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Chapter 1
Introduction

A range accrual is an exotic derivative that accumulates coupon payments when the
underlying asset stays within a range. This product is used with many different underlying
assets, such as interest rates, stocks, or foreign exchange rates. In the dissertation, I focus
on equity markets. My main motivation was that range accruals are usually described in
an interest rate market, and I aimed to see what model might be suitable in an equity
environment. Therefore, the aim of this thesis is to give a detailed description of range
accrual products written on equity underliers including the pricing methodology and the
calibration process. Before dwelling on the product and model-specific details, I give a
thorough description of the different model families used for equity assets, highlighting the
strengths and weaknesses of each model. From the presented models, two are chosen to
be the focus of analysis: the time-dependent Black-Scholes model and the Heston model.
In my analysis, I show how these two models can be calibrated to market data, and how
the range accrual is priced in each model. The given pricing solutions are analytic or
semi-analytic, but I also detail the simulation of the Heston model. I do this because
pricing via simulation is more robust in the sense that if the paths are already generated,

any exotic version of the range accrual can be priced. The thesis is structured as follows.

In Chapter [2] T describe the product’s payoff, including the single period and multi-
period versions. I also list several exotic extensions which can be added to this product.
At the end of the chapter, a literature review is given, where the previous works on range
accrual pricing are summarised.

In Section I give an overview of range accrual markets, detailing the underliers
which are in use and giving an estimate of the size of the market. Following that, in
Section [3.2] T describe equity modelling in detail. I list different classes of models which
are used for equity derivatives. This section and Section [3.3] show the strengths and
weaknesses of different models and aim to justify using the Heston model.

Chapter [4] begins by introducing some useful concepts used throughout the thesis.

Then, a relation between digital options and range accruals is derived. In Sections
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.4 the two market models are introduced. Analytic formulae for vanilla and digital
options are given in both models, as well as the calibration procedure for both. In Section
the simulation of the Heston model is detailed.

In the last chapter, the empirical results are presented. Section [5.1| compares the fit
of the time-dependent Black-Scholes and Heston models to market data. In section [5.3

the sensitivity analysis of Heston model parameters and product parameters is given.



Chapter 2
Product description

In this section, I give a description of the range accrual and an overview of the literature

on the product’s pricing.

2.1 What is a range accrual?

The range accrual note (RAN) is an exotic derivative that entitles the holder to coupon
payments when the underlying asset is in a prespecified range. For every observation
period when the underlier is within the range, the product accrues coupons, hence the
name. There can be one or more periods, and payments are made after each period.
When there is only one coupon determination period, the product pays at maturity, and
it is referred to as a single period RAN. Otherwise, it is a multi-period RAN. The payoft

of a single period range accrual is the following.

[)HY()H = ()ll[)()]l—n
C
N

N (2.1)
n = Z 1{lower range<S;<upper range}

i=1
Where 1 denotes the indicator function, N is the total number of observation periods,
and n is the number of periods when the underlying was in the prespecified range. For
example, consider a single period range accrual with maturity of one year and a coupon
payment of 10. If out of the 252 business days the closing price of the underlying was
quoted in the prespecified range 132 times, then the payoff at maturity is 10% = 5.238.

Therefore, in its simplest form, the range accrual pays out the proportion of days the

underlier spent in the range multiplied by a constant.

A multi-period range accrual is just a series of single periods RANs, where coupon

payments are made at the end of each coupon determination period. The payoff of a
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multi-period RAN with d number of coupon determination periods is

d

payoff = Z coupon
j=1

nj
J N]
N (2.2)

n; = E 1{lower range; <S; <upper range; }
=1

The payoft is illustrated in Figure [2.1 The product accrues coupons in each period, pays
out the coupon at the end of the period, and then starts accumulating coupons again. It
can be seen that the lower and upper barriers of the range can change from one coupon
determination period to another. It is also possible to only have one barrier, and the
other is regarded as infinity. This is especially prevalent in equity markets. The accrued
coupon can also change across periods, though it is not common practice. With these
features, the range accrual can be tailored to many different market views. The frequency
of observations is an implicit parameter of the product. In theory, weekly, monthly, or any
custom frequency can be used, however, the market practice is to use daily observations.

It can be seen from the payoff that the price of the range accrual does not only depend

(coupon payment 1] (coupon payment 2| (coupon payment 3]
130 1
120 == ————————————
AN )\
1104 = === ==f-=- -
100 4
0 1 2 3

Figure 2.1: A multi-period RAN with a maturity of 3 years and 3 coupon periods

on the final asset price, as in the case of a European option. The whole trajectory of the
underlying’s price is needed to calculate the payoff. Moreover, range accruals are rarely
traded in this basic form, usually, some extra features are added, which further complicate

the pricing.
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2.2 Structured notes

A range accrual is referred to as a structured derivative or structured product. The
term is a wrapper for any pre-packaged financial product which facilitates a custom return
structure on an investable asset (Chan et al.,2019). In practice, issuers take a traditional
security, such as a bond, and replace the payment with something non-traditional, for
example, interest rate swap payments or equity-linked range accrual payments. There are
many different variants both for the base security and the payment, even capital protection
can be chosen. These products are usually made because standardized contracts do not
match the investor’s view.

Range accrual notes are usually sold as a structured product, more precisely in the
form of a bond, whose payments are the range accrual’s coupon payments. This means
that the product not only entitles the holder to the coupon payments, but to the payment
of the principal amount at maturity as well. The coupons are usually expressed as a
percentage of the principal amount. The bond structure is a key feature because it makes
this product highly subjected to the credit risk of the issuerﬂ This additional uncertainty
is taken into consideration through credit value adjustments, which are usually done
separately from the actual pricing. Further information on credit risk can be found in
(Hull, 2012)), and a detailed description of credit value adjustment is given in (Brigo et al.,
2013). I will not detail the credit risk methodology, I will only focus on the pricing of the
range accrual coupon payments.

Another problem that arises from the product’s structured note nature is that it is not
standardized and is usually not exchange-traded. Therefore, there is no easily accessible
benchmark price which can be compared to a model result. In an industry environment,
it would be theoretically possible to gain access to benchmark data, but it is not feasible
for this thesis.

2.3 Exotic features

Despite that the range accrual is already highly customizable, investors had even more
specific demands regarding payoffs. This led to the inclusion of additional exotic payoff
features on top of the traditional range accrual. These variants became very successful,
even so, that it is now rare to see a ”vanilla” range accrual without any additional feature.
The most common exotic features of range accruals based on (Tan, 2010) and (Chan et al.,
2019) are listed.

1Credit risk is present in any product offering future cash flows, I mean that it is several magnitudes

higher if a principal amount is part of the product.
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Accrual/decrual: This variant can not only increase the number of days when
coupons are accrued but can also decrease it. The decrual range can be different

from the accrual range. This feature cheapens the product.

Target redemption note (TARN): The TARN feature repays the note with the
principal if the accumulated coupons reach a given level. Meaning that the return

is capped by this level, but the investor gets the notional back immediately.

Barriers: Range accruals can be equipped with knock-in and knock-out barriers
similarly to vanilla products. This can make the product cheaper at the risk of

losing coupon payments.

Callable/autocallable: Similarly to a traditional callable bond, the holder has a
short call option on the product, meaning the issuer can decide to buy back the
range accrual at a given price. This additional short position cheapens the product.
An autocallable note is automatically repaid to the holder if certain conditions are
met. It is still a short position but with the autocall feature, the holder is less

subjected to the issuer’s actions.

Basket underlier: In this variant, the underlier is not a single asset but rather a
basket of assets. The range accrual coupon payment is linked to the performance
of assets in the basket. It is also possible to combine different asset classes, such as

equity, interest rate, and foreign exchange.

Floating range accrual: A floating range accrual does not have a fixed coupon,
rather the coupon is determined at the start of each coupon determination period.

It can be linked to the same underlying or to some other reference index such as

LIBOR.

The list is non-exhaustive, there are many other possibilities to extend the payoff of

a range accrual note. I will not go into detail about the pricing methodology of exotic

features, because they are too specific for the scope of this thesis.

2.4 Literature overview

A general description of the range accrual product is given in several books focusing

on structured derivatives. Two examples mentioned previously are (Chan et al., 2019)

and (Tan, 2010). These books also contain the description of exotic features mentioned
in Section 2.3l
The first papers dedicated to range accrual pricing were published in the 1990s. It

was first proposed by (Turnbull, [1995) that whether the underlying is quoted in the range
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or not can be thought of as a binary option with payoff delayed to the end of the coupon
determination period. Therefore, the range accrual can be built up from a series of
digital options. The author gives a closed-form pricing formula for the range note in the
Heath-Jarrow-Morton framework described in (Heath et al.,|1992)). Following on this idea,
(Navatte & Quittard-Pinon, [1999)) gives a more simple derivation of the range accrual’s
price in the same framework. These two articles are considered the first comprehensive
descriptions of range accrual pricing. (Nunes, 2004) generalized the pricing from the single
factor to the multifactor Gaussian Heath-Jarrow-Morton framework.

Research in the following years focused on finding pricing solutions under more realistic
models for the underlying’s price evolution, while the overall approach to pricing stayed
the same. The most researched asset class is interest rates as range accrual notes are
most often used with interest rate underliers. (Chiarella et al.,|2014) proposes a pricing
method when the underlying follows an affine Wishart process. (Huang, [2011)) describes
pricing in an affine market model where both the drift and volatility are stochastic and
jumps are allowed. (Lin et al., [2017)) provides pricing formulae in the LIBOR market
model. Regarding the foreign exchange market, (Liao & Hsu, 2009) and (Li et al., 2020)
detail the pricing of quanto range accruals.

The area of equity-linked range accruals is not as well-researched, however, there is
vast research conducted on equity market models in general. In the following sections, I
often use the books of (Gatheral, 2011) and (Oosterlee & Grzelak, [2019)) when describing
equity modelling. These books also serve as a basis for the comparison of different market
models in Section 3.2l The latter book is also referenced in the section where the pricing in
the time-dependent Black-Scholes model is discussed. For the pricing of the range accrual
note in the Heston model, the works of (Heston, [1993) and (Lazar, [2003)) are important,
as they show how a vanilla call option and a digital option can be priced under the Heston
stochastic volatility model. Regarding the calibration of the Heston model, I use results
from (Mrazek & Pospisil, 2017).

14



Chapter 3

Market models

In this section, I give an overview of the market of range accruals, showcasing dif-
ferent asset classes. I describe equity dynamics in greater detail, giving an overview of

deterministic and stochastic volatility models.

3.1 Range accrual market

Range accruals are not restricted to a single asset class, many different types of under-
liers can serve as the reference index. Interest rate linked range accruals are very common
as it is a principal-protected investment similar to other fixed-income products while hav-
ing the potential to gain an above-market coupon. The most common underlying interest
rates are the 3, 6 and 12-month USD LIBOR, but swap rates or US Treasury rates are
also used. Typically, interest rate linked range accruals are long-term investments with
maturities of 10 years or more. Equity-linked range accrual notes usually have index un-
derliers, such as the S&P500 and the Dow Jones Industrial Average. In this market, it is
common to have only one barrier, typically the lower one, because investors tend to have
bullish views on the growth of equity markets. Other underliers include foreign exchange
rates, commodity prices, and even inflation rates. The dynamics of these assets are very

different, therefore separate modelling is needed for every asset class.

