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About the document

The topic of the thesis turned out to be slightly larger than expected. There were multiple possible
choices to combat this: remove several chapters (or possibly the entirety of bordism), or compress as
much as possible. With the title “Homology and bordism”, it did not feel right to get rid of bordism,
let alone chapter §6 as it is the one which connects the two halves of the thesis.

This lead to the conclusion that most proofs are omitted or only roughly sketched in this text.
Here’s what is useful to know about the proofs of the thesis:

1. A large amount of proofs are sketched. These are typically more detailed than I would desire,
but in turn the holes in them are easy to fill by the reader.

2. Among sketched proofs there are often ones which are entirelymissing. These – unless otherwise
noted – must be easy to prove from previous claims. Sometimes all statements in a section boil
down to many unproved claims. Even in this case, the small claims should be easy to prove,
and then the larger ones follow in a straightforward way. A good example for this is section
§1.1, the one about absolute singular homology. While (§4.2.2) – the section about direct limits
– may seem to fall under type 3, all statements there are trivial and thus it can be considered
of this type.

3. There are entire sections where no proofs and no connections between claims are included –
such as §2.2, the consequences of the Eilenberg-Steenrod axioms (§2.1), or the contents of the
appendices. In this case, it is best if the reader consults the appropriate references.

4. Finally, there are sections where basically all proofs are provided in a nearly entirely precise
way. In this case, no work from the reader’s side is required. Examples of this are sections about
the Eilenberg-Steenrod axioms for the bordism functor (§5.3) and about the cap product (§4.3).

Generally speaking, algebraic proofs (and parts of proofs) are greatly compressed or omitted from
the thesis for the sake of clarity. Nevertheless, if help is required, full proofs can be found in at least
one of the reference books. We note here that the thesis contains no original research.

∼ ∗ ∼

The chapters of the thesis come in pairs, each concerned with a certain algebraic invariant:
homology, cohomology, and bordism. The first chapters ((§1), (§3), (§5)) are typically simpler ones
which present the basic concepts and tools related to the given algebraic invariants, while the second
ones ((§2), (§4), (§6)) explore selected, more advanced topics.

∼ ∗ ∼

Prp: proposition
Lem: lemma
Thm: theorem
Crl: corollary
Def: definition

The sources of definitions and theorems are given in parentheses. Be-
sides the external reference, additional information is provided regarding
the theorem’s placement in the text. A three-letter abbreviation tells what
the referenced theorem/definition is called in the original document. The
original numbering of the referenced text is also provided. For example,
Thm[Hat02]:3.2 means “Theorem 3.2 of [Hat02]”.
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Introduction

The core concept of algebraic topology is to assign algebraic invariants to topological spaces in order to
distinguish them and calculate some of their properties. There are many invariants that are applicable
to arbitrary spaces, some of which are discussed below.

Fundamental group

x0

S1

s0

The fundamental group is one of the first algebraic invari-
ants one encounters in an introductory topology course2.
While its concept is quite approachable and many compu-
tations involving it are feasible, it has its own problems.
“Its lack of commutativity both enriches and complicates
the theory” (p. 99 of [Hat02]): distinguishing noncommu-
tative groups from each other is often complicated, so it
is not the best tool to differentiate between topological
spaces. Another downside is that as we obtain the group by mapping one-dimensional spheres, it
mostly contains information about the low-dimensional structure of the space. This is best illus-
trated by the fact that the 2-skeleton determines the fundamental group of the entire CW complex.

Consequently, some algebraic invariant which uses commutative groups and higher dimensional
structures is quite desirable.

Homotopy groups

x0

Sn

s0

A natural generalization of the fundamental group is the
n-dimensional homotopy group, where instead of one-
dimensional spheres, we map n-dimensional spheres (Sn)
to a space3. For n > 1, the group formed by these maps
has the nice properties from earlier: it is both commuta-
tive, and is defined using high-dimensional structures. It
turns out that the n+1-skeleton of a CW complex is nec-
essary to determine its n-dimensional homotopy group, so

these indeed detect high-dimensional features of spaces.

With new features come new problems however: computing higher homotopy groups is extremely
difficult. For instance, not all homotopy groups of S2 are known as of now. It is true furthermore
that many higher homotopy groups of spheres are not trivial. The theorem of van Kampen also fails
to generalize, so the toolkit of homotopy groups leaves something to be desired.

2At least at ELTE.
3In fact we map In’s – that is, n-dimensional cubes – whose boundary maps to the basepoint. This way, an addition

operation can be easily defined.
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Bordism groups

Bn
In a generic setting many problems frequently become
much easier to solve. In hopes of this occurring, one may
leave behind the n-spheres of higher homotopy groups and
instead take all maps of all n-manifolds into a given space.
Settling the equivalence classes of these maps, and an ad-
dition operation on these classes takes a bit more work
than for homotopy groups, but it is doable nonetheless4.
The group formed by these equivalence classes is the n-
dimensional bordism group. While van Kampen’s theorem failed for higher homotopy groups, similar
calculatory devices are available for bordism groups. This guarantees that once we know the groups
of simple spaces, we can make calculations about the bordism groups of more complex spaces.

Only one problem remains with this approach: the fact that we use all manifolds implies that
the groups we get contain information about not only the space we inspect, but also about how
manifolds of a given dimension relate to each other. And these relations are far from trivial! As a
result, infinitely many bordism groups of a space consisting of a single point are nontrivial. This is in
many ways counter-intuitive: a simple space should have few and simple groups, not infinitely many
complicated ones.

Homology groups

Finally, we arrive to the concept of homology groups. Here,
instead of mapping n-manifolds, in some sense we map n-
dimensional simplicial complexes into our given space. The
formalism of these groups preserves the intuitive notions
which led to the details of the bordism groups’ definition,
but also creates a more abstract and obfuscated setting.
While sacrificing a great deal of intuitiveness and geometry,
we leap forward in computations. Homology groups are

commutative, detect high-dimensional structures but are unaffected by even higher dimensions, the
groups of simple spaces are easily obtainable, and there is a large and effective toolkit for computing
groups of more complex spaces.

The thesis

The goal of this thesis is to introduce the reader to the theories of (singular) homology and bordism
(see chapters §1 and §5). Both of these form generalized homology theories, which means that a large
part of their toolkits can be derived simultaneously (see sections §2.1, §2.2 and §2.3). Alongside this
we also present the concept of (singular) cohomology in chapter §3, which is very similar to (singular)
homology. A duality relation exists between homology and cohomology, which is discussed in chapter
§4. Finally, we present a theorem about the existence of a classifying space for (unoriented) bordism
in chapter 6, which essentially means that there is a one-to-one correspondence between bordism
classes and homotopy classes of maps into this classifying space. We also note that this bijection can
be exploited to express cohomology classes represented by bordism classes.

4Addition will be defined by disjoint union, and two maps will be equivalent – loosely speaking – if they form the
restriction of a map of a manifold to its boundary.
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Chapter 1

Singular homology

Sources. This chapter is based entirely on chapter 2 and section 3.A of Allen Hatcher’s
book [Hat02]. While some parts of it have been switched around, we still follow its exposi-
tion. Many important concepts are not covered here.

1.1 The absolute case

The construction of homology groups is quite convoluted. To gain some intuition about the process,
let us foreshadow the definition of the bordism groups first. Imagine we are mapping all possible
closed n-dimensional manifolds into our given space X with all their continuous maps. We make the
following remarks:

• As it is the case for the fundamental group, when measuring some qualities of a space it
is practical not to distinguish homotopic maps – after all, they can be deformed into
each other, so they are not significantly different. This also opens the door towards creating a
homotopic invariant.

• However, when using many manifolds, we need a way to consider maps from different ones to
be equivalent to each other, even those which come from non-homeomorphic manifolds. So we
have to quotient out not just by homotopies, but a larger equivalence relation.

• A homotopy can be interpreted as an extension of the two maps to a space connecting
them – to a space whose boundary they form.

With these in mind, when should we consider two maps equiv-
alent? A natural definition would be the following: two maps are
considered equivalent if there exists a higher-dimensional manifold
whose boundary is the union of the two manifolds our maps come
from, and a map from this higher-dimensional manifold which ex-
tends the maps defined on its boundary. This definition of course
makes any two homotopic maps equivalent, but provides a way to
connect maps between different manifolds too. Only a group oper-
ation is missing now, but taking the disjoint union of the two maps
seems to be a natural choice for this.

But of course, we are talking about homology and not bordism
– and the sketch above is closer to the concept of the latter than the former. However, it is advised
to keep the ideas from above in mind when inspecting the definition of singular homology, as this
structure is in some sense what we want to obtain through the process.

8



1.1. THE ABSOLUTE CASE

To avoid working with manifolds and get a more algebraic and combinatorial setting, we will
not consider maps of manifolds, but “simplicial complexes”. This means that a (representative of a)
homology class will be a collection of maps from a standard simplex (these maps are called singular
simplices) into our space X, which together “approximately form a closed manifold mapped into X”.
There are two questions about how to create a definition encapsulating this idea.

...

...

· · ·
· · ·

∆n

· · ·
· · ·

(a) ...whose faces line up.

...

...

· · ·· · ·

∆n

· · ·
· · ·

(b) ...whose faces do not line up.

∂

(c) ...and their boundary (∂).

Figure 1.1: A collection of simplices...

What should “approximately form a closed manifold” mean? Well, the simplices are al-
ready similar to Rn locally (at least in their interior), so the only property that separates a collection
of simplices from a closed manifold is the fact that they have a boundary. We want to have a collection
of maps from a standard simplex into X that together look like a map from a manifold, so if two maps
from the simplex seem like a map from two simplices glued together, we might as well consider the
collection of these two maps not to have a boundary at their common face. Consequently, the bound-
ary of a larger collection of singular simplices may be defined as the faces which remain unglued after
gluing together as many singular simplices as possible. And thus we receive an answer to the question
at the beginning of the paragraph: a collection of simplices “approximately form a manifold” if it has
no boundary, or in other words, the faces of the simplices can be partitioned into coinciding pairs.

+
+

Gluable ✓

+
−

Non-gluable X

Gluing oriented simplices

Remark. Notice that in the paragraph above, we defined a “boundary
operator” (later denoted by ∂), which assigned to a collection of maps from
the standard n-simplex a collection of maps from the standard (n − 1)-
simplex.

Remark. In reality, we would have liked to work with oriented manifolds,
so we give the standard simplex an “orientation”1. This will not be explic-
itly defined as it would be superfluous to do so – instead, it will be implicit
in the exact definition of singular homology. Think of an orientation of
a singular simplex as its “sign”: + corresponds to one orientation, while
− to an other. The orientation of the simplex induces an orientation on
each of its faces. To make everything consistent, we will only allow gluing
together faces which have the opposite orientation – that is, their signs
are opposite. The simplex with the opposite orientation/sign will also be considered the inverse of
the original one.

When should two collections be considered equivalent? For manifolds, we already an-
swered the question: if there is a higher dimensional manifold whose boundary is the union of the
original manifolds, and there is a map from it which extends the original maps. In view of the last
paragraph, it is easy to translate this criterion to the language of singular simplices: two collections of

1An orientation of the standard simplex can be given by an ordering of its vertices: two orderings represent the same
orientation if an even permutation can take them into each other. However, this information will not be of use later.
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CHAPTER 1. SINGULAR HOMOLOGY

singular n-simplices will be considered equivalent, if there is a collection of singular (n+1)-simplices
whose boundary is the union of our two collections.

− +

Figure 1.3: The quadrilateral and the pentagon are
equivalent, as their difference is the boundary of a
collection of (n+ 1) dimensional simplices.

Remark. The question of orientations is ignored once again: if we want to account for it, we have
to reverse the orientation of one of our original collections, and then ask for a higher dimensional
collection which connects the two. This corresponds to the idea that “the difference of the two
collections is equivalent to zero”.

Now let us summarize the above text: we define a boundary operator on the collections of singular
n-simplices which has some intuitive meaning, and then take the quotient of the kernel of the n-
dimensional boundary operator by the image of the (n + 1)-dimensional boundary operator. This
is exactly the same as the method mentioned above: the kernel is just the set of “approximately
manifold” collections, while the image is just collections which form the boundaries of a higher
dimensional collection, and are thus equivalent to zero.

∼ ∗ ∼

The discussion so far has been highly imprecise, so let us put everything on a firm algebraic
footing.

Definition 1.1.1. Let Cn = Cn(X) be the free abelian group with basis the collection of all con-
tinuous maps (singular simplices) of the form σ : ∆n → X, where ∆n is the standard n-simplex:
∆n = {(x0, . . . , xn) ∈ Rn+1 :

∑
xi = 1, ∀i : xi ≥ 0} with the subspace topology. The elements of Cn

are called the n-dimensional chains in X.

Remark 1.1.1.1. Cn = 0 for n < 0.

2 · − 5 · + − 3 · −

Figure 1.4: Illustration of a 2-dimensional chain.

This corresponds to what we earlier called “collections of singular simplices”: each chain is just
a finite sum of simplices – with possibly negative coefficients but these can be interpreted as a reversed
“orientation”.

10



1.1. THE ABSOLUTE CASE

v̂0

v1

v2

v3

Figure 1.5: [v̂0, v1, v2, v3]

Notation. ∆n can be interpreted as the convex hull of its n+ 1 ver-
tices. Name these vertices v0, . . . , vn. This means there is a canonical
ordering of the vertices for any n ≥ 0. Take the convex hull of any
k > 0 of these vertices: dk. There is a canonical linear homeomor-
phism between dk and ∆k that preserves the ordering of the vertices
(the ordering in dk is inherited from the indexing in ∆n). The or-
der preserving nature of these homeomorphisms is connected to the
concept of orientation.

Whenever we talk about σ|[a subset of the vertices] we mean the com-
position of this linear homeomorphism with the map σ, resulting in a singular simplex of the form
∆k → X. Moreover, the notation {v1, . . . , v̂i, . . . , vn} will mean the set, while [v1, . . . , v̂i, . . . , vn] will
mean the convex hull of all vertices except vi – it is omitted from the sequence. If multiple vertices
have hats, it means all of them are omitted.

Definition 1.1.2. Let ∂ = ∂n : Cn → Cn−1 (the boundary operator) be defined on a singular
n-simplex σ : ∆n → X by the formula:

∂σ =
n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn].

As it is defined on the basis of the free abelian group Cn, it can be uniquely extended as a homomor-
phism on the entirety of Cn: the ∂ of a sum is just the sum of the ∂’s. The notation σ|[v0,...,v̂i,...,vn] is
explained in above.

v0

v1

v2

v3
+−

v2

v3

v0

v1
+−

Figure 1.6: ∂3 of a 3-simplex. The sign of each face
is shown with an additional circle around it, indi-
cating the order of the vertices: this circle is re-
versed for faces with a negative coefficient.

This is just the boundary operator defined earlier. Note that “gluing together simplices” simply
means that their common face appears in the boundary with both a positive and negative coefficient,
so it indeed cancels out from the final sum. The signs in the defining sum correspond to the (induced)
“orientation” of the given face, so that it is consistent with the “orientation” of the original simplex.

Definition 1.1.3. Let Zn = Zn(X) be Ker ∂n ⊂ Cn (remember: ∂n : Cn → Cn−1). Its elements are
called cycles.

These correspond to what we called earlier “approximately manifold collections”.

Definition 1.1.4. Let Bn = Bn(X) be Im ∂n+1 ⊂ Cn (remember: ∂n+1 : Cn+1 → Cn). Its elements
are called boundaries.

These are the chains we will factor out with: two chains will be equivalent, if their difference forms
the boundary of a higher dimensional chain.

11



CHAPTER 1. SINGULAR HOMOLOGY

Definition 1.1.5. LetHn(X) = Zn(X)/Bn(X) be the nth singular (absolute2) homology group
of the space X; the factor of the cycles with the boundaries. Its elements are called homology classes.

And finally, we have the homology groups we aimed to define. Of course, we still need to prove
Bn ⊂ Zn to make Hn(X) well-defined.

1.2 Elementary properties

First, we note that Bn ⊂ Zn, so the groups Hn(X) are well defined:

Claim 1.2.1 (Lem[Hat02]:2.1). 0 = ∂∂ = ∂n−1 ◦ ∂n

Corollary 1.2.1.1. Bn ⊂ Zn

Next, we move on to stating that Hn(X) is a functor:

Claim (See (1.2.4)). Hn(X) is a functor from the category of topological spaces and continuous maps
to the category of abelian groups and their homomorphisms, for all n ∈ Z.

This means that for each continuous map between spaces there is an associated homomorphism
between their homology groups, these behave well with respect to composition, and that the identity
map induces the identity homomorphism:

Definition 1.2.2. Take an f : X → Y continuous map and an integer n. We will define an induced
homomorphism f∗ : Hn(X)→ Hn(Y ) in multiple steps.

1. To an arbitrary singular n-simplex σ : ∆n → X associate the singular n-simplex fσ = f ◦ σ :
∆n → Y .

∆n σ //
""

X
f
// Y

2. Extend this function to a homomorphism f# : Cn(X)→ Cn(Y ). As Cn(X) is free abelian with
basis the singular simplices in X, this can be done uniquely: in each chain (which is a finite
sum of singular simplices with certain signs), simply replace the singular simplices with their
compositions with f .

3. For each x ∈ Hn(X), take a representative c ∈ Zn(X) ⊂ Cn(X), then take the homology class
of f#(c) ∈ Cn(Y ). This is defined to be the element f∗(x).

Note that this last step is not sound: to take the homology class of f#(c) we would need to have
f#(c) ∈ Zn(Y ), but we are yet to check this. Moreover, we still need to see that f∗ is indeed well
defined (independent of the choice of c) and a homomorphism.

Claim 1.2.3. Let f : X → Y be a continuous map, and n an arbitrary integer.

(a) f#∂ = ∂f#. Note that these four letters represent four different homomorphisms, but for sim-
plicity, they are denoted by similar symbols. In other words, the diagram below commutes:

. . . // Cn+1(X)

f#
��

∂ // Cn(X)

f#
��

∂ // Cn−1(X)

f#
��

// . . .

. . . // Cn+1(Y )
∂ // Cn(Y )

∂ // Cn−1(Y ) // . . .

(b) f#(Zn(X)) ⊂ Zn(Y )

2For the significance of the word “absolute”, see section §1.3
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1.2. ELEMENTARY PROPERTIES

(c) f#(Bn(X)) ⊂ Bn(Y )

(d) f∗ : Hn(X)→ Hn(Y ) is a well defined homomorphism.

We can now restate the functoriality of Hn(X):

Claim 1.2.4. Hn is a functor from the category of topological spaces and continuous maps to the
category of abelian groupsand their homomorphisms, for all n ∈ Z. That is, for arbitrary continuous
maps g : X → Y and f : Y → Z we have:

(a) (fg)∗ = f∗g∗, and

(b) id∗ = id, or in other words, the identity map id : X → X induces the identity homomorphism
Hn(X)→ Hn(X).

Corollary 1.2.4.1. Homeomorphic spaces have isomorphic homology groups.

This functor can be thought of as the composition of the following functors:

Topological space // Set of s. simplices // Chain complex // Abelian groups (E1.2.1)

Or with symbols:

X // ({σ|σ : ∆n → X})n∈Z // C∗(X) = (Cn(X))n∈Z // H∗(X) = (Hn(X))n∈Z

Remark. Typically these last two sequences are instead considered as the direct sum of their elements
– that is C∗(X) =

⊕
n∈Z

Cn(X) and H∗(X) =
⊕
n∈Z

Hn(X).

Of course, we still have to clarify what each category really is in this sequence. The first and
last ones are evident: the category of topological spaces and continuous maps and the category of
abelian groups and group homomorphisms. The second one is less interesting: it is the category of
the collections of sets of singular n-simplices in a given space (for all n), and the functions on them
induced by maps of the spaces. The third category is the category of chain complexes and chain
maps. These (in view of the previous discussion) are defined as follows:

Definition 1.2.5. A chain complex C∗ of (free) abelian groups is a sequence (Cn)n∈Z of (free) abelian
groups and maps ∂ = ∂n : Cn → Cn−1 for each n ∈ Z, such that 0 = ∂∂ = ∂n−1 ◦ ∂n.

. . . // Cn+1
∂n+1

//

0

��

Cn
∂n //

0

GG
Cn−1

∂n−1
// Cn−2

// . . .

Note that C∗(X) = (Cn(X))n∈Z is a chain complex according to the definition above and claim
(1.2.1). The morphisms of these algebraic objects are:

Definition 1.2.6. A chain map f# : C∗ → D∗ between chain complexes is a sequence of homo-

morphisms f
(n)
# : Cn → Dn such that f

(n−1)
# ∂n = ∂nf

(n)
# . In other words, f# is a collection of

homomorphisms such that the diagram below commutes.

. . . // Cn+1

f
(n+1)
#
��

∂n+1
// Cn

f
(n)
#
��

∂n // Cn−1

f
(n−1)
#
��

// . . .

. . . // Dn+1
∂n+1

// Dn
∂n // Dn−1

// . . .

13



CHAPTER 1. SINGULAR HOMOLOGY

For simplicity, usually each f
(n)
# is referred to just as f#. With these in mind, let us go over each

functor in (E1.2.1).

1. The first functor’s definition and functoriality is evident: as discussed in step 1 of the definition
of the induced map (1.2.2), to obtain the image of a singular simplex we just compose it with
the continuous map.

2. The second functor assigns to the set of singular n-simplices the free abelian group Cn(X), and
to one of their morphisms induced by f the chain map f#. By (a) of claim 1.2.3 we have that
f# is indeed a chain map.

3. The third functor assigns to an arbitrary chain complex3 its homology groups: the group at
Cn will be Hn = Ker ∂n/ Im ∂n+1. To a chain map it assigns a collection of homomorphisms
between the appropriate homology groups as defined in step 3 of the definition of the induced
map (1.2.2): from each x ∈ Hn we take a representative c ∈ Cn, map it through f#, then take
its equivalence class. We still have to prove that this is actually a functor.

(b)-(d) of claim 1.2.3 is true for any chain complexes and chain maps, so we know that the homo-
morphism of the last point is at least well defined. With this train of thought we thus have shown
that we only have to see the following lemma to acquire claim 1.2.4:

Lemma 1.2.7 (Prp[Hat02]:2.9). Let C∗, D∗ and E∗ be arbitrary chain complexes, and g# : C∗ →
D∗ and f# : D∗ → E∗ be chain maps. Then we have

(a) (fg)∗ = f∗g∗ and

(b) id∗ = id, so the identity chain map induces the identity homomorphism on the homology groups.

∼ ∗ ∼

We will finish the section by first stating a direct sum theorem, then analyzing the structure
of H0(X) as an illustration, calculating the homology groups of points, and finally introducing the
concept of chain homotopies and a lemma regarding them:

Claim 1.2.8 (Prp[Hat02]:2.6). Suppose {Xα : α ∈ I} is the set of path-components of X, and
n ∈ Z is an arbitrary integer. Then there is an isomorphism:

Hn(X) ≈
⊕
α∈I

Hn(Xα)

This can be easily seen, as all groups involved in the definition of Hn(X) split into a direct sum.

Corollary 1.2.8.1 (Prp[Hat02]:2.7). Let P be the set of path components of a topological space
X. Then H0(X) ≈

⊕
p∈P

Z.

Remark 1.2.8.1 (Thm[Hat02]:2A.1). For a path-connected space X we have

H1(X) ≈ π1(X,x0)/π1(X,x0)′,

that is, H1(X) is isomorphic to the abelianization of π1(X), the fundamental group of X. This
theorem and its connections are not properly covered by the thesis, this is merely an interesting and
important fact.

3Not necessarily constructed from a space X.
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Hn(Xα) ⊕ Hn(Xβ) ⊕ Hn(Xγ) ⊕ . . . ≈ Hn(X)

⊔

_

OO

⊔

_

OO

⊔

_

OO

· · · = X

Xα Xβ Xγ

Figure 1.7: An illustration of (1.2.8).

About the homology groups of a point:

Claim 1.2.9 (Prp[Hat02]:2.8). Let ∗ be a space with a single point. Then we have:

Hn(∗) ≈

{
0, n ̸= 0

Z, n = 0

This can be proven by calculating explicitly the boundary operator ∂. Finally, chain homotopies:

Definition 1.2.10. Let f#, g# : C∗ → D∗ be chain maps of arbitrary chain complexes, and h be a
collection of homomorphisms of the form hn : Cn → Dn+1 for each n ∈ Z, such that

∂h+ h∂ = f# − g#.

(This is equivalent to ∂n+1hn + hn−1∂n = f
(n)
# − g(n)# .) Then we call h a chain homotopy between f#

and g#.

Chain homotopies are best illustrated with the (non-commutative) diagram:

. . . // Cn+1

g
(n+1)
#

��

f
(n+1)
#

��

∂n+1
// Cn

g
(n)
#

��

f
(n)
#

��

∂n //

hn

}}

Cn−1

g
(n−1)
#

��

f
(n−1)
#

��

//

hn−1

}}

. . .

. . . // Dn+1
∂n+1

// Dn
∂n // Dn−1

// . . .

In the section 1.4 we will see that a homotopy between the maps f and g of topological spaces induces
a chain homotopy P between f# and g# – hence the name “chain homotopy”. Applying the following
lemma to this result, we get that homotopic maps induce the same homomorphism between homology
groups (1.4.1):

Lemma 1.2.11 (Prp[Hat02]:2.12). Suppose f#, g# : C∗ → D∗ are chain maps with a chain ho-
motopy h between them. Then the homomorphisms f∗, g∗ : Hn(C∗)→ Hn(D∗) induced by f# and g#
between the homology groups of the two chain complexes coincide.
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1.3 Relative, reduced, coefficients

While absolute homology groups defined earlier are easy to grasp conceptually, there are three more
types of singular homology that need to be mentioned: relative, reduced and homology with coef-
ficients. Moreover, we note that there are many other types of homology in general, such as CW
homology and simplicial homology. These (in the settings where they are applicable) define the same
groups as singular homology, but are more easily computable. This is what makes homology such a
powerful tool. For more on them, see sections §2.1. and §2.2. of [Hat02].

Relative singular homology will be a generalization of absolute singular homology, which while
interesting in its own right is also an essential tool in computations: without it, the toolkit of homology
is not operational. Reduced homology meanwhile is a somewhat less geometrically intuitive equivalent
of absolute homology: it provides a nearly identical language to talk about absolute homology groups
which is slightly more regular in some algebraic sense. Finally, homology groups with coefficients
are more or less determined by absolute and relative homology groups (see theorem 1.4.11), but in
certain cases they conceptualize certain qualities of spaces better.

We will not detail their functoriality and homotopy invariance, as the proofs of these go analo-
gously to the absolute case.

1.3.1 Relative homology

Suppose that there is given a space X and we only care about the structure of some subspace B. B as
a space of its own is a simpler object than B as a subspace of X: the local topology around points in
the “boundary” of B ⊂ X can be quite different from the topology around those points in B alone4.
When considering inductive calculations – computations where we obtain some algebraic property of
the space using its subspaces – it is hopefully believable to the reader that B as a subspace of X is
a more useful structure than B alone.

Remark. In the world of topology this idea that we only care about a certain subset is instead usually
expressed by saying that there is a pair of spaces (X,A) (that is, spaces such that A ⊂ X) where we
do not care about the structure of A: in other words, B = X −A.

This train of thought turns out to be quite useful. In particular, the relative singular homol-
ogy groups measure quantities of subspaces inside larger spaces, and they are indeed applicable in
inductive calculations. Furthermore, it is just generally an extremely useful tool, and after getting
familiar with it one can easily convince oneself that it is a subject worth studying on its own5.

X

A

Let us move on to the definition. There is given a pair
of spaces (X,A), and we do not care about the structure of
A. How could this be expressed in the language of topology,
or in particular with chains, cycles and boundaries? Well,
if we take a subset of X − A which is a manifold, than
obviously we are not interested how this manifold continues
inside A. We wouldn’t be bothered if this subset was not
even a manifold in A, as that is a part of the space that is
ignored. This idea can be translated into the language of
chains: we only consider chains which are “approximately

manifold in X − A”, but may be “not approximately manifold in A” – or in other words, relative
cycles: chains whose boundary is contained in A.

4For instance, if X is a sphere and B is a closed hemisphere, then of course a boundary point of B has drastically
different local properties than the same point inside X.

5See for example the groups that make up a CW spectral sequence. These are described in the introductory part of
section §2.3. Moreover, CW homology groups are defined using these.
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As a boundary does not have a boundary (see claim 1.2.1), it is clear that we have to update the
definition of “boundary” too, otherwise barely any chains with boundaries inside A could be consid-
ered equivalent.

X

A

Figure 1.8: Two relative cycles
connected by a relative bound-
ary.

If we want to follow the definition of absolute singular homology, we
should consider two chains the same if they are similar in X − A.
This “similarity” was earlier expressed by saying that their union
(difference) formed a boundary. In this case, this of course means
that their difference looks like a boundary inside X −A: inside A, it
may be arbitrarily ugly, as we do not care about A. In the language
of chains this can be expressed by saying that a relative boundary
is the sum of a real boundary and some arbitrary chain inside A.

Remark. Both for relative cycles and relative boundaries the idea
that singular simplices inside A do not matter can be algebraically
expressed by saying “they are all zero”: by passing to the quotient
Cn(X)/Cn(A).

Similar to the absolute case, the relative homology groups will be
the quotient group of the relative cycles by the relative boundaries.

