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Introduction

The Robba ring is an essential tool in the theory of p-adic differential equations, see [6],
and p-adic Galois representations. We aim to provide a fundamental and compact note
on the Robba ring, usually denoted by R, which is mostly studied in the framework
of p-adic theory. However, to the maximal general, we prefer the context of discrete
valuation fields and rings in this thesis. We work mostly with the note of P. Schneider
and several books for each part of the thesis. The thesis is structured as follows.

For starter, the basic concepts and main properties of discrete valuation rings are
summarized in Chapter 1, in which we explain how a discrete valuation function induces
a norm, namely a non-archimedean norm, which uniquely determines a topology on a
discrete valuation field, and be extendable on the finite extension fields as well as the
algebraic closure.

One of the most effective approaches is to consider the Robba ring as the union of
rings consisting of Laurent series with coefficients in a discrete valuation field over a
certain closed or open annulus. Those rings over closed annuli are thoroughly analyzed
by Newton polygons, similarly to polynomials with coefficients weighted by a valuation
function, and Gauss norms in terms of factorization and roots. Consequently, we learn
how the union conveys properties of rings of Laurent series with closed annuli as domains
to rings with open annuli as domains.

The main part of the thesis is Chapter 3, where the Robba ring and its sub-rings
are examined regarding ring structures, topology, and vector space norm. Once the
basic knowledge is presented, we take a concise glimpse of endomorphism on the Robba
ring as well as higher dimensional vector spaces over the Robba ring, where we want to
construct an automorphism on. All theorems in the thesis are proven based on notes
and books in the reference along with modifications to make the thesis itself a great
self-contained material. The only statement without proof is Nagata’s lemma, which
requires the theory of local ring, see details in [11], but only the lemma only plays an
insignificant role, then we avoid giving a full proof of the lemma to make the thesis more
coherent.
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1 Discrete Valuation Rings

This beginning chapter is to introduce discrete valuation rings, which play an essential
part as a ring of coefficients in the main object. The main idea is to present fundamental
concepts of discrete valuation function and study its behavior on a certain ring, which
consequently induces a different absolute value function on the fraction field of the given
ring, see [1]. For instant, the p-adic absolute value acts on the p-adic numbers field Qp

as well as its extension has an important role and wide applications in various brands of
mathematics, see [2].

1.1 Discrete valuation functions

Definition 1.1. A discrete valuation function is defined on both fields and rings.

(1) Let K be a field. By a discrete valuation ν on the field K , we mean a function ν
from K× → Z satisfying

(i) ν is surjective,

(ii) ν(ab) = ν(a) + ν(b) ∀a, b ∈ K×,

(iii) ν(a+ b) ≥ min{ν(a), ν(b)} ∀a, b ∈ K× with a+ b 6= 0.
The subring {x ∈ K ; ν(x) ≥ 0} ∪ {0} is called the valuation ring of the Discrete
Valuation Ring of ν on the field K .

(2) An integral domain (i.e a nonzero commutative ring) R is called a Discrete Valua-
tion Ring (D.V.R.) if R is the valuation ring of a discrete valuation ν on the field
of fractions of R.

The convention ν(0) = +∞ is used for the element 0, so the function ν is well-defined
on the field K , in which the condition (i), (ii), and (iii) remain satisfied.

The two definitions are identical because the latter of the above definition is inter-
preted in the manner that: Let ν is a function from an integral domain R to N, in which
the conditions (i), (ii), and (iii) are satisfied. One can extend the function ν to a discrete
valuation on Frac(R)× by

ν(a
b

) = ν(a)− ν(b) ∀a, b ∈ R

That is a surjective homomorphism from the multiplicative group Frac(R)× to Z under
addition. If R = {x ∈ K ; ν(x) ≥ 0} follows, then it is so-called a discrete valuation ring.

Definition 1.2. For a discrete valuation ring R with respect to discrete valuation ν, a
uniformizer of R is an element of valuation 1, denoted by π.
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Because of surjectivity, the uniformizer of a discrete valuation ring always exists,
which leads to the following properties to give a deeper perception of D.V.R.

Proposition 1.3. Given a discrete valuation ring R with respect to a discrete valuation
ν, and let π be a uniformizer. Then

(i) An element t is a unit (i.e invertible) iff ν(t) = 0.

(ii) Every nonzero element t of the field Frac(R) accepts the form t = πnu for some
unit u ∈ R×, and some n ∈ Z. In addition, the integer number n is independent
from π, and the element t ∈ R iff n ∈ N.

(iii) The ring R is a principal ideal ring, every ideal is generated by an element of the
form πn, which again is independent from π. In particular, R has a unique maximal
ideal 〈π〉.

(iv) For a, b ∈ R with ν(a) 6= ν(b), then ν(a + b) = min{ν(a), ν(b)}. Furthermore, let
(an)n∈N ⊂ R and m = min{ν(an); n ∈ N}, then 〈(an)n∈N〉 = 〈πm〉.

Proof. If t is a unit, then t−1 ∈ R and 0 = ν(1) = ν(t) + ν(t−1) ≥ 0 with the range N
of ν on R imply that ν(t) = ν(t−1) = 0. In reverse, if ν(t) = 0, then t−1 ∈ Frac(R) and
ν(t−1) = 0, by definition, it shows that t−1 ∈ R as required.

In (ii), let ν(t) = n, then ν(tπ−n) = 0, applying (i) to obtain the statement, and
the independence from π is claimed because changing π by another uniformizer does not
affect the valuation of ν(tπ−n).

Let I be an arbitrary nonzero ideal in R, and let min{ν(x); x ∈ I} = n, then there
exists an element t in I such that ν(t) = n, by (ii), t = πnu, where u is a unit. Hence,
πn is an element of I , which leads to 〈πn〉 ⊂ I . In other hand, every element of I is of
at least valuation n, which means I ⊂ 〈πn〉. This proves (iii).

The last property is a direct consequence of the results (ii) and (iii).

Corollary 1.4. For any a, b ∈ K with ν(a) 6= ν(b), then ν(a+ b) = min{ν(a), ν(b)}.

Proof. Let u be an invertible emelemt, equivalently, ν(u) = 0. Notice that for any
element t of positive valuation, the sum u + v is invertible as well, because if it is not,
then u ∈ 〈π〉, which is a contradiction. Combining that with property (ii) claims the
corollary.

Example 1.5. (1) An important example of valuation fields is the field of integer
numbers Q, when p is a fixed prime as well as a uniformizer. The discrete valuation
ν is defined on Q by

Q\{0} −→ Z

t 7→ n where t = pn
a

b
with p - ab
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is called p-adic valuation on Q. We recall definition of localization. By this, we
mean a localization of a commutative ring R by a multiplicatively closed set S is
a new ring S−1R. It is clear that the localization of Z given by

{ab−1; a, b ∈ Z and p - b}

is the D.V.R of Q with respect to the p-adic valuation. The example itself also
shows that not every integral ring quipped with a valuation function is a D.V.R,
in particular, the ring Z with respect to the p-adic valuation is not a D.V.R.

(1) Let K be an arbitrary field, and consider the field K ((T )) of the formal Laurent
series, then the function ν given by

K ((T )) −→ Z
+∞∑
m=n0

anT
n 7→ min{n; an 6= 0}

is a discrete valuation, the D.V.R with respect to which is the ring of power series
K [[T ]].

Note that there is more than one way to define a discrete valuation ring, but the
definition referring to discrete valuation function on fraction fields is seemingly the most
explicit. Other alternative definitions regard the other types of rings with several different
conditions such as Principal Ideal Rings (P.I.D), Unique Factorization Domains (U.F.D),
and Noetherian integral domains, see [3]. The connection of those algebra structures will
be explicitly described in the following theorem.

Theorem 1.6. The attributes listed below of a ring R are interchangeable:

(1) R is a D.V.R,

(2) R is a P.I.D with a unique non-zero maximal ideal.

(3) R is a U.F.D with a unique irreducible element π up to unity.

(4) R is a Noetherian integral domain as well as a local ring, whose unique nonzero
maximal ideal is principal. Particularly, the Krull dimension of this local ring is 1.

Proof. Given a D.V.R R, we recall the proposition 1.3, property (iii) and (ii) imply (2)
and (3).

If (2) holds, then let 〈π〉 be the maximal ideal, which directly shows the element π
is a unique irreducible up to unity, hence (3) follows.

In order to obtain the last statement from (3), we need to show that R is Noetherian,
equivalently, every ascending chain of ideals is of finite length. Indeed, let the nonzero
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starting ideal be I , then by the proposition 1.3, there exists a non-negative number n
such that I = 〈πn〉. Thus, it is clear that the longest ascending chain starting by I is of
the length n, which is exactly

〈πn〉 $ 〈πn−1〉 $ . . . $ 〈π〉.

In addition, the spectrum of R is {0, 〈π〉}.
In reverse, given (3), as π is the unique irreducible, every nonzero element of Frac(R)

is a multiple of a (either positive or non-negative) power of π with a unity independently
from π. Thus, the function ν : Frac(R)× → Z in the manner ν(πnu) = n with u is a unit
is well-defined. It is straightforward to check the function ν is a discrete valuation, and
R is the valuation ring of ν. It is obvious that ν meets all the conditions of a discrete
valuation. On other hand, let u be an element of R with valuation 0, then 〈u〉 6= 〈π〉,
which means 〈u〉 = R, accordingly, u is invertible. Consequently, every element of non-
negative valuation is R.

Finally, suppose (4) is given, let t be an arbitrary element of R, and π be the element
generating the unique nonzero maximal ideal. Hence, the local ring property implies
that either 〈t〉 is the whole ring or 〈t〉 ⊂ 〈π〉. Equivalently, either an element is invertible
or there exists another element t1 in R such that t = πt1 ⇒ 〈t〉 ⊂ 〈t1〉. One applies the
Noetherian chain condition to that result, property (ii) in the proposition 1.3 is claimed,
which results back to (2).

1.2 Topology on Discrete Valuation Rings

The main role of an absolute value is to equip a "size" to elements of a given field,
by which we are able to measure distance of distinct points, as well as topology on it,
that regards the properties of the induced metric, namely convergence, open and closed
set, and completeness. In this section, we shall briefly study the topology of a discrete
valuation field K with a discrete valuation ν, the discrete valuation ring R as defined in
the last section, see [4].

Definition 1.7. An absolute value |·| is called a non-archimedean absolute value if the
following condition holds

|x+ y| ≤ max{|x|, |y|} ∀x, y ∈ K

Otherwise, it is archimedean.
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Definition 1.8. Let |·|ν : K → R≥0 be a function defined by

|x|ν =

e
−ν(x) if x 6= 0

0 if x = 0

This function is called the absolute value associated to the discrete valuation ν.

It is obvious to show that |·|ν is a non-archimedean absolute value by using properties
of exponential function and discrete valuation. For simplicity, from now on, unless
explicitly stated otherwise the notation |·| implies the absolute value associated to the
given discrete valuation. Consequently, let define a metric by d(x, y) = |x − y|, then
the non-archimedean property is equivalent to a condition, so-called "strong triangle
inequality":

d(x, y) ≤ max{d(x, z), d(y, z)} ∀x, y, z ∈ K

The metric (K , d) is an ultra-metric space that has several noticeable properties listed
in the following proposition.

Proposition 1.9. Let B(a, r) and B(a, r) be open and closed balls of radius r and center
a respectively.

(i) All triangles are isosceles.

(ii) Every interior point of a ball is a center of that ball.

(iii) Every point that is contained in a closed ball is also a center of that ball.

(iv) Every open ball is closed and has empty boundary.

(v) Every closed ball of positive radius is also open and has empty boundary.

(vi) Any two open or closed with positive radius balls are either disjoint or contained
in one another.

Proof. (i) Let x, y and z be three arbitrary distinct points, and consider the strong
triangle inequality. If the equality holds, thus the triangle consisting of x, y and
z is isosceles. Otherwise, ν(x − y) > ν(x − z) + ν(y − z), which reveals that
ν(x− z) = ν(y − z)⇒ |x− z| = |y − z| by making use of corollary 1.4.

