure 5.15: The cube of resolutions for the right-handed trefoil knot

the diagram of K had n crossings, then there are 2n resolutions. Take all of them, and
think of every possible stage of reaching the full resolution of the knot diagram (i.e. the one
containing only unknot components), as vertices. Organizing them according to the number
of 1-resolutions we made to get that stage, these can be arranged to form a cube of dimension
n, see Figure 5.15.

Now consider the cube of resolutions, and at each vertex α, let r(α) denote the number of
1-resolutions done, and k(α) the number of circle components in resolution α. We associate a
polynomial of a formal variable q to every resolution to define the bracket of a knot diagram
D:

〈D〉 =
∑

resolutions
(−q)r(α) · (q + q−1)k(α)

This is a Laurent polynomial in Z[q, q−1] with the following properties:

• For the empty diagram, 〈∅〉 = 1,

• for the diagram of the unknot,
〈 〉

= q + q−1,

• for a two-component diagram with an unknot,
〈
D ∪

〉
= (q + q−1) · 〈D〉,

•
〈 〉

=
〈 〉

− q ·
〈 〉

Despite of its nice properties, the bracket of a diagram is not a knot invariant, which is
easy to see by checking its behaviour under Reidemeister moves:

〈 〉
=
〈 〉
− q ·

〈 〉
= (q + q−1) · 〈 〉 − q · 〈 〉 = q−1 · 〈 〉〈 〉

=
〈 〉

− q ·
〈 〉

= 〈 〉 − q(q + q−1) · 〈 〉 = −q2 · 〈 〉〈 〉
=
〈 〉
− q ·

〈 〉
= −q2 ·

〈 〉
− q

(〈 〉
− q ·

〈 〉)
= −q ·

〈 〉
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〈 〉
=
〈 〉

− q ·
〈 〉

=
〈 〉

− q
(
−q(−q−1) ·

〈 〉)
=
〈 〉

Definition 24. Suppose the knot K has D as a diagram. Orient D, and let n+ denote the
number of crossings of type (positive crossing) and n− the number of crossings of type
(negative crossing).

ṼK(q) = (−1)n− · qn+−2n− · 〈D〉

is the unnormalized Jones polynomial of K.

The unnormalized Jones polynomial is a Laurent polynomial in Z[q, q−1].

Theorem 25. ṼK(q) is a knot invariant.

Proof. We verify that the polynomial does not change under Reidemeister moves. Checking
the invariance under R3 is trivial. Under R2, both n+ and n− increases by 1... Under R1,
either n+ or n− increases by 1, and the proof goes the same way as for R2.

Definition 26. ṼK(q) is divisible by q + q−1, since there is always at least one circle com-
ponent in every stage. Therefore, we can consider

VK(q) = 1
q + q−1 · ṼK(q)

, the normalized Jones polynomial of K.

Theorem 27. VK(q) is a knot invariant.

Example 28.

VUnknot(q) = 1, (5.3)
VRH trefoil(q) = q2 + q6 − q8,

VLH trefoil(q) = q−2 + q−6 − q−8,

VFigure−8(q) = q−4 − q−2 + 1− q2 + q4.

Remark 29. Now we see that the Jones polynomial is different from the Alexander polynomial:
while the latter one never distinguishes a knot from its mirror image, the Jones polynomials
of the right-handed and the left-handed trefoil are not equal.

Theorem 30 (Skein relation). For oriented links L−, L+ and L0 which differ only in a
crossing according to Figure 5.10, the skein relation holds:

∆L+(t)−∆L−(t) = (t 1
2 − t−

1
2 ) ·∆L0(t).

Let us use the following notations:
M(VK(q)) =the maximal degree of q in VK(q),
m(VK(q)) =the minimal degree of q in VK(q),
B(VK(q)) = M(VK(q))−m(VK(q)), the span of the polynomial.

Theorem 31. For an n-crossing diagram of K, n ≥ 1
2B(VK(q)). If the diagram is alternating

and has no untwistable crossing , then n = 1
2B(VK(q)).

So the Jones polynomial bounds, and sometimes determines the minimal crossing number.
However, it is still open, whether the Jones polynomial detects the unknot:
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Conjecture 32. If VK(q) = 1, then K is the unknot.

Remark 33. The Alexander polynomial does not detect the unknot. While ∆U(t) = 1, we
can construct other, non-trivial knots that have Alexander polynomial 1:

Consider the pretzel knot P (a, b, c) of Figure 5.16. For a = 2a1 + 1, b = 2b1 + 1 and
c = 2c1+1 this knot P is non-trivial with Alexander polynomial ∆P (t) = Bt+(1−2B)+Bt−1,
where B = b1b2 + b1b3 + b2b3 + b1 + b2 + b3 + 1.

For b1 = −2, b2 = 2 and b3 = 3, B = 0 therefore ∆P (t) = 1, when P is still non-trivial.

a b c

Figure 5.16: The pretzel knot P (a, b, c). The letters in boxes indicate the number of half
twists.

Next, we mention some connections of the Jones polynomial to the invariants introduced
in Lecture 1:

Remark 34. Connection to three-colorings:
dimC(3, K) = 3|V 2

K(e 2πi
6 )|.

Remark 35. The Alexander polynomial and the Jones polynomial are also related to each
other: There is a 2-variable Laurent polynomial P (α, z) ∈ Z[α, α−1, z, z−1], called the HOMFLY-
PT polynomial, satisfying αPL+ − α−1PL− = zPL0 for links L−, L+ and L0 which differ only
in a crossing according to Figure 5.10.

The HOMFLY-PT polynomial at α = 1 and z = t
1
2 −t− 1

2 gives the Alexander polynomial,
while at α = q−2 and z = q − q−1 it gives the Jones polynomial. That is,

∆K(t) = P (α = 1, z = t
1
2 − t−

1
2 ),

VK(q) = P (α = q−2, z = q − q−1).