∼ ∗ ∼

Now let us go over the definition again in a more precise manner:

Definition 1.3.1. Let (X,A) be a pair of spaces (that is, spaces such that A ⊂ X). Put Cn(X,A) =
Cn(X)/Cn(A). There are induced boundary operators of the form ∂n : Cn(X,A)→ Cn−1(X,A), and
C∗(X,A) with these operators forms a chain complex. The homology groups of this chain complex
are denoted Hn(X,A) and are called the relative singular homology groups of the pair of spaces.
In other words:

Hn(X,A) =
Ker (∂n : Cn(X)/Cn(A)→ Cn−1(X)/Cn−1(A))

Im (∂n+1 : Cn+1(X)/Cn+1(A)→ Cn(X)/Cn(A))

Remark 1.3.1.1. This definition is compatible with the convention that we identify the pair (X, ∅)
with X: thus Hn(X, ∅) = Hn(X).

Remark 1.3.1.2. Hn(A,A) = 0 for any space A and integer n. This can also be deduced from the
Eilenberg-Steenrod axioms (see (§2.1), (§2.2)).

It is easy to check that a (representative of a) relative boundary and a relative cycle in Cn(X)
are indeed elements of Bn(X)+Cn(A) and ∂

−1
n (Cn−1(A)) respectively. Of course, there is an implicit

claim in this definition which we are yet to address:

Claim 1.3.2. (a) ∂n : Cn(X,A)→ Cn−1(X,A) is well defined, and

(b) 0 = ∂∂, that is C∗(X,A) is a chain complex.

1.3.2 Reduced homology

The homology groups of a point are all 0, except for the 0th one, which is Z (see (1.2.9)). This is
inconvenient for inductive arguments, as this frequently raises a special case when n = 0. But what
if we did not know (1.2.9) (we won’t know this for singular bordism, which operates with a very
similar machinery)? Nevertheless, it would be desirable that all homology groups of a point are zero:
we only want to measure properties of the space and not anomalies of the theory which produce
additional groups for a point. So it is reasonable to “pass to the quotient” of the homology group by
the appropriate homology group of a point, as this new group indeed does not measure superfluous
properties (of the point, at least). This can be done in the following way:
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Definition 1.3.3. Let X be a nonempty space. Then H̃n(X) = Ker(Hn(X) → Hn(∗)), where ∗ is
a space consisting of a single point and the homomorphism is the one induced by the unique map
X → ∗, is the nth reduced singular homology group of X.

There is an alternative definition available when working with singular homology (but this does
not generalize to bordism):

Claim 1.3.4. Let ∅ denote “the (−1)-dimensional” simplex, which is defined to be the boundary
(ε = ∂0) of all 0-dimensional simplices. Then

. . . // Cn(X)
∂n // . . . // C1(X)

∂1 // C0(X)
ε // C−1(X) ≈ Z // C−2(X) ≈ 0 // . . .

is a chain complex, whose homology group at Cn(X), n ≥ 0 is H̃n(X).

This alternative definition gives a different interpretation of the reduced homology group too.
The map ε can be given additional meaning when studied more closely (which we won’t do here; if
interested, see page 110 of [Hat02]).

Remark 1.3.4.1. A map f : X → Y induces a chain map between the augmented chain complexes of
(1.3.4).

Remark 1.3.4.2. If A ⊂ X, then the quotient of their augmented chain complexes (1.3.4) is still the
chain complex C∗(X,A) defined in (1.3.1).

Finally:

Claim 1.3.5. Hn(X,x0) ≈ H̃n(X) for arbitrary x0 ∈ X and n ∈ Z.

1.3.3 Homology with coefficients

While in the introduction of absolute singular homology in section §1.1 we used “oriented simplices”
(where their orientation corresponded to their sign in a given chain), this orientation introduced signs
in many places (such as the definition of the boundary operator (1.1.2)), complicating the theory.
Moreover, it is clear that the definitions must have worked if we decided to put σ = −σ for any
singular simplex σ. Finally, the concept that a singular simplex can be taken many times in a chain
(its coefficient can be any integer number) can feel a little artificial at first. Thus it would be probably
useful to introduce an alternative homology theory where this equality holds and only 0 and 1 are
allowed as coefficients, as certain calculations would become much simpler. Hence the definition of
singular homology groups with coefficients.

What other way is there to say that singular simplices can only have coefficients in {0, 1}, and
that σ = −σ for any singular simplex σ? A simple answer would be to say that every simplex in a
“chain”6 should have a coefficient in Z2, and not in Z. Or alternatively:

Definition 1.3.6. Let G be an abelian group, and (X,A) a pair of spaces. Put Cn(X,A;G) =
Cn(X,A)⊗G, that is, the direct sum of one copy of G for each singular simplex σ.

Claim 1.3.7. There is a boundary operator ∂n : Cn(X,A;G) → Cn−1(X,A;G) induced by the
boundary operator Cn(X,A) → Cn−1(X,A), and with this operator the Cn(X,A;G)’s form a chain
complex.

Definition 1.3.8. Let Hn(X,A;G) be the homology group at Cn(X,A;G) of the chain complex
C∗(X,A;G). It is called the (relative) singular homology group of (X,A) with coefficients in
G.

6Note that we redefine what chain means here!
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Remark 1.3.8.1. Hn(X,A;Z) = Hn(X,A).

Remark 1.3.8.2. While Cn(X,A;G) = Cn(X,A)⊗G, we do not have Hn(X,A;G)
?
= Hn(X,A)⊗G.

This is in part what makes homology groups with coefficients so useful. Nevertheless, the homology
groups with coefficients are determined by the homology groups with coefficients in Z: this result
is formalized by the universal coefficient theorem for homology (1.4.11), which is not proved in this
thesis.

1.4 The toolkit

In this section we will introduce the most common tools of singular homology. Some of these can be
acquired by manipulating chains such as:

• Homotopy invariance (1.4.1): homotopic maps induce the same homomorphism on homolo-
gies.

• Barycentric subdivision (1.4.2): any homology class can be represented by a chain consisting
of arbitrarily small simplices (each simplex must be inside an element of an open cover U).

• Excision (1.4.3): for a pair of spaces (X,A) we can ignore a closed subset Z ⊂ intA, as this
does not change Hn(X,A): Hn(X,A) ≈ Hn(X − Z,A− Z).

Using the zig-zag lemma (A.2.3) – a purely algebraic tool – we can get multiple different long exact
sequences of homology groups (their uses are explained in the appropriate section (§1.4.2)):

• Long exact sequence (1.4.6) of homology groups associated to a pair of spaces (X,A) (that
is, spaces such that A ⊂ X):

. . . // Hn+1(X,A) // Hn(A) // Hn(X) // Hn(X,A) // Hn−1(A) // . . .

• Long exact sequence (1.4.7) of reduced homology groups associated to a pair of nonempty
spaces (X,A) (that is, spaces such that A ⊂ X):

. . . // Hn+1(X,A) // H̃n(A) // H̃n(X) // Hn(X,A) // H̃n−1(A) // . . .

• Long exact sequence (1.4.8) of homology groups associated to a triple of spaces (X,A,B)
(that is, spaces such that B ⊂ A ⊂ X):

. . . // Hn+1(X,A) // Hn(A,B) // Hn(X,B) // Hn(X,A) // . . .

• Mayer-Vietoris sequence (1.4.9) of a decomposition X = A ∪B, where X ⊂ intA ∪ intB:

. . . // Hn+1(X) // Hn(A ∩B) // Hn(A)⊕Hn(B) // Hn(X) // . . .

We also note that all of these sequences are natural. Finally, we will state the universal coefficient
theorem for homology (1.4.11). For an application of this toolkit, see claim 2.2.11, the calculation of
the homology groups of spheres.

Remark. Note that we could spare directly proving some of these results (the last two exact sequences,
all naturality statements, and the groups of spheres) from the definition of singular homology, as they
can be deduced from the Eilenberg-Steenrod axioms alone. Actually, it suffices to prove only those
axioms, as they characterize singular homology – at least for CW pairs (see (2.1.1)). A reminder of
this fact will be written next to some (but not all) results for which this is true.

19



CHAPTER 1. SINGULAR HOMOLOGY

1.4.1 Manipulating chains

The goal of this section is to prove the following four theorems:

Theorem 1.4.1 (Homotopy invariance; thm[Hat02]:2.10, prp[Hat02]:2.19). If f, g : (X,A) →
(Y,B) are homotopic maps7, then f∗ = g∗ for the induced maps f∗, g∗ : Hn(X,A)→ Hn(Y,B).

Remark 1.4.1.1. Setting A = B = ∅ yields us the same result for absolute homology groups.

Corollary 1.4.1.1 (Crl[Hat02]:2.11). Homotopy equivalent spaces have isomorphic homology groups.
That is, singular homology is a functor of homotopy type.

Theorem 1.4.2 (Barycentric subdivision; prp[Hat02]:2.21). Suppose U = {Ui ⊂ X : i ∈ I} is a
collection of spaces whose interiors together cover the space X. Put

CU
n (X) = {x ∈ Cn(X) : x can be written in the form x = xi1 + . . .+ xik with xij ∈ Cn(Uij )}.

Then CU
∗ (X) is a chain complex, and the inclusion chain map ι : CU

∗ (X) ↪→ C∗(X) is a chain
homotopy equivalence, that is, there is a chain map ρ : C∗(X) → CU

∗ (X) such that ιρ and ρι are
chain homotopic (1.2.10) to the identity. Moreover, we can suppose ρι = id.

Corollary 1.4.2.1 (Prp[Hat02]:2.21). Suppose we are in the situation above. Then by the chain
homotopy lemma (1.2.11) the nth homology group of C∗(X) and the nth homology group of CU

∗ (X)
are isomorphic: Hn(X) ≈ HU

n (X).

Theorem 1.4.3 (Excision; thm[Hat02]:2.20). We state two equivalent forms of the excision theo-
rem.

(a) Given subspaces Z ⊂ A ⊂ X such that the closure of Z is inside intA, the inclusion (X −
Z,A− Z) ↪→ (X,A) induces isomorphisms

Hn(X − Z,A− Z) ≈ Hn(X,A),

for all n ∈ Z.

(b) For subspaces A,B ⊂ X satisfying intA∪ intB ⊃ X, the inclusion (B,A∩B) ↪→ (X,A) induces
isomorphisms

Hn(B,A ∩B) ≈ Hn(X,A),

for all n ∈ Z.

X

AZ

Translating between the two versions is trivial: B = X−Z and Z = X−B.

Theorem 1.4.4 (Prp[Hat02]:2.22). For any good pair (X,A), the quotient
map q : (X,A)→ (X/A,A/A) induces isomorphisms

q∗ : Hn(X,A) ≈ Hn(X/A,A/A)
(1.3.5)
≈ H̃n(X/A),

for all n ∈ Z.

This theorem only depends on the first six Eilenberg-Steenrod axioms.
Good pairs are defined as follows:

Definition 1.4.5. A pair of topological spaces (X,A) is a good pair, if A is a
nonempty closed subspace in X such that there exists a A ⊂ V ⊂ X open set,
that deformation retracts onto A.

7So f, g : X → Y , and f(A) ⊂ B, g(A) ⊂ B.
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It is notable that CW pairs are good pairs (B.0.7).

∼ ∗ ∼

First, let us prove the homotopy invariance theorem (1.4.1).

Proof of (1.4.1). We will only prove the absolute case. The proof of the relative theorem is analogous.

v0

w0

v1

w1

v2

w2

(a) The decomposition of ∆× I. (b) 1.9a but in detail. (c) P of a chain.

Figure 1.9: The prism operator P .

We construct a chain homotopy (1.2.10) P , that is, a collection of homomorphisms Pn : Cn(X)→
Cn+1(Y ), which shows that f# and g# are chain homotopic for arbitrary maps f, g : X → Y
connected by a homotopy h : X × I → Y (I = [0, 1]). As they are chain homotopic, they induce the
same homomorphism on homology according to (1.2.11): in other words, f∗ = g∗, and this is what
we wanted to prove.

To construct P , we only have to define its value on singular simplices, as it is defined on a free
abelian group. Suppose there is given a singular simplex σ : ∆n → X. From this, we can create
singular simplices fσ, gσ in Y by composing σ with f or g, respectively. In other words, we have
two maps of ∆n into Y . However, as f and g are homotopic by h, we not only have these, but we
have a map of h(σ, id) : ∆n × I → Y – the composition of (σ, id) and h. h(σ, id)|∆n×{0} = fσ and
h(σ, id)|∆n×{1} = gσ, so the top and bottom faces of this prism restrict to our two singular simplices
in Y .

Let us decompose ∆ × I into simplices (see figure 1.9a and 1.9b), so that the top and bottom
faces of the prism become faces of some simplices. This decomposes h(σ, id) into multiple singular
simplices: the chain formed by these will be defined as Pσ. How can we describe the boundary ∂Pσ?
Well, it consists of:

• −fσ, the bottom face of the prism (the sign is due to orientations),

• gσ, the top face of the prism,

• −P∂σ, the sides of the prism (it can be thought of as a prism with base the boundary of σ)
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As “the prism is solid”, there are no other parts of the boundary: the boundaries inside the prism
cancel each other out. Summarizing these results, we recieve the formula:

∂P + P∂ = g# − f#

As this relation holds on singular simplices, it holds for arbitrary chains. Thus P is indeed a chain
homotopy (hence the definition of chain homotopy!), and f∗ = g∗. We could of course formalize the
above by defining P and calculating these results explicitly.

The excision theorem (1.4.3) follows directly from barycentric subdivision (1.4.2), which has a
significantly longer proof.

Proof of the excision theorem (1.4.3). Only (b) will be proved here, as translating between the two
versions is trivial with B = X − Z and Z = X −B.

For the cover U = {A,B} (intA∪ intB ⊃ X) we introduce the notation Cn(A+B) = CU
n (X). By

barycentric subdivision (1.4.2), the inclusion ι : Cn(A+B) ↪→ Cn(X) is a chain homotopy equivalence,
that is, it has a chain homotopy inverse ρ and a chain homotopy D which shows this inverse relation:

∂D +D∂ = id−ιρ,

while we have

ρι = id .

All maps in these formulas take chains in A to chains in A, so they induce quotient maps when
passing to the quotient by Cn(A). These quotient maps automatically satisfy these two formulas.
Consider the quotient maps

Cn(B)/Cn(A ∩B)
≈ // Cn(A+B)/Cn(A)

� � // Cn(X)/Cn(A),

where the first map is induced by inclusion, while the second is an inclusion itself. The first map
is an isomorphism, as both groups are just the free abelian group with basis the singular simplices
in B that are not contained in A. The second map induces an isomorphism on homology as the
induced quotient maps satisfy the same formulas as the original maps, and these formulas imply the
isomorphism by the chain homotopy lemma (1.2.11) (similar to how inclusion induced an isomorphism
in (1.4.2.1)).

Before we move on to barycentric subdivision, let us prove the theorem about quotient spaces
(1.4.4). Note that this proof only uses the first six Eilenberg-Steenrod axioms (§2.1), so it can be
stated for generalized homology theories.

Proof of (1.4.4). We have to show q∗ : Hn(X,A) → Hn(X/A,A/A) is an isomorphism. Let V be a
neighborhood of A in X that deformation retracts onto A. We will prove the isomorphism by showing
that the normal arrows in the commutative diagram below are isomorphisms:

Hn(X,A) //

q∗
��

Hn(X,V )

q∗
��

Hn(X −A, V −A)oo

q∗
��

Hn(X/A,A/A) // Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)oo

(E1.4.2)

• The horizontal two arrows on the right are isomorphisms by excision (1.4.3).

• The righmost vertical arrow is an isomorphism as q restricts to an isomorphism on the comple-
ment of A (so this arrow is induced by a homeomorphism).
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• We have a deformation retraction of V onto A, and thus an induced deformation retrac-
tion of V/A onto A/A. These deformation retractions show that both (V,A) and (A,A),
and (V/A,A/A) and (A/A,A/A) are homotopy equivalent. As Hn(B,B) = 0 for any space
B (see (1.3.1.2)) and homotopy equivalent pairs have isomorphic homology groups, we have
Hn(V,A) ≈ Hn(V/A,A/A) ≈ 0. Using the long exact sequence of the triple (1.4.8) from the
next section with the triples (X,V,A) and (X/A, V/A,A/A), we know that the following se-
quences are exact:

. . . // Hn(V,A) ≈ 0 // Hn(X,A) // Hn(X,V ) // Hn−1(V,A) ≈ 0 // . . .

. . . // Hn(V/A,A/A) ≈ 0 // Hn(X/A,A/A) // Hn(X/A, V/A) // Hn−1(V/A,A/A) ≈ 0 // . . .

This can be restated as the fact that the following sequences are exact for all n:

0 // Hn(X,A) // Hn(X,V ) // 0

0 // Hn(X/A,A/A) // Hn(X/A, V/A) // 0

That is, the horizontal arrows on the left of (E1.4.2) are isomorphisms.

Finally, we shall study the barycentric subdivision theorem (1.4.2):

Proof of (1.4.2). First, we define the barycentric subdivision of the standard simplex, then the same
for singular simplices. This operator (S) turns out to be a chain map, and is going to be useful as it
provides a way to write a simplex as a signed sum of “smaller simplices”: repeatedly applying this
procedure will yield a subdivision so fine that it falls inside CU

n (X).

Of course, we still have to show that the repeated barycentric subdivision of a chain is indeed
“equivalent” in some sense to the original chain. This will be an easy consequence of the fact that
applying the subdivision operator once is “equivalent” to the original chain: the operators S and id
are chain homotopic.

Now we will discuss the process above in more detail. This text is designed to give a quick overview
of the process, but may not provide the best environment for calculations. For a detailed proof, see
the proof of porposition 2.21. on pages 119-124 of [Hat02].

We define the barycentric subdivision of standard simplices and chains in an intertwined inductive
process. See figure 1.10 for a flowchart of the process.

(A) Subdivision of ∆n. The barycentric subdivision of ∆n (as well as most other concepts in this
proof) will be defined using induction, with the barycentric subdivision of a 0-simplex being
just the identity map into it. The result is an n-chain in ∆n, or in other words, an element of
Cn(∆

n).

1. Consider the identity map id : ∆n → ∆n as a singular simplex, and take its boundary ∂ id
(a chain in Cn−1(∆

n)).

2. Take the barycentric subdivision of this chain, S∂ id, as defined in (B).
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(A) Subdivision of ∆n (B) Subdivision of a chain

//
//

//
//

//

//
// · · ·
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//
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//

//

//
// · · ·

�� ���� �� ������

// //

��

· · ·
��

· · · // //

��

//

//
//

...

��

//

//
//

��

(B)

��

(A)

��

(A)

��

Figure 1.10: The construction of S.

3. To each singular (n−1)-simplex σ in this subdivision we will associate a singular n-simplex.
Let b be the barycenter8 of ∆n. The simplex associated to σ will be the singular simplex
whose image is the cone with tip b and base σ.9

4. The sum of these associated singular n-simplices with the same coefficients as the σ’s
in step 3. form the barycentric subdivision of the standard n-simplex ∆n. Denote this
temporarily by S∆n.

(B) Subdivision of a chain. Suppose there is a singular n-simplex σ in some space X – that is,
σ : ∆n → X. Then σ can be viewed as a map between the spaces ∆n and X, so it induces
a homomorphism of the chain groups: σ#. Let Sσ – the barycentric subdivision of a singular
simplex – be σ#S∆

n (where S∆n is defined in (A)).

To calculate the barycentric subdivision of an entire chain, take the subdivisions of each simplex,
and sum the resulting chains multiplied by their original signs.

The useful thing about barycentric subdivision is that the subdivided simplices are “smaller” than
the original one. More precisely, the diameter of the image of each singular simplex in the subdivision
of ∆n is at most n

n+1 times the diameter of ∆n (and this does not depend on which simplex in Rm we
choose to represent ∆n; this is a simple geometry result). As a consequence, using iterated subdivision
we can get a chain whose singular simplices have images with arbitrarily small diameters. This means
that applying subdivision sufficiently many times to a chain in X yields a chain in CU

n (X) for any
cover U of the type detailed in the theorem.

8The convex combination of all vertices with all weights being 1/(n+ 1).
9The precise version of this is as follows. Suppose the vertices u0, . . . , un−1 of ∆n−1 are mapped by σ to the points

w0, . . . , wn−1 ∈ ∆n. Associate to σ the singular n-simplex which is a linear map of ∆n and maps its vertices v0, . . . , vn
to the points b, w0, . . . , wn−1.
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Next, we move on to define a chain homotopy T between the identity operator and the barycentric
subdivision operator (on the chain complex of a space X), to show that the barycentric subdivision is
indeed equivalent to the identity. This is also defined in an inductive fashion, with T = 0 in negative
dimensions10.

(A) T of the standard simplex. The T of the standard simplex will be a chain in Cn+1(∆
n).

1. Take the identity singular simplex id : ∆n → ∆n.

2. Take the boundary of the identity singular simplex, ∂ id. This is an element of Cn−1(∆
n).

3. Take the T of this ∂ id as defined in (B): this is an element of Cn(∆
n).

4. Let b be the barycenter of ∆n. Then to each singular n-simplex σ in id−T∂ id associate
the singular simplex whose image is the cone with tip b and base σ.

5. The sum of these associated singular (n + 1)-simplices with the same coefficients as the
original σ’s in step 4. form the T of the standard n-simplex ∆n. Denote this temporarily
by T∆n.

(B) T of a chain. Suppose there is a singular n-simplex σ in some space X – that is, σ : ∆n → X.
Then σ can be viewed as a map between the spaces ∆n and X, so it induces a homomorphism
of the chain groups: σ#. Let Tσ – T of a singular simplex – be σ#T∆

n (where T∆n is defined
in (A)).

To calculate T of an entire chain, take T of each simplex, and sum the resulting chains multiplied
by their original coefficients.

Figure 1.11: Illustration of how T connects the barycentric subdivision
of a singular simplex with the original simplex. Note that the vertical
projection of the third figure is what is actually “mapped” into X.

It can be checked by direct calculation that S is indeed a chain map and T is a chain homotopy
between S and id, that is, we have:

∂T + T∂ = id−S

We still need two operators to finish the proof.

• The operator Dm : Cn(X) → Cn+1(X), which is the chain homotopy between id and Sm, the

iterated barycentric subdivision operator. This is given by the formula
m−1∑
i=0

TSi.

• The operator D = DU : Cn(X)→ Cn+1(X), which is defined on a singular simplex σ as Dm(σ),
where m(σ) is the smallest natural number for which Sm(σ) consists of simplices such that any
simplex is contained in the interior of one of the sets in U .
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σ

Tσ

TS1σ

TS2σ

S1σ

S2σ

S3σ

(a) Dm connects σ and Smσ. (b) DU subdivides each simplex as many times as necessary.

Figure 1.12: The operators Dm and DU .

It can be checked by direct calculation that Dm is indeed a chain homotopy. Now we would like a
“chain homotopy inverse” ρ of the inclusion ι : CU

n (X) → Cn(X). The chain homotopy between the
two will be D, so we simply define ρ as:

ρ = id−∂D −D∂

It can be checked by direct calculation that ρ is indeed a chain map of the form Cn(X)→ CU
n (X).

Finally, ρι = id as D restricts to 0 on CU
n (X), as m(σ) = 0 here.

1.4.2 Exact sequences

A sequence of abelian groups (Gn)n∈Z with maps fn : Gn → Gn−1 forms a (long) exact sequence if
Ker fn = Im fn+1 for all n ∈ Z.

. . . // Gn+1
fn+1

// Gn
fn

// Gn−1
fn−1

// Gn−2
// . . .

Now would be a good time to go over the elementary concepts of homological algebra in section §A.1.
Besides long exact sequences, we will also state the universal coefficient theorem for homology (1.4.11)
later in this section. The study of spectral sequences (which can be applied to singular homology too)
are postponed to the next chapter, in section §2.3.

There are many long exact sequences whose groups are (relative/reduced/absolute) homology
groups. While the applicability of the tools introduced in the last section is quite self-explanatory,
this is not the case for long exact sequences. For the convenience of the reader, we list two major
applications here (which are exceptionally useful, as our long exact sequences will be “3-periodic” in
some sense):

• Sometimes many groups in a long exact sequence turn out to be zero.

. . . // Gn+1
// 0 // Gn−1

// Gn−2
// 0 // . . .

This can be because for example they are homology groups of contractible spaces (such as Rn
or a point), or perhaps a relative homology group of the form Hn(A,A) is included (see claim
1.3.1.2). Zeros in the sequence let us deduce the injectivity and surjectivity of certain maps.
For instance (and this is a common case!) if every third group is 0, then the remaining pairs of
groups are isomorphic. This lets us calculate one half of such pair from the other half.

10∂ of a 0-simplex should be the empty simplex ∅ to make the induction start.
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• Sometimes we already know the structure of certain groups in a sequence, but lack information
about the others. Thanks to the naturality of the long exact sequences we will construct,
frequently there is another long exact sequence whose terms we all understand, and there is a
sequence of maps connecting the two (such that the diagram below commutes).

. . . // An+2
//

��

An+1
//

��

An //

��

An−1
//

��

An−2
//

��

. . .

. . . // Bn+2
// Bn+1

// Bn // Bn−1
// Bn−2

// . . .

The five lemma (A.2.1) states that if we take a five groups long segment of these two sequences,
and all vertical homomorphisms except the one in the center are isomorphisms, then so is the
one in the center. Thus if we don’t know every third element of the sequence (An)n∈Z, but we
know each Bn, then we can calculate the remaining An’s. This is especially useful when proving
the equality of different homology theories.

All of our long exact sequences will come from the zig-zag lemma (A.2.3), which states that a short
exact sequence of chain complexes (their maps are the chain maps!)

0 // C∗ // D∗ // E∗ // 0

yields a long exact sequence of their homology groups

. . . // Hn+1(E∗)
∂ // Hn(C∗) // Hn(D∗) // Hn(E∗) // . . . ,

where the maps are the ones induced by the chain maps, and ∂ is constructed in the proof of the
zig-zag lemma (A.2.3).

Now let us mention some long exact sequences. Note that there are more long exact sequences
than listed here (especially Mayer-Vietoris sequences).

Theorem 1.4.6 (LES of pair; see page 117 of [Hat02]). For each pair of spaces (X,A) (that is,
spaces such that A ⊂ X) there is associated a long exact sequence of homology groups:

. . . // Hn+1(X,A)
∂ // Hn(A) // Hn(X) // Hn(X,A) // . . .

The homomorphism ∂ can be made explicit: take a relative cycle c representing a relative homology
class x ∈ Hn+1(X,A). The boundary ∂c is in A. ∂x is the homology class of ∂c in Hn(A).

This comes from the exactness of

0 // C∗(A) // C∗(X) // C∗(X,A) // 0 ,

which is basically just the definition of C∗(X,A).

Theorem 1.4.7 (Reduced LES of pair; see page 118 of [Hat02]). For each pair of nonempty
spaces (X,A) there is associated a long exact sequence of reduced homology groups:

. . . // Hn+1(X,A)
∂ // H̃n(A) // H̃n(X) // Hn(X,A) // . . .

The proof of this is the same as for the previous one, but instead of C∗(A) and C∗(X) we use
their augmented chain complexes (1.3.4), and notice that their quotient is still C∗(X,A) (1.3.4.2).
Alternatively, this can be deduced from the Eilenberg-Steenrod axioms (see (§2.1), (§2.2)).
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Theorem 1.4.8 (LES of triple; see page 118 of [Hat02]). For each triple of spaces (X,A,B)
(that is, spaces such that B ⊂ A ⊂ X) there is associated a long exact sequence of homology groups:

. . . // Hn+1(X,A) // Hn(A,B) // Hn(X,B) // Hn(X,A) // . . . ,

where the homomorphism Hn+1(X,A)→ Hn(A,B) is defined by the composition:

Hn+1(X,A)
∂ // Hn(A) // Hn(A,B) .

This comes from the exactness of

0 // C∗(A,B) // C∗(X,B) // C∗(X,A) // 0 ,

which is the second isomorphism theorem in the category of chain complexes and chain maps. This
can be proven quite easily. Alternatively this can be deduced from the Eilenberg-Steenrod axioms:
see theorem 2.2.4.

Theorem 1.4.9 (Mayer-Vietoris sequence; see pages 149-150 of [Hat02]). Suppose the space X
is covered by the union intA ∪ intB for some subspaces A,B ⊂ X. Then there is associated a long
exact sequence of homology groups:

. . . // Hn(A ∩B)
Φ // Hn(A)⊕Hn(B)

Ψ // Hn(X)
∂ // Hn−1(A ∩B) // . . . ,

where

• Φ(α) = (i∗(α),−j∗(α)), with inclusions i : A ∩B ↪→ A, j : A ∩B ↪→ B.

• Ψ(α, β) = k∗(α) + l∗(β), with inclusions k : A ↪→ X, l : B ↪→ X.

• ∂ can be made explicit: take a representing chain of a given homology class. Take an equivalent
chain by barycentric subdivision (1.4.2), such that the result can be written as the sum of two
chains: one in A and one in B. Their boundaries must coincide in A ∩B. The homology class
of this boundary will be the the result of ∂.

This comes from the exactness of

0 // C∗(A ∩B)
ϕ
// C∗(A)⊕ C∗(B)

ψ
// C∗(A+B) // 0 ,

where ϕ(x) = (x,−x) and ψ(x, y) = x + y. According to a corollary of barycentric subdivision
(1.4.2.1), the homology groups of C∗(A+ B) are isomorphic to the homology groups H∗(X), so the
theorem follows.

About the naturality of the sequences:

Theorem 1.4.10 (See pages 127-128 of [Hat02]). All previously mentioned long exact sequences
are natural:

• The LES of a pair of spaces (X,A).

• The reduced LES of a pair of nonempty spaces (X,A).

• The LES of a triple of spaces (X,A,B).