(ii) Let b ∈ B(a, r), and let c be an arbitrary point in the ball B(a, r), one estimates
the distance between two points b and c

|b− c| ≤ max{|b− a|, |c− a|} < r

so that c ∈ B(b, r), this show B(a, r) ⊂ B(b, r), and switching a and b makes the
two balls identical.
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(iii) It is the same as the part (ii).

(iv) Let observe the complement of the open ball B(a, r)

Bc(a, r) = {x ∈ K ; |x− a| ≥ r}

For any element x of C and 0 < s < r, the such number s exists because if r = 0
then there is nothing to discuss. Let y ∈ B(x, s), then |x − y| < s < r ≤ |x − a|.
By corollary 1.4, we obtain

|y − a| = max |x− y|, |x− a| ≥ r

so that B(x, s) ⊂ Bc(a, r), this proves the complement is open as well, thus, B(a, r)
is closed and has empty boundary.

(v) It is similar to (iv).

(vi) The statement is a corollary of (ii) and (iii).

Definition 1.10. Given a discrete valuation ring R, the maximal ideal is denoted by m,
and the field induced by the quotient ring R/m is called the Residue Field with notation
k.

In terms of topology, we can rewrite those definitions in the manner

• The discrete valuation ring R = B(0, 1) = {x ∈ K ; |x| ≤ 1}.

• The maximal ideal, also as known as the valuation ideal 〈π〉 = B(0, 1) = {x ∈
K ; |x| < 1}.

• The residue field k = B(0, 1)\B(0, 1) = {x ∈ K ; |x| = 1}.

Moreover, the absolute value induces the casual terms for consequence in the field K . In
particular, given a sequence (an)n∈N ⊂K and an element a in K . The convergence can
be expressed both in languages of topology and valuation.

• (an)n∈N converges to a if every open ball of center a contains all but finitely many
elements of (an)n∈N, equivalently, limn→∞|an−a| = 0, equivalently, limn→∞ ν(an−
a) = +∞.

• (an)n∈N is a Cauchy sequence if for ε > 0, there exists a positive integer N such
that for all m,n > N , |am − an| < ε, equivalently, for any C > 0, there exists a
positive integer N such that for all m,n > N , ν(am − an) > C.
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Definition 1.11. The discrete valuation field K is complete if the metric space with
distance function associated with the discrete valuation is complete.

Theorem 1.12. (Uniqueness of completeness) Let K be a discrete valuation field
with a discrete valuation ν, there is exactly one complete discrete valuation field K̂ up to
isometric isomorphism with respect to a discrete valuation ν ′ such that, the K is dense
in K̂ , and the restriction of ν ′ on K× is ν.

Proof. The uniqueness is obviously provided by the properties of Cauchy sequences and
the identity of the restriction function of a discrete valuation on a dense set K . The
remaining part is to prove there is a complete discrete valuation field, which can be
constructed as follows.

Let C be a subset of KN consisting of all Cauchy sequences over the field K . On C,
we equip component-wise multiplication and addition, with respect to which, the set C is
kindly closed. Moreover, (C,+, ·) is a ring with additive identity element 0 = (0, 0, . . . )
and multiplicative identity element 1 = (1, 1, . . . ). Therewith, we define an equivalence
relation

(an)n∈N ∼ (bn)n∈N ⇔ lim
n→∞

(an − bn) = 0

Thus, the quotient ring C/ ∼ is a commutative ring. In addition, it is a field by following
the argument: for any nonzero equivalence class

[
(an)n∈N

]
, from some intermediate index,

components are nonzero, then there exists a sequence (bn)n∈N given by

bn =

a
−1
n if an 6= 0

0 if an = 0

Thus

(an)n∈N · (bn)n∈N ∈
[
(cn = 1)n∈N

]
⇒
[
(an)n∈N

]
·
[
(bn)n∈N

]
=
[
(cn = 1)n∈N

]
Let use the notation K̂ to represent the field C/ ∼, and let (An)n∈N be a Cauchy sequence,
and An =

[
(an,k)k∈N

]
, then it is clear that

[
(an,n)n∈N

]
is a Cauchy sequence, which is the

limit of (An)n∈N as well. That means
(
K̂ , ν ′

)
is complete with respect to the absolute

value associated to the valuation ν ′ given by ν ′
[
(an)n∈N

]
= limn→∞ ν(an).

Finally, the inclusion

i : K → K̂

x 7→
[
(xn = x)n∈N

]

is an injective homomorphism, and Im(i) =
{ [

(xn = x)n∈N
]

; x ∈ K
}
is a dense subset of
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K̂ . That proves
(
K̂ , ν ′

)
is the unique complement of K up to isometric isomorphism.

Corollary 1.13. For any uniformizer π of K, the element
[
(xn = π)n∈N

]
is a uniformizer

of the discrete valuation field K̂ , and the residue field is isomorphic to the residue field
of the original field K.

Proof. The first one follows from ν ′
([

(xn = π)n∈N
])

= 1. For the latter, the inclusion
i also induces an inclusion K/〈π〉 → K̂/

〈 [
(xn = π)n∈N

] 〉
. Meanwhile, since Im(i) is

dense in K̂ , for every
[
(an)n∈N

]
of valuation 0, there exists an element a ∈ k such that

ν ′
([

(an − a)n∈N
])
> 0, this shows that K̂/

〈 [
(xn = π)n∈N

] 〉
⊂ K/〈π〉.

Example 1.14. A familiar example is the field of integer Q is not complete with respect
to p-adic valuation, and its complement is the field of p-adic number Qp.

1.3 Expanding valuation to finite extension fields

Unless explicitly stated, otherwise, we assume that R is a complete D.V.R of a com-
plete discrete valuation field K . The goal is to provide an accurate description of finite
extension fields by ramification index and residue degree, that shall be introduced in
this section. For simplicity, the notation congruence a ≡ b mod (πn) accounts for
a− b ∈ 〈πn〉.

Theorem 1.15. Let (πn)n∈Z be a fixed sequence with property: for any n ∈ Z, ν (πn) = n.
In addition, let A be a system of representative for the residue field. Then the followings
are claimed.

(i) Every series ∑n≥m0 anπn with coefficients in A is in K.

(ii) Every element x ∈ K accepts a uniquely determined representation which is a series

∑
n≥m0

anπn

with coefficients in A and ν(x) = m0.

In other words, K = R
[

1
π

]
.

Proof. (i) Note that the partial sums of the series Sm = ∑m
n=m0 anπn make a Cauchy

sequence, which converges to an element in K because of its completeness.

(ii) The uniqueness is trivial since any two elements, that share the same series shall
consequently have valuation of their difference is infinite, which implies the unity
element zero.

The remaining is the existence, which is provided as following: By definition, for
every unit, there exists exactly one element in A, that is congruent with the unit.
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According to that, we utilize induction to show for any n ∈ Z, the sequence
(Sm)m≥m0

given by

am0 ≡
x

πm0

⇒ Sm0 = am0πm0

. . .

am ≡
x− Sm−1

πm
⇒ Sm = Sm−1 + amπm

. . .

is a Cauchy sequence. As a result of part (i), limm→∞ Sm = ∑
n≥m0 anπn, which is

an element in K , and limm→∞ Sm = x. Hence, x = ∑
n≥m0 anπn.

Definition 1.16. Let E/F be a finite extension field of a field F , and let [E : F ] =
d ∈ Z≥1. A Norm Mapping NE/F : E → F is a function satisfying one of the following
conditions:

(i) Let α be an arbitrary element of E . Hence, the bijection ϕα : E → E : x 7→
αx is alternatively interpreted as a F -linear operator over the F -vector space of
dimension d. Therewith, let NE/F(α) be the determinant of the matrix associated
to the operator ϕα.

(ii) Let α be an arbitrary element of E , r be the degree of E as an extension of the
field F(α), and the minimal polynomial of α over F given by

f(X) = Xn + an−1X
n−1 + . . .+ a0 ∈ F [X]

Then we define NE/F(α) = (−1)nrar0.

(iii) Let α be an arbitrary element of E , without loss of generality, we can assume E/F
is normal, because if it is not, we can define the map over the normal closure of E
instead. Then let define

NE/F(α) =
∏

σ∈Aut(E/F)
σ(α).

Remark 1.17. Note that the "Norm mapping" appears to have the same name as "norm".
It needs to be highlighted that the function defined as above is not a norm. In particular,
the mapping is a surjective from a finite extension of a field onto itself, which surprisingly
possesses many interesting properties, that can be used to expand a discrete valuation as
well as its associated absolute value to any finite extension fields in the following method.
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In order to make sense of this definition, the next proposition shall prove the connec-
tion of the three conditions

Proposition 1.18. The conditions (i), (ii), and (iii) are equivalent.

Proof. Notice that for any σ ∈ Aut(E/F), σ(α) is also a root of the polynomial f .
Meanwhile, every F -automorphism σ on E/F is extended from some F -isomorphism
form F(α) to F(σ(α)). In reverse, because E/F is normal, thus every F -isomorphism
form F(α) to F(σ(α)) is extended to exactly r F -automorphism on E/F . That makes
(−1)nrar0 = ∏

σ∈Aut(E/F) σ(α), equivalently, (ii), and (iii) are interchangeable.
Let {1, α, . . . , αn−1} be a basis of the F -vector space F(α), and let {b1, . . . , br} be a

basis of F(α)-vector space E . Thus, {αibj; i = 1, n− 1, j = 1, r} be a basis of F -vector
space E . By using αn = − (an−1X

n−1 + . . .+ a0), the associated matrix of ϕα with
respect to that basis is given by Diag (A, . . . ,A), where A is a n× n matrix defined by

A =



0 . . . . . . 0 −a0

1 . . . . . . 0 −a1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 . . . . . . 1 −an−1


⇒ det(A) = (−1)na0

Hence
det (Diag(A, . . . ,A)) = (−1)nrar0

That proves (i) and (ii) are equivalent as well.

Corollary 1.19. The norm mapping is multiplicative, and let three fields L/E/F, then

NL/F = NE/F ◦NL/E .

Let L/K be a finite extension of K of degree d, and let use the notations RL and kL

be denoted the discrete valuation ring and the residue field of the field L, respectively.
However, in order to do those notations, we first need to claim whether L is a discrete
valuation field as well as the completeness.

Lemma 1.20. (Hensel’s lemma) Let R be the discrete valuation ring of K, and let
f(X) be a polynomial of order n with coefficients in R such that: there are polynomials
g1(X) and h1(X), that are relatively prime, g1(X) is monic and f(X) ≡ g1(X)h1(X)
mod (π). Then there exist polynomials g(X) and h(X) with coefficients in R such that

• g(X) is monic, g(X) and h(X) are relatively prime,

• g(X) ≡ g1(X) mod (π) and h(X) ≡ h1(X) mod (π),
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• f(X) = g(X)h(X).

Proof. Induction is an effective strategy to solve this problem, starting with g1(X) and
h1(X), we assume that the degree of g1(X) is m 6= n, then the degree of h1(X) does
not exceed n−m. We construct two sequences of polynomials (gn)n∈N and (hn)n∈N with
coefficients in R by strong induction such that. Assuming that we have successfully
defined gn(X) and hn(X) with

• gn(X) is a monic polynomial of degree m,

• gn(X) and hn(X) are relatively prime,

• gn+1(X) ≡ gn(X) mod (πn),hn+1(X) ≡ hn(X) mod (πn) , and

• f(X) ≡ gn(X)hn(X) mod (πn).

It is clear that g1(X) and h1(X) are satisfied. We inductively assume the first n poly-
nomials have been successfully defined, and we construct the next terms in the manner

gn+1(X) = gn(X) + πnun(X) and hn+1(X) = hn(X) + πnvn(X)

in which we need to find the appropriate polynomials u(X) and v(X). Note that

gn+1(X)hn+1(X) = gn(X)hn(X) + πn(v(X)gn(X) + u(X)hn(X)) + π2nu(X)v(X)

and the ideal 〈gn(X), hn(X)〉 is a unity ideal of the polynomial ring R [X], then there
exist such u(X) and v(x) that

f(X)− gn(X)hn(X)
πn

≡ v(X)gn(X) + u(X)hn(X) mod (π)

In addition, changing u(X) and v(X) by u(X)− t(X)g(X) and v(X + t(X)h(X)) does
not change the congruence condition, so that without loss of generality, we can choose
u(X) such that degree of gn+1 remains as the degree of gn(X), moreover, gn+1 is monic.