Range accrual notes are over-the-counter products, therefore there is little to no data
available about specific trades or the market in general. However, it is known that the
overall structured product market is growing. In their article (Faraj & Khaled, 2019)
state that the size of the structured product market is about $7 trillion. This is only
about 1% of the total derivatives market, but according to the article, it is bigger than
the total ETF or hedge fund markets. It is not known how big of a portion range accrual

notes take up from this market, but it does help to put the relative sizes into perspective.
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3.2 Modelling equity dynamics

To price equity-linked range accruals, the price evolution of stocks needs to be ex-
amined. From 1973, the common practice was to model the stock price as a geometric
Brownian motion as in (Black & Scholes, 1973). However, in the late 1980s, especially
after the crash of 1987, market prices seemed to violate the Black-Scholes model. The
difference between model results and market prices was most apparent in the presence of
volatility smiles. The volatility smile is the relationship between the strike price and im-
plied volatility (IV). This can be examined because vanilla options are exchange-traded
products and therefore have quoted prices, from which one can calculate the implied
volatility associated with that strike and spot price. If the assumptions of the Black-
Scholes model were true, a stock’s volatility would be constant and thus independent
from the spot price and the strike of options written on it. As we can see in Figure
this is not the case. Implied volatility is lowest for at-the-money or close-to-strike
in-the-money options, and as the strike gets further away in either direction, IV increases,
giving the smile-like appearance. This shape is not universal, sometimes I'V only increases
for out-of-the-money options, resulting in a volatility “smirk”. However, the phenomenon

that implied volatility changes across strikes and spot prices is observable in every market.

0325 e
0.3001
° [ ]
0.2751 ‘s
> °
> ¢ s
0.250 4 S
N
0.225 1 S L]
., .
°
0.200 4 ®e o
3500 4000 4500 5000
Strike

Figure 3.1: Implied volatility of European options on the SPX index with 31-day maturity

as a function of strike (spot price ~ 4061).

Ideal models should not only be able to replicate the volatility smile, but the resulting
distributions should replicate the behaviour of returns observed in the market. There are
several so-called stylized facts observed in equity markets. Based on (Thompson, 2011)

these are the following:
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e Volatility clustering: The average volatility of returns changes over time. There

are highly volatile periods followed by periods with smaller moves

e Heavy tails: The empirical distribution of asset returns has heavier tails than the
normal distribution. Highly positive or negative returns occur more often than they
should if the returns were normally distributed. This is especially true in times of

a recession.

e Leverage effect: This is the phenomenon that price movements are negatively
correlated with volatility. This quantifies the intuition that a bear market is more

volatile than a bull one.

¢ Long memory and persistence: These refer to the fact that volatility as a time
series has a long memory. External shocks to volatility have a long-lasting effect,
rather than disappearing quickly. This manifests in prices, since if volatility has a
long memory, then the square of returns has as well. Econometric analysis shows

that the higher the frequency of the data, the longer this memory spans.

Models describing equity markets can be loosely categorized into two groups: deter-
ministic and stochastic volatility models |I| In the following, I give an overview of the most
important models from both of these groups. This section follows the works of (Buraschi
& Jackwerth, 2001) and (Voros, [2018).

3.2.1 Deterministic volatility models

In deterministic models, volatility is regarded as a deterministic function of time and
other factors. In this framework, volatility can still depend on stochastic processes, for
example, it can be the function of the spot price. There are several attractive features of
these types of models. First, they do not introduce a new source of risk, therefore hedging
can be achieved with only the underlying asset and the risk-free product. Second, they are

usually easy to calibrate, and they can reproduce the volatility smile of equity markets.

o Time-dependent Black-Scholes (Black & Scholes, [1973))

This model is an extension to the original Black-Scholes model in which volatility
is a deterministic function of time. The equation governing the stock price is the

following.

d
Dt it + o(t)aw,

t
The assumption that volatility is a constant parameter was quite restrictive. In this

model, volatility can change across time, and thus, it can be calibrated to options

1Some articles treat jump models as a different, third category, here they are described together with
SV models.
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with different maturities. Moreover, it retains the lognormal asset price distribution
of the Black-Scholes model. Therefore, pricing in this model is straightforward, and
more importantly, fast. The model’s disadvantage is that time dependence is not
enough to reproduce the volatility smile, therefore the model can only be calibrated
to one strike per maturity. I will compare this model to the Heston model in Section
b.1] T chose the time-dependent Black-Scholes model because I wanted to compare
the Heston model to something standard in the industry. As this model has been

around for several decades, it is a good point of comparison.

o Local volatility (Dupire, |1994))

This model is commonly used today, especially in equity markets. Dupire extends
the Black-Scholes model by allowing volatility to be dependent on time and the spot

price. The stochastic differential equation governing the stock price is given.

ds.
?t = pdt 4 o(t, Sp)dW,
t

The term o(t, S;) is referred to as local volatility. It is a two-dimensional surface that
can be calibrated to be consistent with all current European option prices. Local
volatility does not represent how volatility actually evolves, it is rather thought of as
the expected value of all possible instantaneous volatilities in a stochastic volatility
setting (Gatheral, 2011). Therefore, local volatility models are usually used when

this average (expected) volatility is sufficient for the pricing of the product.

Dupire gave the equation for calibrating the model to market pricesEl

LCO(K,T)+rKC(K,T)

o?(K,T) =2 T
K20C(K,T)

Where C(K,T) is the current price of a vanilla call option with 7" maturity and
K strike. This equation gives the unique local volatility from European option
prices. This calibration method assumes that there are infinitely many strikes and
maturities observed on the options market, which is not a realistic assumption in
practice. To circumvent this, numeric methods are used to fit a local volatility

surface to discrete data points.

The model is popular because it is relatively fast to calibrate, and it can replicate
all the option prices observed in the market. However, the future dynamics of the
implied volatility smile are not captured well by this model. Even though it fits the
implied volatility surface perfectly in the present, if we calculate the future implied

volatilities from the model, the smile flattens, which is unrealistic.

2Dupire originally gave the equation with r = 0
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o Implied binomial tree (Rubinstein, [1994])

This method focuses on building a binomial tree for the underlying process, that is
consistent with the market prices of options. The structure of the tree is similar to
the original Cox-Ross-Rubinstein (CRR) model. (Rubinstein, [1994) gives a method
for extracting risk-neutral probabilities from the current volatility smile. Given
these probabilities, he shows how to build a unique recombining binomial tree that
is consistent with quoted option prices. If the binomial tree is constructed, hedging
and pricing can be done similarly to the CRR model. It retains the simplicity of
the CRR model while enabling the calibration to market prices.

o Kernel approach (Ait-Sahalia & Lo, [1998)

The authors use a non-parametric method to calculate risk-neutral densities from
quoted option prices. Kernel functions are used to derive an estimator for the risk-
neutral density function. This estimator makes it possible to price path-dependent
exotic derivatives while being able to reproduce the volatility smile of the market.
They argue that a non-parametric method is preferable since it is robust to spec-
ification error (model risk) because it is not restricted by parametric assumptions.
The drawback of this model is that it is data-intensive to estimate the risk-neutral

densities, and in some markets, data is not available in large quantities.

3.2.2 Stochastic volatility models

Stochastic volatility (SV) models introduce a new source of risk by enabling volatility
to be stochastic. These models can reproduce the volatility smile, although usually, they
can not perfectly replicate it, as some deterministic volatility models do. However, they
describe the time evolution of the smile significantly better than deterministic volatility
models. Stochastic volatility models also produce more realistic asset price distributions.
A disadvantage of SV models is that the introduced source of risk is not directly tradable.
This results in an incomplete market, where the risk-neutral martingale measure is not

unique.

o Diffusion SV models

These models describe volatility as a diffusion process, which is separate from the
diffusion of the underlying. There are several alternatives for the dynamics of the
volatility process. Notable examples of this class include the Heston model (Heston,
1993)), the Hull-White model (Hull & White, [1987)), the Scott model (Scott, 1987)
and the Stein & Stein model (Stein & Stein, [1991). These models share a lot of

properties, therefore, not every model is discussed separately.
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In the general case, a diffusion SV model takes the formﬂ

s,

St

dvy = m(t,v;)dt + o(t, vy)dW}?
d W', W2, = pdt

= u(t, Sp)dt + f(Ut)thl

In the first equation, it can be seen that v; is not used directly but rather through
the function f. One reason for this is to ensure that volatility stays positive, and
this is achieved with some functional transformation. Also, sometimes, instead of
volatility, variance is modelled, in that case f(v;) = \/v;. The functions m(t, v;) and
o(t,v;) specify the dynamics of the v; process. The driving Wiener processes can be
correlated with coefficient p. These three functions and the correlation coefficient

characterizes diffusion SV models.

model dvy f(vy)

Heston Cox-Ingersoll-Ross NG

Hull-White | geometric Brownian motion | /vy
Scott Ornstein-Uhlenbeck eVt
Stein & Stein Ornstein-Uhlenbeck Uy

Table 3.1: Specification of different stochastic volatility models

The defining features of the models mentioned above can be seen in Table [3.0]
Except for the Hull-White model, all models use a mean-reverting process for v;.
Mean reversion is a desirable feature, as volatility tends to stay in a range instead
of growing indefinitely. In the original works of the authors, except for the Heston
model, the correlation between driving Wiener processes is assumed to be zero. It
is demonstrated in Figure [3.2] that diffusion stochastic volatility models are flexible
enough to reproduce the volatility smile. The smile flattens for the longer time to
maturities, which is in sync with market observations. The empirical properties of
asset prices under these models are also favourable. The generated distributions are
heavier tailed than the normal distribution and the leverage effect can be achieved

by setting p < 0.

o Jump diffusion SV models

All the previously mentioned models have continuous trajectories. A straightforward
extension is to allow for non-continuous paths by adding jumps to the evolution of
the process. One of the first, and probably the most well-known model of this
class is Merton’s jump-diffusion model (Merton, |1976). In this model, the diffusion

31t is not a fully general case, for example, the correlation coefficient p can also be time-dependent.
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Figure 3.2: Implied volatilities generated by the Heston model for different maturities

ranging from 1 year to 0.4 years.

component is similar to a geometric Brownian motion, but a jump component is
added. The jump process is a compound Poisson process with lognormal jump size.
Jumps are interpreted as external shocks to the market. This model captures the
heavy tails of asset returns, and it also has more free parameters than the Black-

Scholes model.

The notion that volatility changes stochastically can be incorporated into jump-
diffusion models similarly to regular diffusion models. Both the dynamics of the
asset price and volatility can contain jumps. A well-known model of this class is the
Bates model (Bates, [1996)). It describes the asset price with the following stochastic

differential equations:

ds T
?t = (1 — Ak)dt + /o dW,! + kdQ,
t
dvy = K(0 — vp)dt + 1/ dW/
d[W* W?], = pdt

P(dQ; =1) = \dt
Where the term d@); is a Poisson process with A intensity, k is the jump size which is
lognormally distributed and & is the mean jump size. Essentially, the Bates model

adds a compound Poisson process to the Heston model. The trajectories of the asset

price contain jumps, but trajectories of variance are still continuous.

