
NYILATKOZAT

Név: Szabó Kristóf

ELTE Természettudományi Kar, szak: Matematika BSc

NEPTUN azonositó: QD3FMF

Szakdolgozat címe:
Theorem Proving with Deep Learning

A Szakdolgozat szerzöjeként fegyelmi felelQsségem tudatában kijelentem, hogy a

dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard

Szabályait következetesen alkalmaztam, mások által irt részeket a megfelelQ idézés

nélkül nem használtam fel.

Budapest, 2022.05.30.

a hallgató aláirása

Eötvös Loránd University
Faculty of Science

Szabó Kristóf
BSc in Mathematics

Theorem Proving with Deep Learning

Thesis

External Supervisor:

Zsolt Zombori, research fellow
Alfréd Rényi Institute of Mathematics

Internal Consultant:

András Lukács, senior lecturer
ELTE, Department of Computer Science

Budapest, 2022

1

Contents

1 Introduction 4
1.1 Notations . 4
1.2 Preliminaries . 5

2 Reinforcement learning 8
2.1 Foundation . 8
2.2 Value-based methods . 10
2.3 Temporal difference learning . 14

3 Planning 18
3.1 Multi-armed bandits . 18
3.2 Monte Carlo Tree Search . 24

4 Deep learning 26
4.1 Neural architectures . 26
4.2 Deep reinforcement learning . 27
4.3 Autoencoders . 31

5 Dreaming to Prove 33
5.1 Dreamer algorithm . 33
5.2 Dreaming to Prove . 35

2

Acknowledgement

I would like to express my special thanks to Zsolt Zombori for introducing me to the
topic of Automated Theorem Proving. I believe that I learned a lot from the Dreaming
to Project that would not have been possible without the help and guidance of Zsolt.
He was always available if I had a question and always thoroughly assisted my work on
the Dreaming to Prove project. Furthermore, I truly appreciate that he undertook the
supervision of my thesis, despite spending the year abroad. Moreover, I am thankful
to András Lukács for taking the internal consultant role. Finally, I would like to thank
Beátrix Benkő for revisioning my thesis and providing helpful feedback.

3

1 Introduction

In recent years, Artificial Intelligence research made breakthroughs that weren’t an-
ticipated before. Now, computers can generate pictures (DALL-E) and texts (GTP-2)
indistinguishable from real ones. Other examples are AlphaZero which achieved super-
human level in chess, go and shogi or the AlphaFold, which is capable of reliably pre-
dicting protein structures which was a slow and expensive procedure.

This thesis introduces an automated theorem proving system titled Dreaming to
Prove that builds upon the theories of Reinforcement learning, Deep learning, Planning
methods and several results of novel research directions in deep learning.

Automated Theorem Proving is a subfield of mathematical logic and computer sci-
ence focusing on proving mathematical theorems. Many researchers believe that the
large-scale semantics process and computer assistance of mathematics and science is our
inevitable future. Unfortunately, theorem proving is a complex task even for mathe-
maticians, so building systems that are able to solve mathematical problems is a real
challenge. In Chapter 2, we introduce the Markov Decision Process, which is the math-
ematical formulation of interaction with an object or environment that responds to our
actions. They are not only beneficial because we can consider theorem proving as a
particular type of Markov Decision Process, but there is also a theory built upon them,
called Reinforcement Learning, which introduces algorithms that are able to find an ac-
tion sequence that maximises the reward. In Chapter 3, we introduce the one-armed
bandits, an optimisation problem within reinforcement learning that emphasises the im-
portance of a balanced exploration-exploitation trade-off, which briefly means that we
cannot play the best action each time and try new ones that might perform the current
best one. However, as one might expect, theorem proving is far more complicated to
be tackled with simple algorithms; therefore, ideas of deep learning are used to improve
upon the results of Chapter 2 as shown in Chapter 4. Finally, Chapter 5 introduces
the Dreaming to Prove system and explains how the mechanism of each component uses
algorithms, methods or ideas discussed in previous chapters.

1.1 Notations

In this section we establish some notations.

• P(X), space of probability measures over an X measurable space.

• Lp(X), space of measurable functions on anX measurable space with finite p-norm.
(We mostly use L∞ which contains the almost surely bounded functions.)

We often write Ex∼p(·) [f(x)] to emphasise that x is a variable drawn from the p distri-
bution. This is especially useful, when we have conditional probabilities: Ex∼p(·|C) [f(x)]

where C is some event.

4

1.2 Preliminaries

The Kullback-Leibler divergence plays a curicial role in statistics and in machine
larning.

Definition 1.1 (KL-divergence). Let P,Q ∈ P(χ) be two probability measures such
that P is absolutely continuous with respect to Q, then the KL-divergence from Q to P
is defined as

DKL(P ‖ Q) =

∫
χ

log

(
dP

dQ

)
dP

Many papers interpret KL-divergence as measurement of some distance between two
probability distribution, although it violates the symmetric property of metrics. Gibbs’
inequality states the following.

Theorem 1.2. 1. For every P,Q probability measures DKL(P ‖ Q) ≥ 0.

2. If DKL(P ‖ Q) = 0, then P = Q.

Proof. The Gibbs’ inequality immediately follows from the Jensen’s inequality: Let
(Ω,A, µ) be a probability space, f : Ω→ R be a µ-measurable function and ϕ : R→ R
a convex function, then: ∫

Ω

ϕ ◦ fdµ ≥ ϕ

(∫
Ω

fdµ

)
Since − log is a convex function, we can apply the above inequality:

DKL(P ‖ Q) =

∫
Ω

− log

(
dQ

dP

)
dP ≥ − log

(∫
Ω

dQ

dP
dP

)
= 0

The last integrand is
∫

Ω
dQ = 1 by definition, hence DKL(P ‖ Q) ≥ 0.

For the second part of the theorem, note that − log is strictly convex, therefore equality
occurs only if dQ

dP
is constant with 1-probability, which holds precisely when P = Q.

In deep learning, the primary optimisation method is gradient descent which updates
the model using the objective gradient. Usually, we only have an approximation of the
objective; therefore, the following lemma is of great use.

Theorem 1.3 (Leibniz rule). Let I be an open subset of R, and (X ,A, µ) be a measure
space. Suppose f : I ×X → R satisfies the following conditions:

1. For every t ∈ I the f(t, ·) function is A-measurable.

2. For almost all ω ∈ X , the ∂tf(t, ω) derivative exists for all t ∈ I.

3. There is an integrable function g : X → R such that |∂t(t, ω)| ≤ g(ω) for all t ∈ I
and almost every ω ∈ X .

5

Then, for all t ∈ I,
∂t

∫
X
f(t, ω)dµ(ω) =

∫
X
∂tf(t, ω)dµ(ω)

The proof relies on the dominant convergence theorem:

Theorem 1.4 (Dominated convergence theorem). Let fn be a sequence of measurable
functions on a (X ,F , µ) measure space. Suppose that fn converges pointwise to f and
there is an integrable function g that dominates fn, i.e, |fn| ≤ g. Then f is integrable
and

lim
n→∞

∫
X
fndµ =

∫
X
fdµ

Proof of Theorem 1.3. Let F (t) =
∫
X f(t, ω)dµ(ω), then the derivative is

∂tF (t) = lim
h→0

F (t+ h)− F (t)

h

= lim
h→0

∫
X

f(t+ h, ω)− f(t, ω)

h
dµ(ω)

Due to the mean value theorem there is a c ∈ [t, T +h] such that f(c, ω) = f(t+h,ω)−f(t,ω)
h

.
The latter one is dominated by g because of the assumption in the statement. Therefore
f(t+h,ω)−f(t,ω)

h
is dominated, so we can apply the dominated convergence theorem and

swap the limit and the integral and obtain that

∂tF (t) =

∫
X

lim
h→0

f(t+ h, ω)− f(t, ω)

h
dµ(ω)

=

∫
X
∂tf(t, ω)dµ(ω)

This is exactly what we wanted to prove.

The following definitions and theorems are intended only for an audience that is
interested in the precise mathematical definition of the Markov Decision Process.

Definition 1.5 (Probability kernel). Let (X ,F), (Y ,G) be measurable spaces. A κ : X×G
is probability kernel (or Markov kernel) such that

1. κ(x, ·) is a measure for all x ∈ X

2. κ(·, G) is F -measurable for all A ∈ G

The natural interpretion of the above definition is that we have a distribution over Y
depending on some event in X . Therefore, we will use the notion κ(A|x) = κ(x,A) to
emphasise the dependence on x.

6

Definition 1.6 (Composition of probability kernels). Let κ1 be a (X ,F) → (Y ,G)

probability kernel and κ2 be another (Y ,G)→ (Z,H) probabilty kernel, then the product
kernel κ1 ⊗ κ2 is the probability kernel from (X ,F)→ (Y × Z,G ⊗H) defined by

(κ1 ⊗ κ2)(A|x) =

∫
Y

∫
Z
1A((x, y))κ2(dz|y)κ1(dy, x) ∀ A ∈ G ⊗ F

When P is a measure on (X ,F) and κ is a (X ,A)→ (Y ,G) probability kernel, we define
the P ⊗ κ composition as a measure on (X × G,F ⊗ G) defined by

(P ⊗ κ)(A) =

∫
X

∫
Y
1A((x, y))κ(dy|x)dP (x)

Theorem 1.7 (Ionescu-Tulcea theorem). Let (Ω0,A0, P0) be a probability space and
(Ωi,Ai) for i > 0 a sequence of measurable spaces. For each i > 0 let κi be a probability
kernel from (Ωi−1,Ai−1)→ (Ωi,Ai), where

Ωi :=
i∏

j=0

Ωj and Ai :=
i⊗

j=0

Ai

Then there exists a sequence of probability meaures Pi := P0⊗
⊗i

j=1 κi defined on (Ωi,Ai).
Moreover, there exists a unique P probability measure on (

∏∞
j=0 Ωj,

⊗∞
j=0Aj), so that

Pi(A) = P (A×
∞∏

j=i+1

Ωj) ∀ A ∈ Ai

The Ionescu-Tulcea plays a crucial role in the mathematical formulation of the
Markov Decision Process, as we will see later. Unfortunately, the proof is out of the
scope of this thesis, but it can be found in [1].