Hence, by theorem 1.15, the sequences (gn)n∈N and (hn)n∈N component-wise converge
to g(X) and h(X), respectively, with the properties are inherited.

In the proof, the completeness of K plays a key role. Apparently, it raises the question
that if the Hensel’s lemma is true over a field that is not discrete valuation. The answer is
"yes", and the terminology "Henselian ring" is used to name such rings, over the fraction
field of which the Hensel’s lemma works.

Corollary 1.21. Let f(X) be a monic irreducible polynomial in K [X], then f(0) ∈ R⇔
f(X) ∈ R [X].
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Proof. It is obvious that the first statement is a corollary of the latter.
In order to prove the latter from the first one, let m be the smallest non-negative

integer such that πmf(X) ∈ R [X]. If m = 0 then there is nothing to discuss. We assume
that πmf(X) is a polynomial with the least valuation of coefficients is 0, i.e, a unit in
R. Then there exist a monic polynomial g(X) with degree less than f(X), such that
f(X) ≡ g(X)·1 mod (π), to which the Hensel’lemma is applied to obtain a factorization
of f by two polynomials with coefficients in R and degrees less than the degree of f(X).
That is a contradiction to the irreduciblity of f(X).

Theorem 1.22. L is a complete discrete valuation field. In addition, there is exactly one
discrete valuation νL on L satisfying the restriction of ν̂L over K is a constant multiple
of the discrete valuation on K.

Proof. We construct a discrete valuation on L as following. Let ν̂L be a composition
function ν ◦ NL/K form L× to Z. It is straightforward to check the conditions of the
definition 1.1 on ν̂L.

According to (i) of the definition 1.16, the norm mapping is multiplicative, that
instantly satisfies the condition (ii) of the definition 1.1. The condition (iii) is archived
as follow.

• If ν̂L(x) is non-negative for an element x ∈ L, then let f(X) be a minimal polyno-
mial of x over K . The definition 1.16 shows that

f(0)[L:K(x)] = (−1)dNL/K (x)

then ν̂L(x) implies f(X) ∈ R [X] as a result of the corollary 1.21. Thus, f(X −
1) ∈ R [X] is the minimal polynomial of x + 1, and ν(f(−1)) ≥ 0 means that
ν̂L(x+ 1) ≥ 0.

• Let x ∈ L with ν(x) ≤ 0. Then ν(x−1 + 1) ≥ 0 by the last argument, combining
with the multiplicity of the norm mapping, we result

ν̂L(x+ 1) = ν̂L(x(1 + x−1)) = ν̂L(x) + ν̂L(1 + x−1) ≥ min{0, ν̂L(x)}

That proves the condition (iii) of the definition 1.1 is true in the case one of elements is
unit, and another is of non-negative valuation. In addition, the multiplicity of the norm
mapping is conveyed to the function ν̂L, then in every case, we can convert it into the
simple case as above.

For any x ∈ K , NL/K (x) = (−x)d, then ν̂L|K× = dν. Furthermore, because degrees
of minimal polynomials are divisors of d, then there are c | d such that Im(ν̂L) = cZ,
then we define

νL = 1
c
ν̂L : L → Z
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This function is surjective, then it is a discrete valuation on L, and νL|K× = d
c
ν. For the

completeness, set eL/K = d

c
, and let consider L as a finite dimensional K -vector space,

with the absolute value
‖x‖L = e

−νL(x)
eL/K

Note that the restriction of this norm on K is the norm associated to the discrete
valuation ν. Besides, let define another norm as a "max" column vector in the usual way,
which is

d∑
i=1

aiei = max{|ai|; i ∈ {1, . . . , d}}

where {e1, . . . , ed} is the standard basis. We apply two fundamental lemmas in Func-
tional Analysis to this setting, see [5].

Lemma 1.23. All norms over a certain vector space of finite dimension are equivalent.

Lemma 1.24. Every finite dimensional normed space over a complete field is a Banach
space.

As a result, K is complete then L is complete with respect to both defined absolute
value.

Corollary 1.25. The same method constructs a valuation on the algebraic closure K
and the complement of K as well. In particular, the image of such a valuation is Q.

Definition 1.26. We divide the degree of an extension field as below:

• The number eL/K | [L : K ] is called Ramification Index of L/K . A finite extension
is called Totally Ramifield if eL/K = [L : K ]. In reverse, if eL/K = 1 then the
extension field is called Unramifield.

• The number [L : K ]
eL/K

is called Residue Degree, denoted by fL/K .

Theorem 1.27. For any extension fields M/L/K, the followings hold

(i) [kL : k] = fL/K

(ii) eM/K = eM/L · eL/K and fM/K = fM/L · fL/K .

Proof. It is trivial that k ⊂ kL. In particular, let x1, . . . , xn be a k-linear independent
system of kL, then every set with {yi ∈ L; yi ∈ [xi] ∀i ∈ {1, . . . , n}} is a K -linear
independent in L. To prove it, let indirectly assume that there exists a such K -linear
dependent set {yi}, then there are {ai; i ∈ {1, . . . , n}} ⊂ K such that at least one of
them is nonzero, and

n∑
i=1

aiyi = 0
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Without loss of generality, we can assume {ai; i ∈ {1, . . . , n}} ∈ R, and at least one of
them is a unit. Then we observe both side in mod (πL), then we obtain

n∑
i=1

a′ixi = 0

where at least one ai is nonzero. In other words, every k-linear independent system of
kL induces a K -linear independent in L. That means [kL : k] = f ≤ [L : K ].

Let x1, . . . , xf is a system of representatives of kL, and let consider the set {πiL; i ∈
{1, . . . , eL/K}}, then by evaluating the valuation νL, we can claim that the set is K -linear
independent. Consequently, we achieve a K -linear independent set

{xiπjL; i ∈ 1, . . . , f ; j ∈ {1, . . . , eL/K}}

Thus, eL/K ·f ≤ d. Meanwhile, theorem 1.15 show that for every x ∈ L accepts a form

x =
∞∑

m=n0

bmπm

In particular, we choose πm = πj · πiL∀m = j eL/K +i, every unit bm is rewrite in the
kL-basis {x1, . . . , xf}, the result is of the form

x =
eL/K∑
i=1

f∑
j=1

πiLxjcij

with cij in K , which is straightforward to {xiπjL; i ∈ 1, . . . , f ; j ∈ {1, . . . , eL/K}} is a
generating system, thus, eL/K ·f ≥ d, combing with the above, we attain that f = fL/K .
In addition, because every element of the D.V.R of L is the series starting at at least 0,
then the D.V.R of L is a R-free module of degree d as well.

The statement (i) is a direct corollary of the definition of eL/K and fL/K .

Theorem 1.28. Let K be the algebraically closure of K. In terms of fields and rings,
the followings hold.

• R = B(0, 1) = {x ∈ K ; ν(x) ≥ 0} is a (local) valuation ring with the valuation nu
satisfying all the laws of the definition 1.1 when replacing the range Z by Q≥0.

• The maximal ideal of R is OK = B(0, 1) = {x ∈ K ; ν(x) > 0}.

• The residue field of K is k = R/OK , which is an algebraic closure of k.

Proof. Most of those are corollaries of extending the field K . The difficult one is proving
the algebraic closure of k is R/OK . For any element x ∈ R/OK , there is an finite
extension L of K such that x ∈ kL, then R/OK is a sub-field of the algebraic closure of
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k. Moreover, it is easy to see that all algebraic of k is in R/OK . That provides what we
need.

2 Laurent series on discrete valuation fields

The Laurent series is a well-known objective to study in terms of real or complex analysis.
Once we define an absolute value, we can examine the convergence of sequence or series
on a complete valued field. The goal of this section is to learn the behavior of Laurent
series on a field equipped with an absolute value associated with a discrete valuation,
see also [6] and [7].

2.1 Laurent series on closed annuli and Gauss norms

Unless explicitly stated, we use the notation K ,R, ν, |·|, etc as above.

Definition 2.1. A Laurent series with coefficient in K is a formal series

F (X) =
∑
n∈Z

anX
n.

The Laurent series is said to be convergent at the point x0, if the sequence of partial
sum SN = ∑N

n=−N anx
n
0 is a Cauchy sequence, and the limit point is the value of F (x0).

The set of all Laurent series is denoted by K [[X]].

Theorem 2.2. (Radii of convergence) Let F (X) = ∑
n∈Z anX

n ∈ K [[X]]. Then the
radii of convergence r1 and r2 are given by formula

r1 = lim sup
n→+∞

|a−n|1/n and r2 = 1
lim supn→+∞|an|1/n

The Laurent series F (X) converges at every element of the annulus

A(r1,r2) = {x ∈ K ; r1 < |x| < r2}.

In addition, for every points not in the closed annulus A[r1,r2] = {x ∈ K ; r1 ≤ |x| ≤ r2},
the Laurent series F (X) diverges.

Proof. For any x ∈ A(r1,r2), then there exist a positive integer N0, for all n ≥ N0

|anxn| ≤
∣∣∣∣ an
supn≥N0{|an|}

∣∣∣∣ < 1 and
∣∣∣∣a−nxn

∣∣∣∣ ≤ ∣∣∣∣ a−n
supn≥N0{|a−n|}

∣∣∣∣ < 1

Combing with the non-archimedean property of the absolute value associated to a dis-
crete valuation, we obtain that the two power series ∑+∞

n=0 anx
n and ∑+∞

n=1 a−nx
−n con-

verge, so that the Laurent series F (X) converges at the point x ∈ A(r1,r2).
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For any x ∈ Ac[r1,r2] and an arbitrary positive integer N , there exist another positive
integer N1 such that N1 > N and either |aNxN | > 1 or a−Nx−N > 1, so that the Laurent
series does not converge at the point x in the positive or negative direction.

Remark 2.3. Note that the non-archimedean property also converts the convergence
condition in the sense: a series ∑n

i=0 converges if and only if

lim
n→+∞

|an| = 0.

In terms of valuation, it is equivalent to

lim
n→+∞

ν(an) = +∞.

In addition, we can transform the radii of convergence as well.

|x| > lim sup
n→+∞

|a−n|1/n ⇔ ν(x) < lim inf
n→+∞

ν(a−n)
n

|x| < 1
lim supn→+∞|an|1/n

⇔ ν(x) > − lim inf
n→+∞

ν(an)
n

.

Given real numbers 0 < δ < ε, let denote the set of all [δ, ε]-convergent Laurent
series with coefficients in K by A[δ,ε], in which we equip component-wise addition and
multiplication as follow∑

n∈Z
anX

n

∑
n∈Z

bnX
n

 =
∑
n∈Z

 ∑
k+l=n

akbl

Xn

Lemma 2.4. A[δ,ε] is an integral domain with respect to the addition and multiplication.

Proof. The component-wise sum of any two elements in A[δ,ε] is convergent in [δ, ε]
because of radii of convergence and non-archimedean property. Thereby, A[δ,ε] is a com-
mutative group with respect to the addition.

Let A(X) = ∑
n∈Z anX

n and B(X) = ∑
n∈Z bnX

n be two arbitrary Laurent series
converging in [δ, ε]. The multiplication defined as above prominently satisfies the law of
associativity, two-side distribution and the unity elements 1 ∈ K . The rest is to prove
the series ∑n∈Z (∑k+l=n akbl)Xn converges in [δ, ε]. Let x ∈ K such that |x| ∈ [δ, ε],
then A(x) and B(x) converge, which is equivalent to

lim
n→+∞

|anxn| = lim
n→+∞

|bnxn| = lim
n→+∞

|a−nx−n| = lim
n→+∞

|b−nx−n| = 0

Hence, the set {|anxn|, |bnxn|; n ∈ Z} is bounded. Therefrom, we obtain that

lim
n→+∞

|akblxn=k+l| = lim
n→−∞

|akblxn=k+l| = 0
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That provide the convergence of the product series.

Take δ ≤ δ′ ≤ ε′ ≤ ε, then
A[δ,ε] ⊂ A[δ′,ε′]

In particular,
A[δ,ε] =

⋂
ρ∈[δ,ε]

A[ρ,ρ]

For simplicity, we use Aρ instead of A[ρ,ρ]. Moreover, for any ρ ∈ [δ, ε], A[δ,ε] can be
viewed as a sub-space or sub-ring of the K -vector space as well as ring Aρ.

