
Dynamic pricing in combinatorial

markets

Evelin Szögi
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1 Introduction

A combinatorial market consists of a set of indivisible goods and a set of buyers, where each buyer

has a valuation function that represents the buyers’ preferences over the subsets of items. From

an optimization point of view, the goal is to find an allocation of the items to buyers in such a

way that the total sum of the buyers’ values is maximized – this sum is called the social welfare.

An optimal allocation can be found efficiently in various settings [9, 19, 26, 29], but the problem

becomes significantly more difficult if one would like to realize the optimal social welfare through

simple mechanisms.

A great amount of work concentrated on finding optimal pricing schemes. Given a price for

each item, we define the utility of a buyer for a bundle of items to be the value of the bundle

with respect to the buyer’s valuation, minus the total price of the items in the bundle. A pair

of pricing and allocation is called a Walrasian equilibrium if the market clears (that is, all the

items are assigned to buyers) and everyone receives a bundle that maximizes her utility. Given

any Walrasian equilibrium, the corresponding price vector is referred to as Walrasian pricing, and

the definition implies that the corresponding allocation maximizes social welfare.

Walrasian equilibria were introduced already in the late 1800s [30] for divisible goods. A century

later, Kelso and Crawford [22] defined gross substitutes functions and verified the existence of

Walrasian prices for such valuations. It is worth mentioning that the class of gross substitutes

functions coincides with that of M♮-concave functions, introduced by Murota and Shioura [24].

The fundamental role of the gross substitutes condition was recognized by Gul and Stacchetti [20]

who verified that it is necessary to ensure the existence of a Walrasian equilibrium.

Although Walrasian equilibria have distinguished properties, Cohen-Addad et al. [10] and in-

dependently Hsu et al. [21] observed that Walrasian prices are not powerful enough to control the

market on their own. To prove this, they gave the following example. The market stays of two

buyers, Alice and Bob, and two goods, a and b. Both A and B are unit-demand. For A, a has

value R ≫ 1 and b has value 1, and for B, both items have value 1. We get a Walrasian pricing

by setting the price of a to R − 1 and the price of b to 0. (It is not difficult to verify this pricing

is indeed Walrasian.) If B arrives first, he buys b and then A takes a. In this case, social welfare

is maximized. But on the other hand, if A arrives first, she has the same utility for a and b, and

it can happen she decides to take b. Then B has negative utility for a and does not buy anything.

This results in 1 being the social welfare, instead of R+ 1.

The reason behind this is that different bundles of items might have the same utility for the

same buyer, and in such cases, ties must be broken by a central coordinator in order to ensure

that the optimal social welfare is achieved. Furthermore, this problem cannot be resolved by

finding Walrasian prices where ties do not occur as [21] showed that minimal Walrasian prices

necessarily induce ties. There exists a Walrasian price vector that is coordinate-wise minimal

among all Walrasian price vectors. It is called minimal Walrasian price vector. It is known the

minimal Walrasian price is the same as the VCG payments in the unit-demand case. In the

previous example, the minimal Walrasian prices are p(a) = p(b) = 0. As before, if A is the first

buyer, she gets a and B gets b, and the social welfare is again R+ 1. But if B comes first, he may

choose a, then A gets b, and the social welfare is only 2. In [21], the authors defined the so-called

over-demand for a good. Let g denote a good in the market and sg ∈ Z, sg ≥ 1 denote its supply,

that is, there are sg copies of g in the market. The demanders for g at price p are those buyers who

have a bundle containing g that maximizes their utility. The over-demand for g is the maximum of
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zero and the difference between the number of demanders and the supply sg. The authors of [21]

showed there exist unit-demand valuations such that at the minimal Walrasian price, some good

has over-demand Ω(n), where n denotes the number of players. That means if a buyer chooses

randomly a good in the demand set, roughly n/2 buyers want to take g. That means ties can not

be broken arbitrarily, some tie-breaking rules must be used. If a buyer’s tie-breaking rule can only

depend on the buyer’s valuation and the prices, the authors also proved there exists a distribution

over unit-demand valuations such that for any set of tie-breaking rules, the expected over-demand

from n buyers is Ω(n).

To overcome these difficulties, [10] introduced the notion of dynamic pricing schemes, where

prices can be redefined between buyer arrivals. Dynamic pricing schemes were introduced as an

alternative to posted-price mechanisms that are capable of maximizing social welfare even without

a central tie-breaking coordinator. In this model, the buyers arrive in sequential order, and each

buyer selects a bundle of the remaining items that maximizes her utility. The buyers’ preferences

are known in advance, and the seller is allowed to update the prices between buyer arrivals based

upon the remaining set of items, but without knowing the identity of the next buyer. They showed

with a simple example that when using static prices, one can reach no better result than 2/3 of the

optimal social welfare. Consider a market with three unit-demand buyers A,B and C and three

items a, b, c. A values a and b by 1 and c by 0, B values b and c by 1 and a by 0, and C values c

and a by 1 and b by 0. We can assume 1 > p(a) ≥ p(b) ≥ p(c) ≥ 0. If A arrives first, she gets b. If

the second player arriving is C, she buys c. Finally, B arrives, but the only remaining item in the

market is a, which has value 0 for B. Therefore the social welfare achieved is only 2, whereas the

optimal social welfare is 3.

Cohen-Addad et al. proposed a scheme maximizing social welfare for matching or unit-demand

markets, where the valuation of each buyer is determined by the most valuable item in her bundle.

In each phase, the algorithm constructs a so-called relation graph and performs various computa-

tions upon it. Then the prices are updated based on the structural properties of the graph.

The main open problem in [10] asked whether any market with gross substitutes valuations has

a dynamic pricing scheme that achieves optimal social welfare.

Berger et al. [4] considered markets beyond unit-demand valuations, and provided a polynomial-

time algorithm for finding optimal dynamic prices up to three multi-demand buyers. Their ap-

proach is based on a generalization of the relation graph of [10] that they call a preference graph,

and on a new directed graph termed the item-equivalence graph. They showed that there is a strong

connection between these two graphs, and provided a pricing scheme based on these observations.

Further results on posted-price mechanisms considered matroid rank valuations [3], relaxations

such as combinatorial Walrasian equilibrium [18], and online settings [5–8,11,12,14,16,17].

In this work1, the focus is on multi-demand combinatorial markets. In this setting, each buyer

t has a positive integer bound b(t) on the number of desired items, and the value of a set is the

sum of the values of the b(t) most valued items in the set. In particular, if we set each b(t) to one

then we get back the unit-demand case.

For multi-demand markets, the problem of finding an allocation that maximizes social welfare

is equivalent to a maximum weight b-matching problem in a bipartite graph with vertex classes

corresponding to the buyers and items, respectively. Note that, unlike in the case of Walrasian

equilibrium, clearing the market is not required as a maximum weight b-matching might leave some

1A preliminary version of the work appeared on ArXiv [2].
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of the items unallocated. The high-level idea of our approach is to consider the dual of this problem

and to define an appropriate price vector based on an optimal dual solution with distinguished

structural properties.

Based on the primal-dual interpretation of the problem, we give a simpler proof of a result of

Cohen-Addad et al. [10] on unit-demand valuations first. Although this can be considered a special

case of bi-demand markets, we discuss it separately as an illustration of our techniques.

When the total demand of the buyers exceeds the number of available items, ensuring the op-

timality of the final allocation becomes more intricate. Therefore, we consider instances satisfying

the following property:

each buyer t ∈ T receives exactly b(t) items in every optimal allocation. (OPT)

While this is a restrictive assumption, it is a reasonable condition that holds for a wide range of

applications, and also appeared in [4] and recently in [27]. For example, if the total number of

items is not less than the total demand of the buyers and the value of each item is strictly positive

for each buyer, then it is not difficult to check that (OPT) is satisfied.

The problem becomes significantly more difficult for larger demands. Berger et al. [4] observed

that bundles that are given to a buyer in different optimal allocations satisfy strong structural

properties. For markets with up to three multi-demand buyers, they grouped the items into at

most eight equivalence classes based on which buyer could get them in an optimal solution, and

then analyzed the item-equivalence graph for obtaining optimal dynamic pricing. We show that,

when assumption (OPT) is satisfied, these properties follow from the primal-dual interpretation of

the problem, and give a new proof of their result for such instances.

The main result of our work is an algorithm for determining optimal dynamic prices in bi-

demand markets with an arbitrary number of buyers, that is when the demand b(t) is two for each

buyer t. Besides structural observations on the dual solution, the proof relies on uncrossing sets

that are problematic in terms of resolving ties. However, in a recent manuscript, Pashkovich and

Xie [27] showed that the result of Berger et al. [4] can be generalized from three to four buyers.

They further extended the results of the current work on bi-demand valuations to the case when

each buyer is ready to buy up to three items.

This work is organized as follows. Basic definitions and notation are given in Section 2, while

Section 3 provides structural observations on optimal dynamic prices in multi-demand markets.

Unit- and multi-demand markets up to three buyers are discussed in Section 4. Section 5 solves

the bi-demand case under the (OPT) condition. In Section 6, we drop the (OPT) condition. In

Section 7 and Section 8, the four buyers’ and tri-demand case is discussed by following the proof

in [27]. In Section 9, there is a short discussion on other social welfare functions.

2 Preliminaries

Basic notation. We denote the sets of real, non-negative real, integer, and positive integer

numbers by R, R+, Z, and Z>0, respectively. Given a ground set S and subsets X,Y ⊆ S,

the difference of X and Y is denoted by X − Y . If Y consists of a single element y, then X − {y}
and X ∪ {y} are abbreviated by X − y and X + y, respectively. The symmetric difference of X

and Y is X△Y := (X − Y ) ∪ (Y − X). For a function f : S → R, the total sum of its values

over a set X is denoted by f(X) :=
∑

s∈X f(s). The inner product of two vectors x, y ∈ RS is

x · y :=
∑

s∈S x(s)y(s). Given a set S, an ordering of S is a bijection σ between S and the set of

3



integers {1, . . . , |S|}. For a set X ⊆ S, we denote the restriction of the ordering to S−X by σ|S−X .

Given orderings σ1 and σ2 of disjoint sets S1 and S2, respectively, we denote by σ = (σ1, σ2) the

ordering of S := S1 ∪ S2 where σ(s) = σ1(s) for s ∈ S1 and σ2(s) + |S1| for s ∈ S2.

Let G = (S, T ;E) be a bipartite graph with vertex classes S and T and edge set E. We will

always denote the vertex set of the graph by V := S∪T . For a subset X ⊆ V , we denote the set of

edges induced by X by E[X], while G[X] stands for the graph induced by X. The graph obtained

from G by deleting X is denoted by G−X. Given a subset F ⊆ E, the set of edges in F incident

to a vertex v ∈ V is denoted by δF (v). Accordingly, the degree of v in F is dF (v) := |δF (v)|.
For a set Z ⊆ T , the set of neighbors of Z with respect to F is denoted by NF (Z), that is,

NF (Z) := {s ∈ S | there exists and edge st ∈ F with t ∈ Z}. The subscript F is dropped from the

notation or is changed to G whenever F is the whole edge set.

Market model. A combinatorial market consists of a set S of indivisible items and a set T of

buyers. We consider multi-demand2 markets, where each buyer t ∈ T has a valuation vt : S → R+

over individual items together with an upper bound b(t) on the number of desired items, and the

value of a set X ⊆ S for buyer t is defined as vt(X) := max{vt(X ′) | X ′ ⊆ X, |X ′| ≤ b(t)}.
Unit-demand and bi-demand valuations correspond to the special cases when b(t) = 1 and b(t) = 2

for each t ∈ T , respectively.

Given a price vector p : S → R+, the utility of buyer t forX is defined as ut(X) := vt(X)−p(X).

The buyers, whose valuations are known in advance, arrive in an undetermined order, and the next

buyer always chooses a subset of at most her desired number of items that maximizes her utility. In

contrast to static models, the prices can be updated between buyer-arrivals based on the remaining

sets of items and buyers. The goal is to set the prices at each phase in such a way that no matter

in what order the buyers arrive, the final allocation maximizes the social welfare. Such a pricing

scheme and allocation are called optimal. It is worth emphasizing that a buyer may decide either

to take or not to take an item which has 0 utility, that is, it might happen that the bundle of items

that she chooses is not inclusionwise minimal. This seemingly tiny degree of freedom actually

results in difficulties that one has to take care of.

Lemma 1. We may assume that all items are allocated in every optimal allocation.

Proof. One can find an optimal allocation that uses an inclusionwise minimum number of items

by relying on a weighted b-matching algorithm, see [28]. Setting the price of unused items to a

large value ensures that no buyer takes them. Hence every optimal allocation uses the same set of

items, meaning that the remaining items play no role in the problem and so can be deleted.

In particular, when (OPT) is assumed, Lemma 1 implies that the number of items coincides

with the total demand of the buyers.

Weighted b-matchings. Let G = (S, T ;E) be a bipartite graph and recall that V := S ∪ T .

Given an upper bound b : V → Z+ on the vertices, a subset M ⊆ E is called a b-matching if

dM (v) ≤ b(v) for every v ∈ V . If equality holds for each v ∈ V , then M is called a b-factor. Notice

that if b(v) = 1 for each v ∈ V , then a b-matching or b-factor is simply a matching or perfect

matching, respectively. Kőnig’s classical theorem [23] gives a necessary and sufficient condition for

the existence of a perfect matching in a bipartite graph.

2Multi-demand valuations are special cases of weighted matroid rank functions for uniform matroids, see [3].
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Theorem 1 (Kőnig). There exists a perfect matching in a bipartite graph G = (S, T ;E) if and

only if |S| = |T | and |N(Y )| ≥ |Y | for every Y ⊆ T .

Let w : E → R be a weight function on the edges. A function π : V → R on the vertex set

V = S ∪ T is a weighted covering of w if π(s) + π(t) ≥ w(st) holds for every edge st ∈ E. An

edge st is called tight with respect to π if π(s) + π(t) = w(st). The total value of the covering is

π · b =
∑

v∈V π(v) · b(v). We refer to a covering of minimum total value as optimal. The celebrated

result of Egerváry [15] provides a min-max characterization for the maximum weight of a matching

or a perfect matching in a bipartite graph.

Theorem 2 (Egerváry). Let G = (S, T ;E) be a graph, w : W → R be a weight function. Then

the maximum weight of a matching is equal to the minimum total value of a non-negative weighted

covering π of w. If G has a perfect matching, then the maximum weight of a perfect matching is

equal to the minimum total value of a weighted covering π of w.

3 Multi-demand markets and maximum weight b-matchings

A combinatorial market with multi-demand valuations can be naturally identified with an edge-

weighted complete bipartite graph G = (S, T ;E) where S is the set of items, T is the set of buyers,

and for every item s and buyer t the weight of edge st ∈ E is w(st) := vt(s). We extend the

demands to S as well by setting b(s) = 1 for every s ∈ S. Then an optimal allocation of the items

corresponds to a maximum weight subset M ⊆ E satisfying dM (v) ≤ b(v) for each v ∈ S ∪ T .

3.1 Structure of weighted coverings

In general, a b-factor or even a maximum weight b-matching can be found in polynomial time (even

in non-bipartite graphs, see e.g. [28]). When b is identically one on S, then the following folklore

characterization follows easily from Kőnig’s and Egerváry’s theorems3.

Lemma 2. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight function, and

b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S.

