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Chapter 1

Introduction

A range accrual is an exotic derivative that accumulates coupon payments when the

underlying asset stays within a range. This product is used with many different underlying

assets, such as interest rates, stocks, or foreign exchange rates. In the dissertation, I focus

on equity markets. My main motivation was that range accruals are usually described in

an interest rate market, and I aimed to see what model might be suitable in an equity

environment. Therefore, the aim of this thesis is to give a detailed description of range

accrual products written on equity underliers including the pricing methodology and the

calibration process. Before dwelling on the product and model-specific details, I give a

thorough description of the different model families used for equity assets, highlighting the

strengths and weaknesses of each model. From the presented models, two are chosen to

be the focus of analysis: the time-dependent Black-Scholes model and the Heston model.

In my analysis, I show how these two models can be calibrated to market data, and how

the range accrual is priced in each model. The given pricing solutions are analytic or

semi-analytic, but I also detail the simulation of the Heston model. I do this because

pricing via simulation is more robust in the sense that if the paths are already generated,

any exotic version of the range accrual can be priced. The thesis is structured as follows.

In Chapter 2, I describe the product’s payoff, including the single period and multi-

period versions. I also list several exotic extensions which can be added to this product.

At the end of the chapter, a literature review is given, where the previous works on range

accrual pricing are summarised.

In Section 3.1, I give an overview of range accrual markets, detailing the underliers

which are in use and giving an estimate of the size of the market. Following that, in

Section 3.2, I describe equity modelling in detail. I list different classes of models which

are used for equity derivatives. This section and Section 3.3 show the strengths and

weaknesses of different models and aim to justify using the Heston model.

Chapter 4 begins by introducing some useful concepts used throughout the thesis.

Then, a relation between digital options and range accruals is derived. In Sections 4.3-
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4.4, the two market models are introduced. Analytic formulae for vanilla and digital

options are given in both models, as well as the calibration procedure for both. In Section

4.5, the simulation of the Heston model is detailed.

In the last chapter, the empirical results are presented. Section 5.1 compares the fit

of the time-dependent Black-Scholes and Heston models to market data. In section 5.3

the sensitivity analysis of Heston model parameters and product parameters is given.
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Chapter 2

Product description

In this section, I give a description of the range accrual and an overview of the literature

on the product’s pricing.

2.1 What is a range accrual?

The range accrual note (RAN) is an exotic derivative that entitles the holder to coupon

payments when the underlying asset is in a prespecified range. For every observation

period when the underlier is within the range, the product accrues coupons, hence the

name. There can be one or more periods, and payments are made after each period.

When there is only one coupon determination period, the product pays at maturity, and

it is referred to as a single period RAN. Otherwise, it is a multi-period RAN. The payoff

of a single period range accrual is the following.

payoff = coupon
n

N

n =
N∑
i=1

1{lower range<Si<upper range}

(2.1)

Where 1 denotes the indicator function, N is the total number of observation periods,

and n is the number of periods when the underlying was in the prespecified range. For

example, consider a single period range accrual with maturity of one year and a coupon

payment of 10. If out of the 252 business days the closing price of the underlying was

quoted in the prespecified range 132 times, then the payoff at maturity is 10132
252

= 5.238.

Therefore, in its simplest form, the range accrual pays out the proportion of days the

underlier spent in the range multiplied by a constant.

A multi-period range accrual is just a series of single periods RANs, where coupon

payments are made at the end of each coupon determination period. The payoff of a
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multi-period RAN with d number of coupon determination periods is

payoff =
d∑

j=1

couponj

nj

Nj

nj =

Nj∑
i=1

1{lower rangej<Si<upper rangej}

(2.2)

The payoff is illustrated in Figure 2.1. The product accrues coupons in each period, pays

out the coupon at the end of the period, and then starts accumulating coupons again. It

can be seen that the lower and upper barriers of the range can change from one coupon

determination period to another. It is also possible to only have one barrier, and the

other is regarded as infinity. This is especially prevalent in equity markets. The accrued

coupon can also change across periods, though it is not common practice. With these

features, the range accrual can be tailored to many different market views. The frequency

of observations is an implicit parameter of the product. In theory, weekly, monthly, or any

custom frequency can be used, however, the market practice is to use daily observations.

It can be seen from the payoff that the price of the range accrual does not only depend

Figure 2.1: A multi-period RAN with a maturity of 3 years and 3 coupon periods

on the final asset price, as in the case of a European option. The whole trajectory of the

underlying’s price is needed to calculate the payoff. Moreover, range accruals are rarely

traded in this basic form, usually, some extra features are added, which further complicate

the pricing.
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2.2 Structured notes

A range accrual is referred to as a structured derivative or structured product. The

term is a wrapper for any pre-packaged financial product which facilitates a custom return

structure on an investable asset (Chan et al., 2019). In practice, issuers take a traditional

security, such as a bond, and replace the payment with something non-traditional, for

example, interest rate swap payments or equity-linked range accrual payments. There are

many different variants both for the base security and the payment, even capital protection

can be chosen. These products are usually made because standardized contracts do not

match the investor’s view.

Range accrual notes are usually sold as a structured product, more precisely in the

form of a bond, whose payments are the range accrual’s coupon payments. This means

that the product not only entitles the holder to the coupon payments, but to the payment

of the principal amount at maturity as well. The coupons are usually expressed as a

percentage of the principal amount. The bond structure is a key feature because it makes

this product highly subjected to the credit risk of the issuer.1 This additional uncertainty

is taken into consideration through credit value adjustments, which are usually done

separately from the actual pricing. Further information on credit risk can be found in

(Hull, 2012), and a detailed description of credit value adjustment is given in (Brigo et al.,

2013). I will not detail the credit risk methodology, I will only focus on the pricing of the

range accrual coupon payments.

Another problem that arises from the product’s structured note nature is that it is not

standardized and is usually not exchange-traded. Therefore, there is no easily accessible

benchmark price which can be compared to a model result. In an industry environment,

it would be theoretically possible to gain access to benchmark data, but it is not feasible

for this thesis.

2.3 Exotic features

Despite that the range accrual is already highly customizable, investors had even more

specific demands regarding payoffs. This led to the inclusion of additional exotic payoff

features on top of the traditional range accrual. These variants became very successful,

even so, that it is now rare to see a ”vanilla” range accrual without any additional feature.

The most common exotic features of range accruals based on (Tan, 2010) and (Chan et al.,

2019) are listed.

1Credit risk is present in any product offering future cash flows, I mean that it is several magnitudes

higher if a principal amount is part of the product.
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• Accrual/decrual: This variant can not only increase the number of days when

coupons are accrued but can also decrease it. The decrual range can be different

from the accrual range. This feature cheapens the product.

• Target redemption note (TARN): The TARN feature repays the note with the

principal if the accumulated coupons reach a given level. Meaning that the return

is capped by this level, but the investor gets the notional back immediately.

• Barriers: Range accruals can be equipped with knock-in and knock-out barriers

similarly to vanilla products. This can make the product cheaper at the risk of

losing coupon payments.

• Callable/autocallable: Similarly to a traditional callable bond, the holder has a

short call option on the product, meaning the issuer can decide to buy back the

range accrual at a given price. This additional short position cheapens the product.

An autocallable note is automatically repaid to the holder if certain conditions are

met. It is still a short position but with the autocall feature, the holder is less

subjected to the issuer’s actions.

• Basket underlier: In this variant, the underlier is not a single asset but rather a

basket of assets. The range accrual coupon payment is linked to the performance

of assets in the basket. It is also possible to combine different asset classes, such as

equity, interest rate, and foreign exchange.

• Floating range accrual: A floating range accrual does not have a fixed coupon,

rather the coupon is determined at the start of each coupon determination period.

It can be linked to the same underlying or to some other reference index such as

LIBOR.

The list is non-exhaustive, there are many other possibilities to extend the payoff of

a range accrual note. I will not go into detail about the pricing methodology of exotic

features, because they are too specific for the scope of this thesis.

2.4 Literature overview

A general description of the range accrual product is given in several books focusing

on structured derivatives. Two examples mentioned previously are (Chan et al., 2019)

and (Tan, 2010). These books also contain the description of exotic features mentioned

in Section 2.3.

The first papers dedicated to range accrual pricing were published in the 1990s. It

was first proposed by (Turnbull, 1995) that whether the underlying is quoted in the range

13



or not can be thought of as a binary option with payoff delayed to the end of the coupon

determination period. Therefore, the range accrual can be built up from a series of

digital options. The author gives a closed-form pricing formula for the range note in the

Heath-Jarrow-Morton framework described in (Heath et al., 1992). Following on this idea,

(Navatte & Quittard-Pinon, 1999) gives a more simple derivation of the range accrual’s

price in the same framework. These two articles are considered the first comprehensive

descriptions of range accrual pricing. (Nunes, 2004) generalized the pricing from the single

factor to the multifactor Gaussian Heath-Jarrow-Morton framework.

Research in the following years focused on finding pricing solutions under more realistic

models for the underlying’s price evolution, while the overall approach to pricing stayed

the same. The most researched asset class is interest rates as range accrual notes are

most often used with interest rate underliers. (Chiarella et al., 2014) proposes a pricing

method when the underlying follows an affine Wishart process. (Huang, 2011) describes

pricing in an affine market model where both the drift and volatility are stochastic and

jumps are allowed. (Lin et al., 2017) provides pricing formulae in the LIBOR market

model. Regarding the foreign exchange market, (Liao & Hsu, 2009) and (Li et al., 2020)

detail the pricing of quanto range accruals.

The area of equity-linked range accruals is not as well-researched, however, there is

vast research conducted on equity market models in general. In the following sections, I

often use the books of (Gatheral, 2011) and (Oosterlee & Grzelak, 2019) when describing

equity modelling. These books also serve as a basis for the comparison of different market

models in Section 3.2. The latter book is also referenced in the section where the pricing in

the time-dependent Black-Scholes model is discussed. For the pricing of the range accrual

note in the Heston model, the works of (Heston, 1993) and (Lazar, 2003) are important,

as they show how a vanilla call option and a digital option can be priced under the Heston

stochastic volatility model. Regarding the calibration of the Heston model, I use results

from (Mrázek & Pospı̌sil, 2017).

14



Chapter 3

Market models

In this section, I give an overview of the market of range accruals, showcasing dif-

ferent asset classes. I describe equity dynamics in greater detail, giving an overview of

deterministic and stochastic volatility models.

3.1 Range accrual market

Range accruals are not restricted to a single asset class, many different types of under-

liers can serve as the reference index. Interest rate linked range accruals are very common

as it is a principal-protected investment similar to other fixed-income products while hav-

ing the potential to gain an above-market coupon. The most common underlying interest

rates are the 3, 6 and 12-month USD LIBOR, but swap rates or US Treasury rates are

also used. Typically, interest rate linked range accruals are long-term investments with

maturities of 10 years or more. Equity-linked range accrual notes usually have index un-

derliers, such as the S&P500 and the Dow Jones Industrial Average. In this market, it is

common to have only one barrier, typically the lower one, because investors tend to have

bullish views on the growth of equity markets. Other underliers include foreign exchange

rates, commodity prices, and even inflation rates. The dynamics of these assets are very

different, therefore separate modelling is needed for every asset class.

