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1 Introduction

Deep learning is a commonly used algorithm type, its key attribution is learning

through examples. For instance, with an adequate amount of pictures of dogs and

cats, the computer can learn to distinguish between them in the case of previously

unseen images. This behavior is quite similar to human learning, moreover, with

deep learning computers are able to achieve human-level performance, sometimes

even exceed it (Alzubaidi et al., 2021).

Without deep learning, many digital developments would be unimaginable. It is the

key technology behind certain medical research (Nagpal et al., 2019). Learning from

examples, computers can detect brain tumors on MRI images with high accuracy,

which can promote and accelerate healing. Another real-life example where deep

learning is essential is marketing. Such algorithms analyze the individual’s prefer-

ences through social media or search history with the aim of personalization. The

result is accurate and successful advertising. Furthermore, deep learning brought

the breakthroughs to self-driving cars, which includes recognizing traffic signs and

identifying pedestrians. This technique is not only beneficial for self-controlling but

also for preventing accidents. To illustrate the advantages listed above, He et al.,

2020 presented a deep learning model called Mask R-CNN which is able to detect

objects accurately such as cars, pedestrians and traffic lights, and simultaneously

classify each pixel whether it is a part of a particular object or not.

Despite deep learning being able to perform surprisingly well, the mathematical

explanation of the phenomenon is quite poor. In other words, we lack deep un-

derstanding of generalization, therefore it is unknown exactly in which situations

will deep learning work and in which situations it won’t. Since deep learning is

based on optimization, specially on gradient descent related algorithms, which are

geometrically motivated, it is justified to study the optimization algorithms from

a geometrical point of view. This aspect could provide answers to the question of

generalization. This thesis examines the possible reasons why deep learning works

and investigates what role certain aspects play in it in a way was descried above.

More detailed introduction can be found in Section 3 after introducing some essential

concepts.
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2 Preliminaries

Before the main topic, we review some relevant concepts of deep learning as the

probabilistic model of deep learning, linear neural networks, generalization, and the

definitions of inductive bias, explicit and implicit regularization.

2.1 Probabilistic model

Consider a problem with a given labeled data set D = {(xn, yn)
N
n=1}, where xn is

the nth data point and yn is the corresponding label. We call D the training set

and xn a training point.

Denote the vector of xn with x and the vector of yn with y, then the N pairs of sam-

ples x,y come from an unknown distribution PrD(X, Y ), and we use the assumption

that (xn, yn) are independent and identically distributed for n = 1, . . . , N . In order

to predict the label y for a previously unseen x, we wish to estimate the distribution

of y given x. Specially, consider an estimating model Pr(Y |X = x; θ), which is a

family of probability distributions parametrized by θ. The goal is to fit the model

to the training data modifying the parameter θ. Fitting a probabilistic model

to the data means maximizing the log-likelihood of the dataset. Let p(y|x; θ) and

p(y|x; θ) be the corresponding probability density functions for one and N samples

respectively parametrized by θ. We now can write p(y|x; θ) as a product.

Statement 1. p(y|x; θ) = ΠN
i=1p(yi|xi; θ)

Proof.

p(y|x; θ) = p(x,y; θ)

p(x; θ)
=

p(x,y; θ)∫
· · ·

∫
p(x, t1, . . . , tN ; θ) dt1 . . . , dtN

iid
=

iid
=

p(x,y; θ)∫
· · ·

∫
ΠN

i=1p(xi, ti; θ) dt1 . . . , dtN

iid
=

ΠN
i=1p(xi, yi; θ)

ΠN
i=1p(xi; θ)

= ΠN
i=1p(yi|xi; θ)
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2. Preliminaries

Utilizing the previous statement we can derive the maximum log-likelihood

argmax
θ

log p(y|x; θ) = argmax
θ

log ΠN
i=1p(yi|xi; θ) = argmax

θ

N∑
i=1

log p(yi|xi; θ) =

= argmin
θ

N∑
i=1

− log p(yi|xi; θ)

(2.1)

2.2 Gradient based learning

If we define the loss function of a single data point as the negative log-likelihood

ℓ(θ) = ℓ(x, y, θ)) := − log p(y|x; θ) (2.2)

then the loss function of the whole data set is

L(θ) = L(y,x, θ) :=
N∑

n=1

ℓ(xn, yn, θ) =
N∑

n=1

− log p(yn|xn; θ) (2.3)

Therefore minimizing the prediction loss is equivalent to maximizing the log-

likelihood. In the case of the examined problems, we also consider the previous

model with appropriate estimating probability distributions.

Remark. We often modify θ with a neural network f that depends on the data

and has own parameters ρ: θ = f(x, ρ). In this case we adjust the parameters

ρ through the loss function, therefore we rather consider the loss as a function

of ρ. Thus Equation 2.3 becomes L(ρ) = L(y, f(x, ρ)) :=
∑N

n=1 ℓ(xn, yn, ρ) =∑N
n=1− log p(yn|xn; ρ).

Minimizing the loss function often happens with (Euclidean) gradient descent

(EGD). After initializing the parameter to θ0 and picking an arbitrary learning

rate η ∈ R, in each step the parameter is updated as

θt+1 = θt − η∇θL(θ), (2.4)

where ∇θL(θ) is the gradient of the loss w.r.t. θ. Consider the (Euclidean) gradient

flow (EGF) the continuous time limit of EGD, defined as

θ̇ = −η∇θL(θ) (2.5)
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2. Preliminaries

Remark. Stochastic gradient descent (SGD): let the training set be split perfectly

by m minibatches such that the batch size is B = N/m, then each gradient descent

step is evaluated only on a randomly chosen batch. This method is able to improve

the generalization (Roberts, 2018).

Remark. When all the activation functions of the neural network are the identity,

therefore fρ is a linear function, we call it linear neural network.

2.3 Generalization

After the training, we wish to evaluate the model’s generalization, namely the per-

formance on the unseen data, which is sampled from the same distribution as the

training data. We call it the test set. In the evaluation, the key point is the gen-

eralization error (or test error), which is either the loss function calculated on

the test set or it can be another function evaluated on the test data. Obviously, the

lower the generalization error is, the better the model generalizes.

In spite of the low training error, high test error can occur. The reason behind this

phenomenon is overfitting, which means there are too many parameters, the model

is complex enough to ’memorize’ the training data, but therefore it performs poorly

on the test data. To avoid this scenario regularization techniques are used during

the training, resulting in the prevention of overfitting, simpler models, and improved

generalization.

2.4 Inductive bias

Examining the generalization performance of a neural network, an essential concept

is inductive bias. Since infinitely many models can fit the training data, if the

learning algorithm treated equally all the possible models, then resulting in an ap-

propriate one, thus low generalization error would be impossible. All properties of

the learning algorithm that influence which model will be selected, excluding the

training set, are called the inductive bias. This could include the parametrization

of the model, regularization terms, or it might be encoded in the architecture itself.

Battaglia et al., 2018 say ’Ideally, inductive biases both improve the search for solu-

tions without substantially diminishing performance, as well as help find solutions
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2. Preliminaries

which generalize in a desirable way; however, mismatched inductive biases can also

lead to suboptimal performance by introducing constraints that are too strong.’

As mentioned above, inductive bias includes regularization techniques. Within this,

explicit and implicit regularization are distinguished, but often exact definitions are

not provided. In this thesis we consider the definition proposed by Hernández-García

and König, 2018. Accordingly:

• Explicit regularization refers to those techniques which constrain the num-

ber of models that the learning algorithm can choose. Namely, the hypothesis

set of the explicitly regularized neural network is a proper subset of the orig-

inal hypothesis set. For instance, regularizing the ℓ2-norm of the weights of

the network, called weight decay reduces the achievable functions. So does the

dropout technique, which resets some weights to 0.

• Implicit regularization, on the contrary, does not reduce the hypothesis set,

but still lowers the generalization error, and prevents overfitting. In addition,

this is rather an effect than a technique. One of the most common implicit

regularization methods is stochastic gradient descent, which reduces the gen-

eralization error without explicitly reducing the achievable functions. Another

common implicit regularization is early stopping.

This work will focus on the implicit regularization effects, especially the parametriza-

tion of the model.

Figure 2.1: Illustration of the bias-variance tradeoff

The model should be complex enough to be able to express the training data,

scoring low training error, but it should be simple enough to prevent overfitting.

Regularization techniques are used to avoid overfitting in over-parametrized mod-

els. The figure on the left shows an underfitting model, while the model on the right

is overfitting. In the figure in middle, an appropriate model can be seen.
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3 Thesis overview

3.1 Problem statement

The main goal of learning problems is to fit a model to the training data which has

small generalization error and performs well on the test data. However, several mod-

els can fit perfectly to the training points, it is up to the inductive bias to select one.

In general, deep learning generalizes surprisingly well, e. g. Zawadzka-Gosk, Wołk,

and Czarnowski, 2019 showed that state-of-the-art networks for image classification

can exceed 99% accuracy, and in the Introduction we also listed examples of great

performance. Therefore we can conclude that the inductive bias in most cases is

able to select the right model from the interpolation regime, but the explanations

for this phenomenon are quite poor. It is not exactly known why can deep learning

generalize so well, better than we might expect. To answer this question further

investigation is necessary.

Conventional wisdom attributed the success in generalization to the properties of

the model family and to the regularization techniques used during training. But

Zhang et al., 2017 have shown this is not exactly the case, these approaches fail to

explain the generalization in deep learning, as they state "Explicit regularization

may improve generalization performance, but is neither necessary nor by itself suf-

ficient for controlling generalization error". They showed counterexamples for both

directions’ statements: without explicit regularization techniques over-parametrized

neural networks are still able to generalize (even though with classical theory the

expectation is overfitting), and neural networks with architectures including explicit

regularization can fit to randomly labeled data, therefore these completely fail to

generalize.