• The Mayer-Vietoris sequence of a decomposition X = intA ∪ intB.
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This means that for maps of pairs/triples of spaces (f : (X,A)→ (X ′, A′), g : (X,A,B)→ (X ′, A′, B′), h :
X = intA ∪ intB → X ′ = intA′ ∪ intB′) there are induced maps between the corresponding groups
of these sequences, and the diagram formed by the exact sequences and these maps commutes.

. . . // An+2
//

��

An+1
//

��

An //

��

An−1
//

��

An−2
//

��

. . .

. . . // Bn+2
// Bn+1

// Bn // Bn−1
// Bn−2

// . . .

∼ ∗ ∼

Finally, the universal coefficient theorem for homology:

Theorem 1.4.11 (Thm[Hat02]:3A.3). If C∗ is a chain complex of free abelian groups, then there
are natural short exact sequences

0 // Hn(C∗)⊗G // Hn(C∗;G) // Tor(Hn−1(C∗), G) // 0

for all n and G, and these sequences split, though not naturally.

We can calculate Tor using the following rules:

Claim 1.4.12 (Prp[Hat02]:3A.5). Let all capital letters denote abelian groups.

(a) Tor(A,B) ≈ Tor(B,A)

(b) Tor(
⊕
i∈I

Ai, B) ≈
⊕
i∈I

Tor(Ai, B)

(c) Tor(A,B) = 0 if A or B is free (or simply torsionfree)

(d) Tor(A,B) ≈ Tor(T (A), B), where T (A) is the torsion subgroup of A.

(e) Tor(Zn, A) ≈ Ker(A
n−→ A)

(f) For each short exact sequence

0 // B // C // D // 0

there is a naturally associated exact sequence

0 // Tor(A,B) // Tor(A,C) // Tor(A,D) // A⊗B // A⊗ C // A⊗D // 0 .

The definition of Tor and the proofs of these claims are omitted. For details, see section 3.A of
[Hat02].
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Chapter 2

General homology theories

Sources. The inclusion of this chapter in this thesis is motivated by the exposition of
bordism groups followed in [CF64]. The statement of the axioms in section §2.1 is copied
from [CF64], except for the 8th one, which is from [Hat02]. The consequences of these ax-
ioms in (§2.2) have been chosen primarily based on what appeared in [CF64], but the exact
statements of theorems were collected from [ES52]. All references to theorems/lemmas of
[ES52] are inside chapter I. of the book, so “Thm[ES52]:5.2” means “Thm[ES52]:I.5.2”.
The sources of section §2.3 are detailed at the start of the section.

There is a set of axioms which are satisfied by many functors (such as the singular homology and
bordism functors discussed in this thesis). Many properties and tools of these functors can be deduced
purely from these axioms. This section aims to introduce them and the tools which only depend on
them, including spectral sequences.

2.1 The Eilenberg-Steenrod axioms

Remark. Please note that most results stated in the next three sections can be proven much more
easily for singular homology. The main reason for including these is their applicability in the context
of singular bordism.

In the original work of Eilenberg and Steenrod ([ES52], pages 10–12), seven axioms are used to
uniquely determine the singular homology theory of pairs of spaces:

Theorem 2.1.1 (Thm[Hat02]:4.59). (a) Suppose the functors hn satisfy the Eilenberg-Steenrod
axioms (described later in this section) for finite CW pairs1. Then there are natural isomor-
phisms

hn(X,A) ≈ Hn(X,A;H0(∗))

(for homologies with coefficients, see section §1.3.3) for all finite CW pairs (X,A) and n ∈ Z,
where ∗ is a space with a single point.

(b) If we assume the 8th axiom, then there are isomorphisms for arbitrary CW pairs.

There are many slightly different axiomatic systems for singular homology (besides this one) which
are more commonly used today. In our case it is assumed that

• for each pair of spaces (X,A) and n ∈ Z there is assigned an abelian group hn(X,A),

• for each map between pairs of spaces f : (X,A) → (Y,B) and n ∈ Z there is an induced
homomorphism f∗ : hn(X,A)→ hn(Y,B),

1Pairs (X,A) where X is a CW complex and A is a subcomplex.
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• and for each pair of spaces (X,A) and n ∈ Z there is a homomorphism ∂ : hn(X,A)→ hn−1(A).
2

The first two assumptions together with axioms (ES.1) and (ES.2) can be summarized as follows:
there is given a functor from the category of pairs of spaces to the category of abelian groups. Axiom
(ES.3) is sometimes shortened to say that ∂ is a natural transformation.

The Eilenberg-Steenrod axioms:

(ES.1) If f is the identity, then f∗ is the identity as well.

(ES.2) (gf)∗ = g∗f∗.

(ES.3) If f |A is the restriction of f : (X,A)→ (Y,B) to A, then ∂f∗ = (f |A)∗∂. Namely, the following
diagram commutes for any n ∈ Z:

hn(X,A)

∂
��

f∗
// hn(Y,B)

∂
��

hn−1(A)
(f |A)∗

// hn−1(B)

(ES.4) If i : A ↪→ X and j : X ↪→ (X,A) are inclusions, then the following sequence is exact:

. . . // hn(A)
i∗ // hn(X)

j∗
// hn(X,A)

∂ // hn−1(A) // . . .

(ES.5) If f, g : (X,A)→ (Y,B) are homotopic, then f∗ = g∗.

(ES.6) If U is an open subset of X such that U ⊂ intA, then the inclusion map i : (X − U,A− U) ↪→
(X,A) induces an ismorophism (for each n ∈ Z):

i∗ : hn(X − U,A− U)
≈−→ hn(X,A)

(ES.7) If ∗ is a single point, then hn(∗) = 0 for all n ̸= 0.

There are interesting homology theories which do not satisfy the last – dimensional – axiom, such
as the bordism homology theory discussed later in this thesis. For such theories, the groups hn(∗)
(where ∗ is a single point) are called the coefficients of the theory.

These 7 axioms were originally formulated with finite CW complexes in mind. While in this setting
these were sufficient to characterize singular homology, for infinite complexes they left something to
be desired. This gave rise to the following axiom (due to Milnor), which is a standard part of the
axiomatic system used today:

(ES.8) For any collection of spaces {Xα}α∈J with inclusions iα : Xα ↪→
⊔
β∈J

Xβ into the disjoint union,

the induced homomorphisms iα∗ determine an isomorphism:

⊕
α∈J

iα∗ :
⊕
α∈J

hn(Xα)
≈−→ hn

(⋃
α∈J

Xα

)
,

for all n ∈ Z.

However, we will not make use of this axiom in this thesis, so it will be ignored, and the term
“Eilenberg-Steenrod axioms” will refer to the first seven axioms alone.

2Note that pairs of the form (Y, ∅) are abbreviated as Y .
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2.2 Consequences of the axioms

Many properties of a general homology theory follow from just the first 6 axioms alone. These are:

Lemma 2.2.1 (Lem[ES52]:8.1). hn(A,A) ≈ 0 for any space A and any integer n.

Theorem 2.2.2 (Thm[ES52]:4.1). The long exact sequence of (ES.4) is natural. That is, if there is
a map f : (X,A) → (Y,B) that defines the maps f1 : X → Y and f |A : A → B then the following
diagram is commutative:

. . . // hn(A)

(f |A)∗
��

// hn(X)

(f1)∗
��

// hn(X,A)

f∗
��

// hn−1(A)

(f |A)∗
��

// . . .

. . . // hn(B) // hn(Y ) // hn(Y,B) // hn−1(B) // . . .

Theorem 2.2.3 (Thm[ES52]:5.2). If f : (X,A)→ (Y,B) is a homeomorphism, then f∗ : hn(X,A)→
hn(Y,B) is an isomorphism (for all n ∈ Z).

Theorem 2.2.4 (Exact sequence of a triple; thm[ES52]:10.2). If B ⊂ A ⊂ X – or in other words
(X,A,B) is a triple of spaces – then there is an exact sequence:

. . . // hn(A,B) // hn(X,B) // hn(X,A) // hn−1(A,B) // . . . ,

where the map hn(X,A)→ hn−1(A,B) is defined as the composition

hn(X,A)
∂ // hn−1(A) // hn−1(A,B).

This is easy to deduce using a diagram chasing argument (see (A.2.4)), and by noticing that the
composition hn(A,B) → hn(X,B) → hn(X,A) can instead be written as hn(A,B) → hn(A,A) →
hn(X,A), where hn(A,A) ≈ 0 by (2.2.1).

There are also reduced homology groups:

Definition 2.2.5 (Def[ES52]:7.3). Let ∗ be a single point. The reduced homology group in dimen-
sion n of a space X (denoted h̃n(X)) is the kernel of ε∗ : hn(X) → hn(∗) where ε collapses X to a
point ∗.

Claim 2.2.6 (Thm[ES52]:7.6). hn(X) ≈ h̃n(X)⊕ hn(∗) for any nonempty space X and any n ∈ Z.

Theorem 2.2.7 (Thm[ES52]:8.4). For each pair (X,A) there is an exact sequence of reduced ho-
mology groups:

. . . // h̃n(A) // h̃n(X) // hn(X,A) // h̃n−1(A) // . . .

By utilizing the excision axiom, we can also get:

Theorem 2.2.8 (Direct sum theorem; thm[ES52]:13.2). Suppose that X = X1 ⊔ . . . ⊔ Xm is a
disjoint union, Ak ⊂ Xk, A = A1 ⊔ . . . ⊔Am. Then

hn(X,A) ≈
m⊕
k=1

hn(Xk, Ak).

In other words, if ik : (Xk, Ak) ↪→ (X,A), then each u ∈ hn(X,A) can be uniquely represented by
some uk ∈ hn(Xk, Ak)’s in the form

u =

m∑
k=1

ik∗(uk)
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Theorem 2.2.9 (Mayer-Vietoris sequence; thm[ES52]:15.3). Suppose the space X is covered by the
union intA ∪ intB for some subspaces A,B ⊂ X. Then there is associated a long exact sequence of
homology groups:

. . . // hn(A ∩B)
Φ // hn(A)⊕ hn(B)

Φ // hn(X)
∂ // hn−1(A ∩B) // . . . ,

where

• Φ(α) = (i∗(α),−j∗(α)), with inclusions i : A ∩B ↪→ A, j : A ∩B ↪→ B.

• Ψ(α, β) = k∗(α) + l∗(β), with inclusions k : A ↪→ X, l : B ↪→ X.

There are additional consequences if we only consider the category of CW pairs (X,A) where A
is a closed subcomplex in X.

Theorem 2.2.10 (See page 14 of [CF64]). If φ : (X,A) → (Y,B) is a relative homeomorphism
between CW -pairs, then it induces an isomorphism on the homology groups (for all n ∈ Z):

φ∗ : hn(X,A)
≈−→ hn(Y,B)

A simple consequence is:

Corollary 2.2.10.1 (See page 14 of [CF64]). For a CW pair3 (X,A) there is an isomorphism
(for all n ∈ Z):

hn(X,A) ≈ h̃n(X/A)
By convention X/∅ is the disjoint union of X with a point.

A similar result can be achieved using the concept of good pairs:

Definition (See (1.4.5)). A pair of topological spaces (X,A) is a good pair, if A is a nonempty
closed subspace in X such that there exists an open set A ⊂ V ⊂ X, which deformation retracts onto
A.

CW pairs (where the subspace is a subcomplex) are good pairs (B.0.7).

Theorem (See (1.4.4)). For good pair (X,A) the quotient map q : (X,A) → (X/A,A/A) induces
an isomorphism on the homology groups (for all n ∈ Z):

q∗ : hn(X,A)
≈−→ hn(X/A,A/A)

Finally, the first four axioms also guarantee the existence of spectral sequences for CW complexes.
For details, see section §2.3.

∼ ∗ ∼
Now let us do some calculation using the results above.

Claim 2.2.11 (Thm[ES52]:16.64). 1. h̃n(S
k) ≈ hn−k(∗)

2. hn(S
k) ≈ hn(∗)⊕ hn−k(∗)

3. hn(I
k, Sk−1) ≈ h̃n−1(S

k−1) ≈ hn−k(∗)
By combining the relative homeomorphism property (2.2.10) and the result above (2.2.11), we

get:

Claim 2.2.12. For a CW complex X, we have

hn(skk(X), skk−1(X)) ≈
M⊕
i=1

hn(I
k, Sk−1) ≈

M⊕
i=1

hn−k(∗),

if M ∈ N is the number of k-dimensional cells in X, and skk(X) is the k-skeleton.
3This still means that A is a closed subcomplex!
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2.3 Spectral sequences

Sources. The contents of this section are based on the spoken word introduction by my
advisor Tamás Terpai, which were in turn based on page 1 of some lecture notes from
ELTE [SJ]. This page is a short overview of chapter 15 of [Swi75]. However, I did not use
[Swi75] for writing this thesis. The descriptions of some concepts and ideas for diagrams
were borrowed from [Lyc16]. There is no citation for theorems in (§2.3.2), as that section
is based entirely on the aforementioned spoken word introduction and [SJ]. For a proper
source, see [Swi75], [McC01] or [Eil51].

Generalized homology theories (which do not satisfy (ES.7), the dimension axiom) sometimes require
additional tools to keep computations feasible, as the generalized homology groups even of simple
spaces may be hard to compute.

One such algebraic tool is the spectral sequence of a CW complex. For now, let us ignore the
“CW complex” part, and only focus on what this tool has to offer in an algebraic sense. Like a long
exact sequence, a spectral sequence can be thought of as a commutative diagram with some additional
connections between its objects and arrows. As it is a part of homological algebra, computations with
it have a similar “feeling” to them as long exact sequences do. However, there are two important
distinctions to be made between the tools mentioned. For one, both the definition of and the data
contained in a spectral sequence is far-far more complex than for long exact sequences. The other
– more important – contrast between the two is that while long exact sequences are used to justify
single steps of calculations in the context of a larger diagram:

. . . as the diagram is exact here, we know that b maps to 0 . . . ,

spectral sequences are these contexts, these larger diagrams, in which many steps of calculation
take place.

∼ ∗ ∼
The motivation for these algebraic objects can be partially explained with the underlying topology.

First, we will approach the topic from the viewpoint of an application of our spectral sequence: in
this exposition the spectral sequence is presented as a complex tool for computing homology groups.
In a remark at the end of the subsection we note that the groups which build up the sequence are
also interesting in their own right: from this viewpoint the spectral sequence can be considered a
collection of information creating connections between these objects.

∼ ∗ ∼

As stated earlier, calculating the generalized homology groups can become troublesome for even
simple spaces. As a result, we give up on determining these groups exactly and instead try to approxi-
mate them via filtrations. So instead of computing some abelian group G which arises as a generalized
homology group, we determine the quotients in some filtration 0 = G−1 ⊂ G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂
Gn = G: this still provides surprisingly large amounts of information on the group G, especially with
field coefficients.

When working with CW complexes and aiming for the computation of hn(X), it is natural to
consider the k-skeletons of X: skk(X). While the k-skeleton’s homology groups are not subgroups of
hn(X), we can just take their image in it. Using this, we receive a filtration of hn(X) in a simple way.
Now we only have to hope that the quotients will be calculable in some way.

It is clear that next we should be computing hn(skk(X)), or at least its image in hn(X). This will
be done only in an approximate manner, but it is going to be seen that this does not pose a problem
in calculating the quotients mentioned above. The main idea is that we compute hn(skk(X)) using
the cycles-boundaries approach5: for each r ∈ N we take

5The general homology theory in question may lack any notion of cycles and boundaries, but this is a good mental
image about the process.

34



2.3. SPECTRAL SEQUENCES

• groups of “nearly-cycles”, which contain objects that are closer and closer to “real cycles” as r
grows,

• and groups of “restricted-boundaries”, which contain more and more of the “real boundaries”
as r grows.

Hence as r increases, the quotient of these two groups will get “closer and closer” to hn(skk(X)).
The spectral sequence will be constructed from these groups, and parts of its ∞-page – which can be
regarded as its limit – are indeed going to be the quotients of the filtration of hn(X) we were looking
for.

Remark. To create a setting where we can relax “cycles” to “nearly-cycles”, instead of directly
approximating hn(skk(X)), we will be approximating its image in hn(skk(X), skk−1(X)): in this
group there are many more “cycles” than in hn(skk(X)) but we can restrict ourselves closer and
closer to its image. Thanks to the algebraic trick of the bow tie lemma (A.2.2), it suffices to work in
this environment.

It should also be noted that these quotients are interesting in their own right. Even when working
with an infinite-dimensional CW complex, one typically only considers its skeletons in computations.
It is then natural to ask what different homology groups would look like if we only cared about a
“section” of the CW complex: ignoring everything below and above certain dimensions. In this sense,
these groups are similar to the groups hn(skk(X), skl(X)), and the spectral sequence is a collection
of information drawing connections between them.

Remark. Up to now, we made no convincing point that any of the structures detailed above will in-
deed be computable. This last step of working inside hn(skk(X), skk−1(X)) implies that the crudest
approximation of hn(skk(X))’s image will be hn(skk(X), skk−1(X)) itself. While we do not neces-
sarily understand simple spaces, we do understand the generalized homology of spheres, as seen in
the calculations of (2.2.11). This hints us that we will be able to compute the homology groups
hn(skk(X), skk−1(X)) for a CW complex X, and we can hope that the inner structure of a spectral
sequence will enable us to proceed to better approximations of hn(skk(X)) – and finally the quotients
in the filtration of hn(X).

Finally, a reminder about the general nature of mathematics:

Remark. Spectral sequences can be interpreted and constructed differently than the way discussed
here. There are also many different spectral sequences (named after many well-known mathemati-
cians) just inside algebraic topology. For more on the subject, see [McC01] or [Lyc16].

2.3.1 Algebraic definition

We will discuss homological spectral sequences in the category of abelian groups in this section. For
generalizations, see [McC01] or [Lyc16]. To skip the introductory definition, go to (2.3.1), the concise
definition.

page 0 , page 1 , page 2 , . . . , page ∞

The groups that make up a spectral sequence are organized into ω+1 pages. In other words, they are
partitioned into sets – 1 set for each natural number, and 1 additional for ∞. This is done because
no homomorphisms go between groups on different pages (but there is some additional data which
connects them!). No homomorphisms go from or to the groups on page ∞ and they can be easily
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determined from previous pages6, so we shall ignore them temporarily.

page 3 , page 4 , page 5 , . . .

Next, we note that the first few pages may be “missing”: the pages of a spectral sequence need to be
defined only for sufficiently large n. All homomorphisms on the rth page will be denoted dr, and called
the differential homomorphisms. If we are only interested in the graph of these homomorphisms, we
see that it is just a union of infinitely many infinite paths. Furthermore, each of these paths is actually
a chain complex.

· · · // • // • // • // • // • // · · ·

· · · // • // • // • // • // • // · · ·

· · · // • // • // • // • // • // · · ·

However, the graph of homomorphisms is not the only important data about the groups of a single
page. The groups of a page have a one-to-one correspondence to the lattice points of the plane:
Z × Z. The two coordinates will usually be denoted by p and q, so a group on the rth page will be
denoted by Erpq. For a homological spectral sequence/first quadrant spectral sequence – the type of
spectral sequence we are concerned with – on any page only the groups in the first quadrant (with
non-negative coordinates) can be non-zero:

0 0 Er0,2 Er1,2 Er2,2

0 0 Er0,1 Er1,1 Er2,1

0 0 Er0,0 Er1,0 Er2,0

0 0 0 0 0

0 0 0 0 0

We still need to connect the coordinate system of the lattice to the graph of homomorphisms. On
the rth page, exactly 1 homomorphism goes from each group, as per the graph’s description above.
Each of these homomorphisms go to the group r steps west and r− 1 steps north. If we would like to
differentiate between the homomorphisms of a single page, we may write drpq for the homomorphism
coming from Erpq. Combining all of this information (and replacing Erpq with • for clarity), we get
that a spectral sequence looks somewhat like figure 2.1.

There is one last crucial property of spectral sequences. As the spectral sequence decomposes into
a union of chain complexes, its homology groups can be defined. The homology group at the group
Erpq is by definition the group Er+1

pq . In other words, if we calculate the homology groups of a page
we get the next page of the spectral sequence.

This concludes the introductory definition of a spectral sequence.

∼ ∗ ∼

A somewhat more concise definition is as follows:

6Because of this property, the ∞-page can be regarded as an object derived from the spectral sequence, instead of
a part of it.
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Figure 2.1: Illustration of a spectral sequence.

Definition 2.3.1 (Def[Lyc16]:1). A (homological/first quadrant) spectral sequence consists of the
following:

• an a ∈ N, the index of the first defined page,

• abelian groups Erpq for each r ≥ a and p, q ∈ Z, and

• homomorphisms drpq : E
r
pq → Erp−r,q+r−1 for each r ≥ a and p, q ∈ Z.

Moreover, we suppose these have the following three properties:

1. (Homological/first quadrant:) Erpq = 0 for each r ≥ a and (p, q) ∈ Z × Z where p < 0 or
q < 0,

2. dr ◦ dr = drp−r,q+r−1 ◦ drp,q = 0 for each r ≥ a and p, q ∈ Z, and

3. the homology group Ker drpq/ Im drp+r,q−r+1 at E
r
pq is the group E

r+1
pq for each r ≥ a and p, q ∈ Z.

Remark. The groups of a page can be calculated from the previous one, but the differentials can not.
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To derive the ∞-page, we first make an observation:

Claim 2.3.2 (See page 2 of [Lyc16]). For sufficiently large r in a homological spectral sequence
we have

Erpq ≈ Er+1
pq ≈ Er+2

pq ≈ Er+3
pq ≈ . . .

for any p, q ∈ Z. r = max(p+ 1, q + 2) is sufficiently large.

Definition 2.3.3 (See page 2 of [Lyc16]). Let E∞
pq be the stabilized group E

max(p+1,q+2)
pq , the

group from which point on Erpq ≈ Er+1
pq ≈ . . .

The spectral sequences we will work with have an additional property:

Definition 2.3.4 (Def[Lyc16]:2). Let Gn be an abelian group and

0 = (Gn)−1 ⊂ (Gn)0 ⊂ (Gn)1 ⊂ . . . ⊂ (Gn)n−1 ⊂ (Gn)n = Gn

be a filtration for each n ∈ N. We say that a (homological) spectral sequence Eapq converges to Gp+q,
denoted Eapq =⇒ Gp+q, iff

E∞
pq ≈ (Gp+q)p/(Gp+q)p−1

E
∞

:

n (Gn)0/(Gn)−1 ≈ (Gn)0
n − 1 (Gn)1/(Gn)0
n − 2 (Gn)2/(Gn)1

.

.

.
.
.
.

1 (Gn)n−1/(Gn)n−2
q = 0 (Gn)n/(Gn)n−1 ≈ Gn/(Gn)n−1

p = 0 1 2 · · · n − 1 n

In what follows, we will use the notation Fpq = (Gp+q)p. With that, the previous figure7 becomes:

E∞ :

n F0,n/F−1,n+1 ≈ F0,n

n− 1 F1,n−1/F0,n

n− 2 F2,n−2/F1,n−1

...
. . .

1 Fn−1,1/Fn−2,2

q = 0 Fn,0/Fn−1,1

p = 0 1 2 · · · n− 1 n

2.3.2 Construction for complexes

We will associate a spectral sequence to a CW complex. In the construction itself the CW structure
is almost irrelevant: in reality, the sequence is associated to an arbitrary filtration ∅ = X−∞ ⊂ . . . ⊂
Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ . . . ⊂ X∞ = X of a space X. If X is a CW complex, let Xp = skp(X) be the
p-skeleton of X. While this depends greatly on the CW structure, it turns out that the Erpq produced
by the following process is independent of the particular cell subdivision for r ≥ 2.

After choosing a filtration ∅ = X−∞ ⊂ . . . ⊂ Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ . . . ⊂ X∞ = X like above,
the remainder of the construction is purely algebraic. Nevertheless, we will attempt to reinforce the
geometric interpretations from the beginning of the section.

Remark. The condition “X−∞ is empty” is not actually necessary in what follows: it could be replaced
by any other set. As assuming this equality makes geometric interpretation much easier, but overall
it is superfluous, we will put ∅ := X−∞. This means that in this section by the symbol ∅ we do not
mean the empty set, but the space X−∞. Take special care when dealing with absolute homology
groups: in reality hn(X

p) is none other than hn(X
p, X−∞). Replacing X−∞ with something else will

come in handy when discussing relative spectral sequences.

7These figures were copied from [Lyc16].
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The main theorem of this subsection can be stated using many different levels of assumptions. In
all of them, only the first four Eilenberg-Steenrod axioms of section §2.1 need to be satisfied
by h∗. While this is irrelevant in the proofs, always consider Xk = skk(X) for some CW complex X.

Theorem 2.3.5. There is a general spectral sequence Erpq (general means that Erpq is not necessarily
0 for negative p or q) associated to a filtration ∅ = X−∞ ⊂ . . . ⊂ Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ . . . ⊂ X∞ =
X. This is defined by:

Zrpq = Im
(
j∗ : hp+q(X

p, Xp−r)→ hp+q(X
p, Xp−1)

)
Br
pq = Im

(
∂ : hp+q+1(X

p+r−1, Xp)→ hp+q(X
p, Xp−1)

)
Erpq = Zrpq/B

r
pq.

Specifically, we have E1
pq = hp+q(X

p, Xp−1).

Theorem 2.3.6. Assume hn(X
k) = 0 for all n < 0, k ∈ Z∪{±∞} for a filtration ∅ = X−∞ ⊂ . . . ⊂

Xp−1 ⊂ Xp ⊂ Xp+1 ⊂ . . . ⊂ X∞ = X. Then

• the spectral sequence of (2.3.5) is a homological spectral sequence: if p or q is negative, then
Erpq = 0,

• for fixed (p, q), the groups (Erpq)r≥0 stabilize after a sufficiently large r, defining the ∞-page.

Theorem 2.3.7. Assume hn(X
k) = 0 for all n < 0, k ∈ Z ∪ {±∞} and hn(X,X

n) = 0 for all n.
Then for the homological spectral sequence of (2.3.5) and (2.3.6) we have Erpq =⇒ hp+q(X), so it
converges to the groups hp+q(X) in the sense of (2.3.4) with the filtration 0 = F−1,n+1 ⊂ F0,n ⊂
F1,n−1 ⊂ . . . ⊂ Fn,0 = hn(X), where

Fpq = Im (i∗ : hp+q(X
p)→ hp+q(X)) .

Remark 2.3.7.1. In some generalized settings, it may make sense to replace the assumption “hn(X
k) =

0 for n < 0, k ∈ Z ∪ {±∞}” by “for each n we have hn(X
k) = 0 for sufficiently small k”, and the

assumption “hn(X,X
n) = 0 for all n” by “for each n we have hn(X,X

k) = 0 for sufficiently large
k”. These yield similar – though not identical – results to those above. For details, see [Eil51].

Remark 2.3.7.2. We note once again that in this section ∅meansX−∞, an arbitrary subspace. So abso-
lute homology groups in theorems 2.3.6 and 2.3.7 mean relative homology groups by X−∞: hn(X

k) =
hn(X

k, X−∞), hn(X) = hn(X,X
−∞), hp+q(X

p) = hp+q(X
p, X−∞) and hp+q(X) = hp+q(X,X

−∞).
Of course, the theorems are true with ∅ being the empty set: this gives the absolute spectral

sequences.

∼ ∗ ∼

Only (2.3.7) will be proved here. The intermediate results of (2.3.5) and (2.3.6) can be extracted
from the thought process below. The bow tie lemma (A.2.2) will be of great use in this section.

Now let us recall the central objects from which we will construct the spectral sequence:

Definition 2.3.8. Put

• Zrpq = Im
(
j∗ : hp+q(X

p, Xp−r)→ hp+q(X
p, Xp−1)

)
,

• Br
pq = Im

(
∂ : hp+q+1(X

p+r−1, Xp)→ hp+q(X
p, Xp−1)

)
,

• Fpq = Im (i∗ : hp+q(X
p)→ hp+q(X)), and

• Erpq = Zrpq/B
r
pq.
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Specifically:

• Z∞
pq = Im

(
j∗ : hp+q(X

p)→ hp+q(X
p, Xp−1)

)
• B∞

pq = Im
(
∂ : hp+q+1(X,X

p)→ hp+q(X
p, Xp−1)

)
• E∞

pq = Z∞
pq /B

∞
pq

Note that this E∞
pq is not the same as the one defined in (2.3.3), and that ∂ comes from the exact

sequence of the triple: (2.2.4).

The Erpq’s are well defined, as the following relations are present between these groups:

Claim 2.3.9. 0 = B1
pq ⊂ B2

pq ⊂ . . . ⊂ B∞
pq ⊂ Z∞

pq ⊂ . . . ⊂ Z2
pq ⊂ Z1

pq = hp+q(X
p, Xp−1)

Verifying this is fairly straightforward using (ES.3) and the functoriality of h∗.

These groups are what have been introduced informally in the first – motivational – part of the
section. So the they can be interpreted as:

• Fpq form the filtrations through which we aim to understand the structure of hn(X). For this,
see the next claim.

• Zrpq are the “nearly-cycles” approximating hn(X
p) in hn(X

p, Xp−1).

• Br
pq are the “restricted-boundaries” of hn(X

p) in hn(X
p, Xp−1).

• Erpq are the approximations of “hn(X
p) in hn(X

p, Xp−1)”.

• E∞
pq can be regarded as “the best approximation of hn(X

p) in hn(X
p, Xp−1)” using its definition

above. However, we should note that (assuming the collection of Erpq’s form a spectral sequence
as defined in (2.3.1)) a different object can also be denoted the same way: the “limit group” of
(Erp,q)r≥0, the stabilized group of (2.3.3). These two thankfully coincide according to the next
claim.

The next two claims are the ones which require the assumptions of (2.3.6) and (2.3.7).