This model improves upon the diffusion SV models in several territories. While

21



diffusion models can reproduce the volatility smile, they generally perform poorly
in low maturities. Adding jumps results in a much better fit for these close-to-
maturity products. Jumps also give modellers control over how heavy the tail of
the asset price distribution should be. This comes at the cost of having a lot of
parameters. This not only makes pricing and calibration more complex, but the
model can become over parametrized. Some markets are generally less liquid, and

the amount of usable data might not be enough to fit these models.

¢ Pure jump models

The expected number of jumps in a given interval is finite in jump-diffusion models
because the jumps are generated by a Poisson process. Another approach is to use
processes that can contain infinitely many jumps on any interval. These models are
called pure jump models, as they have no diffusion component. In this framework,
log returns are modelled as a pure jump process, such as the Variance Gamma
process proposed by (Madan & Seneta, 1990). Then, to get the dynamics of the

asset price, some form of exponentiation is used EI

These models are generally more flexible than diffusion models. (Barndorff-Nielsen
& Shephard, [2001) proposes a method on how to introduce stochastic volatility to
pure jump models. This model is referred to as the BNS model, and its dynamics

are described by the following equations.

St = S()GXt
dX, = (u+ Bo?)dt + o, dW, + pdZ,
do? = —\oldt + dZ,

In this model, there is a Wiener process (W;) and Lévy subordinator (Z;) driving
the dynamics of log returns, and these processes are independent. The subordinator
process Z; is referred to as background driving Lévy motion, and it adds jumps to
both the evolution of variance and returns. If the parameter p is negative, a jumpEl
in variance results in a negative jump in returns, capturing the leverage effect. In
general, pure jump models capture the empirical properties of asset returns very
well, and in some cases, such as the BNS model, semi-analytic formulae can be
given for vanilla option prices. Their drawback is that simulating these processes
can be more computationally expensive because simulating the background driving

Lévy motion involves sampling random numbers from complex distributions.

Naturally, there are many models which were not mentioned. This section aimed

to be an overview instead of a complete list. However, there is one additional family

4Either applying the exponential function directly to the process or by using the stochastic exponential.
57, is a subordinator, thus it can only have positive jumps
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of models which is notable, mixed volatility models. This approach tries to unify the
ability of deterministic volatility models to be perfectly calibrated to market prices, with
the advantages of stochastic volatility. An example is the stochastic local volatility model
described in (Saporito et al.,|2019), which extends the local volatility framework to have a
stochastic component. This model is popular for products whose price explicitly depends
on volatility. Another example is the mixed volatility model (Said, 1999), where variance

is given as a product of a deterministic and a stochastic component.

3.3 Sensitivity to stochastic volatility

Stochastic volatility models are more general than deterministic ones in the sense that
the latter can be integrated into the former. This is exactly what led to the creation of the
previously mentioned mixed volatility models. Because of this, it might be tempting to
use a stochastic volatility model in every pricing problem, as the modeller wants to have
prices as accurate as possible. However, there are other factors besides accuracy that need
to be considered. First, stochastic volatility models are in general more complicated and
computationally less tractable. Closed-form solutions rarely exist for exotic derivatives,
therefore, one needs to resort to simulation, and SV models are generally more expensive
to simulate. Second, the calibration process of stochastic volatility models is generally
slow. Fitting SV models usually involves a lengthy numerical calibration, which is not
optimal if the goal is to have frequent recalibrations. The industry usually prefers fast
methods, because if several thousands of products need to be priced daily, it is not an
option to have a slow pricer. Because of this, stochastic volatility models are only used
when the product is sensitive to stochastic volatility. Otherwise, the market practice is
to use a simpler, deterministic volatility model and account for the stochastic volatility
effect in a valuation adjustment. This is sufficient for products that are not, or are weakly
sensitive to stochastic volatility.

But what does it mean that a product is sensitive to stochastic volatility? It means
that the price of the product strongly depends on the exact path of volatility. In this
case, this dependence can not be captured by a valuation adjustment. Products which
have volatility as the underlier are highly sensitive to this effect. The two most common
examples are volatility and variance swaps.

Another category consists of those products which are not written on volatility itself,
but their payoff is implicitly affected by it. To understand this, let us compare a vanilla call
option to the same option with an upper knockout barrier. If the barrier level is reached
any time during the life of the product, then the option expires worthless, otherwise, it is
a traditional call option. In the case of the vanilla call option, the price only depends on

the asset price at maturity. Therefore, it does not matter what was the exact trajectory
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of volatility, its expected value is enough for pricing the product. However, in the case
of the barrier option, one sudden increase in volatility could result in the termination of
the trade, and thus, zero payoff. In this case, it is not enough to know the expected value
of volatility, it does matter how volatility evolved in time. As mentioned in the previous
section, local volatility can be thought of as the expected value of a stochastic volatility
model. Therefore, it is sufficient to price those products which are not dependent on
the exact path of volatility, but not sufficient if the product is sensitive to this effect.
Some products that are sensitive to stochastic volatility include the previously mentioned
barrier options, cliquet options, and forward start options.

It will be shown in the later sections how a range accrual can be priced as the sum of
a series of delayed digital options. Digital options are not sensitive to stochastic volatil-
ity, therefore it is not theoretically required to price a range accrual under a stochastic
volatility model. However, I also mentioned before, that range accruals are rarely sold
in their vanilla form, usually, some additional features are added, which might require a

stochastic volatility model.
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Chapter 4

Theoretical results

4.1 General methodology

In this section, a general overview of the pricing methodology is given. The definitions
and theorems used throughout the thesis will be described here. The theory of stochastic
processes is not discussed here, its main concepts can be found in (Baxter et al., 1996).

Let (Q,F, F:,P) be a filtered probability space, where {F;};>¢ is a right-continuous
filtration, and P is a measure on (2, F), referred to as the statistical or real-world measure.
We want to define a market model in this filtered probability space, which consists of a
risky asset and a risk-free bank deposit. To define the model, we need the following

assumptions.

e The market is arbitrage-free

e There are no transaction fees

e [t is allowed to buy any amount of the two assets, short selling included
Assuming a general form of the risky asset, the equations of the model are

dBt = TBtdt (41)
dS, = p(t, S;)dt + o (t, S;)dWF (4.2)

The risk-free asset grows at a constant rate r, and the solution to its differential equation
is known.
Bt = Boert (43)

The model is given in terms of measure P, but for pricing derivatives, the measure needs

to be changed to the risk-neutral measure, denoted by Q. In the risk-neutral measure, the

process %i is a martingale. The first and second fundamental theorems of asset pricing

state the conditions for the existence and uniqueness of the risk-neutral measure. For now,
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let us assume that the risk-neutral measure Q exists and it is unique. Then the dynamics

of the risky asset under measure Q can be determined using the Girsanov theorem []

Theorem 1 (Girsanov theorem) If W, is a Wiener process in measure P and ~; is an
F-previsible process with the condition Ep[% fOT v2dt] < oo, then there exists a measure Q
such that

e Q is equivalent to P
T T
o 9 _exp (_ ST pdw, = 1 ygdt)

4 t . . . .
o W, =W, + fo vsds is a Brownian motion in measure Q

The prices of derivatives can be calculated by using the following formula.

Theorem 2 (Risk neutral pricing formula) Let V; denote the price of a derivative at

time t. The price of any contingent claim at time t, with payoff at maturity Vp is:

Vi Vr
L —Ea |2 4.4
B~ ° {BT | ‘Ft} 44)
If B, evolves as in equation[4.3, then
_ VT _ T

The price of any derivative can be calculated using this formula, but the actual calculation
depends heavily on what market model we assume and what is the derivative in question.
Let us assume a model which is less general in terms of the asset price dynamics but

contains stochastic volatility.

dSt == ,utStdt -+ \/U_tStthA (46)
dvt = O((Su Ut, t)dt ‘I’ nﬁ(St, (U t)\/'U—tthB (47)
d W WP, = pdt (4.8)

This model is generic in the sense that many stochastic volatility models have this form.
For example, both the Heston and Hull-White models fit this framework. It is important
to note that the appearance of /v is just out of practicality, the process is not necessarily

a square-root process. For models of this form, a general valuation PDE can be given.

IExtensions of the Girsanov theorem can be given for a broader set of processes.
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Theorem 3 (General valuation equation - (Gatheral, [2011))) If the market model
1s the one described in equatz’ons - then the price of any contingent claim V (t, S, v)

is governed by the following equation:

oV 1 L0V 02V 2V 9V

PRN— J— —_— 2_ — —
815 Sa2s+p775 Ba 8S+ 7706 770 —H“Sas rV (49
R Nk

where ¢(t, S,v) is the market price of volatility risk.

Regarding the market price of volatility risk, (Gatheral, 2011)) argues that the risk-neutral

drift term can be defined as
o =a— BVue (4.10)

then the stochastic differential equation of variance becomes
dvy = o/dt + By/v,dW P (4.11)

This way we could get identical results without the need to explicitly estimate the market
price of volatility risk. Essentially, by itting the model to market option prices, we ensure
risk-neutral parameters. In the following sections, it is always assumed that the stochastic

differential equation of v; is already in risk-neutral terms.

4.2 Pricing range-accrual notes

As shown in the previous section, the price of a derivative involves calculating the
expected value of the discounted payoff in the risk-neutral measure. In this section, I will
show how the price of a range-accrual note can be broken down into a series of range
digital options with delayed payofts.

Let 0 < T} < --- < Tx = T be the times when the range accrual can accumulate

coupons. Consider the payoff of a single period RAN at time T

N
1
fRAN(T) = CN E 1{K10W<Si<K“P}
=1

Let Vran(t,T) denote the price of a single period RAN, with maturity 7', spot asset price
Sp, coupon ¢, lower barrier K'°V, and upper barrier K at time ¢. The price is calculated
by applying the risk-neutral pricing formula to the payoff at time 7. The numeraire B(t)
is assumed to be the risk-free bank account growing at a constant rate r. The price of

the product at ¢ = 0 is the following.

Vean(0,T) = BoEq {fR%T(T) | ]—“0} = Eq [¢7 fran(T)]
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Substituting in the payoff of the product we get

e
= TNEQ [Z 1{Klow<5’ <Kup}]

summation and the expectation can be interchanged

N
— e—TT% Z (EQ |:1{Klow<si<K‘lP}i|)

i=1

The indicator function in the expected value can be rewritten as

1igiowcs <y = Lig,sriowy — Lig,srouny

Dividing and multiplying by e"* the price of the product becomes

N
VRAN(O, T) = €_TT% Z (ertiEQ [e_rtil{5i>Klow}} - €TtiEQ [e_rtil{si>Kup}:|)
i=1

It can be noticed that the two expectations give the price of another derivative, the digital
option. This option pays 1 unit if the underlying is above (or below) a prespecified barrier.
1¢g,5K1ow) is exactly the payoff of a derivative paying 1 unit if S; > K low " discounting this

—rt and taking the expectation gives the price of this product. The same

expression with e
logic applies to the second expectation, it is the price of a digital option that pays 1 unit
if S; > K"P. The price of a digital option paying 1 unit at time 7' if the underlying is
above the level K will be denoted as D(¢,T, K). The pricing formula can be rewritten as

follows:
N

Vaan(0,T) = e””T% 3" (¢(D(0, Ty, K'°) — D(0, T;, K™))) (4.12)

i=1
The interpretation of this formula is that the RAN can be thought of as a series
of range digital options, each paying + if the product is in the prespecified range and
0 if it is not. Because this payment is not made immediately, but at the end of the
coupon determination period its future value needs to be calculated. This is achieved by
multiplying by €. From this, the price of a multi-period range accrual is the sum of

single-period RANS.