(a) G has a b-factor if and only if |S| = b(T ) and |N(X)| ≥ b(X) for every X ⊆ T .

(b) The maximum w-weight of a b-matching is equal to the minimum total value of a non-negative

weighted covering π of w.

Proof. Let G′ = (S′, T ;E′) denote the graph obtained from G by taking b(t) copies of each vertex

t ∈ T and connecting them to the vertices in NG(t). It is not difficult to check that G has a b-factor

if and only if G′ has a perfect matching, thus the first part of the theorem follows by Theorem 1.

To see the second part, for each copy t′ ∈ T ′ of an original vertex t ∈ T , define the weight of

edge st′ as w′(st′) := w(st). Then the maximum w-weight of a b-matching of G is equal to the

maximum w′-weight of a matching of G′. Now take an optimal non-negative weighted covering π′

of w′ in G′. As the different copies of an original vertex t ∈ T share the same neighbors in G′,

each of them receives the same value in any optimal weighted covering of w′ - define π(t) to be

this value. Then π is a non-negative weighted covering of w in G with a total value equal to that

of π′, hence the theorem follows by Theorem 2.

3The same results follow by strong duality applied to the linear programming formulations of the problems.
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Given a weighted covering π, the subgraph of tight edges with respect to π is denoted by

Gπ = (S, T ;Eπ). In what follows, we prove some easy structural results on the relation of optimal

b-matchings and weighted coverings.

Lemma 3. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight function, and

b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S.

(a) For any optimal non-negative weighted covering π of w, a b-matching M ⊆ E has maximum

weight if and only if M ⊆ Eπ and dM (v) = b(v) for each v with π(v) > 0.

(b) For any optimal weighted covering π of w, a b-factor M ⊆ E has maximum weight if and

only if M ⊆ Eπ.

Proof. Let M be a maximum weight b-matching and π be an optimal non-negative weighted

covering. We have w(M) =
∑

st∈M w(st) ≤
∑

st∈M (π(s) + π(t)) ≤
∑

v∈V π(v) · b(v), and equality

holds throughout if and only if M consists of tight edges and π(v) = 0 if dM (v) < b(v).

Now consider the b-factor case. Let M be a maximum weight b-factor and π be an optimal

weighted covering. We have w(M) =
∑

st∈M w(st) ≤
∑

st∈M (π(s)+π(t)) =
∑

v∈V π(v) · b(v), and
the inequality is satisfied with equality if and only if M consists of tight edges.

Following the notation of [4], we call an edge st ∈ E legal if there exists a maximum weight

b-matching containing it, and say that s is legal for t. A subset F ⊆ δ(t) is feasible if there exists

a maximum weight b-matching M such that δM (t) = F ; in this case NF (t) is called feasible for t4.

Notice that a feasible set necessarily consists of legal edges. The essence of the following technical

lemma is that there exists an optimal non-negative weighted covering for which Gπ consists only

of legal edges, thus giving a better structural understanding of optimal dual solutions; for an

illustration see Figure 1.

Lemma 4. The optimal π attaining the minimum in Lemma 2(b) can be chosen such that

(a) an edge st is tight with respect to π if and only if it is legal, and

(b) π(v) = 0 for some v ∈ V if and only if there exists a maximum weight b-matching M with

dM (v) < b(v).

Furthermore, such a π can be determined in polynomial time.

Proof. In both cases, the ‘if’ part follows by Lemma 3. Let M and π be a maximum weight b-

matching and an optimal non-negative weighted covering, respectively. To prove the lemma, we

will modify π in two phases.

In the first phase, we ensure (a) to hold. Take an arbitrary ordering e1, . . . , em of the edges, and

set π0 := π and w0 := w. For i = 1, . . . ,m, repeat the following steps. Let εi := max{wi−1(M) |
M is a b-matching} − max{wi−1(M) | M is a b-matching containing ei}. Notice that εi > 0 ex-

actly if ei is not legal. Let wi denote the weight function obtained from wi−1 by increasing the

weight of ei by εi/2, and let πi be an optimal non-negative weighted covering of wi. Due to the

definition of εi, a b-matching M has maximum weight with respect to wi if and only if it has

maximum weight with respect to wi−1, and in this case wi(M) = wi−1(M). That is, the sets of

maximum weight b-matchings with respect to w and wm coincide, and the weights of legal edges

do not change, therefore πm is an optimal non-negative weighted covering of w as well.

In the second phase, we ensure (b) to hold. Take an arbitrary ordering v1, . . . , vn of the vertices,

for j = 1, . . . , n, repeat the following steps. Let δj := max{wm+j−1(M) | M is a b-matching} −
4The notion of feasibility is closely related to ‘legal allocations’ introduced in [4]. However, ‘legal subsets’ are

different from feasible ones, hence we use a different term here to avoid confusion.
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max{wm+j−1(M) | M is a b-matching, dM (vj) ≤ b(vj)− 1}. Then δj > 0 if and only if the degree

of vj is b(vj) in every maximum weight b-matching. Let wm+j denote the weight function obtained

from wm+j−1 by decreasing the weight of the edges incident to vj by δj/(b(vj)+1) and let πm+j be

an optimal non-negative weighted covering of wm+j . Due to the definition of δj , a b-matching M

has maximum weight with respect to wm+j−1 if and only if it has maximum weight with respect

to wm+j , and in this case wm+j(M) = wm+j−1(M) − δj · b(vj). That is, the sets of maximum

weight b-matchings with respect to w and wm+n coincide. Let π′ denote the weighted covering of w

obtained by increasing the value of πm+n(vℓ) by δℓ/(b(vℓ) + 1) for ℓ = 1, . . . , n. As the total value

of π′ is greater than that of πm+n by exactly max{w(M) | M is a b-matching}−max{wm+n(M) |
M is a b-matching}, π′ is an optimal non-negative weighted covering of w.

As εi > 0 whenever ei is not legal and δj > 0 whenever there is no a maximum weight b-

matching M with dM (vj) < b(vj), π
′ satisfies both (a) and (b) as required.

Remark 3. If the market satisfies property (OPT), the lemma implies that there exists an optimal

non-negative weighted covering that is positive for every buyer and every item.

Feasible sets play a key role in the design of optimal dynamic pricing schemes. After the current

buyer leaves, the associated bipartite graph is updated by deleting the vertices corresponding to

the buyer and her bundle of items, and the prices are recomputed for the remaining items. It

follows from the definitions that the scheme is optimal if and only if the prices are always set in

such a way that any bundle of items maximizing the utility of an agent t forms a feasible set for t.

3.2 Adequate orderings

The high-level idea of our approach is as follows. First, we take an optimal non-negative weighted

covering π provided by Lemma 4. If we define the price of an item s ∈ S to be π(s), then for any

t ∈ T we have ut(s) = vt(s)−π(s) = w(st)−π(s) ≤ π(t) and, by Lemma 4(a), equality holds if and

only if s is feasible for t. This means that each buyer prefers choosing items that are legal for her.

For unit-demand valuations, such a solution immediately yields an optimal dynamic pricing scheme

as explained in Section 4.1. However, when the demands are greater than one, a collection of legal

items might not form a feasible set, see an example in Figure 1. In order to control the choices of

the buyers, we slightly perturb the item prices by choosing an ordering σ : S → {1, . . . , |S|} and

set the price of item s to be π(s)+ δ ·σ(s) for some sufficiently small δ > 0. Here the value of σ(s)

will be set in such a way that any bundle of items maximizing the utility of a buyer will form a

feasible set for her, as needed.

Given a bipartite graph G = (S, T ;E) and upper bounds b : V → Z>0 with b(s) = 1 for s ∈ S,

we call an ordering σ : S → {1, . . . , |S|} adequate for G if it satisfies the following condition: for any

t ∈ T , there exists a b-factor in G that matches t to its first b(t) neighbors according to the ordering

σ. For ease of notation, we introduce the slack of π to denote ∆(π) := min
{
min{π(t)+π(s)−w(st) |

st ∈ E, st is not tight}, min{π(v) | v ∈ V, π(v) > 0}
}
, where the minimum over an empty set is

defined to be +∞. Using this terminology, the above idea is formalized in the following lemma.

Lemma 5. Assume that (OPT) is satisfied. Let G = (S, T ;E) be the edge-weighted bipartite graph

associated with the market, π be a weighted covering provided by Lemma 4, and σ be an adequate

ordering for Gπ. For δ := ∆(π)/(|S| + 1), setting the prices to p(s) := π(s) + δ · σ(s) results in

optimal dynamic prices.
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t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(a) Maximum weight b-matching M1 =

{t1s1, t1s3, t2s2, t2s5, t3s4, t3s6}.

t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(b) Maximum weight b-matching M2 =

{t1s1, t1s4, t2s2, t2s3, t3s5, t3s6}

1 4
3

1 33 2342

1

0 0 3 2 2 1

11

(c) An optimal non-negative weighted covering

π. Notice that s1t1 is tight but not legal, and

π(s1) = π(s2) = 0 although dM (s1) = dM (s2) =

1 for every maximum weight b-matching.

1 4
3

1 33 2342

1
2

1
2

3
2

5
2

1
2

5
2

1
2

1
2

7
2

(d) An optimal non-negative weighted covering

satisfying the conditions of Lemma 4.

Figure 1: A bipartite graph corresponding to a market with three buyers having demand two and

six items. The numbers denote the weights of the edges; all the remaining edges have weight 0.

There are two maximum weight b-matchings M1 (Figure 1a) and M2 (Figure 1b). Notice that both

s3t1 and s4t1 are legal, but they do not form a feasible set.

Proof. By (OPT), every optimal solution is a b-factor. Observe that for any s ∈ S and t ∈ T , we

have

ut(s) = vt(s)− p(s)

= w(st)− (π(s) + δ · σ(s))

≤ π(t)− δ · σ(s).

Here equality holds if and only if st is tight with respect to π, in which case ut(s) = π(t)−δ ·σ(s) >
π(t) −∆(π) · |S|/(|S| + 1) > 0 by the choice of δ and by Lemma 4(b). Furthermore, if st is tight

and s′t is a non-tight edge of G, then ut(s
′) ≤ π(t)−∆(π) ≤ π(t)−δ(|S|+1) < ut(s) by the choice

of δ. Concluding the above, we get that no matter which buyer arrives next, she strictly prefers

legal items over non-legal ones, and legal items have strictly positive utility values for her. That

is, she chooses the first b(t) of its neighbors in Gπ according to the ordering σ. As σ is adequate

for Gπ, the statement follows by Lemma 3(b).

It is worth emphasizing that the application of Lemma 5 provides optimal dynamic prices for

a single round; the prices should be updated before the arrival of each buyer accordingly.

For a π : V → R and σ : S → {1, . . . , |S|}, the combination of π and σ is an ordering σ′ : S →
{1, . . . , |S|} that is obtained by pre-ordering the elements of S according to their π values in a

non-decreasing order, and then items having the same π value are ordered according to σ. We

denote the combination of π and σ by π ◦ σ. The following technical lemma will be useful in the

inductive proof.

Lemma 6. Let G = (S, T ;E) be an edge-weighted bipartite graph with all edges having weight one,

and b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S such that G admits a

b-factor. Furthermore, let π be a weighted covering provided by Lemma 4, and σ be an adequate

ordering for Gπ = (S, T ;Eπ). Then π ◦ σ is an adequate ordering for G.
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Proof. Let σ′ := π ◦ σ denote the combination of π and σ. We claim that for any t ∈ T , the first

b(t) neighbors of t in Gπ according to σ coincides with the first b(t) neighbors of t in G according

to σ′. Indeed, this follows from the fact that the edge-weights are identically 1, hence the value of

π(s) is exactly 1− π(t) if st ∈ Eπ and strictly less if st ∈ E \ Eπ. That is, in the ordering σ′, the

edges in Eπ precede the edges in E \Eπ. As G admits a b-factor by assumption, t has at least b(t)

neighbors in Gπ, and the lemma follows.

4 Unit- and multi-demand markets

4.1 Unit-demand markets

Based on the primal-dual interpretation of the problem, first we give a simpler proof of a result of

Cohen-Addad et al. [10] on unit-demand valuations as an illustration of our approach.

Theorem 4 (Cohen-Addad et al.). Every unit-demand market admits an optimal dynamic pricing

that can be computed in polynomial time.

Proof. Consider the bipartite graph associated with the market, take an optimal cover π provided

by Lemma 4, and set the price of item s to be π(s). For a pair of buyer t ∈ T and s ∈ S, we have

ut(s) = vt(s)− p(s)

= w(st)− p(s)

≤ (π(s) + π(t))− π(s)

= π(t).

By Lemma 4(a), strict equality holds if and only if st is legal. We claim that no matter which

buyer arrives next, she either chooses an item that is legal (and so forms a feasible set for her), or

she takes none of the items and the empty set is feasible for her.

To see this, assume first that π(t) > 0. By Lemma 4(b), there exists at least one item legal

for t, and those items are exactly the ones maximizing her utility. Now assume that π(t) = 0. By

Lemma 4(b), the empty set is feasible for t. Furthermore, for any item s ∈ S, the utility ut(s) is

negative unless s is legal for t, in which case ut(s) = 0. Notice that a buyer may decide to take or

not to take any item with zero utility value. However, she gets a feasible set in both cases by the

above, thus concluding the proof.

4.2 Multi-demand markets up to three buyers

The aim of the section is to settle the existence of optimal dynamic prices in multi-demand markets

with a bounded number of buyers, under the assumption (OPT).

Theorem 5 (Berger et al.). Every multi-demand market with property (OPT) and at most three

buyers admits an optimal dynamic pricing scheme, and such prices can be computed in polynomial

time.

Proof. By Lemma 5, it suffices to show the existence of an adequate ordering for Gπ, where π is an

optimal non-negative weighted covering provided by Lemma 4. For a single buyer, the statement

is meaningless. For two buyers t1 and t2, |S| = b(t1) + b(t2) by assumption (OPT). Let σ be an

ordering that starts with items in NGπ (t1)△NGπ (t2) and then puts the items in NGπ (t1)∩NGπ (t2)
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Figure 2: Definition of the labeling Θ for three buyers. Notice that some parts might be empty,

e.g. if |X12| ≤ b2, then there are no items with label 1 and 3 in the intersection of NGπ
(t1) and

NGπ
(t2).

at the end of the ordering. Then, after the deletion of the first b(ti) neighbors of ti according to

σ, the remaining b(t3−i) items are in NGπ
(t3−i), hence σ is adequate.

Now we turn to the case of three buyers. Let t1, t2 and t3 denote the buyers, and let bi, vi, and ui

denote the demand, valuation, and utility function corresponding to buyer ti, respectively. Without

loss of generality, we may assume that b1 ≥ b2 ≥ b3. The proof is based on the observation that a

set is feasible if and only if its deletion leaves ‘enough’ items for the remaining buyers, formalized

as follows.

Claim 1. A set F ⊆ NGπ (ti) is feasible for ti if and only if |F | = bi and |NGπ (tj) − F | ≥ bj for

j ̸= i.

Proof. The conditions are clearly necessary. To prove sufficiency, we show that the constraints

of Lemma 2(a) are fulfilled after deleting ti and F from Gπ, that is, |S − F | = b(T ) − bi and

|NGπ (Y ) − F | ≥ b(Y ) for Y ⊆ T − ti. By (OPT) and the assumption that every item is legal for

at least two buyers, |S − F | = b(T ) − bi holds for Y = T − ti. Furthermore, one-element subsets

have enough neighbors by assumption, and the claim follows.