Definition 2.5. We define a function ‖ · ‖ρ : Aρ → R≥0 by

|
∑
n∈Z

anX
n‖ρ = max

n∈Z
|an|ρn.

This function is called a ρ-Gauss norm.

Proposition 2.6. The ρ-Gauss norm is a well-defined norm of the vector space Aρ. The
norm defines a complete metric on Aρ.

Proof. It is clear the reflexive property and multiplication by scalar are satisfied. The
triangle inequality is an instant result of the non-archimedean property. Moreover, the
metric space induced by the ρ-Gauss norm on Aρ is an ultra-metric space as well.

For the multiplicity, let k, l ∈ Z be the smallest indices such that ‖∑n∈Z anX
n‖ρ =

|ak|ρk and ‖∑n∈Z bnX
n‖ρ = |bl|ρl. Thus,

ν(akbl) + (k + l)ρ = min{ν(ambn) + (m+ n)ρ}

In addition, for all m,n ∈ Z such that m + n = k + l, it happens that either m < k or
n < l, which implies that ν(am + bn) > ν(akbl), according to property 1.3, the absolute
value of ∑n+m=k+l ambn is equal to the absolute value of akbl. Therefore, we obtain that

∥∥∥∑
n∈Z

anX
n
∥∥∥
ρ

∥∥∥∑
n∈Z

bnX
n
∥∥∥
ρ

= |akbl|ρk+l =
∥∥∥∥∥∥
∑
n∈Z

anX
n

∑
n∈Z

bnX
n

∥∥∥∥∥∥
ρ

.

For the completion, let {Fn(X)}n∈N be a Cauchey sequence in Aρ. We write the coeffi-
cients of each Fn

Fn(X) =
∑
i∈Z

a
(n)
i X i

Thus, for any n ∈ N, |a(n)
i −a

(m)
i | ≤ ‖Fn−Fm‖, which implies all the sequences (a(n)

i )n∈N
are Cauchy sequences. Whence Fn →

∑
i∈Z limn→+∞ a

(n)
i X i ∈ Aρ because of the com-

pleteness of K .
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Theorem 2.7. (The maximal principal) Let 0 6= F (X) ∈ Aρ, then

‖F (X)‖ρ = max{‖F (X)‖; x ∈ K ; |x| = ρ}

Proof. Let ‖F (X)‖ρ = a 6= 0, and let y be an arbitrary element of K such that |y| = ρ.
Fix F (X) = ∑

n∈Z anX
n, then we consider a new Laurent series defined by

G(X) =
∑
n∈Z

a−1any
nXn

That has properties: G(X) ∈ A1 and ‖G(X)‖1 = 1. Thereby, it suffices to prove that
max{G(x); x ∈ K ; |x| = 1} = 1. In particular, ‖G(X)‖1 = 1 means there is at least one
coefficient is a unit, by embedding the Laurent series to the residue field k, we obtain a
Laurent polynomial of finite degree. Let

G(X) ≡ P (X) mod 〈OK〉

Hence, take x is not a root of P (X), then G(X) is a unit, then max{G(x); x ∈ K ; |x| =
1} ≥ 1. In addition, ‖G(X)‖1 = 1, that means for any unit x, |anxn| ≤ 1, then by the
non-archimedean property, max{G(x); x ∈ K ; |x| = 1} = 1.

2.2 Newton polygons of Laurent series

One is familiar with Newton polygons of polynomials, which provides a geometric in-
terpretation of a polynomial in terms of its indices and valuation. In general, applying
Newton polygon method on Laurent series also results surprising properties similar to
polynomials, see details in [8], [9] and [10]. Our goal is to extend it to Laurent series, in
fact, there is a strong bond between the Gauss norms and Newton polygons, which is a
generalization of polynomials as well as power series. Therefore, in this section, we shall
state Newton polygons in the language of Gauss norms.

Definition 2.8. The Newton polygon of a Laurent series ∑n∈Z anX
n is the boundary

of the lower convex hull of the set

{(n, ν(an)) ; n ∈ Z; an 6= 0}.

That consists of at most infinitely many segments of distinct slopes, the joint of two
consecutive segments is called a break. The part of segments with slopes retaining in
[log(δ), log(ε)] is called the Newton polygon with respect to the segment [δ, ε].

Definition 2.9. Let F (X) = ∑
n∈Z anX

n ∈ A[δ,ε], and the real number ρ ∈ [δ, ε] is called
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a critical radius of F (X) if there are two distinct indices n1 < n2 such that

‖F (X)‖ρ = |an1|ρn1 = |an2|ρn2 .

Lemma 2.10. F has at most finitely many critical radii in [δ, ε]

Proof. Let k and l be indices such that

|a−k|δ−k = max
n≤0
|an|δn and |al|εl = max

n≥0
|an|εn

For any ρ (δ, ε) and n > l, then |an|εn ≤ |al|εl ⇒ |an|ρn < |al|ρl. Similarly, we obtain
|an|ρn < |a−k|ρ−k ∀n ≤ −k. That implies that for any critical radius ρ ∈ (δ, ε), there is
a pair of indices −k ≤ n1 < n2 ≤ l such that, ρ =

( |an1 |
|an2 |

) 1
n2−n1 . Hence, the number of

critical radii is bounded.

Fix F (X) and let δ = ρ0 < ρ1 < . . . < ρm < ρk+1 = ε be the sequence of all critical
radii of F (X), and let k and l be the indices defined as in the previous proof.

Lemma 2.11. For any i ∈ {0, . . . , k}, there is exactly an index ni such that

‖F (X)‖ρ = |ai|ρi ∀ρ ∈ (ρi, ρi+1) .

Proof. Let PN = {ρ ∈ (ρi, ρi+1)}; |aN |ρN = maxn∈Z{|an|ρn}. Because there exist such
indices k and l that

|an|ρn < max
−k≤m≤l

{|am|ρm} ∀n /∈ {−k, . . . , l}

Thus, for all n < −k or n > l, Pn = ∅. In addition, for any n such that Pn 6= ∅

Pn = {ρ ∈ (ρi, ρi+1)}; |aN |ρN = max
−k≤m≤l

{|an|ρn}

Therefore, Pn’s are open and distinct because ρ is not a critical radius. The fact that
the union of all the sets Pn’s is the open interval (ρi, ρi+1) shows that there is only an
index ni ∈ {−k, . . . , l} such that Pni = (ρi, ρi+1) .

Let observe the function ‖F‖ρ with ρ run all over the closed interval [δ, ε]. In terms
of valuation, we can convert it to the form

WF : [log(δ), log(ε)]→ R

t 7→ log (‖F‖et) = max
n∈Z
{nt− ν(an)}
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That is a convex and piece-wise affine-linear functions (i.e, covered by finitely many
affine function of the form ax + b ). In other hand, let (i, ν(ai)) and (j, ν(aj)) be two
consecutive break of the Newton polygons, that means for all u 6= i,

ν(au) ≥ ν(ai) + (u− i)ν(aj)− ν(ai)
j − i

⇔ i
ν(aj)− ν(ai)

j − i
− ν(ai) ≥ u

ν(aj)− ν(ai)
j − i

− ν(au)

Then (i, ν(ai)) is a break if and only if there exists a t ∈ [log(δ), log(ε)] such that
WF (t) = ni − ν(ai). That means the Newton polygon with respect to the interval
[log(δ), log(ε)] has slopes is the breaks of WF (t), those are {log(ρi); i ∈ {1, . . . , k}, and
we define

n(F, ρ) = min{n; ‖F‖ρ = |an|ρn}

N(F, ρ) = max{n; ‖F‖ρ = |an|ρn}

Then the breaks of the Newton polygon is {n(F, ρ); ρ is a critical radius}, and we have
N(F, ρi) = n(F, ρi+1). In conclusion, we have the following theorem about the Newton
polygon.

Theorem 2.12. Let F (X) ∈ A[δ,ε], then consider its Newton Polygon with respect to
the interval [δ, ε]. Let {ρ1, . . . , ρk} be the set of all critical radii, then there are exactly k
interval with slopes in the interval (log(δ), log(ε)) at the breaks n(F, ρi). In particular,

those slopes are log(ρi) = ν(aN(F,ρi))− ν(an(F,ρi))
N(F, ρi)− n(F, ρi)

’s.

Theorem 2.13. Let F (X) and G(X) ∈ A[δ,ε], then the Newton polygon of FG has the
set of slopes consists all slopes of F and G.

Proof. It suffices to prove that n(FG, ρ) = n(F, ρ) + n(G, ρ) and N(FG, ρ) = N(F, ρ) +
N(G, ρ), that can be easily check by the non-archimedean property.

Lemma 2.14. 0 6= F (X) ∈ A[δ,ε] is a unit if and only of n(F, δ) = N(F, ε).

Proof. If F (X) is a unit then

n(F, δ) + n(F−1, δ) = n(1, δ) = 0 = N(1, ε) = N(F, ε) + N(F−1, ε)

In other hand, n(F, δ) < N(F, ε) because of the convexity of WF (t). Hence, n(F, δ) =
N(F, ε).

In converse, let m = n(F, δ) = N(F, ε), then F (X) = aXm(1G(X)), where a 6= 0 and
in K× and F (X) has no critical radius in [δ, ε], then max{‖G‖ρ; ρ ∈ [δ, ε]} = b < 1,
hence, the series

+∞∑
i=0

G(X)i

converges, which is inverse of 1−G(X). Therefore, F (X) is invertible.
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2.3 Factorization of Laurent series

The Weierstrass preparation theorem is an important tool to determine the valuation
of roots of a certain power series with coefficients in a discrete valuation ring, see [8]
and [10]. Thereby, we divide a Laurent series into ’positive’ part, which is of all factors
with positive indices, and ’negative’ part, which is the rest to apply the Weirestrass
preparation theorem. Besides, we construct the division with remainder over the integral
domain A[δ,ε] under special condition.

Definition 2.15. A polynomial P (X) = a0 + . . . + anX
n ∈ K [X] is called pure if its

Newton polygon has only one slope, equivalently, n(P, ρ) = 0 and N(P, ρ) = deg(P ) for
some ρ.

Definition 2.16. A polynomial P (X) = a0 + . . . + anX
n ∈ K [X] is ρ-dominant or

ρ-extreme if N(P, ρ) = n or N(P, ρ) = n and n(P, ρ) = 0.

Lemma 2.17. P (X) = a0 + . . .+ anX
n ∈ K [X] is ρ-dominant or ρ-extreme if and only

if the every root of F (X) has absolute value at most ρ or exactly ρ, respectively.

Proof. We factorize the polynomial P (X) = an(X − α1) . . . (X − αn), where αi ∈ K .
Then N(P, ρ) = ∑n

i=1 N(X − αi, ρ). Therefore,

N(F, ρ) = n⇔ N(X − αi, ρ) = 1 ∀i ∈ {1, . . . , n}

That imples all |αi| ≤ ρ.

We present the two theorems to provide a perception about the division with remain-
der over A[δ,ε]. It can be considered as a generalization of Washington’s theorem, see
[9].

Theorem 2.18. (Dividing a power series by a polynomial) Let F (X) = ∑+∞
n=0 anX

n ∈
Aρ and P (X) = b0 + . . . + bnX

n ∈ K [X] is a ρ-dominant. Then there exist uniquely a
power series G(X) ∈ Aρ and a polynomial R(X) ∈ K [X] of degree at most n − 1 such
that

F (X) = P (X)G(X) +R(X)

In addition
‖F‖ρ = max{‖PG‖ρ, ‖R‖ρ}

Proof. For uniqueness, let assume there are such power series and polynomials Q1 6= Q2

and R1 6= R2 with Q1P + R1 = Q2P + R2 ⇔ p(Q1 − Q2) = R1 − R2. Therefrom, we
evaluate the largest indices with the largest absolute value of both side.

n− 1 ≥ N(R1 −R2, ρ) = N(P (Q1 −Q2), ρ) = N(P, ρ) + N(Q1 −Q2, ρ) ≥ n
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That leads to a contradiction.
Once we have the form F = PQ+R, if ‖R‖ρ ≥ ‖PQ‖ρ then

‖F‖ρ = ‖PG‖ρ = max{‖PG‖ρ, ‖R‖ρ}

because N(PQ, ρ) = N(P, ρ) + N(Q, ρ) ≥ n > deg(R), and by the non-archimedean
property shows that for all d < n, the coefficient of degree d of both PQ and R has
absolute value at most ‖PQ‖ρ. If ‖R‖ρ > ‖PQ‖ρ, then according to property 1.3, we
achieve what we need.