D N;
Varan(0,7) = 3 e L Z( (D(0,Th5, K1) = D(0, T, K;*))) (4.13)
J=1 =1

Where ¢, K'°¥, K" can all be changing across coupon determination periods, as it was
shown in figure 2.1} and D is the number of coupon determination periods. The indexing
of T; ; corresponds to the coupon accumulation events 0 < T1; < Tp; < -+ < Tl; in

period j. Payments are made at the end of each period.
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This result enables the pricing of range-accrual notes analytically when the prices
of digital options are calculated. This greatly simplifies pricing, as digital options have
closed-form or semi-analytic formulas in many market models. The Black-Scholes and
Heston models belong in this category, and the formulas for digital options will be given

in the following sections.

4.3 Time-dependent Black-Scholes model

In the Black-Scholes model, the asset price is modelled as a geometric Brownian motion

with a positive initial value

S():SZO

The model has two constant parameters: p controls the drift of the process, and o is the
volatility parameter. The solution to the asset price stochastic differential equation can be

found by applying Ito’s lemma to the asset price process with the function f(z) = In(x).

2
S; = Sy exp ((,u — %) t+ aWt) (4.15)

The Girsanov theorem can directly be applied to change the measure to the risk-neutral

one. The Radon-Nikodym derivative defining the risk-free measure is

dQ _ Tp—r o
= </O - th> (4.16)

where £ denotes the stochastic exponential. The dynamics of the process in the risk-

neutral measure is

dS, = rS,dt + oS, dW2 (4.17)

The measure change only affects the drift, which changed from u to the risk-free interest
rate . It can easily be seen that the stock price is lognormally distributed, and thus log
returns are normally distributed. This is a property that makes pricing less complicated
compared to other models. The two derivatives which are important for the purposes
of this thesis, the vanilla call and the digital option, both have closed-form prices in the
Black-Scholes model. The formula for the vanilla call option enables the calibration of
the Black-Scholes model to market prices. The closed-form solution to the digital option

means range-accrual prices can be calculated analytically.

Theorem 4 (Black and Scholes, 1973) If the asset price is a geometric Brownian

motion with current spot price S, then the price of a European vanilla call option with
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strike K, maturity T, at time t is
Vear(t, T, K, S) = SN (dy) — e "D K N(dy)
4 In2+(r+2)(T 1)
oVT —1t
d2:d1 —U\/T—t

Theorem 5 (Black and Scholes, 1973) If the asset price is a geometric Brownian
motion with current spot price S, then the price of a FEuropean digital call option with
strike K, maturity T, at time t is

Vdigital<t7 T> Ka S) = eir(Tit)N<d2)

;  WmE+(r-5)(T-1)
2T oVl —t

The main problem of the Black-Scholes model is that it fails to reproduce the market
prices of options due to the lack of free parameters. The only free parameter of the model
is volatility. This one parameter is not enough to fit the model to the market. Therefore, it
is common to use some extension of the Black-Scholes model, which enables a better fit to
market prices. One common extension is to allow volatility to be a deterministic function

of time. This is referred to as the time-dependent (volatility) Black-Scholes model

where o(t) is a deterministic function. The asset price is still lognormally distributed.

Sy = Sy exp (/Ot,u — %OQ(S)ds + /Ota(s)dWS) (4.19)

Because of the lognormal dynamics, the formulas in Theorem [4 and [5] can be extended

for the time-dependent case. The standard Black-Scholes formula can be applied with

1 /7

O, = T/o o?(t)dt (4.20)
choice for o. This choice of o, equates the first two moments of the distribution of the
standard and time-dependent Black-Scholes models, and in the case of the normal distri-
bution, this guarantees equality in distribution. The derivation of o, is shown in Appendix
Therefore, the previous pricing formulas can be applied with the volatility param-
eter given in equation [4.20] This only holds for European type payoffs, American type
products can not be priced with this method. The two processes will have the same
marginal distributions, but nothing guarantees that their transitional distributions will
also be the same (Oosterlee & Grzelak, 2019). This result is summarised in the following

theorem.
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Theorem 6 (Oosterlee and Grzelak, 2019) If the asset price follows the dynamics
of a time-dependent volatility Black-Scholes model with current spot price S and volatility
function o(t), then the price of a European vanilla call and digital option with strike K,

maturity T, at time t is

Vean(t, T, K, S) = SN(dy) — e " TV K N(dy)
Vdigital(tv T; Ka S) = e_T(T_t)N(dQ)

] IS (G 1)
! oNIT —t

dgzdl—O'* T—1t

Op = “%/OTJQ(t)dt

4.3.1 Calibration

Calibration of the model is an important step in pricing derivatives. This is the process
of finding a set of parameter values that provide a good fit to the market which we want
to model. The immediate question is to decide what kind of data is used as a reference for
the calibration? If the price of the product is quoted on the market, it is straightforward
to use that. However, exotic products usually do not have quoted prices, or even if they
have, the product might not be liquid enough. In this case, the market practice is to use
the prices of vanilla options written on the same underlier. Vanilla option prices are ideal
because they are exchange-traded and liquid enough to do frequent recalibrations.

In the time-dependent volatility Black-Scholes model, the spot price S and the risk-
free rate r are parameters that are observable on the market. Naturally, the risk-free rate
is not directly observable for any arbitrary maturity, but it can be inferred from yield
curve data published by federal banks. For the remainder of this thesis, the risk-free rate
is assumed to be observed from the US Treasury yield curve.

This leaves o(t) the only object to be calibrated. Because in this model, volatility is
only a function of time, there is no way to capture the variation of volatility across strikes.
In other words, the model is unable to replicate the volatility smile. Therefore the model
can only be calibrated to one strike, which is usually the at-the-money one. The following

calibration proposal follows (HochSchule RheinMain, n.d.) Let

Oimp,Ty 5 Oimp,Ta 5 - - - » Oimp, T,

be the implied volatilities corresponding to the market prices of at-the-money European
vanilla call options with maturities 77, ...,7T,,. To match these implied volatilities in the

time-dependent Black-Scholes model, we have to find a function o(t) that satisfies the
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equation

Tk
Ty 0tp.1, = /O o?(t)dt (4.21)
for all of the maturities 77, ...,7,,. Rearranging equation 4.21] we get
Ty
Tkafmp’Tk - Tk_laiQmvak_l = /T 02(t)dt (4.22)
k—1

We can choose o(t) to be a piecewise constant function, which is equal to o) on the
(Tkx—1,T}) interval. Then we can arrange equation for oy.

2 2
52 Tkaimp,Tk - Tk—laimp,kal (4 23)
k Tk - Tk—l |

With this method, we can exactly fit the model to at-the-money options for all of the
observed maturities. However, the model will probably not provide a good fit for deep
in the money or out-of-the-money strikes. The fit of the time-dependent Black-Scholes

model will be compared to the Heston model in the later sections.

4.4 Heston model

The Heston model is described by the following equations

dvy = —k(v; — 0)dt + /o, dW} (4.25)
d[WH W2, = pdt (4.26)
with initial values
S() =S Z 0
vo=v2>0

Equation describes the evolution of the asset price, equation represents the
instantaneous variance at time ¢, and equation is the covariation of the two driving

Wiener processes. The parameters of the Heston model are:

e ;0 The drift of the asset price.

0: The long-run average variance.

e x: The rate at which variance reverts to 9.

n: The volatility of variance.

p: Correlation between the two driving Wiener processes.
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e vy: Initial value of variance[

The dynamics of the asset price are similar to the lognormal model, if v; was deterministic,
we would get back the time-dependent Black-Scholes model. The variance process is a
Cox-Ingersoll-Ross (CIR) process introduced by (Cox et al., [1985)). Using the CIR process
for the variance is beneficial for at least two reasons. First, it is mean-reverting, which is
desirable because volatility is observed to stay in a range instead of growing indefinitely.
Second, it is well known that the CIR process is nonnegative because it can be constructed
as the sum of squared of Ornstein-Uhlenbeck processes. Moreover, if the initial value of

the process is not zero and the Feller condition is satisfied,
260 > n? (4.27)

the process will never reach zero. This is favourable because no functional transformation
is needed to ensure positivity in the Heston model. However, when fitted to real market
data, the Feller condition often does not hold.

To calculate option prices in the Heston model, a risk-neutral measure is needed.
As described in (Markus, 2017), an extension of the Girsanov theorem can be used to

determine the risk-neutral measure.

=e([

Under the Q, measure the process th’Q = th’P + £ will be a Wiener process and the

K dWl P) (4.28)

o
risk-neutral dynamics of the asset price will be
dS; = rSydt + /0. Sy dW,° (4.29)

Thus, the measure change only affects the drift p, and similarly to the Black-Scholes
model, the growth rate of the asset price is the constant risk-free interest rate.

The last step for calculating option prices in the model is to determine the partial
differential equation which gives the price of any contingent claim in the model. This can
be easily achieved by substituting into the general valuation equation in Theorem [3| Let
V(t,S,v) be the price of a derivative at time ¢, with spot asset price S, and instantaneous

variance v. Then, the partial differential equation governing the price of the derivative is

(9V 1 , O?V 9?V 82V oV oV
RSy~ e S S k(v — 0) e — V= 4.
815 vS 525 +p Sv&S@ + 82 +7rS 55 k(v —0) 5 rV =0 (4.30)

with an appropriate boundary condition.

One of the main advantages of the Heston model is that there exists a formula that
satisfies this equation for the European vanilla call option. This enables the fast and

efficient calibration of the model. This result is given in the following theorem

2Tt is regarded as a parameter because it cannot be observed in the market, therefore it is usually

fitted during the calibration process.
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Theorem 7 (Heston, 1993) If the asset price follows the dynamics of the Heston model
described in equations .20/ with current spot price S, then the price of a Furopean

vanilla call option with strike K, and maturity T at time t is

vcall(t7 T, K, S, v) = SPO _ e*?’(Tft)K—P1

1 1 [ . D. ;
Py(z,v,7) = s _/ Re {exp{Cj(u, 7)6 +‘ i(u, T)v + dux} } i
T Jo iu

Forj=0,1,z2=F,r/Kandt=T—1

1— —dr
D(u,T):r_—ed
1 — ge97
2 1— —dr
C(u,7) =16 {TT — — log (—e)}
U -y
2 2
a:—%—%ﬁju, p=0—pnj— pniu, :%
BE\P%2—4day [BEd r_
T = — e —
* 2y e

This formula can be evaluated with numerical integration to a sufficient degree of
accuracy. The accuracy of this method will be tested in Section |5.2

Determining the price of a vanilla call option is important because of the calibra-
tion process. But for pricing range accruals, digital option prices should be calculated.
A digital option pays 1 unit if the underlying is above a prespecified barrier and zero

otherwise.

