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Introduction

In financial and economic forecasting, especially when there are a significant number of

potentially important predictors and a low signal-to-noise ratio, it is a common approach

to use shrinkage estimators or regularisation methods to decrease the variance of the

forecasting method. Recently, the LASSO has seen widespread applications in financial

forecasting (Rapach, Strauss, and Zhou, 2013), (Chinco, Clark-Joseph, and Ye, 2019),

(Freyberger, Neuhierl, and Weber, 2020), (Kozak, Nagel, and Santosh, 2020).

Another of the more popular and successful of these shrinkage estimators is the so

called ’forecast combination’ method. It consists of estimating univariate linear regressions

using OLS, then generating forecasts from the univariate regressions, and finally taking

the - usually equal-weighted - average of these forecasts to get the ’final’ forecast of the

variable of interest1 (Rapach, Strauss, and Zhou, 2010), (Rapach, 2013). The estimator is

equivalent to setting some restrictions on the coefficients and the covariance matrix of a

multivariate linear regression, which show that it is in fact a very strong form of shrinkage

(Rapach, Strauss, and Zhou, 2010). This method, which I will call ’univariate OLS’ from

now on2, has been applied to forecasting the US equity premium (Rapach, Strauss, and

Zhou, 2010), (Rapach, 2013), (Elliott, Gargano, and Timmermann, 2013), (Zhang, Wei,

Ma, et al., 2019), (Rapach and Zhou, 2020) crude oil prices (Zhang, Ma, and Y. Wang,

2019), GDP (Chauvet and Potter, 2013), among many others.

In this paper, I argue that the uOLS proves to be a too strong form of shrinkage for

data generating processes with signal-to-noise ratios and predictor correlation structures

that are practically relevant to financial and economic forecasting. For some data gener-

ating processes, especially those that have at least a mediocre signal-to-noise ratio and do

not have excessive predictor correlation, the uOLS has too high a bias. The uOLS unfor-

tunately cannot optimise the bias-variance trade-off to achieve a lower expected squared

error.

In this paper, I suggest the usage of a wider class of methods, which give back the

uOLS as a special case, but include a hyperparameter that can be set to optimise the

1Note that the term ’forecast combination’ often has a wider meaning, as in Timmermann (2006), for
example. Here I refer to a narrower meaning of the term, which is used in Rapach, Strauss, and Zhou
(2010) and Rapach (2013), for example.

2This is meant to a) avoid the different usages of the term ’forecast combination and b) to emphasise
the close relationship between uOLS and a new method I will introduce shortly, ’uNCL’.
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Introduction

bias-variance trade-off. I call these methods inverse regularisation method or inverse

regularisers (IR-s), because they work in a reverse fashion when compared to traditional

’regularisation’ methods, such as the LASSO or ridge regression. What I mean by this is

that IR methods start from a high bias low variance estimator, the uOLS and decrease

its bias at the cost of increasing its variance by setting the value of a hyperparameter. In

contrast, the LASSO and ridge work the other way around, by starting from a low bias

high variance ’supermodel’ that includes all of the available independent variables and

decreases the variance at the cost of introducing additional bias by setting the value of a

hyperparameter (Tibshirani, 1996).

There have been several IR methods in the literature, however, they have not been

grouped as such (Diebold and Shin, 2019), (Elliott, Gargano, and Timmermann, 2013),

(Elliott, Gargano, and Timmermann, 2015), (Boot and Nibbering, 2019). To build upon

my new definition of the IR-s, I introduce a new categorisation of IR methods into two

groups. I group IR methods into those that optimise the bias-variance trade-off by slightly

altering the estimation or structure of the ’individual models’3, which I call ’stage one

IR-s’, and those that optimise the bias-variance trade-off by estimating non-equal combi-

nation weights for the individual models, which I call ’stage two IR-s’4.

My first major contribution to the forecasting literature is to use this new categorisa-

tion to compare the performance of popular and highly representative methods from both

category of IR-s as well as ’traditional’ regularisation methods in a large scale simulation

study. I compare a well-known and highly competitive stage one IR, the complete subset

regression (CSR) of Elliott, Gargano, and Timmermann (2013), Elliott, Gargano, and

Timmermann (2015) and Boot and Nibbering (2019), two stage two IR-s that are highly

representative of these category of methods, the ELASSO and ERidge of Diebold and

Shin (2019) and two traditional regularisation methods, the LASSO (Tibshirani, 1996)

and ridge regression (Hoerl and Kennard, 1970). The CSR (Elliott, Gargano, and Tim-

mermann, 2013), stage two IR-s similar to the ELASSO and ERidge (Rapach, Strauss, and

Zhou, 2010), and especially LASSO have been used in financial applications, a through

comparison an evaluation of these methods together is lacking from the literature. Addi-

tionally, my results also include an inherent comparison with the uOLS, as it is a special

case of all IR methods.

I find that the stage one IR-s are highly successful and tend to dominate the stage two

IR-s for the majority of the examined data generating processes. This suggests that it is

much better to alter the estimation or the structure of the individual models than to esti-

mate combination weights. I note a close, and obviously not accidental similarity between

3The ’individual models’ refer to the models whose predictions are aggregated by some weighting; in
the case of the uOLS, the individual models are the univariate regressions, each with a different predictor.

4Note that these two groups are rather ’attributes’ in the sense that they are not necessarily mutually
exclusive. Nevertheless, in practice, most methods fall into only one of these groups and I also do not
consider any methods that fall into both categories in this paper.

2



Introduction

this finding and the well-known ’forecast combination puzzle’, which is the stylised fact

that an equal weighted combination of forecasts tends to outperform more sophisticated

combination schemes (Smith and Wallis, 2009).

My second finding is that the stage one IR-s, which ’inverse regularise’ the uOLS,

tend to outperform the LASSO and ridge regression, which ’regularise’ the multivariate

’supermodel’ that includes all predictors, for most of the DGPs considered. This is an

important finding, because it shows that inverse regularisation approaches are superior to

the very popular ’normal’ regularisation approaches.

I make another contribution to the literature by introducing a new stage one IR

method, and comparing its performance with the other methods. This new method

replaces the OLS in the estimation of the univariate models of the uOLS with a train-

ing algorithm called ’negative correlation learning’ (NCL). The NCL algorithm has been

present in the machine learning community since the late 90s, where it is mainly used

to train ensembles of neural networks (Liu and Yao, 1999). The algorithm is meant to

train a set of neural networks that are ’diverse’ in the sense that their predictions have

low covariance (Brown, Wyatt, and Tino, 2005). Because the ’diversity’ of the individ-

ual networks can usually be increased (equivalent to a decrease in their covariance), a

trade-off between the accuracy of the individual models and their diversity emerges. The

NCL algorithm, thus, trains a set of neural networks that are accurate in aggregate but

not by themselves. The algorithm itself is based on a decomposition of the squared error

of a linear combination of estimators called the ’ambiguity decomposition’ (Krogh and

Vedelsby, 1994). This decomposition, although it applies in a much wider context than

neural networks, has been mostly overlooked in the econometric and forecasting literature

to the best of my knowledge.

I compare the predictive performance of this new method, which I call ’uNCL’5, with

the other methods. I find that it usually has comparable performance with the other stage

one IR method, CSR, and as such is usually one of the two best performing methods in

the simulations.

Additionally, I estimate the bias-variance and a bias-variance-covariance decomposi-

tion of the uNCL through the simulations. The bias-variance decomposition shows that

the uNCL acts as an IR method; it has a decreasing bias and increasing variance as it

moves away from the uOLS by increasing the value of its hyperparameter. The estimate

of the bias-variance-covariance decomposition shows that the uNCL has covariance that

is mostly flat as a function of its hyperparameter. In its applications to the training of

ensembles of neural networks, the NCL algorithm has a covariance curve that is decreasing

in its hyperparameter (Brown, Wyatt, and Tino, 2005). Thus, my results indicate a sig-

nificant deviation in the behavior of the NCL algorithm as I move the uNCL setting. The

5Abbreviation for ’univariate negative correlation learning’

3
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NCL optimises an accuracy-diversity trade-off when applied to neural networks (Brown,

Wyatt, and Tino, 2005); in my uNCL application, it optimises the bias-variance trade-off

instead.

In recent years, machine learning models have seen widespread applications in financial

forecasting. Notable, examples include Gu, Kelly, and Xiu (2020) in the cross section of

equity returns, Bianchi, Buchner, and Tamoni (2021) in the cross section of bond returns,

Hollstein and Prokopczuk (2022) in the time-series predictability of factor portfolios, and

Avramov, Cheng, and Metzker (2021), which applies neural networks. Most importantly,

the LASSO has seen extensive applications in forecasting the US equity premium (Rapach,

Strauss, and Zhou, 2013), (Chinco, Clark-Joseph, and Ye, 2019), (Freyberger, Neuhierl,

and Weber, 2020), (Kozak, Nagel, and Santosh, 2020). To extend upon this literature

and provide an empirical comparison of IR-s and traditional regularisation methods, I

also forecast the US equity premium, using a standard set of macroeconomic and financial

predictors from Welch and Goyal (2007). I find that the stage one IR methods, the uNCL

and CSR give the best performance of the considered models, with an R2
OOS over 3%

and over 5% for the uNCL if the nonnegativity restriction of Campbell and Thompson

(2007) are imposed on the forecasts, and the hyperparameters are chosen optimally. The

stage two IR-s, the LASSO and ridge perform poorly. The ranking of the uNCL and

CSR as the two best performing models is robust to validating the hyperparameters from

the data. Also, I find that there is a huge drop in the performance of most models after

the 90s. CSR, and the uNCL are the least affected by this drop, remaining on par with

or slightly outperforming the historical average even after the 90s, unlike other models.

The results from the empirical application are in agreement with the results from the

simulations, and indicate that the stage one IR-s, CSR and the uNCL are superior in

forecasting performance to traditional and stage two IR methods. These finding suggests

a more widespread application of the so-far somewhat overlooked CSR and the new uNCL

in future studies.

The paper is structured as follows. Section II introduces the theoretical foundations,

concepts and models of my study in more detail, as well as a short review of the literature

of forecasting the US equity premium. Section III describes the simulation study. Section

IV is devoted to the empirical application of forecasting the US quarterly equity premium.

Section V concludes.

4



Review and Theoretical Foundations

II.1 uOLS as a strong form of shrinkage

The uOLS, which I describe here, has seen widespread applications in forecasting, includ-

ing forecasting the equity premium (Rapach, Strauss, and Zhou, 2010), (Rapach, 2013),

(Rapach and Zhou, 2020), (Elliott, Gargano, and Timmermann, 2013), (Zhang, Wei, Ma,

et al., 2019), crude oil prices (Zhang, Ma, and Y. Wang, 2019), GDP (Chauvet and Pot-

ter, 2013) among many others. Notably, it is also a special case of the CSR of Elliott,

Gargano, and Timmermann (2013), introduced later.

Suppose one has a variable one wants to forecast, yt, t = 1, 2, . . . , T and p number of

predictors, xp,t, t = 0, 1, . . . , T − 1. Also suppose that the true model has the following

form:

yt = β0 +

p
∑

i=1

βixi,t−1 + ϵt (II.1)

Where ϵ is a random variable and the βs are some unknown deterministic constants,

and the Gauss-Markov assumptions are satisfied: the predictors are exogen (E(ϵi|X) =

0 V ar(ϵi|X) = σ for some constant σ and the noise terms have zero cross-product,

E(ϵlϵk|X) = 0 for l ̸= k, and X is a Tx(p + 1) matrix with 1s in its first column and

the i-th (i > 1) column equal to the predictor vector xi = (xi,0, xi,1, . . . , xi,T−1) and is

assumed the be full rank.

Suppose one wants to estimate a model of the form in equation II.6. An obvious

solution is to minimise the mean squared error:

MSEKS =
T
∑

t=1

(yt − β̂0 −

p
∑

i=1

βixi,t−1)
2 (II.2)

This is minimised by setting the coefficients to:

ˆβKS = (XTX)−1XTy (II.3)

Where β̂ = (β̂0, β̂1, ˆ. . ., β̂p) is the vector of coefficients and XT denotes the transpose

of X. This model, which uses all of the predictors and minimises the mean squared error

5



Review and Theoretical Foundations 1. uOLS as a strong form of shrinkage

is often called the ’kitchen sink’ (KS) model in financial applications.

Because the Gauss-Markov assumptions are met, this estimator is the best unbiased

linear estimator. However, its variance is dependant upon the variance of the noise term ϵ

and the degree of linear dependence between the predictor. Financial time series are often

very noisy and have a substantial degree of multicollinearity in their predictors. As such,

one may reduce the expected mean squared error of the forecasts with some restrictions

that reduce the variance of the estimator at the cost of introducing some bias.

Suppose one restricts the XTX covariance matrix to be diagonal. That is, let XTX be

a nx(T-1) matrix such that its diagonal elements are equal to the corresponding diagonal

element of the unrestricted covariance matrix XTX, and that its off-diagonal elements

are all equal to zero. Let us modify the OLS estimator by replacing XTX with XTX:

β̂rest1 = XTX
−1
XTy (II.4)

Note that the restricted coefficient vector can be estimated by univariate linear regres-

sions with OLS. Its first element is equal to the sum of the intercepts of of the p univariate

regressions, and the i-th (i > 1) element is equal to the coefficient of the variable xi from

the univariate regression corresponding to the variable (Rapach, Strauss, and Zhou, 2010).

Additionally, impose another restriction. Instead of estimating using the coefficients

from equation II.4 to generate the forecasts, divide them by the number of predictors p:

β̂rest2 =
β̂rest1

p
(II.5)

And the forecasts are calculated the following way:

ŷt = β̂rest2,0 +

p
∑

i=1

β̂rest2,ixi,t−1 + ϵt (II.6)

Note that this is equivalent to taking a simple average of the univariate forecasts:

∑p

i=1 ŷi,t

p
=

p
∑

i=1

β̂univar,i,0 + β̂univar,ixi,t

p

=

∑p

i=1 β̂univar,i,0

p
+

p
∑

i=1

β̂univar,i

p
xi,t

=
β̂rest1,0

p
+

p
∑

i=1

β̂rest1,i

p
xi,t

= β̂rest2,0 +

p
∑

i=1

β̂rest2,ixi,t (II.7)

Where ŷi,t at the beginning is the forecast from the i-th univariate regression, β̂univar,i,0

6



Review and Theoretical Foundations2. The concept and categorisation of inverse regularisation

is the intercept from the i-th univariate regression, and β̂univar,i,0 is the regression coef-

ficient from the i-th univariate regression. The first equality follows by the definition of

the ŷi,t-s. The third equality is uses the fact that the univariate regression coefficients

are equal to the regression coefficients after restriction 1 is imposed, and the fact that

the sum of the univariate regression intercepts equals the intercept of the regression with

restriction 1 imposed. The last equation follows from the definition of the β̂rest2,i-s.

To sum up, I have shown that the uOLS method, which estimates univariate re-

gressions with each of the predictors and then takes the simple average of the forecasts

generated by the univariate regression, is equivalent to estimating the KS model with two

restrictions. The first restriction is to estimate the regression coefficients by first ignor-

ing the (cross-)covariances of the predictors, and the second restriction is to divide the

estimated coefficients by the number of the univariate models. The first restriction de-

creases the number of the parameters that have to be estimated from the data. Without

the restriction, the covariance matrix has p variance and p(p−1)
2

covariance parameters;

with the restriction imposed, the only the p variances have to be estimated. The second

restriction shrinks the coefficients to zero, similar to other regularisation method such as

the LASSO or ridge regression (Rapach, Strauss, and Zhou, 2010), (Rapach and Zhou,

2020), (Tibshirani, 1996), (Hoerl and Kennard, 1970).

II.2 The concept and categorisation of inverse regu-

larisation

An important characteristic of the shrinkage of uOLS is that it is ’set at a certain level’;

the degree of shrinkage is not optimised in any way. In comparison, consider the LASSO

or ridge regressions, which, using the notation from the previous subsection, estimate a

linear model of the form in equation II.6, but instead of minimising the mean squared

error, minimise the mean squared error plus a penalty term:

MSEpenalised =
T
∑

t=1

(yt − β̂0 −

p
∑

i=1

βixi,t−1)
2 + λ

p
∑

i=1

|βi|
s (II.8)

Where s = 1 gives the LASSO and s = 2 gives ridge regression.

The additional penalty term, which is the s-norm of the coefficient vector (not in-

cluding the intercept), is multiplied by the hyperparameter λ. This penalty term shrinks

the coefficients to zero. A higher lambda puts more emphasis on the penalty term in

comparison to the mean squared error, and thus means a stronger degree of shrinkage

& regularisation. A stronger regularisation results in lower variance but higher bias. A

value of λ that optimises the degree of regularisation and the bias-variance trade-off can

be estimated from the data(Tibshirani, 1996), (Hoerl and Kennard, 1970).

7



Review and Theoretical Foundations2. The concept and categorisation of inverse regularisation

In contrast, the uOLS has no hyperparameter comparable to the λ of the LASSO and

ridge. This means that the degree of the shrinkage or regularisation of the uOLS method is

fixed. In the next sections, I show through a simulation study and an empirical application

to forecasting the quarterly US equity premium that this fixed level of regularisation is

indeed often suboptimal. This begs the question: can we improve upon the uOLS method

by somehow reducing the level of regularisation?

Note that these methods would in many ways have the opposite effect on the uOLS

method in comparison to the effect of the LASSO or ridge on the KS model. Whereas

the LASSO and ridge increase the bias and decrease the variance of the KS model, this

modification would have a smaller bias and higher variance than the uOLS benchmark.

Additionally, the LASSO and ridge regressions are meant to prevent the KS model from

overfitting; on the other hand, the uOLS is likely underfit and the sought method is meant

to prevent that. To emphasize that the sought group of methods change the uOLS very

much opposite to how the regularisation methods such as the LASSO or ridge change

the KS model, I refer to these methods as inverse regularisation methods or inverse

regularisers, or in short, IR-s.

There are several methods already present in the literature that can be considered

inverse regularisers. However, these methods have not been adequately compared. To

achieve this end, I propose a new categorisation of these methods and carry out a large

scale comparison in the following sections.

The basis of the categorisation is the two restrictions, or two stages of the estimation

of the uOLS method. The first stage is the estimation of the individual model, which is

equivalent to imposing the diagonal covariance matrix restriction. Intuitively, this stage

and restriction ignores all of the relationship between the predictors in the estimation of

the individual models. Naturally, one way to inverse regularise the uOLS method is to not

ignore all of the relationship between the predictors, but retain some. As such, stage one

inverse regularisers are the methods that either estimate or define the individual models

in a way that generalises the uOLS, allows for less regularisation and use more of the

sample-relationship between the predictors in the estimation. Notable examples of stage

one inverse regularisers include the complete subset regression of Elliott, Gargano, and

Timmermann (2013), Elliott, Gargano, and Timmermann (2015) and Boot and Nibbering

(2019), and the uNCL method, a new approach that I introduce in this paper.

The second stage of the calculation of the uOLS forecasts is the aggregation of the

individual models. This is done by taking the simple average of the forecasts of the indi-

vidual models, which is also equivalent to second restriction from the previous subsection

(Rapach, Strauss, and Zhou, 2010). Taking the simple average of the individual forecasts

ignores the difference in the biases and variances of the individual forecasts as well as

their correlation structure. Forecasts with higher bias, higher variance and a high posi-

tive correlation with other forecasts contribute more to the expected squared error of the

8
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combined forecasts. As such, it might be possible to estimate combination weights and a

bias term (as an intercept) to aggregate by. This could improve the performance of the

uOLS method by reducing its bias and incorporating more information. I group these in-

verse regularisers that change the simple average combination method of the uOLS stage

two inverse regularisers.

II.3 Stage two methods

This section introduces some important examples of stage II inverse regularisers. The list

is not meant to be exhaustive at all, but instead focuses on the ELASSO and ERidge

of Diebold and Shin (2019), two relatively new methods that are good representatives of

this group and are evaluated in the simulation study in the later part of this paper.