7

2 Reinforcement learning

2.1 Foundation

In reinforcement learning, the primary goal is to find an agent (an intelligent ac-
tor) which interacts with the environment in a way that the accumulated reward is
maximalized. This chapter is based on [2, 3, 4]. The mathematical formulation of the
"environment" is called Markov decision process (MDP).

Definition 2.1. An MDP is a 4-tuple (S,A, T, R) where:

• The S measurable space is the state space,

• The A measurable space is the action space,

• The T : S × A → P(S) probability kernel is the transition function. It assigns a
distribution over states to each state action pair.

• The R : L∞(S × A × S) is the reward function which assigns a reward for going
from a state with an action to an other state. (The reward function is often defined
as a distribution over R in order to introduce additional randomness.)

The elements of S are considered the inputs of the agent. So, the agent chooses an a ∈ A
action at an s ∈ S state and then the MDP’s transition function determines the next
state. An MDP is the interaction of an agent that plays an action in each state that the
environment processes by giving back the next state and reward. Note that the agent is
not part of the MDP.

An MDP is called episodic if for every sequence of actions a terminal state is reached.
The next step is to define the policy (the agent), so that we can mathematically formulate
the interaction with an MDP.

Definition 2.2. The policy is a π : S → P(A) probability kernel, which is a distribution
over actions in every state.

8

Definition 2.3. LetM be an MDP and π a policy, then the (S0, A0, R1, S1, A1, R2, . . .)

sequence is called a trajectory, where Si, Ai, Ri+1 i ≥ 0 are random variables such that.
S0 is the starting position (or distribution in some cases) and Ai, Si, Ri+1 are defined
by Ai ∼ π(·|Si), Si+1 ∼ T (·|Si, Ai), Ri = R(Si, Ai, Si+1). The measure defined on the
trajocteries is denoted by τ .

Note that according to Theorem 1.7, the above τ measure is well defined. Now, that
we have established that τ exists, we can define further variables. If it is not specified,
the expectations are always defined over the τ probability measure. From now on, a
0 < γ < 1 discount factor is fixed. Intuitively, a reward that is obtained after many
steps is worth less than an equal but immediate reward. As the following definition
shows, the discount is used to down-weight rewards obtained later.

Definition 2.4 (expected return). Given an M MDP and π policy we define the ex-
pected return V π : S → R such that

V π(s) = Eπ

[
∞∑
k=0

γkRt+k | st = s

]

One of the most useful properties of the value-function is that we can rewrite the above
equation by substituting back the definiton of V π

V π(s) = Eπ

[
Rt +

∞∑
k=1

γkRt+k

]
(2.1)

= EπR(s, a, s′) + γEπV (s′) (2.2)

The V π value function has finite ∞-norm, because

‖V π‖ ≤ sup
s∈S

Eπ

(
∞∑
k=0

γk|Rt+k||st = s

)
≤ ‖R‖∞ /(1− γ)

The optimal expected return can be defined as:

Definition 2.5 (optimal expected return).

V ∗(s) = max
π∈Π

V π(s)

It is also in our interest to define the expected value for actions.

Definition 2.6 (Q-value). Given a π policy we define the Qπ : S × A → R Q-value
function such that

Qπ(s, a) = E

[
∞∑
k=0

γkRt+k | st = s, at = a, π

]

Similarly the optimal version is

9

Definition 2.7 (Optimal Q-value).

Q∗(s, a) = max
π∈Π

Qπ(s, a)

Definition 2.8 (Optimal policy).

π∗(s) = arg max
a∈A

Q∗(s, a)

The functions Q and V can be approximated by enrolling traces and their returns.
However, we can approximate Q, V recursively which is computationally more efficient.
The later one utilises the following reformulation of Q, V :

Qπ(s, a) = Es′∼T (·|a,s) (R(s, a, s′) + γV π(s′)) (2.3)

V π(s) = Ea∼π(·|s)Q
π(s, a) (2.4)

It is convenient to also introduce the advantage function:

Definition 2.9. The advantage function is defined by Aπ(s, a) = Qπ(s, a)− V π(s).

2.2 Value-based methods

In this section, we show some fundamental value-learning results, but we need the
Banach fixed point theorem before that.

Definition 2.10 (Contraction mapping). Let (X, d) be a complete metric space. Then
a map T : X → X is called a contraction mapping on C if there exists q ∈ [0, 1) such
that d(T (x), T (y)) ≤ qd(x, y) for all x, y ∈ X.

Theorem 2.11 (Banach fixed point theorem). Let (X, d) be a non-empty complete met-
ric space with a contraction mapping T : X → X. Then T admits a unique fixed-point x∗

in X. Furthermore, for an arbitrary x0 ∈ X starting point, the (xn)n∈N sequence defined
as xn = T (xn−1) for n ≥ 1 converges to x∗, i.e., limn→∞ xn = x∗.

The Bellman operator leverages the reformulation in Eq 2.1 of the value function to
iteratively update the value-function. As we will see later, this method converges to the
optimal value-function and an optimal-policy.

Definition 2.12. Let π be an arbitrary policy. The Bπ : L∞(S) → L∞(S) Bellman
operator with respect to the π policy is defined such that

(BπV)(s) = Ea∼π(·|s)Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]

Moreover, the B∗ : L∞(S)→ L∞(S) Bellman optimality operator is defined such that

(B∗V)(s) = sup
a∈A

Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]

10

First of all, we show that the above two operators are well-defined, i.e., for any V ∈ L∞(S)

the BV is in L∞(S).

Proof. Let C = ‖V ‖∞, then we have

‖BπV ‖∞ = sup
s∈S

∣∣Ea∼π(·|s)Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]
∣∣

≤ sup
s∈S

Ea∼π(·|s)Es′∼T (·|s,a) [|R(s, a, s′)|+ γ |V (s′)|]

≤ sup
s,a,s′
|R(s, a, s′)|+ γC

Hence, BπV ∈ L∞(S). Similarly follows that B∗ is also well defined:

‖B∗V ‖∞ = sup
s∈S

sup
a∈A

Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]

≤ sup
s,a,s′
|R(s, a, s′)|+ γC

We list some basic properties of both Bellman-operators which will be of great use
later.

Lemma 2.13. For the Bellman-operator it holds that

1. For any π policy Bπ ≤ B∗ where ≤ means that for every V ∈ L∞(S) value-function
we have BπV ≤ B∗V .

2. Let U, V ∈ L∞(S) be two value-function such that U ≤ V , then B∗U ≤ B∗V .

Proof. The first point is an immediate consequence of the definition.
Once again, the second point follows from the definition of B∗:

B∗U = sup
a∈A

Es′∼T (·|s,a) [R(s, a, s′) + γU(s′)]

≤ sup
a∈A

Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]

= B∗V

Definition 2.14 (Greedy policy). We say that a π policy is greedy with respect to a V
value-function if

Ea∼π(·|s)Es′∼T (·|s,a) [R(s, a, s′) + γV (s′)]

is maximalized for every s ∈ S. Or equivalently BπV = B∗V .
In the finite MDP case the greedy policy always exists, but in general, the supremium is
not necessarily achieved by a policy.

11

Theorem 2.15. The only fix point of Bπ is V π and for any V0 ∈ L∞(S)

lim
n→∞

(Bπ)nV0 = V π

where the limit is taken according the ∞-norm.
Similarly, the only fix point of B∗ is V ∗ and

lim
n→∞

(B∗)nV0 = V ∗

Furthermore, the π greedy policy with respect to V ∗ is an optimal policy.

Proof. First of all, it follows from Equation 2.1 that V π is a fixpoins of Bπ. Or goal is
to show that V π is a unique fixpoint and that the limit of iterations by Bπ is always V π,
to do so we want to use Banach’s fixpoint theorem for what it is sufficient to prove that
Bπ is a contraction.

‖BπU − BπV ‖∞ = γ sup
s∈S

∣∣Ea∼π(·|s)Es′∼T (·|s,a) [U(s′)− V (s′)]
∣∣

≤ γ sup
s∈S

Ea∼π(·|s)Es′∼T (·|s,a) |U(s′)− V (s′)|

≤ γ sup
s∈S

Ea∼π(·|s)Es′∼T (·|s,a) ‖U − V ‖∞

≤ γ ‖U − V ‖∞

The above calculation shows that Bπ is a contraction, hence we proved the first part of
theorem.
The second part is slightly more tricky because the fact that V ∗ is a fix point does not
follow immediately. From a similar calculation as the previous one it follows that B∗ is
a contraction. By using the definition and the fact that

| sup
x∈H

f(x)− sup
x∈H

g(x)| ≤ sup
x∈H
|f(x)− g(x)|

we obtain that

‖B∗U − B∗V ‖∞ ≤ γ sup
s∈S,a∈A

Es′∼T (·|s,a) |U(s′)− V (s′)|

≤ γ sup
s∈S,a∈A

Es′∼T (·|s,a) ‖U − V ‖∞

≤ γ ‖U − V ‖∞

So, B∗ is contraction, hence has a V fixpoint.
Let π be a greedy policy with respect to V . By definition BπV = B∗V . Since V is the
fixpoint of B∗, we have BπV = V . Fortunately, we know that Bπ has a unique fix point,
V π, thus V π = V .
Now, let π be an arbitrary π policy. According 2.13.1, we know that

V π = BπV π ≤ B∗V π

12

Applying 2.13.2 to V π and B∗V π we obtain the following chain of inequialities

V π ≤ B∗V π ≤ (B∗)2V π ≤ · · · ≤ lim
n→∞

(B∗)nV π = V

where V is the unique fixpoint of B∗. So, V π ≤ V . Since π was arbitrary, V is the
optimal value-function(V = V ∗) and π is an optimal policy.

