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Introduction

A significant part of the financial derivatives market is the credit derivatives nowadays and
even earlier too. An important example is the Collateralized Debt Obligations. The CDOs are
structured finance products whose basket includes loans and bonds. The first CDOs were created
in the 1990s and their markets have grown rapidly because with these products the investment
banks could issue more and more loans. Soon, in the late 1990s, appeared the first synthetic
CDOs, whose basket includes other credit derivatives, like CDSs.

The Credit Default Swap is a credit derivative between two counterparties. The first CDSs
in their current form have existed since the early 1990s and growth enormous market in the early
2000s. At the beginning of the 2007-2009 financial crisis the CDS market was the third biggest
OTC derivatives market in the world. By the end of 2007 the outstanding CDS amount was
$62.2 trillion which fell back to $26.3 trillion by the mid-year 2010 and stayed $5.5 trillion in
early 2012.

After the financial crisis the regulations of these products were necessary. The most CDS are
documented using standard forms drafted by the International Swaps and Derivatives Association
(ISDA) [1].

In general, synthetic CDOs have lost in popularity since 2008 crisis, however e.g. standardized
CDS index tranches are still an important example both in the US and Europe for credit correlation
trading in the credit derivatives markets. There is $8 trillion notional value outstanding CDS as
of June 2018 [2]. And for 2019 the ISDA estimates $10 trillion of gross notional outstanding on
single name and index CDS.

In the first sections of this thesis I’m writing about these CDS and CDO products and how
we are pricing them by implementing the base model. Writing about the base model and the
extended ones with stochastic recovery rate function and different copula methods. We would
like to fit the models to the market prices and to analyze one of the most representative piece of
the calculations, the expected loss. Our results are presented in section 4 while the conclusion
can be found in section 5.
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1 Overview of Credit Default Swaps

In this first section, we present the Credit Default Swap contracts based on the paper of Nina,
Anna and Or [2] and Dezhong [3] article.

CDS is a bilateral agreement between a protection buyer and a protection seller where the
buyer agrees to pay fixed periodic payments to the seller in exchange for protection against the
credit event of an underlying. The most common credit events are the bankruptcy and the failure
to pay. The Credit Default Swaps are derivative contracts which could be classified as follows:
single-name, basket or credit default index swaps.

In 2021, Credit Default Swaps were the most traded product of all credit derivatives, which
means that it was almost 90% of the credit derivative market, with $3.4 trillion dollars from the
U.S. Comptroller of the Currency’s report.

1.1 Single-Name CDS contracts

We are talking about single-name Credit Default Swap if there is a CDS contracts where
the underlying is a single reference entity for example a single corporation or a sovereign. The
protection buyer pays coupon payments to the seller and when the reference entity defaults the
protection seller pays an amount to compensate for the loss of the protection buyer. The ISDA
Master Agreement defined the properties and conditions of contracts. The standard credit events
include bankruptcy or insolvency of the reference entity, failure to pay an amount above a special
threshold, obligation default and repudiation.

The method of single-name CDS contracts was changed in 2015. Before that new on-the-run
single-name contract rolled each quarter on the 20𝑡ℎ of March, June, September and December,
but after that amended the new contracts only rolled in March and September in order to align
with the roll frequency of CDS Index contract and develop the liquidity. So for example, if there
was a 5-year single-name CDS contract on June 20, 2015 with September 20, 2020 maturity
under the old convention then it was considered as on-the-run for 3 months between June and
September, 2015. If there is a 5-year single-name CDS contract under the new convention which
is rolled on March 20, 2016 and maturing on June 20, 2021 then it is considered as on-the-run
until September, 2016. So after 2015 the single-name contracts are considered as on-the-run for
6 months and then another series begin.
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1.2 Basket Default Swap

Basket default swap is a credit derivative on a portfolio of reference entities. These are the
first-to-default, second-to-default and 𝑛𝑡ℎ-to-default swaps. Obviously, the first-to-default swap
provides insurance for only the first default, second-to-default swap provides insurance for only
the second default, etc.

1.3 Credit Default Swap Index

We are talking about Credit Default Swap Index (denoted by CDX) if there is a CDS contract
where the underlying is a portfolio of reference entities so the CDS Index is a portfolio of
single-name CDS. Also known as the contract that provides protection against the credit risk
of a standardized basket of reference entities. The mechanics of a CDX payments are a slightly
different from the payment of single-name CDS. If there is default the coupon payment doesn’t
cease just decrease because less reference entities are being protected and the protection seller
pays less recovery.

The most popular CDS Index families are Markit CDX indices, covering North American
(NA), Emerging Markets (EM) and International Index Company (IIC) iTraxx indices includ-
ing Europe, Australia, Japan and non-Japan Asia. The Markit CDX Indices family includes
the North American Investment Grade CDX Index (CDX.NA.IG), the High-Yield CDX Index
(CDX.NA.HY) and the Emerging Markets CDX Index (CDX.EM). The iTraxx Indices family
includes the iTraxx Europe index and iTraxx Crossover index. These indices and their properties
are presented in figure 1 from IHS Markit Paper [1].

As we see, the CDX.NA.HY index is a portfolio of 100 North American reference entities
with 500 bps fixed coupon. These contracts are rolled semi-annually, on 27𝑡ℎ of March and
September and the determined tenors are 3,5,7 and 10 years. The CDX.NA.IG index is a
portfolio of 125 North American reference investment-grade-rated corporate firms with 100 bps
fixed coupon and its standard maturities are 1, 2, 3, 5, 7, 10 years. iTraxx Europe index includes
125 equally weighted investment-grade European reference entities and this iTraxx Europe index
family comprises 3 sub-indices sectors, which are the financial senior, the financial sub and the
non-financial sectors. The iTraxx Crossover (iTraxx Xover) index is composed of the 75 sub-
investment-grade European entities with 500 bps fixed coupon and its standard maturities are
only 3,5,7,10 years. The indices could be traded either on spread or price. This convention
depends on the cash market where the bonds trade on yields and other on price. These CDS
Indices convention based on the underlying cash instruments. Therefore the quoting convention
of CDX.NA.HY index is price, CDX.NA.IG and iTraxx indices are spread. In the section 4 I
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Figure 1: Credit Default Swap Indices

will use the CDX.NA.IG and iTraxx Xover indices during the simulation which have got 40%
recovery rate.

As mentioned in section 1.1, the contracts are rolled every six months, hence a new series of
the CDS Index is created with updated constituents. As of writing this thesis, the latest indices
for example are the CDX.NA.IG S38, where S38 marks this is the series 38, which is started
trading on March 20th, 2022 and the iTraxx Xover S37, which is started trading on March 20th,
2022.
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1.4 CDS Index Tranche

In this section we introduce the CDS Index Tranches based on [2] study and providing some
interest inside from the IHS Markit article [1].