II.3.1 Bates-Granger regression

Before introducing the ELASSO and ERidge, let us first consider the so called Bates-

Granger regression (Bates and Granger, 1969). Suppose we have p individual forecasts

of the variable of interest yT , fi,T , i = 1, 2, . . . , p (which may come from the univariate

OLS models, as in uOLS) that we want to aggregate in the following form:

fFC,T = α +
i
∑

i=1

βpfi,T (II.9)

Here, the βi-s are the combination weights and α is a constant offset. We want to

estimate the parameters that minimise the expected mean squared error of the combined

forecast fFC,T over yT . Define the error of the i-th individual forecast, ei,t as ei,t := yt−fi,t.

If the covariance matrix of the errors and the bias terms of the individual forecasts fi,t are

not time dependent, and the usual Gauss-Markov assumptions are met, then estimating

the regression in equation II.9 with OLS is optimal within the class of unbiased estimators

(Timmermann, 2006). Notably, the OLS-intercept is equal to the weighted average of the

biases of the individual forecasts is expectation, thus the combination is unbiased.

In practice, the Bates-Granger regression combination of the individual forecasts usu-

ally underperforms the simple average combination (Timmermann, 2006). This stylised

empirical finding is often referred to as the ”forecast combination puzzle”. The solution

to this puzzle to a great extent lies in the fact that estimating the combination weights

by the Bates-Granger regression introduces additional estimation error into the model

(Smith and Wallis, 2009). On the other hand, this additional estimation error can be

avoided by assuming the simple average weights, which are usually actually reasonable

close to optimal in most applications (Smith and Wallis, 2009), (Claeskens et al., 2016),

(Genre et al., 2013).

9
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In the search for combination weights that outperform the simple average combina-

tion, one must abandon the class of unbiased models. Perhaps the largest class of these

approaches consists of ’shrinkage’ estimators. These estimators shrink the combination

weights to the simple average in some way. In the following section, I introduce ELASSO

& ERidge of Diebold and Shin (2019), two relatively new methods that are great repre-

sentatives of this class.

II.3.2 ELASSO and ERidge

Let us consider the combination weight regression from equation II.9 of the form:

Instead of minimising the sample MSE (Bates-Granger approach) let us minimise a

penalised form of the MSE:

MSEpenalised =
T
∑

t=1

(

yt − α̂−

p
∑

i=1

βifi,t

)2

+ λ

p
∑

i=1

∣

∣

∣

∣

βi −
1

p

∣

∣

∣

∣

s

(II.10)

The case s = 1 is called the ’egalitarian LASSO’ (ELASSO) and s = 2 is called

’egalitarian ridge (ERidge) (Diebold and Shin, 2019).

The estimation of the ELASSO or ERidge can be easily traced back to the estimation of

a ’regular’ LASSO or ridge model. Let f t =
1
p

∑p

i=1 fi,t be the simple average combination.

Then:

MSEpenalised =
T
∑

t=1

(

yt − α̂−

p
∑

i=1

β̂ifi,t

)2

+ λ

p
∑

i=1

∣

∣

∣

∣

β̂i −
1

p

∣

∣

∣

∣

s

=
T
∑

t=1

(

yt − f t + f t − α̂−

p
∑

i=1

β̂ifi,t

)2

+ λ

p
∑

i=1

∣

∣

∣

∣

β̂i −
1

p

∣

∣

∣

∣

s

=
T
∑

t=1

(

(yt − f t)− α̂ +

p
∑

i=1

(
1

p
− β̂i)fi,t

)2

+ λ

p
∑

i=1

∣

∣

∣

∣

β̂i −
1

p

∣

∣

∣

∣

s

=
T
∑

t=1

(

(yt − f t)− α̂−

p
∑

i=1

δifi,t

)2

+ λ

p
∑

i=1

|δi|
s (II.11)

Where δi := β̂i −
1
p
. What the equations tell us is that the ERidge or ELASSO

coefficients and intercept can be easily estimated by fitting a regular LASSO or ridge of

the yt − f t-s on the individual forecasts fi,t. For ridge, this regression has an analytic

solution (Hastie, Tibshirani, and Friedman, 2001); in the case of the LASSO, numerical

procedures, most commonly coordinate gradient descent is used (Friedman, Hastie, and

Tibshirani, 2010).

In comparison to the regular LASSO and ridge, the ELASSO and ERidge are different
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only in the penalty term, which has an additional 1
p
subtraction inside the absolute value

signs. Intuitively, this difference means that ELASSO and ERidge penalises the combi-

nation weights βi based on their distance (s-norm) from 1
p
, the equal weight combination,

thus shrinking the combination weights towards the simple average. The hyperparameter

λ determines the severity of the shrinkage. If λ = 0, we get back the Bates-Granger re-

gression weights; on the other hand, as λ tends to infinity, we get back the equal weighted

combination.

The extreme case of the Bates-Granger regression can be viewed as using all of the

available information in the covariance structure and sample means of the individual

forecasts fi,t. The other extreme case, the simple average of the individual forecasts is

equivalent to using no sample information about the means or covariance structure of the

individual models and assuming they perform equally and have zero bias. In the context

of the uOLS, using the ELASSO or ERdige to estimate the combination weights and the

”offset” instead of using taking the simple average translates to inverse regularising the

estimator, and, as we will see in the simulations, to optimising the bias-variance trade-off.

II.4 Stage one methods

In this subsection, I describe two stage one inverse regularisation methods, the complete

subset regression of Elliott, Gargano, and Timmermann (2013) and my novel application

of the negative correlation learning algorithm, originally introduced by Liu and Yao (1998)

and later popularised by Brown, Wyatt, and Tino (2005).

II.4.1 Complete subset regression

Suppose we have p predictor variables xi,t i = 1, 2, . . . , p and the variable we want to

forecast, yt, as previously. The complete subset regression (CSR) method consists of

estimating individual models with OLS by regressing the yt-s on each possible subset of

size k of the predictors xi,t, and then taking a simple average of the individual models.

Formally, we estimate the j-th individual model in the following form:

yt = β0 +
∑

i∈C(p,k,j)

βixi,t−1 (II.12)

Where C(p, k, j) is the j-th element of a set consisting of all possible combinations

of size k of {1, 2, . . . , p}. For a given k and p, there are p!
(p−k)!k!

such combinations.

These individual models are estimated by minimising the mean squared error (OLS). The

combined forecast is a simple average of the individual forecasts, and can be written as:

11
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ŷt =
1
p!

(p−k)!k!

p!
(p−k)!k!
∑

j=1

(

β̂0,j +

p
∑

l=1

β̂l,jxl,t−1

)

(II.13)

Where β̂0,j is the estimated intercept term from the j-th individual model and β̂l,j is

the estimated coefficient of the l-th predictor from the j-th individual model. Note that

if β̂l,j = 0 if the j-th individual model does not include the predictor xl,t.

Note that with k = 1, the set of all possible combinations of size k = 1 can be ordered

such that C(p, k, j) = j. It is easy to see that in this case, CSR is equivalent to uOLS.

On the other hand, if k = p, there is only one subset of the p predictors with cardinality

k = p. In this case CSR is equivalent to the KS model. As such, CSR can be viewed as

a transition from the uOLS to the KS model as we increase k.

CSR is also a generalisation of uOLS. uOLS estimates the individual models by ig-

noring all covariances between the predictors. On the other hand, CSR (with k > 2)

ignores most of the covariances but some when it estimates the individual models. Thus,

it incorporates more information about the sample relationships of the predictors than

the uOLS. In the second step, both the uOLS and CSR simply divide by the number

of individual models. Elliott, Gargano, and Timmermann (2013) also shows that as we

increase k the bias of the combined forecast decreases but the variance increases. As such,

k may be considered a hyperparameter that can be optimised over some validation set to

optimise the level of shrinkage.

Elliott, Gargano, and Timmermann (2013) also show analytically that the CSR is a

shrinkage estimator and its relationship to the OLS coefficients. Let us define:

β̂p,k =

(

1
p!

(p−k)!k!

β̂1,j, . . . ,
1
p!

(p−k)!k!

β̂p,j

)

(II.14)

Which is equivalent to the coefficient vector of CSR model from equation II.13 after

bringing the division by the number of individual models inside the summation. Addi-

tionally, let β̂KS = (β̂1,KS, . . . , β̂p,KS)
T be the coefficient vector of the kitchen sink model,

where β̂l,KS is the l-th coefficient estimate from the kithen sink model. Define Si ∈ Rpxp

be a pxp matrix whose elements are all zero except the j-th diagonal elements if the j-th

predictor is included in the i-th individual model. In this case, let the diagonal element

be equal to one. Denote the time-independet covariance matrix of the predictors by ΣX .

Then, assuming that β̂KS

p
−−→ β for some β ∈ Rp as the sample size T −→ ∞, the CSR

coefficient estimates are a function of the OLS coefficient estimates (Elliott, Gargano, and

Timmermann, 2013):
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β̂p,k = Λp,kβ̂KS + op(1)

Λp,k =
1
p!

(p−k)!k!

1
p!

(p−k)!k!
∑

i=1

(

ST
i ΣXSi

)−1 (
ST
i ΣX

)

(II.15)

Here, if Λp,k is diagonal, the CSR coefficients are approximately (with some error

op(1)) equal to the corresponding KS coefficients multiplied by some scalar. In practice,

Λp,k is hardly ever diagonal and the CSR coefficients depend on all of the OLS coefficients

(Elliott, Gargano, and Timmermann, 2013).

II.4.2 Univariate negative correlation learning

In this section, I introduce the negative correlation learning (NCL) algorithm and describe

its novel application in this paper (uNCL). First, I show how to NCL algorithm is based on

a lesser known decomposition of the squared error, the ambiguity decomposition. Then, I

present the explanation of Brown, Wyatt, and Tino (2005) on why NCL performs well in

the setting it was originally used in. Last, I describe my novel uNCL method, and note

several differences between it and the original NCL.

II.4.2.1 The ambiguity Decomposition and the NCL algorithm

The ambiguity decomposition states that at a single data point, the quadratic error of the

combined forecast is less or equal to the weighted average quadratic error of the combined

forecasts. Formally:

(yt − fFC,t)
2 =

p
∑

i=1

wi(yt − fi,t)
2 −

p
∑

i=1

wi(fi,t − fFC,t)
2 (II.16)

Where yt is a single arbitrary data point, fi,t, i = 1, 2, . . . , p are the individual forecasts

one combines, wi are the weights corresponding to the forecasts fi,t, fFC,t :=
∑p

i=1 wifi,t

is the combined forecast. For a derivation, see Krogh and Vedelsby (1994).

The ambiguity decomposition says that the squared error at a single data point is not

equal to the weighted sum of the squared errors of the individual forecasts, but contains

an additional term. The additional term, usually called the ambiguity term, takes up high

values if the individual forecasts take up substantially different values from the combined

forecast. The ambiguity term is subtracted from the weighted squared errors of the

individual models, so a high value of the ambiguity term is advantageous. As such, the

decomposition says that if two collections of individual forecasts have the same weighted

squared error, but the first collection has a higher dispersion of the individual forecasts
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around the weighted mean forecasts than the second collection, then its combination has

a smaller squared error.

This suggests that one shouldn’t only care about the having a collection of individual

forecasts that are accurate by themselves, but also a collection that is highly dispersed.

Notice that most combination-based approaches do not care about the dispersion of the

individual forecasts, or at least not directly. For example, the uOLS method estimates

the individual models with OLS, which tries to maximise the accuracy of the univariate

model by minimising its squared error over the train set. Similarly, in the machine learning

community, where individual neural networks are often fitted and then aggregated by a

weighted combination of the forecasts, the most common approach is to estimate the

individual neural networks by minimising the squared error over the training set by some

gradient-based algorithm.

Alternatively, the ambiguity decomposition presents an idea to improve performance

by encouraging disperse forecasts. Adding up the squared errors over the train set t =

1, 2, . . . , T we get:

T
∑

t=1

(yt − fFC,t)
2 =

T
∑

t=1

(

p
∑

i=1

wi(yt − fi,t)
2 −

p
∑

i=1

wi(fi,t − fFC,t)
2

)

(II.17)

Taking the inner sum only for a fixed i, i ∈ {1, 2, . . . , p}, we get:

Contributionfi =
T
∑

t=1

(

wi(yt − fi,t)
2 − wi(fi,t − fFC,t)

2
)

(II.18)

Assuming simple average weighting fFC,t =
1
p

∑p

i=1 fi,t this becomes:

Contributionfi =
1

p

T
∑

t=1

(

(yt − fi,t)
2 − (fi,t − fFC,t)

2
)

(II.19)

I call this expression Contributionfi because it can be seen as the contribution of the

i-th individual model to the error of the combined forecast Contributionfi . It follows

trivially from the definition of Contributionfi that adding up the contributions of all the

individual models over the train set is equal to the squared error of the combined forecasts

over the train set:

p
∑

i=1

Contributionfi =
T
∑

t=1

(yt − fFC,t)
2 = MSEfFC

(II.20)

Naturally, one might minimise Contributionfi when fitting the individual model i

instead of the traditional approach of minimising the squared error, that is, only the

first term of Contributionfi . Negative correlation learning is a generalisation of this idea.

Instead of minimising the Contributionfi , NCL minimises the following expression for
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some λ ∈ [0, 1]:

NCLloss =
1

p

T
∑

t=1

(

(yt − fi,t)
2 − λ(fi,t − fFC,t)

2
)

(II.21)

The only difference between NCLloss and Contributionfi is that the ambiguity term

is multiplied by the hyperparameter λ.

This expression is minimised by a gradient-descent based algorithm.

From now on, assume that the individual forecasts come from some parametrised

model with parameter vector wi and that the parameters are time-independent. Also

assume that the forecasts fi,t depend on time only through some predictors xi,t. As

such, the individual forecasts are a function of the parameters wi and the predictors xi,t;

fi,t = gi(wi,xi,t) for some function gi. We want to choose the value of the parameters wi

of the individual forecasts fi,t such that they minimise the NCLloss of the i-th individual

model.

Assuming that the combined forecasts fFC,t have a zero partial derivative with respect

to g1, we have2:

∂NCLloss

∂gi(wi,xi,t)
=

T
∑

t=1

(

(gi(wi,xi,t) + λ
∑

j ̸=i

(gj(wj ,xj,t)− fFC,t)

)

(II.22)

Using the chain rule, the gradient of the NCLloss of the i-th individual model with

respect to the parameters wi is:

∂NCLloss

∂wi,k

=
T
∑

t=1

(

(gi(wi,xi,t) + λ
∑

j ̸=i

(gj(wj ,xj,t)− fFC,t)

)

∂gi(wi,xi,t)

∂wi,k

(II.23)

Where wi,k is the k-th element of wi.

The gradient from equation II.23 is used to estimate the values of the parameters wi.

However, the gradient of the i-th individual model is also a function of the values of the

other models, both directly (through gj(wj ,xj,t) and indirectly (through the combined

forecast fFC,t). These values depend of wj , j = 1, 2, . . . , p, j ̸= i. If all wj , j =

1, 2, . . . , p, j ̸= i values are set at the time we train the i-th model, then we train model

i last. Consequently, at the time the parameters of model j (j ̸= i) were set, at least one

models parameters had not been set (the parameters of model i). Actually, if we train the

individual models sequentialy, at the time the parameters of model l are estimated, there

are only l − 1 individual models with parameters already set. Because the NCLloss of

1This assumption is clearly not met, because fFC,t =
1

p

∑p

i=1
gi(wi,xi,t) however, it actually yields

the correct result. For more detail see Brown, Wyatt, and Tino (2005)
2I omit multiplication by a constant. This is inconsequential, because it does not change the optimal

values of the parameters wi
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model i depends on the values of the parameters of the other models, this is problematic.

To solve this problem, NCL updates the parameters of the individual models not

sequentially, but parallel. The process is as follows. First, the p number of individual

models and their parametrisation is chosen. Then, initial values of the parameters are

set for each model (this can be done randomly or by setting the initial parameters to

some preset constant). At this point, a loop starts. Using the current values of the

parameters, the forecasts of each of the individual models are calculated and then are

combined by equal weights to yield the combined forecasts. These individual forecasts and

the combined forecast is used to calculate the gradients of each individual model parallel.

Then, the parameters of each model are updated at the same time by subtracting the

gradients from equation II.23 times the learning rate. At this point the loop is started

over. The loop usually ends either after a initially specified number of iterations or if the

error does not improve on the train or some validation data.

II.4.2.2 The hyperparameter lambda

From equation II.21, NCL minimises the following function:

NCLloss =
1

p

T
∑

t=1

(

(yt − fi,t)
2 − λ(fi,t − fFC,t)

2
)

(II.24)

Which, as noted previously, differs from the contribution of the individual model i to

the error of the combined forecast only in that the ambiguity term is multiplied by the

hyperparameter λ ∈ [0, 1].

The boundaries on the value λ can take are suggested by the ambiguity decomposition.

If λ = 1, NCL minimises Contributionfi directly. A λ higher than 1 would, base on

the ambiguity decomposition, result in individual forecasts that are too much dispersed

around the combined forecast. The other extreme, when λ = 0, is equivalent to ignoring

the ambiguity term and only minimising the mean squared error. As such, the value of λ

determines the degree to which the estimation takes into account not only the error of the

individual model, but also its relationship to the other models; the higher the lambda,

the more ambiguity is taken into account.

Naturally, one might think that the optimal value of λ should always be 1, because that

minimises the contribution of the individual models to the combined forecast. Although

this view in intuitive, it is wrong. Reeve and Brown (2018) prove that there is always a

λ < 1 value for which the combined forecast has a squared error lower than for λ = 1.

Brown, Wyatt, and Tino (2005) also shows in a cross sectional simulation study that the

MSE decreases as a function of λ, except for a close neighbourhood of λ = 1, where it

sharply increases. Reeve and Brown (2018) suggest that the weak performance of NCL

when λ = 1 is a result of overfitting; just as minimising of the MSE over the train set
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can overfit a model, minimising the contribution of an individual model directly (which

is equivalent to NCL with λ = 1) overfits the model to the sampling errors. Later, my

own simulations and the empirical application will also show that my uNCL method also

performs poorly when λ = 1 in line with the previous results from the literature.

II.4.2.3 Managing diversity: an interpretation of NCL

In the ensemble learning literature, it is a well-known empirical finding that a combination

of individual predictions work best when the individual models are substantially different

from one another in some respect. As such, many ensemble learning methods, for example

bagging or boosting, are motivated by the desire to create a ’different’ or ’diverse’ set of

individual predictions (Brown, Wyatt, Harris, et al., 2005). In a very similar fashion,

NCL was originally introduced to train a set of neural networks with ’diverse’ forecasts

(Liu and Yao, 1998).

What the ’diversity’ of the individual forecasts means can be best captured by the

lesser known bias-variance-covariance decomposition for regression problems (Brown, Wy-

att, and Tino, 2005). Suppose we have a dataset of size T of the input vectors xt and the

variable we want to forecast, yt. That is, we have the data (x1, y1), (x2, y2), . . . , (xT , yT )

drawn independently form the joint distribution of the predictors xt and variable of in-

terest yt, p(x, y). We want to forecast the yt-s as a parametric function of the predictors

xt-s: ŷt = g(w,xt). We want to set the parameters to minimise the expected squared

error:

E[(g(w,xt)− yt)
2] =

∫

g(w,xt)− yt)
2p(xt, yt)d(xt, yt) (II.25)

From now on, I omit the w and xt arguments of g for the purposes of brevity, unless

I deem the simpler notation confusing.

According to the bias-variance decomposition, assuming a noise level of zero for the

sake of simplicity, the expected squared error from the previous equation decomposes into:

E[(g − yt)
2] = E[g − yt]

2 + E[(g − E[g])2] = bias2 + variance (II.26)

In general, there is a trade-off between the two components; decreasing one usually

leads to an increase of the other. This is the bias-variance trade-off.