The last theorem let us find the best policy by iteratively applying the B∗ operator and
then taking the greed policy.

Theorem 2.16. Let π0 be an arbitrary policy and π be the greedy policy with respect to
V π0. Then V π ≥ V π0, in other words, π is an improved policy compared to π0

Proof. We have BπV π0 = B∗V π0 ≥ Bπ0V π0 = V π0 . Applying 2.13.2 to both sides
infinitely many times we obtain that V π ≥ V π0 .

That means that we can get an optimal policy by estimating the value function for the
current policy and then improving upon it by taking the greedy policy with respect to
the estimated value-function. According to 2.15, the latter method will converge to an
optimal policy. There are several value-based methods with different advantages that
relies on the V function. However, we could do the same for Q-functions:

Definition 2.17 (Bellman operator). The B Bellman operator is an operator that is a
mapping between Q ∈ L∞(S ×A) Q-functions such that

BQ(s, a) = Es′∼T (s′|s,a)

(
R(s, a, s′) + γmax

a′∈A
Q(s′, a′)

)
Other similar theorems can be obtained for Q-functions.

13

2.3 Temporal difference learning

Temporal difference learning (TD for short) uses the idea of bootstrapping which
handles predictions as targets. In this section, we introduce the most basic TD algorithm
and compare it to a Monta-Carlo based method. Finally, we generalize the two algorithms
giving rise to a family of TD algoritms.

Basic TD algorithm

LetM be a finite MDP and fix a π policy. We wish to estimate the value-function
associated with π. Let V̂t denote the estimate of V π in the tth time step. Previously,
we saw that the bellman operator can be used to approximate V π. The TD algorithm
performs the following calculation at each time step:

δt+1 = Rt+1 + γV̂t(St+1)− V̂t(St)
V̂t+1(s) = V̂t(s) + αtδt+11St=s

Where (αt)
∞
t=0 is the step-size sequence chosen by the user. Later, we show that if the

(αt)
∞
t=0 meets some criteria then convergence is always ensured.
The temporal difference name comes from the δ variable which captures the difference

between values of states corresponding to successive time steps. Let T0 : L∞(S)→ L∞(S)

be an operator over value-functions such that

T0V (s) = Ea∼π(·|s),s′∼T (·|s,a) [R(s, a, s′) + γV (s′)− V (s)]

The above operator calculates the δ difference and can be decomposed as T0V = BπV −V .
Recall that Bπ has a unique solution V π, thus the unique solution of T0V = 0 is V π.

Algorithm 1 Temporal difference learning
1: while V converges do
2: S,R, S ′ ← SampleStep()
3: δ ← R + γ · V [S ′]− V [S]

4: V [S]← V [S] + α · δ

Every-visit Monte-Carlo

In Every-visit Monte-Carlo we omit bootstrapping and instead approximate value-
functions by enrolling full trajectories. Let (St, Rt+1, S

′
t+1)∞t=0 a continual sampling from

theM MDP following the π policy such that St+1 = S ′t+1 if S ′t+1 is not a terminal state
and St+1 be the starting state otherwise. Furthermore, let Tt denote the next time step,
whenM was restarted. We define Rt as:

Rt =
Tt−1∑
k=t

γk−tRk+1

14

Clearly, V π(St) = E(Rt|St). Finally, we define the update rule as

V̂t+1(s) = V̂t(s) + αt(Rt − V̂t(s))1St=s

Algorithm 2 Every-visit Monte-Carlo
1: while V converges do
2: sum← 0

3: S0, R1, S1, . . . ST−1, RT ← SampleEpisode()
4: for t = T − 1 to 0 do
5: sum← Rt+1 + γ · sum
6: V [St]← (1− α) · V [St] + α · sum

General TD algorithm

The main difference between the two previous algorithm is that we depend differently
on our previous estimate. In case of the basic TD, if the value of successor states differs
from their true value by a significant amount, then the convergence of the root value
will be slower compared to the Monte-Carlo method. The Monte-Carlo variant does not
depend on an accurate estimation of successor state values, hence the increased speed of
convergence. At the same time, we have to enroll full trajectories to estimate the value
of a state which has higher variance and therefore can slow down the convergence in
some cases.
Fortunately, we can generalise the two previous algorithms by introducing a λ ∈ [0, 1]

control variable that, in essence, determines how much we take advantage of each algo-
rithm. We define Rt:k as

Rλ
t:r = γr+1V̂ (St+r+1) +

t+r∑
k=t

γk−tRk+1

and the Rλ
t target is defined as

Rλ
t =

∞∑
k=0

(1− λ)λkRt:k

Lemma 2.18. When λ = 0, 1 the Rλ
t target is the same as in the two previous algorithm.

• If λ = 0, then Rλ
t = Rt+1 + γV̂ (St+1).

• The limit of Rλ
t in λ→ 1 exists and

lim
λ→1
Rλ
t =

∞∑
r=t

γr−tRk+1

15

Proof. The first claim immediately follows from Rt:0 = Rt+1 + γV̂ (St+1) and that the
weight of every other term is zero.
For the second one, we need to write out the equation and then swap the sums.

lim
λ→1
Rλ
t = lim

λ→1

[
∞∑
r=0

(1− λ)λr

(
γr+1V̂ (St+r+1) +

t+r∑
k=t

γk−tRk+1

)]

= lim
λ→1

[
∞∑
r=0

(1− λ)λrγr+1V̂ (St+r+1) +
∞∑
k=t

γk−tRk+1

∞∑
r=k−t

(1− λ)λr

]

= lim
λ→1

[
∞∑
k=t

γk−tλk−tRk+1

]

=
∞∑
r=t

γr−tRk+1

where we used that in the second line the limit of the first sum is zero, because∣∣∣∣∣
∞∑
r=0

(1− λ)λrγr+1V̂ (St+r+1)

∣∣∣∣∣ ≤
∞∑
r=0

(1− λ)λrγr+1
∥∥∥V̂ ∥∥∥

∞

= (1− λ)γ
∥∥∥V̂ ∥∥∥

∞
(1− λγ)−1

which clearly converges to zero.

Lemma 2.19. The Rλ
t − V̂ (St) can be decomposed as

Rλ
t − V̂ (St) =

∞∑
k=t

(γδ)k−tδk

where δk is the temporal difference in the kth step: δk = Rk+1 + γ(̂Sk+1)− V̂ (Sk).

Proof. The proof is a simple but long calculation:

Rλ
t − V̂ (St) =

∞∑
r=0

(1− λ)λr

(
γr+1V̂ (St+r+1) +

t+r∑
k=t

γk−tRk+1

)
− V̂ (St)

=
∞∑
r=0

(1− λ)λrγr+1V̂ (St+r+1) +
∞∑
k=t

γk−tRk+1

∞∑
r=k−t

(1− λ)λr − V̂ (St)

=
∞∑
k=t

γk−tλk−tγV̂ (Sk+1)−
∞∑

k=t+1

γk−tλk−tV̂ (Sk) +
∞∑
k=t

γk−tλk−tRk+1 − V̂ (St)

=
∞∑
k=t

γk−tλk−t
(
Rk+1 + γ(̂Sk+1)− V̂ (Sk)

)
=
∞∑
k=t

(γδ)k−tδk

16

The above decomposition allows us to update V̂ by the following rule:

δt+1 = Rt+1 + γV̂t(Ct+1)− V̂t(St)
zt+1 = γλzt + 1St = s

V̂t+1 = V̂t + αtδt+1zt+1

where z ia often called the eligibility trace. Note that Lemma 2.19 works only if αt
is constant throughout the trajectory. This means we can change α only when a new
trajectory is started. Fortunately, the following theorem states that even with this
restriction, convergence is still easily ensured.

Theorem 2.20 (Robbins-Monro condition). Let (αt)
∞
t=0 ⊂ R+ be a step-size sequence

such that the Robbinson-Monro condition satisfied:

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞

Then the TD(λ) algorithm converges.

The proof of this theorem is surprisingly long [5], so we do not include it in the thesis.

Algorithm 3 Lambda-temporal difference learning
1: while V converges do
2: S,R, S ′ ← SampleStep()
3: δ ← R + γ · V [S ′]− V [S]

4: z ← γ · λ · z + 1S=s

5: V ← V + α · δ · z

17

3 Planning

This chapter is based on [6]. We introduce the most fundamental ideas of reinforce-
ment learning and some more advanced ideas. Before we dive deeper into reinforcement
learning, we will consider one of the most basic settings of MDPs called the multi-armed
bandit problem. We have introduced learning algorithms capable of finding the best
policy by repeatedly simulating trajectories from the environment. How efficient are
these algorithms, and how can we find the best ones? In reinforcement learning, there
is the problem of explore-exploit trade-off which briefly means that we cannot play the
best action each time and try new ones that might perform the current best one. In the
previous chapter, this problem was not relevant because we only focused on finding the
best policy regardless of the number of queries and updates we have to take, but once
we try to optimise the convergence time, this explore-exploit problem naturally arises.

3.1 Multi-armed bandits

In the k-armed bandits learning problem, an actor is faced with a choice of k differ-
ent actions, resulting in a reward paid off from stationary probability distribution that
depends on the selected action. Equivalently, the k-armed bandits problem is an MDP
with one start state and one end state. The goal is to maximise the expected total
reward over some time period.