Claim 2.3.10. For fixed (p, q) we have

(a) Zrpq ≈ Z∞
pq for sufficiently large r (by the extra assumption of (2.3.6)),

(b) Br
pq ≈ B∞

pq for sufficiently large r (by the extra assumption of (2.3.7)), and

(c) Erpq ≈ E∞
pq for sufficiently large r.

The next claim states that Fpq really do form a filtration of hn(X). This also depends on the
extra assumption of (2.3.7):

Claim 2.3.11. 0 = F−1,n+1 ⊂ F0,n ⊂ F1,n−1 ⊂ . . . ⊂ Fn,0 = Im (i∗ : hn(X
n)→ hn(X)) = hn(X)

At this point, we have two things missing: we have to see that the quotients of the filtrations
defined by Fpq are indeed the elements of the ∞-page, and prove that the groups Erpq have the
structure of a spectral sequence. This latter task ensures that we can use this inner structure in later
calculations. First, let us settle the question regarding the filtration – as a direct application of the
bow tie lemma (A.2.2).

Claim 2.3.12. Fpq/Fp−1,q+1 ≈ E∞
pq
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Proof. By applying the bow tie lemma (A.2.2) as follows:

hp+q+1(X,X
p)

��

∂

((

hp+q(X
p−1) //

i1 ((

hp+q(X
p)

i2
��

// hp+q(X
p, Xp−1)

hp+q(X)

Now that this is settled, we only have to define differential homomorphisms drpq : E
r
pq → Erp−r,q+r−1,

and show that these form chain complexes whose homology groups are the next page. These differ-
ential homomorphisms will be constructed as compositions of three homomorphisms, one of which is
the following one, given by the bow tie lemma (A.2.2):

Lemma 2.3.13. Zrpq/Z
r+1
pq ≈ Br+1

p−r,q+r−1/B
r
p−r,q+r−1

Proof. By applying the bow tie lemma (A.2.2) as follows:

hp+q(X
p, Xp−r−1)

��

j1∗

))

hp+q(X
p−1, Xp−r) //

∂1 **

hp+q(X
p, Xp−r)

∂2
��

j2∗
// hp+q(X

p, Xp−1)

hp+q−1(X
p−r, Xp−r−1)

Finally we can define dr:

Definition 2.3.14.

Zrpq/B
r
pq

// // Zrpq/Z
r+1
pq ≈ Br+1

p−r,q+r−1/B
r
p−r,q+r−1

� � // Zrp−r,q+r−1/B
r
p−r,q+r−1

Erpq
dr // Erp−r,q+r−1

Claim 2.3.15. (a) Ker dr = Zr+1
pq /Br

pq

(b) Im dr = Br+1
p−r,q+r−1/B

r
p−r,q+r−1

(c) Im dr ⊂ Ker dr

(d) Ker dr/ Im dr = Zr+1
pq /Br+1

pq = Er+1
pq

So the Erpq’s together with the dr’s form a spectral sequence, which converges to hn(X) by the
definition of convergence (2.3.4).
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CHAPTER 2. GENERAL HOMOLOGY THEORIES

2.3.3 Relative construction

To obtain a relative spectral sequence which converges to the groups hn(X,A), put X
k = skk(X)∪A

for all k ∈ Z, and X−∞ = A,X∞ = X. This overrides remark 2.3.7.2 about the ∅ notation. The
relative forms of the spectral sequence theorems can be formulated as follows.

Theorem 2.3.16 (Relative form of (2.3.5)). There is a general8 spectral sequence Erpq associated
to the filtration A = X−∞ ⊂ . . . ⊂ Xp = skp(X) ∪A ⊂ . . . ⊂ X∞ = X. This is defined by:

Zrpq = Im
(
j∗ : hp+q(X

p, Xp−r)→ hp+q(X
p, Xp−1)

)
Br
pq = Im

(
∂ : hp+q+1(X

p+r−1, Xp)→ hp+q(X
p, Xp−1)

)
Erpq = Zrpq/B

r
pq.

Specifically, we have E1
pq = hp+q(X

p, Xp−1).

Theorem 2.3.17 (Relative form of (2.3.6)). Assume hn(X
k) = 0 for all n < 0, k ∈ Z ∪ {±∞} for

the filtration A = X−∞ ⊂ . . . ⊂ Xp = skp(X) ∪A ⊂ . . . ⊂ X∞ = X. Then

• the spectral sequence of (2.3.16) is a homological spectral sequence: if p or q is negative, then
Erpq = 0,

• for fixed (p, q), the groups (Erpq)r≥0 stabilize after a sufficiently large r, defining the ∞-page.

Theorem 2.3.18 (Relative form of (2.3.7)). Assume hn(X
k) = 0 for all n < 0, k ∈ Z ∪ {±∞}

and hn(X,X
n) = 0 for all n. Then for the homological spectral sequence of (2.3.16) and (2.3.17) we

have Erpq =⇒ hp+q(X,A), so it converges to the groups hp+q(X,A) in the sense of (2.3.4) with the
filtration 0 = F−1,n+1 ⊂ F0,n ⊂ F1,n−1 ⊂ . . . ⊂ Fn,0 = hn(X,A), where

Fpq = Im (i∗ : hp+q(X
p, A)→ hp+q(X,A)) .

8General means that Er
pq is not necessarily 0 for negative p or q.
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Chapter 3

Singular cohomology

Sources. This chapter is based entirely on [Hat02], particularly on section §3.1.

3.1 The definition

Singular cohomology is algebraically extremely similar to singular cohomology. The main difference is
that cohomology is a contravariant functor – that is, to a map f : X → Y it assigns a homomorphism
of the cohomology groups in the other direction f∗ : Hn(Y ) → Hn(X). This, in many ways, makes
cohomology more pleasant to work with. However, many of its great consequences – such as the
existence of the cup product – will mostly be omitted from this thesis for lack of time.

While on one hand cohomology is easier to work with algebraically, on the other hand it is harder
to explain it geometrically. There are two ways in which we will attempt to approach the subject:
from the viewpoint of Poincaré duality and from the viewpoint of the definition.

For sufficiently nice spaces (here: topological manifolds), there exists a duality relationship be-
tween homology and cohomology. While more complicated in reality, intuitively k-dimensional ho-
mology classes in an n-manifold can be thought of as embedded submanifolds of dimension k, while
cohomology is related to homomorphisms of the kth homology group to some abelian group G. One

−

−

+

M

α

Figure 3.1: One positive and two negative intersections.

easy way to create a homomorphism of the kth homology group to let’s say Z is to take an embedded
submanifold M of codimension k (so dimension n− k), and count (with signs) the number of inter-
sections of the representing “submanifold” of some α ∈ Hk(X) with M . Of course, if we take an ugly
representative of α, the number of intersections with M may be undefined. Thankfully, we can take a
representative for which this number is well defined, so we can construct homomorphisms this way. It
turns out that for each cohomology class γ – which once again, correspond to some homomorphism
Hk(X) → G – there is an “embedded (n − k)-submanifold M”, or more precisely a homology class
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CHAPTER 3. SINGULAR COHOMOLOGY

β ∈ Hn−k(X) from which we can construct the homomorphism that corresponds to γ. In some sense,
this is the statement of the Poincaré duality. Poincaré duality is detailed in chapter §4. For a better
and more in-depth explanation of this duality as a motivation of cohomology, see the introductory
text (pages 185–189) of chapter 3 in [Hat02].

∼ ∗ ∼

A different route we can take is simple algebraic dualization, which leads to the exact definition
of cohomology. We already mentioned that

• elements of the cohomology groups correspond to homomorphisms to some abelian group G,

• cohomology is a contravariant functor, and

• there is some sort of duality relationship between homology and cohomology.

After this, it may not be surprising that the Hom(−, G) functor (for some fixed abelian group G;
see definition A.1.9) is involved in the construction. It is indeed related to homomorphisms to some
abelian group G, it is a contravariant functor (A.1.10), and it is a kind of duality functor.

In view of claim A.1.12, it is easy to guess the definition of singular cohomology.

Definition 3.1.1. Let X be an arbitrary topological space.

(a) Let Cn(X;G) denote Hom(Cn(X), G), the group of singular n-cochains with coefficients
in G in X.

(b) Denote the dual map ∂∗ : Cn(X;G)→ Cn+1(X;G) of ∂ : Cn+1(X)→ Cn(X) by δ, and call it
the coboundary map.

(c) The cochain groups Cn(X;G) with the coboundary maps δ form a chain complex, called the
(singular) cochain complex (with coefficient in G) of X.

(d) The elements of Ker δ are called cocycles, while the elements of Im δ are called coboundaries.

(e) The homology group Ker δ/ Im δ of the cochain complex C∗(X;G) at Cn(X;G) is called the
nth cohomology of X with coefficients in G, and is denoted by Hn(C;G).

Remark 3.1.1.1. There are several remarks regarding this definition:

(a) The elements of Cn(X;G) are in one-to-one correspondence with functions from the set of
singular n-simplices to G.

(b) If ψ ∈ Cn(X;G), then δψ = ψ∂:

Cn+1(X)
∂ // Cn(X)

ψ
// G

(c) The cochain groups Cn(X;G) indeed form a chain complex with the coboundary maps, as per
claim A.1.12.

(d) A cochain ψ ∈ Cn(X;G) is a cocycle iff 0 = δψ = ψ∂, that is, iff it vanishes on boundaries.

Remark 3.1.1.2. Relative cohomology groups Hn(X,A;G) are defined by dualizing C∗(X,A) with
Hom(−, G) and then taking its homology groups.

Remark 3.1.1.3. Reduced cohomology groups H̃n(X) are defined as the homology groups of the dual
of the augmented chain complex (1.3.4).
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Claim 3.1.2. Singular cohomology is a contravariant functor.

This can be derived similarly to the analogous claim for homology.
The universal coefficient theorem (3.2.1) – detailed in section §3.2.1 – gives a quick description of

both H0(X;G) and H1(X;G) in view of previous statements (1.2.8.1) and (1.2.8.1):

Claim 3.1.3. H0(X;G)
(3.2.1)
≈ Hom(H0(X), G)

(1.2.8.1)
≈

∏
p∈P

G, if P is the set of path-components of

X.

Claim 3.1.4. H1(X;G)
(3.2.1)
≈ Hom(H1(X), G)

(1.2.8.1)
≈ Hom(π1(X), G), as G is abelian.

We also note that there are axioms which characterize singular cohomology, similar to the Eilenberg-
Steenrod axioms (§2.1) of singular homology. These can be found for example in [ES52] (remember
that just as for homology, the direct sum axiom is omitted in this book).

3.2 The toolkit

The toolkit of singular cohomology is basically the same as for singular homology, just with all arrows
reversed. The following statements typically do not require a direct proof, as they can be obtained
purely by dualizing the appropriate claim for homology and if necessary, invoking the naturality of
the universal coefficient theorem (3.2.1) of section §3.2.1. For this reason, we will start this section by
introducing that theorem and then move on to dualizing the toolkit of singular homology. However,
apart from its usefulness in dualization, the universal coefficient theorem is also important from a
theoretic point of view: it says that the cohomology groups of a space are determined purely by its
homology groups.

3.2.1 Universal coefficient theorem for cohomology

The main purpose of this subsection is to prove the following theorem, which basically states that
the homologies of a space determine its cohomologies:

Theorem 3.2.1 (Thm[Hat02]:3.2). If a chain complex C of free abelian groups has homology groups
Hn, then the cohomology groups Hn(C;G) are determined by the following split (natural) exact se-
quence:

0 // Ext(Hn−1(C), G) // Hn(C;G)
h // Hom(Hn(C), G) // 0

In other words:
Hn(C;G) ≈ Ext(Hn−1(C), G)⊕Hom(Hn(C), G)

However, this isomorphism is not natural.

For finitely generated H, one can compute Ext(H,G) using the three rules below:

• Ext(H ⊕H ′, G) ≈ Ext(H,G)⊕ Ext(H ′, G)

• Ext(H,G) = 0 if H is free

• Ext(Zn, G) ≈ G/nG

So Ext(Zr ⊕
⊕
i∈I

Zni , G) ≈
⊕
i∈I

(G/niG). A direct consequence of this is:

Corollary 3.2.1.1 (Crl[Hat02]:3.3). If the homology groups Hn and Hn−1 of a chain complex C
of free abelian groups are finitely generated, with torsion groups Tn ⊂ Hn and Tn−1 ⊂ Hn−1, then
Hn(C;Z) ≈ (Hn/Tn)⊕ Tn−1

45



CHAPTER 3. SINGULAR COHOMOLOGY

Combining the naturality property of the short exact sequence in (3.2.1) with the five lemma
gives:

Corollary 3.2.1.2 (Crl[Hat02]:3.4). If a chain map between chain complexes of free abelian groups
induces an isomorphism on the homology groups of the complexes, then it induces an isomorphism
on the cohomology groups with any coefficient group G.

Along the way to theorem (3.2.1) we will need the following concepts:

Definition 3.2.2. A free resolution of an abelian group H is an exact sequence:

. . . // F2
f2
// F1

f1
// F0

f0
// H // 0 ,

where Fn is free for all n.

Lemma 3.2.3 (Lem[Hat02]:3.1). a) Given free resolutions F and F ′ of abelian groups H and
H ′, then every homomorphism α : H → H ′ extends to a chain map F → F ′:

. . . // F2

α2

��

f2
// F1

α1

��

f1
// F0

α0

��

f0
// H

α

��

// 0

. . . // F ′
2

f ′2 // F ′
1

f ′1 // F ′
0

f ′0 // H // 0

Moreover, any two chain maps extending α are chain homotopic.

b) For any two free resolutions F and F ′ of H, there are canonical isomorphisms Hn(F ;G) ≈
Hn(F ′;G) for all n and G.

Claim 3.2.4 (See page 195 of [Hat02]). Every abelian group has a free resolution of the form

0 // F1
f1
// F0

f0
// H // 0

An explicit construction can be given.

Applying b) of (3.2.3) to the specific construction in (3.2.4) we get cohomology groups H1(F ;G)
only dependent on H and G:

Definition 3.2.5. The cohomology groups H1(F ;G) are denoted by Ext(H,G).

The name comes from the fact that Ext(H,G) can be interpreted as the isomorphism classes of
G extended by H, more precisely the set of short exact sequences 0 −→ H −→ J −→ G −→ 0 with
an equivalence relation induced by isomorphisms between J ’s.

We also note here that the algebraic machinery above can be generalized from abelian groups to
modules over an arbitrary ring.

∼ ∗ ∼

The main steps in the proof of (3.2.1) are the following. First we define the homomorphisms in
the diagram below, and prove it is commutative:

Hn(C;G)

h

((

id // Hn(C;G)

Hom(Hn(C), G)

66
(E3.2.1)
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3.2. THE TOOLKIT

This tells us that the following sequence is exact, moreover, it splits:

0 // Kerh // Hn(C;G) // Hom(Hn(C), G) // 0 (E3.2.2)

Clearly our goal at this point is to give an isomorphism Ext(Hn−1(C), G) ≈ Kerh. First we will see

that Kerh ≈ Coker i∗n, where Bn
in //Zn . This is done by dualizing the split short exact sequence

of chain complexes 0 −→ Z• −→ C• −→ B•−1 −→ 0 into the split short exact sequence (A.1.13) of
chain complexes 0 ←− Z∗

• ←− C∗
• ←− B∗

•−1 ←− 0 , and applying the zig-zag lemma to get the long
exact sequence:

. . . B∗
n

oo Z∗
n

i∗noo Hn(C;G)oo B∗
n−1

oo Z∗
n−1

i∗n−1
oo . . .oo

One can extract the following short exact sequences from this:

0 Ker i∗noo Hn(C;G)oo Coker i∗n−1
oo 0oo (E3.2.3)

Ker i∗n can be naturally identified with Hom(Hn(C), G). Combining this with (E3.2.2) and (E3.2.3)
indeed gives Kerh ≈ Coker i∗n.
Now we are looking for an isomorphism Coker i∗n−1 ≈ Ext(Hn−1(C), G). For this, we note that the
short exact sequence

0 // Bn−1
in−1

// Zn−1
// Hn−1(C) // 0

is a free resolution of Hn−1(C), moreover, it is the same as the one given in (3.2.4). Finally, Coker i∗n−1

is precisely H1(F ;G) of this free resolution, so the definition of Ext concludes the proof1.

Now the only substantial step missing from the proof is the definition and commutativity of
(E3.2.1). h can be defined as follows: an element of Hn(C;G) is represented by a homomorphism
ψ : Cn → G such that δψ = ψ∂ = 0 – so in other words, ψ vanishes on Bn. Thus restricting ψ to
Zn, we get a homomorphism which induces an element ψ0 ∈ Hom(Hn(C), G). To show this is well
defined, we have to prove that if ψ = δϕ, then ψ0 = 0. This however is trivial, as δϕ = ϕ∂, and ∂
already vanishes on Zn.

Finally, the unmarked homomorphism is defined as follows. We will assign to each element ψ0 ∈
Hom(Hn(C), G) an element ψ ∈ Hn(C;G).

0

��

Bn� _

��

0 // Zn

����

�� // Cn

p
wwww

ψ

��

∂ // // Bn−1
// 0

Hn(C)

��

ψ0
// G

0

11

1Naturality is inherited from the naturality of each step in the construction of the short exact sequence.
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Short exact sequences with a free abelian group at the end split (A.1.7.1), so by the definition of
a split exact sequence (A.1.3) p exists, as Bn−1 is free (because it is a subgroup of the free abelian
group Cn−1 (A.1.8)). Composing ψ0, Zn // //Hn(C), and p we get ψ. ψ vanishes on Bn by diagram
chasing, so it represents an element of Hn(C;G). It is easy to check that ψ0 7→ ψ is a homomorphism
Hom(Hn(C);G)→ Hn(C;G). The composition of (E3.2.1) is indeed the identity, as h simply undoes
what the other homomorphism did.

3.2.2 Manipulating chains

From here on, we will just copy the exposition of section §1.4, excluding explanatory texts. Our
exposition (and the statements of the theorems) follows pages 198–204 of [Hat02].

Theorem 3.2.6 (Homotopy invariance). If f, g : (X,A)→ (Y,B) are homotopic maps2, then f∗ = g∗

for the induced maps f∗, g∗ : Hn(Y,B)→ Hn(X,A).

Remark 3.2.6.1. Setting A = B = ∅ yields us the same result for absolute cohomology groups.

Theorem 3.2.6 can be proved by dualizing the formula in the proof of the corresponding theorem
for homology (1.4.1):

∂P + P∂ = g# − f#

into

δP ∗ + P ∗δ = g# − f#,

then once again applying the lemma regarding chain homotopies (1.2.11).

Corollary 3.2.6.1. Homotopy equivalent spaces have isomorphic cohomology groups. That is, sin-
gular cohomology is a functor of homotopy type.

We note here that both the barycentric subdivision theorem (1.4.2) and its corollary regarding
the isomorphism of homology groups (1.4.2.1) can be dualized, as the dual of a chain homotopy
equivalence is a chain homotopy equivalence.

Theorem 3.2.7 (Excision). We state two equivalent forms of the excision theorem.

(a) Given subspaces Z ⊂ A ⊂ X such that the closure of Z is inside intA, the inclusion (X −
Z,A− Z) ↪→ (X,A) induces isomorphisms

Hn(X,A) ≈ Hn(X − Z,A− Z),

for all n ∈ Z.

(b) For subspaces A,B ⊂ X for whom intA∪ intB ⊃ X, the inclusion (B,A∩B) ↪→ (X,A) induces
isomorphisms

Hn(X,A) ≈ Hn(B,A ∩B),

for all n ∈ Z.

This follows directly from the naturality of the universal coefficient theorem (3.2.1): just take
the induced homomorphisms between the groups for the inclusion map, and apply the five lemma
(A.2.1). Of course, the original proof could be adapted instead of appealing to the universal coefficient
theorem (3.2.1).

2So f, g : X → Y , and f(A) ⊂ B, g(A) ⊂ B, and the homotopy H : X × [0, 1] → Y connecting f and g maps A to
B at all times: H(A× [0, 1]) ⊂ B.
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3.2.3 Exact sequences

Theorem 3.2.8 (LES of pair). For each pair of spaces (X,A) (that is, spaces such that A ⊂ X)
there is associated a long exact sequence of cohomology groups:

. . . Hn+1(X,A;G)oo Hn(A;G)
δoo Hn(X;G)oo Hn(X,A;G)oo . . .oo

The dual of a split short exact sequence is a split short exact sequence (by claim A.1.13), so dualizing

0 // C∗(A) // C∗(X) // C∗(X,A) // 0 ,

gives a short exact sequence

0 C∗(A;G)oo C∗(X;G)oo C∗(X,A;G)oo 0oo ,

which yields theorem 3.2.8 by the zig-zag lemma (A.2.3).

Theorem 3.2.9 (Reduced LES of pair). For each pair of nonempty spaces (X,A) there is associated
a long exact sequence of reduced cohomology groups:

. . . Hn+1(X,A;G)oo H̃n(A;G)
δoo H̃n(X;G)oo Hn(X,A;G)oo . . .oo

The reduced cohomology groups are just the homology groups of the dual of the augmented chain
complex (1.3.4), so we can just apply the same process as above for this chain complex again to
obtain theorem 3.2.9.

Theorem 3.2.10 (LES of triple). For each triple of spaces (X,A,B) (that is, spaces such that
B ⊂ A ⊂ X) there is associated a long exact sequence of cohomology groups:

. . . Hn+1(X,A;G)oo Hn(A,B;G)oo Hn(X,B;G)oo Hn(X,A;G)oo . . .oo ,

where the homomorphism Hn+1(A,B)→ Hn(X,A) is defined by the composition:

Hn+1(X,A;G) Hn(A;G)
δoo Hn(A,B;G)oo .

As the following short exact sequence is exact, we can apply the same dualization machinery as for
theorem 3.2.8:

0 // C∗(A,B) // C∗(X,B) // C∗(X,A) // 0 .

Theorem 3.2.11 (Mayer-Vietoris sequence). Suppose the space X is covered by the union intA∪intB
for some subspaces A,B ⊂ X. Then there is associated a long exact sequence of cohomology groups:

. . . Hn(A ∩B;G)oo Hn(A;G)⊕Hn(B;G)
Φoo Hn(X;G)

Ψoo Hn−1(A ∩B;G)
∂oo . . .oo .

This comes from the exactness of

0 C∗(A ∩B)oo C∗(A)⊕ C∗(B)
ϕ
oo C∗(A+B)

ψ
oo 0oo ,

similarly to the Mayer-Vietoris sequence of homology (1.4.9). As the barycentric subdivision theorem
and its corollary also directly dualize, we acquire the Mayer-Vietoris sequence of cohomology.

About the naturality of the sequences:

Theorem 3.2.12. All previously mentioned long exact sequences are natural:

• The LES of a pair of spaces (X,A).

• The reduced LES of a pair of nonempty spaces (X,A).

• The LES of a triple of spaces (X,A,B).

• The Mayer-Vietoris sequence of a decomposition X = intA ∪ intB.
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3.2.4 A connection with homotopy

While previous subsections were concerned with tools which are nearly as important for cohomology
as the definition itself, this one introduces a significantly less central theorem. Nevertheless, it is still
a topic of great interest and will be of use later in chapter §6. Covering the proof and all of the related
concepts is outside the scope of this thesis, so fairly little will be actually mentioned.

In homotopy theory, two maps are not distinguished if they are homotopic. In other words, only
homotopy classes of maps are considered. This, among many things, means that homotopy equivalent
spaces are indeed equivalent in the eyes of homotopy theory. Another feature of this theory is that
the set of homotopy classes of maps between given spaces X and Y frequently appears. This set is
typically denoted [X,Y ], and in the category of pointed spaces is restricted to only allow homotopies
which send the basepoint x0 to the basepoint y0 at all times. For instance, the set [(S1, s0), (X,x0)]∗
is the well-known fundamental group π1(X,x0). While the based version [X,Y ]∗ will be important
in (§6.2), in this section the unbased variant is of interest.

This section is concerned with one of the multiple connections between the world of homotopy
theory and algebraic topology, formulated by the following theorem.

Theorem 3.2.13 (Thm[Hat02]:4.57). There are natural bijections T : [X,K(G,n)] → Hn(X;G)
for any CW complex X, abelian group G, and n > 0. Such a T has the form3 T ([f ]) = f∗(α) for a
certain distinguished class α ∈ Hn(K(G,n);G).

Remark 3.2.13.1. The naturality of these bijections means that if there is a map f : X → Y , then
the square on the left of figure 3.2 commutes, where the left vertical map is just the composition

[X,K(G,n)]
T // Hn(X;G)

[Y,K(G,n)]

◦[f ]

OO

T // Hn(Y ;G)

f∗

OO

K(G,n)

X

77

f
//

γX

Y

gg

γYoo // //oo�f∗
oo

Figure 3.2: Two illustrations of naturality.

by [f ] (the homotopy class of f), and the right vertical map is f ’s induced map on cohomology.
Alternatively, this commutativity can be illustrated by the diagram on the right too.

For our purposes it is sufficient to know that the spaces K(G,n) are well-defined – at least up to
weak homotopy equivalence. However, we still present a few words about them. For details, see pages
365–366 of [Hat02].

Definition 3.2.14. Let G be a group, n ≥ 1, and G be abelian if n > 1. If for a connected space X
we have

πk(X) =

{
0, k ̸= n

G, k = n

then X is said to be an Eilenberg-MacLane space of type K(G,n), and is denoted by K(G,n).

For instance:

Example. (a) S1 is a K(Z, 1).

(b) CP∞ is a K(Z, 2).
3[f ] denotes the homotopy class of f .
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The following theorem clarifies why any such space is denoted by the same expression: K(G,n).

Theorem 3.2.15. For each n ≥ 1 and group G (G abelian if n > 1) there exists a K(G,n) space,
unique up to weak homotopy equivalence. There is also a K(G,n) which is a CW complex. Moreover
(prp[Hat02]:4.30), any two CW complex K(G,n)’s are homotopy equivalent.

Of course, we still have to see what “weak homotopy equivalence” means.

Definition 3.2.16. A continuous mapping f : X → Y is a weak homotopy equivalence if the induced
map on the set of path components is a bijection, while for each n ≥ 1 and x ∈ X the following
induced homomorphism is an isomorphism:

f∗ : πn(X,x)→ πn(Y, f(x)).

This equivalence is “strong enough” from the perspective of homology and cohomology groups
too:

Claim 3.2.17 (Prp[Hat02]:4.21). A weak homotopy equivalence induces isomorphisms of the ho-
mology and cohomology groups.

Moreover, the notions of homotopy equivalence and weak homotopy equivalence coincide for CW
complexes:

Claim 3.2.18 (Thm[Hat02]:4.5). A weak homotopy equivalence of CW complexes is a homotopy
equivalence.
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Chapter 4

Poincaré duality

Sources. This chapter is based entirely on [Hat02], in particular on section §3.3. To
learn more about the direct limits of section §4.2.2, see chapter VIII. of [ES52].

This section concerns topological manifolds without boundary. The results stated here do not require
second-countability (M2), so throughout this chapter we define manifolds as T2 spaces locally home-
omorphic to Rn. Moreover, coefficients of homology groups will nearly always be omitted from the
notation.

The main goal now is to prove (a generalized version) of the following theorem:

Theorem 4.0.1 (Poincaré duality with R = Z or Z2; thm[Hat02]:3.30). Let M be a closed n-
manifold.

• If M is orientable, then there are (natural) isomorphisms Hk(M) ≈ Hn−k(M).

• There are (natural) isomorphisms Hk(M ;Z2) ≈ Hn−k(M ;Z2).

The proof is constructive.

There are three topics which need to be covered before moving on to this theorem:

• Orientability of manifolds. This is of course a prerequisite of stating the theorem above. The
definition for orientability given here is a generalization of the one for triangulable manifolds.

We will also examine how an orientation of a manifold M determines an orientation of a given
subspace A. In connection with this, we define the fundamental classes (with coefficients in R)
of a closed connected n-manifold, which are elements of Hn(M ;R). A fundamental class can be
thought of as “a cycle that is M itself”: for a ∆-complex with R = Z or Z2 a cycle representing
the fundamental class can be given by summing all simplices with appropriate signs.

Finally, it will be proven that for a closed connected n-manifold M the homology groups of M
in dimensions greater than n are all 0.

• Cohomology with compact supports. The proof of theorem 4.0.1 stated here uses induction,
and the inductive step in turn needs a version of Poincaré duality for open subsets ofM . Duality
doesn’t hold for the usual cohomology groups in this case, but it does when a different type of
cohomology, cohomology with compact supports is used instead. The next point is concerned
with this new duality theorem; in this point, we merely introduce the necessary concepts and
the toolkit to deal with them.

Unlike many other types of (co)homology – such as simplicial, cellular or singular – cohomology
with compact supports does not define the same groups as before. Moreover, it is no longer
a homotopic invariant: H0

c (R;Z) = 0, while H0
c (∗;Z) = Z. However, it does coincide with
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4.1. ORIENTABILITY OF MANIFOLDS

singular cohomology for compact spaces, so it can be deployed in calculations instead of singular
cohomology when necessary.

The concept of direct limits of (directed sets) of groups will also be introduced in this chapter.

• The cap product. This is a bilinear map of the form Hk(M)×H l(M)→ Hk−l(M), which is
essential in the construction of the isomorphism in (4.0.1).

Instead of (4.0.1), we will prove a more general statement that holds for compact and noncompact
manifolds. This statement is formally the same as the one for compact manifolds, except for the fact
that cohomology groups are replaced by cohomology groups with compact supports.

4.1 Orientability of manifolds

In this section we will give an algebraic topological definition of orientations and orientability, and
examine how an orientation of a manifold M determines an orientation of a subspace A. As a nota-
tional convention, let us write Hn(X,X −A) as Hn(X|A), and similarly for cohomology groups.