Now assume that we have p individual estimators gi(wi,xi,t). Also, define the previous

estimator g as the equal weighted average of the individual estimator gi-s:

g(w,xt) = g(w1,w2, . . . ,wp,x1,t,x2,t, . . . ,xp,t) =

∑p

i=1 gi(wi,xi,t)

p
(II.27)

Because g is a linear combination of the gi-s, the bias variance decomposition fur-
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ther decomposes into a bias-variance-covariance decomposition (Brown, Wyatt, and Tino,

2005):

E[(g − yt)
2] = bias+

1

p
variance+

p− 1

p
covariance (II.28)

Where the bias, variance and covariance terms are the averages of the biases, vari-

ances and covariances of the individual models that g is the aggregate of:

bias =

∑p

i=1 biasi

p
=

∑p

i=1 E [gi − yt]

p

variance =

∑p

i=1 variancei

p
=

∑p

i=1 E [(gi − E [gi])
2]

p

covariance =

∑p

i=1,j=1,j ̸=i covariancei,j

p(p− 1)
=

=

∑p

i=1,j=1,i ̸=j E [(gi − E [gi]) · (gj − E [gj])]

p(p− 1)
(II.29)

Where I have omitted the dependency of the gi-s on their parameter vectors wi and

the predictors xi,t. It is quite easy to see that this bias-variance-covariance decomposition

results from the bias-variance decomposition of g using the linearity of bias and the formula

for the variance of a sum of random variables:

bias(g) = E[g − yt] = E

[∑p

i=1 gi − yt

p

]

= E

[

biasi

p

]

= bias

variance(g) = variance

(

p
∑

i=1

gi

p

)

=
1

p2
variance

(

p
∑

i=1

gi

)

=
1

p2

(

p
∑

i=1

variancei +

p
∑

i=1,j=1,i ̸=j

covariancei,j

)

=
1

p
variance+

p− 1

p
covariance (II.30)

The decomposition, similar to the ambiguity decomposition, suggests that one should

not only care about the performance of the individual models by themselves (represented

by the bias and variance terms in the decomposition), but should also care about the

relationship of the individual models to one another. In the case of the ambiguity de-

composition, the relationship of the individual forecasts is measured by their ’dispersion’

around the mean forecasts; in the bias-variance-covariance decomposition, it is captured

by their covariance.

Brown, Wyatt, and Tino (2005) make a connection between the ambiguity and bias-

variance-covariance decomposition. They show that:
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E

[

1

p

p
∑

i=1

(gi − yt)
2

]

= bias
2
+ Ω

E

[

1

p

p
∑

i=1

(gi − g)2

]

= Ω−

[

1

p
variance+

p− 1

p
covariance

]

Where the two expressions on the left are the expectation of the two terms, the mean

squared error and the ambiguity term of the ambiguity decomposition. The expression Ω

is the interaction between the two sides:

Ω = variance+
1

p

p
∑

i=1

(E[gi]− E[g])2 (II.31)

Ω is present in both the mean squared error term and the ambiguity term, so when

we substract the two terms from one another, it cancels out and we get the bias-variance-

covariance decomposition back.

The NCL minimises a the mean squared error minus the ambiguity term times λ.

Multiplying the ambiguity term by λ, then subtracting it out from the mean squared

error term and taking expectation, we have:

E

[

1

p

p
∑

i=1

(gi − yt)
2 − λ

1

p

p
∑

i=1

(gi − g)2

]

= bias
2
+ (1− λ)Ω + λ ∗

[

1

p
variance+

p− 1

p
covariance

]

(II.32)

Substituting Ω from equation II.31, we have:

E

[

1

p

p
∑

i=1

(gi − yt)
2 − λ

1

p

p
∑

i=1

(gi − g)2

]

= bias
2
+

p− λ ∗ (p− 1)

p
variance+

λ(p− 1)

p
covariance

+
1− λ

p

p
∑

i=1

(E[gi]− E[g])2 (II.33)

This equation show the relationship between the NCLloss and the bias-variance-

covariance decomposition. Not taking into account the last term, which is not present

in the bias-variance-covariance decomposition, the hyperparameter λ can be given a new

interpretation. If λ1 > lambda2, there is a greater emphasis on the covariance term and

a weaker emphasis on the variance term for λ1 than λ2. The case of λ = 1 gives back the
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bias-variance-covariance decomposition, whereas the other extreme, λ = 0 puts zero em-

phasis on the covariance term. Following this reasoning, Brown, Wyatt, and Tino (2005)

claims NCL is to be interpreted as a method that optimises the trade-off between the

accuracy of the individual models (as measured by the bias plus 1
p
variance) and their ’di-

versity’ (as measured by the average covariance of the individual models, p−1
p
covariance.

They call this trade-off ”the accuracy-diversity trade-off” and the optimisation of this

trade-off by NCL ”managing diversity”. Apart from theory, some empirical results also

suggest that NCL, when applied to neural networks, leads to lower average covariance of

the individual forecasts.

II.4.2.4 Applications of NCL: neural networks and the new uNCL

In this subsection, I describe how NCL have previously been applied, and how my own

application of the algorithm, which I call uNCL, differs from it.

The NCL learning algorithm, as described previously, did not assume anything about

the individual models gi(wi,xi,t), apart from them being parametric. Despite this fact,

previous application, the algorithm has been applied only to very specific methods. The

algorithm was developed in the late 1990s, specifically with the narrow aim of applying

it to train a diverse set of neural networks (Liu and Yao, 1999). Later applications

also remained largely concentrated in the neural network literature, see for example S.

Wang, Tang, and Yao (2009), Liu, Zhao, and Pei (2014), Liu, Yao, and Higuchi (2000),

Sheng et al. (2017)3. The algorithm has also been applied to classification problems (S.

Wang, Chen, and Yao, 2010), and lately to deep neural networks (Z. Shi et al., 2018),

(Buschjager, Pfahler, and Morik, 2020). In contrast to my study, NCL has mainly been

applied to cross-sectional, rather than time series data, with the exceptions of Waleed

et al. (2009) and Liu and Yao (1998).

My uNCL method breaks this tradition of applying NCL in a rather narrow context,

despite the fact that it is based on a theoretical result (the ambiguity decomposition) that

applies in a much wider context.

Consider the uOLS method. As described previously, this method consists of a) es-

timating univariate predictive regressions of the variable of interest with each of the

available predictors with OLS, b) generating forecasts of the variable of interest from the

univariate regressions, and then c) taking a simple average of the individual forecasts from

step b) as the final forecast.

I propose a simple modification to the uOLS method. Instead of estimating the uni-

variate regressions with OLS, I estimate them with the NCL algorithm, keeping everything

else equal. I call this proposed method uNCL.

This differs from the usual neural network based application of NCL in several respects.

3As an interesting exception, see the NCL-based version of SVM in Hu and Mao (2009)
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First, the individual models of uNCL are simple, linear models, whereas neural networks

are highly non-linear and complex. On the other hand, uNCL trains linear models. It

is conceivable that NCL was able to train a diverse set of forecasts with neural networks

because each neural network could learn different patterns on the data due to the flexible

nature of these models. uNCL trains much less flexible linear models that may not be

able to specialise well to different patterns in the dataset.

Additionally, the neural network NCL has been applied to highly non-linear simulated

and empirical datasets4. When the dataset comes from a more complex underlying model

and has substantial nonlinearities, it probably has more distinct patterns that the indi-

vidual models can ’specialise’ to with NCL. uNCL will be applied to a linear dataset in

the simulations in this paper, which might also hamper its ability to train a diverse set

of individual forecasts.

Perhaps most notably, there is a stark difference in the way the predictors are han-

dled by uNCL and previous neural networks-based applications of the NCL algorithm.

The individual neural networks that make up the ensemble in NN-based applications of

NCL always have the same architecture; the same number of nodes, activation functions,

number of hidden layers, etc5. Most importantly, all of the individual NNs have all of

the predictors as their inputs. This is in contrast to uNCL, which only gives one of the

predictor as an input to each individual model.

To illustrate the importance of this difference in inputs, consider the NCLloss of the

individual models of uNCL. The NCLloss of the individual model i from equation II.21

and the NCLgradient from equation II.23 are:

NCLloss =
T
∑

t=1

(

(yt − fi,t)
2 − λ(fi,t − fFC,t)

2
)

∂NCLloss

∂wi

=
T
∑

t=1

(

(fi,t + λ
∑

j ̸=i

(fj,t − fFC,t)

)

∂fi,t

∂wi

(II.34)

The individual models of uNCL are of the form:

fi,t = β̂0,i + β̂ixi,t (II.35)

And the combined forecast can be expressed as follows:

fFC,t =

∑p

i=1 β̂0,i

p
+

∑p

i=1 β̂ixi,t

p
(II.36)

4See the ’Friedman-data’ in Brown, Wyatt, and Tino (2005) for an example.
5The only difference between the individual networks is that their training starts from different initial

parameter values.
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The derivative at the end of the gradient is:

∂fi,t

∂β̂0,i

=
∂(β̂0,i + β̂ixi,t)

∂β̂0,i

= 1

∂fi,t

∂β̂i

=
∂(β̂0,i + β̂ixi,t)

∂β̂i

= xi,t

Substituting these expressions into the NCLloss, we get:

NCLloss =
T
∑

t=1



(yt − β̂0,i − β̂ixi,t)
2 − λ

(

β̂0,i + β̂ixi,t −

∑p

j=1 β̂0,j

p
−

∑p

j=1 β̂ixi,t

p

)2




=
T
∑

t=1



(yt − β̂0,i − β̂ixi,t)
2 − λ

(

(p− 1)(β̂0,i + β̂ixi,t)− (
∑p

j=1,j ̸=i β̂0,j + β̂jxj,t)

p

)2




And substituting back into the NCLgradient yields:

∂NCLloss

∂β̂0,i

=
T
∑

t=1

(

β̂0,i + β̂ixi,t − yt + λ

p
∑

j=1,j ̸=i

β̂0,j + β̂jxj,t −

∑p

k=1 β̂0,k + β̂kxk,t

p

)

=
T
∑

t=1

(

p− λ(p− 1)

p
(β̂0,i + β̂ixi,t) +

λ

p

p
∑

j=1,j ̸=i

β̂0,j + β̂jxj,t

)

∂NCLloss

∂β̂i

=
T
∑

t=1

(

p− λ(p− 1)

p
(β̂0,i + β̂ixi,t)− yt +

λ

p

p
∑

j=1,j ̸=i

β̂0,j + β̂jxj,t

)

xi,t (II.37)

The NCLloss equation tells us that the loss of the individual model i, which corre-

sponds to the predictor xi,t, also depends on the other predictors to some degree.

The gradient equations describe the relationship more intuitively. The gradient has

a term that depends only on the parameters that are optimised in the individual model

i, that is, β̂0,i and β̂i, and a term that depends on the parameters that are optimised

in the other individual models. The parameter λ determines the degree of emphasis put

on each of the terms; a higher value of λ means more emphasis on the parameters of

the other model. As such, while uNCL directly only optimises the parameters belonging

to a single predictor during the training of an individual model, it also takes the other

predictors into account indirectly to some degree. Because, in contrast to uOLS, uNCL

incorporates some information about all the predictors when estimating the parameters

corresponding to a single predictor, uNCL may behave similar to or most like a stage I

inverse regulariser.
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II.5 Forecasting the US equity premium

Forecasting the equity premium has been a considerably difficult task, and most sim-

ple linear regressions based on a single variable, or multivariate linear regressions based

on several variables do not outperform the historical average benchmark out-of-sample

(Welch and Goyal, 2007). The general consensus tends to be that such methods can fore-

cast the equity premium, although the forecastable component is rather small (Rapach,

2013). However, as Campbell and Thompson (2007) argue, an R2
OoS as low as 0.5% can

be significant in an economic sense.

In recent years, a number of different approaches, suitable for analyzing noisy data,

with many, potentially spurious predictors have seen widespread applications in finance.

Rapach, Strauss, and Zhou (2013) apply the LASSO to forecasting the equity premium.

Gu, Kelly, and Xiu (2020) apply a large set of machine learning tools to analyze the

time series predictability of monthly individual stock returns. Chinco, Clark-Joseph,

and Ye (2019) use the LASSO to predict individual stock returns one minute ahead.

Freyberger, Neuhierl, and Weber (2020) apply a non-parametric version of the LASSO

to analyze nonlinear relationships between numerous firm characteristics and the cross

section of stock returns. Kozak, Nagel, and Santosh (2020) apply the LASSO to forecast

the stochastic discount factor with a large set of firm characteristics. Han et al. (2020)

apply the ELASSO of Diebold and Shin (2019) to forecast cross sectional returns using

firm characteristics.

Besides the time series and cross section of equity returns, other areas of finance

and macroeconomic have also seen a large number of applications of the same or similar

techniques with considerable success. Oil markets have been a particularly active field

recently. Crude oil markets have been an active Zhang, Ma, B. Shi, et al. (2018) and

Zhang, Ma, and Wei (2019) use an iterated version of the forecast combination approach

to forecast oil prices and oil futures return volatility, respectively. Zhang and Y. Wang

(2022) apply a forecast combination and PCA hybrid to forecast oil futures market returns.

Zhang, W., and Y. Wang (2022) use a LASSO and PCA hybrid to forecast crude oil

return volatility. Zhang, Wei, Zhang, et al. (2019) compare the LASSO and forecast

combination in forecasting oil market volatility. Apart from oil market, Elliott, Gargano,

and Timmermann (2015) and Huang et al. (2022) apply CSR and a modified PCA-based

technique on macroeconomic data, respectively.

As the previous list shows, probably the most popular method in finance has been

the LASSO and its variants recently (Rapach and Zhou, 2020), (Elliott, Gargano, and

Timmermann, 2013), (Gu, Kelly, and Xiu, 2020), (Freyberger, Neuhierl, and Weber,

2020), (Kozak, Nagel, and Santosh, 2020). The LASSO is usually given all of a large

set of potential predictors as inputs, and is thus a penalised version of the ’kitchen sink’

model, which is simply a multivariate linear regression that uses all of the predictors.
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However, I note that the LASSO can be applied in other ways. For example, Rapach

and Zhou (2020) estimates univariate regressions with each predictor, and then uses the

LASSO the select a subset of the forecasts generated by the univariate regression to be

aggregated by equal weighting. They find that this application of the LASSO is actually

superior to directly using the LASSO on all predictors as penalised version of the ’kitchen

sink’ in forecasting the US equity premium.

I believe that the equity premium, and in general the finance literature has given

relatively too much attention to the LASSO as used to penalise the kitchen sink. The

popularity of the method is understandable, because it results in ’sparse’ models with only

a handful of predictors with non-zero coefficients, which lends itself to easy interpretation6.

However, techniques based on the uOLS, which I call IR-s, can achieve superior forecasting

performance.

I note that another approach to improve forecasts of the equity premium has been to

impose restrictions of the forecasts. Campbell and Thompson (2007) restricts the signs

of the coefficients in univariate regressions based on theoretical considerations, and also

restricts the forecasts to be positive. They find that the forecasts outperform the historical

average benchmark after the restrictions are imposed, although they do not outperform

without the restrictions (Welch and Goyal, 2007). Other papers build on this idea and

develop more advanced restrictions. Pettenuzzo, Timmermann, and Valkanov (2014) use

the nonnegativity restriction to alter the posterior distribution of the parameters. Zhang,

Wei, Ma, et al. (2019), Dai et al. (2020) and Li and Tsiakas (2017), among many others,

apply similar restrictions. The general finding of the literature is that imposing some

theoretically motivated restrictions tends to improve the performance of most forecasts.

An important aspect of the predictable component of the US equity premium is that

predictability is clustered in short periods with high predictability and longer periods

of weak or no predictability (Farmer, Schmidt, and Timmermann, 2022), (Baltas and

Karyampas, 2018), (Haase and Neuenkirch, 2022). Most often, the periods of high pre-

dictability correspond with recessions, and the periods of low predictability with expan-

sions, and predictability is thought to be connected to the predictability of the business

cycle (Rapach, Strauss, and Zhou, 2010). As such, it is usual practice to also evaluate

the forecasting models separately in expansive and recessive periods of the business cycle,

and to examine the time-dependence of the performance of the forecasting model. The

rolling mean squared error plot, which plots the mean squared error of the forecasting

model up to the time on the x axis, is a commonly used graphical tool to illustrate the

latter (Campbell and Thompson, 2007).

6I note that this observed sparsity actually may lend itself to misinterpretation, as Giannone, Lenza,
and Primiceri (2021) show, the set of predictors with non-zero coefficients is often unstable with the
LASSO
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This section presents the simulation study that I carried out to answer my research ques-

tions. I aim to a) provide a large scale comparison of the stage I and stage II inverse

regularisation methods from the previous section, b) show that the uNCL works as a

stage I inverse regulariser, and to c) show that stage I inverse regularisers tend to out-

perform both stage II inverse regularisers and normal regularisers such as the LASSO or

ridge.

The following section is structured as follows. First, I define the data generating

process and the methods I compare. Then, I present the MSEs of the methods with fixed

parameter values. This is followed by robustness check to optimising the hyperparameters

from the data. Having laid out the main results, I offer an explanation by estimating the

bias-variance and bias-variance-covariance decomposition of each method.

III.1 The data generating process

I assume that there are 8 predictors xi,t of the variable of interest, yt, where i = 1, 2, . . . , 8

denotes the index of the predictor and t = 1, 2, . . . , T denotes ’time’. I assume a constant

time series length of T = 300 for all of the simulations, which closely mimics the length

of the empirical time series from the application1.

Following the approach of Elliott, Gargano, and Timmermann (2013), I generate the

xi,t-s from a multivariate normal distribution with zero mean µ = (0, 0, . . . , 0) and covari-

ance matrix Σ equal to

ρ =



















1 ρ ρ ρ . . . ρ

ρ 1 ρ ρ . . . ρ

ρ ρ 1 ρ . . . ρ
...

...
...

...
. . .

...

ρ ρ ρ ρ . . . 1



















(III.1)

That is, the variances of the xi-s are normalized to one and I assume a constant

1By fixing the length of the time series, I follow Elliott, Gargano, and Timmermann (2013) in not
considering the effect the length of the time series has on the methods.
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covariance ρ. In my simulations, I consider ρ = 0, 0.4, 0.8 to study the performance of the

methods in low (no), medium and high covariance structures.

The variable of interest yt+1 is a linear function of the xi,t-s plus a random Gaussian

noise:

yt+1 = c

8
∑

i=1

xi,t + et (III.2)

Where et follows the standard normal distribution with Corr(et, xi,t) = 0, i = 1, 2, . . . , 8

and c is a constant that determines the signal-to-noise ratio2. If c is greater (smaller), a

relatively greater (smaller) part of the variables of interest yt+1 are explained by the xi,t-s,

that is, there is a stronger signal. I choose the different values of c such that they corre-

spond to R2-s of 1%, 2.5%, 5%, 10% and 25%3. I note that this specification means that

all of the predictors xi,t have the same coefficient of c in the data generating process. As

such, my simulation does not deal with either predictors with different predictive power

or spurious predictors.

I generate 100 time series for each of the possible combination of the parameters (the

noise level R2 = 1%, 2.5%, 5%, 10%, 25% and the predictor correlation ρ = 0, 0.4, 0.8).

I estimate several different models that all use the predictors xi,t to forecast yt+1.

Following the approach used by Welch and Goyal (2007), Rapach, Strauss, and Zhou

(2010), Rapach (2013) and Elliott, Gargano, and Timmermann (2013) among many others

in applications to forecasting the US equity premium, I evaluate the methods with an

expanding window. More specifically, I first divide the sample of 300 observations into

an initial estimation sample of the first 100 observations, which is only used for model

estimation, and an evaluation sample of the last 200 observations. The first observation

in the evaluation sample, y102 is forecast by fitting each method on the initial estimation

sample of the first 100 observations (yt+1,xt, t = 1, 2, . . . , 100, and then using this fitted

models to generate the forecast of y102. The next observation y103 in the evaluation sample

is forecast by now fitting the models on the expanded dataset yt+1,xt, t = 1, 2, . . . , 101,

and using these fitted models to generate the forecasts of y103. I proceed in these manner

by iteratively reestimateing each model on an expanded data to forecast the proceeding

yt-s.