Some of the above mentioned CDS Indices are also available in a tranched format which
allows investors to gain exposure on a particular portion of the index loss distribution. Tranches
are defined by attachment and detachment points for the index loss distribution. It means that
when default events occur the lower level tranches absorb the loss up to the detachment point,
before moving to the next senior tranche. Once the total loss reaches the detachment point, that
the tranche notional is fully written down. Therefore the attachment and detachment point refer
to the loss amounts.

There is an important difference between indices and tranches that is while the CDS Indices
rolled semi-annually, the CDS Tranches rolled only once a year, in September.

Figure 2 shows an example for the CDX.NA.IG tranche:

Figure 2: Tranche structure

where CDS1, CDS2, . . . , CDS125 are equally weighted and the attachment point of the
senior mezzanine tranche is 7%, and the corresponding detachment point is 10%. The CDX
North American Investment Grade and High Yield, the iTraxx Europe and Crossover Index
Tranches with their attachment and detachment points can be seen in the figure 3:
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Figure 3: Index Tranches

CDS index tranches are liquid instruments that, among other use cases, facilitate the correla-
tion trading. In this context, correlation refers to the probability of default of one reference entity
in relation to others. Generally, the higher correlation implies higher joint default probability
for the index constituents, and also implies an increasing value of the tranche. Inversely, the
lower correlation implies a lower joint default probability for the index constituents, and thereby
decreasing the value of the tranche.

We can think about index tranches as a layered protection technology which is developed for
protecting the portfolio credit risk like in the Basket Default Swap 1.2. There, 𝑛 layer (basket
default swap) protects the 𝑛𝑡ℎ default in the portfolio. Now, these layers are specified by a range
of percentage. The layer protection derivative products include CDO and CDS index tranches.
A Collateralized Debt Obligation (CDO) is a security backed by a pool of one or more kinds of
debt obligations such as loans, bonds, credit default swaps or other assets.

1.5 CDS Index Option

There are the CDS index options besides the CDS indices and index tranches which is
significantly increased in the market. CDS Index Options or Swaptions are contracts that promise
the holder of the swaption the right to enter into a CDS index position at option expiry at the
specified strike level.
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2 Pricing Methodology

In this second section we represent how CDSs and synthetic CDOs are priced, through the
hazard rate and copula functions.

2.1 CDS Pricing

When we are pricing a Credit Default Swap, we have the following constructional parameters:

• 𝑁 – the notional

• 𝑅 – the recovery rate

• 𝑇 – the maturity

• 𝑚 – the payment dates (typically the number of quarters), so can be written:

0 = 𝑡0, 𝑡1, . . . , 𝑡𝑚 = 𝑇

• 𝑠 – the par spread in basis point (premium)

Before the 2007-2008 financial crisis the premium was equal with the spread, but after the
standardization we use par spread and upfront payment. Moreover the other theoretical constructs
are the follows:

• 𝜏 – Default time

• 𝑝(𝑡) = P(𝜏 ≤ 𝑡) – Default probability

• 𝐷 (0, 𝑡) – the discount factor of a risk-free bond maturiting at 𝑡

Assume, that 𝐷 (0, 𝑡) is a deterministic function, therefore independent from 𝜏. Then the
protection leg is the present value of the expected loss:

ProtLeg = E
[
𝑁 (1 − 𝑅)𝐷 (0, 𝜏)1{𝜏≤𝑇}

]
, (1)

if the payment occurs in the same time as the default, at 𝜏. If we assume that the payment
will happen the next premium payment time after the default (we can assume that, because the
discountfactors don’t change significantly) then we can write the follows:

ProtLeg = E
[ 𝑚∑︁
𝑗=1

𝑁 (1 − 𝑅)𝐷 (0, 𝑇𝑗 )1{𝑇 𝑗−1≤𝜏≤𝑇 𝑗 }
]
= 𝑁 (1 − 𝑅)

𝑚∑︁
𝑗=1

𝐷 (0, 𝑇𝑗 ) [𝑝(𝑇𝑗−1) − 𝑝(𝑇𝑗 )] .

(2)
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The premium leg is the expected value of each premium payments in present value:

PremLeg = E


𝑚∑︁
𝑗=1

𝑁𝑠Δ 𝑗𝐷 (0, 𝑡 𝑗 )1{𝑡 𝑗<𝜏}
 = 𝑁𝑠

𝑚∑︁
𝑗=1

Δ 𝑗𝐷 (0, 𝑡 𝑗 )𝑝(𝑡 𝑗 ), (3)

where Δ 𝑗 = 𝑡 𝑗 − 𝑡 𝑗−1.

Finally, the par spread is as follows:

𝑠 =
E
[
𝑁 (1 − 𝑅)𝐷 (0, 𝜏)1{𝜏≤𝑇}

]
𝑁

𝑚∑
𝑗=1

Δ 𝑗𝐷 (0, 𝑡 𝑗 )𝑝(𝑡 𝑗 )
=

(1 − 𝑅)
𝑚∑
𝑗=1

𝐷 (0, 𝑇𝑗 ) [𝑝(𝑇𝑗−1) − 𝑝(𝑇𝑗 )]

𝑚∑
𝑗=1

Δ 𝑗𝐷 (0, 𝑡 𝑗 )𝑝(𝑡 𝑗 )
(4)

2.1.1 Hazard Rate

We briefly introduce the intensity based approach in CDO pricing models. Let us take a
standard filtered probability space (Ω, F , P, {F𝑡}) and assuming the absence of arbitrage to
guarantee the existance of a unique risk-neutral probability measure P. Under this framework,
non-dividend paying assets (default-free) are martingales if discounted at the risk-free rate.
The existence of such a risk neutral probability measure allows us to price our bonds or credit
derivatives correctly, without the stronger market completeness assumption which would be
required to hedge the securities. In addition, in order to simplify the exposition and focus on
the credit risk modelling, we assume a flat interest rate structure, and at the beginning a fixed
recovery rate and independence between default probabilities, interest rate curve and recovery
rates. After this simple set up we later introduce stochastic recovery.

In general, pricing a CDO requires us to model both the risk neutral default probabilities for
each name in the portfolio and the joint default distribution. The risk neutral default probabilities
can be calculated following the popular practice of bootstrapping from CDS premiums.

Given the standard probability space defined above, we consider the {F𝑡}-stopping time 𝜏𝑖

to model the default of the 𝑖𝑡ℎ obligor in a portfolio, the default probability distribution is given
by 𝐹𝑖 (𝑡) = P{𝜏𝑖 < 𝑡} and the probability density distribution is 𝑓𝑖 (𝑡). We define the "hazard rate"
or "intensity" as follows:

𝜆𝑖 (𝑡) =
𝑓𝑖 (𝑡)

1 − 𝐹𝑖 (𝑡)
. (5)

From that we can get the next ordinary differential equation:

𝜆𝑖 (𝑡) = −𝑑ln(1 − 𝐹𝑖 (𝑡))
𝑑𝑡

, (6)

and solving the O.D.E., get an expression for the default probability distribution:

𝐹𝑖 (𝑡) = 1 − exp
(
−
∫ 𝑡

0
𝜆𝑖 (𝑠)𝑑𝑠

)
. (7)

11



We established the connection between the default distribution and the hazard rate, we can
bootstrap the default probabilities based on the market observable CDS prices.