5.3 Graded vector spaces
Let F2 denote the field of two elements.

Definition 36. A Z-graded vector space is a decomposition of a vector space V as V = ⊕
k∈Z

Vk

with Vk ≤ V . The elements of Vk are called homogeneous elements of degree k.
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Graded vector spaces have graded dimension: gr-dimV (q) = ∑
k
dimVk ·qk ∈ Z[q, q−1], and

dimV =gr-dimV (1).

Remark 37. We can generalize this definition to get bigraded vector spaces: V = ⊕
(a,b)∈Z×Z

Va,b.

Here the graded dimension is a polynomial of two variables.

Example 38. Consider V = F2
2 = (F2)−1 ⊕ (F2)1. This bigraded vector field has four

elements: {0, v+, v−, v+ + v−}. Element 0 has any degree, v+ = (F2)1 is of degree 1,
v− = (F2)−1 is of degree -1, and v+ + v− has no degree because it is non-homogeneous. Here,
gr-dimV = q + q−1.

We can consider the shifted grading of a graded vector space V : let V {l} be the graded
vector space V with its grading shifted by l, that is, gr(V {l})k = Vk−l.
For this, gr-dimV {l} = ql·gr-dimV holds.

Definition 39. Let V be a graded vector space and ∂ : V → V endomorphism with ∂(Vk) ⊂
Vk−1. (V, ∂) is a chain complex if ∂ ◦ ∂ = ∂2 = 0.
Then we call the elements of Ker ∂ cycles, the elements of Im ∂ boundaries.

Definition 40. The homology of a chain complex (V, ∂) is a graded vector space

H(V, ∂) = Ker ∂
/

Im ∂ .

Remark 41. If V is bigraded, then ∂(Va,b) ⊂ Va−1,b and H(V, ∂) is also bigraded.

Definition 42. f : (V1, ∂1)→ (V2, ∂2) is a chain map if f ◦ ∂1 = ∂2 ◦ f .
f, g : (V1, ∂1) → (V2, ∂2) are chain homotopic maps if there exists h : V1 → V2 such that
f − g = ∂2 ◦h+ h ◦ ∂1.

Proposition 43.

• Every chain map f : (V1, ∂1) → (V2, ∂2) induces a map f∗ : H(V1, ∂1) → H(V2, ∂2) on
the homologies.

• If f and g are chain homotopic, then f∗ = g∗.

Proof.

• If [a] ∈ H(V1), then [f(a)] = [f(a+ ∂b)] = [f(a) + ∂f(b)], therefore f∗ is well-defined.

• For a cycle a ∈Ker∂1, consider the difference f(a) − g(a) = ∂2 ◦h(a) + h ◦ ∂1(a) =
∂2 ◦h(a) is a boundary element, thus [f(a)] = [g(a)] meaning that f∗ = g∗.

Our goal is to associate to every knot a graded vector space so that the homology is a
knot invariant.

To this, take a knot diagram D and its cube of resolutions. First, we associate a graded
vector space to each resolution α:

Definition 44. For V = 〈v1, ..., vm〉 and W = 〈w1, ...wn〉 graded vector spaces, let V ⊗W =
〈v1 ⊕ w1, v1 ⊕ w2, ..., v1 ⊕ wn, v2 ⊕ w1, ...〉.
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Let V = (F2)−1 ⊕ (F2)1 = 〈v−, v+〉.
Example 45. The vector field

V ⊗ V = V ⊗2 = 〈v1
+ ⊗ v2

+, v
1
+ ⊗ v2

−, v
1
− ⊗ v2

+, v
1
− ⊗ v2

−〉 = (F2)2 ⊕ (F2)2
0 ⊕ (F2)−2

has 16 elements. (Here, the upper indices help seeing which generator belongs to which vector
field.)

Let k denote the number of circles and r the number of 1-resolutions in vertex α. To α
we associate V ⊗k{r}, a graded vector space with graded dimension qr · (q + q−1)k.

For all resolutions of r 1-resolutions, consider

JDKr =
∑
|s|=r

V ⊗ks {r}.

Now
Ch(D) =

n⊕
0

JDKr

is a bigraded vector space.
We would like to have a chain complex. To this, we need a map ∂ : Ch(D) −→ Ch(D).

We will define
∂r : JDKr −→ JDKr+1 :

For a resolution s of r 1-resolutions, consider all the resolutions s′ of r + 1 1-resolutions
obtained from s by changing the resolution type of one crossing from 0 to 1, that is 7−→ .

The idea is that for a term V ⊗ks {r} of JDKr, ∂r assigns the sum of graded vector spaces
Vs′ corresponding to the resolutions s′. We should do this for every term s and sum them
to get Im(∂r) = ∑

s

∑
s′
Vs′ . However, finding Vs′ is not obvious, since changing the type of a

resolution may also change the number of components. This can happen in the following two
ways:

1. Merge decreases the number of circles by 1, so k(s′) = k(s)− 1.

2. Split increases the number of circles by 1, so k(s′) = k(s) + 1. See Figure 5.17.

merge

split

1

2
3

1 2 3

Figure 5.17: Merge and split

Note that both are only local changes, the other parts of the diagram stay the same. To
obtain Vs′ , we need to introduce operations:
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1. To merge, we need to define a multiplication m : V1 ⊗ V2 → V3.

v1
+ ⊗ v2

+ 7→ v3
+,

v1
+ ⊗ v2

− 7→ v3
−,

v1
− ⊗ v2

+ 7→ v3
−,

v1
− ⊗ v2

− 7→ 0.

This gives a ring structure on V , the truncated polynomial ring.

V = F2[x]
/

(x2) = {α + βx| α, β ∈ F2}.

2. To split, we define a co-multiplication ∆ : V1 → V2 ⊗ V3, making V a Hopf algebra.

v1
+ 7→ v2

+ ⊗ v3
− + v2

− × v3
+,

v1
− 7→ v2

− ⊗ v3
−.