Range accrual notes are over-the-counter products, therefore there is little to no data

available about specific trades or the market in general. However, it is known that the

overall structured product market is growing. In their article (Faraj & Khaled, 2019)

state that the size of the structured product market is about $7 trillion. This is only

about 1% of the total derivatives market, but according to the article, it is bigger than

the total ETF or hedge fund markets. It is not known how big of a portion range accrual

notes take up from this market, but it does help to put the relative sizes into perspective.
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3.2 Modelling equity dynamics

To price equity-linked range accruals, the price evolution of stocks needs to be ex-

amined. From 1973, the common practice was to model the stock price as a geometric

Brownian motion as in (Black & Scholes, 1973). However, in the late 1980s, especially

after the crash of 1987, market prices seemed to violate the Black-Scholes model. The

difference between model results and market prices was most apparent in the presence of

volatility smiles. The volatility smile is the relationship between the strike price and im-

plied volatility (IV). This can be examined because vanilla options are exchange-traded

products and therefore have quoted prices, from which one can calculate the implied

volatility associated with that strike and spot price. If the assumptions of the Black-

Scholes model were true, a stock’s volatility would be constant and thus independent

from the spot price and the strike of options written on it. As we can see in Figure

3.1, this is not the case. Implied volatility is lowest for at-the-money or close-to-strike

in-the-money options, and as the strike gets further away in either direction, IV increases,

giving the smile-like appearance. This shape is not universal, sometimes IV only increases

for out-of-the-money options, resulting in a volatility “smirk”. However, the phenomenon

that implied volatility changes across strikes and spot prices is observable in every market.

0.200

0.225

0.250

0.275

0.300

0.325

3500 4000 4500 5000

Strike

IV

Figure 3.1: Implied volatility of European options on the SPX index with 31-day maturity

as a function of strike (spot price ≈ 4061).

Ideal models should not only be able to replicate the volatility smile, but the resulting

distributions should replicate the behaviour of returns observed in the market. There are

several so-called stylized facts observed in equity markets. Based on (Thompson, 2011)

these are the following:
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• Volatility clustering: The average volatility of returns changes over time. There

are highly volatile periods followed by periods with smaller moves

• Heavy tails: The empirical distribution of asset returns has heavier tails than the

normal distribution. Highly positive or negative returns occur more often than they

should if the returns were normally distributed. This is especially true in times of

a recession.

• Leverage effect: This is the phenomenon that price movements are negatively

correlated with volatility. This quantifies the intuition that a bear market is more

volatile than a bull one.

• Long memory and persistence: These refer to the fact that volatility as a time

series has a long memory. External shocks to volatility have a long-lasting effect,

rather than disappearing quickly. This manifests in prices, since if volatility has a

long memory, then the square of returns has as well. Econometric analysis shows

that the higher the frequency of the data, the longer this memory spans.

Models describing equity markets can be loosely categorized into two groups: deter-

ministic and stochastic volatility models 1. In the following, I give an overview of the most

important models from both of these groups. This section follows the works of (Buraschi

& Jackwerth, 2001) and (Vörös, 2018).

3.2.1 Deterministic volatility models

In deterministic models, volatility is regarded as a deterministic function of time and

other factors. In this framework, volatility can still depend on stochastic processes, for

example, it can be the function of the spot price. There are several attractive features of

these types of models. First, they do not introduce a new source of risk, therefore hedging

can be achieved with only the underlying asset and the risk-free product. Second, they are

usually easy to calibrate, and they can reproduce the volatility smile of equity markets.

⋄ Time-dependent Black-Scholes (Black & Scholes, 1973)

This model is an extension to the original Black-Scholes model in which volatility

is a deterministic function of time. The equation governing the stock price is the

following.
dSt

St

= µdt+ σ(t)dWt

The assumption that volatility is a constant parameter was quite restrictive. In this

model, volatility can change across time, and thus, it can be calibrated to options

1Some articles treat jump models as a different, third category, here they are described together with

SV models.
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with different maturities. Moreover, it retains the lognormal asset price distribution

of the Black-Scholes model. Therefore, pricing in this model is straightforward, and

more importantly, fast. The model’s disadvantage is that time dependence is not

enough to reproduce the volatility smile, therefore the model can only be calibrated

to one strike per maturity. I will compare this model to the Heston model in Section

5.1. I chose the time-dependent Black-Scholes model because I wanted to compare

the Heston model to something standard in the industry. As this model has been

around for several decades, it is a good point of comparison.

⋄ Local volatility (Dupire, 1994)

This model is commonly used today, especially in equity markets. Dupire extends

the Black-Scholes model by allowing volatility to be dependent on time and the spot

price. The stochastic differential equation governing the stock price is given.

dSt

St

= µdt+ σ(t, St)dWt

The term σ(t, St) is referred to as local volatility. It is a two-dimensional surface that

can be calibrated to be consistent with all current European option prices. Local

volatility does not represent how volatility actually evolves, it is rather thought of as

the expected value of all possible instantaneous volatilities in a stochastic volatility

setting (Gatheral, 2011). Therefore, local volatility models are usually used when

this average (expected) volatility is sufficient for the pricing of the product.

Dupire gave the equation for calibrating the model to market prices.2

σ2(K,T ) = 2
∂
∂T

C(K,T ) + rK ∂
∂K

C(K,T )

K2 ∂2

∂K2C(K,T )

Where C(K,T ) is the current price of a vanilla call option with T maturity and

K strike. This equation gives the unique local volatility from European option

prices. This calibration method assumes that there are infinitely many strikes and

maturities observed on the options market, which is not a realistic assumption in

practice. To circumvent this, numeric methods are used to fit a local volatility

surface to discrete data points.

The model is popular because it is relatively fast to calibrate, and it can replicate

all the option prices observed in the market. However, the future dynamics of the

implied volatility smile are not captured well by this model. Even though it fits the

implied volatility surface perfectly in the present, if we calculate the future implied

volatilities from the model, the smile flattens, which is unrealistic.

2Dupire originally gave the equation with r = 0
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⋄ Implied binomial tree (Rubinstein, 1994)

This method focuses on building a binomial tree for the underlying process, that is

consistent with the market prices of options. The structure of the tree is similar to

the original Cox-Ross-Rubinstein (CRR) model. (Rubinstein, 1994) gives a method

for extracting risk-neutral probabilities from the current volatility smile. Given

these probabilities, he shows how to build a unique recombining binomial tree that

is consistent with quoted option prices. If the binomial tree is constructed, hedging

and pricing can be done similarly to the CRR model. It retains the simplicity of

the CRR model while enabling the calibration to market prices.

⋄ Kernel approach (Aı̈t-Sahalia & Lo, 1998)

The authors use a non-parametric method to calculate risk-neutral densities from

quoted option prices. Kernel functions are used to derive an estimator for the risk-

neutral density function. This estimator makes it possible to price path-dependent

exotic derivatives while being able to reproduce the volatility smile of the market.

They argue that a non-parametric method is preferable since it is robust to spec-

ification error (model risk) because it is not restricted by parametric assumptions.

The drawback of this model is that it is data-intensive to estimate the risk-neutral

densities, and in some markets, data is not available in large quantities.

3.2.2 Stochastic volatility models

Stochastic volatility (SV) models introduce a new source of risk by enabling volatility

to be stochastic. These models can reproduce the volatility smile, although usually, they

can not perfectly replicate it, as some deterministic volatility models do. However, they

describe the time evolution of the smile significantly better than deterministic volatility

models. Stochastic volatility models also produce more realistic asset price distributions.

A disadvantage of SV models is that the introduced source of risk is not directly tradable.

This results in an incomplete market, where the risk-neutral martingale measure is not

unique.

⋄ Diffusion SV models

These models describe volatility as a diffusion process, which is separate from the

diffusion of the underlying. There are several alternatives for the dynamics of the

volatility process. Notable examples of this class include the Heston model (Heston,

1993), the Hull-White model (Hull & White, 1987), the Scott model (Scott, 1987)

and the Stein & Stein model (Stein & Stein, 1991). These models share a lot of

properties, therefore, not every model is discussed separately.

19



In the general case, a diffusion SV model takes the form:3

dSt

St

= µ(t, St)dt+ f(vt)dW
1
t

dvt = m(t, vt)dt+ σ(t, vt)dW
2
t

d
[
W 1,W 2

]
t
= ρdt

In the first equation, it can be seen that vt is not used directly but rather through

the function f . One reason for this is to ensure that volatility stays positive, and

this is achieved with some functional transformation. Also, sometimes, instead of

volatility, variance is modelled, in that case f(vt) =
√
vt. The functions m(t, vt) and

σ(t, vt) specify the dynamics of the vt process. The driving Wiener processes can be

correlated with coefficient ρ. These three functions and the correlation coefficient

characterizes diffusion SV models.

model dvt f(vt)

Heston Cox-Ingersoll-Ross
√
vt

Hull-White geometric Brownian motion
√
vt

Scott Ornstein-Uhlenbeck evt

Stein & Stein Ornstein-Uhlenbeck vt

Table 3.1: Specification of different stochastic volatility models

The defining features of the models mentioned above can be seen in Table 3.1.

Except for the Hull-White model, all models use a mean-reverting process for vt.

Mean reversion is a desirable feature, as volatility tends to stay in a range instead

of growing indefinitely. In the original works of the authors, except for the Heston

model, the correlation between driving Wiener processes is assumed to be zero. It

is demonstrated in Figure 3.2, that diffusion stochastic volatility models are flexible

enough to reproduce the volatility smile. The smile flattens for the longer time to

maturities, which is in sync with market observations. The empirical properties of

asset prices under these models are also favourable. The generated distributions are

heavier tailed than the normal distribution and the leverage effect can be achieved

by setting ρ < 0.

⋄ Jump diffusion SV models

All the previously mentioned models have continuous trajectories. A straightforward

extension is to allow for non-continuous paths by adding jumps to the evolution of

the process. One of the first, and probably the most well-known model of this

class is Merton’s jump-diffusion model (Merton, 1976). In this model, the diffusion

3It is not a fully general case, for example, the correlation coefficient ρ can also be time-dependent.
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Figure 3.2: Implied volatilities generated by the Heston model for different maturities

ranging from 1 year to 0.4 years.

component is similar to a geometric Brownian motion, but a jump component is

added. The jump process is a compound Poisson process with lognormal jump size.

Jumps are interpreted as external shocks to the market. This model captures the

heavy tails of asset returns, and it also has more free parameters than the Black-

Scholes model.

The notion that volatility changes stochastically can be incorporated into jump-

diffusion models similarly to regular diffusion models. Both the dynamics of the

asset price and volatility can contain jumps. A well-known model of this class is the

Bates model (Bates, 1996). It describes the asset price with the following stochastic

differential equations:

dSt

St

= (µ− λk̄)dt+
√
vtdW

1
t + kdQt

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t

d
[
W 1,W 2

]
t
= ρdt

P (dQt = 1) = λdt

Where the term dQt is a Poisson process with λ intensity, k is the jump size which is

lognormally distributed and k̄ is the mean jump size. Essentially, the Bates model

adds a compound Poisson process to the Heston model. The trajectories of the asset

price contain jumps, but trajectories of variance are still continuous.

This model improves upon the diffusion SV models in several territories. While
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diffusion models can reproduce the volatility smile, they generally perform poorly

in low maturities. Adding jumps results in a much better fit for these close-to-

maturity products. Jumps also give modellers control over how heavy the tail of

the asset price distribution should be. This comes at the cost of having a lot of

parameters. This not only makes pricing and calibration more complex, but the

model can become over parametrized. Some markets are generally less liquid, and

the amount of usable data might not be enough to fit these models.

⋄ Pure jump models

The expected number of jumps in a given interval is finite in jump-diffusion models

because the jumps are generated by a Poisson process. Another approach is to use

processes that can contain infinitely many jumps on any interval. These models are

called pure jump models, as they have no diffusion component. In this framework,

log returns are modelled as a pure jump process, such as the Variance Gamma

process proposed by (Madan & Seneta, 1990). Then, to get the dynamics of the

asset price, some form of exponentiation is used 4.

These models are generally more flexible than diffusion models. (Barndorff-Nielsen

& Shephard, 2001) proposes a method on how to introduce stochastic volatility to

pure jump models. This model is referred to as the BNS model, and its dynamics

are described by the following equations.