Definition 3.1. Let A be a set of actions and R(·|a)→ P(R) a probability distribution
for each a ∈ A action. We seek a series of actions at ∈ A such that at depends only on
the previously observed rewards rk ∼ R(·|ak) (1 ≤ k < t) and

E

[
1

T

T∑
t=1

rt

]
is maximalized.

Definition 3.2. An E class of bandits is a set of bandits (MDP) and it is unstructured
if there existMa sets of distributions for every a ∈ A such that

E =
∏
a∈A

Ma

Intuitively it means that we cannot deduce any information about other actions that we
played. Even when the E environment class is unstructured, we still have a rather large
family. Fortunately, we can narrow down our interest to the gaussian environments.

Definition 3.3. The Gaussian environment class is defined as

EkN =
∏
a∈A

{N (µ, σ)}

where k = |A| is the number of arms.

18

Through out this chapter ν denotes an element of EkN and µa(ν) = Ex∼Pa(x) the ex-
pected return of action a. Furthermore, we will follow the notion of previous chapters
and let µ∗(ν) = maxa∈A µa(ν) and ∆a(ν) = µ∗(ν) − µa(ν). Let Ta(n) denote the num-
ber of times a was played during the first n step and µ̂a(n) = 1

Ta(n)

∑n
t=1 xt1At=a the

average reward recieved playing the ath arm during the first n step. We also use the
∗ = arg maxa∈A µa(ν) notion, i.e. µ̂∗ is the estimated reward for the best arm.

Definition 3.4. A policy π is a sequience (πt)
n
t=1 of probability distributions such that

πt is a probability kernel from Ωt−1 to A, i.e.

At ∼ πt(·|a1, x1, . . . at−1, xt−1)

where Ωt−1 is the measure space defined in Theorem 1.7 or alternativly the measure
space where (a1, x1, . . . xt−1) is defined.

Definition 3.5. For every π policy and ν ∈ E we define the regret as

R(π, ν) = nµ∗(ν)− E

(
n∑
t=1

Xi

)
= E

(
n∑
t=1

∆At

)

In the bandit problem, we seek to achieve as much accomulated reward as just we can.
So far, this is not a well-defined problem, but we would like to say something about the
followings

• Whether it is ture that
∀ν ∈ E , lim

n→∞

R(π, ν)

n
= 0

• How small can the regret be asymptotically? I.e, for what C : E → [0,∞) and
f : N→ [0,∞] functions satisfy the following

∀n ∈ N, ∀ν ∈ E , Rn(π, ν) ≤ C(ν)f(n)

There are many families of bandits, and each has it is own merit to be thoroughly studied;
however, in the thesis, we only consider the Gaussian environment and restrict our focus
to those where the deviation is one. At first glance, it seems complicated to determine
what kind of (πt)

∞
t=1 policies are optimal because the dependence on the whole history

gives rise to an overwhelmingly large family of functions. However, the following lemma
reassures us that we can consider (πt)

∞
t=1 policies in a less-complicated form.

Theorem 3.6. Let E be the 1-gaussian bandit class and (πt)
∞
t=1 be a policy, then there

is a π′(·|µ̂, T) policy which achieves the same regret as π.

Proof. The main idea is that µ̂ and T captures every information from the (a1, x1, . . . xn)

history. We want to show that µ̂, T is a sufficient statistic for the E bandit class. To
prove this we will use the Fisher-Neyman factorization theorem which states that that

19

an F (x) statistic is sufficient for the underlying Θ parameter precisely if the density
function can be factorized as

fΘ(x) = h(x)gΘ(F (x))

In our case µ is the underlying parameter and F (µ̂, T) is the statistic. The density
function:

ρµ(a1, x1, . . . xn) =
n∏
i=1

πi(ai|a1, x1, . . . xi−1)
1√
2π
e−

1
2

(xi−µai)
2

=

(
n∏
i=1

πi(ai|a1, x1, . . . xi−1)
1√
2π
e−

1
2
x2
i

)
exp

(
n∑
i=1

xiµai −
1

2

n∑
i=1

µ2
ai

)

The left part of the last equation is a function independent from the Θ parameter, while
the right part is function in

∑n
i=1 xiµai −

1
2

∑n
i=1 µ

2
ai
. The latter one can be rewritten

as
∑

a∈A µaµ̂aTa(n) − 1
2

∑
a∈A Ta(n)µ2

a which is a µ-parametrized function in µ̂ and T .
Since we showed that it is impossible to gain more information from the (a1, x1, . . . xn)

history, than it is possibly from µ̂, T , we can deduce that π′ can be constructed such
that we take

π′(a|ν, τ) =
∑

(a1,...xn)

P(a1, . . . xn|ν, τ)π∑
i τi

(a|a1, . . . xn)

where P(a1, . . . xn|ν, τ) does not depend on µ, since µ̂, T is a sufficient statistic, therefore
the above sum can be calculated regardless of the µ parameter.

The Explore-Then-Commit algorithm

The first algorithm we will examien is Explore-Then-Commit (ETC), where the first
few steps are made regardless of the previous outcomes, and then we commit to the
action which is best according to estimation.

Definition 3.7. Let m ∈ Z+ be a fixed positive integer. The ETC algorithm explores
in the first mk steps, i.e, At = (t mod k) if t ≤ mk and chooses the best afterwards:
At = arg maxa µ̂a(mk).

Theorem 3.8. Let n be the number of steps taken and m ≤ n/k. The following upper
bound for the regret holds when ETC interacts with a 1-subgaussian environment.

Rn ≤ m
k∑
a=1

∆a + (n−mk)
k∑
a=1

∆ae
−m∆2

a
4

we will need the following lemma:

Lemma 3.9. Let X ∼ N (µ, σ) a normal variable, then for any ε ≥ 0,

P(X ≥ ε) ≤ e−
ε2

2σ2

20

Proof. The following calculation is a generic method to obtain estimations, called Cramér-
Chernoff method. Let λ = ε/σ2 > 0.

P(X ≥ ε) = P(eλX ≥ eλε)

≤ E(eλX)e−λε

= e
λ2σ2

2
−λε

where the first implication is the Markov’s inequality and second one cames from the mo-
mentum generating function of the normal distribution. Substituting back λ = ε/σ2 > 0

gives us the upper bound stated in the lemma.

Proof of Theorem 3.8. First of all, Rn can be decomposed as Rn =
∑

a ∆aE(Ta(n)). We
have

E(Ta(n)) = m+ (n−mk)P
(
µ̂a(mk) ≥ max

b 6=a
µ̂b

)
We estimate the fllowing probability on the right-hand side:

P
(
µ̂a(mk) ≥ max

b 6=a
µ̂b

)
= P(µi(mk) ≥ µ̂∗(mk))

= P(µi(mk)− µa − (µ̂∗(mk)− µ∗) ≥ ∆a)

Since E is a 1-subgaussian environment we know that the probability variable is nor-
mal distribution with zero mean and

√
2/m deviation. It is known that if X is a

σ-subgaussian, the for any ε ≥ 0

P(X ≥ ε) ≤ e−
ε2

2σ2

Applying the latter result we get that

E(Ta(n)) ≤ m+ (n−mk)e−
m∆2

a
4

Adding together these terms yields the upper-bound stated in the theorem.

When k = 2, then the upper-bound is minimal if m = 4 log(n∆2
a/4)

∆2
a

, where a is the non-
optimal action. Substituting the latter one back, we get that Rn ≤ 1 + C

√
n.

The Upper Confidence Bound

In the ETC algorithm we explore each arm m times and then stuck to the best one.
Intuitively, there are two weakness. First, it might be obvious after fewer exploration that
an arm is not the best one. Second, we may achieve a better performance by gradually
reducing the amount of exploration istead of cutting it off. In the Upper Confidence
Bound algorithm (UCB), we use an upper-bound, as the name indicates, to determine
how much better an action might be. Before that we need the following technical lemma.

21

Lemma 3.10. Let X1, X2, . . . Xn ∼ N (µ, 1) be independent normal variables with µ

mean and µ̂ = 1
n

∑n
i=1Xi Then for all δ ∈ (0, 1) we have

P

(
µ ≥ µ̂+

√
2 log(1/δ)

n

)
≤ δ

Proof. It immediately follows from Lemma 3.9 becauset µ ∼ N ((̂µ), 1/
√
n) and then

substituting ε =
√

2 log(1/δ)/n yields the theorem.

Definition 3.11. Let δ > 0 be the confident level. The UCB formula defined as

UCBa(t, δ) =

∞ if Ta(t) = 0

µ̂a(t) +
√

2 log(1/δ)
Ta(t)

otherwise

Definition 3.12. Fix a δ ∈ R+ confidence level series. The UCB algorithm always
chooses the step which maximalise the UCB formula:

At+1 = arg max
a

UCBa(t, δ)

As we mentioned, there are two ways two improve on ETC. The UCB formula allows
us to explore the most ’interesting’ arms, hence we gave a better alternative for the
first one. As we can see, we still need to determine the best δ confidence level. If the
time horizon is known in advance, then δ = n−2 is a reasonable choice as the following
theorem shows.