The remaining part is existence, which can be prove by dividing each term amX
m by

the polynomial P to obtain the quotient polynomials Qm and the remainder polynomials
Rm of degree at most n− 1. In particular, |am|ρm = max{‖PQm‖ρ, ‖Rm‖ρ} holds for all
m. The completeness of Aρ with respect to ‖ · ‖ρ ensures the existence of

Q =
+∞∑
m=0

Qm and R =
+∞∑
m=0

Rm.

Theorem 2.19. (Dividing a Laurent series by a polynomial) Let F (X) =∑
n∈Z anX

n ∈ A[δ,ε], ρ ∈ [δ, ε] and P (X) = b0 + . . .+ bnX
n ∈ K [X] is a ρ-extreme. Then

there exist uniquely a Laurent series G(X) ∈ A[δ,ε] and a polynomial R(X) ∈ K [X] of
degree at most n− 1 such that

F (X) = P (X)G(X) +R(X)

In addition
‖F‖ρ = max{‖PG‖ρ, ‖R‖ρ}

Proof. The uniqueness is proved in the same way above using the inequality

deg(R1 −R2) ≥ N(R1 −R2, ρ)− n(R1 −R2, ρ)

The property ‖F‖ρ = max{‖PG‖ρ, ‖R‖ρ} is obtained by proving N(PQ, ρ)−n(PQ, ρ) ≥
n, which can be easily checked.

We divide F (X) = F+(X) + F−(X), where F+(X) = ∑
i≥0 aiX

i and F−(X) =∑
i<0 aiX

i. For every µ ∈ [ρ, ε], we apply the theorem 2.18 to F+(X) with F+(X) ∈
A[δ,ε] ⊂ Aµ and the µ-dominant polynomial P (X) to obtain

F+(X) = P (X)Q1(X) +R1(X)

where Q1(X) is a power series in A[ρ,ε]. In addition, F=, R1, P ∈ A[δ,ε] implies that
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Q1 ∈ A[δ,ε] as well.
Let define

F−0 (X) = Xn−1F−(X−1) be a power series in A[ε−1,δ−1]

and
P ′(X) = XnP (X−1) be a ρ−1-extreme of degree n

We similarly show that F−0 (X) = P ′(X)Q′(X) + R′2(X), where Q′(X) is a power series
in A[ε−1,δ−1], and R′2(X) is a polynomial of degree at most n− 1. Hence

Xn−1F−(X−1) = XnP (X−1)Q′2(X) +R′2(X)

Substituting X by X−1, we obtain

F−(X) = X−1Q′2(X−1) +Xn−1R′2(X−1)

Equivalently, there are a Laurent series Q2(X) with all non-negative coefficients omitted
a polynomial R2(X) of degree at most n− 1 such that

F−(X) = P (X)Q2(X) +R2(X)

Putting two parts of F (X) provides as we need.

Theorem 2.20. (A generalization of Weierstrass theorem) Let 0 6= F (X) =∑
i∈Z anX

n ∈ A[δ,ε] with 0 < δε, then there are uniquely determined polynomial P (X) ∈
K (X) of degree N(F, ε)−n(F, δ) and a unit Lauren series U(X)A×[δ,ε] such that F (X) =
P (X)U(X). In addiction, all roots of P (X) has absolute value in the interval [δ, ε].

Proof. For the uniqueness, we indirectly assume that there are polynomials P (X) and
P ′(X), units Q(X) and Q′(X) satisfying P (X)Q(X) = P ′(X)Q′(X), then it is easily
claimed, the polynomials P (X) and P ′(X) has the same degree and roots over K . That
proves as we need. If F (X) is a unit, then theorem is claimed because of lemma 2.14.
Let ρ is a critical radius and 1 ≤ d = N(F, ρ)− n(F, ρ) and define

P1(X) = X−n(F,ρ)
N(F,ρ)∑
n(F,ρ)

anX
n

This is a ρ-extreme polynomial of degree d and ‖F − P1‖ρ < ‖F‖ρ. Making use of
theorem 2.18, there exist a uniquely determined polynomial R1(X) of degree at most
d− 1 and a Laurent series Q2(X) ∈ A[δ,ε], such that

F (X) = P1(X)Q1(X) +R1(X)
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Therefrom, we recursively construct sequences of polynomials and Laurent series in the
manner

Pm+1(X) = Pm(x) +Rm(X) and F (X) = Pm+1(X)Qm+1(X) +Rm+1(X).

In order to make this process works, we need to prove that Pm(X) is a ρ-extreme poly-
nomial for all m. We inductively prove it by

‖F − Pm‖ρ = max{‖Pm‖ρ‖Qm − 1‖ρ, ‖Rm‖ρ}

and
‖F − Pm+1‖ρ ≤ max{‖F − Pm‖ρ, ‖Rm‖ρ} = ‖F − Pm‖ρ

Hence, all the polynomial Pm’s are ρ-extreme. Moreover, ‖F −Pm‖ρ < ‖F‖ρ ∀m, which
leads to

‖Qm − 1‖ρ‖F‖ρ = ‖Qm − 1‖ρ‖Pm‖ρ ≤ ‖F − Pm‖ρ

Then for all m, the inequality ‖Qm − 1‖ρ ≤
‖F − Pm‖ρ
‖F‖ρ

= c < 1 holds. We apply the
inequality of theorem 2.18

F (X) = Pm(X)Qm(X) +Rm(X) = Pm+1(X)Qm+1(X) +Rm+1(X)
⇒ Rm(X)(Qm+1(X)− 1) = −Pm(X)(Qm+1(X)−Qm(X))−Rm+1(X)
⇒ ‖Rm‖ρ · c ≥ ‖Pm(Qm+1 −Qm) +Rm+1‖ρ
⇒ ‖Rm‖ρ · c ≥ max{‖Pm(Qm+1 −Qm)‖ρ, ‖Rm+1‖ρ}

⇒ ‖Rm‖ρ · c ≥ ‖Rm+1‖ρ

The last inequality shows that Rm → 0 as m → 0. Consequently, the non-archimedean
property implies the convergence of {Pm}m≥0, let the limit polynomial is P ∗(X), which
is inherited the properties of Pm’s, namely, P (X) is a ρ-extreme polynomial of degree n
with coefficients in K and there exists uniquely determined Laurent series Q∗(X) ∈ A[δ,ε],
such that F (X) = P ∗(X)Q∗(X).

We repeat the process on all finitely many critical radii of F (X) to achieve a poly-
nomial P (X) of degree N(F, ε)− n(F, δ) and a Laurent series Q(X) ∈ A[δ,ε] satisfying

F (X) = P (X)Q(X)

In addition, N(Q, ε) = n(Q, δ) is obtained means that Q(X) is a unit.

The theorem leads us directly to essential corollaries as follows.

Corollary 2.21. Every root of a Laurent series is algebraic.

28



Corollary 2.22. If δ = 0, we substitute Laurent series by power series, the same result
is acquired.

Corollary 2.23. When we substitute K by its discrete valuation ring R, theorem 2.20
and the corollary 2.22 remain true.

Remark 2.24. We can express the set of all zeros of a Laurent series in terms of Newton
polygon. For a given Laurent series over a closed interval, all zeros can be divided into
sets of zeros with the same valuation. In particular, a line segment of Newton polygon
has its width projecting to x-axis representing the number of zeros with the valuation of
inverse slope of the line segment.

Definition 2.25. The polynomial P (X) of F (X) as above is called the distinguished
polynomial of the Laurent series, denoted by C (F ).

Corollary 2.26. (Division of two Laurent series) Let F (X) and G(X) be two
power series in A[δ,ε], then there are a uniquely determined polynomial R(X) of degree
less than deg(C (G)) and a Laurent series Q(X) ∈ A[δ,ε] such that

F (X) = G(X)Q(X) +R(X).

Theorem 2.27. The integral domain A[δ,ε] is a principal ideal domain (P.I.D).

Proof. Notice that in A[δ,ε], the ideal generated by a Laurent series is generated by its
distinguished polynomial, which induces a bijection

The set of all ideals in A[δ,ε] → The set of all ideals in K [X]
I 7→ I ∩K [X]

This bijection preserves inclusion and union, and since K [X] is a P.I.D, then so is A[δ,ε].
In details,

A[δ,ε] = K [X] · A×[δ,ε].

Definition 2.28. We defined the Gauss-norm on A[δ,ε]

‖ · ‖δ,ε :A[δ,ε] → R≥0

F (X) 7→ max{‖F‖ρ; δ ≤ ρ ≤ ε}

Proposition 2.29. The ring A[δ,ε] is a complete K-algebra with respect to the Gauss
norm.
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Proof. The Gauss norm is a well-defined norm because it satisfies all the laws of a norm
over a vector space conveying from ρ-Gauss norm. The rest to to prove the inequality

‖FG‖δ,ε ≤ ‖F‖δ,ε‖G‖δ,ε ∀F (X), G(X) ∈ A[δ,ε].

Notice that

max{‖F‖ρ; δ ≤ ρ ≤ ε} = max{‖F‖δ, ‖F‖δ‖F‖ε}
⇒ ‖FG‖δ,ε = max{‖FG‖δ, ‖FG‖δ‖F‖ε} ≤ max{‖F‖δ, ‖F‖δ‖F‖ε}max{‖G‖δ, ‖F‖δ‖G‖ε}
⇒ ‖FG‖δ,ε ≤ ‖F‖δ,ε‖G‖δ,ε

2.4 The Laurent series on semi-open and open annuli

On a closed interval, we learn the properties of a Laurent series by studying the endpoints
of a interval. Let use the notation A[δ,ε) and A(δ,ε) to denote the sets of all Laurent series
converging on [δ, ε) and (δ, ε) respectively. In terms of inclusion, we describe the rings

A[δ,ε) =
⋂

δ<ε′<ε

A[δ,ε′] =
+∞⋂
i=1
A[δ,εi]

and
A(δ,ε) =

⋂
δ<δ′<ε

A[δ′,ε) =
+∞⋂
i=1
A[δi,ε)

Where (εi)i∈N ⊂ (δ, ε) converges to ε, and (δi)i∈N ⊂ (δ, ε) converges to δ. For simplicity,
let fix those two sequences.

Lemma 2.30. (Unit elements) Let F (X) = ∑
n∈Z anX

n ∈ A[δ,ε), then F (X) is a unit
if and only if there exists a index n0 with the following properties

|an0|δn0 < |an|δn and |an0|εn0 ≤ |an|εn ∀n 6= n0

Proof. Notice that

F (X) =
∑
n∈Z

anX
n ∈ A[δ,ε) ⊂ A[δ,ε′] ∀δ < ε′ < ε

then F (X) is a unit of A[δ,ε) if and only if it is a unit of A[δ,ε′] ∀δ < ε′ < ε. By lemma
2.14, that implies

n0 = n(F, δ) = N(F, ε′) ∀δ < ε′ < ε

Let ε′ tend to ε then we obtain what we need.
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Remark 2.31. Note that we have the norm ‖ · ‖δ,εn on the ring A[δ,εn], then we define
a topology on A[δ,ε) by taking the intersection of all topologies generated by the norms
‖ · ‖δ,εn ’s. Consequently, the completeness is conveyed as well. In this section, we use
this topology when referring to open and closed sets.

Corollary 2.32. Let F (X) = ∑
n∈Z anX

n ∈ A(δ,ε], then F (X) is a unit if and only if
there exists a index n0 with the following properties

|an0|δn0 ≤ |an|δn and |an0|εn0 < |an|εn ∀n 6= n0

Proposition 2.33. Let ρ ∈ [δ, ε) and equip the ρ-Gauss norm on A[δ,ε), then the follow-
ings are achieved.

(i) The convergence with respect to the ρ-Gauss norm implies the coefficient-wise con-
vergence as well. The metric space induced by the ρ-Gauss norm is complete.

(ii) In the ring A[δ,ε], every ideal is closed with respect to the ρ-Gauss norm.