St = S0e
Xt

dXt = (µ+ βσ2
t )dt+ σtdWt + ρdZt

dσ2
t = −λσ2

t dt+ dZt

In this model, there is a Wiener process (Wt) and Lévy subordinator (Zt) driving

the dynamics of log returns, and these processes are independent. The subordinator

process Zt is referred to as background driving Lévy motion, and it adds jumps to

both the evolution of variance and returns. If the parameter ρ is negative, a jump5

in variance results in a negative jump in returns, capturing the leverage effect. In

general, pure jump models capture the empirical properties of asset returns very

well, and in some cases, such as the BNS model, semi-analytic formulae can be

given for vanilla option prices. Their drawback is that simulating these processes

can be more computationally expensive because simulating the background driving

Lévy motion involves sampling random numbers from complex distributions.

Naturally, there are many models which were not mentioned. This section aimed

to be an overview instead of a complete list. However, there is one additional family

4Either applying the exponential function directly to the process or by using the stochastic exponential.
5Zt is a subordinator, thus it can only have positive jumps
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of models which is notable, mixed volatility models. This approach tries to unify the

ability of deterministic volatility models to be perfectly calibrated to market prices, with

the advantages of stochastic volatility. An example is the stochastic local volatility model

described in (Saporito et al., 2019), which extends the local volatility framework to have a

stochastic component. This model is popular for products whose price explicitly depends

on volatility. Another example is the mixed volatility model (Said, 1999), where variance

is given as a product of a deterministic and a stochastic component.

3.3 Sensitivity to stochastic volatility

Stochastic volatility models are more general than deterministic ones in the sense that

the latter can be integrated into the former. This is exactly what led to the creation of the

previously mentioned mixed volatility models. Because of this, it might be tempting to

use a stochastic volatility model in every pricing problem, as the modeller wants to have

prices as accurate as possible. However, there are other factors besides accuracy that need

to be considered. First, stochastic volatility models are in general more complicated and

computationally less tractable. Closed-form solutions rarely exist for exotic derivatives,

therefore, one needs to resort to simulation, and SV models are generally more expensive

to simulate. Second, the calibration process of stochastic volatility models is generally

slow. Fitting SV models usually involves a lengthy numerical calibration, which is not

optimal if the goal is to have frequent recalibrations. The industry usually prefers fast

methods, because if several thousands of products need to be priced daily, it is not an

option to have a slow pricer. Because of this, stochastic volatility models are only used

when the product is sensitive to stochastic volatility. Otherwise, the market practice is

to use a simpler, deterministic volatility model and account for the stochastic volatility

effect in a valuation adjustment. This is sufficient for products that are not, or are weakly

sensitive to stochastic volatility.

But what does it mean that a product is sensitive to stochastic volatility? It means

that the price of the product strongly depends on the exact path of volatility. In this

case, this dependence can not be captured by a valuation adjustment. Products which

have volatility as the underlier are highly sensitive to this effect. The two most common

examples are volatility and variance swaps.

Another category consists of those products which are not written on volatility itself,

but their payoff is implicitly affected by it. To understand this, let us compare a vanilla call

option to the same option with an upper knockout barrier. If the barrier level is reached

any time during the life of the product, then the option expires worthless, otherwise, it is

a traditional call option. In the case of the vanilla call option, the price only depends on

the asset price at maturity. Therefore, it does not matter what was the exact trajectory
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of volatility, its expected value is enough for pricing the product. However, in the case

of the barrier option, one sudden increase in volatility could result in the termination of

the trade, and thus, zero payoff. In this case, it is not enough to know the expected value

of volatility, it does matter how volatility evolved in time. As mentioned in the previous

section, local volatility can be thought of as the expected value of a stochastic volatility

model. Therefore, it is sufficient to price those products which are not dependent on

the exact path of volatility, but not sufficient if the product is sensitive to this effect.

Some products that are sensitive to stochastic volatility include the previously mentioned

barrier options, cliquet options, and forward start options.

It will be shown in the later sections how a range accrual can be priced as the sum of

a series of delayed digital options. Digital options are not sensitive to stochastic volatil-

ity, therefore it is not theoretically required to price a range accrual under a stochastic

volatility model. However, I also mentioned before, that range accruals are rarely sold

in their vanilla form, usually, some additional features are added, which might require a

stochastic volatility model.
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Chapter 4

Theoretical results

4.1 General methodology

In this section, a general overview of the pricing methodology is given. The definitions

and theorems used throughout the thesis will be described here. The theory of stochastic

processes is not discussed here, its main concepts can be found in (Baxter et al., 1996).

Let (Ω,F ,Ft,P) be a filtered probability space, where {Ft}t≥0 is a right-continuous

filtration, and P is a measure on (Ω,F), referred to as the statistical or real-world measure.

We want to define a market model in this filtered probability space, which consists of a

risky asset and a risk-free bank deposit. To define the model, we need the following

assumptions.

• The market is arbitrage-free

• There are no transaction fees

• It is allowed to buy any amount of the two assets, short selling included

Assuming a general form of the risky asset, the equations of the model are

dBt = rBtdt (4.1)

dSt = µ(t, St)dt+ σ(t, St)dW
P
t (4.2)

The risk-free asset grows at a constant rate r, and the solution to its differential equation

is known.

Bt = B0e
rt (4.3)

The model is given in terms of measure P, but for pricing derivatives, the measure needs

to be changed to the risk-neutral measure, denoted by Q. In the risk-neutral measure, the

process St

Bt
is a martingale. The first and second fundamental theorems of asset pricing

state the conditions for the existence and uniqueness of the risk-neutral measure. For now,

25



let us assume that the risk-neutral measure Q exists and it is unique. Then the dynamics

of the risky asset under measure Q can be determined using the Girsanov theorem 1

Theorem 1 (Girsanov theorem) If Wt is a Wiener process in measure P and γt is an

F-previsible process with the condition EP[
1
2

∫ T

0
γ2
t dt] < ∞, then there exists a measure Q

such that

• Q is equivalent to P

• dQ
dP = exp

(
−
∫ T

0
γtdWt − 1

2

∫ T

0
γ2
t dt

)
• W̃t = Wt +

∫ t

0
γsds is a Brownian motion in measure Q

The prices of derivatives can be calculated by using the following formula.

Theorem 2 (Risk neutral pricing formula) Let Vt denote the price of a derivative at

time t. The price of any contingent claim at time t, with payoff at maturity VT is:

Vt

Bt

= EQ

[
VT

BT

| Ft

]
(4.4)

If Bt evolves as in equation 4.3, then

V0 = B0EQ

[
VT

BT

| F0

]
= e−rTEQ [VT ] (4.5)

The price of any derivative can be calculated using this formula, but the actual calculation

depends heavily on what market model we assume and what is the derivative in question.

Let us assume a model which is less general in terms of the asset price dynamics but

contains stochastic volatility.

dSt = µtStdt+
√
vtStdW

A
t (4.6)

dvt = α(St, vt, t)dt+ ηβ(St, vt, t)
√
vtdW

B
t (4.7)

d
[
WA,WB

]
t
= ρdt (4.8)

This model is generic in the sense that many stochastic volatility models have this form.

For example, both the Heston and Hull-White models fit this framework. It is important

to note that the appearance of
√
vt is just out of practicality, the process is not necessarily

a square-root process. For models of this form, a general valuation PDE can be given.

1Extensions of the Girsanov theorem can be given for a broader set of processes.
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Theorem 3 (General valuation equation - (Gatheral, 2011)) If the market model

is the one described in equations 4.6 - 4.8, then the price of any contingent claim V (t, S, v)

is governed by the following equation:

∂V

∂t
+

1

2
vS2∂

2V

∂2S
+ ρηSvβ

∂2V

∂v∂S
+

1

2
η2vβ2∂

2V

∂2v
+ rS

∂V

∂S
− rV

= −(α− ϕβ
√
v)
∂V

∂v

(4.9)

where ϕ(t, S, v) is the market price of volatility risk.

Regarding the market price of volatility risk, (Gatheral, 2011) argues that the risk-neutral

drift term can be defined as

α′ = α− β
√
vϕ (4.10)

then the stochastic differential equation of variance becomes

dvt = α′dt+ β
√
vtdW

B (4.11)

This way we could get identical results without the need to explicitly estimate the market

price of volatility risk. Essentially, by itting the model to market option prices, we ensure

risk-neutral parameters. In the following sections, it is always assumed that the stochastic

differential equation of vt is already in risk-neutral terms.

4.2 Pricing range-accrual notes

As shown in the previous section, the price of a derivative involves calculating the

expected value of the discounted payoff in the risk-neutral measure. In this section, I will

show how the price of a range-accrual note can be broken down into a series of range

digital options with delayed payoffs.

Let 0 < T1 < · · · < TN = T be the times when the range accrual can accumulate

coupons. Consider the payoff of a single period RAN at time T .

fRAN(T ) = c
1

N

N∑
i=1

1{Klow<Si<Kup}

Let VRAN(t, T ) denote the price of a single period RAN, with maturity T , spot asset price

S0, coupon c, lower barrier K low, and upper barrier Kup at time t. The price is calculated

by applying the risk-neutral pricing formula to the payoff at time T . The numeraire B(t)

is assumed to be the risk-free bank account growing at a constant rate r. The price of

the product at t = 0 is the following.

VRAN(0, T ) = B0EQ

[
fRAN(T )

BT

| F0

]
= EQ

[
e−rTfRAN(T )

]
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Substituting in the payoff of the product we get

= e−rT c

N
EQ

[
N∑
i=1

1{Klow<Si<Kup}

]

summation and the expectation can be interchanged

= e−rT c

N

N∑
i=1

(
EQ

[
1{Klow<Si<Kup}

])
The indicator function in the expected value can be rewritten as

1{Klow<Si<Kup} = 1{Si>Klow} − 1{Si>Kup}

Dividing and multiplying by erti the price of the product becomes

VRAN(0, T ) = e−rT c

N

N∑
i=1

(
ertiEQ

[
e−rti1{Si>Klow}

]
− ertiEQ

[
e−rti1{Si>Kup}

])
It can be noticed that the two expectations give the price of another derivative, the digital

option. This option pays 1 unit if the underlying is above (or below) a prespecified barrier.

1{Si>Klow} is exactly the payoff of a derivative paying 1 unit if Si > K low, discounting this

expression with e−rti and taking the expectation gives the price of this product. The same

logic applies to the second expectation, it is the price of a digital option that pays 1 unit

if Si > Kup. The price of a digital option paying 1 unit at time T if the underlying is

above the level K will be denoted as D(t, T,K). The pricing formula can be rewritten as

follows:

VRAN(0, T ) = e−rT c

N

N∑
i=1

(
erti(D(0, Ti, K

low)−D(0, Ti, K
up))

)
(4.12)

The interpretation of this formula is that the RAN can be thought of as a series

of range digital options, each paying c
N

if the product is in the prespecified range and

0 if it is not. Because this payment is not made immediately, but at the end of the

coupon determination period its future value needs to be calculated. This is achieved by

multiplying by erti . From this, the price of a multi-period range accrual is the sum of

single-period RANs.

VMRAN(0, T ) =
D∑
j=1

e−rTj
cj
Nj

Nj∑
i=1

(
erti(D(0, Ti,j, K

low
j )−D(0, Ti,j, K

up
j ))

) (4.13)

Where c, K low, Kup can all be changing across coupon determination periods, as it was

shown in figure 2.1, and D is the number of coupon determination periods. The indexing

of Ti,j corresponds to the coupon accumulation events 0 < T1,j < T2,j < · · · < TNj
in

period j. Payments are made at the end of each period.
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This result enables the pricing of range-accrual notes analytically when the prices

of digital options are calculated. This greatly simplifies pricing, as digital options have

closed-form or semi-analytic formulas in many market models. The Black-Scholes and

Heston models belong in this category, and the formulas for digital options will be given

in the following sections.