Theorem 3.13. If δ = 1/n2, the regret of UCB is bounded by

Rn ≤ 8
√
nk log(n) + 3

k∑
i=1

∆i

Proof. Fix an a non-optimal arm and let tau denote the time step when the ath arm was
pulled for the uth time. Note that tau is a probability variable. Fix a ua > 0 integer
which we determine later. For every arm let us consider the following event:

Ga =

{
µ∗ < min

t≤n
UCB∗(t, δ)

}
∩
{
µ̂a(t

a
ua) +

√
2

ua
log(1/δ) < µ∗

}
First, we show that if Ga occurs, then Ta(n) ≤ ua. Assume the contrary and let t be a
time step such that Ta(t− 1) = ui and At = a. We have the following

UCBa(t− 1, δ) = µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

= µ̂a(t− 1) +

√
2 log(1/δ)

ua

< µ∗ < UCB∗(t− 1, δ)

22

Where we used that Ta(t− 1) = ua and that Ga occurs implying the last two inequality.
Since the UCB score is higher for ∗, we have At = ∗ which is a contradiction. Secondly
we show that P(Gc

a) has low probability.

Gc
a =

{
µ∗ ≥ min

t≤n
UCB∗(t, δ)

}
∪
{
µ̂a(t

a
ua) +

√
2

ua
log(1/δ) ≥ µ∗

}
The probability of the first event can be bounded the following way

P
(
µ∗ ≥ min

t≤n
UCB∗(t, δ)

)
= P

(
µ∗ ≥ min

s≤T∗(n)

{
µ̂∗(t

∗
s) +

√
2 log(1/δ)

s

})

≤ P

 ⋃
s≤T∗(n)

{
µ∗ ≥ µ̂∗(t

∗
s) +

√
2 log(1/δ)

s

}
≤

∑
s≤T∗(n)

P

(
µ∗ ≥ µ̂∗(t

∗
s) +

√
2 log(1/δ)

s

)
≤ T∗(n)δ ≤ nδ

For the second event we have the following estimation.

P
(
µ̂a(t

a
ua) +

√
2

ua
log(1/δ) ≥ µ∗

)
= P

(
µ̂a(t

a
ua)− µa ≥ ∆a −

√
2

ua
log(1/δ)

)
Using Lemma 3.9 for the µ̂a(taua) − µa normal distribution with 0 mean and

√
1/ua

deviation, we get

P
(
µ̂a(t

a
ua) +

√
2

ua
log(1/δ) ≥ µ∗

)
≤ exp

−ua
2

∆a −

√
2 log(1/δ)

ua

2
Choosing ua = 8 log(1/δ)

∆2
a

, gives us

P
(
µ̂a(t

a
ua) +

√
2

ua
log(1/δ) ≥ µ∗

)
≤ exp

(
−ua

8
∆2
a

)
Together these two inequalities yield the following estimation

E [Ta(n)] = E [1GaTa(n)] + E
[
1GcaTa(n)

]
≤ ua + n2δ + n exp

(
−ua

8
∆2
a

)
=

8 log(1/δ)

∆2
a

+ n2δ + nδ

The above equation shows that roughly δ = n−2 is the best choice to minimise the upper
bound. By substituting back δ = n−2 and using that 1

n
≤ 1, we get

E [Ta(n)] ≤ 3 +
16 log(n)

∆2
a

23

The other +1 comes from the fact that ua should have been an integer. Let ∆ > 0 be
some constant to be determined later. We decompose the regret and then separet the
cases when ∆a ≷ ∆.

Rn =
∑
a

∆aE [Ta(n)]

=
∑

a|∆a<∆

∆aE [Ta(n)] +
∑

a|∆a≥∆

∆aE [Ta(n)]

≤ n∆ +
∑

a|∆a≥∆

(
3∆a +

16 log(n)

∆a

)
≤ n∆ +

16k log(n)

∆
+ 3

∑
a

∆

We want to choose ∆ such that the above upper-bound is minimized. The arithmetic
mean - geometric mean inequality shows that it minimized when ∆ =

√
16k log(n)/n.

After Substituting ∆ back, we get that

Rn ≤ 8
√
nk log(n) + 3

∑
a

∆a

Asymptotical UCB

The last theorem shows that δ = 1
n2 is a good choice when we know n in advance. In

the asymptotical scenario we do not know n in advance.

Definition 3.14. Fix an f : Z+ → R+ function. The asymptotical UCB algorithm
chooses the step which maximalise the UCB formula:

At+1 = arg max
a

µ̂a(t) +

√
2 log(f(t))

Ta(t)

There are several reasonable choices for f . For instance, in the book [6] the f(t) = 1+t log2(t)

option was thoroughly examined. More precisely calculation shows that f(t) = t or an
even slower-growing function can perform better.

3.2 Monte Carlo Tree Search

Essentially Monte Carlo Tree Search (MCTS) is a heuristic search algorithm for
Markov Decision Processes that proved to be efficient in various board games. For
instance, AlphaZero, the algorithm that achieved state-of-the-art results in Go, used
MCTS and other deep learning technics. Another interesting fact is that Tesla’s Au-
topilot software also uses MCTS. Nevertheless, the are many variants of MCTS, but the
most widely used [7] utilises the UCB formula.

24

Let Q̂n(s, a) denote the average value gained for playing a from state s during the
first n steps. Furthermore, let Nn(s) denote the number of times s has been visited until
the nth step and let Nn(s, a) be the number of times that a was chosen from state s in
the first n steps.

Definition 3.15. LetM be an episodic MDP. The Monte Carlo Tree Search interacts
withM by following the asymptotical UCB formula:

At+1 = arg max
a∈A

{
Q̂t(s, a) + α

√
log(Nt(s))

Nt(s, a)

}

where α > 0 is some control parameter. (The episodic assumption on M ensures that
multiple trajectories are enrolled.)

It is easy to see that every state-action pair is played infinitely many times; therefore,
the whole environment will be searched. In this chapter, we only considered gaussian
bandits because our goal was to introduce the Monte Carlo Tree Search, where even
with some prior knowledge about the reward distribution of each state, the accumulated
discounted reward, i.e. the Q-function, is a sum of several of these distributions. Hence
it approximates a normal distribution according to the central limit theorem. That
explains why we use the UCB formula in MCTS, even though it was introduced for the
one-armed bandit problem (with normal reward distributions).

Figure 1: Illustration of the Monte Carlo Tree Search

25

4 Deep learning

Machine learning is the science of learning and building knowledge from experience.
In practice, this means that it is capable of identifying patterns in the structure of the
input by observing a large number of examples. These tasks are often split into the
following categories.
Supervised learning is the simplest form of learning. In this scenario, the model is
provided by a dataset consisting of inputs with labels. The task is to predict the corre-
sponding label for each input and generalise for unseen data points.
Unsupervised learning algorithms discover patterns and previously undetected infor-
mation in a given dataset. The main difference from supervised learning is that the data
points are not labelled.
Reinforcement learning’s goal is to build an intelligent agent that takes actions in an
environment to maximise the cumulative reward. Contrary to supervised learning, the
agent has to figure out how actions contributed to the accumulated rewards and balance
between exploration and exploitation.

Deep learning is an area of machine learning that utilises large architectures such
as neural networks to solve optimisation problems. Due to the size of the architec-
tures, an optimal solution is hard to find explicitly, so deep learning relies on other
optimisation methods like gradient descent. Gradient descent is a first-order iterative
optimisation method that finds local optimum in a family of differentiable functions. Let
L : X × Ω → R be a loss function, where Ω ⊂ Rd is the parameter and X ⊂ Rn is the
input space. The goal is to find an ω parameter that minimise L over an D ∈ P(X)

input distribution, formulated as the following optimisation problem:

arg min
ω∈Ω

Ex∼DL(x, ω)

Let ω0 be the parameter at initialisation, then gradient descent defined as

ωt+1 = ωt − α∇ωEx∼DL(x, ω) = ωt − αEx∼D∇ωL(x, ω)

where α is a parameter controlling the size of update steps. We will see later that the idea
of gradient descent is used with incredible results for a variety of optimisation problems.

4.1 Neural architectures

This chapter introduces some of the most widely used neural architectures as function
approximators in various problems.

Neural network

Definition 4.1. A dense layer is an l : Rdi → Rdo function of the following from

l(x) = σ(Ax+ b)

26

where A ∈ Rdj×di , b ∈ Rdo are the parameter matrix and vector. The σ : R → R is a
non-linear function applied to each entry.

Definition 4.2. An n-layered neural network is an fω : Rd0 → Rdn function defined as

fω(x) = ln ◦ ln−1 · · · ◦ l1(x)

where ω denotes the parameters of each li as an element of the euclidean space.

Definition 4.3. The softmax : Rd → Rd defined as

softmax(x) =

(
exi∑d
j=1 e

xj

)
i

Transformer

In recent years, a rather successful neural architecture has been the transformer. It
was proposed in [8], and quickly became a popular choice for a variety of learning tasks,
especially for natural language processing.

Definition 4.4. Let Q ∈ RlQ×dQK , K ∈ RlKV ×dQK , V ∈ RlKV ×dV be the query, key and
value matrix respectively. The l parameter is sequence length, while d is the dimension
of the corresponding input. Then the Attention defined as

Attention(Q,K, V) = softmax

(
QKT√
dQK

)
V

Finally, the trasformer consist of two parts, and encoder and a decoder. An encoder
layer takes an input sequence X and will use it as the query, key and value matrix. Since
each Q,K, V is essentially the same matrix, it is often referred to as self-Attention.

Definition 4.5. Let X ∈ Rl×d be the input sequence and h the number of ’heads’, then
the Lω : Rl×d → Rl×d Multi-Head Attention defined as

Lω(X) = lout ◦ CONCATh
i=1

(
Attention(lQi (X), lKi (X), lVi)

)
where li are different dense layers and CONCAT concatenates the vectors resulting an
output from Rl×dh which is projected back into Rl×d by the last lout dense layer.

Other popular architectures are convolution networks, graph networks, recurrent neural
networks, etc. A detiled catalog of architectures can be found in [9].