Consequently, a new idea occurred: the answer might be found in the role of implicit

regularization. There are three aspects of implicit regularization which are usually

considered in the literature: initialization, built-in properties of stochastic gradient

descent, and parameter-to-hypothesis mapping. This work focuses on the latter, we

examine its role in order to gain a deeper understanding of the great generalization

performance in deep learning.
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3. Thesis overview

The parameter-to-hypothesis mapping indeed has a role in inductive biases as several

empirical and theoretical works suggested. Arora et al., 2019 showed that gradient

descent is able to recover low-rank matrices from a few observations even without

any regularization if the parametrization is matrix factorization. Furthermore, with

appropriate parametrization, sparse solutions can be found effectively in separable

classification problems with unregularized gradient descent (Gunasekar et al., 2018).

Therefore one can claim that the parametrization of a problem influences the in-

ductive bias, and as the previous results show, it could play a determining role in

generalization.

Besides that, a new optimizing algorithm has become popular called natural gra-

dient descent (NGD). Intuitively, this is similar to the original euclidean gradient

descent (EGD) in the way that both algorithms take steps towards a minimum of a

function, but while the gradient descent is considered in the Euclidean space with

Euclidean distance, the other moves on a Riemannian manifold with adequate dis-

tance metric. Originally, the favorable feature of NGD is the fast convergence, but

its exact computation could be intractable. From the perspective of parameter-to-

hypothesis mapping, the key property of NGD is the fact that it is approximately

invariant to reparametrization.

Figure 3.1: Parametrization-dependence of EGD and independence of NGD

In Figure 3.1, the illustration of the parametrization-dependence of EGD and in-

dependence of NGD can be found. If we consider two parameter spaces (W1, W2)

and two optimization trajectories in each: one EGD, one NGD, and we map these

into the hypothesis space (H) then EGD finds different optima, but NGD finds the

same.
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3. Thesis overview

Considering the previous two key statements together:

• Parameter-to-hypothesis mapping influences the inductive bias and the gener-

alization in gradient-based learning

• Natural gradient descent eliminates the role of parametrization

These claims together naturally raise questions: what happens if we eliminate the

role of parametrization and what can be said about the inductive bias of natural

gradient descent. By investigating the behavior of NGD we are able to study the

importance of parametrization. If the parameter-to-hypothesis mapping indeed plays

a determining role in generalization then eliminating its effect completely may be

undesirable and might question the necessity of the efforts put into the computation

of NGD.

3.2 Contributions

This thesis examines the inductive bias of natural gradient descent in deep linear

neural networks and simultaneously studies the role of parametrization. There are

two reasons why we investigate linear neural networks: in the case of linear neural

networks there are tasks where the inductive bias of EGD is well known (e. g. matrix

completion and separable classification) and the natural gradient direction is more

computable then in actual non-linear neural networks.

To put the contributions in context we review some essential background. In Section

2 we introduced some fundamental concepts of deep learning as the probabilistic

model of learning problems, gradient descent, the method of generalization and

the ideas behind inductive bias. Section 4 is about a generalization of the gradient

descent algorithm, namely minimizing a function on a Riemannian manifold. We

introduce its basic concepts, define the gradient on such a manifold then determine

how to move "straight" from a point in direction of a vector. Furthermore, we review

one special case the natural gradient descent and discuss its invariance property. In

Section 5 there can be found the introductions of two commonly considered un-

derdetermined problems: separable classification and matrix completion. We discuss

which solutions are found regarding two different parametrizations with EGD in

each case. Moreover, Sections 6 and 7 are about the findings related to NGD in

separable classification and in matrix completion respectively. Here we make the fol-

10



3. Thesis overview

lowing contributions based on the paper Kerekes, Mészáros, and Huszár, 2021. These

results were obtained with equal contribution of the paper’s additional author.

• We calculate the Fisher information matrix of the probabilistic models in sep-

arable classification and matrix completion,

• we prove an invariance property for separable classification with a linear model,

namely that NGF is invariant under invertible transformations of the data,

• we show that with NGF the logits interpolate the training labels when the

number of data points is less than the number of parameters, and we propose

a conjecture that the separator converges in direction to the ordinary least

squares solution, and

• in the case of matrix completion NGF filds the trivial solution, therefore it

fails to generalize completely.
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4 Riemannian gradient descent

Regarding optimization, one commonly used method is Euclidean gradient descent.

In this case, the optimization trajectory lies in the Euclidean space equipped with

the Euclidean metric. However, there exist scenarios when considering another space

with another geometry is more beneficial. In the next section, we introduce a more

general gradient descent algorithm defined on Riemannian manifolds based on the

sources: Verhóczki, 2020; O’Neill, 1983; Absil, Mahony, and Sepulchre, 2008 and

Kristiadi, 2019.

Generalizing the gradient descent to functions defined on a Riemannian manifold,

two steps are necessary: defining the gradient, and moving in that direction from a

point on the manifold.

First, our main interest is to define the gradient of a function on Riemannian man-

ifolds. Before doing so, we review some essential definitions and statements related

to differential geometry.

Definition 1. M topological space is an m-dimensional differentiable manifold

if (1) M is Hausdorff,

(2) the topology of M has a countable base,

(3) an arbitrary point on M has an open neighborhood that is homeomorphic to an

open subset of Rm,

(4) and M is equipped with a maximal smooth atlas A.

Definition 2. Let U be an open subset of the m-dimensional manifold M. If the

mapping x : U → Rm is a homeomorphism between U and x(U) ⊂ Rm, then the

tuple (U, x) is a map/local coordinate-system of the manifold M.

Consider a (U, x) ∈ A local coordiante-system on M, and let xi = ui ◦ x (i =

1, . . . ,m) be its coordinate functions, where ui : Rm → R, ui(a1, . . . , am) = ai.

Thenceforth, when coordinate functions are involved in a calculation it is always

considered locally. We now can define a smooth function on M.

Definition 3. f : M → R function is smooth, if for an arbitrary (U, x) ∈ A map

the f ◦ x−1 : x(U) ⊂ Rm → R is a C∞ function.

12



4. Riemannian gradient descent

Remark. Denote F(M) the set of smooth functions defined on M. If we consider ad-

dition and multiplication of functions as usual, then F is a unitary ring. Furthermore,

if a multiplication with a scalar is specified then F is a vector field over R.

Definition 4. At a fixed p ∈ M we can define tangent vectors v : F(M) → R

to M in p, which is a real-valued linear function satisfying the following equation

for all f, g ∈ F
v(fg) = v(f)g(p) + f(p)v(g)

The number v(f) can be interpreted as the directional derivative of f along v at a

given p.

Remark. At each p ∈ M let TpM be the set of tangent vectors to M. Since TpM

is a vector space over R with functional addition and scalar multiplication, TpM is

called the tangent space to M at p.

Since we often consider a local coordinate-system (U, x), it is essential to mention

the connection between TpM and TpU .

Definition 5. Assume that M is a differentiable manifold with the atlas A and U

is an open subset of M. Equip U with the topology induced from that of M, then

U is also an m-dimensional differentiable manifold with the atlas AU = {(V, x) ∈

A|V ⊂ U}. In this case U is called an open submanifold of M.

Now, fix p ∈ M, v ∈ TpM, and regard a function g ∈ F(U). We can construct a

function g̃ ∈ M such that g̃|V = g|V , where V ⊂ U is an open neighborhood of p.

Consider the mapping ṽ : F(U) → R, ṽ(g) = v(g̃), where g̃ is defined above. It can

be seen that ṽ is a tangent vector to the manifold U at p. Furthermore, the mapping

ϕ : TpM → TU , where ϕ(v) = ṽ defines a linear isomorphism between TpM and

TpU , therefore in the following we will identify the two tangent spaces.

Adapting the partial derivatives, for a point p ∈ U let’s define the mapping ∂
∂xi (p) :

F(M) → R with
∂

∂xi
(p)(f) = ∂i(f ◦ x−1)(x(p)). (4.1)

It is verifiable that ∂
∂xi (p) is a tangent vector to M, and vectors ∂

∂x1 (p) . . .
∂

∂xm (p)

13



4. Riemannian gradient descent

form a basis for the tangent space TpM and for all v ∈ TpM

v =
m∑
i=1

v(xi)
∂

∂xi
(p). (4.2)

Definition 6. The tangent vectors ∂
∂xi (p) (i = 1, . . . ,m) are called the coordinate

basis vectors of (U, x).

Now, after we discussed essential definitions related to smooth functions on M, let’s

move on to smooth vector fields. First, denote TM the set of tangent vectors to M.

Definition 7. X : M → TM is said to be a vector field on M if X(p) ∈ TpM

for all p ∈ M, namely a vector field defines a tangent vector at each point.

Regarding an X vector field on M and f ∈ F(M), an Xf : M → R mapping can

be introduced as
Xf(p) = X(p)(f). (4.3)

Definition 8. An X vector field on M is smooth if the function Xf is differentiable

for all f ∈ F(M).

Remark. Denote X(M) the set of smooth vector fields on M, it is an infinite-

dimensional vector space with addition and scalar multiplication. Moreover, defining

the product of X ∈ X(M) and f ∈ (M) as fX : (M) → T (M), where fX(p) =

f(p)X(p) for all p ∈ (M), X(M) is a module over the unitary ring F(M).

Definition 9. Suppose (U, x) is a map of M and let ∂
∂xi : U → TU be a vector field

that assigns ∂
∂xi (p) to p ∈ U . Then ∂

∂xi is called the ith coordinate basis vector

field of (U, x).