Putting all together, V has a grading, a ring structure and a Hopf algebra structure,
therefore V is a Frobenius algebra with 4 elements. Now we also have ∂ : Ch(D) −→ Ch(D).

Theorem 46. (Ch(D), ∂) is a bigraded chain complex, ∂ ◦ ∂ = 0. On one grading ∂ is
constant, on the other grading ∂ increases: ∂(Ch(D)a,b) ⊂ Ch(D)a,b+1.

Theorem 47. Kh(D) = H∗(Ch(D), ∂) = ⊕
a,b
Kha,b(D) is a bigraded vector space, which is

an invariant of the knot K.

Theorem 48.

• Let PK(t, q) = ∑
a,b∈Z×Z

dimKha,b(D) · ta · qb ∈ Z[t, t−1, q, q−1]. This is a knot invariant.

• PK(−1, q) = ṼK(q), so Kh categorifies the Jones polynomial.

The following theorem shows that Khovanov homology detects the unknot:

Theorem 49 (Kronheimer–Mrovka).
PK(t, q) = t0q−1 + t0q1 = q + q−1 if and only if K is the unknot.

The theorem of Kronheimer and Mrovka means that if for a knot K, Kh(K) = Kh(U) =
(F2)1⊕ (F2)−1, then K is isotopic to the unknot. Recall that the Alexander polynomial does
not detect the unknot and that for the Jones polynomial this question is still open.
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Problem session
(András Stipsicz, Viktória Földvári)

Day 1

1. Show that πK = {3-colorings}, as a vector space over F3 is a knot invariant.
2. Verify that the Alexander polynomial ∆K(t) is invariant under Reidemeister moves R1 and

R2.
3. Prove the skein rule. That is, verify for links −→L−,

−→
L+ and −→L0 which differ only in a crossing

that
∆−→
L+

(t)−∆−→
L−

(t) = (t 1
2 − t−

1
2 ) ·∆−→

L0
(t).

Day 2

1. Compute the Jones polynomial of the following:
a) negative Hopf link,

b) positive Hopf link

c) right-handed trefoil knot,

d) left-handed trefoil knot.

2. Show that VK(q) = Vm(K)(q−1).
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Three Fields medalists of topology: Smale
(immersions), Thom (cobordisms), Milnor (exotic

spheres)
By András Szűcs

(Notes by Tamás Terpai)

6.1 Thom
We start by recalling the rotation/degree, which most of you know already. All four main
topics of today’s talk are natural extensions of the rotation number.

Belt trick: take a belt in a flat, vertical position, and add a certain number of full twists.
Can one return the belt to the original state while only moving the top and the bottom of
the belt by translations, never rotating them? How does this imply the hedgehog theorem
(there is no nowhere vanishing tangent vector field on the sphere S2)? How is it related to
cobordisms? Stay tuned to find out!

6.1.1 Rotation number
Take a continuous nowhere vanishing vector field v along a circle (lying in the plane). Its
rotation (or winding) number is defined by taking any sufficiently fine subdivision x0, x1, ...,
xN = x0 of the circle and forming the sum

N∑
j=1

∠(v(xj−1), v(xj))

of the (signed!) angles of the successive v(xj). This sum is an integer multiple of 2π, and we
say that v has rotation number k if the sum is 2kπ.

If we assume that the vector field v has constant length 1, then v can also be considered
as a map from S1 to S1. Fact: the homotopy class of v ∈ [S1, S1] ∼= Z is k.

Can one define a similar „rotation number” for maps f : Mn → Nn between higher
dimensional manifolds? The given definition is not suited to such a generalization, but an
equivalent definition is. Notice that the rotation number can be determined in a local way:
observe a point p in the target S1 and count the times v takes p as a value. Every time v goes
through p in the positive (anti-clockwise) direction, add 1 to the counter, and every time v
goes through p in the negative direction, subtract 1 from the counter. It is not hard to see
that the result (assuming that v always visits p in one of those two ways) coincides with the
rotation number of v.

This alternative definition generalizes immediately to the concept of degree: assume that
Mn and Nn are smooth and oriented, and f : M → N is a smooth map. Take p ∈ N a
regular value of f (that is, at all f -preimages q of p the rank of the Jacobian is n, the maximal
possible), assign signs to its f -preimages according to whether the Jacobian at that point
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has positive or negative determinant and add those ±1’s together; this is the degree deg f of
the map f .

Does the statement about the rotation number uniquely determining the homotopy class
of a map hold for the degree? It doesn’t, however, the degree is still a well-defined map
[M,N ]→ Z, and when N = Sn, we have

Theorem 1 (Hopf). The degree deg : [Mn, Sn]→ Z is a bijection.

6.1.2 Pontryagin construction

Our next problem is: what can be done if M and N are not of the same dimension? Given
a (smooth) manifold Mn+k, how many homotopy classes of maps Mn+k → Sk are there and
given a (smooth) map Mn+k → Sk, how can we determine which homotopy class does it
represent? In the case when n < 0 there is clearly only a single homotopy class: we can pick
a smooth representative f : M → Sk, by Sard’s lemma it is not surjective and leaves out a
point p ∈ Sk, so f factors through a map from M to Sk \{p} ∼= Dk, which is null-homotopic.