Vaigital (T, S, v) = Lis,> k) (4.31)
If we take the expectation in the risk-neutral measure, the price of this option is the
probability that the option will expire in the money multiplied by a discount factor. This
is exactly the P; pseudo-probability calculated previously. Therefore, the price of a digital

option can be directly calculated using the previous results. A formal proof of the digital

price can be found in (Lazar, 2003)

Theorem 8 (Lazar, |2003)) If the asset price follows the dynamics of the Heston model
described in equations with current spot price S then the price of a digital option

with strike K, and maturity T at time t is
Vaigita(t, T, K, S, v) = e "D p
Where Py is calculated as in Theorem [T
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4.4.1 Calibration

The Heston model has seven parameters, out of which two are directly observable
on the market. These two are the spot asset price Sy, and the risk-free rate r. As
previously mentioned, the risk-free rate is inferred from US Treasury yield curve data.
The parameters that are not observable and need to be calibrated are II = (p, vo, 0, K, 7).
In the following, it is shown how the implied volatilities of vanilla options are affected by
these parameters. In each case, the value of one parameter is varied, while the others are
held fixed.

The effect of parameters n and p is illustrated in Figure On the left graph, it can
be seen that the lower the volatility of variance, the flatter the smile. Thus, the volatility
of variance parameter controls the curvature of the smile. Higher values of the correlation
parameter p give a regular smile, and lower values give a more skewed IV smile. The
latter is more common in equity markets. The parameter s controls the speed of mean
reversion of the variance process. In the left graph of Figure 4.2} it can be seen that as
a function of strike, x has the effect of an almost parallel shift. As a function of time
to maturity, greater x values contribute to a more concave IV shape. This is because as
k increases, variance converges faster to its mean. The remaining two parameters have
similar effects, as seen in Figure|d.3] The effect of the long-run average variance parameter
0 across strikes is a parallel shift, and the effect of initial variance vy is an almost parallel
shift across time to maturities.

Effect of y on implied volatility Effect of py \, on implied volatility
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Figure 4.1: Impact of the volatility of variance parameter (v in this graph) and the
correlation p on the IV smile. (Oosterlee & Grzelak, |2019))

The reference data for calibration consists of vanilla option prices written on the same
underlier as the product we want to price. This data is publicly available for numerous

stocks and indices, for example, on yahoo finance. The Heston model does not have
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Figure 4.2: Impact of mean reversion parameter x on IV as a function of strike price and

time to maturity. (Oosterlee & Grzelak, [2019)
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Figure 4.3: Impact of initial variance vy and the long run average variance (o on this

graph) on the IV smile. (Oosterlee & Grzelak, 2019)

enough free parameters to exactly fit market implied volatilities across all strikes and
maturities. Therefore, the calibration process becomes an optimization problem. The
aim is to minimize the error between model prices and market prices. Measuring this
error is a modelling question. There are several alternatives, the most common being the
sum of squared differences. With this error metric, the task results in a nonlinear least

squares optimization problem.
ml_}n Z Z ’LUZ'J‘ (V*(to, So, Ki, T’]) — V(to, So, Ki, T’j, H))2 (432)
i

Where V*(tg, So, K;, T;) is the market price at time ¢, and spot asset price Sy for a vanilla
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call option with strike K; and maturity 7}, and V (to, So, K;, T}, 1) is the Heston price
for the same call option with parameter set II. w;; is the weight associated with that
particular strike and maturity. The weights can be equal, in that case, w;; = 1. If the
weighting is not constant, more liquid options are usually given bigger weights, as it is
more important for the model to match liquid option prices than illiquid ones. Liquidity
is usually measured with the size of the bid-ask spread. Some alternatives for the weights
are listed below, with spread indicating the bid-ask spread associated with the option for

a given maturity and strike.

= m (4.33)
B= m (4.34)
C— ﬁ (4.35)
The optimization problem can also be formulated in terms of implied volatilities
ml_}nz > wij(0*(to, So, Ki, Ty) — o (to, So, K, T3, 10))° (4.36)
v

In this case, 0*(to, So, K;, T;) is the implied volatility associated with the market price of
a vanilla call option, and o(to, Sy, K;, T}, II) is Heston model-implied volatility.

The problem with this optimization is that the function described in equations
and is not convex, and it is also not of any recognizable structure (Mrazek & Pospisil,
2017). Moreover, the parameters of the Heston model are not independent in the sense
that the effect of different parameters on the implied volatility smile can be similar.
Because of this, several sets of parameters might provide a good fit, resulting in numerous
local minima to the error function. It is also a constrained optimization problem as
p € [-1,1] and &, vy, n, 6 > 0.

There are several numerical methods to solve such an optimization problem. In this
thesis, the limited-memory BFGS method is used®} This algorithm uses an estimate
of the inverse of the Hessian matrix to search for a local minimum. The algorithm is
implemented in the R programming language by default. It allows for constraints on the

optimized variables, and given a set of initial values, it converges in a reasonable time.

4.5 Monte Carlo simulation

In order to price derivatives with the Monte Carlo method, sample paths of the Heston

process need to be generated. It is particularly challenging to generate paths from the

3A detailed description of the limited memory Broyden—Fletcher-Goldfarb—Shanno algorithm can be
found in (Byrd et al., [1995))
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CIR process. In the following, I present several alternatives on how to simulate values

from the dynamics described in equations 4.25] and

FEuler method

The Euler (or Euler-Maruyama) method is a well-known discretization technique for
SDEs. It is described in detail in (Markus, [2017). The Euler discretization of the variance

process with equal timesteps of At is
Vi1 = V; + /41(0 — U1>At + 77\/1]_1\/ AtZl (437)

where Z; ~ N(0,1). As stated previously, if the Feller condition (eq. [4.27) holds, the
trajectories of the process are nonnegative. However, this statement is not true if the
process is discretized, the discrete process can become negative with a positive probability
(Mrazek & Pospisil, 2017). Moreover, we also need to be able to simulate sample paths
if the parameters violate the Feller condition. The two standard ways of solving the
negativity problem are the absorbing methodﬂ: if v < 0 then v = 0, or the reflecting
method: if v < 0 then v = —v (Gatheral, 2011). If At — 0, the estimation is bias-free
regardless of the chosen method.

The Euler discretization for the asset price is
Si+1 = SZ + /JJSZAt + \/U_Zsl Vv AtZQ

where 7, is also standard normal and corr(Z;, Z;) = p. Usually, not the asset price, but
the log returns (X; = log(S;/Sy)) are discretized, because this way there is no higher-order

correction needed for the Euler discretization. The discretization for the log returns is
1

From this S;;; = SpeX#1. Therefore exponentials need to be taken for each timestep,

however, with modern computational power, this does not slow down the simulation.
Milstein method

The Milstein scheme is similar to the Euler, but it uses a higher-order form of the Ito-
Taylor expansion (Gatheral, 2011)). The Milstein discretization for the variance process

with the same notation as before is
2

It is the same as the Euler scheme, except the extra correction term nffAt(Z 2—1). Gatherol

points out that by using the Milstein method, the occurrences of negative variances are

4Sometimes referred to as full-truncation method.
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substantially reduced, even when parameters do not satisfy the Feller condition. However,
negative values can still occur with nonzero probability, thus, either the reflection or
absorbing methods should be used to counteract this. As stated previously, the Milstein
discretization of log returns does not require any higher-order corrections, therefore in the
Milstein scheme, it can still be simulated as in equation

Almost exact simulation

The Euler and Milstein methods can be used to simulate any stochastic differential
equation, even when the solution is not known explicitly. However, when the exact dis-
tribution of the process at time ¢ is known, random numbers can be sampled from the
distribution, eliminating the problems which arise from the discretization of the time grid.
In the case of the CIR process, the exact distribution is known to be the noncentral chi-
squared distribution (Cox et al., [1985). Conditioning on the previous state of the process

v(s), s < t, the distribution of the CIR process at time ¢ is

v(t)o(s) ~ clt, s)x*(0, A(t, 5)) (4.40)
where
c(t,s) = " (L—e =) §= Arf A(t,s) = e v(s) (4.41)
’ - Ak ’ - 772 ’ ’ o n2(1 _ e—li(t—s)) ’

In this notation, ¢ is a constant multiplier and x?(d, A) denotes the noncentral chi-squared
distribution with ¢ degrees of freedom and noncentrality parameter \. If the previous value
of variance is known, then the current variance can be sampled directly from the given
distribution. It can also be noted, that the previous variance value v(s) is only influencing
the next value through the noncentrality parameter. The almost exact approximation of
the Heston process with timestep At is the following.

1
Xi+1 = Xz -+ ([L — 51}1) At + 5 (Ui+1 —V; — /1(9 — ’UZ)At) + \/ 1— p2\/U_ZZ (442)

Vit1 = C(ti_,_l, tl)XQ(é, )\(ti+1, tz) (443)

where ¢, 6, and A\ are parameters defined in equation and Z ~ N(0,1). A detailed
derivation of this result is given in Appendix [A.1.3] This simulation method is referred
to as almost exact because the sampling of the variance process is exact but for the
returns process, Fuler approximations were used. Using this method, the problem of
negative variance never arises because the exact distribution of the CIR process is used.
Another advantage, as argued by (Oosterlee & Grzelak, [2019)), is that it requires fewer
time steps than the Euler and Milstein methods to give accurate results for derivatives
prices. The only downside of this method is that it requires random number sampling from
the noncentral chi-squared distribution, which is computationally more intensive than
sampling from the normal distribution. However, most modern programming languages

have libraries that are optimized for this task.
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Chapter 5
Empirical results

In the previous chapter, it was shown how a range accrual product can be priced
under the time-dependent Black-Scholes and Heston models. The calibration processes of
these models were also discussed. These results are implemented in the R programming
language and will be presented in this section. The code used for the implementation is
available in Appendix

5.1 Calibration

To calibrate the models, market data was obtained from the yahooFinance stock and
option monitoring website. I used options written on the S&P500 equity index, as it is
a common underlier for equity products. The models are calibrated to 3 maturities: 0.5,
1 and 1.65 years, each having 50-80 strikes. The risk-free rate is assumed to be the one
year US Treasury zero-coupon rate, which at the time of the calibration was r = 1.338%.
The spot price of the index at the time was 4478.28. To evaluate the resulting model fit,

three different error measures are used.

I %
maximum absolute relative error: MARE(II) = max o - il (5.1)
(2 UZ
bsolute relati AARE(IT) = i o — o] (5.2)
average absolute relative error: =—) — :

: =1

1 |~ o
root-mean-square error: RMSE(II) = — Z<0i —07)? (5.3)

n
i=1

Where o* denotes the implied volatility on the market and ¢! indicates the model implied
volatility associated with the parameter set II. T will calibrate all models to implied
volatilities instead of option prices. If I were to calibrate to option prices directly, some
normalization would be needed, because in-the-money option prices are fairly larger than
out-of-the-money ones, and the calibration would be overfitted to the in-the-money side.