Definition 4.1.1. • An orientation of an n-manifoldM at a point x is a generator ofHn(M,M−
{x}) = Hn(M |x) ≈ Z.

• An orientation of an n-manifoldM is a “consistent choice of generators at all points”: a function
µ : x 7→ µx assigning to each point x ∈M an orientation at that point µx ∈ Hn(M |x), satisfying
the following local consistency property:

Each point x has a neighborhood homeomorphic to Rn with a ball B of finite radius in it
(x ∈ B) and a generator µ ∈ Hn(Rn|B) ≈ Z such that for each y ∈ B µy is the image of µ
under the canonical isomorphism Hn(M |y) ≈ Hn(Rn|y) ≈ Hn(Rn|B).

• A manifold M is orientable, if it has an orientation.

The above definition satisfies the following basic property, so it is sensible to define orientations
this way:

Claim 4.1.2. Orientations of Rn at a point x are preserved by rotations and reversed by reflections.

In the definition above, we considered groups Hn(M |x) = Hn(M |x;Z). This Z can be replaced
with any commutative ring R with identity, and this creates the notion of R-orientability. The two
most important cases will be R = Z and R = Z2, as any manifold is Z2-orientable, while any
(Z-)orientable manifold will be R-orientable for all R. Using this concept, we can state this section’s
main theorem:

Theorem 4.1.3 (Thm[Hat02]:3.26). Let M be a closed n-manifold. Then:

(a) If M is R-orientable, the map Hn(M ;R)→ Hn(M |x;R) ≈ R is an isomorphism for all x ∈M .

(b) If M is not R-orientable, the map Hn(M ;R) → Hn(M |x;R) ≈ R is injective with image
{r ∈ R : 2r = 0}.

(c) Hi(M ;R) ≈ 0 for i > n.

Using this theorem, we can immediately calculate Hn(M ;Z) and Hn(M ;Z2). We can also deduce,
that a fundamental class exists ifM is compact and R-orientable, according to the following definition:

Definition 4.1.4. A fundamental class (with respect to R) of an n-manifold M is an element of
Hn(M ;R) such that its image under the canonical maps Hn(M ;R)→ Hn(M |x;R) is a generator for
all x ∈ R.
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Theorem 4.1.3 follows easily from the following technical lemma. This statement uses the concept
of sections and a covering space MR, which will be explained later on. For now, we can interpret (a)
of the lemma as follows: if for each x we chose a general element of Hn(M |x;R) (not necessarily a
generator) in a locally consistent way, then the collection of these choices can be represented by an
element of Hn(M |A;R).

Lemma 4.1.5 (Lem[Hat02]:3.27). Let M be an n-manifold and A ⊂M a compact subset. Then:

(a) If x 7→ αx is a section of the covering space MR, then there is a unique class αA ∈ Hn(M |A;R)
whose image in Hn(M |x;R) is αx for all x ∈ A.

(b) Hi(M |A;R) = 0 for i > n.

Next, we will investigate the concepts of orientability and R-orientability, and then cover the
proofs of (4.1.3) and (4.1.5) on page 55.

∼ ∗ ∼

Now let us go over some details we previously brushed over, namely the topic of sections, R-
orientability and MR. There are covering spaces related to orientations:

Claim 4.1.6. Every n-manifold M has an orientable1 two-sheeted covering space M̃ . The inverse
image of a point x are the two local orientations at x. M̃ is topologized using the locally consistent
sets of local orientations.

Claim 4.1.7. Every n-manifold M has an infinite sheeted cover MZ → M . The inverse image of a
point x are the elements of Hn(M |x). It is topologized similarly to M̃ .

Some of the basic properties of these covers are:

• M̃ has two components iff M is orientable (Prp[Hat02]:3.25). In this case M̃ is the disjoint
union of two copies of M .

• M̃ can be embedded into MZ as the set of points corresponding to generators.

• M can be embedded into MZ as the set of points corresponding to 0 elements.

• MZ is the disjoint union of a single copy of M and infinitely many copies of M̃ . So if M is
orientable, MZ is infinitely many copies of M .

• An orientation of M is a section µ :M →MZ – a continuous map that yields the identity when
composed with the covering map – such that for each x ∈M , µx is a generator of Hn(M |x).

Let us now consider the case of R-orientability. As previously seen, algebraically speaking there
are three things about R which are interesting:

• The subset of R consisting of the invertible elements (units).

• The subset of R consisting of elements of order 2: {r ∈ R : 2r = 0}

• Whether R has a unit u with 2u = 0. This property is equivalent to saying that 2 = 0 in R.

The parts of this chapter stated for Z-orientations generalize to coefficients in R as follows.

• The definition of R-orientation at a point is the same as above. A generator in this case is an
element u ∈ R such that Ru = R; in other words a unit.

1It is implicitly stated here that M̃ is a manifold.
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• The definition of R-orientations and orientability of a manifold follows directly.

• There is a covering space MR, which has one sheet for each element of R.

• Each r ∈ R determines a subcovering space Mr. If 2r = 0 then Mr is a copy of M , otherwise
Mr is homeomorphic to M̃ .

• MR is the disjoint union of Mr’s, except for the fact that Mr =M−r.

From these, it follows easily that:

Claim 4.1.8. • An orientable n-manifold M is R-orientable for all R.

• A non-orientable n-manifold M is R-orientable iff 2 = 0 in R.

Thus every manifold is Z2-orientable.

∼ ∗ ∼

Proof of theorem 4.1.3. Consider ΓR(M), the set of all sections from M to MR. This is an R-
module, and there is a homomorphism Hn(M ;R)→ ΓR(M), using the homomorphisms Hn(M ;R)→
Hn(M |x;R). Now combining lemma 4.1.5 with our knowledge about the structure of MR gives us
the results of the theorem.

Proof of lemma 4.1.5. The coefficient ring R will play no role in the proof, so it will be omitted
from the notation.

Lemma 4.1.9. If lemma 4.1.5 is true for any section for the compact sets A, B, and A∩B, then it
is true for the compact set A ∪B.

Proof. Consider the Mayer-Vietoris sequence:

. . . // Hn+1(M |A ∩B) // Hn(M |A ∪B)
Φ // Hn(M |A)⊕Hn(M |B)

Ψ // Hn(M |A ∩B) // . . .

Next, consider for all x ∈ A ∩B the following commutative diagram:

Hn(M |A ∪B)

b′

��

a′ // Hn(M |A)

a

��

��

Hn(M |B)
b //

--

Hn(M |A ∩B)

''

Hn(M |x)

From here on, the proof is purely algebraic. By (a) of lemma 4.1.5 applied to A, B, and A ∩ B we
get unique elements αA, αB, and αA∩B whose image is αx in Hn(M |x). Using these elements and the
two diagrams above it is easy to prove the existence part of (a). With the diagrams and (a) of lemma
4.1.5 applied to the zero section and the compact sets A and B one can derive the uniqueness part
of (a) too. (b) comes directly from the application of (b) of lemma 4.1.5 to the compact sets A, B
and A ∩B.

Using this lemma, we will prove lemma 4.1.5 in four steps, for increasingly complex A.

1. A ⊂ Rn ⊂ M is a convex compact set. The map Hn(M |A) → Hn(M |x) is equivalent by
excision to Hn(Rn|A)→ Hn(Rn|x), which is an isomorphism.
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2. A ⊂ Rn ⊂ M is a union of finitely many convex compact sets. Let A be a union of m
convex compact sets: A = A1 ∪ . . . Am. Induction on m. m = 1 is evident by step 1. Apply our
inductive lemma (4.1.9) to A1 ∪ . . . ∪ Am−1 and Am. By induction the desired result holds for
these two sets. Their intersection is (A1 ∩Am) ∪ . . . (Am−1 ∩Am), which is the union of m− 1
compact convex sets, so by induction the desired result holds here too.

3. A ⊂ Rn ⊂ M is an arbitrary compact set. For a given α ∈ Hn(M |A) we construct a
K ⊃ A from finitely many compact balls, that has a special element αK such that its image by
Hn(M |K)→ Hn(M |A) is α.
(b) of the desired lemma, and the existence part of (a) come directly from the fact that we
already know the lemma for K by step 2. For the uniqueness part of (a), it is sufficient to
show that if the image of α is 0 in Hn(M |x) for all x ∈ A, then α = 0. This can be proven by
considering the following diagram for a compact ball B used in the construction of K and an
arbitrary y ∈ B, and applying the result of step 2:

Hn(M |B)
≈ //

≈

((

Hn(M |y)

Hn(M |K) //

77

Hn(M |A) // Hn(M |x) ∋ αx = 0

4. A ⊂ M is an arbitrary compact set. Using a compactness argument A can be written as
A = A1∪. . .∪Am, where Ai has a neighborhood homeomorphic to Rn. Using a similar technique
as in step 2, we get the desired result.

4.2 Cohomology with compact supports

For certain directed acyclic graphs of groups where each edge is associated with a homomorphism,
a limit group can be assigned called the direct limit of the system. Using this algebraic concept the
cohomology groups with compact supports can be defined. Due to this definition through group
limits the compactly supported cohomology of spaces presented as increasing unions of subspaces can
be calculated easily.

4.2.1 Geometry

Here we introduce the concept of cohomology with compact supports, and present some claims about
the calculation of direct limits of (co)homology groups, which will come handy later.

Definition 4.2.1. Let Cic(X;G) be the subcomplex2 consisting of chains ψ ∈ Ci(X;G) for which
there exists a compact set K ⊂ X such that ψ is 0 on singular simplices in X −K. The cohomology
groups H i

c(X;G) of this subcomplex are called the cohomology groups with compact supports.

Note that if we defined Cic(X;G) as the group of chains for which only singular simplices in some
compact set K can take non-zero values, then these groups would not form a chain complex.

Claim 4.2.2. For each compact set K ⊂ X take the cohomology group H i(X|K;G) = H i(X,X −
K;G), and for compact sets K ⊂ L ⊂ X associate the homomorphisms induced by inclusion
H i(X|K;G) → H i(X|L;G). These form a directed system of groups. The direct limit of this sys-
tem is the group H i

c(X;G).

2It is easy to check that this is indeed a subcomplex, so δ takes Ci
c(X;G) to Ci+1

c (X;G).
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This can be easily checked on the level of cocycles and coboundaries.

Corollary 4.2.2.1. For compact spaces H i
c(X;G) = lim−→H i(X|K;G) = H i(X;G) by property 4.2.6.1

of direct limits.

A direct limit statement for homologies will also be useful later on. To understand this, it should
be noted that if there is a homomorphism from each group in a direct limit to some other group
(and these homomorphisms are compatible with the directed system structure) then there is a limit
homomorphism from the limit group too (see statement 4.2.10.1).

Claim 4.2.3 (Prp[Hat02]:3.33). If a space X is the union of a directed set of subspaces Xα (with
respect to the inclusion relation) with the property that each compact set in X is contained in some
set Xα, then the natural map lim−→Hi(Xα;G)→ Hi(X;G) is an isomorphism for all i and G.

This can be easily checked on the level of cycles and boundaries.

4.2.2 Direct limits and directed sets

In this section we list the definitions and statements required elsewhere in the thesis without proofs.
The proofs are not discussed in this thesis, but are mostly trivial. For a more detailed treatment of
the topic, see chapter VIII. of [ES52].

Definition 4.2.4. A partially ordered set (I,≤) which has the following property is called a directed
set:

∀α, β ∈ I∃γ ∈ I : α ≤ γ and β ≤ γ

Definition 4.2.5. Suppose for each element α of a directed set I there is associated an abelian group
Gα, and for each pair α ≤ β of elements in I there is a homomorphism fα,β : Gα → Gβ. Moreover,
suppose that fα,α = id and fα,γ = fβ,γfα,β for each α ≤ β ≤ γ. These groups together with their
homomorphisms are called a directed system of groups.

A somewhat shorter definition of a directed system of groups would be (the image of) a functor
from the category of (I,≤) to the category of abelian groups.

Gγ . . .

Gα

fα,γ
>>

Gβ

fβ,γ
``

. . .

OO

Gδ

>>

Gε

``

OO

Now for the definition of the direct limit:

Definition 4.2.6. Take a directed system of groups Gα indexed by I. Define the following equivalence
relation. For a ∈ Gα and b ∈ Gβ (α and β need not be comparable)

a ∼ b ⇐⇒ ∃γ ≥ α, β : fα,γ(a) = fβ,γ(b).

The set of equivalence classes can be equipped with an abelian group structure. For a ∈ Gα, b ∈ Gβ
denote their equivalence classes by [a] and [b]. Then for arbitrary γ ≥ α, β let

[a] + [b] := [fα,γ(a) + fβ,γ(b)].

It is easy to check this is well-defined. The set of equivalence classes equipped with this group structure
is called the direct limit group of the directed system, denoted by lim−→Gα.
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This can be thought of as follows. For each a ∈ Gα, b ∈ Gβ such that α ≤ β and fα,β(a) = b, draw
an arrow from a to b. Then the equivalence classes are merely the connected components of the graph
produced this way. To calculate the sum of two components, just take a group that both components
are present in (this is guaranteed by the directed system structure), and add any representatives
there.

Remark 4.2.6.1. Let G∗ be a directed system of groups indexed by a poset3 I that has a maximal
element α. Then lim−→Gβ ≈ Gα.

Claim 4.2.7. For a directed system of groups Gα indexed by I:

lim−→Gα ≈

(⊕
α∈I

Gα

)
/⟨a− fαβ(a) : a ∈ Gα, α ≤ β ∈ I⟩

This gives an alternative definition of the direct limit. It should also be noted here that there are
natural maps gα : Gα → lim−→Gβ, which can be easily defined using the claim above.

Claim 4.2.8. Suppose we have the following situation. There are directed sets Ia which themselves
are indexed by a directed set I such that a ≤ b =⇒ Ia ⊂ Ib. There are corresponding directed systems
of groups Ga which are also extensions of each other. This means there is a total directed set I and a
total directed system of groups G constructible as the “union” of the Ia’s and Ga’s. Then:

lim−→
α∈I

Gα = lim−→
a∈I

lim−→
α∈Ia

Gα

∼ ∗ ∼

Now we move on to the topic of homomorphisms defined on directed systems.

Definition 4.2.9. Let Gα with gα,β and Hα with hα,β be directed systems of abelian groups indexed
by the same directed set I. Suppose there are homomorphisms fα : Gα → Hα for each α ∈ I such
that the diagram below commutes – or in other words, for each α ≤ β : fβgα,β = hα,βfα.

Hγ . . .

Gγ

22

. . . Hα

==

Hδ

``

Gα

>>
22

Gδ

``
22

. . .

OO

Hβ

>>

Hε

``

OO

. . .

OO

Gβ

>>
22

Gε

``

OO

22

In this case, the collection of homomorphisms fα – denoted f∗ – will be called a homomorphism
of the directed systems.

Claim 4.2.10. Let Gα and Hα be directed systems of abelian groups indexed by the same directed
set I, and f∗ be a homomorphism between them. Then there is a limit homomorphism f̃ : lim−→Gα →
lim−→Hα such that it “commutes” with the natural4 homomorphisms gα : Gα → lim−→Gβ and hα : Hα →
lim−→Hβ:

∀α ∈ I : f̃gα = hαfα

3Partially ordered set.
4This is the naturality property.
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Moreover, this limit homomorphism is functorial: if there are directed systems Fα, Gα, Hα indexed
by the same directed set I, and there are homomorphisms which fit into the following commutative
diagram,

F∗
a∗ //

b∗ ''

H∗

G∗
c∗

66

then the limit homomorphisms also commute:

lim−→Fα
ã //

b̃
))

lim−→Hα

lim−→Gα
c̃

55

This claim has many handy corollaries:

Corollary 4.2.10.1. Let Gα with gα,β be a directed system of groups and H be another abelian group.
Suppose for each α there is a homomorphism fα : Gα → H, such that the diagram below commutes
– or in other words, for each α ≤ β : fβgα,β = fα.

Gγ

��

. . .

Gα

==

''
Gδ

``

// H

. . .

OO

Gβ

>> ::

Gε

``

OO

MM

Then there is a limit homomorphism f : lim−→Gα → H such that it commutes with the natural homo-
morphisms gα : Gα → lim−→Gβ; fgα = fα.

Corollary 4.2.10.2. Let G∗ and H∗ be directed systems of abelian groups indexed by the same
directed set I, and f∗ be a homomorphism between them. Suppose fα is an isomorphism for all α ∈ I.
Then the limit homomorphism f̃ is also an isomorphism.

Corollary 4.2.10.3. Suppose there is a commutative diagram of directed systems of abelian groups.
Then the limit diagram – composed of the limit groups and limit homomorphisms – is also commuta-
tive.

Finally there is another statement about commutative diagrams:

Claim 4.2.11. Let F∗, G∗, H∗ be directed systems indexed by the same poset I, and f∗ : F∗ → G∗, g∗ :
G∗ → H∗ homomorphisms between them, such that for each α ∈ I

Fα
fα
// Gα

gα
// Hα

is exact. Then

lim−→Fα
f̃
// lim−→Gα

g̃
// lim−→Hα

is also exact.
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4.3 The cap product

Let R be an arbitrary ring (although only commutative rings with unity will be utilized later on).
Quick reminder: usually R = Z or Z2.

The isomorphism in the Poincaré duality is constructed using an R-bilinear product defined on
the homologies and cohomologies of a space. This product is called the cap product (denoted ⌢),
and has an absolute and numerous relative forms. For k ≥ l natural numbers, X ⊃ A topological
spaces, and U, V ⊂ X open subspaces the cap product has the forms:

Hk(X;R)×H l(X;R)
⌢ // Hk−l(X;R)

Hk(X,A;R)×H l(X;R)
⌢ // Hk−l(X,A;R)

Hk(X,A;R)×H l(X,A;R)
⌢ // Hk−l(X;R)

Hk(X,U ∪ V ;R)×H l(X,U ;R)
⌢ // Hk−l(X,V ;R)

It also satisfies a naturality property illustrated by the following (not commutative) diagram:

Hk(X)×H l(X)

f∗
��

⌢ // Hk−l(X)

f∗
��

Hk(X)×H l(X)

f∗

OO

⌢ // Hk−l(C)

This means that for α ∈ Hk(X) and ψ ∈ H l(X):

f∗(α)⌢ ψ = f∗(α ⌢ f∗(ψ)) (E4.3.1)

∼ ∗ ∼

Now let us properly define the cap product. We will first give a formula using singular simplices,
then using chains, and finally homologies.

For a singular k-simplex σ : ∆k → X and a cochain ψ : C l(X;R), put

σ ⌢ ψ = ψ(σ|[v0, . . . , vl])σ|[vl, . . . , vk]

This can be extended from singular simplices to chains to form an R-bilinear product. To move over
to homologies, we should first calculate the boundary of the cap product:

∂(σ ⌢ ψ) = (−1)l(∂σ ⌢ ψ − σ ⌢ δψ) (E4.3.2)

Of course the same formula for chains instead of simplices can be easily derived from this. (E4.3.2)
can be checked by the following calculation:

∂(σ ⌢ ψ) =
k∑
i=l

(−1)i−lψ(σ|[v0, . . . , vl])σ|[vl, . . . , v̂i, . . . , vk]

∂σ ⌢ ψ =

l+1∑
i=0

(−1)iψ(σ|[v0, . . . , v̂i, . . . , vl+1])σ|[vl+1, . . . , vk]+

+

k∑
i=l

(−1)iψ(σ|[v0, . . . , vl])σ|[vl, . . . , v̂i, . . . , vk]

σ ⌢ δψ =

l+1∑
i=0

(−1)iψ(σ|[v0, . . . , v̂i, . . . , vl+1])σ|[vl+1, . . . , vk]
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Cycles. To see that there is an induced cap product of homology, we should first check that the
product of a cycle and a cocycle is a cycle. This is clear from (E4.3.2): both ∂σ and δψ are 0 in this
case.

Boundaries. To see that boundaries and coboundaries do not change the value of the cap product,
we should prove that boundary ⌢ cocycle = boundary and that cycle ⌢ coboundary = boundary.
This again is fairly straightforward:

• In the first case let σ be a chain and ψ be a cocycle. Then σ ⌢ δψ will be zero because δψ
is zero, hence ∂(σ ⌢ ψ) = ±∂σ ⌢ ψ, so the product of an arbitrary boundary (∂σ) and an
arbitrary cocycle (ψ) is a boundary.

• In the second let σ be a cycle and ψ be a cochain. Then ∂σ ⌢ δ will be zero because ∂σ is
zero, hence ∂(σ ⌢ ψ) = ±σ ⌢ δψ, so the product of an arbitrary cycle (σ) and an arbitrary
coboundary (δψ) is a boundary.

To check the existence of the first two relative forms of the cap product, one just needs to check that
it is defined correctly on the chain groups. As the formula (E4.3.2) for ∂(σ ⌢ ψ) still holds, we can
pass to homology groups.

For the last relative form we have to remember that Hn(X,U ∪V ;R) can be computed using the
chain groups Cn(X,U + V ;R) = Cn(X;R)/Cn(U + V ;R).

4.4 The statement of duality

Before we state the main theorems, it is important to remember that in this section about Poincaré
duality we omit the requirement of second-countability (M2) from the definition of a manifold.

Theorem 4.4.1 (Poincaré Duality for compact manifolds; thm[Hat02]:3.30). Let M be a closed R-
orientable n-manifold with a fundamental class [M ] ∈ Hn(M ;R). Then the map DM : Hk(M ;R)→
Hn−k(M ;R) defined by DM (α) = [M ]⌢ α is an isomorphism for all k.

There is another version of Poincaré duality for not necessarily compact manifolds; the version
for closed manifolds follows directly from it. This however requires the theory of section 4.2.

Theorem 4.4.2 (Poincaré Duality for noncompact manifolds; thm[Hat02]:3.35). Let M be an
R-orientable n-manifold. Then there is an isomorphism DM : Hk

c (M ;R)→ Hn−k(M ;R) for all k.

The definition of DM in this case is as follows.

1. Fix an orientation of M .

2. Create a directed system of groups. For each compact subset K ⊂ M take the group
Hk(M |K;R), and also take the homomorphisms between them induced by inclusion: for com-

pact subsets K ⊂ L ⊂ M , Hk(M |K;R)
i∗ // Hk(M |L;R) . These together form a directed

system of groups.

3. Construct homomorphisms from the directed system to Hn−k(M ;R). For each K, take
the unique element µK ∈ Hn(M |K;R) that restricts to the selected orientations of M at points
x: this exists thanks to (a) of (4.1.5). Now consider the map Hk(M |K;R)→ Hn−k(M ;R) de-
fined by ψ 7→ µK ⌢ ψ; this map is derived from the cap product Hn(M |K;R)×Hk(M |K;R)→
Hn−k(M ;R) by fixing the first variable to µK .

4. Take the limits. The limit of the directed system is Hk
c (M ;R) according to (4.2.2). We will

check in a minute that the requirements of (4.2.10.1) are satisfied, so a limit homomorphism of
the form Hk

c (M ;R)→ Hn−k(M ;R) exists. Denote this homomorphism by DM : this will
be the duality homomorphism in the theorem.
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It only remains to check that in the last step the requirements of (4.2.10.1) are satisfied. Take compact

subsets K ⊂ L ⊂M and the homomorphism between their groups: Hk(M |K;R)
i∗ // Hk(M |L;R) .

We have to show that the following diagram is commutative:

Hk(M |K;R)

i∗

��

µK⌢
,,

Hn−k(M ;R)

Hk(M |L;R)
µL⌢

22

Thankfully this comes directly from the naturality property of the cap product (E4.3.1) and from the
fact that i∗(µL) = µK , which is just a consequence of the commutativity of the following diagram.

Hn(M |L;R)
i∗

,,

// Hn(M |x;R)

Hn(M |K;R)

22

The last sentence expanded: id(µL ⌢ i∗(ψ)) = i∗(µL) ⌢ ψ for each ψ ∈ Hk(M |K;R); substituting
i∗(µL) = µK we get µL ⌢ i∗(ψ) = µK ⌢ ψ. This is what we had to check to see that (4.2.10.1) can
be applied.

4.5 The proof of duality

Reminder: all homology and cohomology groups have coefficients in R in this section, unless explicitly
specified otherwise.
The proof of the Poincaré duality (4.4.2) will be done in three steps:

(1) M = Rn

(2) M ⊂ Rn open

(3) M is a general R-orientable manifold

Steps (2) and (3) will be proven in an inductive fashion, for which the following two lemmas are
required:

Lemma 4.5.1 (Finite inductive lemma). If an R-orientable manifold M is a union of two open
subsets U and V , and the homomorphisms5 DU , DV and DU∩V are isomorphisms, then DM is also
an isomorphism.

This is immediate from applying the five lemma to (4.5.3), a technical statement presented later
in this section.

Lemma 4.5.2 (Infinite inductive lemma). If an R-orientable manifold M is a union of open subsets
U0 ⊂ U1 ⊂ . . . (the subsets can be indexed by any totally ordered set, not just N), and each DUi is an
isomorphism, then so is DM .

This can be proved by writing Hk
c (Ui) as a direct limit of Hk(M |K)’s using (4.2.2), then writing

Hk
c (M) both as the direct limit of Hk(M |K)’s and the direct limit of Hk

c (Ui)’s (the two limit groups
coincide because of (4.2.8)). Next, we write Hn−k(M) as the direct limit of Hn−k(Ui)’s by applying
(4.2.3). Using all these direct limits, DM can be written as a direct limit of isomorphisms, so it is
one too according to (4.2.10.2).

The proofs of the three steps go as follows.

5Here we implicitly use the fact that an open subset of a manifold is a manifold.
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(1) M = Rn:
Consider Rn as the interior of ∆. In this case Hk

c (Rn) ≈ Hk(∆, ∂∆), and DM : Hk(∆, ∂∆) →
Hn−k(∆). This is clearly a 0 → 0 isomorphism for k ̸= n. The k = n case can be proven by
checking the definitions of the maps involved.

(2) M ⊂ Rn open:
Write M as a union of open Ui’s homeomorphic to Rn, and let Vi =

⋃
j≤i

Uj . We first see by

induction on i that DVi is an isomorphism (using (1) to prove i = 1, and that the requirements
of the finite inductive lemma (4.5.1) are satisfied in the inductive step). From here we get the
result by applying the infinite inductive lemma (4.5.2) to the Vi’s.

(3) M is a general R-orientable manifold:
Proof by Zorn’s lemma. The open subsets U ⊂ M for which DU is an isomorphism form a
poset under inclusion, and for any totally ordered subset the infinite inductive lemma (4.5.2)
gives an upper bound from the poset. Zorn’s lemma then gives a maximal U , but if U ̸=M we
can give a larger element of this poset by taking the union of U with a subset U ̸⊃ H ⊂ M
homeomorphic to Rn (this is an element of the poset by the finite inductive lemma (4.5.1)).

∼ ∗ ∼
Finally, the technical result needed for the finite inductive lemma (4.5.1):

Lemma 4.5.3 (Lem[Hat02]:3.36). If an R-orientable manifold M is a union of two open subsets
U and V , then there is a diagram of Mayer-Vietoris sequences, commutative up to sign:

. . . // Hk
c (U ∩ V )

DU∩V

��

// Hk
c (U)⊕Hk

c (V )

DU⊕−DV

��

// Hk
c (M)

DM

��

// Hk+1
c (U ∩ V )

DU∩V

��

// . . .

. . . // Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) // Hn−k−1(U ∩ V ) // . . .

Proof. For compact sets K ⊂ U and L ⊂ V , take the following diagram, whose top and bottom rows
are Mayer-Vietoris sequences:

. . . // Hk(M |K ∩ L)

≈
��

// Hk(M |K)⊕Hk(M |L)

≈
��

// Hk(M |K ∪ L)

µK∪L⌢

��

// . . .

Hk(U ∩ V |K ∩ L)

µK∩L⌢

��

Hk(U |K)⊕Hk(V |L)

µK⌢⊕−µL⌢
��

. . . // Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) // . . .

Assuming commutativity of the diagram, applying a direct limit over compact pairs (K,L) gives
the statement of the lemma, thanks to our knowledge about direct limits (statements 4.2.10.3 and
4.2.11).

Unfortunately, this diagram does not commute, but it is easy to see that it suffices to show it
commutes up to a sign which only depends on k for each square.

Commutativity of the first two squares can be checked on the level of chains and cochains. The
third square can be written as

Hk(M |K ∪ L)

µK∪L⌢

��

δ // Hk+1(M |K ∩ L) ≈ // Hk+1(U ∩ V,K ∩ L)

µK∩L⌢

��

Hn−k(M)
∂ // Hn−k−1(U ∩ V )

63



CHAPTER 4. POINCARÉ DUALITY

First we check that δ and ∂ are indeed the connecting homomorphisms in the appropriate Mayer-
Vietoris sequences. To check the commutativity of the square, we have to evaluate the homomorphisms
on a ψ ∈ C∗(M,A ∩ B) (as per the previous sentence). The following three ideas will be utilized in
the proof:

• we write ψ = ψM−K − ψM−L, the difference of chains inside the given sets

• we write the class µK∪L as the sum of αU−L + αU∩V + αV−K using barycentric subdivision

• we recall the formula for the ∂ or a cap product (E4.3.2): ∂(σ ⌢ ψ) = (−1)l(∂σ ⌢ ψ−σ ⌢ δψ),
if ψ is l-dimensional

From here on, it is just manual labor to finish the proof of commutativity.
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Chapter 5

Singular bordism

Sources. This chapter follows the exposition of [CF64], in particular sections I.4., I.5.
and I.6.