In the case n > 0 we start out in a similar fashion: pick a smooth representative f : M →
Sk and a regular value p ∈ Sk (recall that it is defined by the Jacobian having maximal rank
at all the preimages), and consider its preimage V = f−1(p). We thus get an analogue of the
preimage points of the equidimensional case, what may be the analogue of the signs of those
points? It’s a framing: we pick a basis b1, . . . , bk in the tangent space TpSk and lift it to V as
follows. Locally at each point x ∈ V the tangent space TxM splits as TxV ⊕Rk – for example,
if there is a metric on M , we can pick the Rk factor to be the tangent vectors orthogonal
to TV – and the differential of f maps Rk isomorphically onto TpSk. We can therefore take
the preimages of the vectors b1, . . . , bk under this restriction of the differential and obtain k
tangent vectors b̃1(x), . . . , b̃k(x) that are linearly independent even in the quotient TxM/TxV

(in the metric case, they are orthogonal to V ).
Have we defined an invariant of the homotopy class of f ; is it even well-defined? Not

quite: if we pick another map g : M → Sk homotopic to f , then the entire construction
can be repeated with a (smooth) homotopy H : M × [0, 1] → Sk that joins f and g and a
value p ∈ Sk that is regular for f , g and H as well. The preimage of p is a manifold with
boundary f−1(p) t g−1(p) and we also obtain k linearly independent normal vectors on it
that extend the framings on the boundary. The result is a framed cobordism between the
preimages Vf = f−1(p) and Vg = g−1(p).

f

M × [0, 1]

Vf

p

Vg

Sk

H

g

We call two framed n-dimensional manifolds in M framed cobordant is there exists a framed
cobordism between them.
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It is easy to see that framed cobordism is an equivalence relation. We denote the set of
equivalence classes of framed codimension k manifolds embedded into M by Embfr(n,M);
for M = Sk we abbreviate it to Embfr(n, k).

Theorem 2 (Pontryagin). For any closed manifoldMn+k there is a bijection Embfr(n,M)→
[M,Sk].

In particular the Pontryagin construction establishes a bridge between algebraic topology
and differential topology by identifying Embfr(n, k) with πn+k(Sk). The homotopy groups
of spheres are notoriously hard to compute in general, and the translation of the problem
to calculation of cobordism groups allows, for example, the handling of cases k = 0, when
πn(Sn) ∼= Z – recall the degree; k = 1, when πn+1(Sn) is Z for n = 2 and Z2 for n > 2; and
k = 2, when πn+2(Sn) ∼= Z2 if n ≥ 2 (homework: what happens when n = 1?). Rohlin used
this construction to compute πn+3(Sn) ∼= Z24 when n ≥ 5.

This approach belongs to the Russian school of manifold topology, which put heavy
emphasis on geometry. In contrast, the French school prioritizes algebra, and in the next
section we mention René Thom’s work on the topic.

6.1.3 Thom construction
Can one use the Pontryagin construction in the other direction, to calculate cobordism groups
from homotopy groups? It turns out that doing this can give the cobordism groups of n-
manifolds:

Definition 3. The n-manifolds M0 and M1 are cobordant, if there is a cobordism W n+1

between them: a closed manifold with boundary M0 t M1 in the unoriented setting and
(−M0)tM1 in the oriented setting (where−M denotesM with the opposite orientation). The
set of equivalence classes is denoted by Nn (unoriented manifolds) or Ωn (oriented manifolds).

Note that in contrast to the previously considered cobordism of embedded (and framed)
manifolds, this cobordism is of abstract manifolds, with no maps given. The notion was
introduced by Rohlin, who determined that N3 = Ω3 = 0.

Thom used a generalization of the Pontryagin construction to compute these groups
almost completely:

Theorem 4 (Thom). The direct sum N∗ = ⊕n≥0Nn admits a graded ring structure (the
sum induced by disjoint union and the product induced by the product of manifolds), and as
a graded ring,

N∗ ∼= Z2[x2, x4, x5, . . . ],

a polynomial ring in variables xj of degree j, one for every j that is not of the form 2m − 1.

This result is highly nontrivial, but the generalization of the Thom construction reduces
it to algebraic topology. Thom also determined the analogous graded ring Ω∗ ⊗Q (oriented
cobordisms without the torsion part), which turns out to be Q[CP 2,CP 4, . . . ,CP 2j, . . . ]. The
torsion part – which is pure 2-torsion, 2 · TorsΩ∗ = 0 – is harder to compute, it was done
later by C. T. C. Wall.

Thom’s construction worked as follows. One considers the cobordism classes Emb(n, k) of
n-manifolds embedded into Rn+k up to cobordism (embedded into Rn+k × [0, 1]); no framing
is required. Still, there is a space Tγk such that Emb(n, k) ∼= πn+k(Tγk). How does this
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help with the goal of classifying abstract manifolds? If k > n + 1, then Emb(n, k) ∼= Nn,
because by Whitney’s theorem any n-manifold can be embedded into Rn+k and any two such
embeddings are isotopic (hence also cobordant).

Definition 5. A rank k vector bundle ξ is a continuous map p : E → B such that every
point preimage p−1(b) is homeomorphic to Rk and the linear structure of these fibers varies
continuously as a function of the point b (technically, there are local trivializations p−1(U) ∼=
UtimesRk such that on the overlapping parts the different trivializations differ in a linear map
on each fiber). If additionally one chooses a metric ρ on each fiber that depends continuously
on the basepoint (an averaging argument shows that such a metric always exists), then
D(ξ) shall denote the disc bundle {v ∈ E : ρ(v) ≤ 1} and S(ξ) shall denote the sphere
bundle {v ∈ E : ρ(v) = 1}; these are well-defined (independent of the choice of ρ) up to
homeomorphism, and if B is a manifolds, then so is D(ξ) and S(ξ) is the boundary ∂D(ξ).

The Thom space Tξ of the vector bundle ξ is the quotient space Tξ = D(ξ)/S(ξ).

To finish the description of Tγk we need to explain the vector bundle γk. It is the universal
rank k vector bundle Ek → Bk in the sense that for any rank k vector bundle E → B there
are homotopically unique maps κ : B → Bk and κ̃ : E → Ek such that κ̃ takes fibres to fibres
by linear isomorphisms and the diagram

E
κ̃−−−→ Eky y

B
κ−−−→ Bk

commutes. We will not explain here why does the isomorphism Emb(n, k) ∼= πn+k(Tγk)
holds.