For I ⊆ {1, 2, 3}, letXI ⊆ S denote the set of items that are legal exactly for buyers with indices

in I, that is, XI :=
(⋂

i∈I NGπ (ti)
)
−

(⋃
i/∈I NGπ (ti)

)
. We may assume that X1 = X2 = X3 = ∅.

Indeed, given an adequate ordering for Gπ − (X1 ∪X2 ∪X3) where the demands of ti is changed

to bi − |Xi| for i ∈ {1, 2, 3}, putting the items in X1 ∪X2 ∪X3 at the beginning of the ordering

results in an adequate solution for the original instance.

By assumption, |X12|+ |X13|+ |X23|+ |X123| = b1+ b2+ b3. Furthermore, |Xij | ≤ bi+ bj holds

for i ̸= j, as otherwise in any allocation there exists an item that is legal only for ti and tj but is

not allocated to any of them, contradicting (OPT). We first define a labeling Θ: S → {1, 2, 3, 4, 5}
so that for each buyer i and set Xij , the number of items in Xij with label at most 4 − i is

max{0, |Xij | − bj}. We will make sure that each buyer i selects all items with label at most 4− i

that are legal for her, which will be the key to satisfy the constraints of Claim 1, see Figure 2.

All the items in X123 are labeled by 5. If |X12| ≤ b2, then all the items in X12 are labeled by 4.

If b1 ≥ |X12| > b2, then b2 items are labeled by 4 and the remaining |X12|− b2 items are labeled by

3 in X12. If |X12| > b1, b2 items are labeled by 4, b1− b2 items are labeled by 3, and the remaining

|X12| − b1 items are labeled by 1 in X12. We proceed with X13 analogously. If |X13| ≤ b3, then

all the items in X13 are labeled by 4. If b1 ≥ |X13| > b3, then b3 items are labeled by 4 and the

remaining |X13| − b3 items are labeled by 2 in X13. If |X13| > b1, b3 items are labeled by 4, b1 − b3
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items are labeled by 2, and the remaining |X13| − b1 items are labeled by 1 in X13. Similarly, if

|X23| ≤ b3, then all the items in X23 are labeled by 4. If b2 ≥ |X23| > b3, then b3 items are labeled

by 4 and the remaining |X23| − b3 items are labeled by 2 in X23. If |X23| > b2, then b3 items are

labeled by 4, b2 − b3 items are labeled by 2, and the remaining |X23| − b2 items are labeled by 1

in X23.

Now let σ be any ordering of the items satisfying the following condition: if the label of item

s1 is strictly less than that of item s2, then s1 precedes s2 in the ordering, that is, Θ(s1) < Θ(s2)

implies σ(s1) < σ(s2). We claim that σ is adequate for Gπ. To see this, it suffices to verify that

the set F of the first b(ti) neighbors of ti according to σ fulfills the requirements of Claim 1 for

i = 1, 2, 3. Let {i, j, k} = {1, 2, 3}. First we show that F contains all the items s ∈ Xij ∪Xik with

Θ(s) ≤ 4− i.

Claim 2. We have |{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}| ≤ bi.

Proof. Suppose to the contrary that this does not hold. Then bi < max{0, |Xij |−bj}+max{0, |Xik|−
bk} by the definition of the labeling. Since |Xij | ≤ bi + bj and |Xik| ≤ bi + bk, we have

max{0, |Xij | − bj} ≤ bi and max{0, |Xik| − bk} ≤ bi. Therefore, if bi < max{0, |Xij | − bj} +

max{0, |Xik| − bk}, then both maximums must be positive on the right hand side. However, this

leads to bi + bj + bk < |Xij |+ |Xik|, contradicting bi + bj + bk = |Xij |+ |Xik|+ |Xjk|+ |Xijk|.

By Claim 2, F contains all the items s ∈ Xij ∪Xik with Θ(s) ≤ 4− i, we have |Xij − F | ≤ bj

and |Xik − F | ≤ bk. Thus we get

|NGπ (tj)− F | = |Xij − F |+ |Xjk|+ |Xijk − F |

= |S| − |Xik − F | − |F |

≥ (bi + bj + bk)− bk − bi

= bj .

An analogous computation shows that |NGπ (tk)− F | ≥ bk. That is, F is indeed a feasible set for

ti, concluding the proof of the theorem.

5 Bi-demand markets

This section is devoted to the proof of the main result of this work, the existence of optimal

dynamic prices in bi-demand markets. The algorithm aims at identifying subsets of buyers whose

neighboring set in Gπ is ‘small’, meaning that other buyers should take no or at most one item

from it. If no such set exists, then an adequate ordering is easy to find. Otherwise, by examining

the structure of problematic sets, the problem is reduced to smaller instances.

Theorem 6. Every bi-demand market with property (OPT) admits an optimal dynamic pricing

scheme, and such prices can be computed in polynomial time.

Proof. Let G = (S, T ;E) and w be the bipartite graph and weight function associated with the

market. Take an optimal non-negative weighted covering π of w provided by Lemma 4, and

consider the subgraph Gπ = (S, T ;Eπ) of tight edges. For simplicity, we call a subset M ⊆ Eπ a

(1, 2)-factor if dM (s) = 1 for every s ∈ S and dM (t) = 2 for every t ∈ T . By (OPT) and Lemmas 1

and 3, there is a one-to-one correspondence between optimal allocations and (1, 2)-factors of Gπ.

Therefore, by Lemma 5, it suffices to show the existence of an adequate ordering σ for Gπ.

11



We prove by induction on |T |. The statement clearly holds when |T | = 1, hence we assume

that |T | ≥ 2. As there exists a (1, 2)-factor in Gπ, we have |NGπ (Y )| ≥ 2|Y | for every Y ⊆ T by

Lemma 2(a). We distinguish three cases.

Case 1. |NGπ
(Y )| ≥ 2|Y |+ 2 for every ∅ ≠ Y ⊊ T .

For any t ∈ T and s1, s2 ∈ NGπ (t), the graph Gπ − {s1, s2, t} still satisfies the conditions of

Lemma 2(a), hence {s1, s2} is feasible for t. Therefore, σ can be chosen arbitrarily.

Case 2. |NGπ (Y )| ≥ 2|Y |+ 1 for ∅ ≠ Y ⊊ T and there exists Y for which equality holds.

We call a set Y ⊆ T dangerous if |NGπ
(Y )| = 2|Y |+1. By Lemma 2(a), a pair {s1, s2} ⊆ NGπ

(t)

is not feasible for buyer t if and only if there exists a dangerous set Y ⊆ T−t with s1, s2 ∈ NGπ
(Y ).

In such case, we say that Y belongs to buyer t. Notice that the same dangerous set might belong

to several buyers.

Claim 3. Assume that Y1 and Y2 are dangerous sets with Y1 ∪ Y2 ⊊ T .

(a) If Y1 ∩ Y2 = ∅ and NGπ
(Y1) ∩ NGπ

(Y2) ̸= ∅, then |NGπ
(Y1) ∩ NGπ

(Y2)| = 1 and Y1 ∪ Y2 is

dangerous.

(b) If Y1 ∩ Y2 ̸= ∅, then both Y1 ∩ Y2 and Y1 ∪ Y2 are dangerous.

Proof. Observe that

(2|Y1|+ 1) + (2|Y2|+ 1) = |NGπ
(Y1)|+ |NGπ

(Y2)|

= |NGπ
(Y1) ∩NGπ

(Y2)|+ |NGπ
(Y1) ∪NGπ

(Y2)|

= |NGπ
(Y1) ∩NGπ

(Y2)|+ |NGπ
(Y1 ∪ Y2)|.

Assume first that Y1 ∩ Y2 = ∅. Then |NGπ
(Y1) ∩NGπ

(Y2)| ≤ 1 as otherwise |NGπ
(Y1 ∪ Y2)| ≤

2(|Y1| + |Y2|) = 2|Y1 ∪ Y2|, contradicting the assumption of Case 2. If |NGπ (Y1) ∩ NGπ (Y2)| = 1,

then |NGπ
(Y1 ∪ Y2)| = 2|Y1 ∪ Y2|+ 1 and so Y1 ∪ Y2 is dangerous.

Now consider the case when Y1 ∩ Y2 ̸= ∅. Then

|NGπ (Y1) ∩NGπ (Y2)|+ |NGπ (Y1 ∪ Y2)| ≥ |NGπ (Y1 ∩ Y2)|+ |NGπ (Y1 ∪ Y2)|

≥ (2|Y1 ∩ Y2|+ 1) + (2|Y1 ∪ Y2|+ 1)

= (2|Y1|+ 1) + (2|Y2|+ 1).

Therefore, we have equality throughout, implying that both Y1∩Y2 and Y1∪Y2 are dangerous.

Let Z ⊆ T be an inclusionwise maximal dangerous set.

Subcase 2.1. There is no dangerous set disjoint from Z.

First we show that if a pair s1, s2 ∈ NGπ
(t) is not feasible for a buyer t ∈ T − Z, then

s1, s2 ∈ NGπ (Z). Indeed, if {s1, s2} is not feasible for t, then there is a dangerous set X belonging

to t with s1, s2 ∈ NGπ (X). Since t /∈ X ∪ Z and Z ∩ X ̸= ∅ by the assumption of the subcase,

Claim 3(b) applies implying that X ∪ Z is dangerous as well. The maximal choice of Z implies

X ∪ Z = Z, hence Z belongs to t and s1, s2 ∈ NGπ
(Z).

Now take an arbitrary buyer t0 ∈ T −Z who shares a neighbor with Z, and let s0 ∈ NGπ (t0)∩
NGπ (Z). Let σ′ be an arbitrary ordering of the items in S − NGπ (Z). Furthermore, let G′′ :=

Gπ[Z ∪NGπ
(Z)]− s0. For any (1, 2)-factor of Gπ containing s0t0, its restriction to G′′ is a (1, 2)-

factor as well. In G′′, some of the edges might not be contained in any of the (1, 2)-factors. Still,

by induction and Lemma 6, there exists an adequate ordering σ′′ of the items in G′′. Finally, let

12



ZX t

s2 s1

(a) The graph of tight edges corresponding

to the instance in Figure 1, where Z is an

inclusionwise maximal dangerous set, and

X is an inclusionwise minimal dangerous

set disjoint from Z.
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(b) The graphs G′ = Gπ − (X ∪ (NGπ (X)− s1)) and

G′′ = Gπ − (Z ∪ (NGπ (Z) − s1)), together with an

adequate ordering σ′ and an arbitrary ordering σ′′,

respectively.

ZX t

12 345 6

(c) Construction of the ordering σ =

(σ′, σ′′|NGπ (X)−s2 , σ
′′′), where σ′′′ is the

trivial ordering of the one element set {s2}.

Figure 3: An illustration of the inductive step in Subcase 2.2.2.

σ′′′ denote the trivial ordering of the single element set {s0}. We set σ := (σ′, σ′′, σ′′′). Then any

buyer t ∈ T − Z will choose at most one item from NGπ
(Z), hence the adequateness of σ follows

from that of σ′′ and the assumption of the subcase.

Subcase 2.2. There exists a dangerous set disjoint from Z.

Let X be an inclusionwise minimal dangerous set disjoint from Z.

Subcase 2.2.1. For any t ∈ X and for any s1, s2 ∈ NGπ
(t), the set {s1, s2} is feasible.

Take an arbitrary buyer t0 ∈ T − X who shares a neighbor with X and let s0 ∈ NGπ
(t0) ∩

NGπ (X). Let G′ denote the graph obtained by deleting X∪(NGπ (X)−s0). For any (1, 2)-factor of

Gπ containing s0t0, its restriction to G′ is a (1, 2)-factor as well. In G′, some of the edges might not

be contained in any of the (1, 2)-factors. Still, by induction and Lemma 6, there exists an adequate

ordering σ′ of the items in G′. Let σ′′ be an arbitrary ordering of the items in NGπ
(X)− s0, and

define σ := (σ′, σ′′). Then t0 chooses at most one item from NGπ (X) (namely s0), since she has at

least one neighbor outside of NGπ (X) and those items have smaller indices in the ordering. Thus

the adequateness of σ follows from that of σ′ and from the assumption that any pair s1, s2 ∈ NGπ
(t)

form a feasible set for t ∈ X.

Subcase 2.2.2. There exists t0 ∈ X and s1, s2 ∈ NGπ (t) such that {s1, s2} is not feasible.

The following claim is the key observation of the proof.

Claim 4. X ∪ Z = T and NGπ (X) ∩NGπ (Z) = {s1, s2}.

Proof. Let Y ⊆ T − t0 be a dangerous set with s1, s2 ∈ NGπ (t0). As t0 ∈ T − (Z ∪ Y ) and Z is

inclusionwise maximal, either Y ⊆ Z or Y ∩ Z = ∅ by Claim 3(b). In the latter case, X and Y

are dangerous sets with X ∪ Y ⊊ T . Furthermore, |NGπ
(X) ∩ NGπ

(Y )| ≥ 2 since s1 and s2 are

contained in both. Hence, by Claim 3(a), X ∩Y ̸= ∅. But then X ∩Y is dangerous by Claim 3(b),

contradicting the minimality of X. Therefore, we have Y ⊆ Z. By Claim 3(a), X ∪ Z = T . As

|NGπ
(X)| = 2|X|+ 1, |NGπ

(Z) = 2|Z|+ 1, and |S| = 2|T | = 2|T |+ 2|Z|, the claim follows.
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Let G′ and G′′ denote the graphs obtained by deletingX∪(NGπ
(X)−s1) and Z∪(NGπ

(Z)−s1),

respectively, see Figure 3. For any (1, 2)-factor of Gπ containing t0s2, its restriction to G′ is a (1, 2)-

factor as well. In G′, some of the edges might not be contained in any of the (1, 2)-factors. Still,

by induction and Lemma 6, there exists an adequate ordering σ′ of the items in G′. Let σ′′ be an

arbitrary ordering of the items in NGπ
(X)− s2. Finally, let σ

′′′ denote the trivial ordering of the

single element set {s2}. Let σ := (σ′, σ′′|NGπ (X)−s1 , σ
′′′). We claim that σ is adequate. Indeed,

if a buyer t ∈ Z arrives first, then she chooses two items from NGπ (Z) − s2 according to σ′. As

σ′ is adequate for G′ and G′′ − s1 + s2 has a (1, 2)-factor, the remaining graph has a (1, 2)-factor

as well. If a buyer t ∈ X arrives first, then she chooses two items from NGπ
(X)− s2 that form a

feasible set, since the only pair that might not be feasible for her is {s1, s2} by Claim 4.

Case 3. |NGπ
(T ′)| = 2|T ′| for some ∅ ≠ T ′ ⊊ T .

We claim that there exists a set T ′ satisfying the assumption if and only if Gπ is not connected.

Indeed, if Gπ is not connected, then necessarily the number of items is exactly twice the number

of buyers in every component as the graph is supposed to have a (1, 2)-factor. To see the other

direction, let S′ := NGπ
(T ′), T ′′ := T − T ′, S′′ := S − S′, and consider the subgraphs G′ :=

Gπ[T
′ ∪ S′] and G′′ := Gπ[T

′′ ∪ S′′]. As every tight edge is legal and all the vertices in S′ are

matched to vertices in T ′ in any optimum b-matching, Gπ contains no edges between T ′′ and S′.

