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I thank to Balázs Csanád Csáji for developing my perspective in statistical machine

learning and leading me to many exciting topics, e.g. Reproducing Kernel Hilbert Spaces.

I have been learnt a lot from him, especially he has shown me the proper work ethic and

the level of preciseness needed for high quality works.

2



Contents

1 Introduction 4

2 Stochastic calculus on the Wiener space 7

2.1 Analysis on one-dimensional Gaussian space . . . . . . . . . . . . . . . . . . 7

2.2 The Wiener-Ito chaos decomposition . . . . . . . . . . . . . . . . . . . . . . . 13

3 Generator system for isonormal processes 24

3.1 Isonormal processes in case of arbitrary inner product structure . . . . . . . 25

3.2 Stationary isonormal processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Generator system for fractal noise driven stochastic processes 35

4.1 Fractional Wiener processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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Chapter 1

Introduction

There is now a great deal of interest in parameter estimation of Ornstein-Uhlenbeck pro-

cesses with fractional driving noise in finance because of its modelling capability (see

e.g. [7, 1, 14]). That is why the ELTE AI research group, which I am a member of,

aims at investigating the prediction of the unknown parameters of certain transformed

fractional Ornstein-Uhlenbeck processes, e.g. Stochastic Correlation Processes, with neu-

ral networks in the hope that there will be obtained more accurate estimators than the

ones using classical statistic methods, e.g. [9], without any assumptions on the Hurst

exponent. As it will be precisely introduced, the published parameter estimators based

on classical statistics possess such large asymptotic variance, which reduces their appli-

cability, especially for the parameters chosen close to zero. The importance of an efficient

data generator system for each analysed process rises high in this case, since if huge and

complex neural network structures are applied in the learning procedure, then one needs

a big amount of data for a good performance.

If one aims at simulating stochastic integrals with respect to fractional Wiener process,

first of all an efficient fractal noise generator has to be developed. Several exact methods

have been published about simulating fractional Wiener processes, e.g. the Cholesky

and the Hosking method [8], which will be precisely determined in the third section

in the framework of isonormal processes. It will be shown that the circulant embedding

based algorithms, such as [6, 3, 10], perform the most efficiently among the exact methods

according to the main advantage derived from their complexity of order O(N logN), where
N denotes the number of grid points used in generation. All of the mentioned methods

focus on calculating the square root of the covariance matrix, in the least computionally

demanding way, to obtain a realization of fractional Wiener increments. Because of its

efficiency, the idea developed by Davies and Harte [5] will be generalised for simulating

isonormal integrals.

As the introduced issue has been solved, i.e. there has been investigated and imple-

mented an efficient generator system for simulating fractional Ornstein-Uhlenbeck pro-

cesses over both equidistant and non-equidistant time grid, see in section four. An idea
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has led me to simulate fractional Wiener integrals of λ-Hölder continuous functions, where

λ depends on the Hurst exponent of the driving noise as λ > 1 −H, which assumption

is necessary to handle the matter in hand integrals as pathwise Riemann-Stieltjes inte-

grals instead of Skorohod-integrals. Moreover, I was able to come up with an observation

that by investigating a generator for the class below, certain multiple fractional Wiener

integrals can be simulated with the order of computional demanding pO(N logN)

MH
p ≐ {f ∶ [0, T ]p → R ∶ ∃ϕ ∈ L2([0, T ], µ), λ −Hölder continuous

and η ∶ f = η⊗p such that ∃(ϕn)n ⊂ ε1 ∶ ϕn
L2

Ð→ ϕ, η ∈ (ϕn)n},

where ε1 denotes the class of elementary functions, which will be defined precisely in

chapter two. Now, by determining a generator system for certain multiple fractional

Wiener integrals, I aimed at investigating a similar theory to the one, which will be

introduced in the first chapter, i.e. the Wiener-Ito chaos decomposition of the L2(Ω)
space. The Wiener-Ito chaos decomposition is based on such orthogonal subspaces, which

can be determined by Wiener integrals. That is why, I am interested in developing a

generator procedure for the fractional case. Note that I was not able the prove any

property about the class MH
p being dense in some sense. So it is a work in progress

to characterise the theory needed to develop such a generator system for this type of

decomposition.

Since there has been implemented many generator procedures, I aimed at endowing

the classes with some additional methods, e.g. the Malliavin-derivative and its adjoint

operator the Skorohod-integral. After the many oral consultations with Vilmos Prokaj,

the main concept has been generalised to the framework of isonormal processes, since the

mentioned operators can be defined in the most general way for isonormal processes as

D. Nualart presented in [12]. One can observe that the mentioned stochastic processes

are isonormal processes, except the fractional Ornstein-Uhlenbeck process in case of arbi-

trary initial value. In chapter four, there has been precisely determined the corresponding

kernel spaces with the proper inner product structure to obtain each stochastic process

derived from the framework of isonormal processes. The structure of the implemented

classes had to be changed because of the paradigm shift, i.e. a meta-class has been imple-

mented for isonormal processes with arbitrary kernel space and inner product structure

and the generator of each process can be deduced from the meta-class. For the most

general case only the Cholesky decomposition based method can be applied to simulate

isonormal processes, but with additional assumptions, e.g. defining the stationary prop-

erty for arbitrary kernel space in certain sense, more efficient procedures can be applied,

which procedures have been introduced in chapter four and have been implemented for

the meta-class also. My main goal is adding the Malliavin-derivative operator to the

meta-class as a subroutine, which can be deduced to all the classes derived from the
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meta-class, where this investigation is work in progress.

As I mentioned before, a Python library is under development for simulating several

stochastic processes, especially the ones which can be deduced from isonormal processes.

There has been implemented a meta-class for isonormal processes determined by arbi-

trary kernel spaces and inner product structures. For isonormal processes assumed to be

indexed stationary, another meta-class has been implemented, where some calculations of

the procedures have been changed to be able to cache as much computations as possible

into the memory, e.g. for the applied circulant matrix embedding based procedure more

than the half of the computational steps can be cached. This idea gives a huge boost

to the execution time of the generator class besides some other implementation tricks.

Some examples have been derived from the isonormal process framework to be simulated

efficiently, e.g. fractional Ornstein-Uhlenbeck processes, which processes can be obtained

by determining the kernel space and the inner product structure according to the way

it will be presented in chapter four. Note that the task of simulating 10000 fractional

Ornstein-Uhlenbeck sequences over 1500 grid-points needs eight-times less execution time

than the procedure can be derived from the published fBM package, where the initial

value of the process is assumed to be zero.
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Chapter 2

Stochastic calculus on the Wiener

space

The focus of this chapter is mainly on introducing integrals with respect to the Wiener

process and the Wiener-Ito chaos decomposition of the L2(Ω) space, where the concept,

the characterisations and the proves are based on the many oral consultations with Vilmos

Prokaj and also based on my main perspective, which is formed and developed deeply

by Vilmos Prokaj. The precisely introduced analysis is necessary for the calculations

and tricks will be applied at the investigation of the several simulation procedures. The

characterisation and the build-up of the Wiener integrals step by step, which will be

presented in this chapter, is aimed to be generalised for the fractal noise case in chapter

four. The Wiener-Ito chaos decomposition of the square-integrable random variables

is also important, since as it has been mention in the Introduction one of my goals is

generalising the decomposition for fractional Wiener integrals, where a dense kernel set

has to be determined according to the fact that the discretization of the processes can be

simulated. Note that this idea is under investigation.

2.1 Analysis on one-dimensional Gaussian space

Consider the probability space (R,B(R), γ1), where B(R) denotes the Borel σ-algebra and

γ1 is the standard Gaussian measure on R, i.e. γ1(H) ≐ ∫H 1√
2π
e−

t2

2 dt. Let me introduce

the following Hilbert space

L2(γ1) = {h Borel measurable ∶ ∫
R
∣h∣2dγ1 <∞},

where for a function h ∈ L2(γ1) the integral ∫R hdγ1 = E(h(Z)), where Z ∼ N(0,1). One

can observe that space of polynomial function is a subspace of L2(γ1), moreover the

following statement holds true.

7



Lemma 2.1.1. The polynomials are dense in L2(γ1).

Proof. The proof contains the common steps of showing a set is dense in a space, i.e. in

this case the statement holds true only if an element of the space is orthogonal to every

element of the matter in hand space then it follows that the square of this element has

to be zero γ1-almost surely. Let me denote the polynomials with P for simplifying the

calculations.