Using implied volatilities serves as a natural normalization.
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I calibrated the Heston model with the numerical optimization method described in
Section I used four different weightings, described in equations 4.35, and an
additional equal weighting. None of the weightings resulted in a significantly different
set of parameters than the others. The errors of the fitted models are shown in Table
The error measures confirm that there is no single superior weighting, they all have

similar performance.

weights | RMSE | AARE | MARE

A 0.00551 | 0.01832 | 0.1429
B 0.00575 | 0.02201 | 0.1042
C 0.00559 | 0.01833 | 0.1453
equal | 0.00549 | 0.02032 | 0.1319

Table 5.1: Errors of the Heston model calibration for different weights

To have a better view of how good the fit is, I plotted the model-implied volatilities
from the equal weighting calibration against the market data and the resulting error in
Figure [5.1] The volatility smile is flatter for the longer maturities of 1 and 1.65 years,
resulting in a more smirk-like shape. This is in line with the empirical finding that the
smile tends to flatten on longer maturities. The fit is also better for these longer maturities.
On the shorter 0.5 years maturity, the volatility smile is more pronounced, and the Heston
model has trouble fitting the smile, especially in the deep in-the-money part. This is in
agreement with other studies, where researchers found that the model has a tendency to
misprice short-term options (Shu & Zhang, 2004). This is not a unique problem of the
Heston model, in fact, most pure diffusion models tend to misprice short-term options.
One solution is to incorporate jumps in the model to capture the short-term variation
in option prices. These models, particularly infinite activity jump models were shown
to have a better fit for short-term options (Mijatovi¢ & Tankov, [2016). Taking this into
consideration, the fit of the Heston model is acceptable.

The time-dependent Black-Scholes model has no parameters to fit the implied volatility
smile in the strike dimension. Therefore, the model is calibrated to the at-the-money
implied volatility for each maturity as in Section This results in a flat volatility
smile for each maturity, where the model exactly matches the at-the-money volatility but
fails to replicate the in-the-money or out-of-the-money volatilities. This can be observed
in Figure 5.2 as the error is zero for the at-the-money strike, and grows linearly in both
directions, reaching 40% on the sides. The error measures of the fit, as seen in Table [5.2]
are a magnitude higher than the Heston’s.

It can be concluded that the Heston model provides a much better fit to market
data than the time-dependent Black-Scholes model. It can incorporate the variation of

option prices in the strike dimension, albeit not perfectly. If the goal is to fit the market
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Figure 5.1: Implied volatility smiles from the calibrated Heston model (left) and the
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0.5 year

3525 4025 4350 4675 5000 5800

strike

error

1 year

3450 4075 4375 4600 4900 5400

strike

error

0.4

0.3

0.2

0.1

<
S}

1.65 year

3700 4050 4425 4775 5250 6400

strike

Figure 5.2: Relative error from the calibration of the time-dependent Black-Scholes model

prices perfectly in a stochastic volatility model, the previously mentioned stochastic local

volatility model might be used.

5.2 Pricing implementation

In Section [.2] it was shown that a range accrual could be priced as a series of range
digital options with delayed payments (eq. , . The formula for digital options in
the Heston model was also given, however that formula involved calculating an integral
of a function that has no closed-form antiderivative. There are several alternatives to
calculate the integral in theorem [§] here I will use a modified version of the callHestoncf
function implemented in the R package called NMOEF. This method uses R’s built-in
numerical integration to evaluate the integral. This method yields low errors, despite the
complexity of the function and the interval being infinite. To demonstrate this, I compared
call prices from the R implementation to high accuracy option prices. The reference prices
were calculated by (Lewis, 2019)|I| and they are accurate up to 15-20 digits. There are two
cases, one with longer maturity (7" = 1) and greater starting variance (vy = 0.04), and
one with an extremely short maturity (7" = 0.01) and lower initial variance (vo = 0.01).
In both cases, the R implementation is accurate at least up to the first four digits, and
in the less extreme one year time to maturity, it is accurate up to 6-10 digits. Based on

this, I conclude that the R implementation is accurate enough for the following pricing

!The dataset of reference prices can be found on the link in references.
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demonstrations.

strikes | T = 1, vg = 0.04 ||| strikes | T = 0.01, vy = 0.01
80 0.0000000015 90 -0.0000444993
90 -0.0000002814 95 0.0000038739
100 0.0000000000 100 0.0000000050
110 0.0000000000 105 -0.0000003414
120 -0.0000000099 110 0.0000142476

Table 5.3: Difference of the numeric integration in the Heston formula compared to ac-
curate prices (r = 0.01, ¢ = 0.02, Sp = 100, § = 0.25, k =4, n =1, p = —0.5)

5.3 Sensitivity analysis

In this section, the pricing results of the two different models will be presented along
with a sensitivity analysis of parameters. First, I analyze the sensitivity to product

parameters, then the sensitivity to model parameters.

5.3.1 Product-specific parameters

Let us examine the effect of product-specific parameters to the price of a single period

range accrual. The previously calibrated parameters will be used, which are
r = 0.01338, Sy = 4478.28, vy = 0.0399, 0 = 0.1415, k = 1.0038, 7 = 1.0030, p = —0.7726
for the Heston case, and

02092 0 <t<0.5
r=0.01338, o(t) = € 02423 05<t<1
02534 1 <t<1.65

for the time-dependent Black-Scholes case. The range accrual has five product-specific

parameters, which will be examined in this order.
e c: coupon payment
e N: number of observation periods
e T': maturity

e K'°%: lower barrier of the coupon payment range

K"P: upper barrier of the coupon payment range
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The effect of coupon payment is just a multiplier on the price of the range accrual,
therefore, the first parameter to be analyzed is the number of observation periods. Chang-
ing this parameter does not affect the maximum coupon payment during the life of the
product, as each payment is §. What it affects is the number of times it is checked
whether the underlying is quoted in the range. The effect of this parameter can be seen
in Figure As the number of observation periods increases, so does the price of the
product, but at around N = 100, it converges and a further increase in N has little to
no effect on the price. This is the effect of the discrete monitoring converging to the
continuous case. It can also be noted that the price is higher in the case of the Heston
model than in the time-dependent Black-Scholes case. This is caused by the shape of the

density functions, as the Heston is more concentrated to the (0.9, 1.1) interval where the
product pays coupons (Figure |5.6]).
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Figure 5.3: Effect of the number of observation periods (N) on the price of a range-accrual
for the two market models (¢ = 10, K" = 0.9, K" = 1.1, T = 1)

The next parameter is maturity, its effect is illustrated in Figure [5.4. The price of
the product is a monotonically decreasing function of maturity in both market models.
Regardless of time to maturity, the maximum payout of the product is ¢, and the coupon
accumulation events are stretched to a larger time interval. Payouts further into the
future have less probability of being in the (K'°¥, K'P) range, thus decreasing the price.

Moreover, if the payouts are further away in time, the effect of discounting will be greater.

The parameters K'°V, and K" control the size of the range where the product pays
coupons. Widening the barrier increases the price, and narrowing it decreases it. If the

barrier is set low enough or high enough for the lower and upper barriers, respectively, then
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Figure 5.4: Effect of time to maturity on the price of a range-accrual for the two market
models (c = 10, N = 250, K°¥ = 0.9, K = 1.1)

changes in the parameters have little effect on the price. This is because the underlying has
a very low probability of leaving the range. The interesting scenario is when the lower and
upper barriers are close to each other. In the left graph of Figure the lower barrier is
approaching the upper one. In this case, the time-dependent Black Scholes price is higher
for low barrier values, but as the upper barrier is approached, the Heston price becomes
higher. When the upper barrier is close to the lower one, on the right side of Figure [5.5]
the case is reversed. The time-dependent Black-Scholes price is higher until K"P = 1.05,
where the Heston price becomes higher again. This is due to the distributional differences
between the two models. The distribution resulting from the Heston model (with this
parameter set) is negatively skewed, while the distribution of the time-dependent Black-

Scholes model is lognormal and positively skewed. This is illustrated in Figure [5.6

As it was mentioned previously, range accruals in equity markets are sometimes issued
without an upper barrier. This makes the product more expensive, but the investor can
always benefit from a bullish market, as there is no possibility that the asset price will be
higher than the upper barrier. The sensitivity to the lower barrier value when the upper
barrier is infinity is graphed in Figure[5.7] Increasing the lower barrier value decreases the
price of the product. Similarly as before, changing the lower barrier when it is extremely

low or extremely high does not affect the price.

The sensitivity analysis was only conducted for the single period range accrual. As the
multi-period range accrual is the sum of single period range accruals, the results would

not provide an additional understanding of the product.
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Figure 5.6: Price distribution of the time-dependent Black Scholes and Heston models
with the calibrated parameters for T" = 0.5.
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no upper barrier.

5.3.2 Model parameters

I analyze the effect of changing model parameters of the Heston model. The goal is
to observe whether the range accrual reacts to parameter changes in the same manner as

the European vanilla option. In this section, the following parameter setup is used.
r=0.1,¢g =0, Sy =100, vog = 0.0625, § =0.04, k=05, n=1, p=—-0.75

To get a complete view of the parameter’s effect, the price sensitivity is graphed for
different strikes and barrier values. In Figure[5.8] the effect of changing the initial variance
is illustrated. For the vanilla call, higher initial variance always results in a higher option
price. In the case of the range accrual, for the higher barrier values (K" = 1.0, K" =
1.2), increasing vy has a decreasing effect on the price, but for the other two barrier
setups, it increases the price. This can be explained by the shape of the density of the
price distribution under the Heston model in Figure in the appendix. For a low vy
value, the price distribution is highly concentrated around 1.1ﬂ making the price of a range
accrual with parameters (K = 1.0, K" = 1.2) high. For a larger initial variance, the
distribution is more dispersed, which decreases the price for the (K% = 1.0, K" = 1.2)
case, but increases it for the other two barrier setups.

The effect of the speed of mean reversion is graphed for two cases: When the initial

variance is greater than the long-run average and vice versa. In the case of the range

2For this specific parameter setup.
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Figure 5.8: Effect of the vy parameter on the price of a range-accrual and the price of a

vanilla call option (The x-axis is the initial volatility, \/vg)

accrual, increasing the speed of mean reversion decreases the price when vy < 6 and
increases it when vy > 6. For the vanilla option, the effect is reversed. The density
function of the vy > 6 case is graphed in Figure in the appendix. For larger x, values
the density function shifts to the right, which increases the price of the vanilla option,
but because the range accrual does not accumulate coupon if the stock price is above
K" = 1.2, its price is decreased. If vy < @, the reverse is true, the density function
shifts to the left, increasing the price of the range accrual while decreasing the price of
the vanilla option.

Sensitivity to the volatility of variance parameter n is graphed in Figure (.10, An
increase in 7 results in lower option prices for the vanilla call. This is a bit counter-
intuitive, as one would think that an increase in the volatility of variance would also
increase the price of the vanilla call. As previously, the effect can be understood if we
take a look at the densities in Figure in the appendix. An increase in 7 makes the
distribution heavier tailed, but the probability of the stock price being in the (1.2, 2)
range decreases. Similarly, as before the 7 sensitivity of the range accrual depends on the
barrier values. For the (K = 1.0, K™ = 1.2) version, an increase in the volatility of
variance increases the price, but for the other barrier setups, it decreases it.