Therefore, Gπ is not connected, and it is the union of G′ and G′′. By induction, there exist adequate

orderings σ′ and σ′′ of S′ and S′′, respectively. Then the ordering σ := (σ′, σ′′) is adequate with

respect to π.

By Lemma 4, π can be determined in polynomial time, hence the graph of tight edges is

available. The algorithm for determining an adequate ordering for Gπ is presented as Algorithm 1.

To see that all steps can be performed in polynomial time, it suffices to show how to decide whether

a pair {s1, s2} of items forms a feasible set for a buyer t, and how to find an inclusionwise maximal

or minimal dangerous set, if exists, efficiently. Checking the feasibility of {s1, s2} for t reduces to

finding a (1, 2)-factor in Gπ−{s1, s2, t}. Dangerous sets can be found as follows: take two copies of

each vertex t ∈ T , and connect them to the vertices in NGπ (t). Furthermore, add a dummy vertex

w0 to the graph and connect it to every vertex in S. Let G′ = (S′, T ′;E′) denote the graph thus

obtained. For a set Y ⊆ T , let Y ′ ⊆ T ′ consist of the copies of the vertices in Y plus the vertex

w0. It is not difficult to check that Y ⊆ T is an inclusionwise minimal or maximal dangerous set

of Gπ if and only if Y ′ is an inclusionwise minimal or maximal subset of T ′ with |NG′(Y ′)| = |Y ′|.
Hence Y can be determined, for example, by relying on Kőnig’s alternating path algorithm [23].

When an inclusionwise minimal dangerous set X is needed that is disjoint from Z, then the same

approach can be applied for the graph Gπ − Z.

Remark 7. Theorem 6 settles the existence of optimal dynamic prices when the demand of each

buyer is exactly two. However, the proof can be straightforwardly extended to the case when the

demand of each buyer is at most two.
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Algorithm 1 Determining an adequate ordering for bi-demand markets with property (OPT).

Input: Graph Gπ of tight edges, upper bounds b(t) = 2 for t ∈ T and b(s) = 1 for s ∈ S.

Output: Adequate ordering σ of the items.

1: if |NGπ
(Y )| ≥ 2|Y |+ 2 for every ∅ ≠ Y ⊊ T then

2: Let σ be an arbitrary ordering of S.

3: else if |NGπ (Y )| ≥ 2|Y |+ 1 for every ∅ ̸= Y ⊊ T , and there exists Y for which equality holds

then

4: Determine an inclusionwise maximal dangerous set Z.

5: if there exists no dangerous set disjoint from Z then

6: Take an item s0 ∈ NGπ (Z) that has a neighbor t0 ∈ T − Z.

7: Let σ′ be an arbitrary ordering of S −NGπ
(Z).

8: Determine an adequate ordering σ′′ for G′′ := Gπ[Z ∪ (NGπ
(Z)− s0)].

9: Let σ′′′ be the trivial ordering of the single item s0.

10: Set σ := (σ′, σ′′, σ′′′).

11: else

12: Determine an inclusionwise minimal dangerous set X disjoint from Z.

13: if {s1, s2} is feasible for any t ∈ X and s1, s2 ∈ NGπ (t) then

14: Take an item s0 ∈ NGπ (X) that has a neighbor t0 ∈ T −X.

15: Determine an adequate ordering σ′ for G′ := Gπ − (X ∪ (NGπ
(X)− s0)).

16: Let σ′′ be an arbitrary ordering of NGπ
(X)− s0.

17: Set σ := (σ′, σ′′).

18: else (Observation: X ∪ Z = T and NGπ (X) ∩NGπ (Z) = {s1, s2}.)
19: Determine an adequate ordering σ′ for G′ := Gπ − (X ∪ (NGπ

(X)− s1)).

20: Let σ′′ be an arbitrary ordering of the items in G′′ := Gπ − (Z ∪ (NGπ
(Z)− s1)).

21: Let σ′′′ be the trivial ordering of the single item s2.

22: Set σ := (σ′, σ′′|NGπ (X)−s1 , σ
′′′).

23: else (Observation: the graph Gπ is not connected.)

24: Let ∅ ≠ T ′ ⊊ T be a set with |NGπ
(T ′)| = 2|T ′|.

25: Determine an adequate ordering σ′ for G′ := Gπ[T
′ ∪NGπ (T

′)].

26: Determine an adequate ordering σ′′ for in G′′ := Gπ − (T ′ ∪NGπ (T
′)).

27: Set σ := (σ′, σ′′).

28: return σ

6 Markets where property (OPT) is not satisfied

Our goal is to give optimal dynamic pricing schemes for multi-demand markets with at most three

buyers and for bi-demand markets, without assuming (OPT). In both cases, the proof is based on

the following idea: We add small valued dummy items to the market so that (OPT) is satisfied,

then we determine optimal dynamic prices for the modified market, and show that the same prices

are optimal for the original instance as well.

Formally, consider a market for which (OPT) does not hold, that is, the number of items is less

than the total demand of the buyers. Let G = (S, T ;E) be the bipartite graph associated with the

market, and take a minimum weighted covering π provided by Lemma 4. For ease of discussion,

let us denote the set of buyers who might receive fewer items than their demand in an optimal
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solution by

T̂ := {t ∈ T | dM (t) < b(t) for some maximum weight b-matching M}.

We call the items in S real. Now extend the graph by adding a set Ŝ of b(T )− |S| dummy items;

we refer to edges going between these items and buyers as dummy edges. We define the value of a

dummy item (and so the weight of the corresponding dummy edge) to be 2ε for each buyer, where

ε := 1/4 · ∆(π). By Lemma 4(b) and the assumption that every item is used in every optimal

allocation, ε is strictly positive, hence the modified instance satisfies (OPT). Let G+ = (S+, T, E+)

and w+ denote the graph and weight function thus obtained, respectively. It is not difficult to

check that the maximum weight b-factors of G+ are exactly those that can be obtained from a

maximum weight b-matching of G by adding |Ŝ| dummy edges.

Lemma 7. There exists a minimum weighted covering π+ of w+ such that

(a) π+(t) = ε for each t ∈ T̂ ,

(b) π+(t) > ε for each t ∈ T − T̂ , and

(c) if t ∈ T̂ , s ∈ S and st is not legal, then w(st)− π+(s) < 0.

Furthermore, such a π+ can be determined in polynomial time.

Proof. Let π+ be an extension of π by setting π+(ŝ) := 2ε for ŝ ∈ Ŝ. It is not difficult to check

that π+ is a weighted covering of w+. Furthermore, as the total value of π+ equals the total value

of π plus 2ε|Ŝ| which is exactly the difference between the maximum weight of a b-factor in G+

and the maximum weight of a b-matching in G, π+ is a minimum weighted covering.

Now increase π+(t) by ε for t ∈ T and decrease π+(s) by ε for s ∈ S+. As (OPT) holds for the

modified instance, the total value of π+ does not change, hence it remains a minimum weighted

covering. By Lemma 4(b), π(t) = 0 for t ∈ T̂ and π(t) > 0 otherwise. Furthermore, by the

assumption that every item is used in every optimal allocation, π(s) > 0 for s ∈ S. These together

show that π+ satisfies (a) and (b).

By Lemma 4(a), for every st ∈ E such that t ∈ T̂ , s ∈ S, and st is not legal, we have

w(st)− π(s) < π(t) = 0, therefore w(st)− π+(s) < 0 by the choice of ϵ. This proves the last part

of the claim.

6.1 Multi-demand markets up to three buyers

Theorem 8 (Berger et al.). Every multi-demand market with at most three buyers admits an

optimal dynamic pricing scheme, and such prices can be computed in polynomial time.

Proof. For a single buyer, the statement is meaningless.

For two buyers t1 and t2, if the dummy items are in NG+

π+
(t1) ∩ NG+

π+
(t2), labelling items

in NG+

π+
(t1) − (NG+

π+
(t1) ∩NG+

π+
(t2)) and NG+

π+
(t2) − (NG+

π+
(t1) ∩NG+

π+
(t2)) by 1 and items in

NG+

π+
(t1)∩NG+

π+
(t2) by 2 results in optimal allocations, because for i = 1, 2, buyer ti has positive

utility for all real items inNG+

π+
(ti), negative utility for items not inNG+

π+
(ti), and she prefers items

in NG+

π+
(ti) − (NG+

π+
(t1) ∩ NG+

π+
(t2)). If the dummy items are in, say, NG+

π+
(t1) − (NG+

π+
(t1) ∩

NG+

π+
(t2)), we chose max{0, b2 − |NG+

π+
(t2) − (NG+

π+
(t1) ∩ NG+

π+
(t2))|} items from NG+

π+
(t1) ∩

NG+

π+
(t2) and increase their prices by ε. This way, t2 gets all items which are legal only for her

and she gets max{0, b2−|NG+

π+
(t2)− (NG+

π+
(t1)∩NG+

π+
(t2))|} items from NG+

π+
(t1)∩NG+

π+
(t2) as

her utility is still positive for them. Buyer t1 takes real items in NG+

π+
(t1)− (NG+

π+
(t1)∩NG+

π+
(t2))

and the items in NG+

π+
(t1) ∩NG+

π+
(t2) whose prices remained unchanged.
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Now we turn to the case of three buyers. Add dummy items to the instance as described before,

and let π+ be a minimum weighted covering provided by Lemma 7. Let t1, t2 and t3 denote the

buyers, and let bi, vi, and ui denote the demand, valuation, and utility function corresponding

to buyer ti, respectively. For I ⊆ {1, 2, 3}, let XI ⊆ S+ denote the set of items that are legal

exactly for buyers with indices in I, that is, XI :=
(⋂

i∈I NG+

π+
(ti)

)
−

(⋃
i/∈I NG+

π+
(ti)

)
. Without

loss of generality, we may assume that b1 ≥ b2 ≥ b3. However, unlike before, we cannot assume

X1 = X2 = X3 = ∅ due to the presence of dummy items.

Similarly to the case when property (OPT) holds, we define a labeling Θ : S+ → {1, 2, 3, 4, 5}
such that any bi items with the smallest labels in NG+

π+
(ti) form a feasible set for ti. That is,

for an appropriately small δ > 0, setting the prices to π+(s) + δ · Θ(s) for each item s where

δ := ∆(π+)/(|S|+ 1), results in optimal dynamic prices for the modified instance. Unfortunately,

when the prices are restricted to the set of original items, optimality might not be met due to the

absence of dummy items. This is because a buyer might replace the missing dummy items with

real items that she did not take before, which results in a suboptimal solution. To resolve this,

as in the bi-demand case, we further increase the prices by ε to ensure that buyers have negative

utility from items they should not choose. Notice that Observation 9 holds again.

We have seen, when the market satisfy the property (OPT) and X1 = X2 = X3 = ∅, it is

enough to ensure {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i} ⊆ F for {i, j, k} = {1, 2, 3}, where F be a set of

bi items with the largest utility for ti. Now, if there are ŝ dummy items with label Θ(ŝ) ≤ 4 − i,

ti simply skips them, so we also have to ensure she does not take too much real items with label

greater than 4 − i. If some Xi (i ∈ {1, 2, 3}) is not empty, but it contains only real items, if we

label them by 0, ti always buys them, therefore we can reduce the problem to the case when Xi

is empty and the demand of ti is bi − |Xi|. If some Xi contains dummy items, the reduction will

be more difficult. The following claim shows how the conditions for the feasible sets change when

X1 = X2 = X3 = ∅:

Claim 5. Assume X1 = X2 = X3 = ∅. Let i ∈ {1, 2, 3} and let F be the following set: if ti has at

positive utility for at least bi items in NG+

π+
(ti), F is the set of the first bi items with the largest

utility. If ti has at positive utility for less than bi items in NG+

π+
(ti), F contains all of them. If

(a) F contains all real items in {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i},
(b) The difference bi−|F | is at least the number of dummy items in {s ∈ Xij∪Xik | Θ(s) ≤ 4−i},

(c) The difference bi − |F | is at most the number of dummy items in NG+

π+
(ti),

then F is feasible for ti.

Proof. Let F be a set of items in NG+

π+
(ti) as stated above. We extend F with dummy items the

following way: If there are dummy items in {s ∈ Xij ∪ Xik | Θ(s) ≤ 4 − i}, we add them to F .

If the cardinality of the set we got this way is strictly less than bi, we further extend it by adding

dummy items from NG+

π+
(ti) with label at least 4 until the resulting sets cardinality becomes bi.

By 5(b) and 5(c), this can be achieved. Let F ′ denote the resulting set. Then |F ′| = bi and F ′

contains all real and dummy items in {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}. We have |Xij −F ′| ≤ bj and
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|Xik − F ′| ≤ bk. Thus we get

|NG+

π+
(tj)− F ′| = |Xij − F ′|+ |Xjk|+ |Xijk − F ′|

= |S| − |Xik − F ′| − |F ′|

≥ (bi + bj + bk)− bk − bi

= bj .

An analogous computation shows that |NG+

π+
(tk) − F ′| ≥ bk. Since we get F ′ by adding only

dummy items to F , this proves the feasibility of F .

We will apply a similar labeling procedure as when property OPT holds, then increase some

prices by ε. As dummy items are completely equivalent, either none or all of them are legal for

each buyer. We divide the proof into three cases based on whether dummy items are legal only for

two or all three of the buyers.

Case 1. The dummy items are in Xi for some i ∈ {1, 2, 3}.
By Lemma 7, each buyer has positive utility from her legal real items and negative utility from

her non-legal items.

If the number of dummy items is bi, then all real items are non-legal for ti, and her utility

from real items is negative. Therefore we can apply the labeling procedure for the other two

buyers. Otherwise, let b′i denote the difference between bi and the number of dummy items, that

is, b′i := bi − |Ŝ|. If there are real items in Xi, we label them by 0 and decrease b′i by the number

of real items in Xi. Regardless if there are real items in Xi or not, b
′
i = bi − |Xi|. We delete the

dummy items from the graph and the real items from Xi, if there is any, then apply the labeling

procedure for three buyers, but with b′i in place of bi. Now |{s ∈ Xij∪Xik | Θ(s) ≤ 4−i}| ≤ b′i. We

select max(0, b′i−|{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}|) items from Xijk∪{s ∈ Xij ∪Xik | Θ(s) > 4− i},
starting with the items with lower labels, and leave their prices unchanged, while the prices of all

other items in Xijk∪{s ∈ Xij ∪Xik | Θ(s) > 4− i} are increased by ε. This way we achieve that ti

has non-negative utility from exactly b′i items. Despite the price increasing, tj (j ̸= i) has positive

utility for all items in NG+

π+
(tj) and since we start the price increasing with the items with lower

labels, the order of items in NG+

π+
(tj) does not change, and the conditions of Claim 5 hold.

From now on, we can assume X1 = X2 = X3 = ∅. Otherwise, we label the items in Xi by 0,

delete them from the graph, and replace bi by bi − |Xi|.

Case 2. The dummy items are in X13.

We apply a similar labeling procedure that we used when the market satisfies property (OPT).

The items in X123 get label 5. As before, items in Xij are labeled by 4, θ or 1, where θ = 3

if {i, j} = {1, 2}, otherwise θ = 2. However, dummy items are preferred to get higher labels.