4.3 Time-dependent Black-Scholes model

In the Black-Scholes model, the asset price is modelled as a geometric Brownian motion

dSt = µStdt+ σStdWt (4.14)

with a positive initial value

S0 = s ≥ 0

The model has two constant parameters: µ controls the drift of the process, and σ is the

volatility parameter. The solution to the asset price stochastic differential equation can be

found by applying Ito’s lemma to the asset price process with the function f(x) = ln(x).

St = S0 exp

((
µ− σ2

2

)
t+ σWt

)
(4.15)

The Girsanov theorem can directly be applied to change the measure to the risk-neutral

one. The Radon-Nikodym derivative defining the risk-free measure is

dQ
dP

= E
(∫ T

0

µ− r

σ
dW P

t

)
(4.16)

where E denotes the stochastic exponential. The dynamics of the process in the risk-

neutral measure is

dSt = rStdt+ σStdW
Q
t (4.17)

The measure change only affects the drift, which changed from µ to the risk-free interest

rate r. It can easily be seen that the stock price is lognormally distributed, and thus log

returns are normally distributed. This is a property that makes pricing less complicated

compared to other models. The two derivatives which are important for the purposes

of this thesis, the vanilla call and the digital option, both have closed-form prices in the

Black-Scholes model. The formula for the vanilla call option enables the calibration of

the Black-Scholes model to market prices. The closed-form solution to the digital option

means range-accrual prices can be calculated analytically.

Theorem 4 (Black and Scholes, 1973) If the asset price is a geometric Brownian

motion with current spot price S, then the price of a European vanilla call option with
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strike K, maturity T, at time t is

Vcall(t, T,K, S) = SN(d1)− e−r(T−t)KN(d2)

d1 =
ln S

K
+ (r + σ2

2
)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

Theorem 5 (Black and Scholes, 1973) If the asset price is a geometric Brownian

motion with current spot price S, then the price of a European digital call option with

strike K, maturity T, at time t is

Vdigital(t, T,K, S) = e−r(T−t)N(d2)

d2 =
ln S

K
+ (r − σ2

2
)(T − t)

σ
√
T − t

The main problem of the Black-Scholes model is that it fails to reproduce the market

prices of options due to the lack of free parameters. The only free parameter of the model

is volatility. This one parameter is not enough to fit the model to the market. Therefore, it

is common to use some extension of the Black-Scholes model, which enables a better fit to

market prices. One common extension is to allow volatility to be a deterministic function

of time. This is referred to as the time-dependent (volatility) Black-Scholes model

dSt = µStdt+ σ(t)StdWt (4.18)

where σ(t) is a deterministic function. The asset price is still lognormally distributed.

St = S0 exp

(∫ t

0

µ− 1

2
σ2(s)ds+

∫ t

0

σ(s)dWs

)
(4.19)

Because of the lognormal dynamics, the formulas in Theorem 4 and 5 can be extended

for the time-dependent case. The standard Black-Scholes formula can be applied with

σ∗ =

√
1

T

∫ T

0

σ2(t)dt (4.20)

choice for σ. This choice of σ∗ equates the first two moments of the distribution of the

standard and time-dependent Black-Scholes models, and in the case of the normal distri-

bution, this guarantees equality in distribution. The derivation of σ∗ is shown in Appendix

A.1.1. Therefore, the previous pricing formulas can be applied with the volatility param-

eter given in equation 4.20. This only holds for European type payoffs, American type

products can not be priced with this method. The two processes will have the same

marginal distributions, but nothing guarantees that their transitional distributions will

also be the same (Oosterlee & Grzelak, 2019). This result is summarised in the following

theorem.
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Theorem 6 (Oosterlee and Grzelak, 2019) If the asset price follows the dynamics

of a time-dependent volatility Black-Scholes model with current spot price S and volatility

function σ(t), then the price of a European vanilla call and digital option with strike K,

maturity T, at time t is

Vcall(t, T,K, S) = SN(d1)− e−r(T−t)KN(d2)

Vdigital(t, T,K, S) = e−r(T−t)N(d2)

d1 =
ln S

K
+ (r + σ2

∗
2
)(T − t)

σ∗
√
T − t

d2 = d1− σ∗
√
T − t

σ∗ =

√
1

T

∫ T

0

σ2(t)dt

4.3.1 Calibration

Calibration of the model is an important step in pricing derivatives. This is the process

of finding a set of parameter values that provide a good fit to the market which we want

to model. The immediate question is to decide what kind of data is used as a reference for

the calibration? If the price of the product is quoted on the market, it is straightforward

to use that. However, exotic products usually do not have quoted prices, or even if they

have, the product might not be liquid enough. In this case, the market practice is to use

the prices of vanilla options written on the same underlier. Vanilla option prices are ideal

because they are exchange-traded and liquid enough to do frequent recalibrations.

In the time-dependent volatility Black-Scholes model, the spot price S and the risk-

free rate r are parameters that are observable on the market. Naturally, the risk-free rate

is not directly observable for any arbitrary maturity, but it can be inferred from yield

curve data published by federal banks. For the remainder of this thesis, the risk-free rate

is assumed to be observed from the US Treasury yield curve.

This leaves σ(t) the only object to be calibrated. Because in this model, volatility is

only a function of time, there is no way to capture the variation of volatility across strikes.

In other words, the model is unable to replicate the volatility smile. Therefore the model

can only be calibrated to one strike, which is usually the at-the-money one. The following

calibration proposal follows (HochSchule RheinMain, n.d.) Let

σimp,T1 , σimp,T2 , . . . , σimp,Tm

be the implied volatilities corresponding to the market prices of at-the-money European

vanilla call options with maturities T1, . . . , Tm. To match these implied volatilities in the

time-dependent Black-Scholes model, we have to find a function σ(t) that satisfies the
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equation

Tkσ
2
imp,Tk

=

∫ Tk

0

σ2(t)dt (4.21)

for all of the maturities T1, . . . , Tm. Rearranging equation 4.21, we get

Tkσ
2
imp,Tk

− Tk−1σ
2
imp,Tk−1

=

∫ Tk

Tk−1

σ2(t)dt (4.22)

We can choose σ(t) to be a piecewise constant function, which is equal to σk on the

(Tk−1, Tk) interval. Then we can arrange equation 4.22 for σk.

σ2
k =

Tkσ
2
imp,Tk

− Tk−1σ
2
imp,Tk−1

Tk − Tk−1

(4.23)

With this method, we can exactly fit the model to at-the-money options for all of the

observed maturities. However, the model will probably not provide a good fit for deep

in the money or out-of-the-money strikes. The fit of the time-dependent Black-Scholes

model will be compared to the Heston model in the later sections.

4.4 Heston model

The Heston model is described by the following equations

dSt = µStdt+
√
vtStdW

1
t (4.24)

dvt = −κ(vt − θ)dt+ η
√
vtdW

2
t (4.25)

d
[
W 1,W 2

]
t
= ρdt (4.26)

with initial values

S0 = s ≥ 0

v0 = v ≥ 0

Equation 4.24 describes the evolution of the asset price, equation 4.25 represents the

instantaneous variance at time t, and equation 4.26 is the covariation of the two driving

Wiener processes. The parameters of the Heston model are:

• µ: The drift of the asset price.

• θ: The long-run average variance.

• κ: The rate at which variance reverts to θ.

• η: The volatility of variance.

• ρ: Correlation between the two driving Wiener processes.
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• v0: Initial value of variance.2

The dynamics of the asset price are similar to the lognormal model, if vt was deterministic,

we would get back the time-dependent Black-Scholes model. The variance process is a

Cox-Ingersoll-Ross (CIR) process introduced by (Cox et al., 1985). Using the CIR process

for the variance is beneficial for at least two reasons. First, it is mean-reverting, which is

desirable because volatility is observed to stay in a range instead of growing indefinitely.

Second, it is well known that the CIR process is nonnegative because it can be constructed

as the sum of squared of Ornstein-Uhlenbeck processes. Moreover, if the initial value of

the process is not zero and the Feller condition is satisfied,

2κθ > η2 (4.27)

the process will never reach zero. This is favourable because no functional transformation

is needed to ensure positivity in the Heston model. However, when fitted to real market

data, the Feller condition often does not hold.

To calculate option prices in the Heston model, a risk-neutral measure is needed.

As described in (Márkus, 2017), an extension of the Girsanov theorem can be used to

determine the risk-neutral measure.

dQ
dP

= E
(∫ T

0

r − µ
√
vt

dW 1,P
t

)
(4.28)

Under the Q, measure the process W 1,Q
t = W 1,P

t + r−µ√
vt

will be a Wiener process and the

risk-neutral dynamics of the asset price will be

dSt = rStdt+
√
vtStdW

1,Q
t (4.29)

Thus, the measure change only affects the drift µ, and similarly to the Black-Scholes

model, the growth rate of the asset price is the constant risk-free interest rate.

The last step for calculating option prices in the model is to determine the partial

differential equation which gives the price of any contingent claim in the model. This can

be easily achieved by substituting into the general valuation equation in Theorem 3. Let

V (t, S, v) be the price of a derivative at time t, with spot asset price S, and instantaneous

variance v. Then, the partial differential equation governing the price of the derivative is

∂V

∂t
+

1

2
vS2∂

2V

∂2S
+ ρηSv

∂2V

∂S∂v
+

1

2
η2v

∂2V

∂2v
+ rS

∂V

∂S
− κ(v − θ)

∂V

∂v
− rV = 0 (4.30)

with an appropriate boundary condition.

One of the main advantages of the Heston model is that there exists a formula that

satisfies this equation for the European vanilla call option. This enables the fast and

efficient calibration of the model. This result is given in the following theorem

2It is regarded as a parameter because it cannot be observed in the market, therefore it is usually

fitted during the calibration process.
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Theorem 7 (Heston, 1993) If the asset price follows the dynamics of the Heston model

described in equations 4.24-4.26 with current spot price S, then the price of a European

vanilla call option with strike K, and maturity T at time t is

Vcall(t, T,K, S, v) = SP0 − e−r(T−t)KP1

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞

0

Re

{
exp{Cj(u, τ)θ +Dj(u, τ)v + iux}

iu

}
du

For j = 0, 1, x = Ft,T/K and τ = T − t

D(u, τ) = r−
1− e−dτ

1− ge−dτ

C(u, τ) = θ

{
rτ −

2

η2
log

(
1− e−dτ

1− g

)}

α = −u2

2
− iu

2
+ iju, β = θ − ρηj − ρηiu, γ =

η2

2

r± =
β ±

√
β2 − 4αγ

2γ
=

β ± d

η2
, g =

r−
r+

This formula can be evaluated with numerical integration to a sufficient degree of

accuracy. The accuracy of this method will be tested in Section 5.2.

Determining the price of a vanilla call option is important because of the calibra-

tion process. But for pricing range accruals, digital option prices should be calculated.

A digital option pays 1 unit if the underlying is above a prespecified barrier and zero

otherwise.

Vdigital(T, S, v) = 1{ST>K} (4.31)

If we take the expectation in the risk-neutral measure, the price of this option is the

probability that the option will expire in the money multiplied by a discount factor. This

is exactly the P1 pseudo-probability calculated previously. Therefore, the price of a digital

option can be directly calculated using the previous results. A formal proof of the digital

price can be found in (Lazar, 2003)

Theorem 8 (Lazar, 2003) If the asset price follows the dynamics of the Heston model

described in equations 4.24-4.26 with current spot price S then the price of a digital option

with strike K, and maturity T at time t is

Vdigital(t, T,K, S, v) = e−r(T−t)P1

Where P1 is calculated as in Theorem 7.
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4.4.1 Calibration

The Heston model has seven parameters, out of which two are directly observable

on the market. These two are the spot asset price S0, and the risk-free rate r. As

previously mentioned, the risk-free rate is inferred from US Treasury yield curve data.