6.1.4 What about the hedgehog theorem?
Given a closed manifold Mn one can associate to it numbers in Z2, the so-called Stiefel-
Whitney characteristic numbers of M . For every partition n = i1 + i2 + · · · + ir (i1 ≥ i2 ≥
· · · ≥ ir ≥ 1) of n, which we denote by I for brevity, one can define the characteristic
number wI [M ] ∈ Z2 that describes how complicated in a sense the tangent bundle TM is.
In particular, when I = (n) is the one-element partition, the corresponding characteristic
number is the Euler characteristic χ(M) taken modulo 2.

Theorem 6 (Thom). M is null-cobordant if and only if all the characteristic numbers
wI [M ] vanish.

Corollary 7. If M is null-cobordant, then χ(M) is even.

We reproduce here a geometric proof, due to Sandro Buoncristiano, of a weaker statement,
namely, that if TM is trivial: TM = M × Rn (also formulated as “M is parallelizable”, or
equivalently M admits n linearly independent vector fields), then M is null-cobordant.

Let ∆ ⊂ M ×M be the diagonal ∆ = {(x, x) : x ∈ M}. Pick a small neighbourhood
U ⊂M ×M of ∆; it is easy to see that if U is picked as an ε-neighbourhood for some metric,
then for a sufficiently small ε one can identify U with the disc bundle of TM : the points of
U correspond to considering short tangent vectors v ∈ TpM and taking the tangent vectors
(v,−v) ∈ T (M ×M). In particular, U ∼= M ×Dn.
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Also, one has the natural involution T : M ×M →M ×M that acts as T (x, y) = (y, x).
Outside ∆ it has no fixed points, and one can shrink U if necessary to make it T -invariant,
so that the restriction of T to M ×M \ U is a fixed point-free involution. It is not hard to
prove that this implies the existence of an equivariant map Φ : M ×M \ U → Sq (that is,
Φ ◦T = −Φ) for some large q. Now, on the boundary ∂U ∼= M × Sn−1 the involution T is
homotopic (through fixed-point free involutions) to the involution T ′ : M×Sn−1 →M×Sn−1,
T ′(p, v) = (p,−v); one can check that Φ can be chosen in such a way that ∂U is mapped to
Sn−1 ⊂ Sq.

We can now quotient by the involutions and obtain a map ϕ from M̂ = (M ×M \ U)/T
to RP q. The boundary ∂M̂ = ∂U/T = M × RP n−1 of M̂ is mapped to RP n−1, sending
every point to its projection in RP n−1 (up to homotopy, that is). But then we can pick the
submanifold RP q−n+1 complementary to RP n−1 in the sense that they intersect in a single
point; we may assume that ϕ is transverse to it and hence W = ϕ−1(RP q−n+1) is a manifold
with boundary ϕ−1(RP q−n+1 ∩ RP n−1) = M , finishing the proof.

Notice that this statement does not hold in reverse: while S2 is null-cobordant (it bounds
the 3-dimensional ball), the hedgehog theorem shows that S2 is not parallelizable.

6.1.5 The belt trick revisited
The answer to the question about the belt trick is: one can return to the original belt state
exactly if n, the number of full turns, is even. After showing that 2 full turns can be cancelled,
one only needs to prove that one turn cannot be undone. Equip the belt with triples of vectors
along the midline, the first one pointing up, the second pointing to the left, the third one
pointing inside from the surface of the belt. These are orthonormal bases of R3 forming
a path in SO(3) (initially the constant one), and any movement of the belt carries along
these bases to yield a homotopy of said path. For a once-twisted belt, the starting loop is
the image of a generator of π1(SO(2)) in π1(SO(3)), and in the identification SO(3) ∼= RP 3

that sends a rotation of angle α around the unit vector v to the point α · v in the quotient
πD3/(v ∼ −v on v ∈ S2 this loop is clearly nontrivial in π1(R3).

This argument in fact can prove the hedgehog theorem. Indeed, the unit tangent vectors
of S2 form an SO(3): the tangent vector v at the point u ∈ S2 corresponds to the orthonormal
basis (u, v, u×v). If there were a nowhere vanishing tangent vector field v(u) on S2, it would
mean that there would be a projection P : SO(3)→ SO(2) that sends the basis (p, q, r) to the
oriented angle between q and v(p). Composing this projection with the natural embedding
i : SO(2)→ SO(3) into the tangent vectors at a single point in S2 we clearly get the identity:
P ◦ i = idSO(2). This, however, would mean that the map i∗ : π1(SO(2)) → π1(SO(3))
induced by i is at the very least injective – but the belt trick shows that the double of the
generator of π1(SO(2)) is annulled by i∗. This contradiction show that our initial assumption
was false, proving the hedgehog theorem.

6.2 Smale
In 1957, Stephen Smale, then a student of Raoul Bott, told his advisor that he can prove
that a sphere S2 in R3 can be turned out by a regular homotopy. Bott was very skeptical,
especially so because the degree of the Gauss map for the standard sphere and the turned-out
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sphere seemed to have different sign – after all, turning the sphere inside out is a composition
of 3 reflections, right? Actually, that isn’t right; homework: if an oriented even-dimensional
manifold M2n is immersed into R2n+1, then the degree of its Gauss map is χ(M)

2 .
Smale gave a pure existence proof, explicit regular homotopies that turn the sphere inside

out were constructed only later (in particular, 1979 video by Bernard Morin; check out also
“outside in” on Youtube: https://www.youtube.com/watch?v=wO61D9x6lNY).

We mention here a simpler case, that of circles immersed into the plane. Then we have
the following:

Theorem 8 (Whitney–Graustein). Given two immersions f, g : S1 # R2, they are
regularly homotopic if and only if the rotation numbers of df and dg (as S1 → S1 maps) are
equal.

We denote the rotation number of df by γ(f).