2.2 Synthetic CDO Pricing

What is Synthetic CDO? – A synthetic CDO is a type of collateralized debt obligation
(CDO) that can offer extremely high yields to investors. They differ from traditional CDOs,
which typically invest in regular debt products such as bonds, mortgages, and loans, in that
they generate income by investing in noncash derivatives such as credit default swaps (CDSs),
options, and other contracts. Synthetic CDOs are typically divided into credit tranches based on
the level of credit risk assumed by the investor.

In contrast with the CDS pricing, the synthetic CDO pricing is a little bit more complex.
Based on Andrew Lesniewski’s [4] and Claudio Ferrarese’s works [6] CDO tranches are defined
by attachment 𝑎 and detachment points 𝑑 as, marking the lower and upper bound of a tranche.
They are generally expressed as a percentage of the portfolio and determine the tranche size.
Furthermore, we define the following constructional variables, some of them is same as in the
CDS pricing:

• 𝑛 – the number of reference entities (i.e. the number of CDS in a synthetic CDO)

• 𝑁𝑖 – the nominal amount for the 𝑖𝑡ℎ ref.entity

• 𝑅𝑖 – the recovery rate for the 𝑖𝑡ℎ ref.entity

• 𝑇 – the maturity

• 𝑚 – the payment dates (typically the number of quarters), so can be written:

0 = 𝑡0, 𝑡1, . . . , 𝑡𝑚 = 𝑇

• 𝑠 – the par spread in bps per period (premium)

• 𝑢 – upfront premium, if 𝑠 is fixed

And the other theoretical variables:

• 𝜏𝑖 – the default time for the 𝑖𝑡ℎ reference entity

• 𝑝𝑖 (𝑡) = P(𝜏𝑖 ≤ 𝑡) – default probability of the 𝑖𝑡ℎ reference entity

• 𝐵(0, 𝑡) – the discount factor of a risk-free bond maturiting at 𝑡

12



From these variables we get immediately that 𝑁 =
𝑛∑
𝑖=1

𝑁𝑖 the nominal amount of the portfolio.

Moreover, we can write an equation for the risk-free discount bond, so E[𝐷 (0, 𝑡)] = 𝑒
∫ 𝑡

0 −𝑟 (𝑠)𝑑𝑠

discount factor, where 𝑟 (𝑠) is the risk-free interest rate. For every tranche, given the total portfolio
loss in (8), and the cumulative tranche loss is given in (9):

𝐿 (𝑡) =
𝑛∑︁
𝑖=1

𝑁𝑖 (1 − 𝑅𝑖)1{𝜏𝑖≤𝑡} (8)

𝐿 [𝑎,𝑑] (𝑡) = max{min{𝐿 (𝑡), 𝑑𝑁} − 𝑎𝑁, 0}. (9)

In the synthetic CDO contracts we are talking about protection leg and premium leg which
two have to be equal. The protection leg covers the losses affecting the specific tranche, which
given the following payment dates

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑚−1 < 𝑡𝑚 = 𝑇

can be calculated by taking the expected value with respect to the risk neutral probability
measure:

ProtLeg[𝑎,𝑑] = E


𝑚∑︁
𝑗=1

𝐷 (0, 𝑡 𝑗 )
(
𝐿 [𝑎,𝑑] (𝑡 𝑗 ) − 𝐿 [𝑎,𝑑] (𝑡 𝑗−1)

) . (10)

Similarly, assuming a continuous time payment, the protection leg can be written as:

ProtLeg[𝑎,𝑑] = E

[∫ 𝑇

0
𝐷 (0, 𝑠)𝑑𝐿 [𝑎,𝑑] (𝑠)

]
. (11)

On the other hand, the premium leg is generally paid quarterly in arrears to the protection
seller. For this we have to know the notional of every tranche.

So the premium leg can be expressed as follows:

PremLeg[𝑎,𝑑] = E


𝑚∑︁
𝑗=1

𝐷 (0, 𝑡 𝑗 )𝑠Δ𝑡 𝑗

[
(𝑑 − 𝑎)𝑁 − 𝐿 [𝑎,𝑑] (𝑡 𝑗 )

] , (12)

where Δ𝑡 𝑗 = 𝑡 𝑗 − 𝑡 𝑗−1. Because know that the premium and the protection legs have to be equal,
but after the standardization of the CDS index tranche contracts the 𝑠 premium is fixed, and we
are pricing with the 𝑢 upfront payment, which is the

ProtLeg[𝑎,𝑑] = PremLeg[𝑎,𝑑] , (13)

13



the spread can be calculated by:

𝑠 =

E

[
𝑇∫

0
𝐷 (0, 𝑠)𝑑𝐿 [𝑎,𝑑] (𝑠)

]
E

[
𝑚∑
𝑗=1

𝐷 (0, 𝑡 𝑗 )Δ𝑡 𝑗

[
(𝑑 − 𝑎)𝑁 − 𝐿 [𝑎,𝑑] (𝑡 𝑗 )

] ] . (14)

During the implementation we transform back equation (14) to the discrete time and change
the order of expected value and sum:

E

[
𝑚∑
𝑗=1

𝐷 (0, 𝑡 𝑗 )
(
𝐿 [𝑎,𝑑] (𝑡 𝑗 ) − 𝐿 [𝑎,𝑑] (𝑡 𝑗−1)

) ]
E

[
𝑚∑
𝑗=1

𝐷 (0, 𝑡 𝑗 )Δ𝑡 𝑗

[
(𝑑 − 𝑎)𝑁 − 𝐿 [𝑎,𝑑] (𝑡 𝑗 )

] ] =

𝑚∑
𝑗=1

𝐷 (0, 𝑡 𝑗 ) E
[
𝐿 [𝑎,𝑑] (𝑡 𝑗 ) − 𝐿 [𝑎,𝑑] (𝑡 𝑗−1)

]
𝑚∑
𝑗=1

𝐷 (0, 𝑡 𝑗 )Δ𝑡 𝑗

[
(𝑑 − 𝑎)𝑁 − E𝐿 [𝑎,𝑑] (𝑡 𝑗 )

] . (15)

As we wrote the premium and the protection legs have to be equal, but after the standardization
of the CDS index tranche contracts the 𝑠 premium is fixed, and we use the 𝑢 upfront payment.
In that case, the equation (13) can be rewrite as follows:

ProtLeg[𝑎,𝑑] = PremLeg[𝑎,𝑑] + 𝑁𝑢. (16)

From that the value of 𝑢 is

𝑢 =

𝑚∑︁
𝑗=1

𝐷 (0, 𝑡 𝑗 )
1
𝑁
E
[ (
𝐿 [𝑎,𝑑] (𝑡 𝑗 ) − 𝐿 [𝑎,𝑑] (𝑡 𝑗−1)

) ]
−

𝑚∑︁
𝑗=1

𝐷 (0, 𝑡 𝑗 )
1
𝑁
𝑠Δ𝑡 𝑗

[
(𝑑 − 𝑎)𝑁 − E𝐿 [𝑎,𝑑] (𝑡 𝑗 )

]
(17)

To determine the given tranche price we have to predict the expected value of the given tranche
loss at time 𝑡, E𝐿 [𝑎,𝑑] (𝑡). Therefore as the next step we would like to calculate the expected value
of equation (8):

E𝐿 (𝑡) =
𝑛∑︁
𝑖=1

𝑁𝑖 (1 − 𝑅𝑖)P(𝜏𝑖 ≤ 𝑡), (18)

if we know the CDS index’s spreads we can get the default probabilities. However, for this we
have to familiarize ourselves with the loss distribution, because in equation (9) the functions are
not linear.