Remark. At each p ∈ U the value on a vector field X can be expressed by using

Equation 4.2 as follows

X(p) =
m∑
i=1

ηi(p) · ∂

∂xi
(p), (4.4)

where ηi(p) = X(p)(xi). The functions ηi : U → R (i = 1, . . . ,m) are called the

coordinate function of X respecting the map (U, x).

Accordingly, any vector field can be written as

X =
m∑
i=1

ηi · ∂

∂xi
on U. (4.5)

14



4. Riemannian gradient descent

Remark. If the consider the vector field ∂
∂xi and a function f , then the notation of

Equation 4.3 changes from ∂
∂xif to ∂f

∂xi .

Now, continue the discussion with the differential of a function.

Definition 10. Let f ∈ F(M) and p ∈ M, then the mapping df(p) : TpM → R,

defined as df(p)(v) = v(f) (v ∈ TpM), is the differential of the function f at p.

Definition 11. The differential of a function f ∈ F(M) is df : X(M) → F(M),

if for every X ∈ X(M) df(X) = Xf .

Note, that T ⋆
pM = {f : TpM → R|f linear} is the (algebraic) dual space of TpM,

its elements are called linear functionals, linear forms or covectors.

Obviously, df(p) is a linear form. Now let’s consider the coordiante functions of the

local coordinate-system, and take their differentials at p ∈ U : dxi(p) (i = 1, . . . ,m).

Statement 2. The vectors dxi(p) ∈ T ⋆
pM (i = 1, . . . ,m) provide the dual basis to

∂
∂xi (p).

Proof. At each point p ∈ U dxi( ∂
∂xj )(p) = δij, since by Definition 11

dxi(
∂

∂xj
) =

∂xi

∂xj
.

Evaluating the equation above at p and using Equation 4.1 we get

dxi(
∂

∂xj
)(p) =

∂xi

∂xj
(p) =

∂

∂xj
(p)(xi) = ∂j(x

i ◦ x−1)(x(p)) =

= ∂j(u
i ◦ x ◦ x−1)(x(p)) = ∂ju

i(x(p)) = δij,
(4.6)

by using the associative property of composition.

Accordingly, dxi(p) (i = 1, . . . ,m) form a basis in T ⋆
pM.

Remark. An arbitrary Θ : X(M) → F(M) can be expressed as

Θ =
m∑
i=1

Θ(
∂

∂xi
)dxi

Therefore the differential of a function f has the form

df =
m∑
i=1

∂f

∂xi
dxi, (4.7)
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4. Riemannian gradient descent

since df( ∂
∂xi ) =

∂f
∂xi .

The following definitions are about tensor fields and their product, which are essen-

tial for the definition of the Riemannian metric.

Definition 12. On a manifold M, the mapping Q : X(M)r → F(M) is a type

(0, r) tensor field (r ∈ N), if it is r-linear over the ring F(M), i. e. for all f ∈ F(M)

function and X1, . . . , Xi, X
′
i, . . . , Xr (1 ≤ i ≤ r) vector fields

Q(X1, . . . , fXi, . . . , Xr) = f ·Q(X1, . . . , Xi, . . . , Xr),

Q(X1, . . . , Xi +X ′
i, . . . , Xr) = Q(X1, . . . , Xi, . . . , Xr) +Q(X1, . . . , X

′
i, . . . , Xr).

(4.8)

Remark. A type (0, r) tensor field is also called covariant r-tensor field.

Furthermore, denote T 0
r (M) the set of type (0, r) tensor fields. T 0

r (M) is a module

over F(M) commutative ring.

The next step is defining the value of Q type (0, r) tensor field at a point p ∈ M.

Definition 13. A Q type (0, r) tensor field defines a Qp : (TpM)r → R mapping at

each p which is interpreted as follows. Consider r vector fields X1, . . . , Xr ∈ X(M)

for r particular tangent vectors v1, . . . , vr ∈ TpM such that Xk(p) = vk (k = 1, . . . , r)

are satisfied. Then Qp(v1, . . . , vr) = Q(X1, . . . , Xr)(p).

Remark. The value of a tensor field Q does not depend on the choice of the repre-

senting vector fields.

Remark. Qp is an r-linear mapping on the vector space TpM respecting R.

Remark. The differential of a function f df : X(M) → F(M) is a covariant 1-tensor

field.

Definition 14. Let Q1 ∈ T 0
r (M) and Q2 ∈ T 0

s (M) be covariant tensor fields. The

product of the tensor fields is Q1 ⊗Q2 : X(M)r+s → F(M), where

Q1 ⊗Q2(X1, . . . , Xr+s) = Q1(X1, . . . , Xr) ·Q2(Xr+1, . . . , Xr+s).

Q1⊗Q2 is (r+s)-linear over F(M), therefore Q1⊗Q2 ∈ T 0
r+s(M), thus the type (0,

r+s) tensor field is the tensor product of Q1 and Q2.
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4. Riemannian gradient descent

We now discuss the Riemannian manifold and generalized gradient on it, which is

essential to Riemannian gradient descent.

Definition 15. Let M be a differentiable manifold, and g : X(M)×X(M) → F(M)

is a symmetric covariant 2-tensor field on it. Furthermore, on each TpM (p ∈ M) g

defines a gp : TpM× TpM → R symmetric bilinear form. If gp is positive definit for

all p ∈ M, then g is a Riemannian metric on the M manifold, and the (M, g)

tuple is called Riemannian manifold.

Remark. The metric tensor g defines an inner product on each tangent space:

⟨v, w⟩g = gp(v, w). Moreover, use the notation g(X, Y ) = ⟨X, Y ⟩.

Consider a map (U, x) of M.

Definition 16. The component functions of the metric tensor g are the

smooth functions gij : U → R (i, j = 1, . . . ,m), where gij(p) = gp(
∂
∂xi (p),

∂
∂xj (p)) for

all p ∈ U .

Remark.
gij = g(

∂

∂xi
,

∂

∂xj
) (4.9)

Remark. For an arbitrary p ∈ U the matrix representation of gp in the basis

{ ∂
∂x1 (p), . . . ,

∂
∂xm (p)} is an m×m matrix G(p), whose elements are G(p)ij = gij(p).

Since gij = gji, G(p) is symmetric, and because of the positive definitness det G(p) >

0, so G(p) is invertible. Denote the elements of G(p)−1 by gij(p) (i, j = 1, . . . ,m),

and let gij : U → R be a function which assigns gij(p) to p ∈ U . Thus one can define

G,G−1 : U → End(Rm).

Remark.

g|U =
m∑
i=1

m∑
j=1

gijdx
i ⊗ dxj (4.10)

4.1 Riemannian gradient

Now let M be a Riemannian manifold and f : M → R be a real valued function on

M. With this notation the optimization problem is

min
p∈M

f(p).
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4. Riemannian gradient descent

Adapting the gradient descent method the gradient of a function should be defined.

The definition is motivated by the one on the Euclidean space.

Definition 17. The gradient of a function f ∈ F(M) is the unique vector field

grad f ∈ X(M), such that for all X ∈ X(M)

⟨grad f,X⟩ = df(X). (4.11)

Remark. At a point p g defines the inner product gp, thus 4.11 modifies to

⟨grad f(p), v⟩p = df(X)(p) = Xf(p) = X(p)(f) = v(f) using X(p) = v, there-

fore
⟨grad f(p), v⟩p = v(f). (4.12)

The equation above can be seen as at each point the inner product of the gradient

and a tangent vector v is the directional derivative along v, as it is expected.

We now express the gradient of f in term of local coordinates according to Jäckel,

2017, namely in the basis formed by the vector fields ∂
∂x1 , . . . ,

∂
∂xm respecting the

map (U, x). Thus there exist coefficients f j : U → R (j = 1, . . . ,m) such that

grad f =
m∑
j=1

f j ∂

∂xj
(4.13)

Calculating the coefficients, first use Definition 11 on the vector field ∂
∂xi and

Equation 4.11 in connection of the gradient

∂f

∂xi
= df(

∂

∂xi
) = ⟨grad f,

∂

∂xi
⟩ = g(grad f,

∂

∂xi
) = g(

m∑
k=1

fk ∂

∂xk
,
∂

∂xi
) =

beacuse g is bilinear over F(M) and from Equation 4.9

=
m∑
k=1

fkg(
∂

∂xk
,
∂

∂xi
) =

m∑
k=1

fkgki.

For a fixed j multiply the equation above by gij and sum over the index i

m∑
i=1

∂f

∂xi
gij =

m∑
i=1

m∑
k=1

fkgkig
ij =

m∑
k=1

fk

m∑
i=1

gkig
ij =

m∑
k=1

fkδkj = f j,

where δkj is a function which assigns the Kronecker-delta to all p ∈ U . The result of
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4. Riemannian gradient descent

the derivation above is the following if we substitute back to Equation 4.13

grad f =
m∑
i=1

m∑
j=1

gij
∂f

∂xi

∂

∂xj
, (4.14)

and at a point p ∈ U

grad f(p) =
m∑
i=1

m∑
j=1

gij(p)
∂f

∂xi
(p)

∂

∂xj
(p) ∈ TpM. (4.15)

Instead of the summations one can use vectors and matrices regarding the coor-

diante basis vector fields ∂
∂xi (i = 1, . . . ,m). The differential of a function f can be

repesented with a row vector d containing the partial derivatives of f according to

Equation 4.7: d = ( ∂f
∂x1 , . . . ,

∂f
∂xm ). Then the gradient of f can be expressed with a

column vector h, such that
h = G−1d⊤. (4.16)

Statement 3. Let f be a real valued function of M and p ∈ M is a fixed point.