The effect of other model parameters can be seen in Figure [A.4]in the appendix. The
results are very similar, thus, they were put into the appendix to avoid the crowding
of images. Parameter changes in the Heston model have a different effect on the range

accrual depending on the barrier setups as before. In the case of the vanilla call option an
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vanilla call option.

increase in ¢ increases the price, because the average volatility will be higher. An increase
in the correlation decreases the price.
From these results, it is apparent that the range accrual reacts to parameter changes

differently than the vanilla call option. This supports the proposal that was made earlier,

20



that the Heston model should be calibrated to range accrual prices instead of vanilla
option prices. Moreover, the calibration process should be done separately for different
K" and K barrier values, because the behaviour of prices is highly dependent on
these barriers. This is unfortunately not feasible due to the lack of quoted market prices,

mentioned in Section 2.2
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Chapter 6
Summary

The aim of this thesis was to give a thorough description of range accrual products
written on equity underliers, including the pricing methodology and calibration process.
A range accrual is a derivative that accumulates coupons when the underlying is quoted
in a specified range, and pays it out at the end of the coupon determination period.
Essentially, the investor bets that the price of an asset will not leave the range. It is
a very flexible product that can be tailored to match a vast range of market views, let
it be bearish or bullish. It is widely used in several different markets, such as interest
rates, foreign exchange and equity. I was motivated to research this topic because I
found that equity-linked range accruals are less researched than their interest rate-linked
counterparts, and [ wanted to see how equity-linked range accruals could be modeled and

priced.

First, I introduced the payoff structure of the product and reviewed the surround-
ing literature. After that, I gave an overview of the models that are usually used for
pricing equity-linked derivatives. Two families of models were discussed: deterministic
volatility models and stochastic volatility models. Several models were listed from each
category, including the local volatility model, diffusion stochastic volatility models and
jump-diffusion models. Finally, I settled on two models for the rest of the analysis: the
time-dependent Black-Scholes model and the Heston model. Formulas for the vanilla call
option and the digital option were given in both models. The calibration process was
also discussed. The time-dependent Black-Scholes model could be calibrated analytically
if volatility is assumed to be a piecewise constant function. On the other hand, the five

parameters of the Heston model needed to be calibrated numerically to market data.

The main result of range accrual pricing is that the price of the product can be broken
down into a series of range digital options with delayed payoffs. At each date when the
range accrual could accumulate a coupon, the buyer essentially has a digital option with
payoff delayed to the end of the coupon determination period. The digital option has a

closed-form formula in the time-dependent Black-Scholes model and a semi-closed-form
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solution in the Heston model. As a result, the pricing could be done analytically, without
the need for Monte Carlo simulations.

In the last part of the thesis, I implemented the pricing and calibration of the above-
mentioned two models in the R programming language. The calibration process is impor-
tant because it does not matter how efficient the pricing is, if the model can not fit the
market data. Both models were calibrated to vanilla call options on the S&P500 index. It
was found that the Heston model could fit the data much better than the time-dependent
Black-Scholes model. However, in the low time to maturity case, even the Heston model
seemed to be unable to match the high curvature of the market-implied volatility smile.
Lastly, the sensitivity to both the product and model parameters was examined. The
sensitivity analysis showed that the price of the range accrual reacts to changes in the
Heston model parameters quite differently than the price of a vanilla call option. From
this result, I concluded that the calibration to vanilla call prices is not sufficient, the
range accrual should be calibrated to quoted range accrual prices. This kind of data is
not available to the public, but in the industry, there are possibilities to obtain it.

As part of a future research, different market models could be implemented and com-
pared. It would be particularly interesting to compare the local volatility model to the
stochastic local volatility model. As both models can fit the market prices perfectly, it
could be examined how stochastic volatility affects range accrual prices. Another area of
research could be to examine the prices of range accruals with exotic features, such as the

callable range accrual or the floating rate range accrual.
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Appendix A

Proofs and figures

A.1 Proofs

A.1.1 DModification of the Black-Scholes formula for the time-

dependent case

To find this modificationb consider the log return process of a time-dependent Black-
Scholes model, denoted by X,

1
dX, = <,u — 502(15)) dt + o(t)dW,; (A.1)
Its expected value is
r 1
E[X7] = X, +/ (u - 502(75)) dt (A.2)
0
and the variance is
T 2 T
D2[X;] = E [ / a(t)thl _ / o2(1) dt (A.3)
0 0
Let us consider another log return process Y (¢), which has constant volatility denoted by
O«
1
dY, = (u — 5(;3) dt + o, dW, (A.4)

Its expected value and variance are given similarly

E[Y7] =Y + (u - %af) T D*[Yr] =0T (A.5)

We are searching for a volatility parameter o, for which both the expected values and the

variance of the processes are the same. By equating the two variances in equations

and we get

o = % /0 " 20\t (A.6)
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This value of o, also makes the expected value of the two processes equal if Xy =Y

E[Y (T)] =Yo + (M - %"3> ! (A7)

=Xo + (u - %% aQ(t)dt> T = E[X(T)]

Because X; and Y; are normally distributed, the first two matching moments guarantee

equality in distribution.

A.1.2 Formula for the European vanilla call option under the

Heston model

I follow (Gatheral,|2011)) in deriving the price of a vanilla call option under the Heston
model. To get the price of the vanilla European call option, the PDE in equation

needs to be solved with the boundary condition
V(T,S,v) = (S — K)" (A.8)

Let Fir be the time T' forward price of the stock and introduce the new variable z =
Fyr/K. Moreover, let us define 7 = T' — ¢, and consider the derivative’s future value to

expiration instead its present value. This is denoted by C(z,v, 7). Rewriting equation
in terms of C'(x, v, 7) simplifies the PDE to

9C 1 °C 100 1, PC  8C e,
"o T2V T2V T2 Vg Mg 0, =0 (A9

where the subscripts  and v refer to differentiating C with respect to the subscript. As
stated in (Duffie et al., [2000) the solution to equation has the general form

C(z,v,7) = K{e"P(z,v,7) — Po(x,v,7)} (A.10)

Similarly to the Black-Scholes formula, the first term in the brackets (P;) represents the
pseudo-expectation of the final index level given that the option is in-the-money and the
second term (Fp) represents the pseudo- probability of exercise.

Substituting in the proposed solution, to equation [A.9] we get equations governing P,
and P;

Cop, 18P (1 op, 2P, 2P, op,
(= — b2 — 0 (AL
or 2" o (2 ) £ +277 gur H P g, @b 5 =0 (AL
for j = 0,1 and

a=k0 bj=r—jpm

subject to the terminal condition

T—0

lim Pj(z,v,7) = { ! %fx >0 = \(x) (A.12)



To solve equation with terminal condition [A.12, a Fourier transform technique is

used. Let us define the Fourier transform of P; as

p(U,U,T):/ e " P(x, v, 7)d (A.13)

(e}

which at 7 = 0 evaluates to

- o0 . 1
P(u,v,0) = / e " \x)dr = — (A.14)
e i
The inverse transform is
> 1
P(z,v,7) :/ o e P(u, v, 7)du (A.15)
T

The Fourier transform is applied to equation This cancels out the derivatives with
respect to x.

27

1 1, 0%P oP, oP,
- — j) iuv Py + 77 v + pnivv—= + (a — bjv)—L =0 (A.16)

or 2 2 ov? ov ov
Now define the variables
u? du ey
a=————+iju
o 2 Y
B=0—pnj— pniu
v = T]_2
2
With these variables, equation becomes
oP;  O°P OP; 0OP;
p,— g R R AT
”{O‘ o0 T o }+ g0 or (A.17)

because of the Heston characteristic functio has the form

]Bj(u, b, 7) = exp{C(u,7)0 + D(u, T)U}Pj(u, v,0)
(A.18)

= % exp{C(u, 7)0 + D(u, T)v}

From this, the partial derivatives of f’J are as follows

8,0, 200

or or or
(9P
DP
81}
02P -
81}2] - D2Pj

see (Gatheral, [2011)) for the derivation of the characteristic function
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Equation is satisfied if

oC

o 9P

a_D:a_5D+,yD2 <A19)
or

~9(D=r)(D=r)

where r is defined to be

. BE\B2—4ay B=Ed
4+ = =:
2y

7’
Integrating C'(u, 7) and D(u, T) in equation with terminal condition C(u,0) = 0,
D(u,0) = 0 yields

1— —dr
D(u,t) = o
1— ge—dr
5 | odr (A.20)
C(U 7') =0 {T‘T — ?log (ﬁ)}
where ¢ is defined as

r_
9=
T+

Now that C'(u,7) and D(u,7) are identified, they can be substituted to equation [A.18]
From there, the inverse Fourier transformation can be applied, and the pseudo-probabilities

P; will be given in the form of an integral of a real-valued function.

.\ 1 /00 e {exp{C’j(u, 7)0 +.Dj(u’ T)v + dux} } du (A.21)

1
P =
](x,U,T) 2 T U

A.1.3 Almost exact simulation of the Heston model

As a reminder, the dynamics of the log return process X; = log S; is

1
dvy = k(0 — vy)dt + n\/ v dW} (A.23)

This can be expressed with independent Wiener processes W/ and W combining them

according to the Cholesky factorization.

1
AX, = (= o)dt +/o; [detA /1o p2thB] (A.24)
dvy = k(0 — v,)dt 4 n\/o dW (A.25)

Let us integrate the processes in a given interval [¢;, ;1]
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tit1

tit1 1 tit1
Xi—i—l = Xz +/ (H — §'Ut)dt +p \/U_tthA +1+/1— 02/ \//U_tthB (A26)
ti t;

t;
tit1

tit1

Vig1 = v; + /1/ (0 —v)dt +n Vo dWi (A.27)
ti t;

It can be noticed that the term ﬁi“ \/v_tthA appears in both equations, and it can be

expressed as

tiy1 1 tit1
v dWA == Vig1 — U — K 0 — v,)dt A.28
foo
t

t; i
This is useful because the stochastic integral on the left side of equation is expressed
through v;; 1 — v;, which can be simulated from the noncentral chi-square distribution,
and an integral with respect to time, which can be approximated. Using this, the value

of X,;11 can be written as

tit1 1 p tit1
Xi+1 = Xl +/ (H — —Ut)dt“—_ <U7j+1 —V; — /ﬁ?\/ (9 — /Ut)dt)
ti 2 TI ti
tit1
++/1— p2/ Vo dwpP
t;

We can approximate the integrals by fixing the integrand at its left boundary value,

(A.29)

similarly to Euler’s method.

tit1 1 ,0 tit1
Xip1 =~ X, +/ (n— évi)dt—l—— ('Ui-i-l —v; — /4/ (60— vi)dt)
t; n 12}

tit1
VIR [ vmaw
t;

(A.30)
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A.2 Figures
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Figure A.2: Price distribution of the Heston model for different x parameters
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Appendix B

R code

The code used in the empirical results chapter can be found on the following |github
link, or at the url https: //github.com /papkri/pricing-range-accrual-products. Here, I will

explain the most important functions.