Proof. The “only if” part of the statement is trivial, since the (S1-direction) derivative of
a regular homotopy between f and g is a homotopy between df and dg, therefore their
rotation numbers must be equal. To prove the “if” direction, first note that without the
regularity requirement the task is easy, one can pick for example the homotopy that is linear
at each point: Ht(p) = (1− t)f(p) + tg(p). Unfortunately, this homotopy may be singular at
certain times. To fix this, draw inspiration from the classical telephone apparatus: the cord
connecting the body of the phone to the receiver is coiled and this way moving it around (as is
often necessary during the operation of the device) does not result (all that often, that is) in
breaking the cord by introducing sharp corners in it. Indeed, if we add a circular motion (in
R3) of sufficient speed to our curve, then its velocity will dominate its sum with the original
velocity, in particular, it will nowhere turn to 0. The procedure can be performed along our
chosen homotopy as well, turning it into a regular homotopy. But we need to stay in R2, and
doing the same cannot possibly work: adding a rapid circular motion to f would cause γ(f)
to skyrocket. So instead of a circular motion, let’s use a figure-8 motion: its Gauss map has
degree 0 (hence γ(f) is preserved), and in fact the velocity vector stays out of a conic area, so
adding any multiple of such a motion (with the “wings” of the figure 8 in a normal direction
with regard to the original curve) keeps the curve immersed and rescaling the excursions is
a regular homotopy. The desired regular homotopy will hence be as follows: add the figure-8
movement to f , scale the addition to be become sufficiently large; move the base curve using
the linear homotopy to g; rotate the figure-8 directions to match the differential of g (this is
where the condition γ(f) = γ(g) is used); and scale the excursions back to 0.

We remark that this method can also be generalized to turning the sphere inside out.
Having seen these two examples, the question arises: what other spheres Sn can be turned

inside out in Rn+1 ? This question is answered almost entirely by the following fact:

Proposition 9. If Sn can be turned inside out in Rn+1, then Sn+1 is parallelizable.

Recall that Sn+1 is parallelizable exactly if n is 0, 2 or 6.

Proof. Let H be a regular homotopy that everts the sphere Sn. Then the trace of H is an
immersion of the cylinder Sn× [0, 1] into Rn+1× [0, 1] that preserves the last coordinate. Cap
off the boundary spheres by standard half-spheres of Sn+1 and notice that the Gauss map of
the obtained immersion of Sn+1 into Rn+2 does not contain in its range one of the vertical
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vectors (0, . . . , 0,±1), let’s assume it’s the upward-pointing vector ↑= (0, . . . , 0, 1). But then
we can take a framing of Sn+1\ ↑ (which is diffeomorphic to Dn+1) and pull it back to Sn+1

using the Gauss map to obtain a framing of Sn+1; the existence of such a framing proves the
parallelizability of Sn+1.

Going back to our original topic, Smale defined an invariant that determines the regular
homotopy class of an immersion f : Sn # Rq. In order to define this invariant, we first
introduce the Stiefel manifold Vn(Rk): it is the space of linearly independent ordered vector
n-tuples of Rk. The invariant, Ω(f), is an element of the homotopy group πn(Vn(Rq)). Its
construction needs to assume that the immersion f is standard on a half-sphere. The use of
this construction is that Ω(f) is a complete invariant, that is, Ω : Imm(Sn,Rq)→ πn(Vn(Rq))
is an isomorphism.

In the case of immersions S2 # R3, this concretizes to Imm(S2,R3) ∼= π2(V2(R3)).
It is easy to see that V2(R3) is homotopy equivalent to the space V ′2(R3)) of orthonormal
ordered vector pairs of R3. This latter space in turn is homeomorphic to SO(3) since every
such vector pair can uniquely be extended to an orthonormal basis of R3, and we have
π2(SO(3)) = π2(RP3) = π2(S3) = 0. That is, any two immersions of the 2-sphere into R3 are
regularly homotopic.

Now, a few words about the proof of the fact that Ω is a bijection. Define Xq
n,s to be

the space of immersions of Dn into Rq with s (linearly independent) normal vector fields
such that the immersion is standard in a neighbourhood of a point on the boundary ∂Dn.
Similarly, let Y q

n,s be the space of immersions of a sphere Sn into Rq with s normal vector
fields, standard near a point. Notice that there is natural map ρ : Xq

n,s → Y q
n−1,s+1 that sends

a map of Dn into its restriction to the boundary ∂Dn and adds the inward-pointing normal
vector of Sn−1 within Dn to the s inherited normal vectors. This map is a Serre fibration; a
map p : E → B is a Serre fibration if whenever there is a homotopy Φ : K × I → B and a
lift ϕ̃ : K × {0} → E (in the sense that p ◦ ϕ̃(x) = Φ(x, 0) for all x ∈ K), one can lift the
entire homotopy to a map Φ̃ : K × I → E that extends ϕ̃ and covers Φ: p ◦ Φ̃ = Φ. Another
formulation of this property is that in the commutative diagram below, there is a dashed
arrow that keeps the diagram commutative:

K × {0} ϕ̃ //

��

E

p

��
K × [0, 1] Φ //

Φ̃
::

B

Every Serre fibration has a fibre F = p−1(b) (for any b ∈ B), well-defined up to homo-
topy equivalence; the fibration itself is sometimes denoted by E F−→ B, omitting the actual
projection map. The homotopy lifting property also yields a long exact sequence

· · · → πj(F )→ πj(E)→ πj(B)→ πj−1(F )→ . . .

In our case, it is easy to check that the fibre of ρ is Y q
n,s, and also Xq

n,s is contractible (one
can just pull the entire disc along itself within the standard neighbourhood on the boundary).
The homotopy long exact sequence hence has trivial groups in every third place and therefore
splits into isomorphisms πj−1(Y q

n,s) ∼= πj(Y q
n−1,s+1). What we want to calculate is π0(Y q

n,0);
applying the isomorphism obtain above n times, we see that this group is isomorphic to
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πn(Y q
0,n). But Y q

0,n is the space of point pairs in Rq, equipped with n normal vectors each,
with one of the points locked in a standard position. This means that Y q

0,n
∼= Rq × Vn(Rq),

and the desired group is isomorphic to πn(Vn(Rq)), as claimed.
There remains an obvious question: how to read this invariant off a given immersion?