Then among all unit vector v ∈ TpM, the gradient grad f(p) is the direction in

which the directional derivative v(f) is the greatest. Moreover, ∥grad f(p)∥g equals

to the value of the directional derivative in that direction.

Proof. From Equation 4.12 and because of ∥v∥g = 1

v(f) = ⟨grad f(p), v⟩p = ∥grad f(p)∥g∥v∥g cos θ = ∥grad f(p)∥g cos θ.

This expression is maximized when cos θ = 1, therefore the vector v′ which maxi-

mizes the directional derivative has the same direction as grad f(p), and the direc-

tional derivative in that direction equals to ∥grad f(p)∥g.

Obtaining the result above, the gradient that is defined on Riemannian manifolds

indeed has the same essential property as the Euclidean gradient has in connec-

tion with the gradient descent algorithm, namely it is the direction in which the

directional derivative is the greatest. Regarding the Euclidean gradient descent af-

ter calculating the gradient, the algorithm moves in the opposite direction along a

straight line obtaining a new point. Our next interest is to define moving "straight"

from a point in a direction on a manifold.
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4. Riemannian gradient descent

4.2 Exponential map and retraction

Beforehand, on a manifold we were able to define the derivation of a smooth function

along a tangent vector, hence the motivation behind covariant derivative is defining

the derivative of a vector field along a tangent vector, but in the following, only its

general form will be used, namely the derivative of a vector field with respect to

another vector field.

Definition 18. The mapping ∇ : X(M)×X(M) → X(M) is a covariant deriva-

tion if for all X, Y, Z ∈ X(M) and f ∈ F(M)

(1) ∇(X + Y, Z) = ∇(X,Z) +∇(Y, Z),

(2) ∇(fX, Y ) = f · ∇(X, Y ),

(3) ∇(X, Y + Z) = ∇(X, Y ) +∇(X,Z),

(4) ∇(X, fY ) = f · ∇(X, Y ) + (Xf) · Y.

Remark. Because of (4) ∇ is not a type (1, 2) tensor field.

Remark. ∇(X, Y ) vector field is also denoted by ∇XY .

Now let (U, x) be a map of M and denote its coordiante basis vector fields with

Xi =
∂
∂xi (i = 1, . . . ,m). Then the vector field ∇Xi

Xj ∈ X(M) can be expressed in

the basis of coordiante basis vector fields in the form ∇Xi
Xj =

∑m
k=1 Γ

k
ij ·Xk with

appropriate functions Γk
ij ∈ F(M) (i, j, k = 1, . . . ,m).

Definition 19. The differentiable functions Γk
ij : U → R are called the Christoffel

symbols of the covariant derivative ∇ respecting the map (U, x).

The previous two definitions can be considered on a general manifold, but on

Riemannian manifolds we consider a unique covariant derivative having certain prop-

erties which is called the Levi-Civita connection. Now, the Christoffel symbols of the

Levi-Civita connection can be written as the following using the metric tensor g and

its inverse.

Γk
ij =

1

2

m∑
l=1

gkl(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xk

) (4.17)

for all i, j, k = 1, . . . ,m. From now on, we consider the covariant derivative and

Christoffel symbols above, but the following definitions hold for general covariant

derivatives as well.
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4. Riemannian gradient descent

As the aim is to define moving "straight" on a manifold, let’s regard the curves of

the manifold.

Definition 20. The γ : I → M smooth mapping is a smooth curve of the

differentiable manifold M.

Regarding the 1-dimensional R Euclidean space, it is a differentiable manifold and

respecting a map (R, id) at a point t ∈ R denote ∂
∂u
(t) the coordiante basis vector.

If f : R→ R is a smooth function, then ∂
∂u
(t)(f) = f ′(t).

If M and N are differentiable manifolds and µ : M → N is a mapping between

them, then to a tangent vector v ∈ TpM assign the mapping vµ : F(M) → R,

where vµ(f) = v(f ◦ µ) for all f ∈ F(M). The mapping vµ is a tangent vector on

the manifold N at the point µ(p).

Definition 21. The mapping Tpµ : TpM → Tµ(p)N is called the tangent map or

differential of µ at p ∈ M if Tpµ(v) = vµ for all v ∈ TpM. Another notation for

the differential of µ at p is Dµ(p).

Definition 22. The tangent vector of a curve γ : I → M at point t ∈ I is the

tangent vector Ttγ(
∂
∂u
(t)) at the point γ(t). We denote the tangent vector of γ at t

with γ̇(t).

In the definition above the tangent map of γ is used between the manifolds R and

M.

Statement 4. The tangent vector of γ at the point t ∈ I can be expressed as

γ̇(t) =
m∑
i=1

(xi ◦ γ)′(t) · ∂

∂xi
(γ(t)). (4.18)

Definition 23. Suppose γ : I → M is a smooth curve. The vector field along γ

is a mapping Z : I → TM, where Z(t) ∈ Tγ(t)M for all t ∈ I.

Statement 5. Z(t) can be written as

Z(t) =
m∑
i=1

ζ i(t) · ( ∂

∂xi
◦ γ)(t),

where ζ i : I → R (i = 1, . . . ,m) are real functions.
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4. Riemannian gradient descent

Definition 24. Z smooth if the functions ζ i (i = 1, . . . ,m) are differentiable.

Remark. The vector field γ̇ : I → TM, where γ̇(t) is the tangent vector of γ at

t ∈ I, is a smooth vector field along γ.

Consider a map (U, x) at the point γ(t). Let J ⊂ I be a real interval, where γ(J) ⊂ U

and let Z|J be a vector field along γ|J . Then Z|J =
∑m

i=1 ζ
i · ( ∂

∂xi ◦ γ|J), where

ζ i ∈ F(J). Furthermore, let γi = xi ◦ γ|J be a real function.

Definition 25. The covariant derivative of the vector field Z along γ at t ∈ J is

the vector

Z ′(t) =
m∑
k=1

{(ζk)′(t) +
m∑
i=1

m∑
j=1

Γk
ij(γ(t)) · (γi)′(t) · ζj(t)} · ∂

∂xk
(γ(t)). (4.19)

Remark. The vector Z ′(t) ∈ Tγ(t)M is not depend on the choice of the map (U, x)

at γ(t).

Definition 26. On a Riemannian manifold (M, g) consider a map (U, x) and a

smooth curve γ : I → M, where γ(I) ⊂ U . γ is a geodesic if (γ̇)′(t) = 0 for all

t ∈ I.

From Equation 4.18 and Equation 4.19, the following statement can be derived.

Statement 6. The smooth curve γ is geodesic if and only if yk = xk ◦ γ (k =

1, . . . ,m) satisfy

y′′k(t) +
m∑
i=1

m∑
j=1

Γk
ij(γ(t)) · y′i(t) · y′j(t) = 0. (4.20)

system of second-order ordinary differential equations.

Definition 27. Suppose that [a, b] ⊂ I is a closed subinterval, then the length of

the curve segment γ|[a,b] is

l(γ|[a,b]) =
∫ b

a

∥γ̇(t)∥g

Using the length of curve segments we can define the Riemannian distance of p, q ∈

M.

Definition 28. The Riemannian distance of p, q ∈ M is

dg(p, q) = inf{l(γ)|γ : [a, b] → M, γ(a) = p, γ(b) = q}.
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4. Riemannian gradient descent

Remark. It can be shown that the Riemannian distance is indeed a metric, using

the fact that M is Hausdorff.

The γ, such that l(γ) = dg(p, q), is a length-minimizing curve. It can be shown

that the length-minimizing curves are geodesics and that geodesics are locally length-

minimizing (Carmo, 1992).

We now can see that between two points of the manifold there exists a special curve

that are "straight" between the two points, this curve is a geodesic. Since geodesics

are curves such that the covariant derivative of the velocity vector (tangent vector)

along the curve itself is 0 at any time, intuitively, the velocity vector’s direction and

length is constant along γ, therefore geodesics are indeed the generalization in a

certain way of straight lines.

Definition 29. γ : I → M is a maximal geodesic, if there exists no interval J and

σ : J → M geodesic such that I ⊂ J , I ̸= J , σ|I = γ.

To compute a geodesic staring from a specific p ∈ M in direction v ∈ TpM, we need

to solve the system of second-order ODE 4.20 with initial conditions

γ(0) = p, γ̇(0) = v.

The following Statement illustrates the uniqueness of such maximal geodesic.

Statement 7. If p ∈ M and v ∈ TpM are given, then there exists a unique maximal

geodesic γv : I → M on the Riemannian manifold (M, g), such that γ(0) = p and

γ̇(0) = v.

Remark. Importantly, observe that if γv(t) is a maximal geodesic on interval I satis-

fying the initial conditions γ(0) = p, γ̇(0) = v then γv(ct) (c ̸= 0) is also a maximal

geodesic on I
c

satisfying the system 4.20 with initial conditions γ(0) = p, γ̇(0) = cv.

Therefore, from the statement above

γcv(t) = γv(ct) ct ∈ I. (4.21)

Using the fact above, we are able to define the exponential map.

Definition 30. For each p ∈ M let

D(p) := {v ∈ TpM : γv(1) is defined},
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4. Riemannian gradient descent

where γv is the unique maximal geodesic satisfies the initial conditions γ(0) = p,

γ̇(0) = v. D(p) is called the domain of the exponential map.

Definition 31. The exponential map is the map expp : D(p) → M given by

expp(v) = γv(1).

The exponential map can be interpreted as we move along a geodesic (generalization

of a "straight" line on the manifold) starting from a point p in the direction of the

velocity vector v.