Assume that P is dense in L2(γ1) and h ∈ L2(γ1) is orthogonal to P, i.e. ∀ε > 0 ∃p ∈
P ∶ ∣∣h − p∣∣2L2(γ1) < ε and since h ⊥ p the norm can be bounded as ∣∣h∣∣2 + ∣∣p∣∣2 < ε. Now we

have that ∣∣h∣∣2 < ε, ∀ε > 0 that is ∣∣h∣∣2L2(γ1) = 0. Let (hn)n be a sequence from the subspace

P ⊂ L2(γ1), where the closure has taken in L2(γ1) sense and let h ∈ P be defined as the

limit hn → h in L2(γ1) sense. For all ε > 0 there exists pn such that ∣∣hn − pn∣∣ < ε then set

ε ≐ 1
2n , which leads to the fact that there exists a pn polynomial satisfying ∣∣hn − pn∣∣ < 1

2n .

Now it can be claimed that the space P is a closed subspace of L2(γ1) by the inequality

∣∣h − pn∣∣ ≤ ∣∣h − hn∣∣ + ∣∣h − pn∣∣→ 0.

Now we have that if h ∈ L2(γ1) is orthogonal to the polynomials then h = 0 and let

me denote with C the orthogonal complement of L2(γ1). Then C consists of orthogonal

functions to L2(γ1), i.e. C⊥ is a subset of the space of polynomials. Then one can claim

that C = {0}.
As a sub-statement it will be shown that for a µ σ-finite measure on the Borel sets of

R, B(R) if there exists a c > 0 such that

∫
R
ecxdµ(x) <∞ (2.1)

then the polynomials form a dense set in L2(µ), i.e. the orthogonal complement of the

polynomials consists of only the functions with the property that its square is µ-almost

surely 0 function. Let h be an element from the space L2(µ) which is orthogonal to the

polynomials and let me consider x → e
c
2
∣x∣ ∈ L2(µ) and then he

c
2
∣x∣ ∈ L1(µ). Thus the

integral in equation 2.1 can be written in this case as following

∫
R
∣h∣e c

2
∣x∣dµ(x) = ∫

R

∞
∑
n=0
( c
2
)
n ∣x∣n
n!
∣h∣dµ(x),

which is finite according to the condition of the statement. Now if ∣λ∣ < c/2 then the

equation can be expressed as

∫
R
h(x)

∞
∑
n=0
(λ)n ∣x∣

n

n!
dµ(x) =

∞
∑
n=0

λn

n! ∫R
h(x)xndµ(x)

and the fact that for arbitrary n for which < h,xn >L2(µ)= 0 implies the orthogonal
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property of h to eλ for ∣λ∣ < c/2, i.e.

∫
R
h(x)e(itx)dµ(x) = 0 ∀t ∈ R.

Let me denote the Fourier transform of the signed measure with ν and for a Borel set

A ∈ B(R) it is defined as

ν(A) ≐ ∫
A
h(x)dµ(x),

which is identically zero for all A ∈ B(R) thus ν = 0 and as a result h is a µ-almost surely

zero function in L2(µ). By proving the substatement above for any σ-finite measure the

proof of the lemma can be claimed as a consequence.

Let me introduce the following operator defined on the space C1(R):

(∂∗f)(x) ≐ xf(x) − ∂f(x). (2.2)

Lemma 2.1.2. The derivative operator ∂ and operator defined above 2.2 are adjoint with

respect to the measure γ1, i.e. for any f, g ∈ L2(γ1) such that ∃∂f, ∂g ∈ L2(γ1) satisfying
the following equation

⟨∂f, g⟩L2(γ1)
= ⟨f, ∂∗g⟩L2(γ1)

.

Proof. Let me denote the density function of the standard Gaussian measure by p and

the derivation operator acts on p as (∂p)(x) = −xp(x). Then the following equation holds

true by applying integration by parts and the properties of the standard normal density

function

⟨∂f, g⟩L2(γ1)
= ⟨∂f, gp⟩L2(Leb) = −⟨f, ∂(gp)⟩L2(Leb)

= −⟨∂g, fp⟩L2(Leb) + ⟨f, gpI⟩L2(Leb)

= ⟨f, (∂∗g)p⟩L2(Leb) = ⟨f, ∂
∗g⟩L2(γ1)

,

where I denotes the identity function and L2(Leb) denotes the square-integrable functions
with respect to the Lebesgue measure.

Lemma 2.1.3. If f ∈ Cn(R) then

(∂(∂∗)n − (∂∗)n∂)f = n(∂∗)n−1f.

Note that in case of n = 1 the statement is called Heisenberg’s commutation relation.
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Proof. For n = 1 one can write

(∂∂∗f)(x) = (∂(fI − ∂f))(x) = f(x) + x(∂f)(x) − (∂2f)(x)
(∂∗∂f)(x) = x(∂f)(x) − (∂2f)(x)

((∂∂∗ − ∂∗∂)f)(x) = f(x)

Now for n ≥ 2 apply induction on n

(∂(∂∗)nf)(x) = (∂∂∗((∂∗)n−1)f)(x) = (∂∗∂((∂∗)n−1)f)(x) + ((∂∗)n−1f)(x)

= (∂∗((∂∗)n−1 + (n − 1)(∂∗)n−2)f)(x) + ((∂∗)n−1f)(x)

= ((∂∗)n∂f)(x) + n((∂∗)n−1f)(x)

Let me introduce the {Hn}n Hermite polynomials, where the Nth Hermite polynomial

can be defined as the image of ∂∗ operator composed N -times and applied on the unit

element of the L2(γ1) space, i.e.
HN ≐ (∂∗)N1, (2.3)

where H0 is initialized as the unit function of the matter in hand Hilbert space. To

simplify the upcoming computations let me calculate how the derivative operator acts on

the Hermite polynomials:

∂Hn = ∂∂∗Hn−1 = (Id + ∂∗∂)Hn−1 =Hn−1 + ∂∗∂Hn−1

=Hn−1 + ∂∗Hn−2 + (∂∗)2∂Hn−2

= kHn−1 + (∂∗)k∂Hn−k.

In case of n = k the image of the derivative operator can be obtained as ∂Hn = nHn−1 +
(∂∗)n∂H0 = nHn−1, since H0 is the unit element. Now let me investigate the inner product

structure of {Hn}n with respect to the standard Gaussian measure, i.e. let me consider

the indices m ≤ n and

⟨Hn,Hm⟩L2(γ1)
= ⟨Hn, (∂∗)m1⟩L2(γ1)

= ⟨∂mHn,1⟩L2(γ1)
= E(∂mHn(Z)),

where Z is a standard normal variable. To finish the characterization of the inner product

structure the following formula has to be proven.

Lemma 2.1.4. Let X and Y be standard normal variables. If (X,Y ) is also a normal

variable then

E(Hn(X)Hm(Y )) = n!cov(X,Y )nχ{n=m},
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where χ denotes the indicator function.

Proof. Let Y be defined as Y ≐ ρX +
√
1 − ρ2Z, where X,Z are independent standard

normal variables. Then Y is also a standard normal variable with the property that the

covariance function with respect to X being cov(X,Y ) = ρ.

E(Hn(X)Hm(Y )) = E(E(Hn(X)Hm(ρX +
√
1 − ρ2Z)∣

√
1 − ρ2Z)),

where X as the argument of Hn and ρX as the argument of Hm are independent from

the condition and
√
1 − ρ2Z as the argument of Hm is measurable to the condition. Thus

the conditional expected value can be written as following

E(Hn(X)Hm(Y )) = E(E(Hn(X)Hm(ρX + z)∣z=√1−ρ2Z)).

Now E(E(Hn(X)Hm(ρX + z)∣z=√1−ρ2Z)) can be calculated by applying the previously

introduced properties of the Hermite polynomials, which are Hn = (∂∗)n1 and ∂Hn =
nHn−1.

E(Hn(X)Hm(ρX + z)∣z=√1−ρ2Z) = ⟨Hn,Hm ○ (ρx + y)⟩L2(γ1)
=

= ⟨(∂∗)n1,Hm ○ (ρx + y)⟩L2(γ1)
= E(∂n(Hm ○ (ρx + y))).

The image of Hn ○ (ρx + y) with respect to the derivative operator can be determined as

∂(Hn ○ (ρx + y)) = nHn−1 ○ (ρx + y)∂(ρx + y) = nρHn−1

∂n(Hn ○ (ρx + y)) = n!ρnH0 = n!ρn.

It follows that E(Hn(X)Hm(Y )) = E(E(Hn(X)Hm(ρX+z)∣z=√1−ρ2Z)) = n!ρn, which com-

pletes the proof.