4.2 Deep reinforcement learning

Fitted Q-learning

A huge disadvantage of vanilla Q-learning is that we need to keep track of each Q-
value. To address this issue, we define a set of Q-functions {Qω : S × A → R | ω ∈ Ω},

27

where ω denotes the parameter and Ω the parameter space. Following the idea of Q-
learning, we want to update the ω parameter such that the new Q-function is the closest
one to

Yt(s, a) = Es′∼T (·|s,a)

(
R(s, a, s′) + γmax

a′∈A
Qt(s

′, a′)

)
where the distance between the target and the Q-function often given by the 2-norm.
So, the Q-function picked as

Qt+1 = arg max
Qω

‖Yt −Q‖2
2

Deep temporal difference learning

In fitted Q-learning, we have a family of Qω function approximators parameterised
by ω ∈ Ω. If the Ω parameter is large, then it is almost infeasible to select the closest
candidate to the target. Therefore, we leverage the idea of deep learning and instead we
consider a family of function approximators that are differentiable in the parameter. Let
π be a fixed policy, Ω ⊂ Rd be the parameter space and Vω : S → R be value-functions
such that Vω(s) differentiable in ω for every s. Recall, that in temporal difference learning
our goal was to minimise the difference between Rλ

t and V̂t(s). The ω parameter updated
by the gradient descent step. The gradient is

∇ω

(
Rλ
t − V̂t(s)

)2

= −
(
Rλ
t − V̂t(s)

)
∇ωVωt

Therefore, the update parameter is

ωt+1 = ωt + α
(
Rλ
t − Vωt(s)

)
∇ωVωt(s)

The Lemma 2.19 allows us to decompose Rλ
t −Vωt(s) which gives us the slighly modified

version of TD(λ) algorithm. The pseudo-code provided below.

Algorithm 4 Lambda-temporal difference learning
1: while V converges do
2: S,R, S ′ ← SampleStep()
3: δ ← R + γ · Vω[S ′]− Vω[S]

4: z ← γ · λ · z +∇ωVω(Xt)1S=s

5: V ← V + α · δ · z

Policy gradient methods

The previous section introduced several algorithms that estimate the value function.
Then the policy is calculated from V or Q by taking the most promising action. Another
natural approach is to introduce a policy πω with an ω parameter and updating it to
maximise the expected return. Therefore the precise formulation of the policy gradient

28

method is the following: Let πω(·|s) → P a policy function with an ω ∈ Ω parameter
such that it satisfies certain techincal assumption that we specify later.

Recall that V π(s) = Eπ∼π(·|s)Q
π(s, a) and our goal is to maximize V π(s0). As the title

of this subsection suggests, we want to use gradient descent to solve this optimisation
problem, so we need to approximate ∇ωV

πω(s0). The Policy gradient theorem [10] gives
us a formula to estimate the gradient. As we will see, it is especialy usefull, since the
derivative of Qπω does not occur in the formula.

Definition 4.6. Let Ω ⊂ Rd be a parameter space and P = {πω|ω ∈ Ω} a family of
policies parametrised by ω ∈ Ω. The P family is suitable if

1. There is a λ measure that dominates P .

2. The ρω(·|s) = dπω(·|s)
dλ

Radon-Nikodyn derivative of π with respect to λ is differen-
tiable in ω.

3. There is a C : S → R+ integrable function such that ‖∇ωρω‖1 ≤ C.

If the action space is finite, then the counting measure is the most common choice for λ.

Theorem 4.7 (Policy gradient theorem). Let M be an MDP, P be a suitable policy
family with Ω parameter space. Then, we can write

∇ωV
π(s0) = Es,a

(
γt∇ω log ρω(a|s)Qπ(s, a)

)
Proof. First, we use the formula for V π. Then use Leibniz rule (Theorem 1.3) to swap
the derivative and the integrals, where the assumptions are fulfilled due to Definition 4.6.

∇ωV
π(s) = ∇ωEa∼π(·|s)Q

π(s, a)

= ∇ω

∫
Qπ(s, a)

dπ(·|s)
dλ

(a)dλ(a)

=

∫
(∇ωρω(a)Qπ(s, a) + ρω(a)∇wQ

π(s, a)) dλ(a)

=

∫ (
∇ωρω(a)Qπ(s, a) + ρω(a)∇wEs′∼T (·|s,a) (R(s, a, s′) + γV π(s′))

)
dλ(a)

=

∫ (
∇ωρω(a)Qπ(s, a) + ρω(a)γEs′∼T (·|s,a)∇ωV

π(s′)
)
dλ(a)

By repeatedly substituting V π(s′) back into the above equation and using the fact that
λ(a) = πω(da|s)/ρω(a), we get that:

∇ωV
π(s0) =

∫ (
∇ωρω(a0)Qπ(s0, a0)

ρω(a0)
+ γEs′∼T (·|s,a0)∇ωV

π(s′)

)
πω(da0|s)

=

∫
(∇ω log(ρω(a0))Qπ(s0, a0) + γ∇ωV

π(s′)) dτ

=

∫ (∞∑
i=0

γi∇ω log(ρω(ai))Q
π(si, ai)

)
dτ

29

Finally, we can rewrite our equation

∇ωV
π(s0) = Es,a

(
γt∇ω log ρω(a|s)Qπ(s, a)

)
where s, a is the state-action distribution from the interaction piω withM and t is the
corresponding time step.

Now, that we obtained an equation to approximate the gradient, we are almost ready
to put together the Actor-critic algorithm. Before that, we should consider how efficiently
can we approximate the gradient with Monte-Carlo method. Unfortunately, it exhibits
a rather high variance that is because even when E(∇ωρωQ

π) = 0 the ∇ωρω gradients
are not necessarily zero. The following lemma, provides a solution to significantly reduce
the variance.

Lemma 4.8. Let s ∈ S be a fixed state and C ∈ R an arbitrary constant, then

Ea∼π(·|s) (∇ω log ρωC) = 0

Proof. This immediately follows from the following simple observation

Ea∼π(·|s) (∇ωρω(a|s)C) = C

∫
∇ωρω(a|s)da

= C∇ω

∫
ρω(a|s)da

= C∇ω1 = 0

This allows us to substitute any value to the place of Qπ(s, a) that have Qπ(s, a) expected
value up to some constant depending on s. For different substitutes, we get different
methods, each listed below.

∇ωV
π(s0) = Es,a (γt∇ω log ρω(a|s)Rt) REINFORCE

= Es,a (γt∇ω log ρω(a|s)Qπ(s, a)) Q Actor-Critic
= Es,a (γt∇ω log ρω(a|s)Aπ(s, a)) Advantage Actor-Critic
= Es,a (γt∇ω log ρω(a|s)δ) TD Actor-Critic

where Rt =
∑∞

k=t γ
k−tRt is the discounted accomulated reward from the tth time

step and δ is the temporal difference δt+1 = Rt + γV̂ (Xt+1)− V̂ (Xt).

Actor-critic method

The variance of the gradient estimation in the policy gradient theorem can be reduced
by introducing baselines. Therefore, actor-critic algorithms [11] consist of two-part an
actor, which is a parametrised policy function and a critic, which is the approximation
of the value function and used as a baseline function. Vanilla actor-critic (A2C) can be
further improved by technical ideas giving rise to the asynchronous actor-critic (A3C)
[12], the most widely used reinforcement learning algorithm.

30

Algorithm 5 Actor-critic
1: while θ, ω converges do
2: S,R, S ′ ← SampleStep()
3: δ ← R + γVω[Y]− Vω[X]

4: θ ← θ + αδ∇θ log πθ(a|s)
5: ω ← ω + αδ∇ωV [X]

4.3 Autoencoders

Autoencoders were introduced to allow neural networks to learn in an unsupervised
fashion. Their primary purpose is to extract information from the dataset by creating a
more informative representation of the data points. The formal definition of the problem
is the following:

Definition 4.9. Let A and B be sets of functions from Rn → Rd and Rd → Rn respec-
tively. We want find A,B such that an L reconstruction loss is minimalized.

arg min
A∈A,B∈B

Ex∼D(L(x,B ◦ A(x)))

In statistics, one of the most available tools to estimate quantities is the Monte Carlo
method. Deep learning is just a branch of statistics, where we use gradient descent
to tackle complex optimisation problems, which otherwise would be infeasible to solve.
Therefore, the following theorem is particularly useful.

Theorem 4.10. Let qω(z) be a parameterized distribution and f : Rn → R a differen-
tiable function, then we have

∇ωEz∼qω [f(z)] = Ez∼qω [f(z)∇ω log qω(z)]

Proof. Let λ be a dominating measure of the {qω} family. By changing the base of
integrand to λ, we have the following calculation

∇ωEz∼qω [f(z)] = ∇ω

∫
f(z)

dqω
dλ

dλ

=

∫
f(z)∇ω

dqω
dλ

dλ

=

∫
f(z)∇ω log(qω(z))dqω

And this is what we wanted to prove.

Variational Autoencoders

As presented in the previous section, the autoencoder suffers from many problems.
Variational Autoencoders (VAE), first introduced in [13], made a significant improve-
ment in the area by trying to build an autoencoder and simultaneously learn the data
distribution.

31

For the precise formulation of the problem, first, consider a D dataset distribution.
Furthermore, we assume that the data generation involves an unobserved Z random
variable that is often addressed as the latent variable. So, the generation process starts
with the generation of z from some prior pω∗ distribution and continues with the gener-
ation of x from the pω(x|z) conditional distribution. We assume a parametric family of
distributions can model the two distributions and that their Radon-Nykodim derivatives
are differentiable almost everywhere w.r.t. both ω and z.

From the perspective of autoencoders, the qω(z|x) can be interpreted as a probabilistic
encoder since for a given x datapoint, it produces a distribution of z from which the x
sample could have been generated. Similarly, the pω(x | z) will be referred to as a decoder
because it returns a distribution over the possible values of x.