(iii) In the ring A[δ,ε), every principal ideal is closed with respect to the ρ-Gauss norm.

Proof. The statement (i) is an instant corollary of the ρ-Gauss norm on A[δ,ε]. For
the latter, let I be an ideal generated by an element P (X), then for any Cauchy se-
quence {PFn}n∈N, then by the multiplicative property of the ρ-Gauss norm, the sequence
{Fn}n∈N is a Cauchy sequence as well, let the limit Laurent series is F , then PF ∈ I is
the limit of {PFn}n∈N.

Lemma 2.34. Let {fn}n∈N be a sequence of polynomials in K [X] with the properties

• {fn}n∈N is pair-wise relatively prime,

• for any n ∈ N, all roots of fn is of absolute value at most εn, where (εn)n∈N is a
strictly increasing to ε.

Then there exist a power series F (X) ∈ A[0,ε) whose the set of all zeros consists of all
roots of fn.

Proof. Without loss of generality, we can assume that fn’s are εn-extreme with its con-
stant coefficient 1. The main idea is to convert the sequence into another convergent
sequence, in which we show several special properties to easily determine all zeros of the
limit power series. The construction follows in the manner.

• Notice that fn(X) is a εn < ε-extreme polynomial, hence, there exists a power series
f−1
n (X) = ∑+∞

i=0 cn,iX
i ∈ A×[0,εn) such that fn(X)f−1

n (X) = 1, then the constant
coefficient of f−1

n (X) is 1 as well. In particular, f−1
n (X) has its convergence of radii
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are 0 and εn, that implies it diverges at all points of absolute value more than εn,
thus, there exists an index mn such that

mn = min{k; |cn,k|εk > 1}.

then ∑mn−1
i=0 cn,iX

i ∈ A×[0,ε), and we define

f ′n(X) = fn(X) ·
mn−1∑
i=0

cn,iX
i.

then f ′n(X) has the same roots as fn(X) over the interval [0, ε).

• We bound the ρ-Gauss norm of f ′n(X)− 1 for ρ ∈ [δ, ε).

‖f ′n(X)− 1‖ρ =
∥∥∥∥fn(X) ·

mn−1∑
i=0

cn,iX
i− fn(X) ·

+∞∑
i=0

cn,iX
i

∥∥∥∥
ρ

= ‖fn(X)‖ρ
∥∥∥∥ +∞∑
mn

cn,iX
i

∥∥∥∥
ρ

Since it is clear that ‖f−1
n ‖εn = 1, then

‖f ′n(X)− 1‖ρ ≤
(
ρ

εn

)mn
for all 0 < ρ < εn since ‖fn(X)‖ρ = ‖fn(0)‖ρ = 1.

• Consider the sequence (mn)n∈N, ‖f−1
n ‖ρ = 1 ∀0 < ρεn shows that ν(cn,k) ≥

k log(ρ) ∀0 < ρ < εn, equivalently

ν(cn,k) ≥ k log(εn) ∀n

Let N be an arbitrary positive integer, then there exists a positive integer N0 such
that bn log(εn)c = bn log(ε)c ∀n > N0, that means for all k ≤ N ,

ν(cn,k) ≥ k log(εn)⇒ ν(cn,k) ≥ k log(ε)⇔ |cn,k|εk ≤ 1

Therefore, mn > N for all n > N0, equivalently, limm→∞mn = +∞.

• Let define
gn(X) =

n∏
i=1

f ′n(X)

whose roots in the interval [0, ε] are the roots of f1(X), . . . , fn(X). Fix ρ ∈ [δ, ε),
we have

‖gn+1 − gn‖ρ ≤
(
ρ

εn

)mn
and lim

m→∞
mn = +∞

As a result, the {gn}n∈N is a Cauchy sequence with respect to the ρ-Gauss norm for all

32



ρ ∈ [δ, ε), which implies the coefficient-wise convergence as well. Let F (X) be the limit
power series of the sequence of polynomial gn’s, then gn tends to F (X) with respect to
all ‖·‖δ,εn . Whence, the completeness of A[δ,εn] implies that F (X) ∈ ⋂n∈NA[δ,εn] = A[δ,ε).
For any n ∈ N, gn(X) | F (X). In particular, ∏n

i=1 fi(X) is the distinguished polynomial
of power series F (X) with respect to the closed interval [δ, εn]. That proves F (X) is the
desired power series.

Corollary 2.35. Let (xn)n∈N be the sequence of elements in K, and let its valuation form
a sequence (αn)n∈N, which is a strictly decreasing sequence of limit α. Then there exists
a uniquely determined power series F (X) ∈ K [[X]], that take all xn’s and its Galois
conjugates as zeros. Moreover, every Laurent series with coefficients in K vanishing at
all points xn’s is divisible by F (X).

Proof. Let fn be the minimal polynomial of xn over K and apply the above lemma.

Theorem 2.36. (Weierstrass preparation theorem)
Let F (X) be a Laurent series in A[δ,ε), then there exist a uniquely determined power series
P (X) with ‖P‖δ = ‖P‖ε = 1 and a unit U(X) ∈ A[δ,ε) such that F (X) = P (X)U(X). In
terms of Newton polygon, all properties remain true except, the number of line segments
is possibly infinite, and the limit of slopes is ε in that case.

Proof. The theorem is a direct corollary of what we have presented.

Theorem 2.37. Every closed ideal in A[δ,ε) is a principal ideal.

Proof. Let I be an arbitrary closed ideal in A[δ,ε). We denote the ideal generated by I
in the ring A[δ,εn] by In. Then, we obtain

I ⊂ . . . ⊂ In ⊂ . . . ⊂ I1

Because A[δ,εn] is a P.I.D, let {fn}n∈N be the set of generating polynomials of {In}n∈N
respectively. Whence, we obtain fn−1 | fn ∀n ∈ N. Making use of lemma 2.34 show
that there exist a power series F (X) ∈ A[δ,ε), such that F (X) = fn(X)Un(X), where
Un(X) is a unit of A[δ,εn]. The uniqueness of F (X) also implies that every element of⋂
n∈N In ⊂

⋂
n∈NA[δ,εn] = A[δ,ε) takes F (X) as a divisor. That claims ⋂n∈N In is a principal

ideal of A[δ,ε) generated by F (X).
The above claim ensures that it suffices to prove I = ⋂

n∈N In, in which we already
have I ⊂ ⋂

n∈N In by definition. For any element G(X) ∈ ⋂n∈N In. Since I generates In,
then assume G(X) = ∑k

i=1 Ti(X)Hi(X), where Ti(X) ∈ I and Hi(X) ∈ A[δ,εn]. For any
i ∈ {1, . . . , k}, we take an approximate partial sum of Hi(X) in the manner

Hi(X) =
∑
i∈Z

cnX
n
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then there exists a positive integer M such that

∥∥∥∥Ti(X)Hi(X)− Ti(X)
M∑

i=−M
cnX

n

∥∥∥∥
δ,εn

<
1
n

Furthermore, we also have ∑M
i=−M cnX

n ∈ A[δ,ε), thus, Ti(X)∑M
i=−M cnX

n ∈ I . By the
non-archimedean property, we can construct a Lauren series Gn(X) ∈ I such that

‖G−Gn‖δ,εn <
1
n
∀n ∈ N

As a result of closeness of I , the ideal includes every element of ⋂n∈N In, which provides
what we need.

Remark 2.38. We know that A[δ,ε] is a P.I.D, so it is natural to raise the same question
about A[δ,ε). Unfortunately, it is not. The only thing we know is that every closed ideal
is a principal ideal and, reversely, every principal ideal is closed. The counter-example
below shall explain why A[δ,ε) is not a P.I.D.

In the proof of lemma 2.34, we take Fn = F∏n
i=1 fn

and the ideal ring I = 〈F1, . . . , Fn, . . . 〉,
then every element of I take all roots of fm as zeros for every m large enough, which
shows that 1 /∈ I . However, the sequence {Fn}n∈N converges to 1, thus, the ideal I is
not a principal ideal.

Lemma 2.39. Let {gn(X)}n∈N be a sequence of polynomial with coefficient in K with
the following properties

• For any n ∈ N, gn(X) is a αn-extreme polynomial

• (αn)n∈N ⊂ [δ, ε), and limn→+∞ αn = ε.

Let {An(X)}n∈N be a sequence of Laurent series such that An(X) ∈ A[δ,αn] ∀n ∈ N and

gn(X) | Am(X)− An(X) ∀m > n.

Then there exists a power series G(X) ∈ A[δ,ε) satisfying
∏n
i=1 gi(X) | G(X)−An(X) ∀n ∈

N.

Proof. Let fn(X) = ∏n
i=1 gi(X) ∈ K [X], and without loss of generality, we can assume

that the sequence (αn)n∈N is strictly increasing to ε. Consequently, for any m > n,
gm(X) ∈ A×[δ,αn]. Now, we modify the sequence {An(X)}n∈N to make it convergence to
our desired power series.

Notice that by adding to An(X) a multiple of fn(X) then the initial property remains
true. Making use of dividing a Laurent series by a polynomial replaces all An(X)’s by
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polynomials Bn(X)’s. In detail, An(X) = fn(X)Q(X) +Bn(X). Then fixed an index n,
we have

Bn(X)−Bn−1(X) = fn−1(X)U(X)

for some polynomial U(X) ∈ K [X]. Let add fn(X)T (X) to Bn(X) to obtain

Bn(X) + fn(X)T (X)−Bn−1(X) = fn−1(X) (U(X) + gn(X)T (X))

Since, gn(X) ∈ A×[δ,αn−1], then −U(X)g−1
n (X) is a power series in A[δ,αn−1], and clearly

K [X] is a dense in the set of power series in A[δ,αn−1] with respect to the norm ‖ · ‖δ,αn−1 ,
then it is possible to choose a polynomial T (X) such that

‖Bn(X) + fn(X)T (X)−Bn−1(X)‖δ,αn−1 <
1

n− 1

Inductively processing on all polynomial Bn(X)’s to obtain a new sequence of polyno-
mials {Cn(X)}n∈N ⊂ K [X] with fn(X) | Bn(X)−Cn(X) ∀n ∈ N and most importantly,

‖Cn+1 − Cn(X)‖δ,αn <
1
n

Therefore, there exists the limit power series G(X) ∈ A[δ,ε) such that gn(X) | G(X) −
An(X) ∀n ∈ N.

Corollary 2.40. If we take the sequence of fn(X) of distinguished polynomials of a
Laurent series F (X), then we obtain G(X)− An(X) ∈ 〈F 〉 ⊂ A[δ,αn] ∀n ∈ N.

Theorem 2.41. Every finite generated ideal of A[δ,ε) is a principal ideal.

Proof. It suffices to prove in the case there are exactly two generator F (X) and G(X)
because once we have the results in that case, the induction shall complete the proofs.
Without loss of generality, we can assume that F (X) and G(X) are both power series
according to the Weierstrass preparation theorem. By the above theorem, the closure
of 〈F,G〉 is 〈H〉 with H(X) is a power series in A[δ,ε). Therefore, 〈F,G〉 = 〈H〉 in all
A[δ,εn]. As a result, for any n ∈ N, there exist An(X) and Bn(X) ∈ A[δ,εn] such that

H(X) = F (X)An(X) +G(X)Bn(X)

Let F (X) = H(X)F ′(X) and G(X) = H(X)G′(X), then

1 = F ′(X)An(X) +G′(X)Bn(X)

Hence, Am(X) − An(X) ∈ G′A[δ,εn] ∀m > n. By lemma 2.39, we obtain a power series
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A(X) ∈ A[δ,ε) such that

A(X)− An(X) ∈ G′A[δ,εn] ⇒ 1− F ′(X)A(X) ∈ G′A[δ,ε)

Equivalently, there exists some B(X) ∈ A[δ,ε) satisfying

1 = F ′(X)A(X) +G′(X)B(X)⇔ 〈H〉 = 〈F,G〉.

Corollary 2.42. The ring A[δ,ε) is a Bézout ring, i.e every finitely generated ideal is
principal. In particular, A[δ,ε) is a G.C.D domains, i.e every two elements F (X) and
G(X) has the greatest common divisor, which is a power series of all common zeros in
[δ, ε).