Importantly, this expanding window estimation and evaluation scheme only uses in-

formation available at time t to forecast the variable yt+1. In this sense, it is akin to a

2This approach is similar to that of Elliott, Gargano, and Timmermann (2013). The difference is
that they determine the signal-to-noise ratio by setting the standard error of the residual et, and keep
the coefficients of the independent variables fixed. In contrast, I keep the standard error of the residuals
constant at 1 and set the coefficients of the predictors to get the desired R2.

3Most papers report an R2
OOS measure below 5% for the models they consider; see Rapach (2013).

As this is a measure of out-of-sample forecasting performance, the actual R2 of the underlying data
generating process should be somewhat, but not excessively, higher. This is covered by the range of R2

values I consider in this study.
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real-time forecasting, and as such it is adequate way to compare forecasting performance.

I calculate the squared error (ŷi,t − yt)
2 of the forecasts yi,t, t = 102, 103, . . . , 301 for

each method i. Then, the squared errors are averaged for each method to get the mean

squared error for the given method for the given time series:

MSEi,j =
1

200

300
∑

t=101

(ŷi,t+1 − yt+1)
2 (III.3)

Where i is the index of the method and j is the index of the time series. I carry

out this process for each of the 100 time series while keeping the parameters of the time

series, the R2 and the predictor cross-correlation ρ constant. Then, I take an average of

the MSE of each method over the 100 time series to get the mean squared error of each

method:

MSEi =
1

100

100
∑

j=1

MSEi,j (III.4)

This MSEi value is normalised by dividing it with the average MSE of the uOLS

over the 100 time series:

MSEi,normalised

MSEuOLS

=

∑100
j=1

∑300
t=101(ŷi,j,t+1 − yj,t+1)

2

∑300
t=101(ŷuOLS,j,t+1 − yj,t+1)2

(III.5)

Where MSEi,normalised is the normalised MSE of method i, the performance measure

I use, MSEuOLS is the mean squared error of the uOLS method averaged over the 100

individual time series, j is the index of the time series, and ŷi,j,t+1 of the variable of

interest yj,t+1 from method i for the time series j4. The individual forecasts, as described

previously, come from an expanding window estimation scheme that simulates real-time

out-of-sample forecasting and updates the dataset used to estimate the model each period

to include all of the available past information.

The reasoning behind this normalisation is that this makes it easier to interpret the

resulting values. The special cases of some models (namely, uNCL with λ = 0 and CSR

with k = 1) have a MSE of 1 after normalisation, and the MSEs of the other methods

can be interpreted as having a relatively higher or lower MSE than the uOLS.

I use MSEi,normalised to compare the performance of the models. For the models that

have hyperparameters, I first estimate the normalised mean squared errors for a grid of

hyperparameter values, to compare how the methods perform with different values of the

hyperparameters. After the simulation, I have a normalised MSE value for each of the

methods as a function of the predictor cross-correlation ρ, the DGP R2 and the value of

the hyperparameter of the method.

4Note that both the numerator and denominator should include a division by 1

200
and 1

100
to average

over the data points and the time series, but they cancel each other out.
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Later, I evaluate each of the methods with parameter values that are not fixed, but

validated from previous out-of-sample performance from the data. To do this, I also need

an initial ’hyperparameter validation’ window, which I set at length 30. This means that

the first 30 out-of-sample forecasts, y102, y103, . . . , y131, which I generate as previously,

are not used in the calculated of the MSEi,normalised of the validation data. Instead,

the MSEi,normalised is calculated only using the validated forecasts of the last 170 data

points5. I use and expanding window to validate the hyperparameters as well. This

means that I use the first 30 out-of-sample forecasts ŷ102,α, ŷ103,α, . . . , ŷ131,α to validate

the hyperparameter α for the first observation, y132 in the validated evaluation sample.

Subsequently, I always expand the validation sample by the most recent out-of-sample

forecasts with each fixed hyperparameter value to validate the hyperparameters for the

subsequent yt values. I always choose the validated forecast to be the forecast generated by

the hyperparameter value α that has the lowest mean squared error on the corresponding

validation window.

Now, I provide a brief description of each of the methods I compare.

III.2 The methods

Kitchen sink (KS)

The kitchen sink (KS) model is a linear regression of the yt+1-s on all of the lagged

predictors, the xi,t-s, and a constant:

yt+1 = β̂0 +
8
∑

i=1

β̂ixi,t (III.6)

The parameters β̂j, j = 0, 2, . . . , 8 are estimated with OLS, that is, to minimising the

mean squared error over the estimation sample using an analytic solution6.

Stage one inverse regularisers

uNCL

The uNCL method consists of estimating a univariate models with a constant with the

uNCL algorithm as described in the previous section. The univariate models of uNCL are

of the form:

5Obviously, this means that some of the numbers in the numerators from the previous equations of
the MSEi and MSEi,normalised change in accordance with the change in the evaluation sample size from
200 to 170. I believe these changes are trivial, thus I do not describe them in more detail.

6Computationally, I use the lm function from the programming language R to estimate the model.
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yt+1 = β̂0,i + β̂ixi,t (III.7)

And the parameters β̂0,i and β̂i (i = 1, 2, . . . , 8) are estimated by minimising the NCL

loss of each univariate model:

NCLloss =
m
∑

t=1

(

(yt+1 − β̂0,i − β̂ixi,t)
2 − λ(β̂0,i + β̂ixi,t − fFC,t+1)

2
)

(III.8)

Where fFC,t+1 =
1
8

∑8
i=1 β̂0,i + β̂ixi,t, the average of the individual forecasts and m is

the indice of the last period used in the estimation. The NCLloss is minimised parallel

by gradient descent, as described in more detail in the previous section. The gradient

descent stops either after a maximal number of iterations itermax is reached, or if the

MSE over the estimation sample does not improve by at least a predefined threshold

between two consequent iterations. Additionally, the algorithm does not stop before a

number of iterations itermin is reached. A fourth parameter of the gradient descent is the

learning rate, which I set to 0.5. I set itermax := 500, itermin := 10, threshold := 10−47.

uNCL has a hyperparameter λ, which falls between 0 and 1. A higher value of λ

corresponds to estimating the individual models by putting more emphasis on the am-

biguity term, while a lower value corresponds to putting more emphasis on the squared

error term, thus estimating individual models that are accurate by themselves. I estimate

uNCL with λ = 0, 0.1, 0.2, . . . , 1. For λ, the NCLloss is equal to the MSEloss, that is,

there is no ’weight’ on the ambiguity term and uNCL is equal to uOLS. As such, I do not

use the NCL algorithm for λ = 0, but instead use the R’s ’lm’ function, which is based

on the analytic solution to minimising the mean squared error.

Complete Subset Regression (CSR)

The complete subset regression of Elliott, Gargano, and Timmermann (2013) consists of

estimating individual models by regressing the yt+1-s all possible subsets of the original

8 predictors with k elements (k is fixed and k ≤ 8) and a constant, and then taking the

simple average of the forecasts of the individual models. I estimate the individual models

with R’s ’lm’ function and consider all values of k = 1, 2, . . . , 8. Note that CSR with

k = 1 is equivalent to uNCL with λ = 0 and uOLS, and CSR with k = 8 is equivalent ot

the KS model.

7Preliminary simulations indicate that the algorithm converges with this choice of values for the
parameters
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Stage two inverse regularisers

ELASSO and ERidge

The ELASSO and ERidge forecasts are weighted combinations of the univariate forecasts

from the univariate regressions of regressing the yt+1 on a single xi,t and a constant, plus

an constant offsetting term. As such, the ELASSO is a generalisation of the uOLS (or,

equivalently, of uNCL with λ = 0) by allowing for unequal combination weights.

The combination weights and offsetting terms are chosen by minimising the penalised

squared error:

MSEpenalised =
m
∑

t=1

(

yt+1 − α̂−

8
∑

i=1

βifi,t

)2

+ λ

8
∑

i=1

∣

∣

∣

∣

βi −
1

8

∣

∣

∣

∣

s
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Where fi,t is the forecast from the individual model i at time t, α̂ is the offsetting

parameter, βi is the combination weight corresponding to individual model i and λ is

a hyperparameter. If s = 1, we get the ELASSO, and if s = 2, we get ERidge. Both

models are reformulated such that they can be estimated by the normal LASSO and ridge

regressions as shown in the previous section8.

The grid for λ is chosen for each estimation period the following way. First, a maximal

value λmax of λ is calculated. Then, the lambda grid is chosen such that the smallest

lambda is zero, the highest lambda is λmax and the fourth power of the λ values form an

equidistant partition of the interval [0, λ4
max] with nλ number of elements. I use nλ = 40.

For ELASSO, λmax is the lowest value of λ for which the combination weights are all

equal (or, for the corresponding LASSO model, this is the lowest value of λ for which all

of the coefficients are zero). For ERidge, λmax is equal to the lowest value of λ for which

the combination weights from the corresponding E-elastic net regression with α = 10−3

are all equal (or, equivalently, λmax is equal to the lowest value of λ for which all of the

coefficients in the corresponding elastic net regression with α = 10−3 are equal to zero)9.

This way of choosing a grid for λ has several advantages to simply supplying a λ

sequence to the estimation. First, there isn’t really a definite method of choosing a

lambda sequence. As such, it is usually hard to determine whether a λ sequence ’makes

sense’. The method I use has the advantage that it gives back the two extreme cases, the

equal combination weights case (if λ = λmax) and the weights from the Bates-Granger

regression (if λ = 0. Note that λmax and consequently the λ sequence is recalculated when

the window is expanded, so the λ sequence is generally not the same for the windows10.

8Computationally, these reduced LASSO and ridge regressions are estimated with R’s ’glmnet’ function
from the package bearing the same name

9This is motivated by the fact that for ERidge (or, equivalently, E-elastic net with α = 0) the
combination weights are never exactly equal to zero, so max lambda is chosen from an E-elastic net
regression which is almost, but not exactly equal to the ridge regression.

10This way of choosing the λ sequence is also a slight modification of the method suggested in Frey-
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Also note that the univariate forecasts fi,t are needed to estimate the ELASSO and

ERidge. It is important that these fi,t values are ’out-of-sample’, that is, they do not use

any information not available at time t − 1 to get fi,t, the estimate of yt. This means

that the univariate forecasts that I estimate ERidge or ELASSO on have to come from a

series of univariate regressions with rolling or expanding windows. To keep in line with

the other methods, I use and expanding window, with the initial estimation period equal

to the first 70 data points. The first value that I forecast with the ELASSO and ERidge

is y102, so I use the ’out-of-sample’ univariate forecasts of fi,t, t = 72, 73, . . . , 101 initially.

Later, I also expand the window of univariate forecasts that I estimate the ELASSO and

ERidge on11.

Regularisers

LASSO and Ridge

The LASSO and ridge regressions estimate a linear regression of the same form as the

kitchen sink:

yt+1 = β̂0 +
8
∑

i=1

β̂ixi,t (III.10)

But, the parameters β̂i, i = 0, 2, . . . , 8 are estimated by minimising the penalised mean

squared error:

MSEpenalised =
m
∑

t=1

(

yt − α̂− β̂0 −
8
∑

i=1

β̂i

)2

+ λ

8
∑

i=1

∣

∣

∣
β̂i
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∣

∣

s
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Where s = 1 is the LASSO and s = 2 is the ridge regression. The hyperparameter λ

determines the degree of shrinkage; a higher value of λ corresponds to a stronger shrinkage.

The extreme case of λ → ∞ means a model with only a constant and λ = 0 is equivalent

to estimating the model with OLS, so the result is the kitchen sink model.

I fit both the LASSO and ridge with R’s glmnet function. The supplied λ sequence is

chosen in a similar fashion to the ELASSO and ERidge methods. The only difference is

that the λ values with indices 1, 2, . . . , (nλ−1) are chosen so that their natural logarithms

are equidistant on [ln(10−4, ln(λmax)]
12. I use nλ = 49 and add λ = 0 at the end of the

sequence with index 50 to make sure that I get the KS model as a special case of the

LASSO and ridge. I note again that the λ sequence in recalculated each time the window

berger, Neuhierl, and Weber (2020). For more details, see Appendix A.1.1
11This means, for example, that I estimate the ELASSO and ERidge on fi,t, t = 72, 73, . . . , i to forecast

yi+1, with i > 102.
12Note that this is the way R’s glmnet package generates the λ sequence by default. It is also recom-

mended by Friedman, Hastie, and Tibshirani (2010)
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is expanded. As such, I do not show results for exact λ values. Instead, I fix the indice

that I use for the λ value in each recalculation, and calculate results for these fixed indices

on the λ sequence.

III.2.1 Simulation results for fixed hyperparameter values

Figure III.1 plots the normed MSEs of the uNCL, CSR, ELASSO, ERidge and KS meth-

ods. The KS method is included to emphasise that it is a special case of CSR, but not of

uNCL. The values on the x axis mean the values of the λ hyperparameter for the uNCL.

For CSR, k start at 1 on the left and increases to 8 on the right. The ELASSO and

ERidge both have the case of λmax on the left and their λ decreases to the right. This

difference of plotting uNCL and CSR with increasing hyperparameter values and plotting

the ELASSO and ERidge with decreasing parameter values is meant to emphasise the

role the parameters play. For the uNCL and CSR, a higher hyperparameter means lower

shrinkage. In contrast, it is the opposite for the ELASSO and ERidge. As described pre-

viously, the actual normed MSEs are only estimated for a finite discrete grid of values13;

the lines are an linear interpolation between normed MSEs that are actually estimated in

the sample. Also, note that the actually estimated MSEs are placed such that they have

an equal distance to their neighbours; therefore, although the ELASSO and ERidge do

not have equidistant hyperparameter values, they are plotted at equal distances.

There are several interesting observations to be made. First, we see that all of the

methods can improve on the uOLS benchmark (have a normed MSE lower than 1) if the

DGP is not very noisy (R2-s are not very small) and the predictors are not very highly

correlated (ρ is small). This is not very surprising; all of these methods, as will be shortly

demonstrated, can be labeled inverse regularisers in the sense that they decrease the level

of shrinkage or regularisation inherent in the uOLS. Because a lower level of regularisation

is usually sufficient if the data is not very noisy and predictors are not highly correlated,

the observed result follows. Also note that US equity premium and its predictors are

probably closest to the mediocre predictor correlation ρ = 0.4 and mediocre signal-to-

noise ratio around 5%(Rapach, 2013). The plot shows that both CSR and the uNCL have

a normalised MSE below 1 in this case, so I expect them to outperform the uOLS in the

application in the next section.

Second, an interesting observation is that the ELASSO and especially the ERidge

hardly ever outperform the uOLS (assuming λ ̸= λmax for these models), while both the

uNCL and CSR often do. This finding shows that changes to the ’estimation phase’ of the

uOLS (stage I inverse regularisers) tend to perform better than changes to the ’aggregation

phase’ (stage II inverse regularisers) do, at least when the hyperparameters are optimally

13The ELASSO and ERidge also do not have a fixed hyperparameter grid, but it somewhat changes
each time the window is expanded.
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Figure III.1: The normed MSE of the uNCL, CSR, ELASSO, ERidge and KS models with fixed
hyperparameters. The y axis shows the normed MSE. The x axis shows the λ value of the uNCL. For
CSR, k increases to the right. For the ELASSO and ERidge, λ decreases to the right. Note that the
actual normed MSEs are calculated only at a set of discrete values; I linearly interpolate these values
to get the lines presented on the plot. The dashed black line at 1 emphasises the comparison to the
performance of the uOLS.
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chosen. Furthermore, the fact that the stage II inverse regularisers hardly ever outperform

the uOLS, and even when they do, they are dominated by the uNCL and CSR suggest

that stage II inverse regularisation is not a good approach to optimise the shrinkage of

the uOLS. I note that this finding bears a close relationship to the previously mentioned

’forecast combination puzzle’, a widespread and many times corroborated finding the the

forecasting literature that an equal weighted combination of forecasts usually performs

better than more advanced techniques that estimate the combination weights from the

data.

Figure III.2 presents the normed MSEs of the uNCL, CSR, LASSO and ridge regression

methods. The uNCL and CSR is included to make a comparison with figure III.1 easier.

The x axis once again shows the λ values for uNCL, and CSR’s k increases to the right.

The LASSO and ridge have λ = λmax on the left, which is equivalent to the constant

model, and λ = 0 on the right, which is equivalent to the kitchen sink model.

Once again, both the LASSO and ridge can mostly outperform the uOLS only when

the data generating process is not very noisy and the predictors are not very highly

correlated. This is due to the fact that the LASSO and ridge can have different degrees

of shrinkage with different values of their hyperparameters. If the DGP is not very noise

and predictors are not very highly correlated, a lower level of shrinkage is optimal than

the shrinkage of the uOLS.

Another interesting observation is that the uNCL and CSR methods dominate the

LASSO and ridge if the hyperparameters of all models are chosen optimally. This finding

is the one of the main contributions of the paper; with noisy datasets, it is better to inverse

regularise the uOLS than to use traditional regularisers that ’start’ from the kitchen sink,

like the LASSO or ridge does.

Notably, both the uNCL and CSR have very similar MSE values if their hyperparame-

ters are chosen optimally. I also want to highlight that while the degree of outperformance

- in some cases roughly only 0.5% - seems small at first sight, even this performance

improvement can be substantial in practical applications. For example, Campbell and

Thompson (2007) note that an R2 gain of around 0.5% is already significant in an eco-

nomic sense when talking about equity premium predictability.

III.2.2 Hyperparameter optimisation

In the last subsection, I compared the performance of the models with fixed hyperpa-

rameters. However, in practical applications, the optimal value of the hyperparameter

is unknown and has to be estimated from the data, usually be previous performance

or some information criterion. This introduces and additional source of error, namely

the increased forecasting error that results from selecting a suboptimal hyperparameter

value. The magnitude of this additional error my vary between the different models, thus
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Figure III.2: The normed MSE of the uNCL, CSR, LASSO, ridge and KS models with fixed hyperpa-
rameters. The y axis shows the normed MSE. The x axis shows the λ value of the uNCL. For CSR, k
increases to the right. For the LASSO and ridge, λ decreases to the right. Note that the actual normed
MSEs are calculated only at a set of discrete values; I linearly interpolate these values to get the lines
presented on the plot. The dashed black line at 1 emphasises the comparison to the performance of the
uOLS.
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Normalised MSEs with Validation
DGP params Models R2 = 1% R2 = 2.5% R2 = 5% R2 = 10% R2 = 25%

uNCL 99.96 100.18 99.16 95.67 84.34
CSR 100.41 99.58 99.97 96.69 84.63

ELASSO 100.76 101.58 101.73 101.02 98.33
ρ = 0 ERidge 100.70 101.54 101.46 101.20 100.50

LASSO 100.81 100.13 101.17 98.13 85.06
Ridge 100.45 99.63 99.93 96.53 84.45
uNCL 100.22 100.44 99.75 99.19 93.53
CSR 100.18 100.41 99.90 99.82 93.33

ρ = 0.4 ELASSO 101.02 101.46 101.36 101.32 97.13
ERidge 100.88 101.37 101.02 101.52 101.60
LASSO 100.61 101.19 101.03 101.34 94.91
Ridge 100.35 100.61 100.06 99.94 93.41
uNCL 100.31 100.85 100.17 100.89 99.76
CSR 100.00 100.07 99.81 101.28 99.80

ρ = 0.8 ELASSO 101.06 101.75 100.88 102.24 100.89
ERidge 100.92 101.52 100.64 102.08 100.82
LASSO 100.28 100.57 100.62 102.56 101.18
Ridge 100.08 100.25 100.15 101.79 100.09

Table III.3: Normalised MSEs with Validation. The table present the normalised MSE of each model
with validated hyperparameters for each (R2, ρ) pair. The R2 of the DGP is on the top, while the
predictor correlation ρ is on the right. A normalised MSE value above (below) 100 indicates that the
method beats (is beaten by) uOLS when the hyperparameters are validated.

a robustness analysis of the previous results is necessary.

Table III.3 summarizes the 100 ∗ MSEi,normalised
14 values for each method i with

validated hyperparameters results for each (ρ,R2) pair and each model. The red bold

values indicate the best performing model on the given (ρ,R2) pair.