Now the characterization of the inner product structure of the Hermite polynomials

with respect to the standard Gaussian measure can be finished by applying the result

formalised in the previous lemma on 2.1, i.e.

⟨Hn,Hm⟩L2(γ1)
= E(∂mHn(Z)) = n!χ{n=m}

∣∣Hn∣∣2L2(γ1) = n!

Thus it has been obtained that the Hermite polynomials are orthogonal in the space

L2(γ1) and the nth Hermite polynomial has norm
√
n! in L2 sense with respect to the

standard Gaussian measure.

Now it will be shown that if a function f ∈ L2(γ1) is orthogonal to all the elements of

the sequence {Hn, n ≥ 0} then the square of f has to be γ1-almost surely zero function.
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Consider the following inner product for an arbitrary t ∈ R

⟨f, eitx⟩L2(γ1)
=
∞
∑
j=0

(it)j
j!
⟨f, xj⟩L2(γ1)

= 0,

since if a function is orthogonal to the sequence of Hermite polynomials, which is a

sequence of polynomials with leading coefficient 1, then the function is orthogonal to the

all monomials in L2(γ1). The integral and the sum could be commuted according to

Fubini’s theorem if ∑∞j=0 ∫R
∣xt∣j
j! ∣f(x)∣dµ1(x) <∞, which can be written as following

⟨e∣tx∣, f⟩L2(γ1)
≤ ∣∣e∣tx∣∣∣L2(γ1)∣∣f ∣∣L2(γ1) <∞.

Now, it has been obtained that the Fourier transform of f multiplied by λ is zero Lebesgue

almost everywhere, where λ is the Radon-Nikodym derivative of the standard Gaussian

measure with respect to the Lebesgue measure. Thus f is zero γ1-almost surely.

Corollary 2.1.1. { Hn√
n!
, n ≥ 0} forms a complete orthonormal basis in L2(γ1) and any

h ∈ L2(γ1) has the following expansion

h =
∞
∑
j=0
⟨h,Hn⟩L2(γ1)

Hn

n!
=
∞
∑
j=0

E(∂nh(Z))Hn

n!
,

where Z is a standard normal variable and the second equation holds true because of the

following computation

⟨h,Hn⟩L2(γ1)
= ⟨h, (∂∗)n1⟩L2(γ1)

= ⟨∂h, (∂∗)n−11⟩L2(γ1)

= ⟨∂nh,1⟩L2(γ1)
= E(∂nh(Z)).

The corollary above can be restated as it is formalised in the theorem below, which

formalism will be important for simplifying some relations between the introduced anal-

ysis of the Gaussian space and the subspaces obtained by multidimensional Wiener-Ito

integrals.

Theorem 2.1.1. Let Pj denote the space generated by the jth Hermite polynomial, i.e.

Pj ≐ span{Hj(x)} with the following properties

L2(γ1) =
∞
⊕
j=0
Pj,

where Pk and Pl are orthogonal subspaces if k ≠ l.
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2.2 The Wiener-Ito chaos decomposition

In this section a decomposition of the space of square-integrable stochastic processes,

i.e. L2(Ω)⊗L2([0, T ]), will be introduced by defining the multiple Wiener-Ito integrals

and the corresponding generated subspaces. It has been shown by D. Nualart that the

Mailliavin calculus can be developed in the framework of isonormal processes [12], thus

there will be a short introduction into that part of analysis. In the sections related to

simulation tasks the isonormal processes will play an important part.

As it has been investigated before, consider a separable Hilbert space G provided

with the inner product structure ⟨., .⟩G and the norm of an element induced by the inner

product will be denoted by ∣∣.∣∣G.

Definition 2.2.1. A stochastic process ζ = {ζ(g), g ∈ G} defined in a complete probability

space (Ω,F ,P) is called isonormal process on G if ζ is a centered Gaussian family of

random variables with the following inner-product isomorphism between the kernel space

and the image space

⟨ζ(h), ζ(g)⟩L2(Ω) = ⟨h, g⟩G.

Let me use the notation Z for the σ-algebra generated by the family of random

variables {ζ(g), h ∈ G}. One can observe that the mapping, corresponding to an isonormal

process, from the kernel space to the space of square-integrable random variables is linear.

Moreover, the following shows that the the matter in hand mapping is linear isometric

between the kernel space and the image space

ζ ∶ G → H1, (2.4)

where H1 is a closed subspace of L2(Ω,F ,P). For any λ,µ scalar numbers and for any

h, g two elements of the kernel space it can be shown using the isomorphism between the

two spaces that

∣∣ζ(λh + µg) − λζ(h) − µζ(g)∣∣2L2(Ω) = ∣∣λh + µg∣∣2G.

Lemma 2.2.1. An isonormal process transformed by the exponential function forms a

total subset of L2(Ω,Z,P).

Proof. Let X ∈ L2(Ω,Z,P) be orthogonal to all the elements of the image space obtained

by the transformed isonormal process, i.e.

⟨X, eζ(g)⟩L2(Ω) = 0, ∀g ∈ G.

For any g1, ..., gm ∈ G and λ1, ..., λm scalars the following holds true because of the mapping

13



2.4 being a linear isometry

⟨X, e∑m
j=1 λjζ(gj)⟩L2(Ω) = 0,

where for fixed kernel elements it is actually the Laplace transform of the measure ν, i.e.

for B ∈ B(Rm) it is defined by the inner product:

ν(B) ≐ ⟨X,1B(ζ(g1), ..., ζ(gm))⟩L2(Ω).

Now, we have that the signed measure is zero for any Borel subset, which means that

ν can only be the identically zero measure on Rm and for any B Borel set ν(B) =
⟨X,1B(ζ(g1), ..., ζ(gm))⟩L2(Ω) = 0 holds true if and only if X is zero P almost surely. The

fact that a finite measure is uniquely determined by its Laplace transform completes the

proof.

Let me use the following notations, as Nualart introduced in [12]. Let Hn denote the

closed subspace of L2(Ω,F ,P), which is generated by the random variables obtained by

the nth Hermite polynomial applied on the matter in hand isonormal process by assuming

that the kernel elements are provided with norm one,

Hn ≐ {Hn(ζ(g)), g ∈ G, ∣∣g∣∣G = 1},

whereHn is called the Wiener chaos of order n. It can be shown that ifHk(ξ) is an element

of the kth Wiener chaos and Hl(η) is an element of the lth Wiener chaos with k ≠ l then
Hk(ξ) and Hl(η) are orthogonal in L2(Ω). The property that the kernel elements of ξ and

η are equipped with norm one let us conclude that ξ and η are standard normal variables

and elements of a Gaussian family, which means that the conditions of the Lemma 2.1.4

is satisfied by the considered variables, i.e.

⟨Hk(ξ),Hl(η)⟩L2(Ω,P) = ⟨Hk,Hl⟩L2(R,γ1)
= 0 if k ≠ l.

Corollary 2.2.1. The closed linear subspaces Hk and Hl of L2(Ω,F ,P) are orthogonal

in case of k ≠ l.

Theorem 2.2.1. The L2(Ω,Z,P) space can be decomposed according to the introduced

orthogonal closed linear subspaces {Hj}∞j=0 as following

L2(Ω,Z,P) =
∞
⊕
j=0
Hj.

Proof. LetX be an element of the space of square-integrable random variable with respect

to the measure P such that X is orthogonal to the subspaces {Hj}∞j=0 and it will be shown

that an element with the previous property can be only a P-almost surely zero element
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from the complete probability space (Ω,Z,P). Now we have that for any element from

the kernel space with unit norm and for subspaces of any order the following equation

holds true

⟨X,Hj(ζ(g))⟩L2(Ω,P) = 0, for any ∣∣g∣∣G = 1 and j ≥ 0.

Since for any N there exists α0, ..., αN such that the monomial xN can be expressed as the

weighted sum of the corresponding Hermite polynomials, i.e. xN = ∑N
j=0αjHj(x), which

observation let us rewrite the equation above for monomials as below

⟨X, (ζ(g))j⟩L2(Ω,P) = 0, for any j ≥ 0.

Now we have that for arbitrary t ∈ R and g ∈ G with unit norm:

0 =
∞
∑
j=0

tj

j!
⟨X, (ζ(g))j⟩L2(Ω,P) = ⟨X, e

tζ(g)⟩L2(Ω,P),

where {eζ(g)}g∈G forms a total subset of L2(Ω,Z,P) and the fact that X is zero P almost

everywhere can be deduced from the previous observations, which completes the proof.