Definition 2.43. Let define a sub-ring of A[δ,ε)

Abd[δ,ε) =
{
F (X) =

∑
n∈Z

anX
n ∈ A[δ,ε); ∃n0, |an0|εn0 = max

n∈Z
|an|εn

}

Theorem 2.44. Abd[δ,ε) is a principal ideal domain.

Proof. It is clear that Abd[δ,ε) is a ring, and every element F (X) has finitely many critical
radii, which implies its distinguished polynomial is determined. In other words,

Abd[δ,ε) = K [X]
(
Ab[δ,ε)

)×
The polynomial ring is a P.I.D, so is Abd[δ,ε).

3 The Robba ring

3.1 The ring structure of the Robba ring

In this section, we will discuss the properties of the Robba ring, which is a union of
infinitely many Bézout rings

R =
⋃

0<δ<1
A[δ,1)

It naturally questions what type of the Robba ring is what properties it possesses.

Definition 3.1. We define two main sub-rings of the Robba ring:

• The bounded Robba ring is the set of all bounded-coefficient element, defined as

Rbd =
⋃

0<δ<1
Abd[δ,1) =

{
F (X) =

∑
i∈Z

anX
n ∈ R; {|an|}n∈Z is bounded

}
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• The ring consists of all elements with coefficients in R, defined as

Rint =
{
F (X) =

∑
i∈Z

anX
n ∈ R; an ∈ R ∀n ∈ Z

}

Note that
Rint ⊂ Rbd ⊂ R

and each of those ring has surprising properties, that are presented as following theorems.

Theorem 3.2. The ring R is a Bézout ring, i.e every finitely generated ideal is principal.

Proof. Let I be an ideal of R generated by finitely many elements F1, . . . , Fm, therefore,
there exists some δ ∈ (0, 1) such that F1, . . . , Fm ∈ A[δ,1). Because A[δ,1) is a Bézout ring,
then let F (X) ∈ A[δ,1) be the unique generator of 〈F1, . . . , Fm〉 ⊂ A[δ,1). Let Q1, . . . , Qm

be elements in R, then there is some δ′ ∈ (0, 1), such that Q1, . . . , Qm ∈ A[δ′,1).
If δ′ ≤ δ ⇒ A[δ′,1) ⊂ A[δ,1), then we obtain

m∑
i=1

FiQi ∈ 〈F 〉 ⊂ A[δ,1)

If δ ≤ δ′ ⇒ A[δ,1) ⊂ A[δ′,1), we can take F ′i ’s the distinguished polynomial of power series
in [δ′, 1), which is a Bézout ring. Whence, there exists F ′ ∈ A[δ′,1), and

m∑
i=1

FiQi ∈ 〈F ′〉 ⊂ A[δ′,1)

However, F ′ | F , then F is still the generator of the ideal 〈F1, . . . , Fm〉 in R.

Corollary 3.3. Let F1, . . . , Fn ∈ R, and for any i ∈ {1, . . . , n}, let {xi,k}k∈N be the set
of all zeros of Fi(X) in the interval (0, 1), then its greatest common divisor is a power
series or a polynomial with the set of all zeros is

n⋂
i=1
{xi,k}k∈N.

Proof. It is directly from corollary 2.42.

In order to study the bounded Robba ring, we can look at the rings Abd[δ,1) ,where
δ ∈ (0, 1). It is obvious that the 1-Gauss norm is a norms on Abd[δ,1), therefore it induce
a topology on Rbd as well.

Lemma 3.4. Fix δ ∈ (0, 1), these followings are equivalent.

(i) F (X) = ∑
n∈Z anX

n ∈ A[δ,1).
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(ii) The Newton polygon has finitely many slopes.

(iii) The Weierstrass works on F (X), and there exists its distinguished polynomial, that
captures all roots of F (X) in the interval [δ, 1).

(iv) There exist limρ→1 ‖F‖ρ and limt→0 WF (t).

Proof. The connection between the roots of F (X) and its Newton polygons instantly
shows the equivalence of (ii) and (iii). Moreover, if (ii) holds, then F(X) accepts the
form

F (X) = P (X)U(X)

Where P (X) is a polynomial and U(X) is a unit, therefore n(F, 1) = n(P, 1)+n(U, 1) <
+∞, that implies (i). Conversely, if F (X) ∈ A[δ,1), then F (X) has finitely many critical
radii, equivalently, (iii) holds. In addition, there exist n0, such that ‖F‖ρ = |an0|ρn0 for
all ρ near 1 enough. That provides (iv).

If (iv) holds, then there is a constant C such that

sup
ρ∈(0,1);n∈N

{|an|ρn} < C ⇒ |an| < C ∀n

Therefore, the set {ν(an)}n∈N has lower bound, but the value of ν(an) is integer, hence,
there exists n0 such that |an0 |maxn∈Z|an|, then (i) holds.

Theorem 3.5. Rbd is a field, and R× = Rbd\{0}.

Proof. It is obvious that Rbd is a ring with multiplicative identity element, so to prove
it í a field, we need to show that every element has its inverse. Indeed, let F (X) be an
arbitrary element, and δ ∈ (0, 1) such that F (X) ∈ Abd[δ,1), whence lemma 3.4 shows that
F (X) has finitely many roots in [δ, 1) let ε ∈ (0, 1) such that the absolute values of all
roots is less than ε, thus F (X) ∈ A×[ε,1] ⊂ Rbd.

For the latter, let G(X) be an invertible element of R, then there is some δ′ ∈ (0, 1),
such that G(X) ∈ A×[δ′,1], therefore lemma 2.30 implies that G(X) ∈ Abd[δ′,1] ∈ Rbd.

Corollary 3.6. Rbd is a discrete valuation ring with the valuation function define by

W

∑
n∈Z

anX
n

 = min
n∈N

ν(an)

In addition, its non-archimedean absolute value that is associated to the valuation W is
the 1-Gauss norm and the discrete valuation ring of Rbd is Rint, namely Rbd = Rint

[
1
π

]
.

Proof. It is obvious from what we have proved.

However, we notice that the discrete valuation ring is complete. For an instant, we
look at the following example.
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Example 3.7. Let define a sequence of Laurent series ring {fn}n∈N by

fn(X) =
n∑
i=0

πblog(n)cX−n

It is clear that gn(X) ∈ R and the sequence converges to a Laurent series f(X) with
respect to the 1-Gauss norm.

f(X) =
+∞∑
i=0

πblog(n)cX−n

However, for any δ ∈ (0, 1) and for any n large enough, nδ > log(n). Whence, there is no
such δ ∈ (0, 1) such that f(X) ∈ A[δ,1), equivalently, not in Rbd as well. The existence
of this example shows the incompleteness of the bounded Robba ring.

Notice that for every element g(X) = ∑
n∈Z anX

n, its coefficients are bounded and
ν(an) tends to infinity as n → −∞ as quick as nδ for some δ ∈ (0, 1), which is not
satisfied on f(X) in the previous example. The following theorem shall solve this matter
by defining all elements of completion of Rbd.

Theorem 3.8. Let E be the set off all Laurent series with coefficients in K satisfying
the conditions: there is a upper bound with respect to the 1-Gauss norm, equivalently, a
lower bound with respect to valuation, and as index tends to −∞, the valuation tends to
infinity. In addition, we use the notation E int to denote the complement of Rint.

Proof. It is obvious that Rbd ⊂ E , and E is a field under addition and multiplication
defined on Laurent series. Recalling the above argument shows that the field E contains
Rbd, and the bound of coefficients makes the discrete valuation W available on E . More-
over, let f(X) = ∑

i∈Z anX
n be an arbitrary element of E , then we set {fn}n∈N defined

by

fn(X) =
+∞∑
i=−n

aiX
i ∈ Rbd

The definition of E guarantees that fn → f with respect to the 1-Gauss norm. Therefore,
Rbd is dense in E . Hence, if E is complete, then theorem 1.12 shall finish the proof.

Let {gn(X) = ∑
k∈Z a

(n)
k Xk}n∈Z be an arbitrary Cauchy sequence in E . That means

for every ε > 0, there exists an intermediate index N such that for all m,n ≥ N

‖gm − gn‖1 < ε⇒ |a(m)
k − a(n)

k | < ε ∀k ∈ Z

Thereby, we obtain infinitely many Cauchy sequences
(
a

(n)
k

)
n∈N

’s, the completeness of
the field K implies there is a Laurent series g(X) ∈ K , which is the component-wise
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limit of {gn}n∈N. In addition,

‖gn − g‖1 = max
k∈Z
|a(n)
k − ak| < ε ∀n > N

Where ak’s are limits of the Cauchy sequences
(
a

(n)
k

)
n∈N

’s. Whence, the bound of (ak)k∈Z
is inherited form the bound of coefficients of gn’s. Moreover, the non-archimedean shows
that

|ak| ≤ max{|a(n)
k − ak|, |a

(n)
k |} ∀n

Thus, for all ε > 0, there exists an index Nε such that

|ak| ≤ max{ε, |a(n)
k |} ∀n ≥ Nε ⇒ lim

k→−∞
|ak| ≤ max{ε, lim

k→−∞
{|a(Nε)

k |}} = ε

Let ε tends to zero, we obtain that g(X) ∈ E , which shows the completeness of E .

Lemma 3.9. (Nagata’s lemma) Let L be a discrete valuation ring with maximal ideal
m, then the four following conditions are equivalent:

(i) L is a Henselian ring.

(ii) Every integral ring extension of L is a local ring.

(iii) Every Nagata polynomial, which is of the form f(X) = Xn+an−1X
n−1 + . . .+a0 ∈

L [X] satisfying that a0 ∈ m and a1 /∈ m has a root in m.

(iv) Every monic polynomial g(X) = Xn + an−1X
n−1 + . . . + a0 ∈ L [X] such that

an−1 /∈ m and ai ∈ m ∀i = 0, 1 . . . , n− 2 has a root in an−1 + m.

Theorem 3.10. Rint is a Henselian ring.

Proof. Let G(X) = T n+bn−1T
n−1+. . .+b0 ∈ Rint [T ] be a polynomial such that bn−1 6≡ 0

mod π and bn−2 ≡ . . . ≡ b0 ≡ 0 mod π. According to Nagata’s lemma, we need to show
that there is a root in Rint congruent to bn−1 mod π. Making use of the transformation
(−bn−1)−dG(−bn−1T ), we can assume bn−1 = −1. Notice that for any Z ≡ 1 mod π,
we have G(Z) ≡ 0 mod π and

G′(Z) = nZn−1 − (n− 1)Zn−2 ≡ 1 mod π

Whence, we can recursively construct a sequence (xn)n∈N given by

x1 = 1 and xi+1 = xi −
G(xi)
G′(xi)

We inductively prove that

G(xi) ≡ 0 mod πi and xi+1 ≡ xi mod πi
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Let assume it is true up to k, we have to prove for the index k + 1. Indeed, we observe

G(xk+1) = G(xk −
G(xk)
G′(xk)

) = G(xk − πk
G(xk)
πkG′(xk)

) ≡ G(xi)− πk
G(xk)
πk

≡ 0 mod πk+1

Thus, G′(xk+1) ≡ 1 mod π ⇒ xk+1 ≡ xk | πk. Therefore, xi → x ∈ E int.
For any i ∈ {0, . . . , n−2}, ‖bi‖1 < 1, then by lemma 3.4, there exits δ1 ∈ (0, 1) such that
bi ∈ Abd[δ1,1) and ‖bi‖ρ < 1 ∀ρ ∈ [δ1, 1). Whence, we can inductively construct a sequence
δ1 < . . . < δ < 1 such that

xi ∈ Abd[δi,1) and ‖xi_ρ ≤ 1 ∀ρ ∈ [δi, 1)

in the manner: the first step is trivial, let assume that we already have the first i elements,
so G(xi), G′(xi) ∈ Abd[δi,1) and ‖G(xi)‖ρ ≤ 1 and G′(xi) ≡ 1 mod π ⇒ ‖G′(xi)‖ρ = 1∀ρ ∈
[δi, 1). That showG′(xi) is a unit inAbd[δi+1,1) for some δi+1 > δi, then the non-archimedean
implies

‖xi+1‖ρ ≤ max
{
‖xi+1‖ρ,

∥∥∥∥G(xi)
G′(xi)

∥∥∥∥
ρ

}
≤ 1 ∀ρ ∈ [δi+1, 1)

The upper bound exist because (xi)i∈N is a Cauchy sequence. Therefore, xi ∈ Abd[δ,1) and
‖xi‖ρ ≤ 1 ∀ρ ∈ [δ, 1) , i ∈ N. Moreover, fix ρ ∈ [δ, 1), and let xi = ∑

j∈Z a
(i)
j X

j, we obtain

1 ≥ ‖xi‖δ ≥ a
(i)
j ρ

j

(
δ

ρ

)j

Let x = ∑
j∈Z ajX

j, then limj→−∞|aj|ρj = 0 by letting i → +∞. That means x ∈
Aρ ∀ρ ∈ [δ, 1)⇒ x ∈ Rint.