Computing the exponential map can be challenging since to evaluate the geodesic, a

system of non-linear differential equations needs to be solved. Therefore, we would

like to introduce an approximation of the exponential map, which is a computa-

tionally more efficient alternative. This method is the retraction, but before its

discussion, we review some claims related to a vector space and its tangent spaces.

Statement 8. An m-dimensional vector space V over R is an m-dimesional differ-

entiable manifold.

Proof sketch. Let (ei)i=1,...,m be a basis of V . If p =
∑m

i=1 p
iei, then

x : V → Rm, p 7→


p1

p2

...
pm


is a global chart of V , and (V , x) is a global map, which defines a maximal smooth

atlas. Furthermore, x is an isomorphism between V and Rm, therefore in Definition

1 all the conditions are satisfied.

Statement 9. If V is a vector space, then

V ≃ TpV (4.22)

for an arbitrary p ∈ V .

Proof sketch. Let x1, . . . , xm be the coordiante functions of x; p ∈ V , and consider the

basis (ei)i=1,...,m of V and the basis ( ∂
∂xi (p))i=1,...,m of TpV . Then regard the mapping
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4. Riemannian gradient descent

ϕ : V → TpV given by v 7→ w, where v =
∑m

i=1 v
iei and w =

∑m
i=1 v

i ∂
∂xi (p). Then ϕ

is an isomorphism.

Therefore, we can identify V with its tangent space at a point.

The remainder of the section is about the approximation of the exponential map,

namely about retractions.

Definition 32. Let R : TM → M be a smooth mapping, and denote Rp the re-

striction of R to TpM for a p ∈ M. R and Rp is a retraction if

(1) Rp(0p) = p, where 0p is the zero element of TpM

(2) DRp(0p) = idTpM, where D denotes the differential of Rp according to Definition

21 and idTpM denotes the identity mapping on TpM. Furthermore, we use the iden-

tification T0pTpM ≃ TpM, since TpM is a vector space.

In terms of the Riemannian gradient descent the most important property of retrac-

tion is that it is a first order approximation of the exponential map, namely

dg(expp(tv), Rp(tv)) = O(t2), t ∈ R.

Before introducing a retraction that is well defined and computationally efficient,

we review the embedded submanifolds.

Definition 33. A P k-dimensional differentiable manifold is an embedded sub-

manifold of M if

(1) P is a subset of M and its topology is the same as the subspace topology inher-

ited from M,

(2) and the tangent map of ι : P ↪−→ M canonical injection Tpι is injective for all

p ∈ M.

Remark. If k = m then such P is an open submanifold of M, and TpP ≃ TpM as

discussed above. While k < m, TpP can be identified with a k-dimension subspace

of TpM by the mapping Tpι.

We now use the assumption that the manifold M is an embedded submanifold of

a vector space E . Abusing notation, define the sum of p + v, where p ∈ M can be

viewed as a point on E , and v ∈ TpM viewed as an element of TpE ≃ E . Therefore

in the vector space E we are able to do the addition p+ v.

Using the facts above, a particular retraction can be defined for a given p ∈ M and
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v ∈ TpM which is described intuitively as:

(1) moving along v to get the point p+ v in E ,

(2) projecting the point p+ v back to M.

In the following, we state the retraction above formally.

Statement 10. Let N be a manifold such that dim(M) + dim(N ) = dim(E).

Additionally assume that there exists a diffeomorphism (a mapping that smooth,

bijective, and its inverse is differentiable) ϕ : M × N → E ′, where E ′ is an open

submanifold of E and there is an element i ∈ N such that ϕ(p, i) = p, ∀p ∈ M.

Under these assumptions the mapping

Rp(v) := π1(ϕ
−1(p+ v)),

where π1 : M×N → M such that π(p, q) = p, defines a retraction on M.

Example. Let M = Sn−1 be a unit sphere embedded in E = Rn and let N = {x ∈

R : x > 0}. Consider the diffeomorphism ϕ : M×N → Rn
∗ such that ϕ(x, r) = rx.

By the Statement above the retraction is Rp(v) =
x+v

∥x+v∥ .

Previously, we defined the gradient of a function on a Riemannian manifold, and

discussed how to move from a point in direction of the gradient viewed as a tangent

vector. That was the exponential map. Then we introduced a first-order approxi-

mation of the exponential map, called retraction. Moreover, because of computa-

tional reasons a particular retraction was described which is essential for defining

the Riemannian gradient descent algorithm.

Algorithm 1 Riemannian Gradient Descent
Initialize p0 arbitrary
Initialize η ∈ R, η > 0
repeat

Compute the gradient of f at pt, i. e. ht := grad f(pt)
Move in direction − ht, i. e. pt+1 = Rpt(−ηht)
t = t+ 1

until stopping criterion is not satisfied
Return pt
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4.3 Natural gradient descent

In this section, we discuss the algorithm natural gradient descent (Amari, 1997).

One of the most important special cases of Riemannian gradient descent regarding

machine learning is optimizing a function on a statistical manifold (RD, g). Specially,

RD is the parameter space of statistical models p(y|x; θ), where θ is an element of

the parameter space. Equip the manifold with a metric tensor g called the Fisher

information metric, defined as

gij(θ) = EX

[
EY |X;θ

[
∂ log p(y|x; θ)

∂θi
∂ log p(y|x; θ)

∂θj

]]
. (4.23)

In the definition above, the expectation EY |X;θ is taken over the distribution specified

by θ, and EX is calculated over the empirical distribution of the training data,

however, it is possible to choose any other distribution.

As we discussed in Section 2, in case of a probabilistic model p(y|x; θ) in or-

der to maximize the log-likelihood we wish to minimize the loss function L(θ) =∑N
i=1 l(θ, xi, yi), where l(θ, x, y) = − log p(y|x; θ). Then metric tensor g can be rep-

resented by an N ×N matrix F (θ) at a point, given by

F (θ) = EX [EY |X;θ[∇θL(θ)∇⊤
θ L(θ)]]. (4.24)

The function on the manifold which should be minimized is L(θ), and its gradient

is
grad L(θ) = F−1(θ)d⊤(θ) = F−1(θ)∇θL(θ) =: ∇̃θL(θ) (4.25)

using Equation 4.16 and the fact that on RD the column vector d⊤ containing

the partial derivatives of L is denoted by ∇θL. In this setup the gradient of L on

the particular Riemannian manifold is called the natural gradient of L and it is

denoted by ∇̃θL(θ).

Furthermore, consider the next step of the Riemannian gradient descent, namely

moving in the direction of the gradient. The manifold RD is embedded in itself and

RD ≃ TpR
D, therefore the addition p + v simply can be done in Rd, and further

projection is not necessary. This method results in the natural gradient descent

(NGD), given by
θ(t+ 1) = θ(t)− ηF−1(θ)∇θL(θ), (4.26)
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where F is the Fisher information matrix and η is the step size.

In section 2 gradient flow, the continuous time limit of gradient descent was defined,

analogously, natural gradient flow (NGF) is given by

θ̇ = −F−1(θ)∇θL(θ). (4.27)

Note, that the Fisher information matrix F (θ) is not always invertible in this case

the parameters of the neural network do not form a Riemannian manifold. However,

in the problems we consider there always is a parametrization with respect to which

the Fisher information matrix is invertible. Nevertheless, the natural gradient de-

scent algorithm is reasonable and works efficiently even when the space is not a

Riemannian manifold as the approach and derivation show in Pascanu and Bengio,

2013.

When the Fisher is not invertible we rather consider NGF as any trajectory θt which

satisfies
F (θ)θ̇ = −∇θL(θ). (4.28)

Furthermore, it is possible to use a generalized inverse (i. e. Ag s.t. AAgA = A)

to choose from the NGF trajectories. One commonly used generalized inverse is

the Moore-Penrose pseudoinverse (A+) whose important property is that if A ∈

Rm×n,m < n then it gives the smallest ℓ2 norm solution among the vectors x which

satisfies Ax = y. Using the Moore-Penrose pseudoinverse the NGF equation is

θ̇ = −F+(θ)∇θL(θ). (4.29)

Remark. In machine learning the loss function is optimized through a feedforward

neural network f(x, β), whose parameters are β. In this case, the parameter space

of neural networks can only form a Riemannian manifold if the neural networks

are smooth enough (Daróczy, Aleksziev, and Benczúr, 2019). In this thesis only

linear networks are considered, where the corresponding parameter space is indeed

a differentiable manifold (Rn).
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4.3.1 Parametrization invariance of NGF

The most important property of natural gradient descent is the fact that NGD with

infinitesimally small step size (i. e. NGF) is invariant to reparametrization. Below

we formally state this property from Amari, 1997.

Statement 11. Let w and θ be two parameter vectors such that dimw ≤ dim θ,

and let P be a mapping such that w = P(θ). Consider a natural gradient flow in

θ starting from θ0. With the assumption that the Jacobian J = ∂wt

∂θt
and the Fisher

F (wt) are both full rank for all t, wt = P(θt) has the exact same trajectory as if the

natural gradient flow was considered in w starting from w0 = P(θ0) i. e. wt = P(θt)

solves the differential equation ẇt = −F (wt)
−1∇wtL(wt) for all t.
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5 Inductive bias of gradient descent

5.1 Separable classification

The first underdetermined problem considered is separable classification. Regard

a binary classification dataset {(xn, yn), n = 1, . . . , N} with xn ∈ RD and yn ∈

{−1, 1}. Assume that it is separable by a homogeneous linear classifier with a positive

margin, i. e. ∃β∗ s.t. ynx⊤
nβ

∗ ≥ 1 ∀n, where β∗ corresponds to the normal vector of

the separating hyperplane. The task is to predict the label y for an unknown new

data point.