After the singular homology and cohomology groups, in this rather short chapter we will introduce
the singular bordism groups of (pairs of) spaces: Ωn(X,A). We check that they form a generalized
homology theory, so the toolkit detailed in (§2.2) and (§2.3) of singular homology can also be applied
here. Using these, we will be able to prove in the next chapter that any homology class of a manifold
with coefficients in Q can be represented by a manifold in some sense.

5.1 The oriented case

Remark. The term manifold in this chapter means compact oriented differentiable manifold (possi-
bly) with a boundary.

Notation. For any manifold Bn, let us denote its boundary by Ḃn.

Notation. I denotes the compact interval [0, 1].

Similarly to singular homology, singular bordism is also a generalized homology theory – in partic-
ular, a covariant functor. The construction itself also resembles that of homology: instead of mapping
“simplicial complexes” into our space X (with the boundary mapping to some subspace A), we take
all compact oriented manifolds and their continuous maps into X (where their boundary is mapped
entirely into A). Consequently, the elements of the oriented bordism group Ωn(X,A) will be (repre-
sented by) singular manifolds, or in other words pairs (Bn, f) where Bn is a compact n-dimensional
oriented manifold, and f is a continuous map1 f : (Bn, Ḃn)→ (X,A).

As the addition of homology classes corresponds to taking the dis-
joint union of the “simplicial complexes” and joining their maps, it is not
surprising that the addition in the bordism group will be defined analo-
gously: the sum of the bordism classes represented by singular manifolds
(Bn

1 , f1) and (Bn
2 , f2) will be the one represented by (Bn

1 ⊔Bn
2 , f1 ∪ f2).

Only one question remains: what exactly we mean by the words
“bordism class”? Let us first discuss the absolute case. After remem-
bering the construction of absolute homology groups, it is natural to
define a boundary operator ∂ which assigns to singular manifold (Bn, f)
– where Bn is a compact oriented n-manifold with boundary – the map
(Ḃn, f |Ḃn), the restriction to the boundary with orientation induced by the orientation of Bn. This
way we can form a chain complex from all the possible pairs (Bn, f) with n variable, and take its
homology groups to be Ωn(X).

1The notation f : (Bn, Ḃn) → (X,A) means that f : Bn → X and f(Ḃn) ⊂ A.
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X

A

However, for pairs of spaces the relative case is a bit more
complicated. Recall that for relative homology, two chains were said
to represent the same class if their difference was the boundary of
a higher dimensional chain, plus some error inside the subspace A.
The necessity of this additional error forces us to leave the realm of
manifolds and boundaries and inspect the geometry in greater detail.
Returning to the absolute case, it is easy to guess what “difference”
will mean here: (Bn

1 , f1) − (Bn
2 , f2) = (Bn

1 ⊔ −Bn
2 , f1 ∪ f2), where

−Bn
2 is just Bn

2 with the opposite orientation. However, this poses a
problem: while the boundary of a manifold had no boundary in the
absolute case – a desired quality for generalized homology theories:
∂∂ = 0 – a difference in the form above (with Bn

1 and Bn
2 possibly

having boundaries) nearly always contains a boundary, so it cannot be the boundary of a higher
dimensional manifold. This remark points us towards solving the problem of the definition of the
“additional error” from before. Instead of requiring Bn

1 ⊔−Bn
2 to be the entire boundary of a manifold

Cn+1, we only ask it to be a regular submanifold of Ċn+1: a subspace which is also a manifold. As the
rest of Ċn+1 now obviously plays the role of the “additional error”, we also require it to be mapped
into A. The definition is now complete.

Remark. Note that in the relative case we did not use a boundary operator on the “chains formed by
singular manifolds (Bn, f)”. Defining the equivalence of singular manifolds using regular submanifolds
prevents us from doing so. Consequently, in the precise definition below this operator will be omitted.

∼ ∗ ∼

Let us now move on to a more precise definition.

Definition 5.1.1 (Relative oriented bordism group). Fix an arbitrary pair of spaces (X,A) and a
natural number n ∈ N.

• A(n oriented) singular manifold of dimension n in (X,A) is a pair (Bn, f) with Bn being a
compact oriented n-manifold with boundary, and f : (Bn, Ḃn) → (X,A) is a map of pairs of
spaces.

• A singular manifold (Bn, f) bords, if there is a singular n+ 1-manifold (Cn+1, F ) where

– Bn ⊂ Ċn+1 is a regular submanifold of the boundary of Cn+1, whose orientation is induced
by the orientation of Cn+1,

– F |Bn = f , and

– F (Ċn+1 −Bn) ⊂ A.

• Two singular manifolds (Bn
1 , f1) and (Bn

2 , f2) are bordant if (Bn
1 ⊔ −Bn

2 , f1 ∪ f2) bords.

• This relation is an equivalence relation. Let the set of equivalence classes be Ωn(X,A), the
n-dimensional oriented singular bordism group, and let us denote the equivalence class
of (Bn, f) by [Bn, f ].

• The addition on Ωn(X,A) is defined as [Bn
1 , f1] + [Bn

2 , f2] = [Bn
1 ⊔Bn

2 , f1 ∪ f2].

0-dimensional compact manifolds are just finite sets of points with the discrete topology. An orien-
tation of such a manifold corresponds to an abstract choice of “sign” for each point. Ωn(X,A) = 0
for n < 0 by definition.
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Bn
1

I ×Bn
2

−B2
n

Cn+1
12 Cn+1

23

Bn
2

−Bn
3

Figure 5.1: The construction of Pn+1

Before we move on to statements and proofs, it is advised to check out (§B), the section of the
appendix about topology.

Remark 5.1.1.1. It is easy to see that the inverse of [Bn, f ] ∈ Ωn(X,A) is [−Bn, f ], as (I × Bn)· =
(İ × Bn) ∪ (I × −Ḃn) = ({1} × Bn) ∪ (−{0} × Bn) ∪ (I × −Ḃn) by the more general formula
(X × Y )· = (Ẋ × Y ) ∪ (X ×−Ẏ ).

Claim 5.1.2. The bordism relation of (5.1.1) is indeed an equivalence relation.

Proof. Reflexivity is clear from the remark above (5.1.1.1), while symmetry comes from the fact that
−(Bn

2 ⊔ −Bn
1 ) = Bn

1 ⊔ −Bn
2 .

Transitivity is a bit trickier. Suppose (Bn
1 ⊔ −Bn

2 , f1 ∪ f2) and (Bn
2 ⊔ −Bn

3 , f2 ∪ f3) bord, and
(Cn+1

12 , F12) and (Cn+1
23 , F23) are witnesses of this. We have to show that (Bn

1 ⊔ −Bn
3 , f1 ∪ f3) bords,

so informally, we would like to sew together Cn+1
12 and Cn+1

23 along Bn
2 , see that the result is a

differentiable manifold which induces the appropriate structures on each half, and it has an orientation
that does the same. First, let us attach along Bn

2 a copy of I×Bn
2 onto Cn+1

12 and Cn+1
23 , and check that

the results are also witnesses of the two bordism relations with the appropriate extensions of the F ’s
(a good diffeomorphism is easy to provide). Next, we notice that the two resulting manifolds can be
sewn together by identifying their I ×Bn

2 ’s (as both larger manifolds induce the same differentiable
structure and orientation on it), resulting in a manifold Pn+1 (see figure 5.1) which proves our
statement.

Claim 5.1.3. Suppose there are maps f, g : (Bn, Ḃn) → (X,A) from a manifold to a pair of spaces
connected by a homotopy H such that H(I × Ḃn) ⊂ A. Then [Bn, f ] = [Bn, g] ∈ Ωn(X,A).

The proof is immediate from the definition of when two singular manifolds are bordant and the
fact that (I ×Bn)· = (İ ×Bn) ∪ (I ×−Ḃn).

Definition 5.1.4. There is a homomorphism µ : Ωn(X,A)→ Hn(X,A;Z) defined as follows. Given
[Bn, f ] ∈ Ωn(X,A), denote by σ ∈ Hn(B

n, Ḃn,Z) its orientation class2, and define µ([Bn, f ]) to be
f∗(σ).

Claim 5.1.5. This is a well defined homomorphism.

Definition 5.1.6. The image of µ (that is, Imµ ⊂ Hn(X,A;Z)) is the subgroup of integral homology
classes representable in the sense of Steenrod.

If we have a closed oriented topological n-manifold3 P , we can also represent some of its coho-
mology classes in Hk(P ;Z) in the following way.

2In other words, fundamental class.
3Not necessarily second-countable, so we use the notion of “manifold” present in chapter §4.
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Definition 5.1.7. There is a homomorphism Ωn−k(P )→ Hk(P ;Z) for any closed oriented topolog-
ical n-manifold P defined as follows. For an element [Bn−k, f ] ∈ Ωn−k(P ) consider µ([Bn−k, f ]) ∈
Hn−k(P ;Z), and take its Poincaré-dual (4.4.2) γ ∈ Hk(P ;Z). The image of this homomorphism will
be called the subgroup of representable cohomology classes in Hk(P ;Z).

It is obvious this is a well defined homomorphism in light of claim 5.1.4 about µ being properly
defined.

5.2 The unoriented case

If we drop all references to orientations from the definition of the oriented bordism group Ωn(X,A),
we obtain a simpler generalized homology theory: the unoriented bordism group Nn(X,A) (typeset
as \mathfrak{N}_n(X,A)). This topic is discussed in section I.8. of [CF64].

Definition 5.2.1 (Relative unoriented bordism group). Fix an arbitrary pair of spaces (X,A) and
a natural number n ∈ N.

• A(n unoriented) singular manifold of dimension n in (X,A) is a pair (Bn, f) with Bn being
a compact (not necessarily orientable) n-manifold with boundary, and f : (Bn, Ḃn) → (X,A)
is a map of pairs of spaces.

• A singular manifold (Bn, f) bords, if there is a(n unoriented) singular n+1-manifold (Cn+1, F )
where

– Bn ⊂ Ċn+1 is a regular submanifold of the boundary of Cn+1,

– F |Bn = f , and

– F (Ċn+1 −Bn) ⊂ A.

• Two singular manifolds (Bn
1 , f1) and (Bn

2 , f2) are bordant if (Bn
1 ⊔Bn

2 , f1 ∪ f2) bords.

• This relation is an equivalence relation. Let the set of equivalence classes be Nn(X,A), the
n-dimensional unoriented singular bordism group, and let us denote the equivalence
class of (Bn, f) by [Bn, f ].

• The addition on Nn(X,A) is defined as [Bn
1 , f1] + [Bn

2 , f2] = [Bn
1 ⊔Bn

2 , f1 ∪ f2].

0-dimensional compact manifolds are just finite sets of points with the discrete topology.Nn(X,A) = 0
for n < 0 by definition.

Remark 5.2.1.1. All nonzero elements of Nn(X,A) have order 2.

Claim 5.2.2. The bordism relation of (5.2.1) is an equivalence relation.

This can be proven analogously to its oriented version (5.1.2). µ and Steenrod-representability
can be defined similarly to the oriented case:

Definition 5.2.3. There is a homomorphism µ : Nn(X,A)→ Hn(X,A;Z2) defined as follows. Given
[Bn, f ] ∈ Nn(X,A), denote by σ ∈ Hn(B

n, Ḃn,Z2) its mod 2 fundamental class, and define µ([Bn, f ])
to be f∗(σ).

Claim 5.2.4. This is a well defined homomorphism.

Definition 5.2.5. The image of µ (that is, Imµ ⊂ Hn(X,A;Z2)) is the subgroup of mod 2 homology
classes representable in the sense of Steenrod.
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If we have a closed topological n-manifold4 P , we can also represent some of its cohomology
classes in Hk(P ;Z2) in the following way.

Definition 5.2.6. There is a homomorphism Nn−k(P ) → Hk(P ;Z2) for any closed topological
n-manifold P defined as follows. For an element [Bn−k, f ] ∈ Nn−k(P ) consider µ([Bn−k, f ]) ∈
Hn−k(P ;Z2), and take its Poincaré-dual (4.4.2) γ ∈ Hk(P ;Z2). The image of this homomorphism
will be called the subgroup of representable cohomology classes in Hk(P ;Z2).

It is obvious this is a well defined homomorphism in light of claim 5.2.5 about µ being properly
defined.

5.3 The Eilenberg-Steenrod axioms

The purpose of this section is to show that the bordism functor satisfies the first six Eilenberg-
Steenrod axioms stated in section §2.1. Consequently, the results listed in section §2.2 can be directly
applied to the bordism groups Ωn(X,A) (and Nn(X,A)). The axioms guarantee the existence of a
spectral sequence for a CW pair (X,A), as presented in section §2.3. We also show that the two
additional criteria (stated in theorem 2.3.18) necessary for the convergence of the spectral sequence
are satisfied, the convergence result can be applied.

The proofs here build on the following lemma, (B.0.4.1) and (B.0.6) (sewing together and taking
the product of manifolds with boundary), calculating the boundary of a product, and the separability
of closed subspaces according to lemma B.0.1. The axioms will only be proved for the oriented bordism
group Ωn(X,A), but proofs are analogous for the unoriented bordism groups Nn(X,A).

Lemma 5.3.1 (See pages 12-13 of [CF64]). Let V n be a regular submanifold with boundary in a
manifold Bn. If f : Bn → X is a map with f(Bn − intV n) ∪ f(Ḃn) ⊂ A, then [Bn, f ] = [V n, f |V n ]
in Ω(X,A). We may even take V n = ∅; in this case the lemma states [Bn, f ] = 0.

Proof. This can be verified using the definitions. We know by (B.0.6) that the product of two mani-
folds (differentiable, oriented, with boundary) is a manifold (differentiable, oriented, with boundary),
whose “boundary behaves nicely”. Applying this to I×Bn we get that it is a manifold and its boundary
is (I×Bn)· = (İ×Bn)∪(I×−Ḃn) = ({1}×Bn)∪({0}×−Bn)∪(I×−Ḃn). So ({1}× V n )∪({0}×−Bn)
is a regular submanifold of the boundary of I × Bn, and the remainder of the boundary goes to A
under the map F (t, x) = f(x) : I × Bn → X. Moreover, F on ({1} × V n) ∪ ({0} × −Bn) is just the
disjoint union of the singular manifolds (Bn, f) and (V n,−f |V n). This gives the statement of the
lemma by definition.

The axioms are stated here using the Ω notation, and verified one-by-one, following the proof of
theorem (5.1) of [CF64]. The first three are trivial, thus proofs are omitted.

(ES.1) If φ is the identity, then φ∗ is the identity also.

(ES.2) (ψφ)∗ = ψ∗φ∗.

(ES.3) If φ|A is the restriction of φ : (X,A)→ (Y,B) to A, then ∂φ∗ = (φ|A)∗∂. Namely, the following
diagram commutes for any n ∈ Z:

Ωn(X,A)

∂
��

φ∗
// Ωn(Y,B)

∂
��

Ωn−1(A)
(φ|A)∗

// Ωn−1(B)

4Still not necessarily second-countable, so we use the notion of “manifold” present in chapter §4.
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(ES.4) If i : A→ X and j : X → (X,A) are inclusions, then the following sequence is exact:

. . . // Ωn(A)
i∗ // Ωn(X)

j∗
// Ωn(X,A)

∂ // Ωn−1(A) // . . .

Proof. There are 6 claims we need to check. The first three state that the sequence is a chain
complex:

• ∂j∗ = 0 This follows from the fact that [Mn, f ] ∈ Ωn(X) implies that Mn has no bound-
ary.

• i∗∂ = 0 If we take a representative of a given element [Bn, f ] ∈ Ωn(X,A), it shows that

(Ḃn, f |Ḃn) bords in Ωn−1(X).

• j∗i∗ = 0 Take a representative [Mn, f ] ∈ Ωn(A), and apply lemma 5.3.1 from earlier (Mn

is closed, so the lemma can be used!) with V n = ∅, Bn =Mn.

• Ker ∂ ⊂ Im j∗ Take an arbitrary element [Cn, f ] ∈ Ωn(X,A) that is in the kernel of ∂.

As it is in the kernel of ∂, there is a manifold Bn with Ḃn = Ċn5, and there is a map
g : Bn → A with g|Ḃn = f |Ċn . Sew together Cn and −Bn by their common boundary
using (B.0.4.1): this produces a closed manifold Mn. The maps can also be joined thanks
to g|Ḃn = f |Ċn ; this gives a map F :Mn → X – so [Mn, F ] ∈ Ωn(X) – which restricts to
f and g in the appropriate submanifolds. Applying lemma 5.3.1 from earlier again with
V n = Cn, Bn =Mn, we get j∗[M

n, F ] = [Cn, f ].

• Ker i∗ ⊂ Im ∂ Take an element [Mn, f ] ∈ Ωn−1(A). If it is 0 in Ωn−1(X), then the singular
manifold in X showing this also forms an element of Ωn(X,A) which maps to [Mn, f ].

• Ker j∗ ⊂ Im i∗ Take an element [Mn, f ] ∈ Ωn(X). The manifold which shows that this

element is 0 in Ωn(X,A) proves that (M
n, f) has the same bordism class as some (Nn, g :

Nn → A) (Nn is closed!).

(ES.5) If φ,ψ : (X,A)→ (Y,B) are homotopic, then φ∗ = ψ∗.

Proof. For an arbitrary singular manifold [Cn, f ] we consider the sequence of maps

(Cn, Ċn)
f
// (X,A)

φ
--

ψ
11 (Y,B),

and notice that it can be extended into the following sequence using the homotopy H between
φ and ψ:

(I × Cn, I × Ċn)
(id,f)

// (I ×X, I ×A) H // (Y,B) (E5.3.1)

We know by (B.0.6) that the product of two manifolds (differentiable, oriented, with bound-
ary) is a manifold (differentiable, oriented, with boundary), whose “boundary behaves nicely”.
Applying this to I ×Cn we get that it is a manifold and its boundary is (I ×Cn)· = (İ ×Cn)∪
(I ×−Ċn) = ({1} ×Cn)∪ ({0} ×−Cn)∪ (I ×−Ċn). So ({1} ×Cn)∪ ({0} ×−Cn) is a regular
submanifold of the boundary of I × Cn, and the remainder of the boundary (I × −Ċn) maps
into B in (Y,B) by (E5.3.1), so we arrive at [Cn, φf ] = [Cn, ψf ] using the definition.

5As ∂[Cn, f ] ∈ Ωn−1(A), no boundary of Bn should be outside of Ċn, as all boundary outside it should be mapped
to ∅ of (A, ∅).
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(ES.6) If U is an open subset of X such that U ⊂ intA, then the inclusion map i : (X − U,A− U)→
(X,A) induces an isomorphism (for each n ∈ Z):

i∗ : Ωn(X − U,A− U)
≈−→ Ωn(X,A)

Proof. First we show that i∗ is surjective. Let (B
n, f) be a singular manifold in Ωn(X,A), and

P = f−1(X − intA), Q = f−1(U). Take the differentiable submanifold Bn
1 provided by (B.0.1):

P ⊂ Bn
1 , Q is disjoint from Bn

1 , B
n
1 is closed in Bn. Now [Bn

1 , f |Bn
1
] ∈ Ωn(X − U,A − U), and

[Bn
1 , f |Bn

1
] = [Bn, f ] in Ωn(X,A) using lemma 5.3.1 with V n = Bn

1 .

Injectivity is similar. Take a [Bn, f ] ∈ Ωn(X − U,A− U) which maps to 0 in Ωn(X,A). This
is shown by a manifold Cn+1 where Bn is a regular submanifold of Ċn+1 and the remainder of
Ċn+1 maps to A under a map F (for which F |Bn = f). Next we take P = F−1(X − intA) ∪
Bn, Q = F−1(U), and the differentiable submanifold separating these: Cn+1

1 . Now Bn is a
regular submanifold of Ċn+1

1 , and (Cn+1
1 , F |Cn+1

1
) shows that [Bn, f ] is 0 in Ωn(X−U,A−U).

Now let us move on to proving the additional criteria posed by (2.3.18), the theorem providing
the convergent spectral sequence of a CW pair (X,A):

Claim 5.3.2. (a) Ωn(X) = 0 for an arbitrary space X and integer n < 0.

(b) Ωn(X, skn(X) ∪A) = 0 for n ∈ Z and a CW pair6 (X,A).

Proof. (a) By definition Ωn(X) = 0 for n < 0.

(b) Take an arbitrary singular manifold (Bn, f) in (X,A). If f(Bn) ⊂ skk(X) where k > n, then we
can change f by a homotopy in each k-cell (which is not a part of A) to an f ′(Bn) ⊂ skk−1(X):
we take a smooth approximation inside each k-cell, and then blow it out to skk−1(X). Applying
this trick for decreasing k until k = n we get a g that is homotopic to f and shows that
[Bn, g] = 0 ∈ Ωn(X,A). As [B

n, f ] = [Bn, g] ∈ Ωn(X,A) by (5.1.3), we have finished the proof.

Of course there is a problem with this sketch beside it being highly imprecise: it is unclear what
happens for infinite-dimensional CW complexes, as we have no immediate starting k in this
case. First, let us make the method above precise, then we will deal with the infinite-dimensional
case.

Supposing f(Bn) ⊂ skk(X), fix an open k-cell U ∼= B1(0) = {x ∈ Rk : |x| < 1}, and let
h : B1(0)→ R,

h(x) =


1, |x| ≤ 2

5

3− 5|x|, 2
5 ≤ |x| ≤

3
5

0, 3
5 ≤ |x|

−3
5

2
5

3
5 1

1

0−2
5

1

and f̂ be a smooth approximation of f on f−1(U) ⊂ Bn such that |f(x) − f̂(x)| ≤ 1/5. Let
f̄ : f−1(U) ⊂ Bn → U ,

f̄(x) = h(f(x))f̂(x) + (1− h(f(x)))f(x).
6This means that A is a closed subcomplex.
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U

k-cell

f

(a) The k-cell, and U inside it.

U

(b) f and the boundaries of
Bn/5(0) for n = 1, . . . , 5. The in-

teresting ring 2
5 ≤ |x| ≤

3
5 is high-

lighted.

U

(c) f̄ . Note that parts of f̄ may
spill into different rings then it
was originally in.

Then f̄ is well-defined, continuous, homotopic to f in U , identical to f on the complement
of f−1(B3/5(0)), smooth on the inverse image of B2/5(0) by f , and smooth on f̄−1(B1/5(0)).
As k > n, we know that f̄ |f̄−1(B1/5(0))

: f̄−1(B1/5(0)) → B1/5(0) is not surjective, there is a

y ∈ B1/5(0) − Im f̄ . From this point y we can blow f̄ using a homotopy into skk−1(X). As f̄
and f are identical on the complement of f−1(B̄4/5(0)) = f̄−1(B̄4/5(0)), we can interpret this
“blowing” homotopy as a homotopy of f . Joining these homotopies for each k-cell we get a
homotopy that connects f with the promised f ′.

Settling the infinite dimensional case is fairly straightforward. By (B.0.8), a compact set – such
as f(Bn) – in a CW complex only intersects finitely many open cells. Corollary B.0.8.1 of this
claim states that any compact set of a CW complex is contained in a finite-dimensional skeleton
skk(X). Applying this to f(Bn), we get a k which was necessary for finishing the proof.
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Chapter 6

Classifying bordism

6.1 The statement

Sources. The main result of this chapter is a paraphrased version of a theorem of Thom
(thm[Tho54]:IV.6). Most of the section about the Eckmann-Hilton duality (§6.2) are
based on [Hat02], while the notation P+ is borrowed from [CF64]. (§6.3), (§6.4) and
(§6.5) are based on [CF64] and [Tho54].

Remark. The term manifold means (possibly nonorientable) Hausdorff, second-countable, differen-
tiable manifold with boundary in this chapter.

The aim of this section is to present a theorem concerning a bijection between homotopy classes
of maps into a fixed “classifying” space and the (unoriented) bordism groups. This theorem will be
both formally extremely similar and also connected to theorem 3.2.13 of (§3.2.4) and theorem 6.5.1
of (§6.5).

Theorem 6.1.1. (a) For each n ≥ 0 for any sufficiently large N we have a space called ΩNMO(k+
N). This space classifies the k codimensional unoriented bordism group for any closed n-
manifold P . That is, there is a bijection of the form

Nn−k(P )
∼ // [P,ΩNMO(k +N)],

where [X,Y ] denotes the set of homotopy classes of maps between spaces X and Y .

(b) There is a weak homotopy equivalence (3.2.16) Q→ ΩNMO(k +N) only dependent on n and
N , such that the homotopy class of any map of any closed n-manifold P into ΩNMO(k +N)
can be factored through it.

(c) There is a map p : Q→ K(Z2, k) that has the following property.

The cohomology class represented by an element [Bn−k, f ] ∈ Nn−k(P ) (defined in (5.2.6)) can
be calculated as follows: take the corresponding homotopy class [h] with h : P → ΩNMO(k+N)
given by (a), then factor it through Q → ΩNMO(k + N) to get a homotopy class [h] with
h : P → Q using (b); finally, compose [h] with [p]. The result is a homotopy class of the form
P → K(Z2, k), so by (3.2.13) there is a corresponding element of γ ∈ Hk(P ;Z2). This γ is
the cohomology class associated to [Bn−k, f ].

This space ΩNMO(k + N) is constructed by applying the loop space functor Ω to the Thom
space MO(k + N). Of course, none of these has been defined so far. They will be covered later in
this chapter, whose structure – along with the proof of (6.1.1) – is discussed below.

∼ ∗ ∼
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P+

h

))

h

// Q
φ

//

K(Z2, k)

ΩNMO(k +N)

B

f

OO

� _

f̂

��

j
// A

g

OO

� _

ĝ

��

BO(k +N)
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i

��

ΣNP+

ĥ
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ĥ // ΣNQ
φ̂

// MO(k +N)

p

!!

��

E-H
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��
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ΣN
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Figure 6.1: Overview of the proof of (6.1.1)

Figure 6.1 displays the main objects and maps which will be used in the proof, and also some of
the ways these maps will be constructed from each other. Normal arrows // indicate continuous
maps (only relevant up to homotopy), while dotted ones // show how different maps can be
constructed from each other. This figure is clearly too complicated to aid understanding, so it will
return in many different simplified forms throughout the proof. Nevertheless, it is a useful tool to
plot all the different topics we have to cover before moving on to actually proving our main theorem
(6.1.1). These are:

• The reduced suspension functor Σ, the loop space functor Ω and the Eckmann-Hilton duality:
(§6.2)

• Transverse regularity and “pulling back intersections”: (§6.4)

• Approximating spaces with manifolds: (§6.3)

• The MO spectrum and the classification of embedded submanifolds up to embedded bordism:
(§6.5)

After these topics are covered we may return in section §6.6 to the proof of our central theorem.

6.2 Eckmann-Hilton duality

In this section we will define three functors from the category of pointed spaces to itself: the (unre-
duced) suspension1 SX, the reduced suspension ΣX, and the loop space ΩX of a space X: the first
two of these are topological spaces containing a subspace identified with X (see definitions 6.2.3,
6.2.4, 6.2.5). Please note that the suspension S will not be used in the thesis, and is only here to
make understanding the reduced suspension Σ easier. We will show that

Theorem 6.2.1 (Eckmann-Hilton duality; see page 395 of [Hat02]). For arbitrary pointed spaces
X and Y we have a bijection

[ΣX,Y ]∗ ≈ [X,ΩY ]∗.

1This is actually a functor on the category of topological spaces and continuous maps.
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Remark 6.2.1.1. Eckmann-Hilton duality can refer to a much more general concept about reversing
the directions of all arrows in a commutative diagram. This generalized duality is not covered in this
thesis.

The symbol [A,B]∗ denotes in this thesis the set of homotopy classes of maps between pointed
spaces A and B (a homotopy between maps should at all times send x0 to y0).

It is also important to note that the duality “commutes” with the reduced suspension functor Σ
and the loop space functor Ω:

Claim 6.2.2. Denote temporarily the bijection in the Eckmann-Hilton duality (6.2.1) of the last
claim by putting a hat ·̂ on the homotopy class. Then:

(a) For any maps g : X → Y, f : Y → ΩZ we have [̂fg] = [̂f ][Σg].

(b) For any maps g : ΣX → Y, f : Y → Z we have [̂fg] = [Ωf ][̂g].

X

X × {1}

X × {0}
(a) The suspension SX.

x0 X

X × {1}

X × {0}
(b) The reduced suspension ΣX.
The line going through x0 is col-
lapsed into a point.

X
x0

(c) ΣX+.

Figure 6.2: Visualizing suspension.

Before we move on to prove (6.2.1), let us define the three functors from earlier:

Definition 6.2.3. For topological space X, its suspension SX is the space

X × [0, 1]/((X × {0}) ∪ (X × {1})).

If X = ∅ then SX is a discrete space with two points instead.

The suspension SX can be thought of as two cones being attached to the space X.

Definition 6.2.4. For a pointed space X with basepoint x0, its reduced suspension ΣX is the space

X × [0, 1]/((X × {0}) ∪ (X × {1}) ∪ ({x0} × [0, 1])),

with basepoint the image of {x0} × [0, 1].

The reduced suspension ΣX can be thought of as starting from the suspension SX, and then
taking the quotient by the “vertical” line connecting the tips of the cones and going through x0.

Definition 6.2.5. For a pointed space X with basepoint x0, its loop space ΩX is the set of based
loops (maps from the pointed S1) in X equipped with the compact-open topology. The basepoint is
the constant loop at x0.
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(a) h

(b) ĥ

Figure 6.3: Suspension of a map.

Of course, to make these functors we have to define how morphisms are associated to maps of
spaces.

Definition 6.2.6. (a) The suspension (associated map) ĥ : SX → SY of a map h : X → Y is
obtained by taking (h, id) : X × [0, 1] → Y × [0, 1] and then passing to the quotient spaces.
That is, the tips of the cones are mapped into tips, and otherwise the “horizontal slices”
homeomorphic to X keep their “height” (their second coordinate t ∈ [0, 1]).