3.2 Semi-linear maps

Definition 3.11. Let K be a field and V be a K -vector space of finite dimension,
d = dimK V . Given a injective field homomorphism σ : K → K . A mapping on V is
called semi-linear (σ-semi-linear) if it satisfies the condition

f(av1 + bv2) = σ(a)f(v1) + σ(b)f(v2) ∀a, b ∈ K ; v1, v2 ∈ V .

Proposition 3.12. Fix a K-basis {v1, . . . , vd}, with respect to which we denote the
associate matrix of f by Af . Then we have an injective mapping

The set of all semi-linear→ Md(K )
f 7→ Af

Notice that the homomorphism σ induces the map A 7→ σ(A) = (σ(aij)) on Md(K )
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with the following properties:

• σ(A + B) = σ(A) + σ(B),

• σ(AB) = σ(A)σ(B),

• σ(I ) = I .

Proof. Given a matrix A = (aij)d×d ∈ Md(K ), the associated semi-linear f is uniquely
determined

f(c1v1 + . . .+ cdvd) =
d∑
i=1

d∑
j=1

σ(cj)aijvi

Lemma 3.13. Let B is a transition matrix of the basic {v′1, . . . , v′d}, in particular

(v′1, . . . , v′d) = (v1, . . . , vd) B

The associated matrix of f with respect to {v′1, . . . , v′d} is B−1Afσ(B).

Proof. We observe

f(v′j) = f(
d∑
l=1

bljvl) =
d∑
l=1

σ(blj)
d∑

k=1
aklvk =

d∑
l=1

d∑
k=1

aklσ(blj)vk

Then we obtain
BA′f = Aσ(B)

Definition 3.14. Let K be a field with characteristic p, which is a prime number. A
field homomorphism σ is called Frobenius endomorphim if it is of the form

σ :K → K

a 7→ aq

Where q is a power of p.

Proposition 3.15. A Frobenius endomorphism is injective. If K is a finite field then
the Frobenius endomorphism is an automorphism.

Proof. We notice that ker(σ) = {0} since aq = 0 if and only if a = 0. Therefore, in the
case K is a finite field, then the bijectivity follows from the injectivity.
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3.3 Special endomorphism

Given a positive integer q, and a Laurent series u(X) = ∑
n∈Z cnX

n ∈ Rint such that

u ≡ Xq mod π

Since u ∈ Rint, then there exist some δ0 ∈ (0, 1) such that u ∈ A×[δ0,1), whence ‖u‖ρ =
ρq ∀ρ ∈ [δ0, 1). We study the substitution map ϕ induced by u on various domains

ϕ : F (X) =
∑
n∈Z

anX
n 7→ F (u) =

∑
n∈Z

anu
n

Lemma 3.16. Let F (X) ∈ A[δ,1) with δ ∈ [δ0, 1), then F (u) ∈ A[δ1/q ,1). In addition, for
all ρ ∈ A[δ1/q ,1). we have

‖F (u)‖ρ = ‖F‖ρq

Proof. For all ρ ∈
[
δ1/q, 1

)
,

‖u‖ρ = ρq ⇒ lim
n→±∞

|an|‖u‖nρ = lim
n→±∞

|an|ρqn = 0

Therefore, F (u) ∈ A[δ1/q ,1). On other hand, notice that

u ∈ A×[δ0,1) ⇒ ‖u− cqX
q‖ρ < |cq|ρq = ρq ⇒

∥∥∥∥ u

cqXq
− 1

∥∥∥∥
ρ
< 1

Because cq is a unit in R, and

(
u

cqXq

)n
− 1 =

(
u

cqXq
− 1

) n∑
k=1

(
n

k

)
(−1)k

(
u

cqXq

)n−k
We have the latter sum is the sum of finite elements with the ρ Gauss norm 1, therefore,
the non-archemedean shows that the ρ-Gauss norm of the whole sum is at most 1. Hence,
we repeat the argument for cqX

q

u
to obtain

∥∥∥∥
(

u

cqXq

)n
− 1

∥∥∥∥
ρ
< 1⇒ ‖un − (cqXq)n ‖ρ < |cq|ρqn ∀n ∈ Z

Combining this with

F (u) =
∑
n∈Z

anu
n =

∑
n∈Z

an (un − (cqXq)n) +
∑
n∈Z

an (cqXq)n

We have
‖F (u)‖ρ =

∥∥∥∥∑
n∈Z

an (cqXq)n
∥∥∥∥
ρ

= ‖F‖ρn
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Theorem 3.17. Let define ϕ on different domains, namely R,Rbd and E.

• The mapping ϕ : R → R is an injective continuous ring homomorphism.

• The mapping ϕ : Rbd → Rbd is an injective continuous field homomorphism. It
uniquely induces an endomorphism ϕ∗ on E, whose restriction on Rbd is ϕ. Both
functions preserves the valuation W.

Proof. Lemma 3.16 shows a ring homomorphism from A×[δ,1) → A[δ1/q ,1), tending δ → 1
provides a ring homomorphsim R → R. The property of Gauss norms implies that
ker(φ) = {0}, which shows the injectivity and continuous.

For the domain Rbd, it suffices to prove that for any δ ∈ [δ0, 1), φ maps elements of
Abd[δ,1) into Abd[δ,1) itself. Indeed, we tend δ → 1 in the equality

‖F (u)‖ρ = ‖F‖ρq

and apply lemma 3.4, we obtain the 1-Gauss norm is available on F (u) as well, which
implies F (u) ∈ Abd[δ,1) ∈ Rbd. The extension of φ is trivial because of its continuity.

Definition 3.18. Let σ be a field endomorphism on K , that preserves the valuation W.
A ring homomorphism φ is called σ-special if

φ : F (X) 7→ σ(F )(u)

for some u ≡ Xq mod π and σ (∑n∈Z anX
n) = ∑

n∈Z σ(an)Xn.

Remark 3.19. Since σ is a valuation preserving endomorphism, which implies the in-
jectivity, thus, φ is an injective endomorphism of all domains R,A[δ,1),Rbd,Abd[δ,1),Rint, E
and E int.

Theorem 3.20. Let n be a positive integer, and let A be a matrix of size n × n in
Mn(Rint), then every σ-special φ with q > 1 satisfies

(
R\Rbd

)n
→
(
R\Rbd

)n
v +

(
Rbd

)n
7→ v − Aφ(v) +

(
Rbd

)n
is a group automorphism under addition.

Proof. We add several properties to the matrix A in the manner: Since u ∈ Rint ⊂ Rbd,
there exists a δ0 as defined above such that

u ∈ A×[δ0,1) ⇒Wu(t) = αt ∀t ∈ [log(δ0), 0 = log(1)]
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For any integer m, the mapping F 7→ XmF is trivially a bijection on
(
R\Rbd

)n
, which

induces a commutative diagram

(
R\Rbd

)n (
R\Rbd

)n
(
R\Rbd

)n (
R\Rbd

)n

v−Aφ(v)

X−m· X−m·

v−Âφ(v)

Where the matrix Â is determined by

X−m (v − Aφ(v)) = X−mv − Âφ(X−mv)⇒ Â = X−mumA

This follows because in Rint ⊂ Rbd, u = φ(X) = Xq +
(
Rbd

)
. Hence, it suffices to prove

the theorem is true for Â. For an entry F ∈ Rint of A, there exists some δ ∈ [δ0, 1)
such that F ∈ (Ab[δ,1))×. That implies WF (t) = βt + γ ∀t ∈ [δ, 0] with γ = WF (0) ≥ 0,
therefore we obtain

WX−mumF (t) = (m(α− 1) + β) t+ γ

Choosing m ≥ β

m(α− 1) makes the ρ-Gauss norm of the corresponding entry of Â at

most 1 for all ρ ∈ [δ, 1]. Let move δ closed to 1 and choose m in that sense so that we
can obtain the same property for all entry of the matrix Â.
Injectivity: We shall show that the kernel is {0}, let v = (v1, . . . , vn) be a element of R
such that (w1, . . . , wn) = v − Âφ(v) ∈ Rbd.Then ‖wi‖ρ’s are bounded as the variable ρ
run over the interval [δ, 1). Similarly, ‖φ(vi)‖ρ’s are also bounded on the closed interval[
δ, δ1/q

]
, hence, let a constant C be an upper bound. Making use of the equality

(w1, . . . , wn) = (v1, . . . , vn)− Â (φ(v1), . . . , φ(vn))

, all entries of Â of the ρ-Gauss norm at most 1 and lemma 3.16, we obtain

max
i∈{1,...,n}

‖vi‖ρ ≤ C ∀ρ ∈
[
δ, δ1/q

]
⇒ max

i∈{1,...,n}
‖vi‖ρ ≤ C ∀ρ ∈

[
δ, δ1/q2]

Notice that limn→+∞ δ
1/qn = 1, then induction provides that C is an upper bound of

{‖vi‖ρ; ‖vi‖ρ; ρ ∈ [δ, 1}, which means v ∈
(
Rbd

)n
.

Surjectivity: Let v = (v1, . . . , vn) ∈ (R)n, then there exists a δ ∈ (0, 1) such that
vi ∈ A[δ,1) ∀i ∈ {1, . . . , n} as well as all entries of Â. We inductively construct a
sequence

(
v(k)

)
k∈N
⊂ (R)n. For each component v(k)

i of v(k), we divide it into two parts
v

(k)+
i = ∑+∞

j=0 akijX
j and v(k)−

i = ∑
j<0 akijX

j, then v(k) = v
(k)+
i + v

(k)−
i = ∑

j∈Z akijX
j,
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and v(k+1) is defined recursively

v(k+1) = Âφ
(
v(k)+

)

Since v(k)+ =
(
v

(k)+
1 , . . . , v(k)+

n

)
∈
(
A[δ,1)

)n
, then v(k+1) ∈

(
A[δ1/q ,1)

)n
, and

max
i∈{1,...,n}

‖v(k+1)+
i ‖ρ ≤ max

i∈{1,...,n}
‖v(k+1)

i ‖ρ ≤ max
i∈{1,...,n}

‖v(k)+
i ‖ρq

≤ ρq max
i∈{1,...,n}

‖X−1v
(k)+
i ‖ρq ≤ ρq max

i∈{1,...,n}
‖X−1v

(k)+
i ‖ρ ≤ ρq−1 max

i∈{1,...,n}
‖v(k)+

i ‖ρ

The latter happens because ρq < ρ. Therefore, we obtain limj→+∞ ‖v(k)+
i ‖ρ = 0 for

all ρ ∈ [δ, 1) and i ∈ {1, . . . , n}. Then there exists w = (w1, . . . , wn) ∈ An[0,1), whose
components are power series given by wi = ∑+∞

k=0 v
(k)+
i . Whence, it follows

v − w + Âφ(w) =
+∞∑
k=0

v
(k)−
i

∑+∞
k=0 v

(k)−
i has zero coefficients for all terms of positive degree, and it converges because

max
i∈{1,...,n}

‖v(k+1)−
i ‖ρ ≤ max

i∈{1,...,n}
‖v(k+1)

i ‖ρ ≤ ρq−1 max
i∈{1,...,n}

‖v(k)+
i ‖ρ → 0

Hence, v − w + Âφ(w) ∈ Abd[δ1/q ,1) ⊂ R
bd ⇒ v = w + Âφ(w) mod Rbd.

Remark 3.21. When the reside field k is a field with characteristic p, the Frobenius-
special endomorphism is called power Frobenius lift, which also holds all the proved
properties.
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