The table shows that the previous findings with the optimal hyperparameters stay

the same with hyperparameter values optimised from the data. First, the models gen-

erally perform better with higher R2-s and lower ρ-s. Second, the ERidge and ELASSO

hardly ever outperform the uOLS, meaning that stage II inverse regularisation is not very

competitive. Third, for each (ρ,R2) pair, uNCL and CSR show similar performance and

outperform the LASSO and ridge. This indicates that inverse regularising the uOLS with

stage I inverse regularisers is better than regularising the kitchen sink model directly with

the LASSO or ridge, even if the optimal values of the hyperparameters are not known a

priori and have to be estimated from past performance.

Table III.5 shows the differences between the normalised MSE of each method with

its hyperparameter value that is optimal when fixed on the whole evaluation sample and

the normalised MSE that I have presented in table III.3 for each (R2, ρ) parameter pairs.

14The values are multiplied by 100 so that the results are easy to interpret as a percentage of the MSE
of the uOLS.
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Figure III.4: Graphical illustration of the difference between the ’optimal’ and validated normalised
MSEs. The illustration plots the normalised MSE curve of the uNCL for a fixed DGP (R2, ρ) (blue line)
as a function of the hyperparameter λ. The red triangle denotes the optimal value of the λ hyperparam-
eter when fixed, along with the corresponding normalised MSE value. The pruple square denotes the
normalised MSE of the validated model, and is placed at the same coordinate on the x axis to provide an
easy comparison with the normalised MSE with optimal λ. The length of the black line is the measure
shown in III.5

Figure III.4 gives a graphical illustration for this metric for the R2 = 5% and ρ = 0.4

DGP. The blue line is the (linear interpolation of) the uNCL normalised MSEs with

fixed λ values over the evaluation sample. The red triangle shows the ’optimal’ lambda

and the corresponding normalised MSE, when the hyperparameter is once again fixed

on the whole evaluation sample. The purple square illustrates the normalised MSE with

hyperparameter validation each time the window is expanded. It is placed above the

’optimal’ normalised MSE for convenience. The length of the black line between the

validated and ’optimal’ normalised MSEs is the metric I present in table III.5.

Note that the ’optimal’ value, as defined above, is only optimal in the sense that

it has better performance when fixed on the whole evaluation sample than any other

the performance of any other hyperparameter value when set on the whole estimation

sample. The actually optimal value of the hyperparameter is not a constant on the whole

sample, but should be lower near the end of the evaluation period, because the models

are fitted on more data points by then. The fact that the ’optimal’ model is optimal

only in this narrow sense means that negative values (which indicate that the validated

model performs better than the ’optimal’) can appear (and do appear) in the table. This

happens in the few cases when validation the hyperparameter each time the window is

expanded can successfully capture the decreasing need for shrinkage at the later period

of the evaluation sample.

Comparing the two best performing models, the uNCL and the CSR, we see that the

performance of uNCL (CSR) usually deteriorates to a smaller degree than the performance

of CSR (uNCL), if the predictor correlation ρ is low/high. In line with these results, table

37



Simulation Study 3. Error decompositions

Difference of ’optimal’ and validated normalised MSEs
DGP params Models R2 = 1% R2 = 2.5% R2 = 5% R2 = 10% R2 = 25%

uNCL -0.04 0.61 0.70 0.31 1.00
CSR 0.40 0.01 1.50 1.67 1.46

ELASSO -0.08 0.73 0.95 0.12 1.57
ρ = 0 ERidge -0.19 0.67 0.65 0.08 1.63

LASSO 0.67 0.05 1.81 2.23 1.52
Ridge 0.44 0.04 1.60 1.58 1.31
uNCL 0.28 0.53 0.46 0.92 0.36
CSR 0.20 0.45 0.46 1.37 -0.17

ρ = 0.4 ELASSO 0.38 0.53 0.56 0.89 0.62
ERidge 0.20 0.43 0.20 0.61 0.50
LASSO 0.33 0.80 0.74 1.75 0.05
Ridge 0.32 0.60 0.58 1.39 -0.15
uNCL 0.31 0.86 0.19 1.07 0.38
CSR 0.00 0.06 -0.20 1.40 0.27

ρ = 0.8 ELASSO 0.37 0.79 0.11 1.19 0.17
ERidge 0.21 0.55 -0.15 1.02 -0.01
LASSO 0.16 0.35 0.18 2.03 0.53
Ridge 0.12 0.23 0.12 1.85 0.46

Table III.5: Differences between the normalised MSE of each method with its hyperparameter value that
is optimal when fixed on the whole evaluation sample and the normalised MSE when the hyperparameter is
validated each time the window is expanded. A smaller value indicates that hyperparameter optimisation
is less detrimental to the performance of the model.

III.3 indicated that uNCL (CSR) has a lower normalised MSE than CSR (uNCL), if the

predictor correlation ρ is low (high).

Additionally, I note that the performance for the LASSO and ridge regressions usually

deteriorates to a higher degree than that of the uNCL and CSR for the lower predictor

correlation and/or higher R2 parameter pairs, that is, when weaker shrinkage is beneficial

and the uOLS can be improved upon. As such, the results indicate that uNCL and

CSR perform better at those DGPs because of a lower risk of hyperparameter estimation

error. This decreased sensitivity to validation error is a significant advantage in practical

applications.

It is worth mentioning that the ELASSO and more prominently ERidge have a small

reduction in their performance due to hyperparameter optimisation in many cases. This

is most likely due to the fact that these methods have roughly the same performance for

a wide range of the hyperparameter sequence, which could be seen prior in figure III.1.

III.3 Error decompositions

In the theoretic review as well as previously in the evaluation of the simulation results, I

noted that the compared methods all optimise the bias-variance trade-off by setting the
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value of a hyperparameter. This is a well-known property of the LASSO (Tibshirani,

1996), Ridge (Hoerl and Kennard, 1970), CSR methods (Elliott, Gargano, and Timmer-

mann, 2013), but has not been demonstrated in the case of my novel method, the uNCL.

The main goal of this subsection is to show that the uNCL indeed optimises the bias-

variance trade-off, and that it does that quite effectively. This is shown by the estimation

and comparison of the bias-variance decomposition of the squared error of each method

for each hyperparameter value and DGP. Additionally, the subsection also estimates the

bias-variance-covariance decomposition of the uNCL and CSR methods. The decompo-

sition of the squared error of the uNCL is shows that the NCL algorithm does not lead

to an effective reduction of the covariance component in this case, which is in contrast

to previous applications of the NCL algorithm in machine learning in the training of

ensembles of neural networks (Brown, Wyatt, and Tino, 2005).

Additionally, most empirical applications that compare the different methods only

show the performance of the considered methods, but do not aim to give a comprehensive

explanation of the underlying reasons for the results, or why certain methods outperform

the others. In this section, I use the estimated bias-variance decomposition of the methods

to measure the efficiency of each method in reducing the bias. This ’efficiency’ is measured

as the corresponding increase in variance; a low increase in variance indicates that the

method is efficient in reducing the bias. I show that the superior performance of the

uNCL stems from its ability to decrease the bias of the uNCL at a lower cost than the

other methods.

III.3.1 Bias-variance trade-off estimation

To estimate the bias-variance decomposition of each method, I carry out an additional

simulation. The data is simulated with a slight modification. Previously, the 100 simu-

lated time series all were sampled from the underlying distribution. However, this is not

adequate to the estimation of the variance component of the squared error. To see why,

consider the variance component:

V ari,xt
= E

[

(fi(xt)− E[fi(xt)
2]
]

(III.12)

Where f(xt is the fitted value from method i at the predictor vector xt. This could

be estimated from the data with the following formula:

ˆV ari,xt
=

1

n

n
∑

k=1

(

fi(xt)−

∑n

j=1 fi(xt)

n

)2

(III.13)

Where
∑n

j=1 fi(xt)

n
is the average of the fitted values at point xt, and n is the number

of points used in the estimation.

39



Simulation Study 3. Error decompositions

The problem with the previous method of generating the data is that the average of

the fitted values at point xt cannot be estimated, because there is only one fitted value for

each xt. Thus, I generate the DGP in a different way. I first generate 4 xt, t = 1, 2, . . . , 300

sequences for the predictors, instead of generating 100 different sequence as previously.

Then, I generate 100 different sequences of the error terms ϵt, t = 1, 2, . . . , 300 and

generate the yt+1, t = 1, 2, . . . , 300 sequences by adding 25 of these 100 error sequences

to each of the 4 xt sequences15. This ensures that I have 100 time series with different

yt+1 sequences, but they have the same expected value for each 25-element batches. Using

the 25 time series from a given batch, I can estimate the variance from the data by the

previous formula:

ˆV ari,xt
=

1

25

25
∑

l=1

(

fi,l(xt)−

∑25
j=1 fi,j(xt)

25

)2

(III.14)

Where t is a fixed value, and thus the predictors xt are the same. The fact that I

resampled the residual errors ϵt in the DGP means that the fitted values fi,l(xt) will be

different, but their expectation can be estimated by the within-batch-average
∑n

j=1 fi,j(xt)

25
.

Taking an average of ˆV ari,xt
over the the time gives an estimate of the within-batch-

average variance:

ˆV ari,j =
101

300

300
∑

t=101

ˆV ari,xt
(III.15)

Where j = 1, 2, 3, 4 indexes the batch. Taking an average over the 4 batches gives the

final estimate of the variance component of the model.

The squared bias is estimated on the same ’batched’ data. The estimate of the squared

bias at point xt from a given batch is:

ˆBias
2

i,xt
=

1

25

25
∑

l=1

[fi,l(xt)− E[yt+1]]
2 (III.16)

=
1

25

25
∑

l=1

[

fi,l(xt)−
8
∑

k=1

βkxk,t

]2

(III.17)

Where I use the definition of yt+1 =
∑8

k=1 βkxk,t + et and E[e] = 0 to get the result.

This squared bias term is averaged over the t = 101, 102, . . . , 300 and the batches

j = 1, 2, 3, 4 to get the estimate of the bias of method i:

ˆBiasi =
1

4 ∗ 25 ∗ 200

4
∑

j=1

25
∑

l=1

300
∑

t=101

[

fi,l,j(xt)−
8
∑

k=1

βkxk,t

]2

(III.18)

15Naturally, I use each ϵt sequence only once.
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Where fi,l,j is the forecast from model i on element l of batch j.

I estimate both the squared bias and the variance component for each of the methods

and for each value of the hyperparameters and DGP parameters (R2, ρ).

III.3.2 Bias-variance trade-off results

Figure III.6 plots the estimated bias-variance decomposition of the uNCL for each fixed

value of the hyperparameter (x axis), and each DGP parameter pair (R2, ρ).16 The plot

proves that the uNCL optimises the bias-variance trade-off for most parameter pairs

(R2, ρ) by setting the value of the λ hyperparameter. A lower λ value, which is closer (or,

with λ = 0, equivalent) to the uOLS usually has a higher squared bias but small variance,

whereas uNCL with a high value of has a small squared bias with increased variance.

The plots also show that the uNCL can reduce the squared bias to essentially zero for

most of the DGP parameters, albeit at a relatively low cost in variance. Table III.7 show

the estimated variance of the uNCL with λ = 1 divided by the estimated variance of the

kitchen sink model, and multiplied by 100 for each DGP parameter pair. Intuitively, the

table shows the variance of the uNCL as a percentage of the variance of the kitchen sink

model. The values prove the efficiency of uNCL as a bias-decreasing method; the uNCL

with λ = 1 has a variance considerably lower than the kitchen sink, even though it has

essentially the same bias (zero).

III.3.3 The cost of bias reduction

In this subsection, I demonstrate that the uNCL is more efficient than the competing

methods in reducing the squared bias component. I show this by calculating the ’cost’ of

reducing the bias as the corresponding increase in variance. This is motivated by the fact

that a method may be viewed as ’efficient’ in reducing the bias if the bias reduction causes

a relatively small increase in the variance. Such a method can achieve good performance

by optimising the bias-variance trade-off efficiently.

I define the cost of bias reduction (CoBR) between the hyperparameter values α1 and

α2 as:

CoBRα1,α2 = −
V arα1 − V arα2

Bias2α1
− Bias2α2

(III.19)

Where 2
αi

is the squared bias of the given method at the hyperparameter value αi, and

V ar
i
is the variance of the given method at the hyperparameter value αi

17. Intuitively, the

numerator is the change in variance, while the denominator is the change in the squared

16The bias-variance decompositions of the other models are presented in Appendix ??
17The CoBR is not constant for different values of the hyperparameter, that is why the measure is

defined such that it depends on the hyperparameters.
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Figure III.6: Bias-variance error decomposition of the uNCL. The x axis has the λ hyperparameter
values in increasing order.
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R2 = 1% R2 = 2.5% R2 = 5% R2 = 10% R2 = 25%
ρ = 0 80.62 82.12 85.24 87.76 91.70
ρ = 0.4 74.07 74.97 74.70 75.39 74.47
ρ = 0.8 57.89 58.68 57.27 58.74 57.08

Table III.7: Ratio of uNCL and kitchen sink variances. The ratio is multiplied by 100 so that it can
be interpreted as a percentage.

bias as we move the hyperparameter from α1 to α2. The expression is multiplied by 1 so

that the result remains positive for the easy of interpretation - because the squared bias

and variance usually change in the opposite directions, the numerator and denominator

usually have different signs. The CoBR can be intuitively understood as the necessary

increase in variance that comes with a ’unit’ decrease in bias. Because the expected

squared error is the sum of the squared bias and the variance (plus an irreducible noise

term), the move from α1 to α2 is beneficial in terms of MSE if the CoBR is below one. In

this case, the bias reduces to a higher degree than the variance as the hyperparameter is

moved.

I measure the CoBR for the uNCL, CSR, LASSO, ridge and ELASSO for all ’adjacent’

hyperparameter values. That is, I calculate CoBR0,0.1, CoBR0.1,0.2, . . . , CoBR0.9,1 for the

uNCL, CoBR1,2, CoBR2, 3, . . . , CoBR7,8 for the CSR and CoBRλmax,λmax−1 , . . . , CoBRλ2,0

for the LASSO, ridge and ELASSO. I use the previously estimated squared bias and vari-

ance components to calculate the CoBR values.

Figure III.8 plots the CoBR values of the uNCL, CSR, LASSO, ridge and ELASSO over

the squared bias terms. The CoBR values are plotted over the squared bias corresponding

to the ’lower’ of the CoBR hyperparameter values in the case of the uNCL and CSR. For

example, the CoBR0.1,0.2 of the uNCL is plotted over the squared bias of the uNCL with

the lower hyperparameter value, so over the squared bias of uNCL with λ = 0.1. For the

LASSO, ridge and ELASSO, the CoBR is plotted over the squared bias corresponding to

the hyperparameter with the lower index (that is, the hyperparameter that is closer to

λmax). The x axis has the squared biases limited on the left and right by the minimal

and maximal squared biases of the uNCL on the DGP (R2, ρ). The y axis has values

from 0 to only 2.5 to ensure that the ’neighbourhood’ of 1 is visible with more detail18.

As noted previously, the CoBR value of 1 is important because a CoBR below 1 means

that the expected squared error would decrease by moving the hyperparameter from λ1

to λ2. Any CoBR outside the neighbourhood of 1 is thus not very interesting, because

the corresponding hyperparameter value is usually very far from the optimal.

In general, the plots show that the CoBR values of the uNCL are smaller than the

18In some cases, the limits on the y axis mean that much of the CoBR values are not shown on the
plot. This is most visible for (R2, ρ), where no value is plotted. This is not really a problem; in this
case, setting the hyperparameters to the value with the highest bias is obviously the best choice, so a
comparison of CoBR values is not very interesting.
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Figure III.8: Cost of Bias Reduction (CoBR) plots. The x axis is the squared bias, and has the
minimum and maximum squared bias value of the uNCL as limits on the plot. The y axis plots the
CoBR values. On the plot, each CoBR value is plotted over the squared bias of the lower hyperparameter
value. For example, CoBR0.1,0.2 of the uNCL is plotted over the squared bias of uNCL with λ = 0.1.
For the LASSO, ridge and ELASSO, ’lower’ hyperparameter value means the hyperparameter value with
the lower index. The y axis has the limits (0, 2.5), so that the neighbourhood of 1 can be seen well on
the plots. 44
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CoBR values of most of the other methods for a fixed level of squared bias. Notably, the

CoBR of the uNCL is usually lower than those of the traditional regularisation methods,

indicating better performance. Graphically, this is seen by the fact that the black curve

tends to take up lower values than the other curves when the squared bias on the x axis

is kept fixed. The fact that uNCL has a relatively low CoBR means that it can efficiently

decrease the squared bias while keeping the corresponding increase in variance at minimal.

The plots also show that the black curve tends to cross the horizontal dashed line at 1

at lower levels of the squared bias. Because a CoBR > 1 indicates that raising the

hyperparameter value would introduce more variance than the amount it would reduce

the squared bias by, the fact that uNCL has a CoBR = 1 at low levels of the squared

bias shows that uNCL has a lower squared bias than the other methods in optimum.

III.3.4 The bias-variance-covariance decomposition

In this subsection, I present the bias-variance-covariance decomposition of the uNCL and

CSR models19.

I estimate the decomposition on the same data that I used to estimate the bias-

variance decomposition. The estimate of the squared bias remains the same. I estimate

the variance of the individual model l from the j-th batch at point xt
20 with the following

expression:

ˆV ari,xt
=

1

25

25
∑

k=1

(

fl(xt)−

∑25
j=1 fl(xt)

25

)2

(III.20)

Note that this expression looks the same as equation III.14, but there is important

difference. In equation III.14, fi is the forecast from the i-th ’final’ model; here, fl is

the forecast from the individual model with index l. The individual models are later

aggregated by equal weighting to get the uNCL or CSR ’final’ forecast.

The variance estimate from batch j from the previous equation III.20 is averaged over

the 4 batches, and then the evaluation sample t = 101, 102, . . . , 300 to get the estimate of

the variance of the individual forecast l.

The covariance of the individual models is estimated in a similar manner. Namely,

the covariance of individual model l and k on the j-th batch is estimated by:

19The LASSO and the ridge do not have a bias-variance-covariance decomposition, because they are
not an aggregation of individual models. The ELASSO and ERidge do have an bias-variance-covariance
decomposition, but it is difficult to compare with the decompositions of the uNCL and CSR, because
ELASSO and ERidge have non-equal weights. Thus, only the bias-variance-covariance decomposition of
the uNCL and CSR is estimated and shown here.

20Although I use vector notation here, the input of the individual model may be of length 1, for
example, in the case of the uNCL.
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ˆCovarl,k,xl,t,xk,t
=

1

25

25
∑

n=1

(

fl,n(xl,t)−

∑25
m=1 fl,m(xl,t)

25

)

∗

(

fk,n(xk,t)−

∑25
m=1 fk,m(xk,t)

25

)

(III.21)

Where fl,n and fk,n are the forecasts from the individual models l and k for the n-th

sequence in the batch, respectively, and xl,t and xk,t are the predictors used in these

models. This expression is averaged over the batches j = 1, 2, 3, 4, the evaluation sample

t = 101, 102, . . . , 300 and the individual model pairs (l, k) to get the estimate of the

average covariances of the individual models.

Figure III.9 plots the bias-variance-covariance decomposition of the uNCL for each

fixed λ = 0, 0.1, . . . , 1 hyperparameter value and (R2, ρ) DGP parameter pair. The plots

show that the covariance component is essentially ’flat’ in λ for most of the hyperparameter

space. It has a sharp decrease from λ = 0.9 to λ = 1 if the predictor correlation parameter

ρ is not equal to zero, but this sharp decrease is also followed by a sharp increase in the

average variances of the individual models. As a result, the decrease in the covariance

component does not lead to an decrease in MSE; the increase in the variance component

is usually higher than the decrease in the covariance component21.