That is, we label as many dummy items by 4 as possible, and if the number of dummy items

is more than the number of items to be labeled by 4, we proceed with labeling dummy items

by 2, and then by 1 if necessary. The proof of Theorem ?? shows that ti takes every item in

{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}.
We distinguish three subcases:

Subcase 1. |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| > b3 and there is no item in X13 with

label 1.

We do not change the prices in X23. If b1 ≤ |X13| + |{s ∈ X12 | Θ(s) ≤ 3}|, we increase the

prices in {s ∈ X12 | Θ(s) = 4}∪X123 by ε, otherwise we select b1− (|X13|+ |{s ∈ X12 | Θ(s) ≤ 3})
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items from {s ∈ X12 | Θ(s) = 4} ∪ X123, starting with the ones in X12. We leave the prices of

the selected items unchanged, but we increase the prices of items in {s ∈ X12 | Θ(s) = 4} ∪X123

which were not selected by ε. This way, t3 takes all items in X23 with label 1 (remember, there

are no items in X13 with label 1) as they are real items. t2 takes all items in X23 with label 1

and 2, since their prices were not increased. If b1 ≤ |X13| + |{s ∈ X12 | Θ(s) ≤ 3}|, t1 takes all

items from {s ∈ X12 | Θ(s) ≤ 3} as these are real items, and t1 gets all real or dummy items

in {s ∈ X12 | Θ(s) ≤ 2}, since we increased the prices in {s ∈ X12 | Θ(s) = 4} ∪ X123. If

b1 > |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}|, t1 gets X13 and all items in X12∪X123 with unchanged prices.

In both cases, t1 takes all real items in X12 with label 1 and 3, and she also takes all real items in

X13 with label 2. Moreover, the difference between b1 and the real items she takes is at least the

number of dummy items in X13 with label 1 and 2. The way we increased some prices, we ensured

conditions 5(b), 5(c) are fulfilled.

Subcase 2. |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| > b3 and exists an item in X13 with

label 1.

As in the previous case, we need to ensure 5(b), 5(c) hold. In this case, |{s ∈ X13 | Θ(s) >

1}| = b1 and |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| > b3, which implies |X12|+ |X123|+
|{s ∈ X23 | Θ(s) = 4}| = b2, therefore there is no item in X12 with label 1 or 3. We increase the

prices in X12∪X123 by ε. We select b3−|{s ∈ X13 | Θ(s) = 1}|−|{s ∈ X23 | Θ(s) = 1}| items from

{s ∈ X23 | Θ(s) = 2} (the assumption |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| > b3 shows

this can be done), and leave their prices unchanged, but we increase the prices of the remaining

items in {s ∈ X23 | Θ(s) = 2} by ε, and we also increase the prices in {s ∈ X23 | Θ(s) = 4} by

ε. This way, t1 only takes items from X13, which is enough, since there are no items in X12 with

label 1 or 3. t2 takes all items in X23 with label 1 and 2, and t3 takes all real items in X13 ∪X23

with label 1.

Subcase 3. |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| ≤ b3.

In the case when property (OPT) holds, t1 could choose freely from {s ∈ X12∪X13 | Θ(s) = 4}
when |{s ∈ X12 ∪X13 | Θ(s) ≤ 3}| < b1, now we will force her to buy as many items from {s ∈
X13 | Θ(s) = 4} as possible. We do this in the following way: if |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≥ b1,

we increase the prices in {s ∈ X12 | Θ(s) = 4} ∪X123 by ε. If |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| < b1,

we choose b1 − (|X13| + |{s ∈ X12 | Θ(s) ≤ 3}|) items from {s ∈ X12 | Θ(s) = 4}, and if the

items in {s ∈ X12 | Θ(s) = 4} are not enough, we further choose from X123. We increase the

prices of the others in {s ∈ X12 | Θ(s) = 4} ∪ X123 which were not chosen by ε. We do the

same with t3. If we have to choose items from X123, we start with the items which are chosen

because of t1, if there are any. If there is no chosen item because of t1 or we have to choose

more, we choose from the items with increased price, but we decrease their price by ε. First,

we check the case when the first buyer is t1, and assume we increased the price of all items in

X123. If |X13| + |{s ∈ X12 | Θ(s) ≤ 3}| ≥ b1, then t1 has negative utility for the items not in

X13 ∪ {s ∈ X12 | Θ(s) ≤ 3}. Since |{s ∈ X13 ∪ X12 | Θ(s) ≤ 3}| ≤ b1, t1 takes all real items

in {s ∈ X13 | Θ(s) ≤ 3} and she also takes real items in {s ∈ X13 | Θ(s) ≤ 2}. By the price

increasing, 5(b) and 5(c) also hold. If |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| < b1, t1 gets all real items in

X13 ∪ {s ∈ X12 | Θ(s) ≤ 3} and the items in {s ∈ X12 | Θ(s) = 4} whose price were not changed.

One can verify that 5(b) and 5(c) hold again. If there are items in X123 with unchanged prices,

and the number of them is b1 − |X12| − |X13|, t1 gets all real items in X13, X12 and the items

in X123 whose price were not changed. 5(b) and 5(c) hold again. The remaining case is when
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exists at least one item in X123 whose price was not changed and the number of items in X123 with

unchanged prices is greater than b1 − |X12| − |X13|. That means we left their prices unchanged

because of t3, that is |X13|+ |X23| < b3. That also means there is no item in X13 with label 1 or

2. It is not difficult to see that t1 takes all items in {s ∈ X12 | Θ(s) ≤ 3}. Secondly, if the first

buyer is t3, the reasoning goes the same way as with t1: if we increased the price of all items in

X123 and |X13| + |{s ∈ X23 | Θ(s) = 1}| ≥ b3, then t3 has negative utility for the items not in

X13 ∪ {s ∈ X23 | Θ(s) = 1}. Since |{s ∈ X13 ∪ X23 | Θ(s) = 1}| ≤ b3, t3 takes all real items in

{s ∈ X13 | Θ(s) = 1} and she also gets {s ∈ X23 | Θ(s) = 1}. If |X13|+|{s ∈ X23 | Θ(s) = 1}| < b3,

t3 buys all real items in X13 ∪ {s ∈ X23 | Θ(s) = 1} and the items in {s ∈ X23 | Θ(s) > 1} whose

price were not changed. 5(b) and 5(c) holds again. If there are items in X123 with unchanged

prices, and the number of them is b3−|X13|−|X23|, t3 buys all real items in X13, X23 and the items

in X123 whose price were not changed. When exists at least one item in X123 whose price was not

changed and the number of items in X123 with unchanged prices is greater than b3−|X13|− |X23|,
|X12| + |X13| < b1 holds. That means there is no item in X13 with label 1. It is not difficult to

see that t3 gets all items in {s ∈ X23 | Θ(s) = 1}. It is not difficult to check 5(b) and 5(c) holds.

Finally, if the first buyer is t2, she gets all items in {s ∈ X23 | Θ(s) ≤ 2} ∪ {s ∈ X12 | Θ(s) = 1} as

we only increased prices in {s ∈ X12 ∪X23 ∪X123 | Θ(s) ≥ 4}.

Case 3. The dummy items are in X12.

The initial labeling procedure is the same as in Case 2, then we increase some of the prices.

First, we want to ensure 5(b), 5(c) holds if t1 is the first buyer. We do this the following way:

if |X12| + |{s ∈ X13 | Θ(s) ≤ 2}| ≥ b1, we increase the prices in {s ∈ X13 | Θ(s) = 4} ∪ X123

by ε. If |X12| + |{s ∈ X13 | Θ(s) ≤ 2}| < b1, we choose b1 − (|X12| + |{s ∈ X13 | Θ(s) ≤ 2}|)
items from {s ∈ X13 | Θ(s) = 4}, and if the items in {s ∈ X13 | Θ(s) = 4} are not enough, we

further choose from X123. We increase the prices of the others in {s ∈ X13 | Θ(s) = 4} ∪ X123

which were not chosen by ε. We proceed similarly with t2 instead of t1 to ensure 5(b), 5(c)

holds if she is the first buyer in the market. If |X12| + |{s ∈ X23 | Θ(s) ≤ 2}| ≥ b2, we increase

the prices in {s ∈ X23 | Θ(s) = 4} ∪ X123 by ε. If |X12| + |{s ∈ X23 | Θ(s) ≤ 2}| < b2, we

choose b2 − (|X12|+ |{s ∈ X23 | Θ(s) ≤ 2}|) items from {s ∈ X23 | Θ(s) = 4}, and if the items in

{s ∈ X23 | Θ(s) = 4} are not enough, we further choose from X123. We increase the prices of the

others in {s ∈ X23 | Θ(s) = 4}∪X123 which were not chosen by ε. If we have to choose items from

X123, we start with the items which are chosen because of t1, if there is any. If there is no chosen

item because of t1 or we have to choose more, we choose from the items with increased price, but

we decrease their price by ε.

Now let us assume t1 is the first buyer. We also assume first that we increased the price of

all items in X123. t1 gets all items from {s ∈ X13 | Θ(s) ≤ 2} and she also takes the real items

in {s ∈ X12 | Θ(s) ≤ 3}. If |X12| + |{s ∈ X13 | Θ(s) ≤ 2}| < b1, she buys all real items in X12,

{s ∈ X13 | Θ(s) ≤ 2} and the items in {s ∈ X13 | Θ(s) = 4} whose price were not changed. If there

are items in X123 with unchanged prices, and the number of them is b1 − |X12| − |X13|, t1 gets all

items in X12, X13 and the items in X123 whose price were not changed. The remaining case is when

exists at least one item in X123 whose price was not changed and the number of items in X123 with

unchanged prices is greater than b1 − |X12| − |X13|. That means we left their prices unchanged

because of t2, that is |X12| + |X23| < b2. That also means there is no item in X12 with label 1

or 3. It is not difficult to see that t1 buys all items in {s ∈ X13 | Θ(s) ≤ 2}, as their prices are

unchanged. If t2 is the first buyer, the reasoning goes similarly. The only thing which is different

from the previous case is when there exists at least one item in X123 with unchanged price, but
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the number of these items is greater than b2 − |X12| − |X23|. Now, it means b1 > |X12| + |X13|,
which does not mean there are no items in X12 with label 1 or 3, it only means there are no items

in X12 with label 1, but that is enough as t2 has to buy all real items in X12 with label 1, if there

is any, but she can leave real items in X12 with label 3 or 4. If the first buyer is t3, she takes all

items in {s ∈ X13 ∪X23 | Θ(s) = 1}.

Case 4. The dummy items are in X23.

We start with the same labeling procedure as in Case 2 and Case 3. We distinguish five

subcases:

Subcase 1. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| > b2 and there is at least one item in

X23 with label 2.

The assumption that there is at least one item in X23 with label 2 shows |{s ∈ X23 | Θ(s) =

4}| = b3, thus with |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) ≤ 3}| > b2, it implies |X13| < b1,

therefore there is no item in X13 with label 1. We increase the prices in X13 ∪ X123 by ε. If

|{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) = 1}| ≥ b2, we increase the prices in {s ∈ X12 | Θ(s) =

3} ∪ {s ∈ X12 | Θ(s) = 4} by ε. If |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) = 1}| < b2, we

select some items from {s ∈ X12 | Θ(s) = 3} such way that the number of the selected items

are b2 − |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) = 1}|, and leave their prices unchanged,

but we increase the prices of the unselected items in X12 with label 3 and the prices of the

label 4 items in X12 by ε. This way, if t1 comes first, she gets {s ∈ X12 | Θ(s) ≤ 3} and

{s ∈ X13 | Θ(s) = 2} (remember, there are no items in X13 with label 1). If t2 comes first, she

takes {s ∈ X12 | Θ(s) = 1} and the real items in {s ∈ X23 | Θ(s) ≤ 2}. If t3 comes first, she gets

the real items in {s ∈ X23 | Θ(s) = 1}. The price increasing shows 5(b) and 5(c) holds.

Subcase 2. |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) ≤ 3}| > b2 and there are no items in X23

with label 2.

We leave all prices unchanged. If t1 comes first, she takes {s ∈ X13 | Θ(s) ≤ 2} and {s ∈
X12 | Θ(s) ≤ 3}. If t2 or t3 comes first, they get all real items in {s ∈ X12 | Θ(s) = 1} and

{s ∈ X13 | Θ(s) = 1}, respectively. As the dummy items are in {x ∈ X23 | Θ(s) = 4}, 5(b), 5(c)

holds automatically.

Subcase 3. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2, |{s ∈ X23 | Θ(s) = 1}|+ |{s ∈
X13 | Θ(s) ≤ 2}| > b3 and exists an item in X23 with label 1.

The assumption that there is at least one item in X23 with label 1 shows |{s ∈ X23 | Θ(s) >

1}| = b2, thus with |{s ∈ X23 | Θ(s) = 1}| + |{s ∈ X13 | Θ(s) ≤ 2}| > b3, it implies |X13| < b1,

therefore there is no item in X13 with label 1. We increase the prices in X12 ∪X123 by ε. We also

increase the prices in {s ∈ X13 | Θ(s) > 1}.
If t1 comes first, she takes {s ∈ X12 | Θ(s) = 3} (there are no items in X12 with label 1) and

{s ∈ X13 | Θ(s) ≤ 2}, as in NGπ
(t1), we only left the prices unchanged in {s ∈ X13 | Θ(s) = 1},

which means the order of items in NGπ (t1) remained unchanged. If t2 comes first, she gets the

real items in {s ∈ X23 | Θ(s) ≤ 2}. If the first buyer is t3, she takes {s ∈ X13 ∪X23 | Θ(s) = 1}.
Therefore all three conditions of Claim 5 hold again.

Subcase 4. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2, |{s ∈ X23 | Θ(s) = 1}|+ |{s ∈
X13 | Θ(s) ≤ 2}| > b3 and there is no item in X23 with label 1.

If |X23|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≥ b2, we increase the prices in {s ∈ X12 | Θ(s) = 4} ∪X123 by

ε. If |X23|+ |{s ∈ X12 | Θ(s) ≤ 3}| < b2, we select b2− (|X23|+ |{s ∈ X12 | Θ(s) ≤ 3}|) items from

{s ∈ X12 | Θ(s) = 4} ∪X123, starting with the items in {s ∈ X12 | Θ(s) = 4}, and we increase the
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prices of the unselected items in {s ∈ X12 | Θ(s) = 4} ∪X123 by ε.

When the first buyer is t1, she takes {s ∈ X12 | Θ(s) ≤ 3} ∪ {s ∈ X13 | Θ(s) ≤ 2}, as we only

increased prices of items with label 4 or 5. If the first buyer is t2, she gets {s ∈ X23 | Θ(s) = 2}
(remember, there is no item in X23 with label 1) and she also buys {s ∈ X12 | Θ(s) ≤ 3} as these

are real items and |{s ∈ X23 | Θ(s) = 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2. If t3 is the first buyer, she

gets {s ∈ X13 | Θ(s) = 1}. Observe that the conditions of Claim 5 hold.

Subcase 5. |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2 and |{s ∈ X23 | Θ(s) =

1}|+ |{s ∈ X13 | Θ(s) ≤ 2}| ≤ b3.

To ensure 5(b) and 5(c). holds, we increase some prices the following way: If |X23|+ |{s ∈ X12 |
Θ(s) = 1}| ≥ b2, we increase the prices in {s ∈ X12 | Θ(s) > 1} ∪X123 by ε. If |X23|+ |{s ∈ X12 |
Θ(s) = 1}| < b2, we choose b2 − (|X23|+ |{s ∈ X12 | Θ(s) = 1}|) items from {s ∈ X12 | Θ(s) > 1},
and if the items in {s ∈ X12 | Θ(s) > 1} are not enough, we further choose from X123. We

increase the prices of the others in {s ∈ X12 | Θ(s) > 1} ∪ X123 which were not chosen by ε.