For q = 2n, one may count the double points of the immersion in question. For n even,
the double points of the immersion carry a natural sign, so their number is an integer; for
n odd, one can count the parity of the number of double points and get a number modulo
2. This number of double points is the same as Smale’s invariant except for n = 1, when it
can be refined to an integer as expected from Imm(S1,R2) = π1(V1(R2)) = π1(SO(2)) = Z.
In general, however, there is no way to get Smale’s invariant from the multiple point locus:
there exist embeddings of S3 into R5 that are not regularly homotopic. Distinguishing those
can be done by calculating the signature of a Seifert surface, but we will not give the details
here.

6.3 Milnor
A textbook for this day’s lecture is Milnor, Stasheff: Characteristic classes.

The goal today is to construct exotic spheres. This topic was started by Milnor in 1956,
when he constructed exotic spheres in dimension 7.

Definition 10. Σn is an exotic sphere of dimension n if it is homeomorphic to Sn, but not
diffeomorphic to Sn.

6.3.1 Helper bundle

The construction relies on the existence of an auxiliary object:

Lemma 11. There exists a rank 4 vector bundle ξ over S4 that has Euler class e(ξ) = a and
first Pontryagin class p1(ξ) = 6a, where a ∈ H4(S4) is a generator.

To explain the notions of the Lemma, start by recalling the Poincaré-Hopf theorem, which
states that for any tangent vector field v on an oriented smooth manifoldM that has isolated
zeros, the sum of the indices of v at those vanishing points is the Euler characteristic of M .
A tangent vector field is a section of the tangent vector bundle p : TM Rn−→ Mn, a map
s : M → TM such that π ◦ s = idM . If the section s is transverse to the zero section (the
tangent spaces of the zero section and the graph of s generate the tangent space of TM at
every intersection point of the zero section and the graph of s), then the index can be easily
checked to coincide with the sign that describes whether the innate orientation of T (TM) is
the same as the orientation defined by the orientations of the zero section and s. That is, in
this case the sum of indices of the zeros of s can be interpreted as an intersection number of
the zero section and the graph of s.

A similar consideration can be made for any oriented vector bundle ζ → B over a smooth
manifold: take a section s : B → ζ, for a generic s the preimage s−1(0) is a submanifold
of B and its cobordism class is a topological invariant of ζ. Indeed, taking any two generic
sections s1 and s2, they can be deformed into one another by a homotopy (for example,
linearly in each fibre); taking this homotopy to be generic as well, its vanishing locus forms
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a cobordism within B × I between the vanishing loci of s1 and s2. In practice, rather than
using this cobordism class, it is easier to use the cohomology class represented by s−1(0), and
this cohomology class is called the Euler class e(ζ) of ζ.

For the definition of the Pontryagin classes, we choose generic sections s1, . . . , sn−2j+2 and
consider the set of points in the base where the rank of the vector space generated by these
sections is at most n − 2j. This is a manifold of dimension 4j and the cohomology class it
represents is the jth Pontryagin class pj(ζ) (note that the definition given in Milnor-Stasheff
is different and gives a class that may differ from this one by a 2-torsion cohomology class;
in our setup this difference is irrelevant).

6.3.2 From the Lemma to exotic spheres
Proposition 12. Assuming the Lemma, the sphere bundle Sξ is an exotic 7-dimensional
sphere.

First, we show that Sξ is not diffeomorphic to S7. Indirectly assume that it is; then one
can glue a ball D8 to the disc bundle D(ξ) along its boundary to obtain a closed smooth
manifold M8. To arrive at a contradiction, we will use a signature formula. For a 4k-
dimensional manifold M one may take the “middle” integral cohomology group H2k(M) and
define an integer-valued symmetric bilinear form on it, the intersection form:

〈α, β〉 = 〈α ∪ β, [M ]〉.

(in fact, it is not necessary to use cohomology here; considering cobordism classes of 2k-
dimensional immersed submanifolds gives an abelian group, and taking the algebraic inter-
section number of any representatives of two gives cobordism classes gives the form that is
equivalent up to torsion to the one above). By Sylvester’s rigidity theorem the intersection
form has a well-defined signature, the number of positive entries minus the number of neg-
ative entries when diagonalized. The signature of M , denoted by σ(m), is by definition the
signature of its intersection form. It is a fact that we will not prove here that signature is a
cobordism invariant and gives a homomorphism σ : Ω4k → Z.

A signature formula expresses σ via the cobordism invariants we saw earlier, the charac-
teristic numbers. In dimension 8 it has the following form (discovered by Hirzebruch):

σ(M8) = 7p2[M8]− p2
1[M8]

45 .

Recall that p2(M) is the class dual to the locus of points in M where a generic 6-tuple of
tangent vector fields spans a subspace of dimension at most 4; while p1(M) is the class dual
to the locus of points inM where a generic 8-tuple of tangent vector fields spans a subspace of
dimension at most 6. The class p2

1(M) is dual to the self-intersection of this latter submanifold
(its algebraic intersection number with a nearby perturbation that is transverse to the original
submanifold).

To see that this signature formula holds, observe that p2
1[M ] and p2[M ] are cobordism

invariants of M (the vector fields that define the corresponding classes extend to the cobor-
dism), and by Thom’s theorem Ω8 ⊗ Q is generated by the cobordism classes of CP 4 and
CP 2×CP 2 (we don’t use it here, but in fact Ω8 ∼= Z⊕Z with no torsion appearing). There-
fore the homomorphisms σ, p2 and p2

1 must be linearly dependent and any relation between
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them that holds for CP 4 and CP 2 × CP 2 holds for any 8-dimensional smooth manifold. It
takes a short technical proof to show that

σ(CP 4) = 1; p2
1[CP 4] = 25; p2[CP 4] = 10;

σ(CP 2 × CP 2) = 0; p2
1[CP 2 × CP 2] = 18; p2[CP 2 × CP 2] = 9.