e callHestoncf and callHestoncf _digital

It calculates the Heston price of a vanilla call option and a digital option , re-
specitively. The function uses numerical integration to evaluate the formula in
Theorems [ and B

e sRAN analytic

Calculates the price of a single period range accrual in the Heston model. The
price is calculated as the sum of range digital options with delayed payments. Each
digital option price is calculated by callHestoncf digital.

e BSTD _vanilla and BSTD _digital

Calculates the price of a vanilla call option and a digital option in the time-dependent
Black-Scholes model. The function assumes that volatility is a piecewise constant
function and expects a vector of volatility values, and a vector of time values when
the volatility function changes.

e sRAN analytic. TDBS

Calculates the price of a single period range accrual in the time-dependent Black-
Scholes model. The price is calculated as the sum of range digital options with

delayed payments. Each digital option price is calculated by BSTD _digital.

e Heston_calibrator_multiMat

Function for calibrating the Heston model with the limited-memory BFGS method.
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e CIR _sample and Heston_paths_AE

The function CIR_sample generates the next step of the CIR variance process
based on equations [£.40] and [£.41], conditioning on the vector of previous variances.
The Heston_paths_AE function generates sample paths of the Heston model based

on equations and
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ésszefoglalés

A szakdolgozat célja, hogy bemutassa a sdvos hozamfelhalmozé (range accrual) termé-
keket, beleértve az arazast és a kalibracios folyamatot. A sdvos hozamfelhamozé olyan
termék amely kuponokat halmoz fel, ha az alaptermék egy elére meghatarozott savon
belil tartézkodik. A gyakorlatban altalaban napi gyakorisaggal megfigyelik, hogy az
alaptermék az adott napon a savon beliil tartézkodott-e, és ha igen, akkor a termék
felhalmozza a kupont arra a napra. A kupongyujtési idoszak végén kifizetésre keriilnek
az addig felhalmozott kuponok. A terméknek lehet egy vagy akar tobb kupongytijtési
id6szaka is, és amennyiben tobb idészakkal rendelkezik, mindegyik végén torténik kifizetés.
Ezek a termékek tobb kiilonbozo piacon is elterjedtek, azonban a dolgozatban olyan savos
hozamfelhalmozé termékeket vizsgalok, amiknek alapterméke részvény. A dolgozatban a
sajat hozzajarulds az adrazés és kalibracié implementacidja az R programnyelvben, illetve
a termék érzékenységvizsgalata.

A szakdolgozat elso fejezetében bemutatom a savos hozamfelhalmozd termékek ki-
fizetését, kitérve arra is, hogy milyen egzotikus kiegészitései vannak a terméknek. Ezutan
attekintem a termék szakirodalmat. Az irodalomban (Turnbull, 1995) és (Navatte &
Quittard-Pinon, 1999) cikkjei tekintheték kiinduldsi alapnak. Ezen cikkek szerzéi le-
vezetik, hogyan lehet a savos hozamfelhalmozé arat visszavezetni bindris opciok 0sszegére.
Minden alkalommal amikor a termék kupont halmozhat fel, a befekteto valdjaban egy
binéaris opciéval rendelkezik, aminek a kifizetése el van tolva a kupongytijtési idészak
végére. Ez joval egyszeriibb arazast tesz lehetové, a dolgozat késobbi részében én is ezt a
megkozelitést implementdlom. A szakirodalom nagyrésze, beleértve az elébbi két cikket
is, a kamatlabak piacan vizsgaljak a termék arazasat. Mivel a szakdolgozat a részvényhez
kotott savos hozamfelhalmozokat vizsgalja, ezért attekintettem a részvénypiacok mo-
dellezésének szakirodalmat is. A fobb forrasok amiket a témaban felhasznaltam a klasszi-
kusnak mondhat6 (Gatheral, 2011) konyv a volatilitdsfeliiletrdl, és (Oosterlee & Grzelak,
2019) konyve a matematikai modellezésrol.

A kovetkezo6 fejezetben részletesen targyaltam a részvénypiacok modellezésének kérdé-
sét. Arra kerestem a valaszt, hogy egy idedlis részvénypiaci modellnek milyen tulaj-
donsagokkal kell rendelkeznie. Az elsédleges szempont az volt, hogy a modell képes
legyen reprodukélni a piacon megfigyelt volatilitasmosolyt. Tovabbi szempont volt, hogy a
kivalasztott modell rendelkezzen a részvénypiacok stilizalt tulajdonsagaival mint példaul
az attételi hatas, vagy a vastag szélliség. Két kategériabol soroltam fel modelleket. A
determinisztikus volatilitdasmodellek koziil 1ényeges volt az idofiiggo volatilitasi Black-
Scholes modell, és a lokalis volatilitas modell. A sztochasztikus volatilitas modellek koziil
emlitettem a diffizids, az ugré-diffuzios és a tiszta ugré modelleket. Lényeges szem-
pont a modellvélasztasndl, hogy mik azok a faktorok amik befolyasoljak a termék &arat.

Egyes termékek mint példaul a barrier opcid, érzékenyek a volatilitds trajektéridjara.



Ezen termékek arazasahoz a volatilitas teljes trajektoridgjat modellezni kell, amire egy
sztochasztikus volatilitas modell alkalmas. Mas termékek, mint péladul a bindris opcid
vagy a hagyomanyos call opcid, nem fliggnek expliciten a volatilitas trajektoriajatol, ezek
arazasara megfeleld lehet egy determinisztikus volatilitas modell is. Mivel a savos hozam-
felhalmozé eléallithato binaris opcidk Osszegeként, ezért nem érzékeny a sztochasztikus
volatilitasra. Azonban ezeket a termékeket ritkan arusitjak onmagukban, altaldban tovabbi
egzotikus tulajdonsagu kifizetésekkel tarsitjak oket. Emiatt az elemzés tovabbi részéhez
valasztottam mindkét modellkategoriabdl egyet: a determinisztikus modellek koziil az
idofiiggo volatilitasu Black-Scholes modellt, a sztochasztikus modellek koziil pedig a He-
ston modellt.

A tovabbiakban ezt a két modellt mutatom be részletesebben. Ismertetem a for-
mulakat a call opcidéra és a binaris opciéra mindkét esetben. A Heston modell esetén nem
teljesen zart a formula, mivel egy integral alakjaban adhaté meg, azonban ez az integral
jol kozelithetd numerikus maddszerek segitségével. Végiil a Heston modell szimulaciéjat
is részletezem, arra az esetre ha egy elébb emlitett egzotikus verzidéjat akarnank drazni a
terméknek.

A szakdolgozat utolsé részében az R programnyelvben implementdlom az elébbi fe-
jezetekben ismertetett két modellt. A modelleket az S&P500 indexre kiirt call opcidkra
harom lejaratra kalibralom. A kalibralas utan az mondhaté el, hogy a Heston modell
sokkal jobban illeszkedik a piaci adatokra, mint az id6fiiggd volatilitdsu Black-Scholes
modell. Ezt az magyarazza, hogy az idofiiggé Black-Scholes modell nem tudja lekovetni
az ar valtozasat a kotési arfolyam dimenziéjaban, mig a Heston modell igen. Ezutan
érzékenységvizsgalatot végzek a termék paramétereire és a Heston modell paramétereire.
A termék paraméterei koziil a lejarat novelésével né a termék ara is, hiszen egyre tavolabb
keriilnek a kupongytijtési idopontok, igy kisebb eséllyel esik bele ebbe a részvényarfolyam,
tovabba a diszkontalds hatésa is erdsebb. A sav szélességének novelésével - a vartnak
megfelelolen - a termék ara no.

A Heston modell paramétereinek vizsgalatanal arra voltam kivancsi, hogy a sdvos
hozamfelhalmozé ugyantgy reagal-e a paramétervaltozasokra, mint a hagyomanyos call
opcid. Az érzékenységvizsgalat eredményeképp az mondhaté el, hogy nem viselkedik
ugyanugy a két termék. A savos hozamfelhalmozondl a sav helye nagyban befolyasolja
azt, hogy miképp fligg az ar, a Heston modell paramétereitél. Ebbdl arra a kovetkeztetésre
jutottam, hogy nem optimalis megoldas az, ha a Heston modellt a piacon megfigyelt call
opciok araira kalibraljuk. Ugyanis a nagy eltérés miatt azok a paraméterek amiket call
opcidkra optimalizaltunk, egyéltalan nem biztos, hogy a hozamfelhalmozé esetén is op-
timalisan illeszkednek. Idedlis esetben a piacon megfigyelt savos hozamfelhalmozo6 arakra
kellene kalibralni a modellt, azonban ilyen adat csak nagyobb cégeknek &all rendelkezésre.

A szakdolgozatban bemutattam a sdvos hozamfelhamozd arazasat két piaci modellben,

kitérve a modellek kalibraldsra is. Egy esetleges jovobeli kutatas téméja lehetne més piaci



modellek vizsgalata, vagy a savos hozamfelhalmozo6 egzotikus verzidéinak elemzése.



Szoszedet

e calibration: kalibréacié - az a folyamat amikor a modell paramétereit piaci adatokra
illesztik.

e deterministic volatility model: determinisztikus volatilitds modell - olyan mod-

ell amelyben a volatilitas determinisztikus fiiggvénye mas faktoroknak.

e digital option: digitalis/bindris opcié - olyan opci6 ami egységnyi kifizetést biztosit

ha az alaptermék meghaladja a kotési arfolyamot
e equity-linked derivative: részvényhez kotott derivativa
e implied volatility: implikélt volatilitas

e jump-diffusion: ugré diffizié - olyan modell amelyben a diffuzids tagon kiviil egy

véges aktivitasi ugréfolyamat is befolyasolja az arfolyamdinamikat

e leverage effect: attételi hatas - mely szerint a hozamok negativan korreldlnak a

volatilitassal
e local volatility model: lokalis volatilitas modell

e market model: piacmodell - olyan matematikai modell amelyet valamilyen piac

leirasara hasznalunk
e mean-reverting proces: atlaghoz visszahizé folyamat

e observation period: megfigyelési idoszak - az a periédus amiben megfigyelik hogy

a range accrual termék a savon beliil tartozkodik-e

e over the counter: tézsdén kiviili - olyan derivativakra hasznéljuk amiket tézsdén

kereskednek
e payoff: kifizetés - a derivativa kifizetésfiiggvénye

e range accrual: savos hozamfelhalmozd - exotikus derivativa ami kuponokat halmoz
fel ha az alaptermék egy meghatarozott savban van. A kuponokat a periédus végén
fizeti ki.

e risk-neutral measure: kockazatsemleges mérték
e risk-free rate: kockizatmentes kamatléb

e spot price: azonnali arfolyam



stochastic volatility model: sztochasztikus volatilitds modell - olyan modell

amiben a volatilitas idoben sztochasztikusan valtozik
strike: kotési arfolyam

structured product: strukturalt termék - hagyomanyos termékeknek a strukturalt

kombindciéja. Pl. hagyomanyos kotvény részvényhez kotott kuponfizetéssel.
time-dependent: idofiiggd

underlier: alaptermék

vanilla call option: call opci6 - vételi jogot biztosité opcid

volatility smile: volatilitds mosoly - a volatilitds abrazolasa a kotési arfolyam

fiiggvényében
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