We do the same with b3 instead of b2: If |X23| + |{s ∈ X13 | Θ(s) = 1}| ≥ b3, we increase the

prices in {s ∈ X13 | Θ(s) > 1} ∪ X123 by ε. If |X23| + |{s ∈ X13 | Θ(s) = 1}| > b3, we choose

b3 − (|X23| + |{s ∈ X13 | Θ(s) = 1}|) items from {s ∈ X13 | Θ(s) > 1}, and if the items in

{s ∈ X13 | Θ(s) > 1} are not enough, we further choose from X123. We increase the prices of the

others in {s ∈ X13 | Θ(s) > 1}∪X123 which were not chosen by ε. If we have to choose items from

X123, we start with the items which are already chosen, if there is any. If there is no chosen item

or we have to choose more, we choose from the items with increased price, but we decrease their

price by ε.

If t1 comes first, she gets {s ∈ X12 | Θ(s) ≤ 3} and {s ∈ X13 | Θ(s) ≤ 2}, as in NG+

π+
(t1), we

only increased the prices of items with label 4 or 5. It is easy to check for t2 and t3 that they take

{s ∈ X12 ∪X23 | Θ(s) ≤ 2} and {s ∈ X13 ∪X23 | Θ(s) = 1}, respectively.

Case 5. The dummy items are in X123.

By Lemma 7, a buyer has positive utility from her legal real items and negative utility from her

non-legal items. We apply the same labeling procedure that we used in the proof of Theorem ??,

that is, when the market satisfies property (OPT). Thus dummy items are now labeled by 5.

As before, ti gets all items in NG+

π+
(ti) with label no greater than 4 − i, since these are real

items. That implies 5(a) and 5(b). As |NG+

π+
(ti)| ≥ bi and ti has positive utility for all real items

in NG+

π+
(ti), 5(c) automatically holds.

6.2 Bi-demand markets

For convenience, let S denote S+. In the proof of Theorem 6, we showed the existence of an

adequate ordering σ. In Lemma 5, we saw that, for δ := ∆(π)/(|S| + 1), setting the prices to

p(s) := π(s) + δ · σ(s) results in optimal dynamic pricing if (OPT) holds. However, when S

contains dummy items besides the real ones, the pricing defined this way might not result in an

optimal allocation. This is because when a buyer chooses items from her neighbors according to

σ, the dummy items are not there in real life, therefore the buyer might skip dummy items in its

neighborhood in G+
π+ . As a consequence, she might take two items that are not allowed to her

(that is, she takes two items from NG+

π+
(Y ) where |NG+

π+
(Y )| ≤ 2|Y |+ 1 for some ∅ ̸= Y ⊊ T ) or

she might take an item which is not feasible for her (that is, the item is not her neighbor in G+
π+).

However, if we start with the minimum weighted covering π+ described in Lemma 7, property

7(c) shows that if a buyer skips her dummy neighbors in the ordering, she does not take real items
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which are not legal for her as she has negative utility for them. That is, it is enough to ensure that

if a buyer t has dummy neighbors, then she does not take two items from NG+

π+
(Y ) for every Y

set with |NG+

π+
(Y )| ≤ 2|Y |+ 1, t /∈ Y when she skips dummy items in the ordering. Recall that a

set Y of buyers is dangerous if |NG+

π+
(Y )| = 2|Y |+ 1 and tight if |NG+

π+
(Y )| = 2|Y |. That means,

we have to pay attention to dangerous and tight sets when pricing the items in the market.

The idea of the proof of Theorem 6 is the following: we set the prices to p(s) := π(s)+ δ · σ(s),
where σ is an adequate ordering which is determined the same way as previously with the property

(OPT). Then we increase some of the prices by ε to ensure that if a buyer has dummy items as

neighbors, she will not take two items from NG+

π+
(Y ) if Y is a dangerous or tight set. We will use

the following observations.

Observation 9.

(a) In G+
π+ , the neighborhoods of dummy items are the same. As a result, for every Y ⊆ T , all

dummy items are in NG+

π+
(Y ) or all of them are in S −NG+

π+
(Y ),

(b) A buyer t ∈ T̂ has negative utility for a real item s if st is not legal, therefore buyers in T̂

only take items that are feasible for them. Also, buyers in T − T̂ take only feasible items as

they have at least b(t) neighbors in G+
π+ ,

(c) By the choice of ε, if we increase p(s) by ε for some item s, the utility of t ∈ T̂ for s becomes

negative,

(d) By the choice of ε, if t ∈ T − T̂ , st is an edge in G+
π+ , and we increase p(s) by ε, the utility

of t for s remains positive and still higher than for any s′ where s′t is not legal.

Now we are ready to prove Theorem 6 without assuming (OPT).

Theorem 10. Every bi-demand market admits an optimal dynamic pricing scheme, and such

prices can be computed in polynomial time.

Proof. As before, we prove by induction on |T |, and the proof goes very similarly to the proof with

the (OPT) assumption. The statement holds when |T | = 1, therefore |T | ≥ 2 can be assumed.

Case 1. |NG+

π+
(Y )| ≥ 2|Y |+ 2 for every ∅ ≠ Y ⊊ T .

For any t ∈ T and s1, s2 ∈ NG+

π+
(t), the graph Gπ − {s1, s2, t} still satisfies the conditions of

Lemma 2(a), hence {s1, s2} is feasible for t. Therefore σ can be chosen arbitrarily, since the current

pricing ensures buyers will not buy items which are not optimal for them (Observation 9(b)).

Case 2. |NG+

π+
(Y )| ≥ 2|Y |+1 for ∅ ≠ Y ⊊ T and there exists Y dangerous set, that is |NG+

π+
(Y )| =

2|Y |+ 1.

Let Z be an inclusionwise maximal dangerous set.

Subcase 2.1. There is no dangerous set disjoint from Z.

We have already shown in Section 5 that if a pair s1, s2 ∈ NG+

π+
(t) is not feasible for a buyer

t ∈ T − Z, then s1, s2 ∈ NG+

π+
(Z).

First we consider the case when |S −NG+

π+
(Z)| ≥ 2. If t ∈ T − Z and t has only one neighbor

in S −NG+

π+
(Z), then for T ′ = Z + t0 ̸= T we get |NG+

π+
(T ′)| = 2|T ′|. This case will be discussed

later on (see Case 3). From now on, we assume that each t ∈ T − Z has at least two neighbors

in NG+

π+
(Z). Similarly as in the proof when (OPT) holds, let t0 ∈ T − Z be an arbitrary buyer

who shares a neighbor with Z, and let s0 ∈ NG+

π+
(t) ∩ NG+

π+
(Z). If it is possible, we choose t0

and s0 in such a way that s0 is a dummy item. Let σ′ be an arbitrary ordering of the items in
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S − NG+

π+
(Z), σ′′ be an adequate ordering of the items in G′′ where G′′ is obtained by deleting

the items in S − (NG+

π+
(Z) − s0) and the buyers in T − Z, and σ′′′ be the trivial ordering of the

single element set {s0}. We consider the ordering σ = (σ′, σ′′, σ′′′) of items in S.

Subcase 2.1.1. All dummy items are in NG+

π+
(Z).

If s0 is dummy, any buyer from Z will choose items from NG+

π+
(Z) (see Observation 9(b)), but

she will not take the dummy s0. As σ′′ was an adequate ordering of the items in G′′, the remaining

graph still admits a (1, 2)-factor. Buyers from T − Z will take two real items from S −NG+

π+
(Z)

as they have at least two neighbors in S −NG+

π+
(Z).

If s0 is not dummy, we increase its price by ε. This way, buyers in Z who have dummy neighbors

have negative utility for s0, therefore such buyers will not take s0 even after the deletion of the

dummy items. If a buyer in Z has no dummy neighbors, she has at least two cheaper neighbors in

NG+

π+
(Z) than s0, which means that she will not take s0 either. Again, a buyer from T − Z will

take two items from S −NG+

π+
(Z).

Subcase 2.1.2. All dummy items are in S −NG+

π+
(Z).

We increase all prices in NG+

π+
(Z) by ε. This way, if a buyer in T − Z has less than two real

neighbors in S−NG+

π+
(Z), she will not take items from NG+

π+
(Z) by Observation 9(c). For a buyer

in Z, the order of neighbors in Gπ remains unchanged and she still prefers items in NG+

π+
(Z) than

items in S −NG+

π+
(Z) by Observation 9(d).

We finished the discussion of the case when there is no dangerous set disjoint from Z and

|S − NG+

π+
(Z)| ≥ 2. Now let us assume that |S − NG+

π+
(Z)| = 1, and let y0 denote the single

element in S − NG+

π+
(Z). As |S| = 2|T |, there is only one buyer in T − Z (namely t0). If t0

has only two neighbors in NG+

π+
(Z), X = {t0} is a dangerous set disjoint from Z, contradicting

the assumption of Subcase 2.1. Hence t0 has at least three neighbors in NG+

π+
(Z). As before,

s0 denotes a neighbor of t0 in NG+

π+
(Z). We define σ = (σ′, σ′′, σ′′′) the same way as when

|S−NG+

π+
(Z)| ≥ 2. First, we discuss the case when y0 is a dummy item. Notice that y0 is the only

dummy item by Observation 9(a). Let y1 denote the earliest neighbor of t0 in NG+

π+
(Z) according

to σ. Let k ∈ {1, . . . , |S|} denote the place of y1 in the ordering. Then the price of y1 is ε + δ · k
and t0 has ε− δ · k utility for y1. We increase the price of every item in NG+

π+
(Z) by ε− δ · 2k+1

2 .

As a result, t0 has positive utility only for y0 and y1, while for buyers in Z, the utilities for their

neighbors in G+
π+ remain positive and the order of items remains unchanged. If t0 is the first buyer,

she takes y0 and y1, and any buyer in Z takes items according to σ. If y0 is a real item, we do

not change the prices. This way, t0 takes at most one item from NG+

π+
(Z). A buyer from Z does

not take y0, since y0 is feasible only for t0, and she does not take s0 which is at the end of the

ordering.

Subcase 2.2. There exists a dangerous set disjoint from Z.

Let X be an inclusionwise minimal dangerous set disjoint from Z.

Subcase 2.2.1. For any t ∈ X and for any s1, s2 ∈ NG+

π+
(t), the set {s1, s2} is feasible.

We define an adequate ordering σ := (σ′, σ′′) the same way as before with the (OPT) assump-

tion. If the dummy items are in NG+

π+
(X), a buyer from T − X who has no dummy neighbors

chooses at most one item from NG+

π+
(X) (namely s0), and a buyer from T −X who has dummy

neighbors also chooses at most one item from NG+

π+
(X), which is s0 only if s0 is real. If s0 is

dummy and the buyer has real neighbors in NG+

π+
(X), then she chooses one of them, but if she has

only dummy neighbors in NG+

π+
(X), her utility is negative from the real items in NG+

π+
(X) by Ob-

servation 9(b), therefore she does not take anything from NG+

π+
(X). A buyer from X takes items
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from NG+

π+
(X), since if she has at least two real neighbors, she chooses two of them, but if she has

at most one real neighbor, she does not take anything from S−NG+

π+
(X) as her utility is negative

for them by Observation 9(b). If the dummy items are in S − NG+

π+
(X), we increase the prices

in NG+

π+
(X) − {s0} by ε. This way, a buyer from T −X takes at most one item from NG+

π+
(X)

(which is s0), since if she has dummy neighbors, her utility is negative from NG+

π+
(X) − {s0} by

Observation 9(c), otherwise she has at least two cheaper real neighbors in S−(NG+

π+
(X)−{s0}). A

buyer from X takes items from NG+

π+
(X) which does not cause a problem as X is an inclusionwise

minimal dangerous set.

Subcase 2.2.2. There exists t ∈ X and s1, s2 ∈ NG+

π+
(t) such that {s1, s2} is not feasible.

In this case, we have already shown in the proof with assumption (OPT) that X ∪ Z = T and

NG+

π+
(X)∩NG+

π+
(Z) = {s1, s2}. We have defined an adequate ordering σ := (σ′, σ′′|N

G
+

π+
(X)−s1 , σ

′′′),

where σ′ and σ′′ are adequate for the corresponding smaller graphs and σ′′′ is the trivial ordering

of s2. First, we assume s1 and s2 are both dummy. By Observation 9(a), that means there are no

other dummy items. Any buyer in X takes items only from NG+

π+
(X) − {s1, s2}, since if she has

at least two real neighbors, she takes two of them, but if she has at most one real neighbor, she

does not choose items which are not feasible for her (that is which are in NG+

π+
(Z)− {s1, s2}) as

her utility is negative for them by Observation 9(b). The reasoning is the same for buyers in Z.

Now assume that s1 is real and s2 is dummy. We switch the roles of s1 and s2 if s2 is real and s1 is

dummy. Now any buyer inX chooses items from NG+

π+
(X)−{s2} and any buyer in Z chooses items

from NG+

π+
(Z)−{s2}, since those buyers, who are in X and have dummy neighbor, have negative

utility for NG+

π+
(Z) − {s1, s2} and those buyers, who are in Z and have dummy neighbor, have

negative utility for NG+

π+
(X)− {s1, s2}. Thirdly, if s1 and s2 are real items, we increase the price

of s2 by ε. This way, if all dummy items are in NG+

π+
(Z), any buyer from Z takes at most one item

from NG+

π+
(Z) ∩NG+

π+
(X) (namely s1), since buyers with dummy neighbors have negative utility

for s2 and buyers with only real neighbors have at least two cheaper neighbors in NG+

π+
(X)−{s2}.

Buyers in X do not take s2 either as they have cheaper neighbors in NG+

π+
(X) − {s2}. When all

dummy items are in NG+

π+
(X), the proof goes the same way.

Case 3. |NG+

π+
(T ′)| = 2|T ′| for some ∅ ≠ T ′ ⊊ T .

As we showed in the case when (OPT) holds, there exists T ′ satisfying the assumption if and

only if G+
π+ is not connected. Suppose G+

π+ has k components, and determine an adequate ordering

for the components of G+
π+ , separately. Then σ = (σ′, σ′′, . . . σ(k)) is an adequate ordering for the

whole graph since if a buyer has no dummy neighbors, she has at least two real neighbors in her

own component, and if a buyer has dummy neighbors, she has negative utility for all items which

are not in her own component as Observation 9(b) shows.
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7 Multi-demand markets up to four buyers

As we have already seen, if property (OPT) does not hold, it causes many technical difficulties.

Therefore, we only consider the case where (OPT) is satisfied. In [27], Pashkovich and Xie proved

the following theorem:

Theorem 11 (Pashkovich, Xie). Every multi-demand market with four players admits an optimal

dynamic pricing scheme when property (OPT) holds, and such prices can be computed in polynomial

time.