The parameters that are not observable and need to be calibrated are Π = (ρ, v0, θ, κ, η).

In the following, it is shown how the implied volatilities of vanilla options are affected by

these parameters. In each case, the value of one parameter is varied, while the others are

held fixed.

The effect of parameters η and ρ is illustrated in Figure 4.1. On the left graph, it can

be seen that the lower the volatility of variance, the flatter the smile. Thus, the volatility

of variance parameter controls the curvature of the smile. Higher values of the correlation

parameter ρ give a regular smile, and lower values give a more skewed IV smile. The

latter is more common in equity markets. The parameter κ controls the speed of mean

reversion of the variance process. In the left graph of Figure 4.2, it can be seen that as

a function of strike, κ has the effect of an almost parallel shift. As a function of time

to maturity, greater κ values contribute to a more concave IV shape. This is because as

κ increases, variance converges faster to its mean. The remaining two parameters have

similar effects, as seen in Figure 4.3. The effect of the long-run average variance parameter

θ across strikes is a parallel shift, and the effect of initial variance v0 is an almost parallel

shift across time to maturities.

Figure 4.1: Impact of the volatility of variance parameter (γ in this graph) and the

correlation ρ on the IV smile. (Oosterlee & Grzelak, 2019)

The reference data for calibration consists of vanilla option prices written on the same

underlier as the product we want to price. This data is publicly available for numerous

stocks and indices, for example, on yahoo finance. The Heston model does not have
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Figure 4.2: Impact of mean reversion parameter κ on IV as a function of strike price and

time to maturity. (Oosterlee & Grzelak, 2019)

Figure 4.3: Impact of initial variance v0 and the long run average variance (v̄ on this

graph) on the IV smile. (Oosterlee & Grzelak, 2019)

enough free parameters to exactly fit market implied volatilities across all strikes and

maturities. Therefore, the calibration process becomes an optimization problem. The

aim is to minimize the error between model prices and market prices. Measuring this

error is a modelling question. There are several alternatives, the most common being the

sum of squared differences. With this error metric, the task results in a nonlinear least

squares optimization problem.

min
Π

∑
i

∑
j

wi,j (V
∗(t0, S0, Ki, Tj)− V (t0, S0, Ki, Tj,Π))

2 (4.32)

Where V ∗(t0, S0, Ki, Tj) is the market price at time t0 and spot asset price S0 for a vanilla
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call option with strike Ki and maturity Tj, and V (t0, S0, Ki, Tj,Π) is the Heston price

for the same call option with parameter set Π. wi,j is the weight associated with that

particular strike and maturity. The weights can be equal, in that case, wi,j = 1. If the

weighting is not constant, more liquid options are usually given bigger weights, as it is

more important for the model to match liquid option prices than illiquid ones. Liquidity

is usually measured with the size of the bid-ask spread. Some alternatives for the weights

are listed below, with spread indicating the bid-ask spread associated with the option for

a given maturity and strike.

A =
1

|spread|
(4.33)

B =
1

(spread)2
(4.34)

C =
1√

spread
(4.35)

The optimization problem can also be formulated in terms of implied volatilities

min
Π

∑
i

∑
j

wi,j (σ
∗(t0, S0, Ki, Tj)− σ(t0, S0, Ki, Tj,Π))

2 (4.36)

In this case, σ∗(t0, S0, Ki, Tj) is the implied volatility associated with the market price of

a vanilla call option, and σ(t0, S0, Ki, Tj,Π) is Heston model-implied volatility.

The problem with this optimization is that the function described in equations 4.32

and 4.36 is not convex, and it is also not of any recognizable structure (Mrázek & Pospı̌sil,

2017). Moreover, the parameters of the Heston model are not independent in the sense

that the effect of different parameters on the implied volatility smile can be similar.

Because of this, several sets of parameters might provide a good fit, resulting in numerous

local minima to the error function. It is also a constrained optimization problem as

ρ ∈ [−1, 1] and κ, v0, η, θ ≥ 0.

There are several numerical methods to solve such an optimization problem. In this

thesis, the limited-memory BFGS method is used3. This algorithm uses an estimate

of the inverse of the Hessian matrix to search for a local minimum. The algorithm is

implemented in the R programming language by default. It allows for constraints on the

optimized variables, and given a set of initial values, it converges in a reasonable time.

4.5 Monte Carlo simulation

In order to price derivatives with the Monte Carlo method, sample paths of the Heston

process need to be generated. It is particularly challenging to generate paths from the

3A detailed description of the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm can be

found in (Byrd et al., 1995)
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CIR process. In the following, I present several alternatives on how to simulate values

from the dynamics described in equations 4.24, 4.25, and 4.26.

Euler method

The Euler (or Euler-Maruyama) method is a well-known discretization technique for

SDEs. It is described in detail in (Márkus, 2017). The Euler discretization of the variance

process with equal timesteps of ∆t is

vi+1 = vi + κ(θ − vi)∆t+ η
√
vi
√
∆tZ1 (4.37)

where Z1 ∼ N(0, 1). As stated previously, if the Feller condition (eq. 4.27) holds, the

trajectories of the process are nonnegative. However, this statement is not true if the

process is discretized, the discrete process can become negative with a positive probability

(Mrázek & Pospı̌sil, 2017). Moreover, we also need to be able to simulate sample paths

if the parameters violate the Feller condition. The two standard ways of solving the

negativity problem are the absorbing method4: if v < 0 then v = 0, or the reflecting

method: if v < 0 then v = −v (Gatheral, 2011). If ∆t → 0, the estimation is bias-free

regardless of the chosen method.

The Euler discretization for the asset price is

Si+1 = Si + µSi∆t+
√
viSi

√
∆tZ2

where Z2 is also standard normal and corr(Z1, Z2) = ρ. Usually, not the asset price, but

the log returns (Xi = log(Si/S0)) are discretized, because this way there is no higher-order

correction needed for the Euler discretization. The discretization for the log returns is

Xi+1 = Xi +

(
µ− 1

2
vi

)
∆t+

√
vi
√
∆tZ2 (4.38)

From this Si+1 = S0e
Xi+1 . Therefore exponentials need to be taken for each timestep,

however, with modern computational power, this does not slow down the simulation.

Milstein method

The Milstein scheme is similar to the Euler, but it uses a higher-order form of the Ito-

Taylor expansion (Gatheral, 2011). The Milstein discretization for the variance process

with the same notation as before is

vi+1 = vi + κ(θ − vi)∆t+ η
√
vi
√
∆tZ1 +

η2

4
∆t(Z2

1 − 1) (4.39)

It is the same as the Euler scheme, except the extra correction term η2

4
∆t(Z2

1−1). Gatherol

points out that by using the Milstein method, the occurrences of negative variances are

4Sometimes referred to as full-truncation method.
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substantially reduced, even when parameters do not satisfy the Feller condition. However,

negative values can still occur with nonzero probability, thus, either the reflection or

absorbing methods should be used to counteract this. As stated previously, the Milstein

discretization of log returns does not require any higher-order corrections, therefore in the

Milstein scheme, it can still be simulated as in equation 4.38.

Almost exact simulation

The Euler and Milstein methods can be used to simulate any stochastic differential

equation, even when the solution is not known explicitly. However, when the exact dis-

tribution of the process at time t is known, random numbers can be sampled from the

distribution, eliminating the problems which arise from the discretization of the time grid.

In the case of the CIR process, the exact distribution is known to be the noncentral chi-

squared distribution (Cox et al., 1985). Conditioning on the previous state of the process

v(s), s < t, the distribution of the CIR process at time t is

v(t)|v(s) ∼ c(t, s)χ2(δ, λ(t, s)) (4.40)

where

c(t, s) =
η2

4κ

(
1− e−κ(t−s)

)
, δ =

4κθ

η2
, λ(t, s) =

4κe−κ(t−s)

η2(1− e−κ(t−s))
v(s) (4.41)

In this notation, c is a constant multiplier and χ2(δ, λ) denotes the noncentral chi-squared

distribution with δ degrees of freedom and noncentrality parameter λ. If the previous value

of variance is known, then the current variance can be sampled directly from the given

distribution. It can also be noted, that the previous variance value v(s) is only influencing

the next value through the noncentrality parameter. The almost exact approximation of

the Heston process with timestep ∆t is the following.

Xi+1 = Xi +

(
µ− 1

2
vi

)
∆t+

ρ

η
(vi+1 − vi − κ(θ − vi)∆t) +

√
1− ρ2

√
viZ (4.42)

vi+1 = c(ti+1, ti)χ
2(δ, λ(ti+1, ti) (4.43)

where c, δ, and λ are parameters defined in equation 4.41, and Z ∼ N(0, 1). A detailed

derivation of this result is given in Appendix A.1.3. This simulation method is referred

to as almost exact because the sampling of the variance process is exact but for the

returns process, Euler approximations were used. Using this method, the problem of

negative variance never arises because the exact distribution of the CIR process is used.

Another advantage, as argued by (Oosterlee & Grzelak, 2019), is that it requires fewer

time steps than the Euler and Milstein methods to give accurate results for derivatives

prices. The only downside of this method is that it requires random number sampling from

the noncentral chi-squared distribution, which is computationally more intensive than

sampling from the normal distribution. However, most modern programming languages

have libraries that are optimized for this task.
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Chapter 5

Empirical results

In the previous chapter, it was shown how a range accrual product can be priced

under the time-dependent Black-Scholes and Heston models. The calibration processes of

these models were also discussed. These results are implemented in the R programming

language and will be presented in this section. The code used for the implementation is

available in Appendix B.

5.1 Calibration

To calibrate the models, market data was obtained from the yahooFinance stock and

option monitoring website. I used options written on the S&P500 equity index, as it is

a common underlier for equity products. The models are calibrated to 3 maturities: 0.5,

1 and 1.65 years, each having 50-80 strikes. The risk-free rate is assumed to be the one

year US Treasury zero-coupon rate, which at the time of the calibration was r = 1.338%.

The spot price of the index at the time was 4478.28. To evaluate the resulting model fit,

three different error measures are used.

maximum absolute relative error: MARE(Π) = max
i

|σΠ
i − σ∗

i |
σ∗
i

(5.1)

average absolute relative error: AARE(Π) =
1

n

n∑
i=1

|σΠ
i − σ∗

i |
σ∗
i

(5.2)

root-mean-square error: RMSE(Π) =
1

n

√√√√ n∑
i=1

(σΠ
i − σ∗

i )
2 (5.3)

Where σ∗ denotes the implied volatility on the market and σΠ indicates the model implied

volatility associated with the parameter set Π. I will calibrate all models to implied

volatilities instead of option prices. If I were to calibrate to option prices directly, some

normalization would be needed, because in-the-money option prices are fairly larger than

out-of-the-money ones, and the calibration would be overfitted to the in-the-money side.

Using implied volatilities serves as a natural normalization.
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I calibrated the Heston model with the numerical optimization method described in

Section 4.4.1. I used four different weightings, described in equations 4.33-4.35, and an

additional equal weighting. None of the weightings resulted in a significantly different

set of parameters than the others. The errors of the fitted models are shown in Table

5.1. The error measures confirm that there is no single superior weighting, they all have

similar performance.

weights RMSE AARE MARE

A 0.00551 0.01832 0.1429

B 0.00575 0.02201 0.1042

C 0.00559 0.01833 0.1453

equal 0.00549 0.02032 0.1319

Table 5.1: Errors of the Heston model calibration for different weights

To have a better view of how good the fit is, I plotted the model-implied volatilities

from the equal weighting calibration against the market data and the resulting error in

Figure 5.1. The volatility smile is flatter for the longer maturities of 1 and 1.65 years,

resulting in a more smirk-like shape. This is in line with the empirical finding that the

smile tends to flatten on longer maturities. The fit is also better for these longer maturities.