(b) The associated map ĥ : ΣX → ΣY of h : (X,x0) → (Y, y0) is obtained similarly, only that we
have to quotient out by a larger subspace.

(c) The associated map ĥ : ΩX → ΩY of h : (X,x0)→ (Y, y0) is obtained by composing any given
point of ΩX (its points are based loops in X) with the map h to get a point of ΩY (a based
loop in Y ).

(S1, s0)
γ∈ΩX

//

hγ∈ΩY

**

(X,x0)
h

// (Y, y0)

A chain of remarks follow:

Remark 6.2.7. S is defined as a functor on the category of topological spaces and not pointed spaces in
(6.2.3). When used for pointed spaces in this thesis, the basepoint will be irrelevant, so this distinction
can be dismissed.

Remark 6.2.8. The iterated suspension SNX, N ≥ 1, can be written as a union of two disjoint subsets
homeomorphic to SN−1 and X ×RN (although it is not a “disjoint union” in the topological sense).

Remark 6.2.9. Let X be a pointed CW complex. Then SX and ΣX are homotopy equivalent. This
can be proved by creating a CW complex which is homeomorphic to X but whose basepoint is inside
its 0-skeleton (we can do this by subdividing the cell of the basepoint), then using the fact that CW
pairs are cofibrations and that the part factored in SX to get ΣX is a contractible subcomplex (a
compact segment).

Remark 6.2.10. The path components of the loop space ΩX form the fundamental group π1(X,x0).
This is a consequence of the fact that a homotopy of some map f : X → Y can be regarded as a path
in the space of maps from X to Y equipped with the compact-open topology, and vice versa.

Remark 6.2.11. The iterated suspension ΣNX (of a pointed space (X,x0)) is homeomorphic to (X×
IN )/

(
(X × (IN )·) ∪ ({x0} × IN )

)
, or in other words with (X × DN )/

(
(X × SN ) ∪ ({x0} ×DN )

)
,
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with basepoint the image of the subspace we take the quotient by. In particular, ΣNX can be written
as the union of (X − {x0})×RN and a point. For an X that is compact and Hausdorff, ΣNX is the
one-point compactification of (X − {x0})× RN . This holds in particular for compact manifolds.

Remark 6.2.12. There are two notable operations on pointed spaces: the wedge sum (∨) and the
smash product (∧). Using these, the reduced suspension ΣX can be written as X ∧ S1.

The definition of these operations are as follows (based on section I.11. of [CF64]):

Definition 6.2.13. The wedge sum of two pointed spaces (X,x0) and (Y, y0) is the space X ∨ Y
produced by taking the quotient of the disjoint union of X and Y by the relation x0 ∼ y0.

Definition 6.2.14. The smash product of two pointed spaces X and Y is the space X ∧Y produced
by taking the quotient (X×Y )/(X∨Y ) and taking the point corresponding to X∨Y as the basepoint.

Remark. The LATEXcommand \vee produces the symbol of the wedge sum ∨, and the command
\wedge produces the symbol of the smash product ∧.

Xx0

Yy0

//
X ∨ Y

w0

The wedge sum X ∨ Y . The basepoint is w0.

Xx0

y0 Y

//

The smash product X ∧ Y . The basepoint is the im-
age of the darkened areas under the quotient map.

∼ ∗ ∼

Now let us introduce a simple, technical construction which will make our lives significantly easier
in the long run.

Definition 6.2.15. For a (not pointed) topological spaceX, letX+ denote the disjoint unionX⊔{x0}
of X with a new point. This space can be considered a pointed space, with basepoint x0.

Claim 6.2.16. The iterated reduced suspension ΣNX+ (N ≥ 1) is homeomorphic to (X× IN )/(X×
(IN )·), or in other words with (X × DN )/(X × SN ). The basepoint is the point associated to the
subspace we take the quotient by. In particular, ΣNX+ can be written as the union of X × RN and
a point: if X is compact and Hausdorff, then in this decomposition, ΣNX+ has the topology of the
one-point compactification of X × RN . In particular, this last claim holds if X is a closed manifold.

Claim 6.2.17. There is a bijection between the homotopy classes of unbased maps of the form X → Y
and the homotopy classes2 of based maps X+ → (Y, y0) (with y0 ∈ Y arbitrary).

This last claim provides a tool to transition between unbased and based homotopy classes of maps
easily. It is particularly useful, as our main theorem (6.1.1) is concerned with unbased homotopy
classes, while the tools developed in this section are clearly concerned with the category of pointed
spaces.

∼ ∗ ∼

Instead of the Eckmann-Hilton duality (theorem 6.2.1), it is easier to prove this more general
theorem:

2For these classes, only homotopies which fix the basepoint over time are allowed.
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Theorem 6.2.18. Suppose X,Y and A are pointed spaces. Then we have the following homeomor-
phism:

Maps∗(X ∧A, Y ) ∼= Maps∗(X,Maps∗(A, Y )),

where Maps∗(U, V ) are the set of pointed maps U → V equipped with the compact-open topology.

Claim 6.2.19. Suppose (X,x0) and (Y, y0) are pointed spaces. Then:

(a) There is a bijection between paths in Maps∗(X,Y ) and homotopies H : X × [0, 1] → Y,∀t :
H(x0, t) = y0.

(b) The path-components of Maps∗(X,Y ) are the set of homotopy classes [X,Y ]∗.

Combining this claim with the previous theorem, putting A = S1, and recalling remark 6.2.12 we
get [ΣX,Y ]∗ ≈ [X,ΩY ]∗, the Eckmann-Hilton duality (6.2.1).

6.3 Approximating spaces

Some spaces are easier to deal with than others. For example, the (n + 1)-skeleton of a CW com-
plex determines its first n homology groups, which simplifies algebraic calculation. Moreover, their
nearly-combinatorial structures makes them manageable. On the other hand there is the world of (dif-
ferentiable) manifolds, which are harder to describe, but provide a setting where thanks to smooth ap-
proximations any map can be considered “sufficiently nice”. Furthermore, the availability of Poincaré
duality lets us connect calculations involving homology and cohomology groups.

Thus it would be a great aid if we only had to consider CW complexes/(differentiable) manifolds
for certain problems. This is especially true in homotopy theory, as there only the homotopy classes of
maps are relevant, so any map of manifolds “is” smooth, and any map of CW complexes “is” cellular
(thm[Hat02]:4.8). Thankfully, homotopy theory doesn’t distinguish spaces which are homotopy
equivalent, and oftentimes only weak homotopy equivalence (3.2.16) is enough to translate between
spaces. This can – and does – give us tools to translate certain problems in homotopy theory to only
a single kind of spaces. Here we list two of these.

Theorem 6.3.1 (Prp[Hat02]:4.13). For any space X there is a CW complex Z and a weak homo-
topy equivalence (3.2.16) f : Z → X.

Remark 6.3.1.1. Of course, this Z may have infinitely many cells in a given dimension, and also be
infinite dimensional.

Definition 6.3.2. Z of the theorem above (6.3.1) is said to be a CW approximation to X.

For the convenience of the reader, let us recall the definition of weak homotopy equivalence:

Definition (See (3.2.16)). A continuous mapping f : X → Y is a weak homotopy equivalence if
the induced map on the set of path components is a bijection, while for each n ≥ 0 and x ∈ X the
following induced homomorphism is an isomorphism:

f∗ : πn(X,x)→ πn(Y, f(x)).

This approximation will be used in the setting where the following property would be desirable:
using the notation of the theorem above (6.3.1), any homotopy class [h], where h : Y → X, can
be written as the composition of homotopy classes [f ] and [h0] for some h0 : Y → Z. For practical
reasons, we will only consider the m-skeleton of Z for some large m ∈ N. This still means that the
induced homomorphisms on the homotopy groups are isomorphisms up to a large dimension, but the
restricted map f |skm(Z) will no longer be a weak homotopy equivalence. Nevertheless, the property
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above will still hold for any low-dimensional CW complex Y , which is going to be sufficient for our
purposes.

Now let us turn to the world of manifolds. The following claim states that transitioning from CW
complexes to manifolds can be performed systematically:

Theorem 6.3.3. Any finite CW complex is homotopy equivalent to a manifold with boundary.

This theorem can be proved by embedding the manifold in some euclidean space RN , and taking
a tubular neighborhood (which exists).

6.4 Transverse regularity

As we are going to be dealing with singular manifolds in the proof of our main theorem (6.1.1), and
previous chapters already hinted towards a heavy use of homotopies, it is only logical at this point
to consider ways in which we can change singular manifolds by a homotopy to get “nicer” singular
manifolds (still equivalent to the original). Thankfully, we will be concerned with bordism groups of
manifolds, so the tools of differential topology will all be available to us. Using these, one obvious
way we can pick simpler representatives of a bordism class is by taking a smooth approximation to
any given singular manifold. If ε is sufficiently small, this approximation is homotopic to the original
map, so we indeed get what we wanted. For more on this topic, see §I.9. of [CF64].

Now let us introduce another concept of “regularity” involving maps between manifolds. In this
case, we are interested in not one, but two maps to the same manifold, both of which we immediately
assume to be smooth. This may not be surprising to the reader: where there is one smooth map,
there are others. In particular, we are interested in the intersection of the images of the two maps.
While generally we get another (smooth) singular manifold, there can be cases where the two images
just “touch” each other, or “coincide” in a significant patch, leading to non-manifold intersections.
Thom’s concept of transverse regularity is introduced to formulate a general setting where taking

(a) Two lines meeting in a single
point.

(b) Two lines coinciding in a seg-
ment.

(c) A 2-dimensional example.

Figure 6.5: Non-manifold intersections.

the intersection is a sensible operation, while its accompanying theorem states that this regularity
is achievable using only a small homotopy. For the following definitions and claims see page 21 of
[CF64].

Definition 6.4.1. Suppose N is a manifold without boundary, and N1 is a regularly embedded
submanifold. For any x ∈ N1, the tangent space TxN1 can be regarded as a linear subspace of TxN .
The space of normal vectors to N1 is by definition the vectorspace TxN/TxN1.

Definition 6.4.2. Suppose N,M are manifolds without boundary, f : M → N is smooth, and N1

is a regularly embedded submanifold of N . f is said to be transverse regular on N1 if for any
x ∈ N1, y ∈ f−1(x) ⊂M the composition

TyM
df
// TxN // TxN/TxN1

is surjective.
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Claim 6.4.3. If f :M → N is transverse regular on N1 ⊂ N , then f−1(N1) is a regularly embedded
submanifold of M where f−1(N1) has the same codimension as N1, or in other words:

dimM − dim f−1(N1) = dimN − dimN1.

Remark 6.4.3.1. Let M1 be f−1(N1). There is then an induced map f̃ : M1 → N1 – the restriction
of f to M1 – which makes the square below commute.

M1� _

��

f̃
// N1� _

��

M
f
// N

Definition 6.4.4. In the setting of the claim above (6.4.3), we will call the embedded submanifold
f−1(N1) ⊂M (together with its embedding) the pullback of N1.

Claim 6.4.5. “The pullback of a pullback is the pullback through the composition”. Suppose we are
in the following situation: f : M → N is transverse regular on N1 ⊂ N , N1’s pullback through f is
M1 ⊂ M , and g : L → M is transverse regular on M1. Then fg is transverse regular on N1, and
N1’s pullback though fg is the same as M1’s pullback through g.

L1

� _

��

g̃
//

M1

� _

��

f̃
//

N1

� _

��

L

g
//

M

f
//

N

Figure 6.6: Two pullbacks; an illustration for claim 6.4.5.

Claim 6.4.6. “The cohomology class represented by the pullback is the pullback of the cohomology
class represented by the original embedded submanifold”. Suppose f :Mm → Nn is transverse regular

on Np
1

i
↪→ Nn and that the cohomology class represented by [Np

1 , i] ∈ Np(N
n) is γ ∈ Hn−p(Nn).

Let the pullback of Np
1 through f be M

m−(n−p)
1

j
↪→ Mm. Then the cohomology class represented by

[M
m−(n−p)
1 , j] ∈ Nm−(n−p)(M

m) is f∗(γ) ∈ Hn−p(Mm).

The following theorem of Thom ensures that we can transform any smooth f to be transverse
regular on any N1.
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Theorem 6.4.7 (Thom’s transversality theorem; Thm[CF64]:I.10.4). Let f :Mn → Np be a smooth
map, Np−q

1 be a closed submanifold3 of Np, and ε be a positive real-valued continuous function on
Mn. Let A be a closed (possibly empty) subset of Mn such that such that transverse regularity holds
for any y ∈ A ∩ f−1(Np−q

1 ). Then there exists a differentiable map g :Mn → Np such that:

1. g is an ε-approximation of f ,

2. g is transverse regular on Np−q
1 , and

3. g|A = f |A.

Remark 6.4.8. While all of the above was stated for finite dimensional spaces, an infinite dimensional
variant of this machinery also holds. If N is “infinite dimensional”, and N1 is an “infinite dimensional
but finite codimensional” regularly embedded submanifold, then all definitions and theorems (clearly!)
generalize. We don’t give a formal description of this however, as this is only used to give an intuitive
understanding of what happens in the MO classification theorem (6.5.1).

Remark 6.4.9. A similar concept of transverse regularity can be formulated when N1 is not an
embedded but an immersed submanifold. Of course, in this case we cannot identify the points of
N1 with the point of its image as we did in the definition of normal vectors (6.4.1) and transverse
regularity (6.4.2). The claim about receiving a pullback (6.4.3) still holds, with the exception that now
we get an immersed submanifold “f−1(N1)” instead of an embedded one. Moreover, claim 6.4.6 can
also be stated for this version of pullback too. Thom’s transversality theorem (6.4.7) also generalizes
to this case: roughly speaking, we first make f transverse regular on the self intersections, then on
the remainder of the image using the form of the theorem discussed above.

Remark 6.4.9.1. This generalized pullback can be explained with a commutative square, similarly to
remark 6.4.3.1. Suppose the immersion of N1 into N is called i and the pullback “f−1(N1)” is the
immersion j :M1 →M . Then there is a map g :M1 → N1 which makes the square below commute.

M1

j
��

g
// N1

i
��

M
f
// N

6.5 Thom spaces

Section §3.2.4 introduced a bijection between the kth cohomology group Hk(X;Z) of a space X and
the homotopy classes of maps X → K(Z2, k) (denoted [X,K(Z2, k)]), using some fixed spaceK(Z2, k)
whose definition is not of particular interest now. In this section, we present a similar bijection, which
utilizes the spaces denoted MO(k). Similarly to the previous construction, this one also concerns the
set of homotopy classes [X,MO(k)] of maps intoMO(k), and the exact definition ofMO(k) won’t be
used later in this thesis. Conceptually the bijection builds upon the concept of pullbacks of transverse
regular maps (6.4.4), although it uses a generalization.

Theorem 6.5.1 (Thm[Tho54]:IV.64). Let P be a closed manifold5. Then there is a bijection from
the homotopy classes of maps of the form h : P →MO(k) to the embedded bordism classes of closed
embedded6 submanifolds into P of codimension k. That is,

3Manifold – and thus submanifold – still means differentiable manifold.
4In Thom’s original work embedded bordism is referred to by the name L-equivalence, especially with coefficients in

Z2. For the definitions, see page 71 of [Tho54].
5This still means closed differentiable manifold.
6This means proper smooth embedding.
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• for each homotopy class [h] with h : P → MO(k) there is a corresponding closed embedded
submanifold B ↪→ P with dimB = dimP − k, unique up to embedded bordism, and

• for each embedded submanifold B ↪→ P with dimB = dimP − k there is associated a unique
homotopy class of the form h : P →MO(k) (in other words, an element of [P,MO(k)]).

The theorem also holds for the one-point compactification of a (not necessarily compact) manifold
P , and the homotopy classes of based7 maps of the form h : P → MO(k). In this case, the compact
embedded submanifolds of P are classified up to embedded bordism in P .

Bn
1

Cn+1P

Bn
2

I0 1

So on one hand there are closed embedded submanifolds B ↪→ P of
codimension k – up to some equivalence relation – while on the other hand
there are elements of [P,MO(k)] – or alternatively [P,MO(k)]∗. In many
ways, this theorem is very similar to the main theorem we aim to prove
(6.1.1), but instead of bordism classes we classify embedded bordism classes,
and using homotopy classes of maps to MO(k) rather than ΩNMO(k+N).
The equivalence relation of (6.5.1) comes from the following definition:

Definition 6.5.2. Two embedded submanifolds i1 : Bn
1 ↪→ P, i2 : Bn

2 ↪→ P
into the manifold P are embedded bordant, if there is an embedded submanifold j : Cn+1 ↪→ P ×I
with Bn

1 ⊔Bn
2 = Ċn+1, (i1, 0) = j|Bn

1
, (i2, 1) = j|Bn

2
.

Claim 6.5.3. This is an equivalence relation.

Remark 6.5.4. The bijection of the MO classification theorem (6.5.1) can be described in the light
of remark 6.4.8 about generalizing transverse regularity to “infinite dimensional spaces”. For this, all
we have to know is that MO(k) is “infinite dimensional”, and has a “smoothly“ embedded subspace
BO(k) of “codimension k”. To find the embedded bordism class of a homotopy class [h] of the form
h : P → MO(k), simply take a representative of [h] that is “transverse regular” on BO(k) – let’s
say h1. The embedded submanifold it represents can be obtained by taking h−1

1 (BO(k)) as usual.
If h1 and h2 are homotopic and “transverse regular” on BO(k) then a “smooth” homotopy of the
form H : P × I → MO(k) can be chosen which connects them, and is also “transverse regular” on
BO(k). The embedded submanifold associated to H shows that the embedded submanifolds B1, B2

associated to h1 and h2 are indeed embedded bordant.
Also note that MO(k) is a pointed space, with basepoint “far away” from (not inside of) BO(k).

As a consequence, the MO classification theorem (6.5.1) works even when P is not a manifold, but
instead is a pointed space and looks like a manifold at all points except the basepoint. In particular,
if P is a manifold, this theorem can be applied to ΣN (P, p0) or Σ

NP+.

∼ ∗ ∼

Now we move on to define MO(k) and BO(k), although understanding its construction is not
necessary for this thesis.

Definition 6.5.5. MO(k) is the Thom space associated to γn → BO(n), the universal vector bundle
of rank n.

Of course, at this point this is not really enlightening. There are three things we must cover for
this definition to make sense:

• What is a Thom space? (6.5.6)

• What is BO(n)? (6.5.7)

7The basepoint of P is ∞, while MO(k) is a pointed space, as discussed later on.
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• What is a universal vector bundle? (6.5.10)

Definition 6.5.6 (Thom space; see (§I.11) of [CF64]). Suppose there is given a vector bundle
ξ : E(ξ) → B(ξ), with a smoothly varying inner product on the fibers8. As we have a smoothly
varying inner product, for each fiber Rn we can take the closed unit ball around the origin; let the
union of these balls for each fiber be the space D(ξ), and the union of the unit spheres be S(ξ). The
Thom space T (ξ) associated to the vector bundle ξ is by definition the pointed space D(ξ)/S(ξ),
with the basepoint being the point associated to S(ξ).

Remark 6.5.6.1. In this thesis, all B(ξ)’s can be equipped with a smoothly varying inner product.

Remark 6.5.6.2 (See page 25 of [CF64]). T is a functor from the category of vector bundles and
bundle maps to the category of pointed spaces.

Definition 6.5.7 (BO(k)). Let BO(k) be the Grassmannian Gr(k,R∞). That is, the points of BO(k)
are the k-dimensional linear subspaces of R∞.

Equivalently, it can be defined as the direct limit of the Grassmannians Gr(k,Rk+n) with n→∞.

The following two remarks and one definition are interesting, though highly irrelevant:

Remark 6.5.7.1. Usually, BO(k) is not defined to be unique, and the definition above is just a single
construction. Following the logic of the next remark, it is usually introduced as a classifying space
(6.5.8) for O(k).

Remark 6.5.7.2. There is a weakly contractible space EO(k), and a proper, free action of O(k) on
it, such that the quotient by this action is O(k). The definitions of the concepts in this last sentence
are:

• weakly contractible: a space X such that πi(X) = 0 for all i ≥ 0

• proper action: G is a topological group and the map G×X → X×X, (g, x) 7→ (gx, x) is proper

• free action: gx = hx =⇒ g = h for any g, h ∈ G and x ∈ X

The quotient map p : EO(k) → BO(k) is a fiber bundle with O(k) as a fiber. This makes BO(k) a
classifying space (6.5.8) for O(k).

Definition 6.5.8. Suppose there is given a topological group G. A classifying space for G is a
space which is a quotient of a weakly contractible space by a proper free action of G. It is typically
denoted BG, while the weakly contractible space is denoted EG.

Before we move on to defining the universal vector bundle, it is customary to present a sketched
definition of the Grassmannians.

Definition 6.5.9. The Grassmannian Gr(k, V ), with k > 0 and V a real vector space, is the
topological space whose points are the k-dimensional linear subspaces of V . The topology is as one
would expect.

Remark 6.5.9.1. For finite dimensional vector spaces, the Grassmannians are compact smooth man-
ifolds.

Finally, let us focus on universal vector bundles.

Definition 6.5.10 (Universal vector bundle). Let B be a Grassmannian of the form Gr(k, V ). The
universal/tautological vector bundle γk → B is defined as follows: for each W ∈ B and x ∈ W
(W,x) (W is a linear subspace!) is a point of γk, and its image in the bundle map is W . The topology
is as one would expect.

In the infinite dimensional case, γk can be defined as the direct limit of the γkn’s, with γkn →
Gr(k,Rn+k) being the finite dimensional universal vector bundle.

8A fiber is the inverse image of a point in B(ξ).
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Remark 6.5.10.1. Combining all these definitions, we can see that BO(k) is “smoothly” embedded
into MO(k) in a natural way, and that it is “k-codimensional”.

∼ ∗ ∼

The sequence (MO(k))k≥1 – sometimes simply denoted as MO – is sometimes referred to as a
(Thom) spectrum. This is due to the following definition, similar to those used in stable homotopy
theory and important in generalized cohomology theories:

Definition 6.5.11. A spectrum is a sequence of spaces (Xn)n∈N and maps ΣXn → Xn+1.

It is frequent that other criteria are included in the definition. This definition implies that there
are maps πk(Xn) → πk+1(Xn+1) induced by the composition πk(Xn) → πk+1(ΣXn) → πk+1(Xn+1).
We do not detail here how the MO(k)’s form a spectrum.

6.6 The proof

Defining everything in figure 6.1, which includes the definitions of both the bijection and its inverse
in (a) of theorem 6.1.1, makes up the bulk of the proof: after we are finished with them, the actual
proof is fairly straightforward.

The variable N will be increased at a few places throughout the proof, but an exact value for it
could be computed. First, let N be large enough that any closed n-manifold can be embedded into
RN (2n + 1 is enough by the Whitney embedding theorem (B.0.2)). We only brought this subject
forward to somewhat motivate the presence of N in the later parts.

It should also be noted that all horizontal arrows of figure 6.1 will mean pointed maps, and
we always consider their based homotopy classes. This is why we wrote P+ in the top-left corner
instead of P . Thankfully, the unbased homotopy classes of maps of the form P → X are in a one-
to-one correspondence with the based homotopy classes of pointed maps P+ → (X,x0) (6.2.17), so
it suffices to show a bijection between the latter set and Nn−k(P ).

6.6.1 The static parts

Q
φ

//

K(Z2, k)

ΩNMO(k +N)

A

g

OO

� _

ĝ

��

BO(k +N)
� _

i

��

ΣNQ
φ̂

// MO(k +N)

p

$$ (S1)

��

oo
(S2)

oo

(S3)

==

(S4)

::

Figure 6.7: The objects and maps independent of the
choice of [B, f ] or [h].

Before we move on to the definition of the
bijection, let us establish the “static” right-
hand side of figure 6.1. This will be aided
by the less cluttered figure of 6.7.

Suppose n and N is already determined.
Then as stated in theorem 6.1.1, we will be
studying elements of Nn−k(P ) and maps of
the form P → ΩNMO(k +N). Thankfully
after sections §6.2 and §6.5, we already un-
derstand what ΩNMO(k +N) is.

Of course, we will want to use the classi-
fying property (6.5.1) of MO(k+N) in the
proof, so we keep in mind the inclusion map
i : BO(k+N) ↪→MO(k+N) of this theo-
rem. This gives us the bottom-right corner
of figure 6.7.

Where does Q come from? It is con-
nected to one of the main ideas of the
proof, which will be that we want to apply theorem 6.5.1 to the (homotopy class of the) map
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id :MO(k+N)→MO(k+N) to get a “universal” embedded submanifold inMO(k+N). Moreover,
we would also like to have a similar “universal object” in ΩNMO(k+N), corresponding to its identity
under our main theorem9 (6.1.1). However, neither MO(k+N) nor ΩNMO(k+N) is a manifold, so
we have to approximate them with manifolds first: Q will be the approximation of ΩNMO(k +N),
while ΣNQ will act as the approximation of MO(k +N).

How do we construct Q? Let X be the CW complex and φ0 : X → ΩNMO(k +N) be the weak
homotopy equivalence provided by our CW approximation theorem (6.3.1). Let Y be the skeleton of
X up to a large dimension, so that φ0|Y : Y → ΩNMO(k+N) induces isomorphisms on the homotopy
groups up to some dimension greater than n+1. This ensures that any map h : P+ → ΩNMO(k+N)
of an n-manifold P can be factored through φ0|Y , up to homotopy at least. Now let Q be a manifold
homotopy equivalent to Y (6.3.3)10, and φ : Q→ ΩNMO(k+N) be the composition of this homotopy
equivalence and φ0|Y . Choose a basepoint q0 ∈ Q for Q such that φ becomes a basepoint-preserving
map. We will denote the dimension of Q by m.

Now that we have defined our basic objects, let us move over to defining the maps of the diagram
in the order indicated by the dotted arrows.

(S0) φ is defined in the paragraph above as an analogue of the identity map id : ΩNMO(k +N)→
ΩNMO(k +N). We should not forget about the fact that any map h : P+ → ΩNMO(k +N)
of an n-manifold P can be factored through φ : Q→ ΩNMO(k +N) up to homotopy.

(S1) Applying the Eckmann-Hilton duality (6.2.1) N times gives us a homotopy class of maps [φ̂] of
the form φ̂ : ΣNQ→MO(k +N) corresponding to [φ]. We may assume φ̂ to be “smooth”.

(S2) By the classification theorem regarding the MO spectrum (6.5.1), there is associated11 an
embedding ĝ : A ↪→ ΣNQ to the homotopy class [φ̂]. Reminder of (6.5.4): roughly speaking, we
simply make φ̂ transverse regular on BO(k + N) ⊂ MO(k + N) using a homotopy, and take
the pullback (6.4.4) A := φ̂−1(BO(k +N) ∩ Im φ̂).

(S3) A is only determined up to embedded bordism in the (Q−{q0})×RN part of ΣNQ. Whichever
representative we take of the equivalence class to be A, it can then be projected to the first
coordinate. Composing the embedding ĝ with the projection (Q − {q0}) × RN → Q gives the
differentiable12 map g : A→ Q.

(S4) Take the cohomology class in Hk(Q;Z2) represented by [A, g] ∈ Nm−k(Q)13. According to the
bijection (3.2.13) between Hk(X;G) and [X,K(G, k)], we have a map

p : Q→ K(Z2, k)

associated to this cohomology class. We will accept the following without proof (for details, see
§III of [Tho54]). ΩNMO(k + N) is homotopy equivalent to a product of copies of Eilenberg-
MacLane spaces, among which is a K(Z2, k). This map p corresponds to the projection of
ΩNMO(k +N) onto this component.

9Of course, we can’t apply this theorem before we prove it. Instead, we first create the “universal object” through
other means, and then use it to obtain the proof.

10One can construct such a manifold by embedding Y in some euclidean space and taking a tubular neighborhood
(for their definition and existence, see pages 21–22 of [CF64]). This of course yields a manifold with boundary.

11ΣNQ is the one-point compactification of (Q−{q0})×RN by (6.2.11), so the pointed version of the MO classification
theorem holds. This version of the theorem then ensures that ĝ maps into this direct product part.

12The MO classification theorem (6.5.1) gives a smooth embedding ĝ, and the projection keeps this smoothness.
13MO(k +N) classifies embedded manifolds of codimension k +N , and Q× RN ⊂ ΣNQ is N +m dimensional.
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6.6.2 Assigning bordism classes to homotopy classes

We want to define the bijection

Nn−k(P )
∼ // [P+,Ω

NMO(k +N)]∗,

however, it is easier to first define its inverse. In this, figure 6.8 will be helpful to us. Suppose there

P+

h

))

h

// Q
φ

// ΩNMO(k +N)

B

f

OO

j
// A

g

OO

(h1)
��

oo

(h2)

Figure 6.8: How to assign a bordism class [B, f ] to the homotopy class represented by h.

is given a homotopy class of pointed maps [h] represented by h : P+ → ΩNMO(k +N). To this, we
want to assign an element [B, f ] ∈ Nn−k(P ). This is done in two steps:

(h1) Change h by a homotopy to get a representative of the homotopy class [h] that can be factored
through φ : Q→ ΩNMO(k+N). This can be done as noted in (S0), and it gives a map (more
precisely, a homotopy class of maps [h] of the form) h : P+ → Q.

(h2) We take the pullback (6.4.9) of g : A → Q through h14: first, we make h transverse to g, then
take the “inverse image” of the “intersection” of Imh ∩ Im g by h. This gives us the singular
manifold (B, f) in P . Its bordism class will be the one associated to the homotopy class
h. As a matter of fact, because this is a transverse pullback, (B, f) is only well-defined up to
unoriented bordism anyway.