During the approximation of the distribution we have to pay attention that the default of
reference entities are not independent, i.e. there default intensities are correlated.

To investigate this, in the next subsection we examine the concepts of copulas and factor
models.
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2.2.1 Copulas

Using the market implicit approach we can construct the marginal distribution of survival
time for each name in the portfolio. Assuming independence among the names is not realistic,
considering that in real life, the default probability for a group of reference entities tends to be
higher in a recession and lower when the economy is booming. This implies that there exists some
form of positive dependence among the reference entities. To examine this correlation in the
portfolio, we have to specify the joint distribution of survival/default times with given marginal
distributions. For this, we introduce the copula function based on the article [10] written by Li.

Given 𝐶 : [0, 1]𝑛 → [0, 1] is a multidimensional function, 𝑈1,𝑈2, . . . ,𝑈𝑛 are uniformly
distributed on the interval [0, 1]. In that case, the copula function is defined as the joint
cumulative distribution function of (𝑈1,𝑈2, . . . ,𝑈𝑛):

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑛) = P(𝑈1 ≤ 𝑢1,𝑈2 ≤ 𝑢2, . . . ,𝑈𝑚 ≤ 𝑢𝑛). (19)

Sklar in 1959 [11] proved the following statement which is considered as the definition of
the copula function. He showed if 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a joint multivariate distribution function
with univariate marginal distribution functions 𝐹1(𝑥1), 𝐹2(𝑥2), . . . , 𝐹𝑛 (𝑥𝑛), then there exists a
𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑛) copula function such that

𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐶 (𝐹1(𝑥1), 𝐹2(𝑥2), . . . , 𝐹𝑚 (𝑥𝑛)). (20)

In addition, if 𝐹𝑖 is continuous for all 𝑖 then 𝐶 copula function is unique.

Several copula functions and factor models exist. These differ of what kind of distributions
they assume for the common factors and the individual factors. Our model assume normal
distribution and therefore Gaussian copula.

The Standard Gaussian Copula function is given by

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑛) = Φ𝑛,Σ

(
Φ−1(𝑢1),Φ−1(𝑢2), . . . ,Φ−1(𝑢𝑛)

)
, (21)

where Φ𝑛,Σ is an n dimensional normal joint distribution function, Σ is a covariance matrix, and
Φ is the standard normal distribution function.

The Standard Gaussian Copula is one of the most widely used copula in the financial applica-
tions, because the their easy numerical tractability. However we will explore other distributions
to improve the model in the next sections, like Student’s t and 𝛼-stable distribution as detailed
in Section 3.3.
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2.2.2 One Factor Gaussian Copula Model

As mentioned before, the idea behind the factor models is to assume that all names are
influenced by one or more uncertainty from same sources. Moreover there is a positive correlation
between the default events. The factor models are described as follows:

𝑍𝑖 = 𝜌𝑖𝑋 + 𝜉𝑖𝜖𝑖, 𝑖 = 1, . . . , 𝑛 (22)

where 𝑋 is the common factor for the reference entities, 𝜖1, . . . , 𝜖𝑛 are the individual factors
which are assumed to be independent of 𝑋 and each other and 𝜌𝑖 are the correlation between the
reference entities have to be from [0, 1] interval. In this thesis we assume a single-factor gaussian
copula model, i.e. there is only 1 common market factor, 𝑋 as 𝑋 ∼ 𝑁 (0, 1) and 𝜖𝑖 ∼ 𝑁 (0, 1).
We want that 𝑍𝑖 to be also standard normal distributed, so we have to choose the parameters as:

0 = E(𝑍𝑖) = 𝜌𝑖 E(𝑋) + 𝜉𝑖 E(𝜖𝑖)
1 = D2(𝑍𝑖) = 𝜌2

𝑖 D
2(𝑀) + 𝜉2

𝑖 D
2(𝜖𝑖)

Therefore 𝜉𝑖 =

√︃
1 − 𝜌2

𝑖
so our equation is amended as follows:

𝑍𝑖 = 𝜌𝑖𝑋 +
√︃

1 − 𝜌2
𝑖
𝜖𝑖, (23)

where the correlation between the names are

corr(𝑍𝑖, 𝑍 𝑗 ) =
cov(𝑍𝑖, 𝑍 𝑗 )
D(𝑍𝑖) · D(𝑍 𝑗 )

= cov
(
𝜌𝑖𝑋 +

√︃
1 − 𝜌2

𝑖
𝜖𝑖, 𝜌 𝑗𝑋 +

√︃
1 − 𝜌2

𝑗
𝜖 𝑗

)
= 𝜌𝑖𝜌 𝑗 (24)

as 𝑍𝑖, 𝑋 ∼ 𝑁 (0, 1) and 𝜖𝑖 are independent of each other and 𝑋 also. During the simulation in the
section 4 we assume one same correlation between the reference entities, 𝜌 and then we can set
the parameters as 𝜌𝑖 := √

𝜌 so the model is:

𝑍𝑖 =
√
𝜌𝑋 +

√︁
1 − 𝜌𝜖𝑖 . (25)

Before the factor models and copulas we wanted to determine the joint loss distribution of
𝑍𝑖:

P(𝑍1 ≤ 𝐵1(𝑡), . . . , 𝑍𝑛 ≤ 𝐵𝑛 (𝑡)), (26)

where 𝐵𝑖 (𝑡) is the boundary below which the 𝑖𝑡ℎ reference entity will default. Because of that 𝑍𝑖
is from the one-factor gaussian copula model hereby P(𝑍𝑖 ≤ 𝐵𝑖 (𝑡)) = Φ(𝐵𝑖 (𝑡)) = 𝑝𝑖 (𝑡) and

𝐵𝑖 (𝑡) = Φ−1(𝑝𝑖 (𝑡)), (27)

𝑝𝑖 (𝑡) denote the default probability of 𝑖. reference entity.