On the shorter 0.5 years maturity, the volatility smile is more pronounced, and the Heston

model has trouble fitting the smile, especially in the deep in-the-money part. This is in

agreement with other studies, where researchers found that the model has a tendency to

misprice short-term options (Shu & Zhang, 2004). This is not a unique problem of the

Heston model, in fact, most pure diffusion models tend to misprice short-term options.

One solution is to incorporate jumps in the model to capture the short-term variation

in option prices. These models, particularly infinite activity jump models were shown

to have a better fit for short-term options (Mijatović & Tankov, 2016). Taking this into

consideration, the fit of the Heston model is acceptable.

The time-dependent Black-Scholes model has no parameters to fit the implied volatility

smile in the strike dimension. Therefore, the model is calibrated to the at-the-money

implied volatility for each maturity as in Section 4.3.1. This results in a flat volatility

smile for each maturity, where the model exactly matches the at-the-money volatility but

fails to replicate the in-the-money or out-of-the-money volatilities. This can be observed

in Figure 5.2, as the error is zero for the at-the-money strike, and grows linearly in both

directions, reaching 40% on the sides. The error measures of the fit, as seen in Table 5.2,

are a magnitude higher than the Heston’s.

It can be concluded that the Heston model provides a much better fit to market

data than the time-dependent Black-Scholes model. It can incorporate the variation of

option prices in the strike dimension, albeit not perfectly. If the goal is to fit the market
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Figure 5.1: Implied volatility smiles from the calibrated Heston model (left) and the

resulting relative error (right), calibrated with equal weights
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RMSE AARE MARE

0.04505 0.19302 0.47873

Table 5.2: Errors of the time-dependent Black-Scholes model calibration
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Figure 5.2: Relative error from the calibration of the time-dependent Black-Scholes model

prices perfectly in a stochastic volatility model, the previously mentioned stochastic local

volatility model might be used.

5.2 Pricing implementation

In Section 4.2, it was shown that a range accrual could be priced as a series of range

digital options with delayed payments (eq. 4.12, 4.13). The formula for digital options in

the Heston model was also given, however that formula involved calculating an integral

of a function that has no closed-form antiderivative. There are several alternatives to

calculate the integral in theorem 8, here I will use a modified version of the callHestoncf

function implemented in the R package called NMOF. This method uses R’s built-in

numerical integration to evaluate the integral. This method yields low errors, despite the

complexity of the function and the interval being infinite. To demonstrate this, I compared

call prices from the R implementation to high accuracy option prices. The reference prices

were calculated by (Lewis, 2019)1 and they are accurate up to 15-20 digits. There are two

cases, one with longer maturity (T = 1) and greater starting variance (v0 = 0.04), and

one with an extremely short maturity (T = 0.01) and lower initial variance (v0 = 0.01).

In both cases, the R implementation is accurate at least up to the first four digits, and

in the less extreme one year time to maturity, it is accurate up to 6-10 digits. Based on

this, I conclude that the R implementation is accurate enough for the following pricing

1The dataset of reference prices can be found on the link in references.
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demonstrations.

strikes T = 1, v0 = 0.04

80 0.0000000015

90 -0.0000002814

100 0.0000000000

110 0.0000000000

120 -0.0000000099

strikes T = 0.01, v0 = 0.01

90 -0.0000444993

95 0.0000038739

100 0.0000000050

105 -0.0000003414

110 0.0000142476

Table 5.3: Difference of the numeric integration in the Heston formula compared to ac-

curate prices (r = 0.01, q = 0.02, S0 = 100, θ = 0.25, κ = 4, η = 1, ρ = −0.5)

5.3 Sensitivity analysis

In this section, the pricing results of the two different models will be presented along

with a sensitivity analysis of parameters. First, I analyze the sensitivity to product

parameters, then the sensitivity to model parameters.

5.3.1 Product-specific parameters

Let us examine the effect of product-specific parameters to the price of a single period

range accrual. The previously calibrated parameters will be used, which are

r = 0.01338, S0 = 4478.28, v0 = 0.0399, θ = 0.1415, κ = 1.0038, η = 1.0030, ρ = −0.7726

for the Heston case, and

r = 0.01338, σ(t) =


0.2092 0 ≤ t < 0.5

0.2423 0.5 ≤ t < 1

0.2534 1 ≤ t < 1.65

for the time-dependent Black-Scholes case. The range accrual has five product-specific

parameters, which will be examined in this order.

• c: coupon payment

• N : number of observation periods

• T : maturity

• K low: lower barrier of the coupon payment range

• Kup: upper barrier of the coupon payment range
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The effect of coupon payment is just a multiplier on the price of the range accrual,

therefore, the first parameter to be analyzed is the number of observation periods. Chang-

ing this parameter does not affect the maximum coupon payment during the life of the

product, as each payment is c
N
. What it affects is the number of times it is checked

whether the underlying is quoted in the range. The effect of this parameter can be seen

in Figure 5.3. As the number of observation periods increases, so does the price of the

product, but at around N = 100, it converges and a further increase in N has little to

no effect on the price. This is the effect of the discrete monitoring converging to the

continuous case. It can also be noted that the price is higher in the case of the Heston

model than in the time-dependent Black-Scholes case. This is caused by the shape of the

density functions, as the Heston is more concentrated to the (0.9, 1.1) interval where the

product pays coupons (Figure 5.6).
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model Heston TDBS

Figure 5.3: Effect of the number of observation periods (N) on the price of a range-accrual

for the two market models (c = 10, K low = 0.9, Kup = 1.1, T = 1)

The next parameter is maturity, its effect is illustrated in Figure 5.4. The price of

the product is a monotonically decreasing function of maturity in both market models.

Regardless of time to maturity, the maximum payout of the product is c, and the coupon

accumulation events are stretched to a larger time interval. Payouts further into the

future have less probability of being in the (K low, Kup) range, thus decreasing the price.

Moreover, if the payouts are further away in time, the effect of discounting will be greater.

The parameters K low, and Kup control the size of the range where the product pays

coupons. Widening the barrier increases the price, and narrowing it decreases it. If the

barrier is set low enough or high enough for the lower and upper barriers, respectively, then
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Figure 5.4: Effect of time to maturity on the price of a range-accrual for the two market

models (c = 10, N = 250, K low = 0.9, Kup = 1.1)

changes in the parameters have little effect on the price. This is because the underlying has

a very low probability of leaving the range. The interesting scenario is when the lower and

upper barriers are close to each other. In the left graph of Figure 5.5 the lower barrier is

approaching the upper one. In this case, the time-dependent Black Scholes price is higher

for low barrier values, but as the upper barrier is approached, the Heston price becomes

higher. When the upper barrier is close to the lower one, on the right side of Figure 5.5,

the case is reversed. The time-dependent Black-Scholes price is higher until Kup = 1.05,

where the Heston price becomes higher again. This is due to the distributional differences

between the two models. The distribution resulting from the Heston model (with this

parameter set) is negatively skewed, while the distribution of the time-dependent Black-

Scholes model is lognormal and positively skewed. This is illustrated in Figure 5.6.

As it was mentioned previously, range accruals in equity markets are sometimes issued

without an upper barrier. This makes the product more expensive, but the investor can

always benefit from a bullish market, as there is no possibility that the asset price will be

higher than the upper barrier. The sensitivity to the lower barrier value when the upper

barrier is infinity is graphed in Figure 5.7. Increasing the lower barrier value decreases the

price of the product. Similarly as before, changing the lower barrier when it is extremely

low or extremely high does not affect the price.

The sensitivity analysis was only conducted for the single period range accrual. As the

multi-period range accrual is the sum of single period range accruals, the results would

not provide an additional understanding of the product.
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Figure 5.5: Effect of range parameters on the price of a range accrual for the two market

models (c = 10, N = 250, K low = 0.9, Kup = 1.1, T = 1)
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Figure 5.6: Price distribution of the time-dependent Black Scholes and Heston models

with the calibrated parameters for T = 0.5.
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Figure 5.7: Effect of the lower barrier value on the price of a range accrual when there is

no upper barrier.

5.3.2 Model parameters

I analyze the effect of changing model parameters of the Heston model. The goal is

to observe whether the range accrual reacts to parameter changes in the same manner as

the European vanilla option. In this section, the following parameter setup is used.

r = 0.1, q = 0, S0 = 100, v0 = 0.0625, θ = 0.04, κ = 0.5, η = 1, ρ = −0.75

To get a complete view of the parameter’s effect, the price sensitivity is graphed for

different strikes and barrier values. In Figure 5.8, the effect of changing the initial variance

is illustrated. For the vanilla call, higher initial variance always results in a higher option

price. In the case of the range accrual, for the higher barrier values (K low = 1.0, Kup =

1.2), increasing v0 has a decreasing effect on the price, but for the other two barrier

setups, it increases the price. This can be explained by the shape of the density of the

price distribution under the Heston model in Figure A.1 in the appendix. For a low v0

value, the price distribution is highly concentrated around 1.12, making the price of a range

accrual with parameters (K low = 1.0, Kup = 1.2) high. For a larger initial variance, the

distribution is more dispersed, which decreases the price for the (K low = 1.0, Kup = 1.2)

case, but increases it for the other two barrier setups.

The effect of the speed of mean reversion is graphed for two cases: When the initial

variance is greater than the long-run average and vice versa. In the case of the range

2For this specific parameter setup.
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Figure 5.8: Effect of the v0 parameter on the price of a range-accrual and the price of a

vanilla call option (The x-axis is the initial volatility,
√
v0)

accrual, increasing the speed of mean reversion decreases the price when v0 < θ and

increases it when v0 > θ. For the vanilla option, the effect is reversed. The density

function of the v0 > θ case is graphed in Figure A.2 in the appendix. For larger κ, values

the density function shifts to the right, which increases the price of the vanilla option,

but because the range accrual does not accumulate coupon if the stock price is above

Kup = 1.2, its price is decreased. If v0 < θ, the reverse is true, the density function

shifts to the left, increasing the price of the range accrual while decreasing the price of

the vanilla option.

Sensitivity to the volatility of variance parameter η is graphed in Figure 5.10. An

increase in η results in lower option prices for the vanilla call. This is a bit counter-

intuitive, as one would think that an increase in the volatility of variance would also

increase the price of the vanilla call. As previously, the effect can be understood if we

take a look at the densities in Figure A.3 in the appendix. An increase in η makes the

distribution heavier tailed, but the probability of the stock price being in the (1.2, 2)

range decreases. Similarly, as before the η sensitivity of the range accrual depends on the

barrier values. For the (K low = 1.0, Kup = 1.2) version, an increase in the volatility of

variance increases the price, but for the other barrier setups, it decreases it.

The effect of other model parameters can be seen in Figure A.4 in the appendix. The

results are very similar, thus, they were put into the appendix to avoid the crowding

of images. Parameter changes in the Heston model have a different effect on the range

accrual depending on the barrier setups as before. In the case of the vanilla call option an
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Figure 5.10: Effect of the η parameter on the price of a range accrual and the price of a

vanilla call option.

increase in θ increases the price, because the average volatility will be higher. An increase

in the correlation decreases the price.