The proof given by Pashkovich and Xie is discussed in this Section. They also observed it is

enough to show the existence of a σ adequate ordering. The theorem can be proved by induction

on |S|. As before, the main goal is to give an adequate ordering of the items in the market, that

is to give an order which ensures if an arbitrary agent t enters the market and chooses b(t) items

from NGπ (t) according to the ordering, the remaining items can be allocated to the other agents in

a way where every t′ ∈ T gets b(t′) items that are in NGπ (t
′). It can be assumed every demand is

positive and there is at least one buyer whose demand is at least 2. If Gπ is not connected, one can

construct adequate orderings in each component separately. So one can assume Gπ is connected,

which also means for any buyer t, NGπ (t) is strictly greater than b(t). One can also assume there is

no item in S that is feasible only to one player, since if s is only feasible for t, we can remove it and

decrease b(t) by one. Then, if σ′ is an adequate ordering in the new problem and σ0 denotes the

trivial ordering on s, σ := (σ0, σ
′) is an adequate ordering in the original problem. That means,

the statement is true if |S| ≤ 4.

Lemma 8. If there exists an s ∈ S with s ∈ NGπ
(ti) for all i = 1...4, then there exists a σ adequate

ordering.

Proof. Assuming there is an s ∈ S with s ∈ NGπ (ti) for all i = 1...4. Let t ∈ T be an arbitrary

buyer with b(t) ≥ 2. Now consider the smaller problem we get by increasing b(t) by 1 and removing

s from S. Using the inductive hypothesis, there is a σ′ adequate ordering on the items in S −{s}.
Let σ′′ be the trivial ordering on s and σ := (σ′, σ′′). One can show σ is an adequate ordering in

the original problem instance. If a buyer t′ ̸= t enters the shop first, she gets b(t′) items according

to σ and does not take the item s. As σ′ was an adequate ordering in the smaller instance, we

can allocate b(t′′) and b(t′′′) feasible items from the remaining items in S − {s} to the other two

players t′′ and t′′′ who are not t, and b(t)− 1 items to t. But since s is optimal to all players, we

can allocate s to t. If the first player arriving to the market is t, she takes b(t) − 1 items from

S−{s} according to σ′′ and an extra item. If the extra item is s, we can complete it to an optimal

allocation as σ′′ was a proper ordering in the smaller case, and if the extra item is not s, we can

replace it by s in any optimal allocation since s is feasible for all players.

The key step in the proof is introducing the so-called removable sets of items. The existence of

these sets with the inductive hypothesis guarantees the existence of optimal dynamic pricing. To

define the removable sets, we need to fix an arbitrary O = {O1, O2, O3, O4} optimal allocation of

elements in S.

Suppose there is an sc ∈ S item, which is allocated to tc in O and the following holds: if t ̸= tc

and sc ∈ NGπ
(t), then there is an st ∈ Ot item with st ∈ NGπ

(tc). Let Tr be the set of buyers for

whom sc is feasible, i.e., Tr := {t ∈ T : sc ∈ NGπ
(tc)} and Sr := {sc} ∪ {st : t ∈ Tr − {tc}}. Then

Sr is called removable set of type I and sc is the central item.

26



Lemma 9. Assume that an Sr removable set of type I exists with central item sc. Consider the

problem instance we get by removing Sr and decreasing the demands of players in Tr by 1. By

induction, there is a σ′′ adequate ordering in the smaller graph. Let σ′ denote the trivial ordering

on sc and σ′′′ an arbitrary ordering of Sr − {sc}. Then σ = (σ′, σ′′, σ′′′) is an adequate ordering

in the original problem.

Proof. Case 1. The first player t arriving is in T − Tr.

Since t /∈ Tr, sc /∈ NGπ (t), and since b(t) was not decreased in the smaller example, she takes

exactly those items she would take in the smaller problem instance. The fact every item in Sr can

be allocated to distinct buyers in Tr and the adequateness of σ′′ shows that after t leaves the shop,

the remaining items can be allocated optimally to T − {t}.

Case 2. The first player t arriving is in Tr − {tc}.
Since sc ∈ NGπ

(t) and sc is the first item according to σ, t takes sc, then b(t) − 1 items from

S − Sr, and does not take items from Sr − {sc}. The item in Sr − {sc} corresponding to t is in

NGπ (tc), which implies the remaining items can be allocated to T − {t} optimally.

Case 3. The first player arriving is tc.

If tc comes first, she takes sc and other b(tc)− 1 items from S − Sr according to σ′′. It is easy

to see there is an optimal allocation where tc gets exactly these b(tc) items.

From now on, we make a directed graph from Gπ in the following way: if an edge connects a

buyer t and an item in Ot, then it is directed towards T , and all the other edges which connect t and

items in NGπ
(t)−Ot are directed towards S. Assume there exists Sr ⊆ S for which |Ot ∩ Sr| = 1

∀t ∈ T and consider the subgraph G of Gπ induced by T and Sr. If there is a directed path in G

from x to y for every x, y ∈ S, then Sr is a removable set of type II.

Lemma 10. Assume that an Sr removable set of type II exists. Consider the smaller problem

instance we get by removing Sr and decreasing the demands of all players by 1. By induction,

there is a σ′ adequate ordering on S−Sr in the smaller graph. Let σ′′ denote an arbitrary ordering

of Sr. Then σ = (σ′, σ′′) is an adequate ordering in the original problem.

Proof. Let t denote the first buyer entering the shop. t gets b(t)− 1 items according to σ′ and an

other item x.

Case 1. x ∈ Sr ∩Ot.

The items left after t leaves can be allocated optimally to the remaining buyers: buyer t′ gets

b(t′) − 1 items from (S − Sr) ∩NGπ
(t′) (this can be done as σ′ was adequate) and the only item

in Sr ∩Ot′ .

Case 2. x ∈ Sr ∩Ot̂ for some t̂ ̸= t.

Let y denote the unique item in Sr ∩ Ot and P denote an x → y directed path in G. If t′ is a

buyer who is not in P , she can get b(t′)−1 element from S−Sr and the unique element in Sr∩Ot′ .

Otherwise, if t′ is in P , then she gets the item in Sr which follows t′ in the directed path P .

Case 3. x ∈ S − Sr.

Let t0 denote the agent for whom x ∈ Ot0 and x0 denote the single item in Sr ∩Ot0 . Let P be

an x0 → y directed path in G. As in the previous case, if t′ ̸= t0 is not in P , b(t′) items can be

allocated to her optimally. If t′ ̸= t0 is in P , t′ gets b(t′) − 1 items from S − Sr and the item in

Sr which follows t′ in P . t0 gets b(t0)− 2 items from S − Sr, x0 and the item which follows t0 in

P .
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We have seen that if S has a removable subset of type I or II, we can give an appropriate

ordering using the inductive hypothesis. The next step in the proof of Theorem 11 is to prove

either there is a removable set of type I or type II, or there is an item that is feasible for all four

agents which also implies the existence of optimal dynamic pricing by Lemma 8. Let {t1, t2, t3, t4}
denote the set of buyers. We will need the following lemma:

Lemma 11. There is a directed cycle in Gπ.

Proof. By the assumption, every item is feasible for at least two players and every player has

strictly more neighbors than her demand, every indegree and outdegree is at least 1 in Gπ, which

implies the existence of a directed cycle.

If C is a directed cycle in Gπ, for any player t, |C∩Ot| ≤ 1. In [27], such cycle is called uniquely

assigned cycle. Let C be a directed cycle. As Gπ is bipartite, |C| = 4, 6 or 8.

Case 1. The length of C is 8.

Then C contains all four players, therefore C is a removable set of type II.

Case 2. The length of C is 6.

Without loss of generality, we can suppose C = s3 → t3 → s2 → t2 → s1 → t1 → s3 and

si ∈ Oi i = 1...4. We choose an s4 item from O4 arbitrarily. As every item is feasible for at least

two buyers, we can assume s4 ∈ O3. (The proof goes analogously if s4 ∈ O2 or s4 ∈ O1.) If

{s1, s2, s3} ∩NGπ (t4) ̸= ∅, it is easy to check {s1, s2, s3, s4} is a removable set of type II. So it can

be assumed {s1, s2, s3}∩NGπ
(t4) = ∅. Since every buyer has more feasible items than her demand,

NGπ
(t4)−O4 ̸= ∅. Let s5 denote an item in NGπ

(t4)−O4. Then s5 is in O1, O2 or O3.

Subcase 2.1. s5 ∈ O1.

Consider the following directed cycle: C ′ = s3 → t3 → s4 → t4 → s5 → t1 → s3. We get a

different optimal allocation by exchanging the items along C ′ (and change the orientation of edges

in C ′). It is not difficult to check that with the new orientation, {s1, s3, s4, s5} is a removable set

of type II, see Figure 4.

(a) A graph with a directed cycle C = s3 →
t3 → s2 → t2 → s1 → t1 → s3 of length 6.

s4 ∈ O3, {s1, s2, s3}∩NGπ (t4) = ∅ and s5 ∈ O1.

(b) After reallocating according to C′,

{s1, s3, s4, s5} is a removable set of type II.

Figure 4: Subgraph of Gπ in Subcase 2.1. The black edges denote the item is feasible for the buyer,

and the orange edges denote the item is allocated to the buyer. In Figure 4a, dashed edges are in

C ′.
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Subcase 2.2. s5 ∈ O2.

C ′ = s1 → t1 → s3 → t3 → s4 → t4 → s5 → t2 → s1 is a directed cycle of length 8, see

Figure 5.

Figure 5: A graph with a directed cycle C = s3 → t3 → s2 → t2 → s1 → t1 → s3 of length 6.

s4 ∈ O3, {s1, s2, s3} ∩NGπ (t4) = ∅ and s5 ∈ O2, as in Subcase 2.2. The directed cycle of length 8

is indicated by dashed lines.

Subcase 2.3. s5 ∈ O3.

If s4 and s5 are feasible only for t3 and t4, then {s4, s5} is a removable set of type I (both s4 and

s5 can be the central item). We can assume s5 is feasible for t1 or t2 (the proof goes similarly if s4

is feasible for t1 or t2 by changing the allocation O along the cycle C ′ = t3 → s4 → t4 → s5 → t3).

If s5 ∈ NGπ
(t1), see Figure 6, we get an other optimal allocation by exchanging items along

C ′′ = t1 → s5 → t3 → s2 → t2 → s1 → t1 and changing the orientation of edges in C ′′. One

can check {s1, s2, s4, s5} is a removable set of type II. If s5 ∈ NGπ (t2), s5 /∈ NGπ (t1), otherwise s5

would be an item feasible for all players. Now {s2, s4, s5} is a removable set of type I with central

item s5, see Figure 7.

(a) A graph with a directed cycle C = s3 →
t3 → s2 → t2 → s1 → t1 → s3 of length 6.

s4 ∈ O3, {s1, s2, s3} ∩ NGπ (t4) = ∅. s5 ∈ O3

and s5 ∈ NGπ (t1), as in Subcase 2.3. C′′ is

indicated by dashed lines.

(b) After reallocation, {s1, s2, s4, s5} is a remov-

able set of type II.

Figure 6: Subgraphs of Gπ in Subcase 2.3.
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Figure 7: Subgraph of Gπ in Subcase 2.3. Directed cycle C = s3 → t3 → s2 → t2 → s1 → t1 → s3

of length 6. s4 ∈ O3, {s1, s2, s3} ∩ NGπ (t4) = ∅. s5 ∈ O3 and s5 ∈ NGπ (t2), s5 /∈ NGπ (t1).

{s2, s4, s5} is a removable set of type I with central item s5.

Case 3. The length of C is 4.

We can assume C is of the form s1 → t1 → s2 → t2 → s1. If s1 and s2 are only feasible for t1

and t2, there is a removable set of type I. Therefore one can assume s1 or s2 is feasible for t3 or t4.

By exchanging items along C, it can be assumed s2 ∈ NGπ
(t3). Let s3 be an arbitrary element of

O3. s3 is feasible for at least one player besides t3. If s3 ∈ NGπ
(t1), C

′ := t3 → s2 → t2 → s1 →
t1 → s3 → t3 is a directed cycle of length 6, see Figure 8. If s3 ∈ NGπ (t2) then s2 /∈ NGπ (t4),

since s2 is not feasible for all players. That means {s1, s2, s3} is a removable set of type II with s2

being the central item (Figure 9). If s3 ∈ NGπ
(t4), let s4 be an item in O4. s4 is feasible for at

least one other player. If s4 ∈ NGπ
(t1) or s4 ∈ NGπ

(t2), {s1, s2, s3, s4} is a removable set of type

II (Figure 10). If s4 is only feasible for t3, {s3, s4} is a removable set of type I with s3 being the

central item (Figure 11).

We proved there exists a removable set of type I or type II, or there is an item that is feasible for

all players. By using the inductive hypothesis, we can find a σ adequate ordering, which completes

the proof of Theorem 11.

Figure 8: Subgraph of Gπ in Case 3. Directed cycle C = s1 → t1 → s2 → t2 → s1 of length 4.

s2 ∈ NGπ
(t3), s3 ∈ NGπ

(t1), C
′ := t3 → s2 → t2 → s1 → t1 → s3 → t3 is a directed cycle of length

6.
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Figure 9: Subgraph of Gπ in Case 3. Directed cycle C = s1 → t1 → s2 → t2 → s1 of length 4.

s2 ∈ NGπ (t3), s3 ∈ NGπ (t2), s2 /∈ NGπ (t4). {s1, s2, s3} is a removable set of type II with s2 being

the central item.

(a) Subgraph of Gπ in Case 3. Directed cycle

C = s1 → t1 → s2 → t2 → s1 of length 4.

s2 ∈ NGπ (t3), s3 ∈ NGπ (t2), s3 ∈ NGπ (t4),

s4 ∈ NGπ (t1), {s1, s2, s3, s4} is a removable set

of type II.

(b) Subgraph of Gπ in Case 3. Directed cy-

cle C = s1 → t1 → s2 → t2 → s1 of length

4. s2 ∈ NGπ (t3), s3 ∈ NGπ (t2), s3 ∈ NGπ (t4),

s4 ∈ NGπ (t2), {s1, s2, s3, s4} is a removable set

of type II.

Figure 10: Subgraphs of Gπ in Case 3.

Figure 11: Subgraph of Gπ in Case 3. Directed cycle C = s1 → t1 → s2 → t2 → s1 of length 4.

s2 ∈ NGπ
(t3), s3 ∈ NGπ

(t2), s3 ∈ NGπ
(t4), s4 is only feasible for t3, {s3, s4} is a removable set of

type I with s3 being the central item.
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8 Tri-demand markets

In Theorem 6, we saw the existence of optimal dynamic pricing when all demands are at most 2.

However, a stronger statement holds. In [27], the authors proved the following theorem:

Theorem 12 (Pashkovich, Xie). Every multi-demand market admits an optimal dynamic pricing

scheme when the demands are at most 3 and property (OPT) holds. Such prices can be computed

in polynomial time.