By replacing these variables into equation (21), we get the following:

P (𝑍1 ≤ 𝐵1(𝑡), . . . , 𝑍𝑛 ≤ 𝐵𝑛 (𝑡)) = Φ𝑛,Σ

(
Φ−1 (𝑝1(𝑡)) , . . . ,Φ−1 (𝑝𝑛 (𝑡))

)
, (28)
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where Σ covariance matrix is:

Σ =


1 𝜌 . . . 𝜌

𝜌 1
...

...
. . . 𝜌

𝜌 . . . 𝜌 1


. (29)

Large homogenous portfolio model

In the general model we use a simplified approach, namely the large homogenous portfolio
model. It means that the 𝑁𝑖 notional and 𝑅𝑖 recovery rate the same for each name, and 𝑁𝑖 =

𝑁
𝑛

and let 𝑅 denote the identical recovery rate. Hereby the Loss Given Default the same all of
the reference entities so in the pricing process it is enough to calculate the number of defaults.
However we don’t assume that the default probabilities are equal for every name. Beside these
assumptions the expected tranche loss can be written in the following form:

E
[
𝐿 [𝑎,𝑑] (𝑡)

]
= E

[
max

(
min{𝐷#

[𝑎,𝑑] (𝑡) · (1 − 𝑅)𝑁
𝑛
, 𝑑𝑁} − 𝑎𝑁, 0

)]
, (30)

where 𝐷#
[𝑎,𝑑] (𝑡) denotes the number of defaults in a [𝑎, 𝑑] tranche which occurred before 𝑡.
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3 Theoretical results

In the previous section we built the base model and now we would like to do some devel-
opments on it. Firstly, we have to introduce the correlation skew and the base correlation. After
that, we will show what happens if stochastic recovery function is used instead of deterministic
recovery rate and finally, we will see other copula models as well. Our fundamental problem is
that the Gaussian copula has light tails so it gives less weight to the rare events, which have main
role in the equity and senior tranches. Our goal is to test our model and make it conform to be
more in line with observed market phenomena.

3.1 Base correlation

In this subsection we briefly describe the implied correlation and therefore the correlation
smile. And to solve this we introduce the base correlation concept.

In general, the one factor Gaussian copula model directly isn’t able to match the market
because of its light tails property. To overcome this restriction one solution is to modify the
correlation. Increasing correlation leads to an increasing probability in the tails, thus leading a
very few or a very large number of defaults. With this modification we are capable to fit our
model’s result to the market quotes obtaining the so called "implied correlation" or "compound
correlation" based on [6] and [7].

If we want to get the implied correlations, we extract the hazard rates from the market spreads
and from that with the survival probability and the Gaussian copula functions we examine the
tranche expected losses. To compare this simulation prices with the market prices the adequate
correlations to each tranches are necessary. With an approximation method for the correlations
we can get back the implied correlation for the given slices of contract. The next figures we get
from the iTraxx Crossover index tranche simulations.
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Figure 4: Correlation skew

We can see the problem of the implied correlation in figure 4, this is the so called correlation
smile. The expectation is that the correlations are the same for each tranche, but the chart doesn’t
show that. A solution, the base correlation was introduced by McGinthy. The main view of
this method is that we describe all tranches with equity tranches and we order the correlation
for the detachment point, not for the tranches. We can examine the mezzanine and the senior
tranches with the difference of 2 equity tranche, where these equity tranches are priced with the
correlation of their detachment points (as we see, these are different). The process for calculating
the expected loss (E𝐿) for each first loss tranche is, for example:

E𝐿 [0, 0.2] = E𝐿 [0, 0.1] + E𝐿 [0.1, 0.2], (31)

where E𝐿 [0.1, 0.2] comes from the market spread on the [0.1, 0.2] tranche and E𝐿 [0, 𝑑] is the
expected losses on a [0, 𝑑] equity tranche. Therefore the correlation adherent to [0.1, 0.2] tranche
comes from equation (31). Once we have calculated the expected losses and the correlation for
the sequence of first loss tranches, we can solve for each tranche. The results are shown in figure
5.
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Figure 5: Base correlation

3.2 Stochastic Recovery Model

In this subsection we consider a special case of the general model based on the [5] and [8]
articles. We change the recovery rate from the deterministic 𝑟𝑖 value for stochastic recovery and
recalibrate our base model. To specify this, let 0 ≤ 𝑎𝑖 ≤ 1 and 𝑏𝑖 be vectors and 𝜖𝑖 sequence
of independent, 0 mean, 1 variance random variables for all 𝑖 = 1, . . . , 𝑛 names which are
independent from 𝑋 common market factor. Let 𝑅𝑆

𝑖
be the stochastic recovery function for all

𝑖 = 1, . . . , 𝑛 reference entities which is defined as:

𝑍𝑖 = 𝑎𝑖𝑋 +
√︃

1 − 𝑎2
𝑖
𝜖𝑖 (32)

𝑅𝑆
𝑖 = 𝐶𝑖 (𝜇𝑖 + 𝑏𝑖𝑋 + 𝜉𝑖) (33)

where

• 𝐶𝑖 : R→ [0, 1] – arbitrary mappping functions,

• 𝜇𝑖 – constants,

• 𝜉𝑖 – sequence of independent, 0 mean, 1 variance random variables which is independent
of 𝑋 and 𝜖𝑖.

In the model 𝑎𝑖 is contained the correlation dependency and controlled it, so we can say that let
𝑎𝑖 be equal with 𝜌𝑖. Later we would like to compare the results of deterministic and stochastic
recovery calibrated models thereby we choose 𝑏𝑖 = 𝑎𝑖 = 𝜌𝑖. With these choices the modified
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model can be determined as:

𝑍𝑖 = 𝜌𝑖𝑋 +
√︃

1 − 𝜌2
𝑖
𝜖𝑖 (34)

𝑅𝑆
𝑖 = 𝐶𝑖 (𝜇𝑖 + 𝜌𝑖𝑋 + 𝜉𝑖) (35)

In addition, 𝜌𝑖 ≡ 0 corresponds to the constant recovery case.

As our base model use Gaussian copula function, therefore we can specify this stochastic
recovery extension with Gaussian copula functions. As defined in the subsection 2.2.2 let
𝜖𝑖 ∼ 𝑁 (0, 1), 𝜉𝑖 ∼ 𝑁 (0, 1) be independent variables and also independent of 𝑋 ∼ 𝑁 (0, 1)
common factor. Moreover it is assumed that𝐶𝑖 are the standard cumulative Gaussian distribution,
Φ for all 𝑖 = 1, . . . , 𝑛. Finally, we define the stochastic recovery in equation (36) that we wanted
to work with:

𝑅𝑆
𝑖 = Φ(𝜇𝑖 + 𝑎𝜌𝑖𝑋 + 𝜉𝑖). (36)

To compare the two recovery rates during the simulation we have to know the parameters.
For this in the following we’re writing about the properties of this improvement.