These results on the relationship of the covariance component and the λ hyperpa-

rameter are in disagreement with the explanation that Brown,Wyatt, AndT ino(2005)

gives about the strong performance of ensembles of neural networks trained by the NCL

algorithm. The strong performance of uNCL seen in my simulations is not the result

of optimising the ’accuracy’ of the individual models (the sum of the bias and variance

component from the bias-variance-covariance decomposition) against the ’diversity’ of

the individual models (the covariance component), but a result of decreasing the bias of

the uOLS relatively effectively. This, as shown previously, is better understood as an

optimisation of the bias-variance trade-off.

I already noted previously in the previous section on the theoretical foundations that

the uNCL differs from previous applications of the NCL algorithm to neural networks in

several way. These include a) applying the NCL algorithm to rigid linear models instead

of flexible non-linear models, b) testing on a linear DGP and c) the difference in how the

predictors are used, meaning that the individual models use only one of the predictors in

uNCL, but all of the predictors in previous applications. I do not aim to determine which

21The fact that the increase in the variance component is usually higher than the decrease in the covari-
ance component can also be read from the bias-variance plots of the uNCL; there, the variance component
is the sum of the variance and covariance component from the bias-variance-covariance decomposition.
Because the variance in the bias-variance plots usually increase when moving from λ = 0.9 to λ = 1,
the increase in the variance component in the bias-variance-covariance decomposition is higher than the
decrease in the covariance component in most cases.
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Figure III.9: Bias-variance-covariance error decomposition of the uNCL. The x axis has the λ hyper-
parameter values in increasing order.
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Figure III.10: Accuracy-Diversity decomposition of the uNCL. The x axis has the λ hyperparameter
values in increasing order. ’Accuracy’ is defined as the sum of the bias and variance terms from the bias-
variance-covariance decomposition, while ’diversity’ is defined as the covariance component, following
Brown, Wyatt, and Tino (2005). The plots show that uNCL cannot really be regarded as an optimisation
of the accuracy of the individual models against their diversity.
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Figure III.11: Bias-variance-covariance decomposition of CSR. The x axis has the dimension of the
individual models, k in increasing order. Note that k = 8 is not included, because it has no covariance
value (there is only one individual model).
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of these explanations, if any, causes the different behaviour of the NCL algorithm in this

study.

Figure III.11 plots the estimated bias-variance-covariance decomposition of CSR. The

plot shows that CSR has a substantial effect on the covariance component, which increases

monotonically in k22, while the variance component is mostly flat. This is in contrast to

the uNCL, which has a mostly flat covariance and monotonically increasing variance

component. This shows that although the two methods both act as inverse regularisers

and optimise the bias-variance trade-off, they do it in a rather different way. In the terms

of the bias-variance-covariance decomposition, the uNCL decreases the bias at the cost of

increasing the variance, while the covariance is mostly flat; the CSR, in contrast, decreases

the bias at the cost of increasing the covariance, while the variance component is mostly

flat.

22The monotonically increasing covariance component is easy to make sense intuitively. Increasing k

means that the individual models share more of the same predictors; thus, their ’information sets’ have
a higher overlap and their forecasts are less diverse.
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In this section, I apply the stage I and stage II inverse regularisers and the traditional

regularisers, meaning the LASSO and ridge regression to forecasting the US equity pre-

mium.

IV.1 Data and forecasting methods

I forecast the US (log) equity premium. As noted in the previous review, this dataset

has a relatively low signal-to-noise ratio and many predictors, and is thus suitable for

regularisation or inverse regularisation methods. Notably, the LASSO has been applied

widely to forecast the US equity premium (Rapach, Strauss, and Zhou, 2013), (Freyberger,

Neuhierl, and Weber, 2020), (Kozak, Nagel, and Santosh, 2020), (Elliott, Gargano, and

Timmermann, 2013). The aim of this application is to validate the results of my simulation

in a dataset with suitably low signal-to-noise ratio and many predictors, and to provide

a through comparison of the considered methods.

I use a version of the data originally used in Welch and Goyal (2007), and later also

in several other studies, including Campbell and Thompson (2007), Rapach, Strauss, and

Zhou (2010) and Elliott, Gargano, and Timmermann (2013). Notably, Rapach, Strauss,

and Zhou (2010) use the uOLS on this same database, and Elliott, Gargano, and Tim-

mermann (2013) uses CSR and the LASSO on a subset of this database, which gives a

natural comparison with their results. The dataset is available at Amit Goyal’s website,

and consists of quarterly data of S&P500 returns (including dividends), a risk free rate,

and 15 other macroeconomic or financial variables that are often used to forecast the eq-

uity premium. For a more detailed description of the 15 predictors, see Welch and Goyal

(2007).

I define the log equity premium as the log of the returns on the S&P500 (including

dividends) minus the log of the lagged US three-month treasury bill yields. I use quarterly

data from 1947Q2 to 2020Q4 for the log equity premium and from 1947Q1 to 2020Q3 for

the predictors1.

1Elliott, Gargano, and Timmermann (2013) also forecasts the quarterly US log equity premium with
a subset of my predictors, and their dataset starts at the same quarter as mine.
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I forecast the log equity premium with the 15 predictors with each of the 6 methods

examined in the simulations. For CSR, k = 1, 2, . . . , 15. For the LASSO, ridge, ELASSO

and ERidge I determined the λ sequence just like in the simulations, and I also use

nλ = 40 for the LASSO and ridge and nλ = 50 for the ELASSO and ERidge. For uNCL,

I use [0, 0.1, . . . , 0.9, 1] as the λ sequence, just like in the simulations. However, I set

the stopping threshold at 10−10, the learning rate at 0.1 and the maximum number of

iterations at 1000002. Additionally, I trained the uNCL models in an increasing order of

λ-s. This meant that I could use the final parameters from the model with hyperparameter

λ − 0.1 as a starting point in the gradient descent of the model with hyperparameter λ

to speed up convergence. I train all of the models with and intercept included.

Following Welch and Goyal (2007), Campbell and Thompson (2007), Rapach, Strauss,

and Zhou (2010), Rapach (2013) and Elliott, Gargano, and Timmermann (2013) among

many others, I use and expanding estimation window, and estimate each model each time

the window is expanded. I use data from 1947Q1 to 1964Q4 as an initial estimation

window, and evaluation starts at 1965Q13.

For the ELASSO and ERidge, an initial combination weight estimation window is also

needed. To this end, I estimate the uOLS out-of-sample forecasts for 1960Q1 to 1964Q4 as

well (again, using an expanding window), and estimate the combination weights initially

on this 1960Q1 to 1964Q4 quasi out-of-sample data. Later, this combination weight

estimation window is expanded the same way as the estimation window of the other

methods.

In addition to the ’unrestricted’ forecasts from each model, I also evaluate a restricted

version of the forecasts of each method. Following Campbell and Thompson (2007), I

set negative forecasts to zero. Campbell and Thompson (2007) suggest that theoretical

considerations imply that the log equity premium should always be positive, and they

show that setting negative forecasts to zero improves upon unrestricted forecasts of the

log equity premium. While Rapach, Strauss, AndZhou(2010) find that the nonnegativity

constraint is never binding for the uOLS method, the regularisers and inverse regularisers

I compare in this study might have substantially more varied forecasts than the relatively

smooth forecasts of the uOLS. As such, negative values come up, and the nonnegativity

constraint can reduce ”wrong-way” variance.

2I had to lower the learning rate (from 0.5, which I used in the simulations) to 0.1, because the
algorithm did not converge with a higher learning rate. This resulted in a slow convergence to the
optimum, so I had to increase the maximum number of iterations.

3The initial estimation window is the same as in Elliott, Gargano, and Timmermann (2013), and the
evaluation window also starts at the same quarter (albeit ends later, due to the availability of more data).
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IV.2 Forecast evaluation

Following the usual practice of the literature on forecasting the equity premium, as can

be see in Rapach, Strauss, and Zhou (2010), Rapach (2013), and Campbell and Thomp-

son (2007), for example, I compute out-of-sample R2-s as a measure of performance for

each method and each hyperparameter value. This metric is defined as (Campbell and

Thompson, 2007):

R2
OoS = 1−

q
∑

k=q0

(rk − r̂k)
2

(rk − rk)2
(IV.1)

Where q0 and q are the starting and ending indices of the out-of-sample forecast

evaluation period, respectively, rk is the actual log equity premium at time k, r̂k is the

forecast of the log equity premium at time k, and rk is the historical average log equity

premium (the average of the actual log equity premiums from 1947Q2 to k − 1).

This measure is analogous the the in-sample R2, but is ’out-of-sample’ in the sense that

the models used to generate the forecast r̂k do not use rk and the corresponding predictors

for the estimation, and the historical average also do not contain rk. As such, this measure

does not contain any information in the evaluation that was not available when rk would

be estimated. Additionally, this measure gives an intuitive idea on how much information

the predictors contain about the variable to be forecast; the R2
OoS roughy shows the

portion of the variance that is explained by the forecasts. Notably, a R2
OoS above (below)

0 means that the forecasts have better (worse) forecasting performance than the historical

average benchmark.

I also test if the different forecasting methods have a significantly lower out-of-sample

MSE than the historical average benchmark. To this end, I carry out Clark & West tests

that test the null hypothesis that R2
OoS ≤ 0 against the alternative hypothesis that R2

OoS

for nested models.

Finally, I evaluate the performance of each method in an economic sense. I follow the

approach of Welch and Goyal (2007), Campbell and Thompson (2007), Rapach, Strauss,

and Zhou (2010) and Elliott, Gargano, and Timmermann (2013) among others, and eval-

uate the utility gains that a mean-variance investor would have realised if they had re-

allocated their investments between the S&P500 index and short-term US treasury bills

based on the equity premium forecasts or the historical average at the end of each quarter.

An investor with risk aversion parameter γ who forecasts the equity premium with the

historical average allocates the following share of their portfolio to equities at the end of

period t:

wavg,t+1 =
1

γ

r̂t+1

σ̂t+1

(IV.2)
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Where rt+1 is the forecast of the equity premium at time t+1 and σ̂2
t+1 is the volatility

forecast of the investor. Following Rapach, Strauss, and Zhou (2010), I assume that the

investor forecasts the volatility with its historical average over the last ten years and that

γ = 3. I also follow them in ruling out short selling or excessive risk taking. As such, if

wavg,t+1 < 0, I set it to zero, and if wavg,t+1 is over 1.5, I set it to 1.5.

The investor realises an average utility level of

νavg = µavg −
1

2
γσ2

avg (IV.3)

Where µavg is the sample mean and σ2
avg is the sample variance of the portfolio allocated

according to the trading strategy defined above.

I calculate the average utility gains νavg for all of the equity premium forecasts gen-

erated by any of the methods I consider, both with fixed and validated hyperparameter

values. I also calculate the average utility the investor who uses historical returns up till

time t the reallocate her portfolio at the end of quarter t. Let us denote this average

utility by νhist. Then, I measure the economic significance of the forecasts as the excess

utility the investor who allocates her portfolio based on the forecasts realises over the

investor who uses the historical average to reallocate her portfolio, multiplied by 400:

CER = 400 ∗ (νavg − νhist) (IV.4)

I multiply the difference so that the result can be interpreted as an annual measure in

percentages4 Note that this measure is a ’certainty equivalent return’ gain, meaning that

the investor is indifferent between the returns of the historical average-based portfolio

plus this certainty equivalent return, and the returns of the forecast-based portfolio.

IV.3 Results with fixed hyperparameters

Figure IV.1 plots the R2
OoS of the unrestricted and nonnegativity restricted forecasts for

each method and each considered hyperparameter value. The x axis labels are the λ of

the uNCL. For CSR, k increases to the left from k = 1 to k = 15. For the LASSO, ridge,

ELASSO and ERidge, the leftmost value is λ = λmax and the rightmost is λ = 0. The

lines are linear interpolations between the point for which I estimated the models and

have exact R2
OoS values. Note that some of the methods have very large negative R2

OoS

values for some the the hyperparameters considered, which I do not plot for the sake of

giving a better visual comparison of the models at the hyperparameter values that have

roughly similar performance. Nevertheless, Appendix B.1 contains a table with the R2
OoS,

4I multiply by 4 to annualise to quarterly data, and multiply by 100 so that the result can be interpreted
as percentages.
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Clark & West test p-value and CER gains for each method and each hyperparameter

value.

Figure IV.1: Out-of-sample R2-s of the unrestricted and nonnegativity restricted forecasts. The plot
on the left is of the unrestricted, while the plot on the right is of the nonnegativity restricted forecasts. X
axis values show the λ values of the uNCL. For CSR, k increases to the right. For the ELASSO, ERidge,
LASSO and ridge, the leftmost value corresponds to λ = λmax and the rightmost value ot λ = 0. The
lines are linear interpolations between the actual parameter values I estimated the models with.

The figure shows that CSR and uNCL are the two best performing methods if their

hyperparameters are set optimally. CSR with k = 2 performs the best among the unre-

stricted forecasts, and uNCL with λ = 1 is the best among the nonnegativity restricted

forecasts. From the other methods only ridge regression has a performance relatively close

to that of CSR and uNCL. These results are in line with the findings in simulations, where

I showed that stage I inverse regularisers tend to outperform stage II inverse regularisers

and traditional regularisers like the LASSO or ridge regression.

The plots also indicate that the nonnegativity constraints can improve the perfor-

mance of CSR, uNCL and ridge regression substantially. These are, as noted previously,

exactly the models that perform relatively well even without the restriction. It is also

worth noting that the optimal value of the hyperparameters differ for the unrestricted and

nonnegativity restricted forecasts. The general trend is that the hyperparameters that

are optimal for the nonnegativity restricted forecasts mean a weaker shrinkage than the

optimal hyperparameter values for the unrestricted forecasts. Intuitively, the nonnega-

tivity restriction reduces ’wrong’ variance, and therefore decreases the cost of decreasing

the bias in exchange for a higher variance.

Figure IV.2 plots the Clark-West test (Clark and West, 2007) p-values (in percentages)

for each model and each hyperparameter. The plots have the same structure as IV.1, with
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Figure IV.2: C&W test p-values (%) of the unrestricted and nonnegativity restricted forecasts.The plot
on the left is of the unrestricted, while the plot on the right is of the nonnegativity restricted forecasts.
The plot uses the same structure as figure IV.1. Only p-values between 0 and 10 are shown on the plots.

the only difference that only values between 0 and 10 are shown on the y axis. The plots

show that the LASSO, ELASSO and ERidge are usually (or, except for the LASSO, never)

significantly outperform the historical average benchmark at the 5% significance level.

The other 3 methods, CSR, ridge and the uNCL are significant for most hyperparameter

values at the 5% level, and for some hyperparameters even at the 1% level. Adding the

nonnegativity restrictions improve the significance of the forecasts of the 3 best performing

model and the LASSO, but the ELASSO and ERidge still do not outperform at the 5%

level. These results show that the stage I inverse regularisers perform very well and often

better than the competing methods not only in terms of their R2
OoS, but also in statistical

significance.

Figure IV.3 plots the annual certainty equivalent returns that an investor would have

realised if she allocated her portfolio between equities and treasury bill over the investor

who allocated her portfolio between the same assets, but based on the prior historical

average of the equity premium.

Note that there is only one plot for the CER values, because the unrestricted and

nonnegativity restricted forecasts generate the same portfolio allocation in each period.

This is due to the fact that the two forecasts differ only when the unrestricted forecast

is negative. In this case, both the unrestricted negative and the restricted zero forecast

allocate a weight of 0 to equities.5

5Because treasury bills are dominate a zero or negative yield, but more volatile asset, the optimal
weight on equities would be negative for the investor in these cases. However, short selling is ruled out
by construct so a weight of 0 is given to equities.
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Figure IV.3: Certainty equivalent returns for the investor who allocated her portfolio between equities
and the treasury bills based on model-based forecasts of the equity premium would have realised over
the investor who allocated her portfolio based on the prior historical equity premium. The plot has the
same structure as IV.1. Only values between −4 and 7 are plotted. Note that the CER values are the
same for the unrestricted and nonnegativity restricted forecasts.

Interestingly, the CER values tend to be the highest for a low level of shrinkage (except

for the stage II inverse regularisers, which do not perform well). The absolute highest

value is achieved by the LASSO. This is in contrast to the previous R2
OoS and Clark-West

test results, where a medium level of shrinkage produced the best results, and the LASSO

and ridge with small λ parameters and CSR with high k parameters performed poorly.

This is due to the fact that I limit the equity weights to lie in the interval [0, 1.5]. This

ensures that outlier forecasts do not have a strong effect on the investment decision of the

investor, and a large leverage or short selling do not cause a significant drop in investment

returns if the forecasts are off. In other words, restricting the equity weights to lie in the

interval [0, 1.5] reduces the negative effect a highly variable forecast has on investment

returns, and makes having a small bias forecast more important. As such, a low level of

shrinkage produces the best results for the investor. To test this hypothesis, a widened the

restriction so that equity results must lie in the much wider interval of [−5, 5], which led

to highly deteriorating (usually negative CER values) performance for the low shrinkage

models6.

To sum up, the stage I inverse regularisers uNCL and CSR perform remarkably well

when their hyperparameters are set optimally. For the unrestricted (nonnegativity re-

stricted) uNCL, this is λ = 0.7 (λ = 1.0) and for the CSR, it is k = 2 (k = 3). The uNCL

and CSR outperform both the stage II inverse regualrisers ELASSO and ERidge, and the

traditional regularisation methods LASSO and ridge. The uNCL and CSR fare well in

both statistical and economic tests of significance as well, and outperform the historical

average.

6For the sake of brevity, the actual results of this robustness check are not presented in my paper.
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Unrestricted Nonnegatitivty rest
Method R2

OoS p-value CER R2
OoS p-value

uNCL 1.60 6.39 3.13 2.45 1.64
CSR 0.52 4.23 3.65 1.07 1.51
Ridge -1.54 1.86 3.86 -1.92 1.77
LASSO -5.08 0.49 3.37 -6.62 2.42
ELASSO -3.07 38.09 1.6 0.35 13.87
ERidge -0.19 18.53 1.19 -0.08 19.17
uOLS 1.60 2.55 2.23 1.60 2.55

Table IV.4: Results for validated hyperparameters. The left three columns plot the R2
OoS values

(Campbell and Thompson, 2007), the Clark & West test (Clark and West, 2007) p-values and the
certainty equivalents gains (CER) of the unrestricted forecasts. The right two columns plot the R2

OoS

and Clark & West test p-value for the nonnegativity restricted forecasts. Note that the CER values are
the same for the nonnegativity restricted and unrestricted forecasts, so I do not show the same CER
value for the nonnegativity restricted forecasts in a different columns.,

IV.4 Results with validated hyperparameters

In practical forecasting applications, the optimal values of the hyperparameters are not

known prior to forecasting, but have to be estimated form the data. Therefore, I validate

the hyperparameters of each method from the data to check the robustness of my results.

I validate the hyperparameters the same way I did in the simulations. I generate out-

of-sample forecasts with an expanding estimation window. This means that I use all

data available before and no data available after time t + 1 to estimate the models that

forecast the log equity premium at time t+1. I forecast the data sequentially; after having

forecast the log equity premium at time t + 1 with a model that was estimated on data

available up to (and including) time t, I forecast the equity premium at time t + 2 with

a model estimated on an ’expanded’ dataset that includes all available data up til time

t + 1. I use the data from 1947Q1 to 1964Q4 for the equity premium and from 1946Q4

to 1964Q3 for the predictors as an initial estimation window that is only used for the

estimation of the models (this remains the same as in the previous section with the fixed

hyperparameters). Out of sample forecasting thus starts at 1965Q1. The first 20 out

of sample forecasts are used as an initial validation window, meaning the first quarter I

validate the hyperparameters for is 1970Q1. I validate the hyperparameters at time t by

choosing the hyperparameter that has the lowest mean squared error on prior data. By

using all available prior data at all times to measure the past performance of the method

to validate the hyperparameters, I use an expanding window for the validation as well.