From these results, it is apparent that the range accrual reacts to parameter changes

differently than the vanilla call option. This supports the proposal that was made earlier,
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that the Heston model should be calibrated to range accrual prices instead of vanilla

option prices. Moreover, the calibration process should be done separately for different

K low and Kup barrier values, because the behaviour of prices is highly dependent on

these barriers. This is unfortunately not feasible due to the lack of quoted market prices,

mentioned in Section 2.2.
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Chapter 6

Summary

The aim of this thesis was to give a thorough description of range accrual products

written on equity underliers, including the pricing methodology and calibration process.

A range accrual is a derivative that accumulates coupons when the underlying is quoted

in a specified range, and pays it out at the end of the coupon determination period.

Essentially, the investor bets that the price of an asset will not leave the range. It is

a very flexible product that can be tailored to match a vast range of market views, let

it be bearish or bullish. It is widely used in several different markets, such as interest

rates, foreign exchange and equity. I was motivated to research this topic because I

found that equity-linked range accruals are less researched than their interest rate-linked

counterparts, and I wanted to see how equity-linked range accruals could be modeled and

priced.

First, I introduced the payoff structure of the product and reviewed the surround-

ing literature. After that, I gave an overview of the models that are usually used for

pricing equity-linked derivatives. Two families of models were discussed: deterministic

volatility models and stochastic volatility models. Several models were listed from each

category, including the local volatility model, diffusion stochastic volatility models and

jump-diffusion models. Finally, I settled on two models for the rest of the analysis: the

time-dependent Black-Scholes model and the Heston model. Formulas for the vanilla call

option and the digital option were given in both models. The calibration process was

also discussed. The time-dependent Black-Scholes model could be calibrated analytically

if volatility is assumed to be a piecewise constant function. On the other hand, the five

parameters of the Heston model needed to be calibrated numerically to market data.

The main result of range accrual pricing is that the price of the product can be broken

down into a series of range digital options with delayed payoffs. At each date when the

range accrual could accumulate a coupon, the buyer essentially has a digital option with

payoff delayed to the end of the coupon determination period. The digital option has a

closed-form formula in the time-dependent Black-Scholes model and a semi-closed-form
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solution in the Heston model. As a result, the pricing could be done analytically, without

the need for Monte Carlo simulations.

In the last part of the thesis, I implemented the pricing and calibration of the above-

mentioned two models in the R programming language. The calibration process is impor-

tant because it does not matter how efficient the pricing is, if the model can not fit the

market data. Both models were calibrated to vanilla call options on the S&P500 index. It

was found that the Heston model could fit the data much better than the time-dependent

Black-Scholes model. However, in the low time to maturity case, even the Heston model

seemed to be unable to match the high curvature of the market-implied volatility smile.

Lastly, the sensitivity to both the product and model parameters was examined. The

sensitivity analysis showed that the price of the range accrual reacts to changes in the

Heston model parameters quite differently than the price of a vanilla call option. From

this result, I concluded that the calibration to vanilla call prices is not sufficient, the

range accrual should be calibrated to quoted range accrual prices. This kind of data is

not available to the public, but in the industry, there are possibilities to obtain it.

As part of a future research, different market models could be implemented and com-

pared. It would be particularly interesting to compare the local volatility model to the

stochastic local volatility model. As both models can fit the market prices perfectly, it

could be examined how stochastic volatility affects range accrual prices. Another area of

research could be to examine the prices of range accruals with exotic features, such as the

callable range accrual or the floating rate range accrual.
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Appendix A

Proofs and figures

A.1 Proofs

A.1.1 Modification of the Black-Scholes formula for the time-

dependent case

To find this modificationb consider the log return process of a time-dependent Black-

Scholes model, denoted by Xt

dXt =

(
µ− 1

2
σ2(t)

)
dt+ σ(t)dWt (A.1)

Its expected value is

E[XT ] = X0 +

∫ T

0

(
µ− 1

2
σ2(t)

)
dt (A.2)

and the variance is

D2[XT ] = E

[∫ T

0

σ(t)dWt

]2
=

∫ T

0

σ2(t)dt (A.3)

Let us consider another log return process Y (t), which has constant volatility denoted by

σ∗

dYt =

(
µ− 1

2
σ2
∗

)
dt+ σ∗dWt (A.4)

Its expected value and variance are given similarly

E[YT ] = Y0 +

(
µ− 1

2
σ2
∗

)
T D2[YT ] = σ2

∗T (A.5)

We are searching for a volatility parameter σ∗ for which both the expected values and the

variance of the processes are the same. By equating the two variances in equations A.3

and A.5, we get

σ∗ =

√
1

T

∫ T

0

σ2(t)dt (A.6)
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This value of σ∗ also makes the expected value of the two processes equal if X0 = Y0

E[Y (T )] =Y0 +

(
µ− 1

2
σ2
∗

)
T

=X0 +

(
µ− 1

2

1

T

∫ T

0

σ2(t)dt

)
T = E[X(T )]

(A.7)

Because Xt and Yt are normally distributed, the first two matching moments guarantee

equality in distribution.

A.1.2 Formula for the European vanilla call option under the

Heston model

I follow (Gatheral, 2011) in deriving the price of a vanilla call option under the Heston

model. To get the price of the vanilla European call option, the PDE in equation 4.30

needs to be solved with the boundary condition

V (T, S, v) = (ST −K)+ (A.8)

Let Ft,T be the time T forward price of the stock and introduce the new variable x =

Ft,T/K. Moreover, let us define τ = T − t, and consider the derivative’s future value to

expiration instead its present value. This is denoted by C(x, v, τ). Rewriting equation

4.30 in terms of C(x, v, τ) simplifies the PDE to

− ∂C

∂τ
+

1

2
v
∂2C

∂x2
− 1

2
v
∂C

∂x
+

1

2
η2v

∂2C

∂v2
+ ρηv

∂2C

∂x∂v
− κ(v − θ)

∂C

∂v
= 0 (A.9)

where the subscripts x and v refer to differentiating C with respect to the subscript. As

stated in (Duffie et al., 2000) the solution to equation A.9 has the general form

C(x, v, τ) = K {exP1(x, v, τ)− P0(x, v, τ)} (A.10)

Similarly to the Black-Scholes formula, the first term in the brackets (P1) represents the

pseudo-expectation of the final index level given that the option is in-the-money and the

second term (P0) represents the pseudo- probability of exercise.

Substituting in the proposed solution, to equation A.9, we get equations governing P0

and P1

− ∂Pj

∂τ
+

1

2
v
∂2Pj

∂x2
−
(
1

2
− j

)
v
∂Pj

∂x
+

1

2
η2v

∂2Pj

∂v2
+ ρηv

∂2Pj

∂x∂v
+ (a− bjv)

∂Pj

∂v
= 0 (A.11)

for j = 0, 1 and

a = κθ bj = κ− jρη

subject to the terminal condition

lim
τ→0

Pj(x, v, τ) =

{
1 if x > 0

0 if x ≤ 0
:= λ(x) (A.12)
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To solve equation A.11 with terminal condition A.12, a Fourier transform technique is

used. Let us define the Fourier transform of Pj as

P̃ (u, v, τ) =

∫ ∞

−∞
e−iuxP (x, v, τ)dx (A.13)

which at τ = 0 evaluates to

P̃ (u, v, 0) =

∫ ∞

−∞
e−iuxλ(x)dx =

1

iu
(A.14)

The inverse transform is

P (x, v, τ) =

∫ ∞

−∞

1

2π
eiuxP̃ (u, v, τ)du (A.15)

The Fourier transform is applied to equation A.11. This cancels out the derivatives with

respect to x.

− ∂P̃j

∂τ
− 1

2
vu2P̃j −

(
1

2
− j

)
iuvP̃j +

1

2
η2v

∂2P̃j

∂v2
+ ρηiuv

∂P̃j

∂v
+ (a− bjv)

∂P̃j

∂v
= 0 (A.16)

Now define the variables

α = −u2

2
− iu

2
+ iju

β = θ − ρηj − ρηiu

γ =
η2

2

With these variables, equation A.16 becomes

v

{
αP̃j − β

∂P̃j

∂v
+ γ

∂2P̃j

∂v2

}
+ a

∂P̃j

∂v
− ∂P̃j

∂τ
= 0 (A.17)

because of the Heston characteristic function1P̃j has the form

P̃j(u, b, τ) = exp{C(u, τ)θ +D(u, τ)v}P̃j(u, v, 0)

=
1

iu
exp{C(u, τ)θ +D(u, τ)v}

(A.18)

From this, the partial derivatives of P̃j are as follows

∂P̃j

∂τ
=

{
θ
∂C

∂τ
+ v

∂D

∂τ

}
P̃j

∂P̃j

∂v
= DP̃j

∂2P̃j

∂v2
= D2P̃j

1see (Gatheral, 2011) for the derivation of the characteristic function
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Equation A.17 is satisfied if

∂C

∂τ
= θD

∂D

∂τ
= α− βD + γD2

= γ(D − r+)(D − r−)

(A.19)

where r± is defined to be

r± =
β ±

√
β2 − 4αγ

2γ
=:

β ± d

η2

Integrating C(u, τ) and D(u, τ) in equation A.19 with terminal condition C(u, 0) = 0,

D(u, 0) = 0 yields

D(u, τ) = r−
1− e−dτ

1− ge−dτ

C(u, τ) = θ

{
rτ −

2

η2
log

(
1− e−dτ

1− g

)} (A.20)

where g is defined as

g :=
r−
r+

Now that C(u, τ) and D(u, τ) are identified, they can be substituted to equation A.18.

From there, the inverse Fourier transformation can be applied, and the pseudo-probabilities

Pj will be given in the form of an integral of a real-valued function.

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞

0

Re

{
exp{Cj(u, τ)θ +Dj(u, τ)v + iux}

iu

}
du (A.21)

A.1.3 Almost exact simulation of the Heston model

As a reminder, the dynamics of the log return process Xt = logSt is

dXt = (µ− 1

2
vt)dt+

√
vtdW

1
t (A.22)

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t (A.23)

This can be expressed with independent Wiener processes WA
t and WB

t combining them

according to the Cholesky factorization.

dXt = (µ− 1

2
vt)dt+

√
vt

[
ρdWA

t +
√

1− ρ2dWB
t

]
(A.24)

dvt = κ(θ − vt)dt+ η
√
vtdW

A
t (A.25)

Let us integrate the processes in a given interval [ti, ti+1]
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Xi+1 = Xi +

∫ ti+1

ti

(µ− 1

2
vt)dt+ ρ

∫ ti+1

ti

√
vtdW

A
t +

√
1− ρ2

∫ ti+1

ti

√
vtdW

B
t (A.26)

vi+1 = vi + κ

∫ ti+1

ti

(θ − vt)dt+ η

∫ ti+1

ti

√
vtdW

A
t (A.27)

It can be noticed that the term
∫ ti+1

ti

√
vtdW

A
t appears in both equations, and it can be

expressed as ∫ ti+1

ti

√
vtdW

A
t =

1

η

(
vi+1 − vi − κ

∫ ti+1

ti

(θ − vt)dt

)
(A.28)

This is useful because the stochastic integral on the left side of equation A.28 is expressed

through vi+1 − vi, which can be simulated from the noncentral chi-square distribution,

and an integral with respect to time, which can be approximated. Using this, the value

of Xi+1 can be written as

Xi+1 = Xi +

∫ ti+1

ti

(µ− 1

2
vt)dt+

ρ

η

(
vi+1 − vi − κ

∫ ti+1

ti

(θ − vt)dt

)
+
√

1− ρ2
∫ ti+1

ti

√
vtdW

B
t

(A.29)

We can approximate the integrals by fixing the integrand at its left boundary value,

similarly to Euler’s method.