Let 𝜎𝑖 =

√︃
𝑎2
𝜌𝑖 + 1 and 𝑌𝑖 = 𝜇𝑖 + 𝑎𝜌𝑖𝑋 + 𝜉𝑖, then the following statements are satisfied and are

proved by Andersen and Sidenius’s [8] paper:

P(𝑅𝑆
𝑖 ≤ 𝑥) = P

(
𝑌𝑖 ≤ Φ−1(𝑥)

)
= Φ

(
Φ−1(𝑥) − 𝜇𝑖

𝜎𝑖

)
(37)

E[𝑅𝑆
𝑖 ] = E [Φ(𝑌𝑖)] = Φ

©­­«
𝜇𝑖√︃

1 + 𝜎2
𝑖

ª®®¬ . (38)

During the implementation we would like to determine the parameters that the expected
values of the recovery rates will be equal:

𝑅𝑖 = E[𝑅𝑖] = E[𝑅𝑆
𝑖 ] = Φ

©­­«
𝜇𝑖√︃

1 + 𝜎2
𝑖

ª®®¬ ,
Therefore

𝜇𝑖 =

√︃
2 + 𝑎2

𝜌𝑖Φ
−1(𝑅𝑖), 𝑖 = 1, . . . , 𝑛

If we want another (constant) multiplier to the individual factor, 𝑏𝑖 ·𝜉𝑖 then 𝜇𝑖 =

√︃
1 + 𝑎2

𝜌𝑖 + 𝑏2
𝑖
Φ−1(𝑅𝑖),

because 𝜎𝑖 =

√︃
𝑎2
𝜌𝑖 + 𝑏2

𝑖
, and 𝑏𝑖 depends on 𝜌 correlation.

The main properties of the stochastic recovery function are driven by the coefficient 𝑎𝜌𝑖 from
which we derive that if 𝜌 → +∞ then 𝑎𝜌𝑖 → 0. The following figure 6 shows the relationship
between the conditional default probability and the stochastic recovery functions:
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Figure 6: Default Probability and Recovery Rate

This ensures that when the common factor is negative (the market is "bad"), then the recovery
rate is low, i.e. the default probability is high and conversely when the factor is positive (the
market is "evolving"), then there is very low default probabilities of the companies.

We will show other numerical results for expected loss in the different tranches with the
association of stochastic and deterministic recovery rate functions in section 4.2.

3.3 Copula extensions

In this subsection we would like to add some other properties to our model to the more
exact matching with the market prices. It is based on the [6] article, in which Claudio Ferrarese
compare the market implied loss distribution and the loss distribution from the Gaussian copula.

We can generate our model by using different distributions for the common factor and the
individual factors. The aim is to use copulas which have fat-tailed distributions. In figure 7 there
are the density functions of the NIG, Gaussian, alpha-stable and Student t distributions and
figure 8 clearly shows that every lower tails are higher than the Gaussian. The illustrated density
functions are parameterized as to be symmetrical. It means that both of the NIG, alpha-stable
and Student t distributions put higher probability to the rare events like senior or super senior
tranche losses.
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Figure 7: Density functions

Figure 8: Lower tails of density functions

Following sections we will discuss the theoretical framework of Student t and 𝛼-stable
distributions.
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3.3.1 Student’s 𝑡-distribution

The Student’s t-distribution is very similar to the normal distribution, but it is fat-tailed. This
is why we would like to use it in our model. Its probability density function is given by:

𝑓 (𝑡) =
Γ

(
𝜈+1
2

)
√
𝜈𝜋Γ

(
𝜈
2
) (1 + 𝑡2

𝜈

)−(𝜈+1)/2
,

where 𝜈 is the degrees of freedom parameter and Γ is the gamma function.

The probability of density function is symmetric and we represented this distributions with
different degrees of freedom, which is shown in figure 9.

Figure 9: Student t distribution and their lower tails

As we increase the degrees of freedom, the student’s t distribution is approaching the normal
distribution. We like the heavy-tailed ones, so during the implementation we are testing with df
= 1 and df = 5 degrees of freedom. Therefore in the factor model 𝑋 and 𝜖𝑖 are generated from
the student t distribution with 𝜈 degrees of freedom, so 𝑍𝑖 is also student t distributed with 𝜈

parameter.
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3.3.2 𝛼-stable

The 𝛼-stable distribution can be used for fat-tailed problems and usually during the CDO
pricing. By definition, 𝑋 has stable distribution if to any constants 𝑎 > 0, 𝑏 exist 𝑐 > 0, 𝑑
constants that 𝑎𝑋 + 𝑏𝑌 has the same distribution as 𝑐𝑍 + 𝑑, where 𝑋,𝑌 are independent and
𝑋,𝑌, 𝑍 are from same distributions. Its characteristic function:

E
[
𝑒𝑖𝑢𝑍

]
=


𝑒−|𝑢 |

𝛼 ·[1−𝑖𝛽 tan( 𝜋𝛼
2 ) (𝑢)] , if 𝛼 ≠ 1

𝑒−|𝑢 |·[1+𝑖𝛽 tan( 2
𝜋 ) (𝑢) ln |𝑢 |] , if 𝛼 = 1

where 0 < 𝛼 ≤ 2 index and −1 < 𝛽 < 𝑙𝑒𝑞1 skewness parameters.

𝑋 is 𝛼-stable with 𝑆𝛼 (𝛼, 𝛽, 𝛾, 𝛿, 1) parameterization, if:

𝑋 :=

𝛾𝑍 + 𝛾, if 𝛼 ≠ 1

𝛾𝑍 +
(
𝛿 + 𝛽 2

𝜋
𝛾 ln 𝛾

)
, if 𝛼 = 1

𝛾 is the scale parameter (𝛾 > 0) and 𝛿 represent the location. In the standard normal distribu-
tion, the parameters are 𝑆𝛼 (𝛼, 𝛽, 1, 0, 1) := 𝑆𝛼 (𝛼, 𝛽, 1) and we can match this distributions with
other widely used distributions, line Gaussian (𝛼 = 2), Cauchy (𝛼 = 1) and Lévy (𝛼 = 0.5).
In our model we used it with 𝛽 = 0 parameter – because we would like to use symmetric
distributions – and some different 𝛼 to observe different results. Figure 10 shows the density
functions and zoom in their lower tails for the different 𝛼 parameterization. See that each of
them are heavier tailed than the Gaussian distribution.
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Figure 10: 𝛼-stable distributions and their lower tails

In our base model we can change the normal distributions of the common factor and the
individual factors to 𝛼-stable distribution in the factor model, so 𝑋 and 𝜖𝑖 follow two independent
𝛼-stable distributions:

𝑋 ∼ 𝑆𝛼 (𝛼, 𝛽, 1)
𝜖𝑖 ∼ 𝑆𝛼 (𝛼, 𝛽, 1).