Similarly to the bi-demand case, we can define dangerous sets. Remember, we called a set

Y ⊆ T dangerous if |NGπ
(Y )| = 2|Y | + 1. The reason behind this definition was that we do

not want a two-demand buyer outside Y to buy two items from NGπ (Y ). Now as we have three-

demand agents also, we want to forbid a three-demand buyer outside Y ′ to take three items

from |NGπ
(Y ′)| if |NGπ

(Y ′)| =
∑

i∈Y ′ b(t) + 2. For this reason, we need to define two-dangerous

sets and three-dangerous sets separately. Y ⊆ T is two-dangerous set if |NGπ
(Y )| =

∑
i∈Y +1,

|NGπ (Y )∩NGπ (T −Y )| ≥ 2 and if s ∈ NGπ (Y )∩NGπ (T −Y ), there is an optimal allocation where

s is allocated to a player not in Y . If Y is a two-dangerous set, Y is called maximal two-dangerous

set if for any Y ′ two-dangerous set with NGπ
(Y ) ⊆ NGπ

(Y ′), we have Y = Y ′. W ⊆ T is called

three-dangerous set if |NGπ
(W )| =

∑
i∈W b(i) + 2, |NGπ

(T −W ) ∩NGπ
(W )| ≥ 3 and for any pair

s1, s2 ∈ NGπ (T −W ) ∩ NGπ (W ), there is an optimal allocation where s1 and s2 are allocated to

agents not in W . Similarly, if W is a three-dangerous set, we say W is maximal three-dangerous

set if for any W ′ three-dangerous set with NGπ
(W ) ⊆ NGπ

(W ′), we have W = W ′.

Consider an assignment where some items are already assigned to buyers, but some items

are not. When the players arrive in an arbitrary sequence, in each step, we want to ensure the

assignment we reached until that point can be extended to an optimal assignment, that is, the

remaining items can be allocated to buyers such that a buyer t gets exactly b(t) items and the items

are in NGπ (t). An assignment is called extendable if it can be extended to an optimal assignment.

Similarly as in the bi-demand case, it is easy to prove if a pair of items {s1, s2} is assigned to buyers

in a way that si (i = 1, 2) is assigned to player for which si is optimal and the assignment is not

extendable, there exists a Y two-dangerous set in the market. If there are three items {s1, s2, s3}
such that there is a feasible assignment of {s1, s2, s3} which is not extendable but any assignment

of two items is extendable, then there exists a W three-dangerous set.

We observed in Lemma 5, when proving the existence of optimal dynamic pricing, it is enough

to give an adequate ordering of items in S according to the graph Gπ which contains only the

feasible edges. In the proof of Theorem 6, we used the inductive hypothesis which states we can

give an adequate ordering in smaller problem instances with two-demand buyers. To show the

existence of adequate ordering in multi-demand markets with buyers whose demands are at most

3, we need a bit stronger statement in the inductive hypothesis. The authors of [27] proved the

following: for every item s ∈ S, there is an adequate ordering which starts with s.

Theorem 13. For every s ∈ S, there exists an adequate ordering on S which starts with s.

Proof. Following the proof of [27], one can prove by induction on |S|+ |T |. The statement is trivial

if |T | = 1. If |T | = 2, let s ∈ S be an arbitrary item. We get a σ adequate ordering starting with s

if we put s on the first place, then in arbitrary order, we continue with items that are optimal for

only one of the players. At the end of the ordering, there are the items that are optimal for both

players (except s). The case when |S| = 2 is also proved since if |S| = 2, then |T | ≤ 2.
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In the proof of Theorem 6, when we use the induction hypothesis on smaller induced subgraphs

of Gπ, Lemma 6 tells us we do not have to check whether every edge of the subgraph is still feasible

in the smaller market. But as we want to prove a stronger statement now, if there is an edge st in

an induced subgraph G which is not feasible in the smaller problem instance, there is no adequate

ordering in G which starts with s. One can use induction only on smaller induced subgraph G

which satisfies the following property:

an edge st is in G only if s is feasible for t in the smaller problem instance defined by G. (P)

We need a few lemmas to prove the statement in Theorem 13.

Lemma 12. If there are two items s1, s2 such that there is a feasible assignment of {s1, s2} which

is not extendable, then there is dynamic pricing fixed at s for any item s.

Proof. Let Z be a maximal two-dangerous set.

Case 1. s ∈ NGπ
(T − Z) ∩NGπ

(Z).

Let G′ denote the graph of the following problem instance: we introduce a new unit-demand

player whose feasible items are the items in NGπ (T − Z) ∩NGπ (Z). It satisfies property (P). By

induction, there is a σ′ adequate ordering in G′ starting with s. Let G′′ denote the smaller problem

we get by deleting Z and NGπ
(Z) − {s}. By induction, there is a σ′′ adequate ordering in G′′

starting with s. Let σ be the following ordering: σ = (σ′′, σ′|NGπ (Z)−s). Then σ is an adequate

ordering in the original problem and starts with s.

Case 2. s ∈ NGπ (Z)−NGπ (T − Z).

As in Case 1, let G′ denote the graph we get by introducing a new unit-demand player whose

feasible items are the items in NGπ
(T − Z) ∩ NGπ

(Z) and let σ′ denote an adequate ordering in

G′ starting with s. Let s′ be the item which is in NGπ
(T − Z) ∩ NGπ

(Z) and has the smallest

label according to σ′. Now let G′′ denote the subgraph induced by buyers T − Z and items

NGπ (T − Z) ∪ {s′}. By induction, there is a proper σ′′ ordering starting with s′. One can define

the following sets of items:

S1 = {ŝ ∈ NGπ
(Z)− {s} : σ′(ŝ) < σ′(s′)},

S2 = {ŝ ∈ NGπ (Z)− {s} : σ′(ŝ) > σ′(s′)}.

Let σs and σs′ denote the trivial ordering of s and s′. If we define σ as

σ = (σs, σ
′|S1

, σs′ , σ
′′|S−NGπ (Z), σ

′|S2
),

we get an adequate ordering with s being the first element, since NGπ (T − Z) ∩ S1 = ∅.

Case 3. s ∈ NGπ (T − Z).

We can choose an arbitrary s′ element of NGπ (T − Z) ∩NGπ (Z), define G′ as in the previous

cases, and define G′′ with s′. In G′, σ′ denotes the proper ordering fixed at s′ and in G′′, σ′′

denotes the proper ordering fixed at s. As before, σs and σs′ denote the trivial ordering of s and

s′. Let

σ := (σs, σ
′′|(T−NGπ (Z))−s+s′ , σ

′|NGπ (Z)−s′)

be an ordering in the original problem. It is easy to check that σ is adequate.

Lemma 13. If t ∈ T is a unit-demand buyer, then for every s ∈ S, there is a dynamic pricing

fixed at s.
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Proof. If NGπ
(x) = {s}, the statement holds since s is not feasible for other players, which means

if we remove s and t from the market, the resulting problem instance admits an adequate ordering.

By putting s on the first place, we get a dynamic pricing for the original problem. If there is an

item s′ ̸= s in NGπ
(t), let G′ denote the graph we get by removing s′ and t. If there is a buyer t′′

and s′′ ∈ NGπ
(t′′) such that if we allocate s′ to t and s′′ to t′′, the other items can not be allocated

optimally, by using the previous lemma, there is a dynamic pricing fixed at s. Otherwise, property

(P) holds and there exists a dynamic pricing fixed at s in G′. By putting s′ to the end of the

ordering, we get an adequate ordering for the original problem instance.

From now on, we can assume there is no unit-demand player.

Lemma 14. If for an item s1 ∈ S there are two other items s2 and s3 such that a feasible

assignment of {s1, s2, s3} is not extendable, but every feasible assignment of two items is extendable,

there is a dynamic pricing fixed at s1.

Proof. It is not difficult to see if a feasible assignment of {s1, s2, s3} is not extendable, there is a

Z ⊂ T three-dangerous set. We choose Z to be maximal in the following sense: if Z ′ is another

three-dangerous set and NGπ
(Z) ⊆ NGπ

(Z ′), then Z = Z ′. The maximality of Z implies s1 ∈
NGπ

(Z). Let G′ denote the following smaller instance: we remove T−Z and add a new two-demand

buyer for whom the feasible items are exactly those items which are in NGπ
(T − Z) ∩ NGπ

(Z).

We also delete S − NGπ (Z). In G′, the number of items is the same as the sum of the buyers’

demands. It is not difficult to see the market we get this way satisfies property (P). By the

inductive hypothesis, there is a dynamic pricing fixed at s1 in G′, or equivalently, there is an

adequate ordering σ′ starting with s1. Let v1 and v2 denote the items in NGπ
(T − Z) ∩NGπ

(Z)

with the first and second lowest price. Let G′′ denote the following smaller problem instance: we

remove Z and NGπ
(Z)−{v1, v2}. Remember, every feasible assignment of two items is extendable.

Therefore, G′′ satisfying property (P) can be checked easily. By the inductive hypothesis, there is

an adequate ordering σ′′ in G′′ starting with v1. Let S1, ...S5 denote the following sets of items:

S1 = {s ∈ NGπ
(Z) : σ′(s) ≤ σ′(v1)},

S2 = {s ∈ NGπ
(Z) : σ′(v1) < σ′(s) ≤ σ′(v2)},

S3 = {s ∈ NGπ (Z) : σ′(s) > σ′(v2)},

S4 = {s ∈ NGπ
(T − Z) : σ′′(s) < σ′′(v2)},

S5 = {s ∈ NGπ (T − Z) : σ′′(s) > σ′′(v2)}.

One can get an adequate ordering starting with s1 by merging σ′ and σ′′ appropriately. That is,

σ is the following:

σ = (σ′|S1 , σ
′′|S4−v1 , σ

′|S2 , σ
′′|S5 , σ

′|S3).

Since σ′ is starting with s1, s1 ∈ S1 and σ gives a dynamic pricing fixed at s1. If a buyer from Z

comes first, she chooses items according to σ′ and a buyer from T − Z chooses items according to

σ′′ and she does not take any item from NGπ
(Z)− {v1, v2} as NGπ

(T −Z) ∩ (S1 ∪ S2) = {v1, v2}.
Therefore the optimality of the dynamic pricing follows.

Lemma 15. If there are no unit-demand players, every feasible assignment of two items is ex-

tendable and every feasible assignment of three items is extendable as soon as it contains item s,

then there is a dynamic pricing fixed at s.
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Proof. Suppose the conditions hold and let t denote a player with s ∈ NGπ
(t). Let G′ be the

smaller problem we get by deleting s and decreasing b(t) by one. G′ satisfies property (P) since if

we take an arbitrary item s′ and assign it to a buyer t′ with s′ ∈ NGπ (t
′) and assign s to t, it is

extendable in G, which means it is extendable in G′. By induction, there is a σ′ adequate ordering

in G′. Let σ0 denote the trivial ordering on s and σ := (σ0, σ
′). If the first buyer is t̂ and s /∈ t̂,

then t̂ takes items according to σ′ and the allocation is extendable. If s ∈ t̂, then one can also

allocate the remaining items optimally since feasible assignments of two items are extendable and

feasible assignments of three items containing s are extendable.

Now we are ready to continue the proof of Theorem 13. If there is a unit-demand buyer in

the market, Lemma 13 shows us how to find an adequate ordering starting with s. If there is no

unit-demand buyer, but there is a feasible assignment of two items which is not extendable, one

can find an adequate ordering by Lemma 12. If there is no unit-demand buyer and every feasible

assignment of two items is extendable, but there is a feasible assignment of three items containing

s which is not extendable, Lemma 14 ensures there is a dynamic pricing fixed at s. If all feasible

assignments of size three and containing s are extendable, by Lemma 15, one can find a dynamic

pricing fixed at s.

By Lemma 5, providing an adequate ordering on the set of items implies the existence of optimal

dynamic pricing. Therefore, Theorem 13 implies Theorem 12.
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9 Other social welfare functions

Until now, when we talked about social welfare, we considered the problem of finding an allocation

{X1, ...Xn} of items such that
∑n

i=1 vi(Xi) is maximized, where the vi valuation functions were

multi-demand valuations and buyers had bi upper bounds on the number of items they are willing to

buy. Here, the value of
∑n

i=1 vi(Xi) is usually called as utilitarian social welfare and the allocation

{X1, ...Xn} is efficient since it maximizes the utilitarian social welfare. However, in many cases

one can consider other valuation functions and leave the |Xi| ≤ bi restrictions. Naturally arises

the question whether the efficiency is the only factor we want to take into account. For example,

if an allocation that maximizes utilitarian social welfare allocates all items to one buyer and the

empty set to other buyers, that allocation does not seem to be fair. Therefore it suggests not only

efficiency should be taken care of but also fairness. In the Max-min welfare problem, also known

as Santa Claus problem, the objective is to maximize mini(vi(Xi)), which is an NP-hard problem.

When the valuation functions are additive, the problem is similar to a job scheduling problem,

namely it is related to the makespan minimization on unrelated parallel machines, however it is

still an open question to find a constant-factor approximation algorithm for additive valuations. [1]

In [13], Garg, Husic and Végh gave a detailed discussion of a different social welfare concept,

the Nash social welfare. They call the Nash social welfare a balanced trade-off between utilitarian

social welfare and the max-min fairness. They also summarized the best existing approximation

results under different classes of valuation functions. In the Nash social welfare problem, the task

is to allocate the set of items such a way that

(

n∏
i=1

vi(Xi)
wi)1/

∑n
i=1 wi

is maximized, where wi > 0 are weights associated to buyers. When all weights are equal, i.e.,

wi = 1, we call it the symmetric case, otherwise we talk about asymmetric Nash social welfare.

It turned out the problem is NP-hard even in the symmetric case with two equivalent players

and additive valuations since the partition problem reduces to the Nash social welfare problem

[25]. Furthermore, for additive valuations, there are no algorithms with a better approximation

ratio than 1.069 unless P = NP and for submodular valuations, with a better approximation

ratio than 1.5819 [13]. However, for the symmetric case with additive valuations, constant-factor

approximation algorithms exist and can be extended to slight generalizations of additive functions.

In [13], Garg, Husic and Végh gave a polynomial-time 256e3/e-approximation algorithm for the

symmetric case with Rado valuations. When we talk about Rado valuations, an agent t is associated

with a matroid Mt = (Vt, It) and a bipartite graph with node set S ∪ Vt, where S denotes the set

of items in the market. There is a ct non-negative weight function on the edges of the bipartite

graph. For t, the value of S′ ⊆ S is the maximum cost of a matching between S′ and points in

Vt such that the points of Vt covered by the matching must form an independent set in matroid

Mt. Rado valuation functions include for example the additive case and the weighted matroid

rank valuations. The authors also gave a polynomial-time 256γ3-approximation algorithm for the

asymmetric case with Rado valuations, where γ ≥ 2 is a constant satisfying the following: all wi

weights are in the interval [1, γ−1]. Under additive valuations, a stronger 16γ approximation ratio

holds. Under subadditive valuations, no better than O(n) approximation algorithm exists both for

the symmetric and asymmetric case [13].
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10 Conclusions and open problems

We considered the existence of optimal dynamic prices for multi-demand valuations. By relying

on the structural properties of an optimal dual solution, we gave polynomial-time algorithms for

determining such prices in unit-demand markets and in multi-demand markets with up to three

buyers, thus giving new interpretations of the results of Cohen-Addad et al. and Berger et al. We

also proved that any bi-demand market satisfying the same technical assumption has a dynamic

pricing scheme that achieves optimal social welfare. As we saw, there are a bit stronger results:

the tri-demand case and multi-demand markets with up to four buyers are solved by Pashkovich

and Xie. An open problem is to decide the existence of optimal dynamic prices in multi-demand

markets in general.

We also saw finding an optimal allocation for maximizing the objective of the min-max social

welfare or the Nash social welfare is already a hard task. One interesting question would be whether

we can realize allocations from the approximation algorithms mentioned previously through static

or dynamic pricing, or whether using dynamic pricing instead of static pricing results in a better

solution, as it does in the multi-demand combinatorial markets.
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