Table IV.4 presents the performance of the models with validated hyperparameters for

the unrestricted and nonnegativity restricted forecasts. The performance of all models

decreases sharply in terms of the R2
OoS for all methods when compared to their R2

OoS

values with the hyperparameters chosen optimally. Only 2 of the 7 methods I examine

have a positive R2
OoS values. The uOLS forecast, which is included as a benchmark,
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performs at the same rate in R2
OoS as the uNCL, and outperforms the only other method

that has a positive R2
OoS. Additionally, uNCL does not outperform the historical average

significantly at the 5% level.

The nonnegativity restriction improves the performance of the uNCL, CSR and ELASSO.

However, CSR and ELASSO has an R2
OoS that is still lower than that of the uOLS. On

the other hand, we see that the uNCL outperforms th uOLS with the nonnegativity

restrictions by about 0.85%.

Interestingly, most of the methods produce economically significant forecast that give

rise to a sizeable CER when used for portfolio allocation. Excluding the stage II inverse

regularisers, which, as usual, do not perform well, the methods all have CERs above

3%, which is a substantial improvement over the 2.23% CER of the uOLS. In general,

the methods that can produce a low bias - high variance forecast perform well in asset

allocation, because of the restriction on the portfolio equity weights to lie in the interval

[0, 1.5].

Figure IV.5 plots the actual log equity premium and its validated unrestricted and

nonnegativity restricted forecasts from the 3 best performing model, the uNCL, uOLS

and CSR. The plots clearly show that the stage I inverse regularisers uNCL and CSR

produce more varying forecasts, whereas the uOLS forecasts are quite smooth. After

about 1985, the uOLS forecast is almost constant. The uNCL and CSR forecasts also

become less time-dependent as time goes on, but at a much slower rate. The unconstrained

uNCL and CSR forecasts become almost constant only after 2010, and the nonnegativity

constrained forecasts - which perform better than the unconstrained forecasts in terms of

R2
OoS - show substantial time-dependence even at the end of the evaluation period.

The validated forecasts become more stable for two reasons. One, the model estimation

period is longer for later periods, which reduces the variance. Two, the hyperparameters

chosen in the validation indicate a stronger level of shrinkage at the end of the sample.

This is shown in figure IV.6, which plots the chosen values of the hyperparameters over

time. Because the chosen hyperparameters are exactly the hyperparameters that give

the best performance on past data, an increasing (decreasing) trend on the plot implies

that a lower (stronger) form of shrinkage is better on the newly added data7. The fact

that a stronger shrinkage is optimal at later periods is interesting, because due to the

variance-reducing effect of using longer windows for model estimation at later periods,

a weaker form of shrinkage should be optimal if the underlying data generating process

stayed the same. A weaker form of shrinkage might be optimal at later periods because

at least some of the predictors may have lost at least some of their predicting capabilities

over time. Alternatively, the predicting power could have remained, but the direction

(positive or negative) of the relationship may have changed. These results are in agreement

7Note that the plot is structured such that values closer to min indicate stronger, and values closer to
max indicate weaker shrinkage.
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Figure IV.5: Actual log equity premiums and its validated out-of-sample forecasts from the uOLS,
uNCL and CSR models without restrictions (left) and with nonnegativity restrictions (right). The plots
show that the nonnegativity restricted forecasts are much more volatile even near the end of the evaluation
sample.

60



Empirical Application 4. Results with validated hyperparameters

Figure IV.6: Chosen hyperparameter values over time. The values on the y axis are given as a
percentage of the maximal value of the hyperparameter for the uNCL and CSR. For the LASSO, ridge,
ELASSO and ERidge, the values on the y axis are given as the ’index of the chosen hyperparameter
value’ divided by the number of hyperparameter values (n = 40 for the LASSO and ridge and n = 50
for the ELASSO and ERidge). Note that λ = λmax is indexed by 1 and λ = 0 is indexed by the highest
index for these models.
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Figure IV.7: Rolling historical average and model-based forecast MSE differences. The plots at time
t show the difference of the MSE of the historical average and the forecasts generated by a given model
with validated hyperparameter values. If the difference is positive (negative) at time t, the model-based
forecast outperforms (underperforms) the historical average when evaluated on data prior to and including
time t.
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with previous research that indicate the presence of structural breaks in the relationship

between the equity premium and other macroeconomic and financial variables.

Figure IV.7 shows the difference of the MSE of the prior historical average forecast

and the forecasts produced by a given method with validated hyperparameters on data

prior to and including the values on the x axis. A positive (negative) value indicates that

the model-based forecasts outperformed (underperformed) the historical average when

evaluated on data prior to and including the time written on the x axis. This plot is often

used as a graphical illustration of the change of the performance of the models over time.

The rate at which the lines move up (down) can be interpreted as the rate by which the

model-based forecast outperforms (underperforms) the historical average. If the degree of

outperformance were constant over the evaluation sample, we would expect to see a plot

that moves up linearly.

The plots do not even roughly resemble the linear relationship. The forecasts of most

models perform well in the early parts of the sample. The LASSO and ridge has a sudden

drop of performance around 1985, after which both models consistently underperform the

historical average. The uNCL and CSR have a largely overlapping period of consistent

low performance in the 90s. This is followed by a period lasting till the end of the

evaluation period during which the unrestricted uNCL and both the unrestricted and

nonnegativity restricted CSR have a performance roughly equal to the performance of

the historical average. After the 1990s, only the nonnegativity restricted uNCL can

outperform the historical average (and the uOLS), although even for this method most

of the outperformance is concentrated in or around the dot-com bubble and the financial

crisis of 2008.

IV.5 Results for recessions and expansions

A common finding in the empirical literature (Rapach, 2013), (Haase and Neuenkirch,

2022), and also explained by some theoretic models (Cujean and Hasler, 2017) on equity

premium forecasting is that predictability is concentrated in recessions, and most predic-

tors have limited or even non-existent forecasting ability over the historical average in

expansions.

I compare the predictive power of the six methods I examine in this study. I use data

from the National Bureau of Economic Research’s Business Cycling Database to classify

each quarter as a recessive or expansive period. Then, I calculate a R2
OoS value for each

method for the expansive and recessive quarters separately, by only taking into account

the quarters that are recessive or expansive:

R2
OoS,type = 1−

∑

i∈I(type)

(rk − r̂k)
2

(rk − rk)2
(IV.5)
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Unrestricted Nonnegativity restricted
R2

OoS

Method Recessive Expansive Recessive Expansive
uNCL 5.28 -1.57 6.27 -0.84
CSR 5.69 -3.93 6.11 -3.28
Ridge 6.39 -8.38 4.71 -7.63
LASSO 9.44 -17.59 5.62 -17.18
ELASSO -1.68 -4.26 4.15 -2.94
ERidge 4.47 -4.21 4.59 -4.10
uOLS 3.14 0.28 3.14 0.28

Table IV.8: Results for recessive and expansive periods for the validated forecasts. Evaluation sample
is from 1970Q1 to 2020Q4.

Where type is either ’recession’ or ’expansion’, and I(type) is the indices of the quarters

with type.

Table IV.8 shows the results. My findings are in agreement with the literature; all

models produce more accurate forecasts in recessive periods by a considerable margin.

Actually, the forecasts of all models - except the uOLS - even underperform the historical

average in expansive periods. This finding holds both for the unrestricted and nonnega-

tivity restricted forecasts - the nonnegativity restricted forecasts tend to perform better

both in recessions and expansions, the increased performance does not cluster to economic

conditions.

Figure IV.9: Scatter plot of R2
OoS values during recession and expansions. The x axis has the R2

OoS

values of the unrestricted forecasts during recessions, and the y axis has theR2
OoS values of the unrestricted

forecasts during expansions. The black line is the regression line of the two values. Note the negative
relationship; the methods that perform well in recessions tend to perform badly in expansive periods.

Figure IV.9 plots the R2
OoS values during expansions on the x and during recessions

on the x axis for the unrestricted forecasts of each method except the ELASSO, which

is an outlier because it has a negative R2
Oos in both expansions and recessions. The plot

64



Empirical Application 6. Summary

also includes the regression line from the linear regression of the R2
Oos,recession-s on the

R2
Oos,expansions-s. The plot shows a close fit, which has a regression β significant at the 1%

level and a relatively very fit with a regression R2 of 90.62%. This tells us that there is

a quite strong relationship between the performance of the models during recessions and

expansion; increasing the performance in one usually means decreasing the performance

in the other. Notably, the good performance of both the uNCL and CSR is shown by the

fact that the both have positive residuals, that is, they perform better in recessions than

what would be expected of them based on their performance in expansions.

IV.6 Summary

In this section, I forecast the US equity premium with the two stage one IR-s, two stage two

IR-s and the two traditional regularisation methods. The aim of this section was to give a

comparison of the performance of the three different groups of methods in forecasting the

US equity premium, and to find out if the simulation results are robust to the application

of the methods to a suitably noisy and high dimensional empirical forecasting problem.

The results are in agreement with the simulations. The stage two IR-s do not out-

perform the equal-weighted uOLS, which was seen in the simulations but also in previous

studies on the forecasting the equity premium (see Rapach, Strauss, and Zhou (2010) for

an example). Additionally, the two best performing methods are the uNCL and CSR,

which both outperform the traditional regularisation methods, the LASSO and ridge

regression. Actually, only the uNCL, uOLS and CSR have a positive R2
OoS with vali-

dated hyperparameters, and only the uNCL outperforms the uOLS (with nonnegativity

restricted forecasts) over the entire evaluation sample. This shows that the stage one IR-s,

especially the uNCL, can outperform the very popular LASSO by a substantial margin

even in empirical applications.

Additionally, the rolling MSEs of all methods increase sharply at the begginning of

the sample, which is followed by a sudden drop in the 90s. After the 90s, the performance

of all forecasting models becomes much worse than previously. In fact, onyl the uOLS,

uNCL and CSR seem to more-or-less have at least the same performance as the historical

average, and only the nonnegativity-restrited uNCL seems to outperform the historical

average, albeit only by a small margin. These results give further proof to the presence of

structural breaks and the diminishing degree of predictability in equity premiums, which

have been observed in previous studies as well
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In this paper, I have introduced the notion of inverse regularisation (IR) methods, which

generalise the uOLS and make it possible to optimise the bias-variance trade-off by setting

the value of a hyperparameter. I also introduced a new categorisation of previous IR-s,

such as the complete subset regression of Elliott, Gargano, and Timmermann (2013),

Elliott, Gargano, and Timmermann (2015) and Boot and Nibbering (2019), and the

ELASSO and ERidge of Diebold and Shin (2019) into stage one and stage two IR-s. My

paper, using the categorisation introduced above, made two additional contributions to

the forecasting literature.

First, I carried out a large scale comparison of stage one stage two IR-s as well as

traditional regularisation methods like the LASSO and ridge regressions. The results of

the simulation and empirical application both indicate that a) stage one IR-s generally

perform well, b) stage one IR-s generally outperform stage two IR-s and c) stage one IR-s

generally outperform traditional regularisation methods like the LASSO and ridge.

As such, the results suggest that the stage I IR-s, meaning the complete subset regres-

sion of Elliott, Gargano, and Timmermann (2013), which has inexplicably few applications

so far, and my univariate negative correlation learning (uNCL) should see more use in

future applications.

Second, I introduced a new forecasting method, which I call univariate negative corre-

lation learning (uNCL). The method is an application of the negative correlation learning

algorithm introduced by Liu and Yao (1999) and later popularised by Brown, Wyatt, and

Tino (2005), which is a popular algorithm to train ensembles of neural networks in the

machine learning literature. My paper examined the performance of uNCL, and showed

that it usually performs on par or better than other methods in the simulations.

Additionally, the empirical application indicates that uNCL is the only method that

can outperform the uOLS benchmark in terms of R2OoS, and that it is the only method

that has substantial predictive power after the 90s (if nonnegativity restrictions are im-

posed).

Interestingly, my simulations also establish uNCL as a stage one IR method. This

is done by estimating the bias-variance decomposition of uNCL, whereby I show that

uNCL optimises the bias-variance trade-off by setting the value of its hyperparameter,
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λ. This result shows a serious break with previous literature on the NCL algorithm in

the machine learning community. There, it was shown that uNCL trains a set of neural

networks that have low covariance, but at the cost of decreasing the individual accuracy

of the neural networks(Brown, Wyatt, and Tino, 2005). As such, NCL trains a set of

neural networks that are inaccurate by themselves, but work well in aggregate. This

lead to an accuracy-diversity trade-off, where the accuracy (squared bias plus individual

network variance) of the individual models is optimised against the diversity (covariance)

of the models(Brown, Wyatt, and Tino, 2005). My simulation show by estimating the

bias-variance and bias-variance-covariance decomposition of uNCL that my method does

not optimise this accuracy-diversity trade-off, and the covariance component is mostly

flat in the hyperparameter λ.

Although my paper showed that uNCL works differently from previous applications of

the NCL algorithm, it did not answer where exactly this deviation comes from. I noted

some differences between uNCL and previous applications. These were a) the linearity of

the models in uNCL, b) the linearity of the data generating process in my simulations,

and c) the fact that I only give a subset (exactly one) of the predictors as inputs to each

individual model, whereas previous applications gave all of the predictors as inputs to each

individual model. I believe further research should be carried out to investigate which (if

any) of these differences can be regarded as the ’point of deviation’ for the uNCL.

Additionally, I note that a ’supermodel’ combination of uNCL and CSR has not been

considered in this paper. The uNCL assumes that the individual models are univariate;

however, the NCL algorithm could be applied to train multivariate, such as 2-variate, 3-

variate, etc. models as well. As such, this ’supermodel’ would have two hyperparameters.

One of the would be the λ, which is the hyperparameter of the NCL algorithm; the other,

k would determine the number of predictors in each individual model. In this paper, I

only considered the special case where either k = 1 or λ = 0; further research should be

carried out to test the performance of the more general ’supermodel’.

I also applied the IR methods to forecasting the US equity premium. The results

are in agreement with the simulations, showing that stage one IR-s perform the best.

Notably, the uNCL is the only method that outperforms the uOLS (with nonnegativity

restrictions imposed). Furthermore, whereas most models underperform the historical

average benchmark after the 90s, the nonnegativity restricted uNCL actually achieves

a slightly better performance than the historical average even in the later half of the

evaluation sample.

Research in finance has widely applied the LASSO recently (Rapach, Strauss, and

Zhou, 2013), (Freyberger, Neuhierl, and Weber, 2020), (Gu, Kelly, and Xiu, 2020), (El-

liott, Gargano, and Timmermann, 2013), (Kozak, Nagel, and Santosh, 2020). My results

indicate that from the perspective of forecasting power, the LASSO is suboptimal. I

show that both my new method, the uNCL, and the complete subset regression of Elliott,
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Gargano, and Timmermann (2013), which, somewhat surprisingly, has not seen many

applications, outperforms it in most cases. I note that Rapach and Zhou (2020) also finds

that selecting a subset of the univariate forecasts from those making up the uOLS by the

LASSO, and then taking an equal-weighted average of the selected forecasts is superior

to simply penalising the multivariate ’kitchen sink’ model by the LASSO in forecasting

the equity premium. This result bears a close resemblance to my findings. They both

imply that the popularity of the LASSO in financial applications is to a degree unearned

from a predictive ability standpoint. Instead, my paper suggests that the concept of ’in-

verse regularisation’, that is, optimising the bias-variance trade-off implicit in the uOLS,

is superior to traditional regularisation methods like the LASSO or ridge regression.
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Simulation Appendix

A.1 Error Decompositions

A.1.1 Lambda sequence for ELASSO and ERidge

It is also worth mentioning that this method of choosing the λ sequence is a slight mod-

ification of the method R’s glmnet package uses to choose the λ sequence by default

and this λ sequence is recommended by Friedman, Hastie, and Tibshirani (2010). The

modification is that I choose the λ values so that their fourth powers are equidistant on

[0,maxlambda4], whereas the default method chooses the λ values so that their natural

logarithms are equidistant on [ln(10−4), ln(λmax)]. The change is motivated by the fact

that the natural logarithm-based method would result in a λ sequence that has many

values near the max (because of the concavity of the ln function) whereas I want more

values near the min, 0. This makes it possible to check whether a low or medium level of

shrinkage towards equal weights, or in other words, a stronger inverse regularisation leads

to superior performance.

A.1.2 Lambda sequence for LASSO and ridge

A.1.3 Simulation figures
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Figure A.1: Bias-variance decomposition of the LASSO. The x axis has the indices of the λ hyperpa-
rameter. λ = λmax is denoted by index 1, while λ = 0 is denoted by the highest index.

Figure A.2: Bias-variance decomposition of the ridge regression. The x axis has the indices of the λ

hyperparameter. λ = λmax is denoted by index 1, while λ = 0 is denoted by the highest index.
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Figure A.3: Bias-variance decomposition of the ELASSO. The x axis has the indices of the λ hyper-
parameter. λ = λmax is denoted by index 1, while λ = 0 is denoted by the highest index. Note that
some extremely high values of the variance component are not plotted on the right end of the plot. This
is meant to make the range of the y axis smaller, so that the values actually on the plot are easier to
interpret.

Figure A.4: Accuracy-diversity decomposition of CSR. The x axis has the dimension of the individual
models, k in increasing order. Note that k = 8 is not included, because it has no covariance value (there
is only one individual model). ’Accuracy’ is defined as the sum of the bias and variance components from
the bias-variance-covariance decomposition, while ’diversity’ is defined as the covariance component,
following Brown, Wyatt, and Tino (2005)
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B.1 Results with Fixed Hyperparameters
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λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R2

OoS 2.40 2.44 2.51 2.61 2.73 2.86 2.99 3.07 3.03 2.59 -2.66
p-value 0.27 0.30 0.35 0.40 0.46 0.54 0.65 0.81 1.10 1.73 5.98
CER 2.49 2.59 2.79 2.99 3.23 3.49 3.75 3.92 3.93 3.77 6.13

Table B.1: uNCL unrestricted evaluation results.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R2

OoS 2.40 2.44 2.54 2.68 2.84 3.03 3.15 3.20 3.25 3.71 4.55
p-value 0.27 0.29 0.32 0.34 0.36 0.36 0.34 0.37 0.39 0.22 0.09

Table B.2: uNCL unrestricted evaluation results.

k 1 2 3 4 5 6 7 8 9 10
R2

OoS 2.40 3.27 3.06 2.14 0.79 -0.85 -2.73 -4.82 -7.12 -9.60
p-value 0.27 0.46 0.68 0.95 1.29 1.73 2.25 2.87 3.56 4.31
CER 2.49 4.05 3.99 4.30 4.81 5.29 5.68 6.06 6.21 6.20
k 11 12 13 14 15
R -12.23 -14.96 -17.74 -20.54 -23.36

p-value 5.11 5.92 6.69 7.38 7.88
CER 6.14 6.06 6.04 6.03 6.05

Table B.3: CSR nonnegativity restricted evaluation results.

k 1 2 3 4 5 6 7 8 9 10
R2

OoS 2.40 3.31 3.38 3.42 3.17 2.69 1.91 0.76 -0.56 -2.02
p-value 0.27 0.28 0.24 0.17 0.15 0.17 0.22 0.35 0.55 0.89

k 11 12 13 14 15
R2

OoS -3.57 -5.11 -6.63 -8.15 -9.71
p-value 1.37 1.94 2.58 3.25 3.92

Table B.4: CSR nonnegativity restricted evaluation results.
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Unrestricted Nonnegatitivty rest
λ index R2