Xi+1 ≈ Xi +

∫ ti+1

ti

(µ− 1

2
vi)dt+

ρ

η

(
vi+1 − vi − κ

∫ ti+1

ti

(θ − vi)dt

)
+
√

1− ρ2
∫ ti+1

ti

√
vidW

B
t

(A.30)
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A.2 Figures
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Figure A.1: Price distribution of the Heston model for different v0 parameters

0

1

2

3

4

0.50 0.75 1.00 1.25 1.50

Normalised stock price

de
ns

ity

kappa 1 2 3

Figure A.2: Price distribution of the Heston model for different κ parameters

62



0

1

2

3

0.0 0.5 1.0 1.5 2.0

Normalised stock price

de
ns

ity

eta 0.5 1 1.5

Figure A.3: Price distribution of the Heston model for different η parameters
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Appendix B

R code

The code used in the empirical results chapter can be found on the following github

link, or at the url https://github.com/papkri/pricing-range-accrual-products. Here, I will

explain the most important functions.

• callHestoncf and callHestoncf digital

It calculates the Heston price of a vanilla call option and a digital option , re-

specitively. The function uses numerical integration to evaluate the formula in

Theorems 7 and 8.

• sRAN analytic

Calculates the price of a single period range accrual in the Heston model. The

price is calculated as the sum of range digital options with delayed payments. Each

digital option price is calculated by callHestoncf digital.

• BSTD vanilla and BSTD digital

Calculates the price of a vanilla call option and a digital option in the time-dependent

Black-Scholes model. The function assumes that volatility is a piecewise constant

function and expects a vector of volatility values, and a vector of time values when

the volatility function changes.

• sRAN analytic TDBS

Calculates the price of a single period range accrual in the time-dependent Black-

Scholes model. The price is calculated as the sum of range digital options with

delayed payments. Each digital option price is calculated by BSTD digital.

• Heston calibrator multiMat

Function for calibrating the Heston model with the limited-memory BFGS method.
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• CIR sample and Heston paths AE

The function CIR sample generates the next step of the CIR variance process

based on equations 4.40 and 4.41, conditioning on the vector of previous variances.

TheHeston paths AE function generates sample paths of the Heston model based

on equations 4.42 and 4.43.
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Összefoglalás

A szakdolgozat célja, hogy bemutassa a sávos hozamfelhalmozó (range accrual) termé-

keket, beleértve az árazást és a kalibrációs folyamatot. A sávos hozamfelhamozó olyan

termék amely kuponokat halmoz fel, ha az alaptermék egy előre meghatározott sávon

belül tartózkodik. A gyakorlatban általában napi gyakorisággal megfigyelik, hogy az

alaptermék az adott napon a sávon belül tartózkodott-e, és ha igen, akkor a termék

felhalmozza a kupont arra a napra. A kupongyűjtési időszak végén kifizetésre kerülnek

az addig felhalmozott kuponok. A terméknek lehet egy vagy akár több kupongyűjtési

időszaka is, és amennyiben több időszakkal rendelkezik, mindegyik végén történik kifizetés.

Ezek a termékek több különböző piacon is elterjedtek, azonban a dolgozatban olyan sávos

hozamfelhalmozó termékeket vizsgálok, amiknek alapterméke részvény. A dolgozatban a

saját hozzájárulás az árazás és kalibráció implementációja az R programnyelvben, illetve

a termék érzékenységvizsgálata.

A szakdolgozat első fejezetében bemutatom a sávos hozamfelhalmozó termékek ki-

fizetését, kitérve arra is, hogy milyen egzotikus kiegésźıtései vannak a terméknek. Ezután

áttekintem a termék szakirodalmát. Az irodalomban (Turnbull, 1995) és (Navatte &

Quittard-Pinon, 1999) cikkjei tekinthetők kiindulási alapnak. Ezen cikkek szerzői le-

vezetik, hogyan lehet a sávos hozamfelhalmozó árát visszavezetni bináris opciók összegére.

Minden alkalommal amikor a termék kupont halmozhat fel, a befektető valójában egy

bináris opcióval rendelkezik, aminek a kifizetése el van tolva a kupongyűjtési időszak

végére. Ez jóval egyszerűbb árazást tesz lehetővé, a dolgozat későbbi részében én is ezt a

megközeĺıtést implementálom. A szakirodalom nagyrésze, beleértve az előbbi két cikket

is, a kamatlábak piacán vizsgálják a termék árazását. Mivel a szakdolgozat a részvényhez

kötött sávos hozamfelhalmozókat vizsgálja, ezért áttekintettem a részvénypiacok mo-

dellezésének szakirodalmát is. A főbb források amiket a témában felhasználtam a klasszi-

kusnak mondható (Gatheral, 2011) könyv a volatilitásfelületről, és (Oosterlee & Grzelak,

2019) könyve a matematikai modellezésről.

A következő fejezetben részletesen tárgyaltam a részvénypiacok modellezésének kérdé-

sét. Arra kerestem a választ, hogy egy ideális részvénypiaci modellnek milyen tulaj-

donságokkal kell rendelkeznie. Az elsődleges szempont az volt, hogy a modell képes

legyen reprodukálni a piacon megfigyelt volatilitásmosolyt. További szempont volt, hogy a

kiválasztott modell rendelkezzen a részvénypiacok stilizált tulajdonságaival mint például

az áttételi hatás, vagy a vastag szélűség. Két kategóriából soroltam fel modelleket. A

determinisztikus volatilitásmodellek közül lényeges volt az időfüggő volatilitású Black-

Scholes modell, és a lokális volatilitás modell. A sztochasztikus volatilitás modellek közül

emĺıtettem a diffúziós, az ugró-diffúziós és a tiszta ugró modelleket. Lényeges szem-

pont a modellválasztásnál, hogy mik azok a faktorok amik befolyásolják a termék árát.

Egyes termékek mint például a barrier opció, érzékenyek a volatilitás trajektóriájára.



Ezen termékek árazásához a volatilitás teljes trajektóriáját modellezni kell, amire egy

sztochasztikus volatilitás modell alkalmas. Más termékek, mint péládul a bináris opció

vagy a hagyományos call opció, nem függnek expliciten a volatilitás trajektóriájától, ezek

árazására megfelelő lehet egy determinisztikus volatilitás modell is. Mivel a sávos hozam-

felhalmozó előálĺıtható bináris opciók összegeként, ezért nem érzékeny a sztochasztikus

volatilitásra. Azonban ezeket a termékeket ritkán áruśıtják önmagukban, általában további

egzotikus tulajdonságú kifizetésekkel tárśıtják őket. Emiatt az elemzés további részéhez

választottam mindkét modellkategóriából egyet: a determinisztikus modellek közül az

időfüggő volatilitású Black-Scholes modellt, a sztochasztikus modellek közül pedig a He-

ston modellt.

A továbbiakban ezt a két modellt mutatom be részletesebben. Ismertetem a for-

mulákat a call opcióra és a bináris opcióra mindkét esetben. A Heston modell esetén nem

teljesen zárt a formula, mivel egy integrál alakjában adható meg, azonban ez az integrál

jól közeĺıthető numerikus módszerek seǵıtségével. Végül a Heston modell szimulációját

is részletezem, arra az esetre ha egy előbb emĺıtett egzotikus verzióját akarnánk árazni a

terméknek.

A szakdolgozat utolsó részében az R programnyelvben implementálom az előbbi fe-

jezetekben ismertetett két modellt. A modelleket az S&P500 indexre kíırt call opciókra

három lejáratra kalibrálom. A kalibrálás után az mondható el, hogy a Heston modell

sokkal jobban illeszkedik a piaci adatokra, mint az időfüggő volatilitású Black-Scholes

modell. Ezt az magyarázza, hogy az időfüggő Black-Scholes modell nem tudja lekövetni

az ár változását a kötési árfolyam dimenziójában, mı́g a Heston modell igen. Ezután

érzékenységvizsgálatot végzek a termék paramétereire és a Heston modell paramétereire.

A termék paraméterei közül a lejárat növelésével nő a termék ára is, hiszen egyre távolabb

kerülnek a kupongyűjtési időpontok, ı́gy kisebb eséllyel esik bele ebbe a részvényárfolyam,

továbbá a diszkontálás hatása is erősebb. A sáv szélességének növelésével - a vártnak

megfelelőlen - a termék ára nő.

A Heston modell paramétereinek vizsgálatánál arra voltam ḱıváncsi, hogy a sávos

hozamfelhalmozó ugyanúgy reagál-e a paraméterváltozásokra, mint a hagyományos call

opció. Az érzékenységvizsgálat eredményeképp az mondható el, hogy nem viselkedik

ugyanúgy a két termék. A sávos hozamfelhalmozónál a sáv helye nagyban befolyásolja

azt, hogy miképp függ az ár, a Heston modell paramétereitől. Ebből arra a következtetésre

jutottam, hogy nem optimális megoldás az, ha a Heston modellt a piacon megfigyelt call

opciók áraira kalibráljuk. Ugyanis a nagy eltérés miatt azok a paraméterek amiket call

opciókra optimalizáltunk, egyáltalán nem biztos, hogy a hozamfelhalmozó esetén is op-

timálisan illeszkednek. Ideális esetben a piacon megfigyelt sávos hozamfelhalmozó árakra

kellene kalibrálni a modellt, azonban ilyen adat csak nagyobb cégeknek áll rendelkezésre.

A szakdolgozatban bemutattam a sávos hozamfelhamozó árazását két piaci modellben,

kitérve a modellek kalibrálásra is. Egy esetleges jövőbeli kutatás témája lehetne más piaci



modellek vizsgálata, vagy a sávos hozamfelhalmozó egzotikus verzióinak elemzése.



Szószedet

• calibration: kalibráció - az a folyamat amikor a modell paramétereit piaci adatokra

illesztik.

• deterministic volatility model: determinisztikus volatilitás modell - olyan mod-

ell amelyben a volatilitás determinisztikus függvénye más faktoroknak.

• digital option: digitális/bináris opció - olyan opció ami egységnyi kifizetést biztośıt

ha az alaptermék meghaladja a kötési árfolyamot

• equity-linked derivative: részvényhez kötött derivat́ıva

• implied volatility: implikált volatilitás

• jump-diffusion: ugró diffúzió - olyan modell amelyben a diffuziós tagon ḱıvül egy

véges aktivitású ugrófolyamat is befolyásolja az árfolyamdinamikát

• leverage effect: áttételi hatás - mely szerint a hozamok negat́ıvan korrelálnak a

volatilitással

• local volatility model: lokális volatilitás modell

• market model: piacmodell - olyan matematikai modell amelyet valamilyen piac

léırására használunk

• mean-reverting proces: átlaghoz visszahúzó folyamat

• observation period: megfigyelési időszak - az a periódus amiben megfigyelik hogy

a range accrual termék a sávon belül tartózkodik-e

• over the counter: tőzsdén ḱıvüli - olyan derivat́ıvákra használjuk amiket tőzsdén

kereskednek

• payoff: kifizetés - a derivat́ıva kifizetésfüggvénye

• range accrual: sávos hozamfelhalmozó - exotikus derivat́ıva ami kuponokat halmoz

fel ha az alaptermék egy meghatározott sávban van. A kuponokat a periódus végén

fizeti ki.

• risk-neutral measure: kockázatsemleges mérték

• risk-free rate: kockázatmentes kamatláb

• spot price: azonnali árfolyam



• stochastic volatility model: sztochasztikus volatilitás modell - olyan modell

amiben a volatilitás időben sztochasztikusan változik

• strike: kötési árfolyam

• structured product: strukturált termék - hagyományos termékeknek a strukturált

kombinációja. Pl. hagyományos kötvény részvényhez kötött kuponfizetéssel.

• time-dependent: időfüggő

• underlier: alaptermék

• vanilla call option: call opció - vételi jogot biztośıtó opció

• volatility smile: volatilitás mosoly - a volatilitás ábrázolása a kötési árfolyam

függvényében
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