Remark. Note that X = (x1 · · ·xN)
⊤ denotes the matrix of the data where each

row corresponds to a data point, therefore X is an N ×D matrix. Additionally, the

logistic function is denoted by ϕ(a) = 1
1+e−a .

According to Section 2.1 we define an estimating probabilistic model parametrized by

s. Specially, consider a Bernoulli distribution with the parameter ϕ(s) which indeed

depends on s. By modifying s we wish to maximize the log-likelihood, equivalently

minimize the loss defined below using neural networks. Furthermore, we consider s

as the output of the network whose parameters are w ∈ RP : s = f(X,w), therefore

we actually update w. The most simple case is when a certain linear neural network

is considered, namely s = Xw, P = D. In this case, we use the notation β instead

of w to coincide with the problem described above. In the following, we define the

probabilistic model using the linear network approach, but the non-linear case is

greatly similar. Moreover, x denotes one data point and s = x⊤β, if there are

several data points we consider them per coordinate.

P (y = 1|X = x;β) = ϕ(s) =
1

1 + e−s
=

1

1 + e−x⊤β
= ϕ(x⊤β)

P (y = −1|X = x;β) = 1− ϕ(s) = 1− 1

1 + e−x⊤β
= 1− ϕ(x⊤β) = ϕ(−x⊤β)

(5.1)

The aim is to calculate the maximum log-likelihood estimation of β. Therefore, as
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5. Inductive bias of gradient descent

it was derived before, let the loss function be

ℓ(β) = − log p(y|x;β) = − log ϕ(yx⊤β) = log(1 + e−yx⊤β) = log(1 + e−ys) (5.2)

for one data point, called the logistic loss, and for the whole data set

L(β) =
N∑

n=1

log(1 + e−ynx⊤
nβ) =

N∑
n=1

log(1 + e−ynsn). (5.3)

In the setting described above, there may be several perfectly separating hyper-

planes, therefore it depends on the inductive bias to select one. In the following,

we consider two different parametrizations and discuss that in the two cases the

unregularized Euclidean gradient descent results in two entirely different solutions.

Remark. The length of β will converge to infinity as the loss is being minimized,

therefore we only have interest in its direction. It is parallel to the fact that the

hyperplane is homogeneous.

Firstly, consider the so-called direct parametrization where the separator vector

β is simply parametrized by its elements. The corresponding neural network is quite

primitive, it only has one layer with weights β, we referred to this previously as

a kind of linear neural network. Studying the direct parametrization Soudry et al.

(2017) found that βt converges in direction to the ℓ2 large margin classifier, given

by

limt→∞
βt

|βt|
=

β∗
ℓ2

|β∗
ℓ2
| where β∗

ℓ2
= argmin

β∈RD

||β||2 s.t. ynx⊤
nβ ≥ 1 ∀n.

The second parametrization regarded is the diagonal parametrization, whose

name comes from the corresponding neural network. As illustrated in Figure 5.1,

the weights between i− 1th and ith layer can be written in the form of a diagonal

matrix whose entries on the main diagonal are represented by the vector wi and

there is a weight vector 1 between the last and the output layer.
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5. Inductive bias of gradient descent

Figure 5.1: Feedforward neural network which corresponds to the diagonal
parametrization in separable classification

The weights of the L-layer linear diagonal network above can be rewritten such as

β = w1 ⊙w2 ⊙ . . .⊙wL, where ⊙ denotes elementwise product.

Considering the parametrization above Gunasekar et al., 2018 showed that if the

parameters w1, . . . ,wL are updated through EGD then βt converges in direction to

the ℓ 2
L

large margin classifier, defined as

limt→∞
βt

|βt|
=

β∗
diag

|β∗
diag |

where β∗
diag = argmin

β∈RD

||β|| 2
L

s.t. ynx⊤
nβ ≥ 1 ∀n.

Remark. The ℓp (0 < p < 1) quasi-norm is defined the same as for p ≥ 1, i. e.

∥x∥p = (|x1|p + . . .+ |xD|p)1/p.

The classifier β which is found in the situation above has a remarkable property: it

is significantly sparse (has several 0 elements and just a few non-zero) as Tibshirani,

1996 suggested. Therefore, the inductive bias of the diagonal parametrization is

sparsity-seeking.

The sparsity-seeking property is useful for example when to each human attribute

we have to assign genes having contribution. In this task the attributes might be

affected by only a few genes, therefore sparse solutions are advantageous.

5.2 Matrix completion

The next underdetermined problem we deal with is matrix completion. In this task,

we have randomly chosen observations A1, A2, . . . , AN of an unknown matrix β∗ ∈

RD×D, where Ai ∈ RD×D is a matrix which has 1 in the place of the observed entry

and 0 everywhere else. The value of the observed entries are y1, y2, . . . , yN . From this
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5. Inductive bias of gradient descent

data, the aim is to recover the matrix β∗. As several matrices can fit perfectly to

the data the problem is underdetermined and it is up to the inductive bias to select

one solution.

Remark. We only consider squared matrices but the arguments hold more generally.

According to Section 2 we define an estimating probabilistic model parametrized

by the matrix β. Specially, consider a normal distribution with mean ⟨A,β⟩F and

variance σ2, where ⟨., .⟩F denotes the Frobenius product, A is an observation and σ2

is fixed.
p(y|X = A;β) =

1

σ
√
2π

e−
(y−⟨A,β⟩F )2

2σ2 (5.4)

To determine the maximum log-likelihood estimation of β we use the loss function

below
ℓ(β) = − log p(y|A;β) = log(σ

√
2π) +

(y − ⟨A,β⟩F )2

2σ2
(5.5)

for one data point, and for the whole data set

L(β) =
N∑

n=1

log(σ
√
2π) +

(yn − ⟨An,β⟩F )2

2σ2
. (5.6)

Now we consider two different parametrizations and we discuss that in the two

cases the unregularized Euclidean gradient descent results in two entirely different

solutions.

Firstly, consider the direct parametrization where the matrix β is simply

parametrized by its elements. The corresponding neural network is primitive, it

only has one fully connected layer with weights β. The Statement below describes

the solution EGD finds in this case.

Statement 12. In the setting discussed above EGF finds the "trivial" solution,

namely in the place where was observation the entry converges to the observed

value, but everywhere else the value won’t change from the initialization.

Proof. To find the solution we have to solve the differential equation

β̇ = −∇βL(β). (5.7)

Considering each entry, this defines D2 independent differential equations. Where
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5. Inductive bias of gradient descent

there was no observation the gradient is 0, therefore the differential equation is

β̇ij = 0, (5.8)

hence the solution is a constant with the initialized value

βij(t) = βij(0). (5.9)

Where we have an observation the differential equation has the form

β̇ij =
yn
σ2

−
βij

σ2
. (5.10)

Its solution is
βij(t) = yn + ce−

1
σ2 t, (5.11)

where c is a constant. Hence
lim
t→∞

βij(t) = yn. (5.12)

Another significant parametrization we consider is matrix factorization.

Definition 34. The deep matrix factorization of β ∈ Rd,d′ , with hidden di-

mensions d1, d2, . . . , dL−1 ∈ N, is the parametrization β = W1W2 . . .WL, where

Wj ∈ Rdj ,dj−1 , j = 1, 2, . . . , L, with dL := d, d0 := d′. L is the depth of the factoriza-

tion, the matrices W1, . . . ,WL are the factors, and β is the product matrix.

Remark. We only use the case when d = d1 = . . . = dL = d′ = D. Furthermore,

this over-parametrization allows us to constrain the rank of the product matrix if

we limit the shared dimensions.

The matrix factorization can be considered as a linear neural network, whose weights

are illustrated in Figure 5.2 below.

Figure 5.2: Feedforward neural network that corresponds to the matrix
factorization parametrization
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5. Inductive bias of gradient descent

Arora et al., 2019 showed that if the factors in matrix factorization are updated

through EGD then the product matrix β tends to converge to low-rank solutions

without any explicit regularization. This inductive bias is useful for instance in

the Netflix problem which is the following. The Netflix users typically rate limited

number of movies and the Netflix wants to recommend titles, based on the ratings,

that any particular user is likely to be willing to watch. In the data matrix the rows

are the users, the columns are the movies and the aim is to complete the data matrix

given these rating observations. In reality, one can assume the user-rating matrix to

be low-rank because the individual’s preferences might be influenced by only a few

factors. Therefore, if we have the assumption that the matrix we want to complete

is low-rank then perfect recovery is possible without any further regularization.
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6 Separable classification with natural

gradient descent

In Section 5.1 we discussed which solutions are found with EGD for two different

parametrizations, now we examine the behavior of the parametrization independent

algorithm NGD instead of the parametrization dependent EGD on separable classi-

fication. To perform NGD, calculating the Fisher information matrix is essential.

6.1 Fisher information matrix

We now compute the Fisher of the direct parametrization. However, from

one parametrization’s Fisher it is straightforward to get the Fisher of another

parametrization as the statement below claims.

Statement 13. Let w and θ be two parameter vectors, and let P be a mapping such

that w = P(θ). If the Fisher of w is F (w) then the Fisher of θ is F (θ) = J⊤F (w)J ,

where J = ∂P(θ)
∂θ

is the Jacobian.

Proof. According to the chain rule:

∇θL(θ)⊤ = ∇wL(w)⊤J, so ∇θL(θ) = J⊤∇wL(w),

hence

F (θ) = EXEY |X [∇θL(θ)∇⊤
θ L(θ)] = EXEY |X [J

⊤∇wL(w)∇⊤
wL(w)J ] = J⊤F (w)J.