Note that the space of polynomials with leading order N can be obtained as the direct

sum of the spaces {Hj}Nj=0.

As the first step of introducing the multidimensional Wiener-Ito integrals let me define

the space of elementary functions as following

εp ≐ {f ∶ [0, T ]p → R ∶ f =∑
K

aK1AK,1×...×AK,p
(x), where AK,1, ...,AK,p are disjoints }.

(2.5)

Let me define a mapping from the space of elementary functions to the square-integrable

random variables as following

Ip ∶ εp → L2(Ω,FT ,P)

Ip(1A1×...×Ap) ≐
p

∏
j=1
W (1Aj

)

Ip(∑
K

aK1AK,1×...×AK,p
) ≐∑

K

aKIp(1AK,1×...×AK,p
),

where A1×...×Ap and ∑K aK1AK,1×...×AK,p
are elements of εp, FT is the natural filtration at

time T of the Wiener process denoted by W and W (1Aj
) denotes the Wiener increment

over the interval Aj. Note that the disjointness of the intervals is needed to obtain the

image of an indicator 1A1×...×Ap as a product according to the property that the increments

of the Wiener process are independent.

Now the inner product of Ip(f) and Iq(g) will be calculated for any p, q and any
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f ∈ εp, g ∈ εq. It is enough to reduce the problem for indicator functions because of

the linearity of the introduced mapping, so let the kernel functions be f ≐ 1A1×...×Ap

and g ≐ 1B1×...×Bq . For the sequence of arbitrary intervals {Aj}pj=1 and {Bj}qj=1 there

exists a sequence of disjoint intervals {Cj}rj=1 and mappings σ1 ∶ {1, ..., p}→ {1, ..., r}, σ2 ∶
{1, ..., q}→ {1, ..., r} such that for all j ∶

Aj = ⋃
Ck∈Aj

Ck, Bj = ⋃
Ck∈Bj

Ck

1Aj
= ∑

Ck∈Aj

1Ck
, 1Bj

= ∑
Ck∈Bj

1Ck

p

∏
j=1

1Aj
=

r

∑
i=1

p

∏
j=1

1Cσ1(i)
,

q

∏
j=1

1Bj
=

r

∑
i=1

q

∏
j=1

1Cσ2(i)
,

where Cσ1(i) ⊂ Aj and Cσ2(i) ⊂ Bj. So it is enough to determine the inner product for

the kernel functions f, g in the form f ≐ ∏p
j=1 1Cσ1(j)

, g ≐ ∏q
j=1 1Cσ2(j)

with the images

respectively

Ip(f) =
p

∏
j=1
W (1Cσ1(j)

), Iq(g) =
q

∏
j=1
W (1Cσ2(j)

).

Now, to determine the inner product structure with respect to the measure P of the space

L2(Ω) we can apply the following result, which is that the product of the corresponding

integrals can be computed in the reduced case as

Ip(f)Iq(g) =
r

∏
j=1
W (1Cj

)α
′
j+α

′′
j ,

where the exponents are indicator functions depending on the relation of the disjoint

interval sequence and the intervals occurred in the definition of the kernel functions, to

be more precise α
′

j ≐ χ{Cj∈{Cσ1(k)}
p
k=1} and α

′′

j ≐ χ{Cj∈{Cσ2(k)}
q
k=1}. The increments of the

Wiener process have Gaussian distribution, i.e. W (1Cj
) ∼ N(0, ∣Cj ∣), moreover the se-

quence obtained as the image of any linear combination of the introduced kernel functions

{1Cj
}rj=1 is jointly Gaussian. Applying the isometry between the two spaces L2(Ω,P) and

L2([0, T ],Leb) as

⟨W (1Cj
),W (1Ck

)⟩L2(Ω,P) = ⟨1Cj
,1Ck
⟩L2([0,T ],Leb) = ∣Cj ∣χ{Cj=Ck}

leads us to the following result

⟨Ip(f),Iq(g)⟩L2(Ω,P) =
r

∏
j=1

E(W (1Cj
)α
′
j+α

′′
j ) =

p

∏
j=1
∣Cσ1(j)∣χ{p=q}.

So the inner product of two random variables defined as the image of two indicator func-

tions has been determined above. Now, to calculate the inner product of two random
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variables obtained as applying the I operator on two arbitrary functions from the ker-

nel space determined by the elementary functions, the symmetrization of multivariate

functions will be introduced.

Definition 2.2.2. The simmetrized of the function f ∶ [0, T ]p → R is denoted by f̃ and

is defined as

f̃(t) ≐ 1

p!
∑
π∈Sp

f(tπ(1), ..., tπ(p)),

where Sp denotes the group of all permutations of the set {1, ..., p}.

Consider the problem investigated above in case of p = q and let the kernel elements

be f =∏p
j=1 1Cσ1(j)

and g =∏p
j=1 1Cσ2(j)

, which leads to the following inner product

⟨f̃ , g⟩L2([0,T ],Leb) =
1

p!
∑
π∈Sp

p

∏
j=1
⟨1Cσ1(π(j))

,1Cσ2(j)
⟩L2([0,T ],Leb)

= 1

p!
∑
π∈Sp

p

∏
j=1
∣Cσ1(π(j)) ∩Cσ2(j)∣

= 1

p!

p

∏
j=1
∣Cσ1(j)∣χ{{σ1(j)∶j=1,...,p}={σ2(j)∶j=1,...,p}}.

Corollary 2.2.2. For f ∈ εp and g ∈ εq the inner product structure between the images

can be obtained as

⟨Ip(f),Iq(g)⟩L2(Ω,P) = p!⟨f̃ , g⟩L2([0,T ]p,Leb)χ{p=q} = p!⟨f̃ , g̃⟩L2([0,T ]p,Leb)χ{p=q}.

The symmetrization can be considered as the orthogonal projection onto the space of

the symmetric functions, which mapping is conctraction because of the inequality below

∣∣f̃ ∣∣L2([0,T ]p,Leb) ≤ ∣∣f ∣∣L2([0,T ]p,Leb) and it leads us to the following upper bound

∣∣Ip(f)∣∣2L2(Ω) = p!∣∣f̃ ∣∣2L2([0,T ]p) ≤ p!∣∣f ∣∣2L2([0,T ]p)

Corollary 2.2.3. The operator Ip ∶ εp → L2(Ω,FT ,P) is continuous and linear.

The first step to extend the operator Ip for the whole L2([0, T ]p) with satisfying the

linearity, the property that the norm of the image depends only on the symmetrized of

the kernel function and the condition that the inner product structure determined for

kernel functions from εp holds the same for the extension, is showing that the introduced

space εp is dense in L2([0, T ]p).

Lemma 2.2.2. εp is dense in L2([0, T ]p).

Proof. The proof will be based on Dynkin’s π − λ theorem, where the role of the λ- and
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π-system will be played by the following sets, respectively

D ≐ {H ∈ B([0, T ]p), 1H ∈ εp}
C ≐ {A1 × ... ×Ap, Ai ⊂ [0, T ] and Ai is interval},

where C is closed under intersections. Now let H1,H2 ∈ D such that H1 ⊂ H2, which

means that 1H1 and 1H2 are in εp, but then 1H1 − 1H2 = 1H2/H1
leads to the property

that H2/H1 ∈ D. Consider a countable sequence of growing sets Hn ⊂ Hn+1 ∈ D then

the following limit holds almost everywhere and in L2, which let us conclude the next

property to show that D is a λ-system

lim
n→∞

1Hn = 1⋃Hn Ð→ 1⋃Hn ∈ εp Ð→ ⋃
n
Hn ∈ D,

since 1Hn ∈ εp for every element of the sequence.

If {A1, ...,Ap} are intervals then for the indicator function of a p-dimensional rectangle

we have that 1⨉i Ai
∈ εp and furthermore let α = {α1, ..., αN} be an equidistant partition

of [0, T ]. Let me introduce the following notation to obtain disjoint parts of the intervals

{Ai}i
Ai,j ≐ αj ∩Ai,

then the indicator function of the interval Ai can be determined by the sum ∑j 1Ai,j
. Now

the indicator function of the tensor product of the matter in hand interval sequence can

be deduced as following

1⨉i Ai
= ∑

σ∶{1,...,p}→{1,...,N}
1⨉p

j=1 Aj,σ(j)

= ∑
σ injection ∶{1,...,p}→{1,...,N}

1⨉p
j=1 Aj,σ(j)

+ ∑
σ non-injection ∶{1,...,p}→{1,...,N}

1⨉p
j=1 Aj,σ(j)

,

where the first part of the right-hand side of the equation determined by the case σ being

injection is an element of εp unlike the second part. The inequalities below leads us to

complete the proof of the necessary condition C ⊂ D to apply Dynkin’s theorem

∣∣ ∑
σ non-injection ∶{1,...,p}→{1,...,N}

1⨉p
j=1 Aj,σ(j)

∣∣
2

L2([0,T ]p,Leb)
≤

≤ (Np −N(N − 1)...(N − (p − 1)))( T
N
)
p

≤ (1 − ( p
N
)
p

)T p N→∞ÐÐÐ→ 0,

where (Np−N(N−1)...(N−(p−1))) obtained as the number of non-injective σ mappings.