From that we can rewrite the equation (22) and get that 𝑍𝑖 will be also from 𝛼-stable distribution:

𝑍𝑖 ∼ 𝑆𝛼 (𝛼, 𝛽, 1).
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4 Simulation results

In the previous sections we saw the pricing methods of CDS and Synthetic CDO contracts,
and some improvements to the basic model. In this section our aim is to show numerical results
of the above mentioned models and explain the outputs. We implemented the simulation using
the R 3.5.2 version and used the "bootsrapCDS" and "priceCDS" functions in "credule" package
of R for the pricing.

4.1 Implementation results

In the financial market the two biggest CDX families are the CDX North American and
Emerging Markets; and the iTraxx indices so we worked with these market data. These indices
are standardized so their attachment and detachment points, and their premiums, recovery rate
are fixed. Given that the expected loss has the main role in CDO pricing, in the following
paragraphs we discuss it in more details.

4.1.1 Simple examples

To start the testing we simulate the expected loss of a CDS index tranche and check the
correctness of the code. We assumed the following simple properties for the test portfolio:
𝑛 = 100 names, 𝑅 = 0 constant recovery rate, low (10%) and high (90%) default probability for
every name and 𝜌 correlation goes from 0 to 1 by 0.005. The attachment and detachment points
are coming from the CDX.NA.IG index. The next figures show the results of the simulations
which are in line with our expectations.
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Figure 11: Equity Tranche

In figure 11 we selected the [0, 0.03] equity tranche and 10% probability of default. As
we expected when the correlation is zero the expected tranche loss is around 3% and as the
correlation increases, the expected loss decreases to almost 0. This is because when there isn’t
correlation between the reference entities, so they don’t move together, and the default probability
is 10%, it means that around 10 names will default out of 100, so the expected loss is also around
10% for the total index, and from that we see that the [0, 0.03] equity tranche is fully wiped out,
so their expected loss is the detachment point, 3%. In addition, when there is a strong correlation
between the reference entities, so they move together and the default probability stays at 10%,
it means that 10% of the names have chance to default in the total portfolio and in the equity
tranche also, so the expected loss of the [0, 0.03] tranche is going to 3% · 10% = 0.003.
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Figure 12: Equity Tranche

In figure 12 we stayed with the previous example, but change the default probability to 90%.
The same argument can be explained in the zero correlation case as before, in which the 90%
default probability causes 90 name default out of 100, so the expected loss of the [0%, 0.03]
equity tranche is the detachment point. For now, the strong correlation and high probability of
default mean that 90% of the names have chance to default in the total portfolio, so the expected
loss in [0, 0.03] equity tranche is closely about the detachment point, 0.03, like in the lower
correlation, so we can say that the expected loss in the 0-3% tranche is independent from the
correlation.
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Figure 13: Senior Tranche

In figure 13, we chose a senior tranche in [0.15, 1] interval and 10% probability of default.
In that case when the correlation is zero, the expected loss is 0, because only 10 names will be
defaulted in the total portfolio and that is lower than the attachment point of the given senior
tranche. As the correlation increases, the expected loss increases too, because if the correlation
is 1, the expected loss has to be around the multiplication of the 10% and the difference of
detachment and attachment point of the senior tranche, which is 0.085. As we approach to the
stronger correlation, more names will default.
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Figure 14: Super Senior Tranche

Figure 14 shows that the expected loss for a [0.35, 1] senior tranche with 90% default
probability looks like the above mentioned, that on the left side it is clearly shows that the loss
is around the difference of the detachment and attachment point as a function of the correlation,
but as we saw on the right side that the expected loss isn’t as smooth as we saw in figure on the
left, there is a volatility around the exact value.

For now, we saw the behavior of an equity and a senior tranche and we can conclude that
these work in the opposite direction. Among them in the structure there are the mezzanine
tranches, which inherit both of the equity and senior tranche behaviors.
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Figure 15: Mezzanine Tranche

Figure 15 shows a [0.1, 0.2] mezzanine tranche. It can be seen that there is a part of the
mezzanine tranche which is following the equity tranche methodology and there is another part,
which is following the senior tranche methodology. So we can’t establish a clear behavior for
the mezzanine tranches.

4.2 Stochastic Recovery

As discussed in section 3.2 we implemented the theoretical framework of stochastic recovery
model. As mentioned the common factor, 𝑋 is a random variable from the standard normal
distribution, which characterizes the financial market. Therefore first of all, we want to compare
the results of two contrary examples of 𝑋 . For that we simulated the stochastic recovery function
and the number of reference entity defaults as a function of the correlation.
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Figure 16: Stochastic Recovery in correlation

Figure 17: Number of defaults in correlation

33



We saw in figure 16 and 17 that if the 𝑀 common factor is positive, so the market is evolving,
than the recovery rate function is increasing; and the number of defaults are decreasing as a
function of the correlation. Inversely, if the 𝑀 common factor is negative, so the market is bad,
than the recovery rate function is decreasing; and the number of defaults are increasing as a
function of the correlation.

However the common factor is a random variable, hence in the simulation we averaged the
expected losses for the different tranches and get the following plots.

Figure 18: Expected losses of equity tranche with stochastic and deterministic recovery functions

Figure 18 shows the deterministic and stochastic recovery functions for the equity tranche.
We set up the parameter of the stochastic recovery to be equal with the correlation and to be
two times that. As we saw the expected loss is lower with the stochastic recovery than the
deterministic and as we increase the parameter, the expected loss belongs to stochastic recovery
will be lower and lower.
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Figure 19: Expected losses of senior tranche with stochastic and deterministic recovery functions

Figure 19 shows the deterministic and stochastic recovery functions for the senior tranche
and the parameterization is same as above. As we saw we can reach higher losses with the
stochastic recovery function for the senior tranche.

Widen the range of expected loss either for the senior tranche by increasing it or for the
equity tranche by decreasing.

Moreover as we saw in the section 4.1.1, there isn’t clear behavior for the mezzanine tranche
and it is presented in the next figure:
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Figure 20: Expected losses of a mezzanine tranche with stochastic and deterministic recovery
functions

As we see in figure 20 there is a part of the mezzanine tranche, which inherit the equity
tranche behavior and there is another part, which is following the senior tranche behavior.

4.3 Copula extensions

As we wrote in the section 3.3 we generate our model with different distributions. During
the numerical testing we used more parameterization to the copulas whose density functions are
shown in figure 21:
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Figure 21: Density functions

Continuing the representation of the expected losses we calculate it for each tranches. As
we expected with these heavy-tailed distributions we could generate higher expected losses then
with the Gaussian. These result are shown in figure 22 for an equity tranche; figure 23 for a
mezzanine tranche; and figure 24 for the senior tranche.
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Figure 22: Different copulas for the equity tranche

Figure 23: Different copulas for a mezzanine tranche
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Figure 24: Different copulas for the senior tranche

Each figures clearly show that the generated losses are higher using the new copulas than the
Gaussian copula for each tranches.
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5 Conclusion

In this thesis, we have introduced a base model for pricing, implementation and testing the
CDS index and the synthetic CDO tranches. Our goal was to improve the model’s background
that the model results will be better in line with the market prices.