The curicial observation is the following:

Lemma 4.11. The log-likelihood can be rewritten as

log pω(x) = DKL(qω(z|x) ‖ pω(z|x)) + L(ω, φ;x)

where L is the variational lower-bound and can be expressed as

L = Ez∼qω(z|x) [− log qω(z|x) + log pω(x, z)]

Proof.

DKL(qω(z|x) ‖ pω(z|x)) =

∫
log

(
qω(z|x)

pω(z|x)

)
qω(z|x)dz

=

∫
log

(
qω(z|x)

pω(z, x)
pω(x)

)
qω(z|x)dz

=

∫
pω(x)qω(z|x)dz +

∫
log

(
qω(z|x)

pω(x, z)

)
qω(z|x)dz

= pω(x)− L

The variational autoencoder tries to minimalise the − log(pω(x)) negative log-likelihood
and the KL-divergence between qω(z|x) and pω(z|x). The lemma states that it is equiv-
alent of maximising the L variational lower-bound.

Ex∼D (− log pω(x) +DKL(qω(z|x) ‖ pω(z|x))) = Ex∼D (−L)

So, VAE is defined as

Definition 4.12. Let pω, qω be parametrised distribution, then the VAE algorithms
updates the parameter as

ω = ω +∇ωEx∼DEz∼qω(·|x) [log pω(x|z) + log p(z)− log qω(z|x)]

Note that pω(x|z) and qω(z|x) are functions introduced earlier, so the above estimation
can be easily calculated, unlike pω(x).

32

5 Dreaming to Prove

In the last chapter of the thesis, we finally can discuss, how we use all the rein-
forcement learning theories to build automated theorem prover algorithms. Automated
theorem proving is a long-standing problem in mathematics and computer science. There
were many advancements in this field in the past. However, the most reliable approaches
focus on constructing tactics such as applying induction or a theorem. These tactics were
often combined with powerful planning algorithms such as Monte-Carlo Tree Search.

Despite the rapid development of Artificial Intelligence, deep learning-based ap-
proaches could not overtake previous technics. One direction is building large Trans-
former networks to synthesise grammatically correct calls of tactics. Another approach,
and our project’s goal, is to go back to the roots and convert theorem-proving assistants
into environments that can be interpreted as Markow Decision Processes, which allows
us to utilise reinforcement learning algorithms.

5.1 Dreamer algorithm

The reinforcement learning algorithms are often categorized asmodel-free ormodel-
based. A model-free algorithm primarily relies on learning, while a model-based one
depends on planning as its main component. For instance, the value-learning algorithms
we introduced in Chapter 2 are model-free, and an algorithm which leverages Monte-
Carlo-Tree search is considered model-based.

The first breakthrough in deep reinforcement learning was achieving human-level in
Atari games with a variant of Q-learning, a model-free algorithm. Even though model-
based learning comes with many benefits, such as more robust learning and the ability
to plan. They are also more complicated; hence it took researchers a long time to create
the first model-based deep reinforcement algorithm, which was better than the previous
solutions. That algorithm is the so-called DreamerV2 algorithm [14].
The algorithm consists of the following parameterized components:
Recurrent model: ht = fω(ht−1, zt−1, at−1)

Representation model: zt ∼ qω(zt|ht, xt)
Transition predictor: ẑt ∼ pω(ht)

Image predictor: x̂t ∼ pω(x̂t|ht, zt)
Reward predictor: r̂t ∼ pω(r̂t|ht, zt)
Discount predictor: γ̂t ∼ pω(γ̂t|ht, zt)

where t is the time step, ht is the hidden state, zt is the latent state, xt is the state, rt
and γt are the reward and discount. The Image predictor and the Representation model
together form an autoencoder. The Representation model calculates the latent state
distribution conditioned on the input xt and some hidden state ht, and then the xt is
reconstructed by the image predictor from zt and ht. It also imitates the transition of the
underlying MDP within the latent space with the Transition model, so the algorithm can

33

predict the next latent state without knowing the actual input. The dreamer algorithm’s
main idea is that it first extracts the crucial information from the state by an autoencoder
and then performs reinforcement learning on the latent space.
The following figures are borrowed from [14]. Figure 5.1 shows the process of embedding
the input into the latent space and recreating the image, reward and the next latent
state from the current state (and from the action). The authors of the paper used
32 × 32 discrete latent space, and they claim that one of the crucial improvements
was switching to discrete latent space because instead of minor accumulated errors,
only falsely predicted subsequent states could cause problems. Overall, this made the
inference more stable.

Figure 2: Dreamer world model

Figure 5.1 illustrates that with a learned world model, i.e with an image autoencoder
and a dynamic module, the agent can use reinforcement learning algorithms on the
learned latent space, and the agent can learn the best policy without interacting with
the environment, hence the name Dreamer.

Figure 3: Dreamer dynamics

34

5.2 Dreaming to Prove

Introduction

Finally, we introduce the Dreaming to Prove (D2P) project1 that builds upon all
the theories introduced in previous chapters. The project’s name reflects that it is based
on the Dreamer algorithm, which is applied to the problem of proving theorems. A
proving problem is given as a set of assumptions (axioms and lemmas) and a conjecture,
and the task is to find proof of the conjecture from the assumptions. A proof is a finite
sequence of atomic inference steps, and each step has to be selected from a finite set of
possible moves, determined by the particular problem and the current state of the proof
attempt. Automated theorem proving can be naturally rephrased as an MDP where
maximising rewards corresponds to finding proofs. We use the leanCoP [15] theorem
prover written in Prolog, encapsulated into a reinforcement learning environment [16] in
Python. A formal introduction of automated theorem proving and the leanCoP system
is beyond the scope of this thesis. An important feature of the leanCoP system is
that it decomposes a mathematical statement into goals. Although these goals are not
independent, they can be processed separately. (A goal is a literal and an action is an
ordered formula.)

Before we dive into the details of our architecture, let us discuss the intuitions and
motivations behind the project. There are two reasons for adopting this algorithm to
theorem proving systems. The first concerns the time because, with trained dynamics,
we do not have to query the environment, which can accelerate the training repeatedly.
Unfortunately, this is not important because evaluating proving attempts with the lean-
cop system is rapid, especially when compared to a neural network. However, there is
another part where we can accelerate the training and inference. The most computation-
ally expensive part of the model is the encoder. However, since the agent also learns the
dynamics, it does not rely on calling the encoder at each step. To better understand this
particular idea, consider the following real-world example. The state of the art theorem
provers are humans, and when we solve a theorem, we usually take more time to under-
stand the problem at the very beginning of it and spend less time on understanding how
our problem changes if we manipulate it; for instance, substitutes the value of a variable
into our equation.

The second motivation we had when we started this project is that the model is given
more objectives to learn by learning the dynamics. Moreover, autoencoders significantly
reduce state space size (because it projects the input state into a latent space), so the
policy and value function family defined on the latent dynamics is smaller. Therefore, it
avoids overfitting more efficiently. Essentially, it will better generalise to unseen cases,
which is especially important in theorem proving because positive rewards are infrequent;

1The code of D2P is available at my github repository https://github.com/Ayers1013/DreamingToProve.
(The latest commit hash: b0ae7fa734d199d056ca1ffc5fa40689d270bfc7.)

35

therefore, it is hard to obtain a large enough dataset where the agent not only memorises
but also generalises.

The architecture: World Model

Similarly to the Dreamer algorithm, we have a world model that learns to simulate
the environment and manipulate mathematical statements. The world model consists of
the following components:

1. Goal and action embedder

2. State embedder

3. Heads

4. Dynamics module

The following figure provides a brief visual representation of the world model.

Figure 4: World Model (1-3)

1. Goal and action embedder. The goals and actions are flattened into a sequence
of tokens. In natural language processing, a token usually represents a world, but in
our case, it is a notion of mathematical logic. Then each token is represented by a d-
dimensional learnable vector. In Chapter 4, we introduced the transformer architecture
and the autoencoders. A transformer model can process the input once the input is
turned into a sequence of d-dimensional vectors. Note that a transformer model only
learns the distributions of the sequences by trying to predict the subsequent tokens, but
following the idea of the Dreamer algorithm, we need a model that projects the input
into the latent space. Fortunately, with a slight modification [17], we can get a suit-
able architecture. So, the goal and action embedder is a transformer-based variational

36

autoencoder introduced in Section 4.3. The Dreamer algorithm used a discrete autoen-
coder, but the variational autoencoders exhibit a more stable and robust learning curve
in the Dreaming to Prove architecture. Figure 4 illustrates how the goals and actions
are embedded into a latent space (blue squares).
2. State embedder. The first component learns to represent goals separately, but
in order to fully comprehend the mathematical statement, the embedded goals should
be aggregated so that the model can identify patterns and relations between the goals.
That explains the module’s name because the entire input, i.e. the state, is incorporated
in a latent space. The D2P architecture considers the embedded goals as a sequence
that another VAE transformer can further process. In the figure, this processing step
is illustrated by the yellow hexagon. By leveraging autoencoders, the model can obtain
a representation of the mathematical problem without depending on any reinforcement
learning algorithm.
3. Heads. The purpose of this component is to learn other objectives that are impor-
tant but not part of the input because they can be calculated by knowing that input.
The D2P architecture uses three heads: reward, discount and action mask. The model
learns the reward associated with the current state and the discount that tells whether a
terminal state is reached. (In the environment provided by leanCop, a terminal state can
occur when a valid proof is found or when no more actions can be applied.) The third
head is the action mask. It learns to predict the action mask, which tells which actions
are valid at that state. That is rather important because in theorem proving, the action
space is large, but usually, only a few are valid. One could argue that valid actions
could be learned by a reinforcement learning algorithm where the environment returns
a negative reward for taking invalid action. But given the size of the action space, that
would result in a large number of unnecessary queries of the environment. Therefore,
it is better to provide an action mask to the model implicitly. We also considered a
fourth head that learns input meta information, such as the number of specific pattern
occurrences. In the early version of D2P, this additional head played a crucial role, but
as D2P developed, it became redundant.
4. Dynamics module. Note that the above components’ purpose is to help detach the
model from the environment by learning the state distribution and the reward function.
The last component of an MDP is the transition function that is learnt by the dynamics
module. The transition function gives a distribution over the subsequent states given the
current state and the action, so the dynamics module does the same, but in the latent
space, i.e., it takes a latent state, and an embedded action (the first component encodes
the action), then calculates a distribution over the state latent space. This module is
trained such that the predicted distribution is close to the predicted latent space distri-
bution by the state embedder calculated from the next state, where ’close’ means that
the KL-divergence is minimised. (The dynamics module is illustrated on Figure 5.)