So now we have that C ⊂ D, where D is a λ-system and C is a π-system and it

can be claimed that σ(C) ⊂ D according to Dynkin’s theorem, where D ⊂ B([0, T ]p).
Moreover, the σ-algebra generated by the set C is the same as the Borel sets of [0, T ]p,
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i.e. σ(C) = B([0, T ]p), which leads us to conclude that D = B([0, T ]p).
Let f be a function from L2([0, T ]p,Leb) and let fn be a bounded function derived

from f as fn ≐ (f ∧ n) ∨ (−n), where fn Ð→ f in L2 as n →∞. By the previous claim for

all n and fn ∈ εp for the function defined as

fn,k(x) ≐∑
j

j

k
1 j

k
<fn(x)≤ j+1

k
(x) ∈ εp

we have that fn,k
k→∞ÐÐ→ fn in L2, which completes the proof.

Definition 2.2.3. Consider f ∈ L2([0, T ]p), g ∈ L2([0, T ]q) then the contractive tensor

product of f and g for l ≤ p ∧ q is defined as

(f ⊗l g)(t, s) ≐ ∫
[0,T ]l

f(t, r)g(s, r)dr,

where t ∈ [0, T ]p−l, s ∈ [0, T ]q−l.

Note that the mapping contractive tensor product is a contraction, which can be easily

obtained by applying Chebishev’s inequality as below

∣∣f ⊗l g∣∣2L2([0,T ]p+q−l) ≤ ∣∣f ⊗ g∣∣2L2([0,T ]p+q) = ∣∣f ∣∣2L2([0,T ]p)∣∣g∣∣2L2([0,T ]q),

where the notations presented in the definition above have been used.

Lemma 2.2.3. Consider f ∈ L2([0, T ]p) and g ∈ L2([0, T ]) then

Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f̃ ⊗1 g).

Proof. It is enough to show that the equation holds true above for f ∈ εp, g ∈ ε1, since
by taking the limes in L2 sense the formula can be obtained for f ∈ L2([0, T ]p) and

g ∈ L2([0, T ]) according to the the Lemma 2.2.2, i.e. for fn
L2

Ð→ f, gn
L2

Ð→ g we have the

following limits

fn ⊗ gn
L2

Ð→ f ⊗ g

f̃n ⊗1 gn
L2

Ð→ f̃ ⊗1 g

Ip(fn)I1(gn)
L1

Ð→ Ip(f)I1(g).

The remaining part of the proof can be reduced for f ≐ 1A1×...×Ap , g ≐ 1B functions written

in the form because of the operator Ip ∶ εp → L2(Ω,FT ,P) being linear, moreover it is

enough to examine the two cases B = Aj for an index j ∈ {1, ..., p} or B is disjoint from

{Aj}pj=1. Let B be equivalent with the set A1 and let me consider a disjoint partition of
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A1, e.g. A1 ≐ ⋃∗i A1,i, now the images of the kernel functions in the discussed form can

be written as Ip(f) =∏jW (1Aj
) and I1(g) =W (1A1), which observations lead us to

Ip(f)I1(g) =W (1A1)2
p

∏
j=2
W (1Aj

)

=∑
i≠k
W (1A1,i

)W (1A1,k
)

p

∏
j=2
W (1Aj

) +∑
i

W (1A1,i
)2

p

∏
j=2
W (1Aj

)

=∑
i≠k
Ip+1(1A1,i

⊗ 1A1,k
⊗ 1⨉p

k=2 Ak
)

+∑
i

(W (1A1,i
)2 − ∣A1,i∣)

p

∏
j=2
W (1Aj

) + ∣A1∣
p

∏
j=2
W (1Aj

)

= Ip+1(g ⊗ f) + ∣A1∣Ip−1(1A2×...×Ap),

where (W (1A1,i
)2 − ∣A1,i∣)

L2

Ð→ 0 and it has been also applied that A1 has been determined

by the disjoint union of intervals {A1,j}j.
Consider a function written in the form f ≐ 1A1×...×Ap , where its projection onto the

space of symmetric functions can be obtained as f̃ = 1
p! ∑π∈Sp

1Aπ(1)×...×Aπ(p) and by now

its contractive tensor product with the function g = 1A1 can be calculated as

f̃ ⊗1 g(t) = ∫
[0,T ]

f̃(t, s)g(s)ds = 1

p!
∑
π∈Sp

1Aπ(1)×...×Aπ(p−1)(t)∣Aπ(p) ∩A1∣

= ∣A1∣
1

p!
∑

π∈Sp−1(2,...,p)
1Aπ(1)×...×Aπ(p−1)(t),

where Sp−1(2, ..., p) denotes the group of all permutations of the set {2, ..., p}. Now apply-

ing the operator Ip−1 on the calculated contractive tensor product leads to the following

random variable, which completes the proof for the case of B being the same set as A1

Ip−1(f̃ ⊗1 g) = ∣A1∣
1

p!
(p − 1)!

p

∏
k=2

W (1Ak
).

In case of B not equals to any Ai the product of the images can be computed as

Ip(f)I1(g) =W (1B)
p

∏
k=1

W (1Ak
) = Ip+1(g ⊗ f),

since the contractive tensor product of f and g is zero if the corresponding intervals are

disjoint, which observations let us complete the proof.

Corollary 2.2.4. For h ∈ L2([0, T ]) provided with unit norm the following equation

shows the relation between the investigated operator Ip and the introduced analysis on
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the Gaussian space

Ip(h⊗p) =Hp(W (h)).

Proof. The proof is based on induction according to the order of the subspace containing

the matter in hand square integrable random variable. For H0 and H1 we have I0(1) = 1
and I1(h) = W (h) = H1(W (h)). Assume that for p the equation Ip(h⊗p) = Hp(W (h))
holds true and consider the calculation for p + 1 using applying the formula proven as

Lemma 2.2.3

Ip+1(h⊗p+1) = Ip(h⊗p)I1(h) − pIp−1(h⊗p ⊗1 h)
= Ip(h⊗p)I1(h) − pIp−1(h⊗p−1),

where the corresponding contractive tensor product can be determined by the following

equation using the fact that the kernel function is provided with unit norm

(h⊗p ⊗1 h)(t) = ∫
[0,T ]

h⊗p−1(t)h(s)h(s)ds = h⊗p−1(t)∣∣h∣∣2L2([0,T ],Leb) = h⊗p−1(t).

Let me recall that the operator ∂∗ acts on a function as (∂∗f)(x) = xf(x) − ∂f(x) and
the Hermite polynomial with order n has been defined as Hn = (∂∗)n1. Moreover, the

definition of the Hermite polynomials led to the property ∂Hn = nHn−1 + (∂∗)n∂H0 =
nHn−1, which property can be observed for the sequence of operators {In}n ≥ 0, i.e.

IN(h⊗N) = IN−1(h⊗N−1)I1(h) − (N − 1)IN−2(h⊗N−2).

Defining the ∂∗ operator for random variables in form Ip(h⊗p) with ∣∣h∣∣2L2([0,T ],Leb) = 1 as

(∂∗Ip+1)(h⊗p+1) ≐ I1(h)Ip(h⊗p) − pIp−1(h⊗p−1),

which leads us to another definition of the operator IN , which is similar to the previously

presented one and for any h ∈ L2([0, T ]) provided with unit norm it can be determined

by applying ∂∗ as

IN(h⊗N) ≐ (∂∗)Nh.

It can be concluded according to the previous analysis about the equation IN(h⊗N) =
HN(W (h)) if ∣∣h∣∣2L2([0,T ],Leb) = 1.

Lemma 2.2.4. For FT ≐ σ(Wu ∶ u ≤ T ) the set defined as

S ≐ {sin(W (h)), cos(W (h)), h ∈ L2([0, T ],Leb)}

is a total set in L2(Ω,FT ,P).
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Proof. Recall that in Lemma 2.2.1 it has been proven that the isonormal processes trans-

formed by the exponential function is dense in the space of square integrable random

variables. Now let the corresponding separable kernel Hilbert space denoted by G be the

space L2([0, T ],B([0, T ]),Leb) and let me define the inner product structure of the kernel

elements as the corresponding L2 inner product, i.e.