In order to reach that firstly, we have presented the base correlation method which is the
solution for the correlation skew’s problem. Secondly, the stochastic recovery rate function
have been introduced which is strengthen the effect of the expected losses as a function of the
correlation. Finally, we used new copulas such as Student’s 𝑡 and 𝛼-stable distributions.

In section 4 we tested the original and the extended model, mainly via the expected losses
in the different tranches. We observed that the equity tranche and the senior tranche work in the
opposite direction while the mezzanine tranche inherit both of these behaviours. We saw that we
can widen the range of the tranche expected losses as a function of correlation by using stochastic
recovery. Moreover we saw that we can reach higher losses with different copula models at same
correlation, which is better in line with the market prices.

For further research we would recommend the bespoke CDO contract pricing and testing at
more generalized models, such as the stochastic correlation method.

As a conclusion, we saw during the implementation and simulations that is worth to use
more general models in order to be closer to the real world. However the draw back is that we
also introduce more parameters which can not be easily calibrated.
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A Appendix

Összefoglalás

A szakdolgozat célja, hogy bemutassa a CDS Index Tranchek modellezését és vizsgálja azt.
A CDO-k és a CDS-ek a 2007-2008-as pénzügyi válságkor voltak a legnépszerűbb strukturált
termékek, de azóta is jelen vannak a piacon. A dolgozatban a saját hozzájárulás az egyes
modellek R programban történő implementálása, a várható veszteségek vizsgálata a különböző
esetekben és a kapott eredmények elemzése.

Először az 1990-es években jelentek meg a származtatott termékek piacán a CDO-k, majd
szépen nőtt a piaci jelentőségük és megjelentek a szintetikus CDO-k, melyek "kosarában" nem
hitelek és kötvények voltak, mint eddig a CDO-knál, hanem más hitelderivatív termékek, mint
például a CDS-ek. A 2000-es évek elején egyre elterjedtebbé váltak, míg eljutottunk oda, hogy a
gazdasági világválság egyik főszereplői lettek. Ennek hatására szigorúbban kezdték szabályozni
ezeket a termékeket, így ekkor került bevezetésre több sztenderdizálás is velük kapcsolatban.
Rögzítették az egyes indexek szeletekre való felosztását, pl: CDX.NA.HY: (CDS index, észak
amerikai magas hozamú termék) [0, 0.15] – equity tranche; [0.15, 0.25] – junior mezzanine
tranche; [0.25, 0.35] – senior mezzanine tranche; [0.35, 1] senior tranche, valamint a termékek
tulajdonságait is, mint például fix kupont, melyből adódott az upfront prémium használata.

Miután a szakdolgozat elején megismerkedtünk az egyes termékekkel, köztük az egynevű,
többnevű CDS-ekkel, indexekkel és az index szeletekkel, megmutattuk hogyan történik ezek
árazása. Először felírva az egyetlen referencia alanyból álló CDS termék árazását, majd a
már több referencia alanyból álló szintetikus CDO-k árazását is. Az árazáshoz hozzátartozik a
hazard ráta ismerete és az egyfaktoros Gauss kopula bevezetése. Ezzel fel is építettük az alap
modellünket, melyben a várható veszteség kiszámolására nagy hangsúlyt fektettünk, hiszen az
implemetálás során majd annak a viselkedését szeretnénk vizsgálni.

A 3. fejezetben foglalkoztunk azzal, hogy mikkel tudnánk fejleszteni a modellt ahhoz, hogy
az jobban közelítse a piaci értékeket. Ennek első pontja a korrelációs mosoly kiküszöbölésére
szolgáló úgynevezett alap korreláció bevezetése, melynek lényege, hogy mindegy egyes szeletet
két equity tranche segítségével határozunk meg. Második pont a sztochasztikus megtérülési
ráta bevezetése volt. Lényege, hogy várható értékben meg kell egyeznie a determinisztikus
megtérülési rátával, azonban véletlen faktorral dolgozik, melyet a Gauss kopula által, nor-
mális eloszlásból generálunk. Harmadik pontban felírtuk a modellünket más kopulákból gen-
erálva, Student 𝑡 és 𝛼-stabilis eloszlásokból a nagyobb veszteségek elérésének céljából. Ezek az
eloszlások ugyanis vastagabb farkúak, mint a normális eloszlás, ezáltal nagyobb valószínűséget
tulajdonítanak a szélsőséges eseteknek, mint az equity vagy a senior tranche.
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Végül a 4. részben implemetáltuk és teszteltük, hogyan viselkednek azok a metódusok,
melyeket az előzőekben tárgyaltunk. Pár példán ellenőriztük a korreláció függvényében a várható
veszteség értékét, hogy azt kapjuk az alapmodelltől, amit várunk tőle, majd kiterjesztettük a sz-
tochasztikus megtérülési rátával, ott is 2 paraméterrel. Ahogy vártuk, a korreláció függvényében
a várható veszteség hatása felerősödik sztochasztikus megtérülési rátával. Vagyis equity tranche
esetén a veszteség kisebb lesz, senior tranche esetén nagyobb. Tudjuk, hogy a mezzanine tranche
ezen 2 ötvözete, ezért ott ezt nem tudjuk egyértelműen megállapítani. Van olyan része, ahol
kevesebb lesz a veszteség sztochasztikus rátával és van olyan, ahol nagyobb.

Ugyanígy bemutatva azt is, mikor nem Gauss kopulából generálunk, hanem Student 𝑡 és
𝛼-stabilisból, mindegyikből két értéket adva a paraméternek. A kapott 5 eredményt vizsgálva
egyértelműen látszik mindegyik szelet esetén, hogy a Gauss kopulából generált várható veszteség
a legkisebb, és ahogy haladunk a minél vastagabb farkú eloszlások felé, úgy nőnek az egyes
veszteségek is a korreláció függvényében.

Összefoglalva azt mondhatjuk, hogy az egyes kiterjesztések szükségesek a modell jobb
piachoz való illeszkedése szempontjából, azonban minden egyes ilyen fejlesztéssel egyre több
paraméter jön be és egyre nehezebb lesz a kalibráció. További fejlesztési terület lehet még a
sztochasztikus korreláció esetének vizsgálata, illetve akár a bespoke CDO-k bemutatása is.
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Szószedet

attachment point: csatlakozási pont

base correlation: alap korreláció

Basket Default Swap: több referencia entitásból álló CDS termék

CDO (Collateralized Debt Obligation): fedezett adósságjellegű kötelezettség

CDS (Credit Default Swap): hitel-nemteljesítési csereügylet – egy olyan hitelderivatív
termék, mely

correlation skew: korrelációs mosoly

detachment point: lekapcsolódási pont

expected loss: várható veszteség

recovery rate: megtérülési ráta

reference entity: referencia entitás

Single-Name CDS: egyetlen referencia entitásból álló CDS termék

upfront premium: a rögzített prémium feletti érték az egyes tranche-ekhez, hogy az árak
igazságosak maradjanak

tranche: szelet
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