Solving the resulting system of linear equation yields the signature formula.
Returning to our specific manifold M , we need to determine its invariants σ, p2

1 and p2

to check whether the signature formula holds. The signature σ(M) = 1, because H4(M) is
generated by the zero section of ξ, and its self-intersection is positive. The class p1(M) is
represented by a 4-dimensional submanifold, so it is enough to determine it in D(ξ). There,
T (D(ξ)) splits as the sum of (pullbacks of) TS4 – which has trivial characteristic classes –
and ξ – which has p1(ξ) = 6a; hence p1(D(ξ)) = 6a. The characteristic number p2

1[M ] is
therefore 36. Arriving finally to p2, we run into a problem: to satisfy the signature formula,
the value p2[M ] would need to be 45σ(M)+p2

1[M ]
7 = 81

7 while also being an integer (a number of
intersection points). This is a contradiction, proving that we cannot glue D8 to D(ξ) keeping
the result smooth and hence S(ξ) is not diffeomorphic to S7.

The second part of the proof is showing that S(ξ) is homeomorphic to S7. To achieve
this, we first use the Gysin exact sequence to calculate the homology of S(ξ):

· · · → H i−4(S4) ∪e(ξ)−−−→ H i(S4)→ H i(S(ξ))→ H i−3(S4)→ . . .

It implies that S(ξ) has the same homology groups as S7. It is also easy to see that S(ξ) is
simply connected. By Hurewicz’s theorem, it follows that π7(S(ξ)) = Z. A generator of this
group induces isomorphisms in all homology groups, therefore it is a homotopy equivalence.
Finally, we apply the generalized Poincaré conjecture (proved by Smale): if Σn is homotopy
equivalent to Sn and n ≥ 6, then Σn is homeomorphic to Sn. The proof is complete.

6.3.3 Bonus
Having constructed one example of an exotic sphere, one looks to construct more. Brieskorn
has found equations that define all the exotic 7-dimensional spheres; the family

Xk = {(z1, . . . , z5) ∈ S(C5) : z6k−1
1 + z3

2 + z2
3 + z2

4 + z2
5 = 0}

of codimension 2 submanifolds of S9 contains all of them. Actually, the exotic spheres in any
given dimension n form a group, and in the case n = 7 this group (determined by Milnor
and Kervaire) is Z28. But then why are there infinitely many Brieskorn equations? Szűcs
and Ekholm showed that the set of immersions of homotopy 7-spheres into S9 up to regular
homotopy forms a group, and that group is isomorphic to Z ⊕ Z4. The regular homotopy
classes that contain embeddings are a subgroup isomorphic to Z, and all the embeddable
classes that are in a certain sense “positive” are given by the Brieskorn equations.
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Problem session
(Tamás Terpai)

Day 1

1. a) Show that for any n ≥ 1 the sphere S2n−1 admits a nowhere vanishing tangent vector
field!

b) Construct 3 linearly independent tangent vector fields on S3!

c) Show that for any n ≥ 1 the sphere S4n−1 admits 3 linearly independent nowhere
vanishing tangent vector fields!

2. Prove that any positive dimensional compact Lie group is null-cobordant!
3. Show that the Pontryagin construction is a special case of the Thom construction!

Day 2

1. Calculate the homotopy group πn(Vn(R2n)) using the homotopy long exact sequence of a
fibration!

2. How many regular homotopy classes of immersions of a cylinder S1 × I into R3 are there?
3. Let ϕ : Sn−1 → Sn−1 be a given diffeomorphism. Define the twisted sphere Σn = Dn ∪

ϕ
Dn.

Show that Σn is diffeomorphic to Sn if and only if ϕ extends to a self-diffeomorphism of Dn!
4. Prove that if f : M2k # R2k+1 is an immersion of an oriented 2k-manifoldM into the 2k+1-

dimensional Euclidean space, then the degree of the Gauss map of f (as a map from M to
S2k) is 1

2χ(M)!

89


	Preface
	1. Curvature and topology
	The "Umlaufsatz"
	Total absolute curvature of closed space curves
	Gauss–Bonnet theorem on the sphere
	Local Gauss–Bonnet theorem for surfaces
	Euler Characteristic of Simplicial Complexes
	Gauss–Bonnet theorem for surfaces with boundary
	Recommended reading
	Problem session

	2. Enumerative geometry: classical and new problems
	Motivation
	Dimension counting
	Projective space
	Definition
	Subspaces
	Symmetries of projective spaces

	Shapes and equations
	Classical proof of 4 lines in 3-space
	Degree and Bézout's theorem(s)
	Cohomology
	CW-complexes and their cohomology
	Grassmannians and their cell decomposition
	Schubert varieties in Gr2(C4)
	Schubert varieties in Grk(Cn)
	Cohomology of Gr2(C4)
	Schubert calculus

	Symmetric polynomials
	Representation theory
	Real enumerative problems
	Problem session

	3. From Poincaré to Thurston and Perelman: one hundred years of a conjecture
	4. Projective algebraic plane curves
	Intersection theory of algebraic curves
	Basics
	Intersections and singularities

	Group structure on elliptic curves
	Topology of complex plane curves
	Problem session

	5. Invariants of knots: polynomials and homologies
	Knot invariants
	Introduction
	Three-colorings
	The Alexander polynomial

	The Jones polynomial
	Graded vector spaces
	Problem session

	6. Three Fields medalists of topology: Smale (immersions), Thom (cobordisms), Milnor (exotic spheres)
	Thom
	Rotation number
	Pontryagin construction
	Thom construction
	What about the hedgehog theorem?
	The belt trick revisited

	Smale
	Milnor
	Helper bundle
	From the Lemma to exotic spheres
	Bonus

	Problem session