⟨f, g⟩G ≐ ⟨f̃ , g⟩L2([0,T ],Leb).

Let the isonormal process denoted by {ζ(g) ∶ g ∈ G} be in this case {W (h) ∶ h ∈ L2([0, T ])}
and by definition the inner product structure of the image elements is defined as

⟨W (f),W (g)⟩L2(Ω) ≐ ⟨f̃ , g⟩L2([0,T ],Leb),

which let us consider the white noise integrals as an isonormal process determined as

above. We have the fact that if a random variable X is orthogonal to eW (h) for any

h ∈ L2([0, T ]) then X has to be zero in L2 sense. Now it can be written that

0 = ⟨X, eiW (h)⟩L2(Ω) = ⟨X, sin(W (h)) + icos(W (h))⟩L2(Ω),

which let us conclude that the set denoted by S is a total set in L2(Ω,FT ,P) according
to the Lemma 2.2.1.

For ∣∣h∣∣2 = 1 the random variable W (h) has standard normal distribution, which let

us apply the introduced Hermite polynomial based expansion for a ϕ ∈ L2(γ1) as

ϕ(W (h)) =
∞
∑
p=0
⟨ϕ,Hp⟩L2(γ1)

Hp(W (h))
p!

=
∞
∑
p=0

E((∂pϕ)(W (h)))Hp(W (h))
p!

,

where the choice ϕ(.) ≐ sin(.) provides the L2-convergent series for random variables,

which form a total set in the space of square-integrable random variables, where the

corresponding series can be obtained by applying the previous memorandum as

sin(W (h)) =
∞
∑
p=0
αp

Hp(W (h))
p!

for ∣∣h∣∣2 = 1.

Analogue to the Hermite polynomial case define the linear subspace of L2(Ω,FT ,P) of
order p as

Hp ≐ {Ip(f) ∶ f ∈ L2([0, T ]p,Leb)}.

It can be concluded that the L2(Ω)-closure of the space obtained as the direct sum of the

introduced subspaces includes sin(W (h)) and cos(W (h)) for kernel elements provided
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with norm one in L2([0, T ],Leb) sense, i.e.

sin(∣∣h∣∣W( h∣∣h∣∣)), cos(∣∣h∣∣W(
h

∣∣h∣∣)) ∈
∞
⊕
p=0
Hp for any h ∈ L2([0, T ]).

Which means that the set of random variables determined by the direct sum of the Hp

subspaces is a dense set in L2(Ω,FT ,P), moreover it can be claimed that the subspaces are

closed orhtogonal subspaces by the following inner product structure between subspaces

with different orders

⟨Ip(f),Iq(g)⟩L2(Ω) = p!∫[0,T ]p f̃ gχp=q,

where f ∈ L2([0, T ]p) and g ∈ L2([0, T ]q). The property of the subspaces Hp being closed

can be shown as following: consider a Cauchy sequence f̃n ⊂ L2([0, T ]p) and denote its

L2 limit by f and let the images of the sequence be Fn ≐ Ip(f̃n) then the limit in the

image space can be deduced as

if f̃n
L2([0,T ]p)ÐÐÐÐÐ→ f, then Fn

L2(Ω)ÐÐÐ→ F,

where F = Ip(f) completes the proof of Hp being a closed subset of L2(Ω,FT ,P) and
being orthogonal to the the subspaces with different order to p.

Corollary 2.2.5. An orthogonal decomposition of the L2(Ω,FT ) space has obtained

according to the previous calculations and observations, which is called Wiener-Ito chaos

decomposition and is written as

L2(Ω,FT ) =
∞
⊕
p=0
Hp,

where the closed orthogonal subspaces denoted by Hp is called the pth Wiener-Ito chaos.

Moreover, for F ∈ L2(Ω,FT ) there exists a sequence (fp)p ⊂ L2([0, T ]p) such that

F =
∞
∑
p=0
Ip(fp)

∣∣F ∣∣2L2(Ω) =
∞
∑
p=0
p!∣∣fp∣∣2L2([0,T ]p).
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Chapter 3

Generator system for isonormal

processes

In this chapter the task of simulating isonormal processes will be investigated, where its

importance rises high based on the introduced analysis in the previous sections. Moreover,

my main goal is implementing Malliavin calculus for the matter in hand generator system,

where it has been shown by D. Nualart that the operator and its adjoint, i.e. Malliavin-

derivative and Skorohod-integral respectively, can be defined for isonormal processes in

the most general case.

I will come up with several examples which are isonormal processes with additional

assumptions, e.g. fractional Wiener process, fractional Ornstein-Uhlenbeck process in

case of zero initial value. Note that the assumptions needed to obtain a special case

let us fasten the simulation procedure. The generator systems and the subroutines,

methods and operators have been implemented in Python and form a library, where

several investigated stochastic process generators have not been implmented in Python

or in any other language before, e.g. arbitrary fractional Wiener integral for Hölder-

continuous kernel functions.

In the first section of this chapter I will introduce the general task of simulating an

isonormal process defined by the elements of the kernel space and by the inner product

structure the kernel space is provided with. It will be shown that for this case without

any simplifying assumptions the only way to generate an isonormal sequence is taking

the Cholesky decomposition of the covariance matrix, where this matrix contains actually

the inner products of the kernel elements by definition.

There has to be two simulation tasks solved, i.e. generating trajectories of certain

discretised stochastic processes over equidistant and over arbitrary non-equidistant gird.

Note that assuming that the time grid is determined by a sequence of equidistant intervals

can simplify the problem, e.g. it can lead to a stationary sequence in some cases, which

let us handle the covariance matrix in a more efficient way. For the two tasks I will
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introduce two operators to obtain a discretized stochastic process over the given time

grid to make the upcoming analysis more simple.

Let me define the following discretization operator for a function denoted by ζ(.), for
a time interval [0, τ] and for the number of data points N of the equidistant time grid

as following, using the notation T ∶ R ×N × C1([0, τ])Ð→ RN+1

T (τ,N , ζ(.)) ≐ {ζ(t)1t= kτ
N
}
N

k=0
, (3.1)

so by applying the operator T with the given attributes a discretized sequence can be

obtained of the corresponding function.

By generalizing the previous task and formalizing the introduced operator let me

define a similar operator for discretizing a function over an arbitrary time grid. Let T̃
be defined for a function ζ(.) and for a disjoint partition {[τk, τk−1]}Nk=1 of a subinterval

[0, τ] of R as following, using the notation T̃ ∶ RN+1 × C1([0, τ])Ð→ RN+1

T̃ ({τk}Nk=0, ζ(.)) ≐ {ζ(t)1t=τk}
N
k=0, (3.2)

where in case of τk ≐ kτ
N a relation between the two introduced operators can be obtained

as

T̃ ({τk}Nk=0, ζ(.)) = T (τ,N , ζ(.)).

3.1 Isonormal processes in case of arbitrary inner

product structure

In this section I will investigate the simulation of isonormal processes with respect to an

arbitrary kernel space, which can be applied for several special cases, e.g. for generating

certain integrals with respect to fractional Wiener process. Note that in the most general

case there cannot be applied any additional complex procedures, which can make the

simulation much faster, but under some conditions a really fast generator system can be

implemented. This additional assumption will be the stationary property, which let us

handle the covariance matrix, determined by the inner product structure of the kernel

elements, in a much more efficient way.

Recall that a centered Gaussian process η(.) defined on a Hilbert space G provided

with the inner product ⟨, ⟩G and the induced norm ∣∣.∣∣G is called isonormal process if there

is an isomorphism between the kernel space and the image space of the mapping η, i.e.

⟨η(g), η(h)⟩L2(Ω) = ⟨g, h⟩G for any g, h ∈ G.

Now let me store the covariance structure of the isonormal process {η(g), g ∈ G} in the
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matrix denoted by Ψη and let me index the elements of the kernel space G, i.e. G ≐ {gk}k≥1.
The elements of the matrix representing the covariance structure will be denoted by Ψ

(i,k)
η

according to the indices of the corresponding kernel functions and the elements for any

i, k ≥ 1 will be defined as following

Ψ
(i,k)
η ≐ cov(η(gi), η(gk)) = ⟨gi, gk⟩G,

where the second equation can be claimed by definition. Note that indexing the elements

of the space does not require any additional conditions at this point, it just simplifies

the upcoming introduction of several notations and definitions. Since {η(g), g ∈ G} is a

Gaussian sequence and the covariance matrix is positive definite, (ηg) can be written as

η = ψ
1
2
η ε, (3.3)

where ε is an independently sampled vector with standard normal distribution.