Theoretically, a trained world model (that perfectly learned all objective) can fully

37

simulate the environment so that we can derive a latent environment: Let us fix a
problem that we want to prove; this turned into an MDP environment with a starting
state s and set of possible actions A. Then s is projected into the latent state s′ by
components 1-2, and every element of A is embedded by component 1 to get A′. (Note
that actions only embedded once for every problem.) The trained dynamics module then
can predict the next latent state and associated reward for any action. We call the
projected environment the latent environment.

The architecture: Behaviour Model

Once the world model is trained on initial data (Data that is sampled by a random
policy.), we can apply the algorithms of the 2 Reinforcement Learning chapter and the
4.2 Deep reinforcement learning section. The following figure illustrates the D2P archi-
tecture.

Figure 5: D2P architecture

We discussed how a transformer projects the state into the latent state and how the
latent dynamics work. The missing pieces are the value function and the policy. Both
take an s latent state as an input along with the embedded actions, and then they are
trained by the Actor-Critic algorithm (Section 4.2). Since this process takes place in
the latent environment, it is completely detached from the real environment; hence it is
called dreaming.

38

The algorithm

We have introduced how the different components of the D2P architecture work
together, and finally, we put the last pieces into the puzzle to see how the algorithm
learns. First, we initialise a dataset consisting of carries from different math problems.
Then the training loop starts that continues until the model converges. We can further
divide the loop into two processes, the first updates the dataset by deleting less relevant
samples and replacing them with new queries, and the second trains the modules.
1. Dataset update. First, the algorithm samples a problem, and then new proof
attempts are obtained by using the policy and value functions of the model. That is
when planning becomes essential because we want to gather good quality data. In the
current version, we use epsilon-greedy algorithm (that explore with epsilon probability
and takes the best action otherwise) to ensure balanced exploration-exploitation, but
more sophisticated algorithms (discussed in Chapter 3) such as MCTS (Section 3.2)
might be used to improve performance. Finally, the new samples are added to the new
dataset. The D2P has VAE components that rely on consistent data distribution, so
the dataset size must be significantly larger than the number of new samples to ensure
a slow enough shift in the data distribution that the VAE components can handle. As
the training progresses, the old samples become less relevant, so we frequently clean the
dataset. That way, we can maintain a fixed size dataset.
2. Model training. The world model parameterised by ω is trained on samples from
the collected dataset. It is important to note that the sampling is not uniform over the
dataset. The reason behind it is that correct proof attempts make up only a tiny portion
of the data even though they are more critical for the training; therefore, the model
gets to see correct proof attempts with higher frequency. The world model consists of
several components, and each has its loss function. By taking a weighted sum of these
loss functions, we get a loss function that we use to train the world model. Then policy
and value functions parametrised by θ are trained using the latent environment and the
A3C (Section 4.2) algorithm.

Algorithm 6 Dreaming to Prove
1: D ← InitDataset()
2: while ω, θ converges do
3: M← ChooseProblem()

4: for t = 1 to queryNums do
5: D′ ← PlannedQueryω,θ(M)

6: D ← UpdateDataset(D,D′)
7: for t = 1 to trainSteps do
8: ω ← TrainWorldModelω(D)

9: θ ← Dreamθ()

39

Status of the project

Dreaming to Prove is still an ongoing project at the writing of this thesis. Neverthe-
less, the D2P project has made a long trip. Initially, the D2P architecture used Graph
Neural Network (GNN) to embed mathematical statements into a latent space, but af-
ter numerous experiments, GNNs could not meet the expectations. So, the embedder
architecture was changed to a transformer-based autoencoder. However, transformers
are used for solving autoregressive problems (The task is predicting the next token from
previous ones.) and are not specifically meant to serve as an autoencoder architecture.
Therefore, following further experiments, a modified transformer architecture was cre-
ated that is reliably capable of learning to embed goals and actions. As a result, at this
point of the research, the D2P model can embed goals and reconstruct them from the
latent space with high accuracy. Unfortunately, the state embedder currently underper-
forms because despite it can aggregate a few goals and reliably embed them into latent
space, it fails for states with many goals. That might be because it is immensely hard
to concentrate that much information into a vector space. Another explanation is that
the current transformer architecture does not behave invariantly under scaled input size,
which might prevent it from proper generalisation. Nevertheless, the current version of
D2P can successfully operate on simple problems (with less than a dozen goals), but it
does not scale for more complicated problems (with hundreds or even more goals).

The main advantage of the Dreamer architecture is that the model does not solely rely
on the learning signal from the reinforcement learning algorithm. That is especially useful
in automated theorem proving, where positive rewards are rare, so reinforcement learning
is less effective. Nevertheless, the way the dreamer algorithm exploits this advantage
relocates the stress to the world model because the policy and value functions rely on a
well-trained world model. Promising future work is to redesign the system such that the
dependence of different components on each other is alleviated. On the other hand, D2P
could benefit from Geometric Deep Learning (A branch of deep learning that specialises
in constructing models on domains that invariant under certain transformations.). That
way relation between mathematical statements could be extracted more efficiently.

Conclusion

The Dreaming to Prove project builds upon reinforcement learning and deep learning
theories and utilises ideas of the Dreamer algorithm and the variational autoencoders.
We briefly introduced reinforcement learning in Chapter 2 and deep learning in Chap-
ter 4 and showed how the two could be combined to create new learning algorithms.
Then, we discussed one-armed bandits between the two chapters that showed how the
explore-exploit trade affects performance. Finally, we gave an insight into a novel neural
architecture and algorithm for proving theorems that is part of an exciting research area
within the field of automated theorem provers that uniquely utilises deep learning.

40

References

[1] Y. K. Chan. Notes on Constructive Probability Theory. The Annals of Probability,
2(1):51–75, 1974. Publisher: Institute of Mathematical Statistics.

[2] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 4(1):1–103, January 2010.

[3] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.
Adaptive computation and machine learning series. The MIT Press, Cambridge,
Massachusetts, second edition edition, 2018.

[4] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and
Joelle Pineau. An Introduction to Deep Reinforcement Learning. Foundations and
Trends® in Machine Learning, 11(3-4):219–354, 2018. arXiv:1811.12560 [cs, stat].

[5] Dmitry B. Rokhlin. Robbins-Monro conditions for persistent exploration learning
strategies, October 2018. Number: arXiv:1808.00245 arXiv:1808.00245 [cs, stat].

[6] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University
Press, 1 edition, July 2020.

[7] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In
David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mat-
tern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Ger-
hard Weikum, Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, edi-
tors, Machine Learning: ECML 2006, volume 4212, pages 282–293. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006. Series Title: Lecture Notes in Computer Sci-
ence.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need,
December 2017. Number: arXiv:1706.03762 arXiv:1706.03762 [cs].

[9] Smys S., Joy Iong Zong Chen, and Subarna Shakya. Survey on Neural Network
Architectures with Deep Learning. Journal of Soft Computing Paradigm, 2(3):186–
194, July 2020.

[10] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In
S. Solla, T. Leen, and K. Müller, editors, Advances in Neural Information Processing
Systems, volume 12. MIT Press, 1999.

41

[11] Vijay Konda and John Tsitsiklis. Actor-Critic Algorithms. In Advances in Neural
Information Processing Systems, volume 12. MIT Press, 1999.

[12] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning, June 2016. Number: arXiv:1602.01783
arXiv:1602.01783 [cs].

[13] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, May 2014.
Number: arXiv:1312.6114 arXiv:1312.6114 [cs, stat].

[14] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering
Atari with Discrete World Models. arXiv:2010.02193 [cs, stat], February 2022.
arXiv: 2010.02193.

[15] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem proving.
Journal of Symbolic Computation, 36(1-2):139–161, July 2003.

[16] Zsolt Zombori, Josef Urban, and Chad E. Brown. Prolog Technology Reinforcement
Learning Prover - (System Description). In Nicolas Peltier and Viorica Sofronie-
Stokkermans, editors, Automated Reasoning - 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of
Lecture Notes in Computer Science, pages 489–507. Springer, 2020.

[17] Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen Dong, and Changyou Chen.
Transformer-based Conditional Variational Autoencoder for Controllable Story
Generation. arXiv:2101.00828 [cs], July 2021. arXiv: 2101.00828.

42

	Introduction
	Notations
	Preliminaries

	Reinforcement learning
	Foundation
	Value-based methods
	Temporal difference learning

	Planning
	Multi-armed bandits
	Monte Carlo Tree Search

	Deep learning
	Neural architectures
	Deep reinforcement learning
	Autoencoders

	Dreaming to Prove
	Dreamer algorithm
	Dreaming to Prove