To begin the computation of the Fisher information matrix of β, first, calculate the

gradient of the loss of one sample

∇βℓ(β) = ∇β log(1 + e−yx⊤β) =
−yxe−yx⊤β

1 + e−yx⊤β
=

−yx

1 + eyx⊤β
= −yxϕ(−yx⊤β), (6.1)
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6. Separable classification with natural gradient descent

and the following:

EX [EY |X;β[−∇βℓ(β)]] = EX [EY |X;β[Y Xϕ(−Y X⊤β)]] =

= EX [Xϕ(−X⊤β)ϕ(X⊤β)−Xϕ(X⊤β)ϕ(−X⊤β)] = 0.

(6.2)

Because of the equation above the Fisher information of the N sample equals N

times the Fisher of one sample, hence compute the Fisher of a single sample

F1(β) = EX [EY |X;β[∇βℓ(β)∇⊤
β ℓ(β)]] =

=
1

N

N∑
n=1

EY |X [xnx
⊤
nϕ(−Ynx

⊤
nβ)

2] =

=
1

N

N∑
n=1

xnx
⊤
n (ϕ(−x⊤

nβ)
2ϕ(x⊤

nβ) + ϕ(x⊤
nβ)

2ϕ(−x⊤
nβ)) =

=
1

N

N∑
n=1

xnx
⊤
nϕ(x

⊤
nβ)ϕ(−x⊤

nβ).

(6.3)

Therefore the Fisher for the N sample is

F (β) =
N∑

n=1

xnx
⊤
nϕ(x

⊤
nβ)ϕ(−x⊤

nβ). (6.4)

Denoting it more compactly, we can write

F (β) = X⊤diag[ϕ(Xβ)⊙ ϕ(−Xβ)]X, (6.5)

where diag stands for a diagonal matrix whose entries on the main diagonal are

represented by the vector ϕ(Xβ)⊙ ϕ(−Xβ), ϕ(Xβ) denotes the application of the

function ϕ elementwise, and ⊙ is for elementwise product.

In the next section we wish to consider the output of the linear neural network,

namely s = Xβ (or s = f(X,w)) as a parametrization of the probabilistic model,

therefore in the following, we also calculate its gradient and Fisher information

matrix.

[∇sL(s)]i =
∂L(s)
∂si

=
∂

∂si

N∑
n=1

log(1 + e−ynsn) =
−yie

−yisi

1 + e−yisi
= −yiϕ(−yisi) (6.6)
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6. Separable classification with natural gradient descent

and

[F (s)]i,j = [EX [EY |X [∇sL(s)∇⊤
s L(s)]]]i,j = EX [EY |X [Yiϕ(−YiSi)Yjϕ(−YjSj)]] =

=

{
EY [(ϕ(−Yisi)

2] if i = j
EY [Yiϕ(−Yisi))]EY [Yjϕ(−Yjsj))] if i ̸= j

(6.7)

From there

EY [ϕ(−Yisi)
2] = ϕ(−si)

2ϕ(si) + ϕ(si)
2ϕ(−si) = ϕ(si)ϕ(−si), (6.8)

EY [Yiϕ(−Yisi)] = ϕ(−si)ϕ(si)− ϕ(si)ϕ(−si) = 0 (6.9)

Hence the Fisher of s is:

[F (s)]i,j = δi,jϕ(si)ϕ(−si). (6.10)

6.2 Results

Before determining the convergence behavior of the separator βt we first prove an

invariance property related to the transformation of the data, through which we can

conclude the impossibility of large margin behavior which was the case considering

EGD. We state this property separately for N < D and N ≥ D.

Theorem 1. Assume that N < D, X is full rank and let A be an invertible D×D

matrix. Denote βt and β′
t the trajectory of NGF on data X and XA⊤ respectively (so

the transformed data points are Axn with labels yn). Then Xβt = XA⊤β′
t with the

assumption that β and β′ have equivalent initial conditions (i. e. Xβ0 = XA⊤β′
0).

Proof. Denote st = Xβt and s′t = XA⊤β′
t. Furthermore, from Equation 6.6 and 6.10

the gradient and the Fisher are the following

[∇sL(s)]i = −yiϕ(−yisi)

[F (s)]i,j = δi,jϕ(si)ϕ(−si)

The exact same can be said about s′, hence s and s′ are the solutions of the same first-

order ordinary differential equation ṡ = −F−1(s)∇sL(s) so with same initialization

s0 = s′0 the solution is unique (its solution is determinable), thus st = s′t.
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6. Separable classification with natural gradient descent

Theorem 2. Use the same assumptions as Theorem 1 but consider the case N ≥ D

instead of N < D. Then A⊤β′
t = βt.

Proof.

EX [EY |X [−∇β′ℓ(β′)]] = EX [EY |X [Y AXϕ(−Y X⊤A⊤β′)]] =

= EX [AXϕ(−X⊤A⊤β′)ϕ(X⊤A⊤β′)− AXϕ(X⊤A⊤β′)ϕ(−X⊤A⊤β′)] = 0
(6.11)

Because of the equation above the Fisher information of the N sample equals N

times the Fisher of one sample, hence compute the Fisher of β′ of a single sample

F1(β
′) = EX [EY |X [∇β′ℓ(β′, XA⊤,y)∇⊤

β′ℓ(β′, XA⊤,y)]] =

=
1

N

N∑
n=1

EY |X [∇β′ log(1 + e−Ynx⊤
nA⊤β′

)∇⊤
β′ log(1 + e−Ynx⊤

nA⊤β′
)] =

=
1

N

N∑
n=1

EY |X [(−YnAxnϕ(−Ynx
⊤
nA

⊤β′))(−YnAxnϕ(−Ynx
⊤
nA

⊤β′))⊤] =

=
1

N

N∑
n=1

EY |X [Axnx
⊤
nϕ(−Ynx

⊤
nA

⊤β′)2A⊤] =

using the notation v = A⊤β′ we get

= A(
1

N

N∑
n=1

EY |X [xnx
⊤
nϕ(−Ynx

⊤
nv)

2])A⊤ =

= A(
1

N

N∑
n=1

EY |X [∇vℓ(v)∇⊤
v ℓ(v)])A

⊤ = AF1(v)A
⊤.

Therefore for N samples:
F (β′) = AF (v)A⊤. (6.12)

F (v) = X⊤diag[ϕ(Xv)⊙ ϕ(−Xv)]X (6.13)

as we have seen before in Equation 6.5. Note, that the Fisher of v must be invertible

because its size is D ×D and its rank is D as well. Hence, F (β′) is also invertible.

Specify ∇β′ℓ(β′) and let J = ∂v
∂β′ :

∇β′ℓ(β′, XA⊤,y) = J⊤∇vℓ(v, X,y) (6.14)

Ji,j =
∂vi

∂β′
j

=
∂
∑D

k=1 β
′
kAk,i

∂β′
j

= Aj,i (6.15)
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6. Separable classification with natural gradient descent

Therefore J = A⊤ so J⊤ = A,

∇β′ℓ(β′) = A∇vℓ(v). (6.16)

Now consider NGF on β′:

β̇
′
= −F (β′)−1∇β′L(β′) = −(AF (v)A⊤)−1

N∑
n=1

∇β′ℓ(β′) =

= −(A⊤)−1F (v)−1A−1A

N∑
n=1

∇vℓ(v) = −(A⊤)−1F (v)−1∇vL(v)

(6.17)

by the chain rule we have
v̇ = Jβ̇

′
= A⊤β̇

′
. (6.18)

From Equation (6.17) and (6.18) we get:

v̇ = F (v)−1∇vL(v). (6.19)

Therefore vt is a solution for the same first-order differential equation as β, and

because of the same initialization (Xβ0 = XA⊤β′
0 = Xv0 → β0 = A⊤β′

0 = v0)

βt = vt = A⊤β′
t.

Conclusion. Denote st(X,y) the trajectory of Xβt, which is the function β⊤
t x

evaluated at each data points xn. Then st(XA⊤,y) = st(X,y).

Proof. st(XA⊤,y) = XA⊤βt(XA⊤,y) = Xβt(X,y) = st(X,y)

A special case of this invariance property is when A = aI diagonal matrix. In this

case Theorem 1, 2 means that the coordinates of β′
t is the one of βt multiplied by

1
a
. This behavior rules out implicit regularization as a non-data-dependent norm of

βt, specially the ℓp large margin behavior. Accordingly, it is natural to consider a

method that indeed has the invariance property stated above.

Regard the ordinary least squares regression (OLS) which gives a solution for the

problem Xβ = y. The particular solution it finds is βOLS = argmin
β

∥y−Xβ∥2 and

if the columns of the matrix X are independent, then βOLS = (X⊤X)−1X⊤y. We

now show the invariance property for OLS that was stated in Theorem 1,2. Again,

we split the problem into two cases: N < D and N ≥ D.
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6. Separable classification with natural gradient descent

Statement 14. Assume that N < D, X is full rank and let A be an invertible D×D

matrix. Denote βOLS and β′
OLS the ordinary least squares solution for the matrix

X and XA⊤ respectively and label y in both cases. Then XβOLS = XA⊤β′
OLS.

Proof. Immediately follows from the definition of the problems: XβOLS = y and

XA⊤β′
OLS = y.

Statement 15. Use the same assumptions as Statement 14 but consider the case

N ≥ D instead of N < D. Then A⊤β′
OLS = βOLS.

Proof. Due to the assumption that X is full rank in this case the columns of X are

independent, therefore

A⊤β′
OLS = A⊤((XA⊤)⊤XA⊤)−1(XA⊤)⊤y = A⊤A⊤−1(X⊤X)−1A−1AX⊤y = βOLS

The next theorems illustrate the further possible connection between the solution

that NGD finds and the OLS solution.

Theorem 3. Assume that N ≤ D, X is full rank and the parameters βt of a

linear model follow NGF, then the output of the network st = Xβt follows an

asymptotically linear trajectory with direction vector y.