Corollary 3.1.1. For the task of simulating trajectories of an isonormal process denoted

by {η(g), g ∈ G} the inner product structure depending on each element of the kernel

space is the only input needed, i.e. by determining the values below a sequence of the

isonormal process η can be generated according to 3.3

⟨g, h⟩G for all g, h ∈ G.

So let me consider an isonormal process determined by its kernel space provided

with an inner product structure, {η(g), g ∈ G}, and consider its covariance matrix Ψη

according to the indexed sequence of the elements of the Hilbert space G ≐ {g1, g2, ..., gN}
the isonormal process is defined on, where it has been assumed that the kernel space

consists of finite number of elements. The previous assumption is necessary to be able to

model the simulation of the obtained stochastic process. The following calculations aim at

finding the square root of the covariance matrix in the fastest way in the given framework

to obtain the realisations of the matter in hand stochastic process. Note that the square

root of the matrix has to be calculated once for each kernel space with the corresponding

inner product structures, i.e. for a given isonormal process after the determination of the

square root of the covariance matrix to obtain realisations it is enough to multiply the

square root matrix with a sequence of independent standard normal variables.

Since Ψη is a symmetric positive definite matrix, it admits the Cholesky decomposition

Ψη = LLT , where L = (lij)i,j=1,...,N is a lower triangular matrix, which decomposition is

unique in this case, since the covariance matrix is real and positive definite. So rewrite
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the condition in the coordinate-wise form:

i∧j
∑
k=1

likljk = Ψ(i,j)η = ⟨gi, gj⟩G. (3.4)

The elements of L can be computed recursively based on the previously calculated ele-

ments according to the (3.4) equation, i.e. lij can be determined for i ≤ j.
For the first step the value of l11 can be determined since it is actually the norm of the

first element, which is ∣∣g1∣∣G. It can be shown easily that for an arbitrary j ≥ 2 and i < j
the corresponding elements can be computed based on the previously calculated values

of the lower triangular matrix, which elements can be determined as following:

lij ≐
1

lii
(⟨gi, gj⟩G −

i−1
∑
k=1

likljk),

where all values being represented in the sum above has been calculated before according

to the presented recursive scheme. In case of the indices being the same the corresponding

matrix elements can be computed as following, i.e. for j ≥ 1

ljj ≐

¿
ÁÁÀ∣∣gj ∣∣2G −

j−1
∑
k=1
(ljk)2.

As soon as the matrix L has been determined, the isonormal process, {η(g), g ∈ G},
can be simulated according to the equation (3.3) by adding indices to the elements of the

Hilbert space as G ≐ {g1, ..., gN} , i.e.

η(gj) =
j

∑
k=1

εkljk,

where (εk)k is a vector of independent standard normal variables. Note that the simula-

tion procedure does not depend on the choice of indexing of the kernel elements in this

case.

3.2 Stationary isonormal processes

In this section there will be introduced additional assumptions about the class of isonor-

mal processes to apply some more efficient methods with many applications such as

fractional Wiener process simulation. So at the point of characterising the additional

assumptions it has to be attended that the conditions have to be strict enough to let me

apply Hosking’s and Kroese’s methods for the framework of isonormal processes, but not

too strict to determine a specific class of stochastic processes without any applications.

So the matter in hand assumption will be quite similar to the weak-stationary property

27



except that it will be formalised for processes defined over an arbitrary Hilbert space.

Definition 3.2.1. LetM be a separable Hilbert space and consider the stochastic process

{ξ(m) ∶ m ∈M}, which is called indexed stationary process if there exists an indexation

of the Hilbert spaceM ≐ {m1,m2, ...} such that

E(ξ(m)) = µ ∀m ∈M
E(ξ(m)2) <∞ ∀m ∈M

Rξ(mj,mk) = Rξ(mj+τ ,mk+τ) ∀τ ∈ R and for any j, k.

where Rξ(., .) denotes the auto-covariance function of the stochastic process ξ(.).

Note that the definition above has been introduced only for simplifying the character-

isation of the class of the stochastic processes which will be investigated in the simulation

task. Moreover one can observe that the definition of indexed stationary processes is a

generalisation of the weak stationary property for processes defined on arbitrary separable

Hilbert space in certain sense.

I aim at investigating an efficient generator procedure for isonormal processes sat-

isfying the indexed stationary property, which has several special cases, e.g. fractional

Wiener integrals. Let {η(g) ∶ g ∈ G} be an isonormal process then for any g ∈ G the

expected value of η(g) is zero and for any kernel element g the following holds true

E(η(g)2) = ∣∣g∣∣2G <∞,

since η(.) is a centered Gaussian process determined by the introduced isomorphism.

Thus the conditions of an isonormal process being indexed stationary can be reduced to

the property: there exists an indexed sequence of the kernel space G ≐ {gt1 , gt2 , ..} such
that for any τ ∈ R and any 0 ≤ tj, tk

Rη(gtj , gtk) = ⟨η(gtj), η(gtk)⟩L2(Ω) = ⟨gtj , gtk⟩G
= ⟨η(gtj+τ), η(gtk+τ)⟩L2(Ω) = ⟨gtj+τ , gtk+τ ⟩G = Rη(gtj+τ , gtk+τ)

Rη(tj − tk) ≐ ⟨gtj , gtk⟩G = ⟨gtj+τ , gtk+τ ⟩G,

where the isomorphism between the kernel space and the L2(Ω) space has been applied.

Recall that a centered Gaussian process is uniquely determined by its covariance

structure, so an isonormal process is uniquely determined by the kernel elements and by

the inner product structure of the kernel space. Thus for any Hilbert space playing the role

of the kernel space of the corresponding isonormal process if there exists such an indexing

needed the corresponding isonormal process to be indexed stationary then the obtained

indexing satisfying the introduced conditions is unique. The previous observation will be
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an important segment in some simulation tasks to model the random variables belonging

to the observations of a stochastic processes according to certain time grid, which will be

introduced in the next sections.

Example 3.2.1. Consider a separable Hilbert space with the natural indexation of the

elementsM ≐ {mt ∶ t ∈ [0, T ]} and equip the space with the inner product structure

⟨mtj ,mtk⟩M ≐ tj ∧ tk for any tj, tk ∈ [0, T ].

Note, that M is isometrically isomorphic to a complete subspace of L2([0, T ]), i.e. the

space formed by the indicator functions of all subintervals starting with the point zero of

[0, T ] and it is equipped with the L2([0, T ],Leb) inner product. So let me use the notation

for the matter in hand subspace U ≐ {1[0,s] ∶ s ∈ [0, T ]} and let the corresponding inner

product structure be defined for any v,w ∈ U as

⟨v,w⟩U ≐ ⟨v,w⟩L2([0,T ]).

So a natural indexation of the space U can be determined as following: let the element

indexed by s ∈ [0, T ] be the indicator function of the [0, s] interval. One can observe

that the isonormal process defined on the inner product space U is the standard Wiener

process, since let the isonormal process be denoted as {η(u) ∶ u ∈ U}, where ⟨v, u0⟩U = 0
and ∣∣v∣∣2U = τ for index τ belonging to the element v. Thus the stochastic process η(.) is
actually the Wiener process according to the following equations for any element v ∈ U
and for the corresponding index τ

η(u) =W (u) =W (1[0,τ]) =Wτ −W0 =Wτ .

So now there has been shown an example how apparent the indexation of the kernel

space can be and if an indexation has been defined then according to the definition of

the corresponding stochastic process it is unique.

Example 3.2.2. Let me define the separable Hilbert spaceW(α,σ,T ) for any given positive

parameters α,σ, T as it consists of elements which can be obtained in the form

e−α(τ−Id(.))1[0,τ](.) for any τ ∈ [0, T ]

and let me equip the space with the inner product of L2([0, T ],B([0, T ]), ν), where the

measure ν is defined as

ν(B) ≐ σLeb(B) for any B ∈ B([0, T ]).

Now, analogous to the previous example an indexation of the space W(α,σ,T ) can be
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determined as following: label an element with index s ∈ [0, T ] if it can be written as

ws ≐ e−α(s−Id(.))1[0,s](.).