The map j : B → A is constructed in (h2), and is the one that makes the square below commute. It
exists due to remark 6.4.9.1.

P+
h

// Q

B

f

OO

j
// A

g

OO

Of course, (A, g) is also only well-defined up to unoriented bordism, as (A, ĝ) is well-defined up to
embedded bordism. It is easy to check however, that changing the choice of (A, ĝ) does not change
the bordism class [B, f ].

6.6.3 Assigning homotopy classes to bordism classes

Now let us move on to defining the bijection Nn−k(P )
∼→ [P+,Ω

NMO(k + N)]∗. In this, figure 6.9
will be of use. Suppose there is given a bordism class [B, f ] ∈ Nn−k(P ). We then want to assign an
element of [P+,Ω

NMO(k +N)]∗ to this class. For this, we fix a singular manifold (B, f).

14More precisely, the pullback through the restriction of h to P .
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P+

h

&&

Q ΩNMO(k +N)

B

f

OO

� _

f̂
��

ΣNP+

ĥ

99

ΣNQ MO(k +N)

(B1)

$$

(B2)

��

(B3)

OO

Figure 6.9: How to assign a homotopy class [h] to a bordism class [B, f ].

(B1) First, we create an injective map f̂ : B ↪→ P × RN (⊂ ΣNP+) that when composed with
the projection P × RN → P yields f . This is easy to achieve using only the second set of
coordinates in P × RN if N is large enough15: just take any embedding ι : B ↪→ RN , and

consider the composition f̂ : B
(f,ι)

// P × RN �
�

// ΣNP .

The map f of the first set of coordinates may not be smooth, but by smoothing out f̂ and
taking its projection onto P we remain in the bordism class [B, f ]. That is, we may assume
that f is smooth and f̂ is a smooth embedding.

(B2) As f̂ is a smooth embedding into ΣNP+ (which is the one-point compactification of P×RN ), the
(pointed) classifying property of the MO spectrum (6.5.1) associates to its embedded bordism
class a homotopy class of pointed maps [ĥ] of the form ĥ : ΣNP+ →MO(k +N).

(B3) Using the Eckmann-Hilton duality (6.2.1) N times we get a homotopy class [h] of the form
h : P+ → ΩNMO(k + N) associated to this homotopy class [ĥ]. This will be the homotopy
class associated to the bordism class [B, f ].

Now only one thing remains to check in this subsection: is this a well-defined correspondence? For
this, we only have to show that ĥ introduced in step (B2) is well-defined, that is, any two (B, f̂)’s
are embedded bordant.

Suppose the singular manifolds (B1, f1) and (B2, f2) represent the same bordism class inNn−k(P ).
We may take f1, f2 and F of the connecting singular (n− k+1)-manifold (C,F ) to be smooth (if f1
and f2 are smooth, F can be chosen to be too). If we apply (B1) to the singular manifold (C,F ) we
get a singular manifold (C, F̂ ) which shows that (B1, f̂1) and (B2, f̂2) are bordant in P × RN – for
certain fixed maps f̂1 and f̂2. Moreover, it is easy to see that (C, F̂ ) also proves that these two are
embedded bordant16. Now we only have to prove that if we choose f̂1 in two different ways – both
corresponding to the same map f1 – then (B1, f̂11) and (B2, f̂12) are embedded bordant in P × RN .
This once again is fairly simple. Clearly f̂11 and f̂12 are homotopic: just linearly interpolate the second
coordinate. Change this homotopy so that it becomes constant in time near t = 0 and t = 1. Using

15We could increase N if we wanted to, but our initial value for it is already sufficiently large. However, we may have
to increase it to make everything well-defined for bordism classes.

16Take a collaring neighborhood of B1 in C using (B.0.4). To define the second coordinate of the map C → (P×RN )×I,

simply send everything to 1 outside this neighborhood, and send the point (b1, t) of the collar B1 × I to (F̂ (b1), θ(t))
with an appropriately picked θ : I → I.
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the Whitney embedding theorem (B.0.2), approximate this homotopy with an embedding, keeping it
unchanged near t = 0 and t = 1. The result shows that (B1, f̂11) and (B2, f̂22) are embedded bordant.

6.6.4 The inverse relation

As a preparation for the proof that the assignments defined in the last two subsections (§6.6.2 and
§6.6.3) are indeed inverses of each other, we finish the figure at the beginning of this section (6.1) by

introducing the map ĥ : ΣNP+ → ΣNQ associated to some map h : P+ → Q. ĥ is simply the N -time
reduced suspension (6.2.6) of h, which was in turn defined as an element of the homotopy class [h]
that when composed with [φ] yields [h]. Now let us finally move on to the actual proof. Figure 6.11,

P+

h

&&

h

// Q
φ

// ΩNMO(k +N)

ΣNP+
ĥ // ΣNQ

��

ΣN

��

Figure 6.10: The definition of ĥ as the suspension of h.

a diagram of all the morphisms and objects defined so far is presented on page 90 to make following
the proof easier.

Applying (§6.6.3) to the result of (§6.6.2) is the identity

We want to show that the assignment [h] 7→ [B, f ] 7→ [h′] is the identity. Let us go over what
these assignments mean. The crucial step is going to be how we perform (B1), the others are just
applications of previous results.

(h1) A h : P+ → Q is picked such that [h] = [φ][h]. This exists due to the definition of Q.

(h2) h is changed by a homotopy such that it becomes transverse regular (6.4.2) on “g(A)”. Next, we

take (A, g)’s pullback (6.4.9), which is basically “h
−1

(Im g)”. This gives us the singular manifold

B
f
// P and the map j which makes the square below commute.

P+
h

// Q

B

f

OO

j
// A

g

OO

(B1) f can be considered smooth, as it is a pullback of the smooth embedding g through ĥ, which is
chosen to be smooth.

Now we pick f̂ in such a way that the square below (with ĥ the suspension (6.2.6) of h) becomes

commutative. As h was transverse regular (6.4.2) on (A, g), ĥ is transverse regular on ĝ(A), so
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this commutativity implies that (B, f̂) is the pullback (6.4.4) of (A, ĝ).

B� _

f̂
��

j
// A� _

ĝ
��

ΣNP+
ĥ // ΣNQ

(E6.6.1)

We construct the appropriate f̂ using the diagram below. As ĝ maps A into Q×RN ⊂ ΣNQ, we
can take its “second coordinate function” (its composition with the projection Q×RN → RN ).

P B
f

oo
j

//

ι

**
(f,ι)

��
f̂
��

A

ĝ

''
// Q× RN

��

� � // ΣNQ

RN

ΣNP+ P × RN? _oo

// rr

pp

By taking the composition of this with j as the ι of the original description of (B1), then defining

f̂ to be the composition f̂ : B
(f,ι)

// P × RN �
�

// ΣNP+ we obtain the desired f̂ which makes

the square (E6.6.1) commute.

(B2) As noted earlier, the commutativity of (E6.6.1) implies that (B, f̂) is the pullback (6.4.4) of
(A, ĝ). As (A, ĝ) was defined as a generalized pullback (6.4.8) of BO(k + N) ⊂ MO(k + N)

through φ̂ by using theMO classification theorem (6.5.1) (see (6.5.4)), we can deduce that [φ̂ĥ]
is associated to (B, f̂) by the same theorem. This is because of a similar claim to (6.4.5): (B, f̂)

is a pullback of (A, ĝ) through ĥ, which is a pullback of (BO(k+N), i) through φ̂, so (B, f̂) is

a pullback of (BO(k +N), i) through φ̂ĥ. Thus ĥ = φ̂ĥ.

(B3) This step simply consists of applying the Eckmann-Hilton duality (6.2.1) to the homotopy class
[ĥ] defined by ĥ : ΣNP+ →MO(k +N) a total of N times. Instead, we first apply the duality
to the composition [h] = [φh] (h : P+ → ΩNMO(k + N)) N times. By an iterated version of
(a) of (6.2.2), we can calculate this dual by taking the Nth reduced suspension of [h] and the
Nth dual of [φ] and composing the two. According to the last step, this is none other than

[ĥ] = [φ̂][ĥ]. So conversely, the Nth dual to [ĥ] is indeed [h], proving this half of our main
theorem (6.1.1).

Applying (§6.6.2) to the result of (§6.6.3) is the identity

We want to show that the assignment [B, f ] 7→ [h] 7→ [B′, f ′] is the identity. The idea is something
along these lines: after executing all five steps (B1)-(h2) we do not necessarily get the same singular
manifold as we started with. However, we may still continue repeating the steps in a cyclic manner,
going over (B2) and (B3) again starting with the singular manifold (B′, f ′) now. In (B2)17 we note

how (B′, f̂ ′) is the embedded manifold associated to the homotopy class [φ̂][ĥ]. Applying a similar
reasoning to the one that appeared in (B3) of the last subsection (§6.6.4) tells us that (B, f̂) is also

17Similarly to what happened in this step in the last subsection (§6.6.4).
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P+

h

))

h

// Q
φ

//

K(Z2, k)

ΩNMO(k +N)

B

f

OO

� _

f̂

��

j
// A

g

OO

� _

ĝ

��

BO(k +N)
� _

i

��

ΣNP+

ĥ

66

ĥ // ΣNQ
φ̂

// MO(k +N)

p

!!

Figure 6.11: All the spaces and maps of the proof.

the embedded submanifold associated to the homotopy class [φ̂][ĥ], so they must be of the same
embedded bordism class, and thus their projections – (B, f) and (B′, f ′) – must be in the same
bordism class, which was our goal to prove.

Let us once again go over how this assignment works, and explain the reasoning above in detail.

(B1) We copy all five steps word by word from their original discussion. That is, in this step we
define an f̂ : B → ΣNP+ where actually f̂(B) ⊂ P ×RN , and the composition of the projection
to P and f̂ gives f (and all involved maps are smooth).

(B2) We take an ĥ : ΣNP+ → MO(k +N) such that [ĥ] corresponds to the embedded submanifold

B
f̂
↪→ ΣNP+ according to the MO classification theorem (6.5.1).

(B3) Applying the Eckmann-Hilton duality (6.2.1) N times gives a homotopy class [h] with h : P+ →
ΩNMO(k +N) corresponding to [ĥ].

(h1) There is a homotopy class [h] with h : P+ → Q such that [h] = [φ][h], by the definition of Q.
However, using h, we can further study [ĥ]: similar to what we did in step (B3) in the proof of
the other direction (§6.6.4), we calculate the Nth dual of [φh] using (a) of (6.2.2). That is, by

taking the Nth reduced suspension of h and the Nth dual of φ, and composing them: [φ̂][ĥ].

As this is equal to the dual of [h], we get that [φ̂][ĥ] = [ĥ].

(h2)-(B2) Now repeat everything we did in the last subsection (§6.6.4) in steps (h2) through (B2). This
gives us a singular manifold (B′, f ′) in P , and maps j′ : B′ → A, f̂ ′ : B → ΣNP+ which among
other things make the following square commute.

B′
� _

f̂ ′
��

j′
// A� _

ĝ
��

ΣN+P
ĥ // ΣNQ

(E6.6.2)
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Furthermore, the commutativity of this square (in a similar way to what happened in (B2))

implies that the homotopy class [ĥ′] associated to the embedded submanifold B′ f̂ ′
↪→ ΣNP+ by

theMO classification theorem (6.5.1) is the homotopy class [φ̂][ĥ]. But just in the last step (h1),

we calculated that the homotopy class associated to the embedded submanifold B
f̂
↪→ ΣNP+ is

also [φ̂][ĥ]. As the MO classification theorem gives a bijection, in particular gives an injection,

we know that B
f̂
↪→ ΣNP+ and B′ f̂ ′

↪→ ΣNP+ are embedded bordant. This of course actually
means that they are embedded bordant in P ×RN , as stated in the MO classification theorem
(6.5.1).

Now all we have to do is to compose f̂ and f̂ ′ with the projection P × RN → P to get two
elements of the same18 bordism class of Nn−k(P ): (B, f) and (B′, f ′) by the constructions of f̂
and f̂ ′. As [B′, f ′] ∈ Nn−k(P ) was the bordism class assigned to the homotopy class assigned
to the bordism class [B, f ], we have shown that this composition is too the identity.

6.6.5 Cohomology

K(Z2, k)

P

88

h //

α

Q

p

ff

γ

B

f

OO

j
// A

g

OO

11

�� �oo�

h
∗

oo� //

�



��

OO

qq

Figure 6.12: The proof

We still have some words to say about the cohomology classes rep-
resented by bordism classes (to prove (c) of 6.1.1). While in (S0) we
stated that any map of the form h0 : P+ → ΩNMO(k + N) can be
factored through φ : Q→ ΩNMO(k+N), the same is true for maps
of the form h : P → ΩNMO(k+N). This way, we can pick h : P → Q
corresponding to [B, f ] such that (B, f) is the pullback of (A, g) (see
(§6.6.4) for the details of the construction). After this, the proof is
just an application of the fact that the cohomology class represented
by a pullback is the pullback of the cohomology represented by the
original embedded/immersed manifold (see (6.4.6), and the mention
of its generalization in (6.4.9)).

The deduction is as follows (illustrated by figure 6.12): the co-
homology class α ∈ Hk(P ;Z2) represented by [B, f ] ∈ Nn−k(P ) is
the pullback α = h

∗
(γ) of the cohomology class γ ∈ Hk(Q;Z2) rep-

resented by (A, g), because (B, f) is a pullback of (A, g). On the
other hand, by the definition of p : Q → K(Z2, k) (see (S4)) the
cohomology class represented by (A, g) is the one corresponding to
p : Q → K(Z2, k) under the natural correspondence Hk(Q;Z2) ←→ [Q,K(Z2, k)] established in
theorem 3.2.13. According to remark 3.2.13.1, the naturality of this bijection means that if there is
a map f0 : X → Y , then the following square commutes:

[X,K(Z2, k)] // Hk(X;Z2)

[Y,K(Z2, k)]

◦[f0]

OO

// Hk(Y ;Z2)

f∗0

OO

where the left vertical map is just the composition by [f0] (the homotopy class of f0), and the right
vertical map is f0’s induced map on cohomology. Putting X = P , Y = Q, and f0 = h tells us
that α = h

∗
(γ) corresponds to the composition ph, which was just the statement of (c) of our main

theorem (6.1.1).
With this, the entire proof of (6.1.1) is finished.

18The projections are indeed in the same class: the projection of the embedded bordism shows this.
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Appendix A

Algebraic preliminaries

A.1 Homological algebra

The contents of this section are covered in compulsory algebra courses here at ELTE, but a quick
refresher might come in handy for the reader. Everything here is stated for abelian groups, but it all
generalizes to arbitrary R-modules (with R being a commutative ring with unity).

Definition A.1.1. (a) A surjective homomorphism of abelian groups is said to be an epimorphism.

(b) An injective homomorphism of abelian groups is said to be a monomorphism.

Definition A.1.2. (a) Suppose there are homomorphisms f : B → C and g : A → B of abelian
groups, illustrated with a diagram as

A
g
// B

f
// C.

The pair of homomorphisms is said to be exact (at B) iff Ker f = Im g, or in other words if the
kernel of f is the same as the range of g.

(b) A longer sequence of abelian groups and homomorphisms connecting the adjacent ones is said
to be exact (at all groups), if all consecutive pairs of homomorphisms are exact.

(c) An exact sequence of the form

0 // A // B // C // 0

is said to be a short exact sequence.

(d) An infinite sequence of abelian groups (infinite in at least one direction) which is exact at all
groups is said to be a long exact sequence1.

Remark A.1.2.1. • A
f
// B // 0 is exact iff f is surjective (epi).

• 0 // A
f
// B is exact iff f is injective (mono).

• 0 // A
f
// B // 0 is exact iff f is an isomorphism between A and B.

1Sometimes any exact sequence which is not a short exact sequence is called a long exact sequence.
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Definition A.1.3. A short exact sequence

0 // A
g
// B

f
// C // 0

is said to split, if any of the equivalent statements are satisfied:

(a) There is a homomorphism p : B → A such that idA = pg.

0 // A g
// B

f
//

p
zz

C // 0

(b) There is a homomorphism q : C → B such that idC = fq.

0 // A
g
// B

f
// C //

q
yy

0

(c) There is an isomorphism h : B → A⊕C such that hg is the injection i : A ↪→ A⊕C, i(a) = (a, 0),
and fh−1 is the projection j : A⊕ C → C, j(a, c) = c.

0 // A
g
//

i ##

B
f
//

h
��

C // 0

A⊕ C
j

;;

Lemma A.1.4 (Splitting lemma). The three statements of the definition above are indeed equivalent.

∼ ∗ ∼

Definition A.1.5. An abelian group P is called projective if for any abelian groups A,B, any
homomorphism g : P → B and any epimorphism f : A→ B there exists a homomorphism h : P → A
such that fh = g. In other words, there exists a homomorphism h that makes the diagram below
commutative.

P
h

��

g

��

A
f
// // B

Claim A.1.6. An abelian group P is projective iff it is isomorphic to a direct summand of a free
abelian group F .

Corollary A.1.6.1. Free abelian groups are projective.

Claim A.1.7. An abelian group P is projective iff every short exact sequence of the form below splits.

0 // A // B // P // 0

Corollary A.1.7.1. Suppose there is a short exact sequence of the form below, with F being a free
abelian group. Then this short exact sequence splits.

0 // A // B // F // 0

Claim A.1.8. Any subgroup of a free abelian group is free.
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∼ ∗ ∼

Definition A.1.9. Hom(A,B) is the set of all homomorphisms between the abelian groups A and
B. It can easily be given an abelian group structure.

Claim A.1.10. Hom(−, G) is a contravariant functor. That is, to every homomorphism f : A→ B
there is associated a homomorphism Hom(B,G)→ Hom(A,G) (this is the composition with f), such
that:

(a) The identity homomorphism is associated to the identity homomorphism.

(b) The composition of associated homomorphisms is the associated homomorphism of the (re-
versed) composition.

Applying the Hom(−, G) functor will be called dualization in this thesis.

Claim A.1.11. Suppose there is an exact sequence of the form given below.

A // B // C // 0

Then the associated sequence below is exact:

Hom(A,G) Hom(B,G)oo Hom(C,G)oo 0oo

Remark A.1.11.1. It is not true that the dual of a short exact sequence is exact.

Claim A.1.12. The dualization

. . . Hom(Cn+1, G)oo Hom(Cn, G)
f∗n+1
oo Hom(Cn−1, G)

f∗noo . . .oo

of the chain complex

. . . // Cn+1
fn+1

// Cn
fn
// Cn−1

// . . .

is a chain complex itself.

Claim A.1.13. Suppose there is given a split short exact sequence.

0 // A // B // C // 0

Then its dual is also a split exact sequence.

0 Hom(A,G)oo Hom(B,G)oo Hom(C,G)oo 0oo

A.2 Diagram chasing

This section is for properly stating all of the diagram chasing lemmas used in this thesis. The five
lemma is also proved as an illustration. All others can be done in a similar manner.

Theorem A.2.1 (Five lemma).

A1

∼
��

// B1

∼
��

// C1

��

// D1

∼
��

// E1

∼
��

A2
// B2

// C2
// D2

// E2

Suppose that the vertical ∼ // arrows are isomorphisms in the commutative diagram above. Then
the homomorphism C1 → C2 is also an isomorphism.

Proof.
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A.2. DIAGRAM CHASING

Injectivity.

C1
//

c1
C2

0
� //

Suppose c1 ∈ C1 maps to 0 ∈ C2.
We will prove that c1 = 0.

C1

((

//
c1

D1
∼

((

d1

C2
//

0
D2

0

� //�
((

�
((� //

By commutativity, c1 maps to
some d1 ∈ D1 which maps to 0 ∈
D2.

D1 ∼ //
d1

D2

0
�oo

As D1 ∼ //D2 is an isomorphism,
d1 = 0.

B1
//

b1
C1

//
c1

D1

0
� // � //

As c1 7→ 0 ∈ D1, by exactness it
has an inverse image b1 ∈ B1.

B1

∼
((

//
b1

C1

((

c1

B2
//

b2
C2

0

� //�
((

�
((� //

By commutativity b1 maps to some
b2 ∈ B2 which maps to 0 ∈ C2.

A2
//

a2
B2

//
b2

C2

0
� // � //

As b2 7→ 0 ∈ C2, by exactness it

has an inverse image a2 ∈ A2.

A1 ∼ //
a1

A2

a2
�oo

As A1 ∼ //A2 is an isomorphism,
a2 has an inverse image a1 ∈ A1.

A1

∼
((

//
a1

B1
∼

((

x

A2
//

a2
B2

b2

� //
�

((

�
((� //

By commutativity a1 maps to some
x ∈ B1 which maps to b2 ∈ B2.

B1 ∼ //
b1

x

B2

b2
� //

�
))

As B1 ∼ //B2 is an isomorphism
and x and b1 both map to b2, they
must be equal.

A1
//

a1
B1

//
b1

C1

c1

0� // � //
& 33

As a1 7→ b1 7→ c1, by exactness
c1 = 0. This is what we had to
prove.

Surjectivity.
Remove any meaning previously as-
signed to lowercase letters. Assume
that c2 ∈ C2. We will prove that it
has an inverse image c1 ∈ C1 which

maps to c2.

C2
//

c2
D2

//
d2

E2

0
� // � //

c2 maps to some d2 ∈ D2 which
maps to 0 ∈ E2 by exactness at
D2.

D1 ∼ //
d1

D2

d2
�oo

As D1 ∼ //D2 is an isomorphism,
d2 has an inverse image d1 ∈ D1.

D1

∼
((

//
d1

E1
∼

((

e1

D2
//

d2
E2

0

� //
�

((

�
((� //

By commutativity d1 maps to some
e1 ∈ E1 which maps to 0 ∈ E2.

E1 ∼ //
e1 = 0

E2

0
�oo

As E1 ∼ //E2 is an isomorphism,
0’s inverse image e1 ∈ E1 is 0.

C1
//

c1
D1

//
d1

E1

0
� // � //

As d1 7→ 0 ∈ E1, by exactness it
has an inverse image c1 ∈ C1.

C1

((

//
c1

D1
∼

((

d1

C2
//

x
D2

d2

�
((

� //

� //

�
((

By commutativity c1 maps to some

x ∈ C2 which maps to d2 ∈ D2.

C2
//

x
c2

c2 − x
D2

d2
0

� ,,� //
� //

As c2, x 7→ d2 ∈ D2, we have
c2 − x 7→ 0 ∈ D2.

B2
//

b2
C2

//
c2 − x

D2

0
� // � //

As c2 − x 7→ 0 ∈ D2, by exactness
it has an inverse image b2 ∈ B2.

B1 ∼ //
b1

B2

b2
�oo

As B1 ∼ //B2 is an isomorphism,
b2 has an inverse image b1 ∈ B1 .

B1

∼
((

//
b1

C1

((

y

B2
//

b2
C2

c2 − x

�
((

� // �
((� //

By commutativity b1 maps to some
y ∈ C1 which maps to c2 −x ∈ C2.

C1
//

y

c1
y + c1

C2

c2 − x

x
c2

� //
� //
� //

As y 7→ c2 − x ∈ C2, c1 7→ x ∈ C2,

we have y + c1 7→ c2 ∈ C2. This is

what we had to prove.

Lemma A.2.2 (Bow tie lemma). Suppose the row and column of the commutative diagram below is
exact. Then we have Im gA/ Im fA ≈ Im gB/ Im fB.

B1

��

fB

  

A1
//

fA   

X

gA

��

gB
// B2

A2

Or in other words:

Im(X → A2)/ Im(A1 → A2) ≈ Im(X → B2)/ Im(B1 → B2).

Theorem A.2.3 (Zig-zag lemma; thm[Hat02]:2.16). Suppose there is given a short exact sequence
of chain complexes C∗, D∗ and E∗ (their maps are the chain maps; see (1.2.6)):

0 // C∗ // D∗ // E∗ // 0 ,

that is, in the following commutative diagram the rows are chain complexes and the columns are
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exact:

0

��

0

��

0

��

0

��

. . . // Cn+1
//

� _

��

Cn //
� _

��

Cn−1
//

� _

��

Cn−2
//

� _

��

. . .

. . . // Dn+1
//

����

Dn
//

����

Dn−1
//

����

Dn−2
//

����

. . .

. . . // En+1
//

��

En //

��

En−1
//

��

En−2
//

��

. . .

0 0 0 0

Then there is associated a long exact sequence of their homology groups:

. . . // Hn(C∗) // Hn(D∗) // Hn(E∗)

∂

// Hn−1(C∗) // Hn−1(D∗) // Hn−1(E∗) // . . .

All maps are the ones induced by the chain maps, except for the connecting homomorphism ∂, which
is constructed in the course of the proof.

Theorem A.2.4 (Braid on four strands). Suppose the following three sequences of abelian groups are
exact (different arrow types are utilized to show which homomorphism belongs to which sequence):

. . . // Bn // An // ABn // Bn−1
// . . .

. . . // Bn // Xn
// XBn // Bn−1

// . . .

. . . +3 An +3 Xn
+3 XAn +3 An−1

+3 . . .

and the following diagram of “a braid on four strands”2 commutes:

· · ·Xn

"*

))

XAn
&&

%-

ABn−1

&&

))

Bn−2 · · ·

XBn

55

))

An−1

55

%-

XBn−1

55

))

· · ·ABn

55

77
Bn−1

55

77
Xn−1

55

3;
XAn−1 · · ·

Then the fourth strand is also exact, except at (XBn)n∈Z, where only Ker ⊂ Im is known.

2The design of this diagram was inspired by the one on page 206 of [Wen19].
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A.3. ADDITIONAL ALGEBRA

A.3 Additional algebra

The following additional algebraic tools are utilized in this thesis:

• Chain complexes and chain maps, introduced in section §1.2. Specifically, see definitions
1.2.5, 1.2.6 and 1.2.10, and statements 1.2.7, 1.2.11, 1.4.11 and 3.2.1.

• The Tor functor – or at least its basics – in section §1.4.2.

• Spectral sequences, introduced in section §2.3.

• Free resolutions of abelian groups and the Ext functor in section §3.2.1.

• Directed sets and direct limits, introduced in section §4.2.2
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Appendix B

Topology

The following statements about topology will be of use in this thesis. Most of these are not proved
in the primary and secondary sources, but instead are also referenced there.

∼ ∗ ∼

First, a lemma about differentiable manifolds. “Manifold” in this section means compact differ-
entiable manifold with boundary, unless otherwise stated.

Claim B.0.1 (Thm[CF64]:I.3.1). Suppose P and Q are closed disjoint subsets of the compact n-
manifold Bn. Then there exists a topological manifold Bn

1 ⊂ Bn with P ⊂ Bn
1 , Q disjoint from Bn

1

and Bn
1 closed in Bn. Moreover, Bn

1 can be given a differentiable structure by straightening the angle
at the corners (see §I.3 of [CF64]).

We also have the Whitney embedding theorem:

Theorem B.0.2 (Whitney embedding theorem; thm[CF64]:I.10.2). Suppose p > 2n. Then any
map f of the differentiable n-manifold Mn into Rp can be ε-approximated by an embedding g. If f is
already an embedding on some neighborhood of the closed set A ⊂Mn, we can choose g|A = f |A.

∼ ∗ ∼

From here on, we also assume all differentiable manifolds to be oriented.

Theorem B.0.3 (Thm[CF64]:1.1). Suppose U1 and U2 are open subsets of the topological n-manifold
Bn, which have differentiable structures that induce the same differentiable structure on U1 ∩ U2,
and which cover Bn. Then there exists a unique differentiable structure on Bn which induces the
differentiable structure of U1 and U2.

Theorem B.0.4 (Lem[Mil56]:3). For any (not necessarily orientable) differentiable manifold Bn

there exists an open set U ⊃ Ḃn and a diffeomorphism ϕ : U → Ḃn × [0, 1) with ϕ(x) = (x, 0) for
x ∈ Ḃn.

Corollary B.0.4.1. Using (B.0.3) and (B.0.4) we can glue together (not necessarily orientable,
differentiable) n-manifolds Bn

1 and Bn
2 if Ḃn

1 and Ḃn
2 are diffeomorphic, to create a manifold Cn =

Bn
1 ∪̇
Bn

∗

Bn
2 which induces the differentiable structure of the two halves. If both manifolds are oriented,

we may choose to glue them together “preserving orientation” or “reversing orientation”.

Now let us move on to theorems about the product of (differentiable) manifolds.
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Theorem B.0.5 (See pages 6-7 of [CF64]). Suppose Bn and Cm are manifolds. Then (Bn ×
Cm)− (Ḃn× Ċm) has a natural differentiable structure that induces the usual differentiable structure
on each section of the product, and is thus a manifold.

Theorem B.0.6 (See (§I.3.) of [CF64]). Suppose Bn and Cm are manifolds. Then Bn × Cm
has a natural differentiable structure which induces the usual differentiable structure on each section
of the product, and is thus a manifold.

∼ ∗ ∼

Finally, a few words about CW complexes. Before our main theorem, let us refresh the definition
of a good pair according to (1.4.5): a pair of spaces (X,A) is good, if A is a nonempty closed subspace
of X such that it has an open neighborhood V which deformation retracts onto A.

Theorem B.0.7 (Prp[Hat02]:Appendix/A.5). CW pairs – that is, pairs (X,A) where X is a CW
complex and A is a closed subcomplex – are good pairs.

The following is another fairly standard claim about CW complexes:

Claim B.0.8. A compact subspace Z (not necessarily a subcomplex) of a CW complex X has
nonempty intersections with only finitely many open cells.

As each point of a CW complex is contained in exactly one open cell, we have the following
corollary:

Corollary B.0.8.1. A compact subspace Z (not necessarily a subcomplex) of a CW complex X is
contained in skk(X) for some k ∈ N.
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