This theorem is a special case of Theorem 4 which is stated later.

Remark. The reason why we consider s instead of β is the following. Since the

Fisher information matrix of β is F (β) = X⊤diag[ϕ(Xβ) ⊙ ϕ(−Xβ)]X, it can be

seen that rank(F (β)) = rank(X) ≤ N < D, so F (β) is not invertible, hence several

NGF paths are possible. Intuitively, when rank(X) = N β has D − N degrees of

freedom and with s β is indeed described on N dimensions.

When there are more parameters than data points, with NGD the output of the

linear network is a solution that interpolates the labels y perfectly just as OLS does.

Furthermore, OLS finds the minimum ℓ2 norm solution to the problem Xβ = y and

the Moore-Penrose pseudoinverse β = X+y also yields the smallest ℓ2 norm solution.

This fact invited the following conjecture.

Conjecture. If the Moore-Penrose pseudoinverse is used to calculate the natural

gradient descent direction, i. e. Eqn. (4.29), then βt converges in direction to the

OLS solution.
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6. Separable classification with natural gradient descent

Theorem 3 only refers to a linear model, specially the simple Xβ model, but actually,

the statement of the theorem holds in a more general case, namely for arbitrary non-

linear over-parametrized models as well. Let θ ∈ RP be the parameters of a neural

network s = f(X; θ) ∈ RN whose output define the probabilistic model discussed in

Section 5.1.

Theorem 4. Assume that N ≤ P , the parameter θt follows NGF and the Jacobian

Jt =
∂st
∂θt

is full rank. Then st follows asymptotically linear trajectory with direction

vector y.

Proof. Note that the assumptions of Statement 11 are satisfied, because dim s ≤

dim θ, the Jacobian is full rank, and the Fisher F (st) is invertible since it is the

exact same as in the s = Xβ case (see Equation 6.10). Therefore the trajectory of

s is the same as the trajectory of θ, if s0 = f(X, θ0). The path of s is defined by

ṡ = −F−1(s)∇sL(s). (6.20)

First assume s is 1-dimensional and use the notation s = s, x = xn and y = y. To

solve Equation 6.20 it requires the gradient and the Fisher information matrix of s

which are the following (from Equation 6.6 and 6.10)

∇sL(s) = −yϕ(−ys) (6.21)
and

F (s) = ϕ(s)ϕ(−s). (6.22)

Then Equation 6.20 can be written as

ṡ =
yϕ(−ys)

ϕ(s)ϕ(−s)
. (6.23)

Now multiply both sides of the equation above by y

yṡ =
ϕ(−ys)

ϕ(ys)ϕ(−ys)
(6.24)

and substitute s̃ = ys
∂s̃

∂t
=

1

ϕ(s̃)
. (6.25)

The solution to this differential equation is

s̃ = log(et+c − 1), (6.26)

where c is a constant. From Equation 6.26 we get the asymptotic behaviour

lim
t→∞

s̃

t+ c
= lim

t→∞

log(et+c − 1)

t+ c
= lim

t→∞

et+c

et+c − 1
= lim

t→∞

1

1− e−(t+c)
= 1 (6.27)
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6. Separable classification with natural gradient descent

using the L’Hopital Rule.

We proved Theorem 4 for N = 1, now consider N > 1 case. Now the gradient and

the Fisher are
[∇sL(s)]i = −yiϕ(−yisi) (6.28)

And the Fisher information matrix:

[F (s)]i,j = δi,jϕ(si)ϕ(−si). (6.29)

Substituting Equation 6.28 and 6.29 in Equation 6.20 we get


ṡ1
ṡ2
...
˙sN

 = −


1

ϕ(s1)ϕ(−s1)
0 · · · 0

0 1
ϕ(s2)ϕ(−s2)

· · · 0
...

... . . . ...
0 0 · · · 1

ϕ(sN )ϕ(−sN )




−y1ϕ(−y1s1)
−y2ϕ(−y2s2)

...
−yNϕ(−yNsN)

 =


y1ϕ(−y1s1)
ϕ(s1)ϕ(−s1)
y2ϕ(−y2s2)
ϕ(s2)ϕ(−s2)

...
yNϕ(−yNsN )
ϕ(sN )ϕ(−sN )


These are N independent differential equations and each is the same as Euquation

6.23 in the N = 1 case. Then multiply the nth equation by yn and substitute

s̃n = ynsn as we did before. As a result in each dimension s̃ is asymptotically t+ cn

for some constant cn. Hence s̃ ≈ t1+ c̃, c̃ ∈ RD and s ≈ ty + c, where c ∈ RD is a

constant.

Remark. If our network is the linear s = Xw then J = X, so Theorem 3 is a special

case of Theorem 4 indeed.
A: direct parametrization, EGD B:L = 4 diagonal network, EGD C: direct parametrization, NGD D:L = 4 diagonal network, NGD

Figure 6.1: Inductive bias of EGD and NGD in separable classification

Figure 6.1 from Kerekes, Mészáros, and Huszár, 2021 illustrates the parametriza-

tion dependence with EGD and independence with NGD. It shows which solution

is found with EGD and NGD using direct and diagonal parametrizations on a sepa-

rable classification data set. Clearly, EGD leads to different separator with different

parametrization, while NGD finds the same solution.
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7 Matrix completion with natural gra-

dient descent

In Section 5.2 we discussed which solutions are found with EGD for two different

parametrizations, now we examine the behavior of the parametrization independent

algorithm NGD instead of the parametrization dependent EGD on matrix comple-

tion. To perform NGD, calculating the Fisher information matrix is essential.

7.1 Fisher information matrix

We now compute the Fisher of the direct parametrization. However, from

one parametrization’s Fisher it is straightforward to get the Fisher of another

parametrization as the Statement 13 claims.

To begin the computation of the Fisher information matrix of β, first, calculate the

gradient of the loss. The gradient is a matrix where it contains 0 in the place of

unobserved entries, and has −yn+⟨An,β⟩
σ2 where there was an observation. The Fisher

is defined as

F (β) = EX [EY |X [∇βL(β)∇⊤
βL(β)]]. (7.1)

In the case of separable classification we computed the expectation EX over the

empirical distribution, but now we chose another: B1, B2, . . . , BD, where Bi has an

entry 1 in the ith row ith column and 0 everywhere else (the loss is obviously summed

over Bis). Now the Fisher is

F (β) = EY |X


(y1−⟨B1,β⟩)2

σ4 0 · · · 0

0 (y2−⟨B2,β⟩)2
σ4 · · · 0

...
... . . . ...

0 0 · · · (yD−⟨BD,β⟩)2
σ4

 =
σ2

σ4
I =

1

σ2
I. (7.2)
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7. Matrix completion with natural gradient descent

7.2 Results

The theorem below states that natural gradient descent in the case of matrix com-

pletion finds the trivial solution.

Theorem 5. The solution of NGF converges to the trivial solution under any over-

parametrization θ for which dimβ ≤ dim θ, J = ∂βt

∂θt
is full rank (where β is the

direct parametrization) and we use the same initialization.

Proof. Consider a parametrization θ such that β = P(θ) and let θt be the solution

of NGF in θ. Futhermore, we know that J = ∂βt

∂θt
is full rank. The Fisher of β

is invertible (F (β) = 1
σ2 I), therefore from Statement 11 βt = P(θt) solves the

differential equation
β̇ = −F (β)−1∇βL(β) (7.3)

which is
β̇ = −σ2∇βL(β). (7.4)

Its solution is
βij(t) = βij(0) (7.5)

when βij is unobserved and
βij(t) = yn + ce−t (7.6)

when βij is observed.
lim
t→∞

βij(t) = yn. (7.7)

The theorem implies that NGF finds a solution in which observed entries converge

to the observed value, and everywhere else the values do not change from the ini-

tialization. While Euclidean gradient descent generalizes well in matrix factorization

with the low-rank assumption and has an implicit regularization towards low rank,

natural gradient descent fails to generalize and finds the trivial solution.
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8 Summary

In gradient descent how we parametrize the hypothesis plays a significant role in the

underdetermined problems where the inductive bias has an important role. EGD in

separable classification is able to recover sparse separators, and in matrix completion

it can identify low-rank matrices with the right parametrization. These inductive

biases have an essential connection with good generalization. However, there exist

algorithms that are irrespective of parametrization.

We examined the behavior of natural gradient descent, which finds the same solution

with whichever parametrization. We were interested in characterizing this particular

solution in order to understand the importance of parametrization. We found that in

the case of separable classification the output of the network with NGD converges to

the labels y and we suspect that the separator converges to the ordinary least squares

solution if the problem is over-parametrized. Where, in contrast, EGD has a large

margin behavior. Considering matrix completion NGD finds the trivial solution,

namely the observed entries converge to the observed value while others do not

move from the initialization. We see how it fails to generalize completely.

Even though NGD in these cases did not perform desirably, it does not mean that

NGD is always useless. As this algorithm is often used because of its fast convergence,

it might be the case that NGD minimizes the training loss effectively at the cost of

poorer generalization.

Through these results, the role of parameter-to-hypothesis mapping can be under-

stood better. Besides the role of initialization and properties of stochastic gradient

descent, parameter-to-hypothesis mapping is an important aspect of implicit regu-

larization. Consequently, now we also have deeper knowledge about implicit regu-

larization. As it was shown, explicit regularization is neither necessary nor by itself

sufficient for controlling generalization error. Therefore, implicit regularization has

a significant role in understanding the way of generalization in deep learning and

understanding how the inductive bias selects a model from the several functions

fitting to the training data. This knowledge is essential in designing architectures

that can generalize significantly well in different deep learning problems.
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