OoS p-value CER R2
OoS p-value

1 1.40 5.34 2.57 1.56 3.83
2 1.09 6.21 1.97 1.22 4.88
3 0.64 7.15 1.23 0.83 6.32
4 0.04 8.09 0.48 0.45 7.92
5 -0.70 8.99 -0.16 0.28 8.17
6 -1.59 9.84 -0.72 0.09 8.49
7 -2.65 10.61 -1.07 -0.03 8.45
8 -3.88 11.36 -1.27 -0.06 8.08
9 -5.30 12.05 -1.45 -0.06 7.59
10 -6.91 12.70 -1.59 -0.03 7.17
11 -8.72 13.29 -1.74 -0.02 6.87
12 -10.75 13.83 -1.86 -0.08 6.89
13 -13.00 14.34 -1.93 -0.12 6.90
14 -15.51 14.83 -1.98 -0.17 6.98
15 -18.28 15.31 -1.99 -0.27 7.24
16 -21.33 15.77 -2.00 -0.40 7.61
17 -24.66 16.17 -1.99 -0.57 8.03
18 -28.30 16.54 -2.01 -0.74 8.43
19 -32.28 16.89 -2.08 -0.92 8.81
20 -36.62 17.21 -2.12 -1.11 9.16
21 -41.34 17.50 -2.15 -1.33 9.49
22 -46.47 17.77 -2.18 -1.57 9.83
23 -52.05 18.03 -2.20 -1.85 10.20
24 -58.11 18.29 -2.22 -2.17 10.59
25 -64.70 18.56 -2.24 -2.53 11.00
26 -71.85 18.83 -2.27 -2.93 11.41
27 -79.59 19.06 -2.30 -3.38 11.83
28 -88.02 19.30 -2.33 -3.88 12.25
29 -97.18 19.53 -2.36 -4.44 12.67
30 -107.15 19.75 -2.39 -5.06 13.09
31 -118.00 19.97 -2.40 -5.75 13.51
32 -129.85 20.20 -2.39 -6.51 13.93
33 -142.77 20.45 -2.39 -7.37 14.37
34 -156.92 20.69 -2.38 -8.32 14.81
35 -172.44 20.92 -2.36 -9.39 15.26
36 -189.57 21.19 -2.34 -10.59 15.75
37 -208.54 21.48 -2.33 -11.95 16.24
38 -229.61 21.79 -2.30 -13.49 16.75
39 -253.16 22.12 -2.27 -15.22 17.28
40 -279.59 22.46 -2.25 -17.21 17.83
41 -309.38 22.78 -2.22 -19.50 18.42
42 -343.28 23.11 -2.19 -22.14 19.03
43 -382.40 23.50 -2.14 -25.27 19.66
44 -428.09 23.86 -2.07 -29.02 20.31
45 -482.63 24.19 -2.00 -33.71 21.08
46 -549.61 24.64 -1.94 -39.62 21.87
47 -634.42 24.96 -1.90 -47.44 22.69
48 -748.92 25.14 -1.89 -58.75 23.62
49 -914.23 26.22 -1.90 -76.49 24.64
50 -62298.30 71.28 -3.43 -1234.2 67.08

Table B.5: ELASSO evaluation results.
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Empirical Application Appendix 1. Results with Fixed Hyperparameters

Unrestricted Nonnegatitivty rest
λ index R2

OoS p-value CER R2
OoS p-value

1 0.98 6.67 1.97 1.09 5.49
2 0.97 6.68 1.97 1.09 5.51
3 0.97 6.69 1.96 1.09 5.52
4 0.97 6.70 1.96 1.08 5.53
5 0.97 6.70 1.96 1.08 5.54
6 0.96 6.71 1.95 1.08 5.55
7 0.96 6.72 1.95 1.07 5.57
8 0.96 6.73 1.94 1.07 5.58
9 0.95 6.74 1.94 1.07 5.59
10 0.95 6.74 1.94 1.06 5.61
11 0.95 6.75 1.93 1.06 5.62
12 0.95 6.76 1.93 1.05 5.63
13 0.94 6.77 1.92 1.05 5.65
14 0.94 6.78 1.92 1.05 5.67
15 0.93 6.79 1.91 1.04 5.68
16 0.93 6.80 1.91 1.04 5.70
17 0.93 6.81 1.90 1.03 5.71
18 0.92 6.83 1.90 1.03 5.73
19 0.92 6.84 1.89 1.03 5.75
20 0.91 6.85 1.89 1.02 5.77
21 0.91 6.86 1.88 1.02 5.79
22 0.90 6.88 1.87 1.01 5.81
23 0.90 6.89 1.87 1.00 5.83
24 0.89 6.91 1.86 1.00 5.85
25 0.89 6.92 1.85 0.99 5.88
26 0.88 6.94 1.85 0.99 5.90
27 0.88 6.96 1.84 0.98 5.93
28 0.87 6.97 1.83 0.97 5.96
29 0.86 6.99 1.82 0.96 5.99
30 0.86 7.01 1.81 0.96 6.02
31 0.85 7.03 1.80 0.95 6.05
32 0.84 7.06 1.79 0.94 6.09
33 0.83 7.08 1.78 0.93 6.13
34 0.82 7.11 1.77 0.92 6.17
35 0.81 7.14 1.75 0.91 6.22
36 0.80 7.17 1.74 0.89 6.27
37 0.78 7.20 1.72 0.88 6.32
38 0.77 7.24 1.70 0.87 6.38
39 0.75 7.28 1.68 0.85 6.44
40 0.74 7.33 1.66 0.83 6.51
41 0.72 7.38 1.63 0.81 6.60
42 0.69 7.45 1.61 0.79 6.69
43 0.66 7.52 1.57 0.76 6.81
44 0.63 7.60 1.53 0.73 6.94
45 0.59 7.71 1.48 0.69 7.10
46 0.53 7.84 1.42 0.64 7.30
47 0.46 8.03 1.33 0.57 7.57
48 0.34 8.31 1.19 0.46 8.01
49 0.09 8.86 0.92 0.29 8.65
50 -61622.64 71.46 -3.58 -1259.83 67.93

Table B.6: ERidge evaluation results.
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Empirical Application Appendix 1. Results with Fixed Hyperparameters

Unrestricted Nonnegatitivty rest
λ index R2

OoS p-value CER R2
OoS p-value

1 0.00 50.05 0 0.00 50.05
2 -0.13 38.70 3.63 -0.07 36.97
3 -0.61 32.86 4.72 0.05 22.19
4 -1.68 25.03 4.75 0.13 9.01
5 -3.31 17.01 5.07 -0.52 3.97
6 -4.96 10.66 5.43 -1.71 2.52
7 -7.55 9.06 5.71 -3.73 3.10
8 -10.14 7.96 5.94 -5.77 3.79
9 -12.12 7.15 6.18 -6.86 3.92
10 -13.89 6.52 6.32 -7.65 3.71
11 -15.10 5.50 6.40 -7.90 2.87
12 -15.93 4.96 6.50 -7.89 2.41
13 -16.49 4.90 6.59 -7.70 2.22
14 -17.25 5.11 6.53 -7.74 2.29
15 -17.94 5.28 6.45 -7.87 2.43
16 -18.59 5.59 6.39 -8.03 2.62
17 -19.13 5.93 6.35 -8.13 2.81
18 -19.72 6.29 6.32 -8.36 3.01
19 -20.30 6.57 6.28 -8.63 3.19
20 -20.83 6.81 6.25 -8.84 3.31
21 -21.31 7.04 6.22 -9.00 3.40
22 -21.72 7.20 6.20 -9.12 3.46
23 -22.04 7.34 6.18 -9.23 3.54
24 -22.30 7.45 6.16 -9.33 3.63
25 -22.51 7.54 6.14 -9.41 3.70
26 -22.67 7.61 6.13 -9.48 3.75
27 -22.80 7.67 6.12 -9.53 3.80
28 -22.90 7.70 6.11 -9.57 3.83
29 -22.98 7.72 6.11 -9.59 3.84
30 -23.04 7.75 6.10 -9.61 3.86
31 -23.09 7.76 6.10 -9.63 3.87
32 -23.13 7.78 6.10 -9.64 3.88
33 -23.17 7.80 6.09 -9.65 3.89
34 -23.19 7.81 6.09 -9.66 3.89
35 -23.21 7.82 6.09 -9.66 3.90
36 -23.23 7.83 6.08 -9.67 3.90
37 -23.24 7.83 6.08 -9.67 3.90
38 -23.25 7.84 6.08 -9.67 3.91
39 -23.26 7.84 6.08 -9.67 3.91
40 -23.29 7.86 6.08 -9.68 3.92

Table B.7: LASSO evaluation results.
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Empirical Application Appendix 1. Results with Fixed Hyperparameters

Unrestricted Nonnegatitivty rest
λ index R2

OoS p-value CER R2
OoS p-value

1 0.15 0.39 0 0.15 0.39
2 0.19 0.39 3.63 0.19 0.39
3 0.24 0.39 4.72 0.24 0.39
4 0.30 0.40 4.75 0.30 0.40
5 0.37 0.40 5.07 0.37 0.40
6 0.47 0.41 5.43 0.47 0.41
7 0.58 0.42 5.71 0.58 0.42
8 0.71 0.43 5.94 0.71 0.43
9 0.88 0.44 6.18 0.88 0.44
10 1.06 0.46 6.32 1.06 0.46
11 1.27 0.48 6.40 1.27 0.48
12 1.51 0.51 6.50 1.51 0.51
13 1.75 0.54 6.59 1.75 0.54
14 2.00 0.59 6.53 2.00 0.59
15 2.22 0.64 6.45 2.31 0.49
16 2.41 0.72 6.39 2.60 0.43
17 2.52 0.80 6.35 2.85 0.39
18 2.53 0.91 6.32 2.97 0.38
19 2.41 1.04 6.28 2.97 0.34
20 2.12 1.20 6.25 2.90 0.32
21 1.65 1.37 6.22 2.75 0.32
22 0.95 1.56 6.20 2.46 0.33
23 0.04 1.77 6.18 1.95 0.38
24 -1.08 1.98 6.16 1.27 0.45
25 -2.41 2.20 6.14 0.44 0.55
26 -3.88 2.42 6.13 -0.47 0.66
27 -5.47 2.62 6.12 -1.47 0.79
28 -7.11 2.83 6.11 -2.46 0.93
29 -8.75 3.02 6.11 -3.41 1.06
30 -10.34 3.22 6.10 -4.24 1.16
31 -11.83 3.41 6.10 -4.97 1.26
32 -13.21 3.60 6.10 -5.62 1.37
33 -14.45 3.81 6.09 -6.17 1.50
34 -15.57 4.02 6.09 -6.65 1.64
35 -16.56 4.25 6.09 -7.05 1.79
36 -17.45 4.50 6.08 -7.39 1.94
37 -18.23 4.76 6.08 -7.67 2.10
38 -18.92 5.02 6.08 -7.90 2.24
39 -19.54 5.30 6.08 -8.12 2.40
40 -23.26 7.76 6.08 -9.64 3.87

Table B.8: Ridge evaluation results.
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A pénzügyi ökonometria területén az elmúlt években egyre nagyobb népszerűséggel b́ırnak

a gépi tanulási módszerek az empirikus alkalmazásokban. Így például a részvényportfoliók

keresztmetszetét Gu, Kelly és Xiu (2020), kötvényportfoliók keresztmetszetét Bianchi,

Buchner és Tamoni (2021), valamint Hollstein és Prokopczuk (2022) faktorportfóliók

hozamának előrejelezhetőségét vizsgálja gépi tanulási módszerek alkalmazásával. Emellett

a gépi tanulási módszereket a részvények kockázati prémiumának idősoros előrejelzésére

is használták az elmúlt években (Rapach, Strauss és Zhou, 2013, Chinco, Clark-Joseph

és Ye, 2019, Freyberger, Neuhierl és Weber, 2020, Kozak, Nagel és Santosh, 2020). Ezen

tanulmányok mindegyikben szerepel, és általánosságban a lineáris modellek körén belül a

legnépszerűbbnek bizonyul a LASSO.

A dolgozatom ehhez az irodalomhoz több ponton is hozzájárul. A kiindulási pontja az

empirikus pénzügyi alkalmazásokban ’előrejelzések kombinálása’ (forecast combination)

névvel illetett módszer. Ennek lényege, hogy ha egy adott változót több változóval sz-

eretnénk előrejelezni, akkor külön-külön mindegyik változóval becsülünk egy egyváltozós

lineáris regressziós modellt (amelynek paramétereit OLS-sel, azaz a becsült értékek mintán

való négyzetes hibájának minimalizálásával kapunk meg), majd az ezen modellekből kapott

előrejelzések átlagát vesszük, mint a ’végső’ előrejelzésünket. Ez a módszer lényegében

egy a regressziós együtthatók 0 felé való regularizásával ekvivalens (Rapach, Strauss és

Zhou, 2010), és jellemzően zajos idősorok és sok, egymással korreláló prediktor esetén

teljeśıt jól. A dolgozatomban azt álĺıtom, hogy ennek a módszernek bizonyos esetek-

ben túl nagy a torźıtása a(z egyébként viszonylag kicsi) varianciájához képest, és ezért

nem teljeśıt jól. Ellentétben a hagyományos regularizációs módszerekkel, mint például

a korábban emĺıtett, nagyon népszerű LASSO vagy ridge regresszió, az ’előrejelzések

kombinálása’ módszernek nincsen egy további hiperparamétere, amellyel képes lenne a

’torźıtás-variancia átváltást’ (bias-variance trade-off) optimalizálni. Ezért olyan módsze-

reket vizsgálok, amelyek a) az ’előrejelzések kombinálása’ módszer általánośıtásai, b)

rendelkeznek egy hiperparaméterrel, amellyel képesek a torźıtás-variancia átváltást opti-

malizálni, és c) az ’előrejelzések kombinálása’ módszert a legnagyobb torźıtású és legkisebb

varianciájú speciális esetként adják vissza. Az ilyen módszereket az ’előrejelzések kom-

binálásának inverz regularizációja’ névvel illetem, és a ćımben is erre utalok. Ezeket az
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inverz reguralizációs (IR) módszereket két nagy csoportba kategorizáltam. Első szakas-

zosnak (’stage I’) nevezem azokat a módszereket, amelyek az ’előrejelzések kombinálásán’

az ’első szakaszban’, azaz az egyedi modelleken keresztül (például másféle becslése a

modelleknek, vagy másféle struktúra) változtatnak. Második szakaszosnak (’stage II’)

nevezem azokat a módszereket, amelyek az előrejelzések kombinálásán úgy változtatnak,

hogy továbbra is az egyváltozós, OLS-sel becsült regressziók becsült értékeit átlagoljuk,

azonban nem egyenlő, hanem attól eltérő súlyokkal.

Az első nagy hozzájárulásom az irodalomhoz az előrejelzések kombinálásának inverz

reguralizációja, mint fogalomrendszer bevezetése, és az irodalomban már meglévő egyes

módszerek besorolása a fent emĺıtett kategóriákba. A második nagy hozzájárulásom, hogy

szimulált adatsorokon összehasonĺıtok bizonyos első szakaszos (’complete subset regres-

sion (CSR)’ nevű módszer, Elliot és Timmermann (2013)-ből, illetve egy saját módszer,

az ’uNCL’), második szakaszos (ELASSO és ERidge, Diebold és Shin (2019)-ből), és

’hagyományos’ regularizációs módszereket (LASSO és ridge regressziók). A szimuláció

eredményei azt mutatják, hogy a) csak az első szakaszos IR módszerek képesek jav́ıtani

a ’előrejelzések kombinálása’ módszer előrejelzési hibáját és b) a legjobban teljeśıtő két

módszer a vizsgált esetekben jellemzően a két első szakaszos IR módszer, a CSR és az

uNCL, megelőzve az empirikus applikációkban nagyon népszerű LASSO-t és ridge re-

gressziót. Az eredményeket először az adott módszerek hiperparamétereinek optimális

megválasztása esetén vizsgálom, majd azt is megmutatom, hogy a módszereket pon-

tosságának sorrendjén az sem változtat, ha a hiperparaméterek értékét az adatokon való

kvázi ’múltbeli’ teljeśıtményük alapján választom meg.

A harmadik nagy hozzájárulásom az irodalom az, hogy kidolgozok egy új előrejelzési

módszert, amelynek az ’egyváltozós negat́ıv korrelációs tanulás (’univariate negative cor-

relation learning’, uNCL) nevet adom. A módszer egy, a gépi tanulási irodalomban

neurális hálókból álló kombinált modellek (’ensemble’-k) tańıtására használt algoritmus,

a ’negat́ıv korrelációs tańıtás’ (’negative correlation learning’, NCL) újszerű alkalmazása.

Ennek a módszernek a lényege, hogy az egyedi neurális hálók paramétereit nem úgy

választja meg, hogy külön-külön minimalizálja a hálók előrejelzésének négyzetes hibáját,

hanem figyelembe veszi az egyes hálók közötti kapcsolatot is. Így olyan hálókat tańıt,

amelyek külön-külön pontatlanok, de kombinált modellként pontosabbak, mintha sz-

implán a négyzetes hiba minimalizálásával tańıtottuk volna az egyes modelleket. A dolgo-

zatomban ezt az eljárást alkalmaztam az előrejelzések kombinálása módośıtására azáltal,

hogy az egyváltozós regressziók paramétereit nem OLS-sel, hanem az NCL algoritmussal

becsültem meg. A szimuláció eredményei alapján az ı́gy kapott módszer jellemzően a két

legjobban teljeśıtő módszer valamelyike. Emellett azt is megmutatom, hogy az uNCL je-

lentősen különbözőbben ’viselkedik’, mint az NCL viselkedett a korábbi, neurális hálókon

való alkalmazásokban. Mı́g a neurális hálók esetében a módszer az egyes hálók pon-

tosságát feláldozva az egyes hálók kovarianciájának (’diverzitásának’) csökkentésével egy
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úgynevezett ’pontosság-diverzitás átváltás’ optimalizálásával ért el jobb eredményeket, ad-

dig az uNCL esetében az egyedi modellek előrejelzéseinek kovarianciája közel konstans, és

ehelyett a torźıtás-variancia átváltás optimalizálásával jav́ıt az előrejelzések kombinálása

teljeśıtményén.

A szimulációs elemzés mellett a dolgozat tartalmaz egy részletes empirikus applikációt

is. Ebben a szimulációban is használt módszerek teljeśıtményét hasonĺıtom össze egy jól

ismert és praktikus szempontból is releváns adatsoron, az Egyesült Államok részvénypiaci

kockázati prémiumának előrejelzésén. Az alkalmazás eredményei validálják a szimulációs

eredményeket; a módszerek sorrendje és a fő megállaṕıtások változatlanok a szimulációhoz

képest. A legjobban teljeśıtő módszer az általam kidolgozott uNCL, a második legjobban

teljeśıtő módszer pedig a másik első szakaszos IR módszer, a CSR. Az eredmények robusz-

tusak a hiperparaméterek értékeinek múltbeli teljeśıtményen alapuló megválasztására, a

kiértékelési időszakra és a negat́ıv előrejelzések lehetőségének kizárására.

A dolgozat legfőbb tanulsága az, hogy bizonyos első szakaszos inverz regularizációs

módszerek, ı́gy a CSR és az általam kifejlesztett uNCL jellemzően jobban teljeśıtenek,

mint az pénzügyi előrejelzések empirikus irodalmában az elmúlt években legnépszerűbb

lineáris módszer, a LASSO. Ezáltal az eredmények azt indikálják, hogy az emĺıtett módsze-

reknek sokkal nagyobb szerepet kellene adni a jövőbeli empirikus alkalmazásokban. Emel-

lett azt is mutatják az eredmények, hogy a LASSO egyedüli ’benchmark’-ként való szere-

peltetése nem megfelelő gyakorlat annak gyakran szuboptimális teljeśıtménye miatt.
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Angol Magyar
accuracy-diversity trade-off pontosság-diverzitás átváltás

bias-variance trade-off torźıtás-variancia átváltás
bias-variance-covariance trade-off torźıtás-variancia-kovariancia átváltás
certainty equivalent return (CER) biztos hozam-egyenértékes

equity premium részvénypiac kockázati prémiuma
complete subset regression összes részhalmaz regresszió

inverse reguralisation inverz regularizáció
forecast combination előrejelzések kombinálása

data generating process (DGP) adatgeneráló folyamat
machine learning gépi tanulás

mean squared error (MSE) átlagos négyzetes hiba
negative correlation learning negat́ıv korrelációs tańıtás

neural network neurális háló
neural network ensemble kombinált neurális hálók

ordinary least squares (OLS) legkisebb négyzetek módszere
shrinkage (regressziós együtthatók) ’zsugoŕıtása’

regularisation regularizáció
univariate negative correlation learning egyváltozós negat́ıv korrelációs tańıtás
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