Thus, by defining the space with the indexation of the elements and the inner product

the space is equipped with, the inner product can be calculated between two arbitrary

elements, i.e. for any u, v ∈ [0, T ]

⟨wu,wv⟩W = ⟨e
−α(u−Id(.))1[0,u](.), e−α(v−Id(.))1[0,v](.)⟩W

= e−α(u+v)⟨eαId(.)1[0,u](.), eαId(.)1[0,v](.)⟩W
= e−α(u+v)σ2⟨eαId(.)1[0,u](.), eαId(.)1[0,v](.)⟩L2([0,T ],Leb)

= e−α(u+v)σ2∫
u∧v

0
e2αxdLeb(x)

= σ
2

2α
e−α(u+v)(e2α(u∧v) − 1).

Let me denote the isonormal process determined by the Hilbert spaceW(α,σ,T ) and by the

calculated inner product as {η(w) ∶ w ∈W}. One can observe that the stochastic process

η(.) is the pathwise unique solution of the following stochastic differential equation by

assuming that the initial value is zero

dξt = −αξtdt + σdWt,

where Wt denotes the driving Wiener noise process and the matter in hand solution is

called Ornstein-Uhlenbeck process. In this case the Ornstein-Uhlenbeck process can be

written as a Wiener-integral, i.e.

ξt = σe−αt ∫
t

0
eαsdWs = η(wt),

which equation let us conclude that the isonormal process defined on the introduced

Hilbert space is the Ornstein-Uhlenbeck process with the respect to the corresponding

parameters and the zero initial value.

Example 3.2.3. For any τ ∈ R and H ∈ [0,1] let me consider the Hilbert space U τ,H with

elements written in the form 1[0,t] − 1[0,t−τ] for t − τ being non-negative and consider the

indexation as in the previous examples, i.e. label the element 1[0,s] − 1[0,s−τ] by s. Now,

equip the space U τ,H with the inner product for any s, t ≥ τ

⟨ut, us⟩Uτ,H ≐
1

2
(∣t − s + τ ∣2H − 2∣t − s∣2H + ∣t − s − τ ∣2H),

which induces the norm for each element ∣∣u∣∣2Uτ,H = τ for all u ∈ U τ,H . Recall that for

isonormal processes the indexed stationary property leads to restrictions only for the
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elements and the inner product structure of the kernel space. So before defining the

isonormal process on U τ,H let me verify that

Rη(us, ut) = Rη(us+z, ut+z) for any − ((s ∧ t) − τ) ≤ z ∈ R.

Now for any −((s ∧ t) − τ) ≤ z consider the following inner product structure

⟨ut+z, us+z⟩Uτ,H =
1

2
(∣(t + z) − (s + z) + τ ∣2H − 2∣(t + z) − (s + z)∣2H+

+ ∣(t + z) − (s + z) − τ ∣2H)
= ⟨ut, us⟩Uτ,H ,

which let us conclude that an isonormal process defined on the space U τ,H has to be in-

dexed stationary too. So let {η(u) ∶ u ∈ U τ,H} be an isonormal process with the covariance

structure for kernel functions u = 1[0,t] − 1[0,t−τ] and v = 1[0,s] − 1[0,s−τ]

⟨η(u), η(v)⟩L2(Ω) ≐
1

2
(∣t − s + τ ∣2H − 2∣t − s∣2H + ∣t − s − τ ∣2H) = ⟨u, v⟩Uτ,H ,

which leads us to the conclusion that the stochastic process {η(u) ∶ u ∈ U τ,H} is stationary.
One can observe that η(.) is actually the increment process of the fractional Wiener

process with respect to the time gap τ and the Hurst exponent H ∈ [0,1], i.e.

η(ut) =WH(1[0,t] − 1[0,t−τ]) =WH
t −WH

t−τ .

Corollary 3.2.1. If an isonormal process is an indexed stationary process then it is

strictly stationary and the indexation is uniquely defined based on the observation time

of the process.

Hosking method

Recall that to simulate isonormal processes one has to find the square root of the covari-

ance matrix as it has been presented in the previous section. Now, consider an indexed

stationary isonormal process {η(gi), i = 1, ...,N} defined on the Hilbert space G equipped

with the inner product ⟨., .⟩G, which sequence forms a stationary Gaussian sequence,

therefore it can be computed more efficiently than in the first case based on the fact that

the covariance matrix forms a Toeplitz matrix. In this subsection Hosking’s method will

be introduced, which was investigated for simulating stationary Gaussian sequences in a

less computationally demanding way than the standard Cholesky method [8]. Recall that

since η(.) is an isonormal process satisfying the indexed stationary property it is strictly

stationary, so its auto-covariance structure depends only on the time gap between the
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two observations, i.e.

Rη(gi, gj) = ⟨gi, gj⟩G = ⟨gi+τ , gj+τ ⟩G for any − (i ∧ j) ≤ τ ≤ N − (i ∨ j)

Ψ
(i,j)
η ≐ Rη(gi, gj) = Rη(i − j) for any 0 ≤ i, j ≤ N

Now, let me introduce the following notations and note that the description of the matter

in hand procedure is based on the paper [10] :

γn ≐

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ψ
(1,2)
η

Ψ
(1,3)
η

⋮
Ψ
(1,n+1)
η

⎞
⎟⎟⎟⎟⎟⎟
⎠

, Jn ≐ ITn ,

where In denotes the n×n dimensional identity matrix. In case of the matrix {Ψη(i,j)}mi,j=1
is given for m < N , the {Ψη(i,j)}m+1i,j=1 covariance matrix of the sequence {η(gi), i = 1, ...,m+
1} can be written in two forms based on the previously introduced notations using the

simplification that for Ψη,m ≐ {Ψη(i,j)}mi,j=1:

Ψη,m+1 =
⎛
⎝
1 γTm

γm Ψη,m

⎞
⎠
=
⎛
⎝
Ψη,m Jmγm

γTmJm 1

⎞
⎠
. (3.5)

The conditional distribution of η(gm+1) given η(g1), ..., η(gm) can be obtained by applying

the normal correlation theorem, i.e.

µm = E[η(gm+1)∣η(g1), ..., η(gm)] = γTmΨ−1η,m

⎛
⎜⎜⎜⎜⎜⎜
⎝

η(g1)
η(g2)
⋮

η(gm)

⎞
⎟⎟⎟⎟⎟⎟
⎠

σ2
m = D2[η(gm+1)∣η(g1), ..., η(gm)] = 1 − γTmΨ−1η,mγm.

However, calculating the inverse of Ψη,m is a computationally expensive procedure, the

result obtained above makes it possible to simulate η(g1), η(g2), ..., η(gm) subsequently.
As an efficient stationary Gaussian sequence simulation, taking advantage of calcu-

lating Ψ−1η,m recursively, Hosking’s method will be described above in a slightly different

form published [6]. In order to simplify the notations in the presentation of the method,

let me denote dm ≐ Ψ−1η,mγm. The second representation of Ψη,m+1 formalised in (3.5) leads
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us to the following equation by applying block matrix inversion:

Ψ−1η,m+1 =
1

σ2
m

⎛
⎝
σ2
mΨ

−1
η,m + JmdmdTmJm −Jmdm
−dTmJm 1

⎞
⎠

The following recursive forms can be obtained for dm and σ2
m by applying block matrix

multiplication:

dm+1 =
⎛
⎝
dm − ϕmJmdn

ϕm

⎞
⎠
, σ2

m+1 = σ2
m −
(ϕm)

2

σ2
m

, (3.6)

where

tm ≐ dTmJmγm, ϕm ≐
Ψ
(1,m+1)
η − tm

σ2
m

,

where the calculation steps not presented here can be found with description in [2].

The result formalised in (3.6) allows us to generate η(g1), ..., η(gN) according to the

method described above. For the first step, one simulates a standard normal variable

to declare the first element of the sequence, η(g1), then the previously introduced corre-

sponding variables have to be calculated as follows

µ1 ≐ ⟨g1, g2⟩Gη(g1); σ2
1 ≐ 1 − (⟨g1, g2⟩G)

2
;

t1 ≐ (⟨g1, g2⟩G)
2
; d1 ≐ ⟨g1, g2⟩G.

Suppose that the mth values have been determined, then the (m + 1)th element of the

sequence can be obtained as η = (gm) ∼ N(µm, σ2
m), while the tm, ϕm and dm+1 auxiliary

variables can be computed as described in (3.6). The last step of the algorithm consists of

calculating the variance σ2
m+1 and the mean value µm+1 ≐ dTm+1(η(gm+1), ..., η(g1))T of the

next element in the sequence with respect to the previously calculated auxiliary variables.

As in the method based on the Cholesky decomposition, the isonormal process can be

simulated just by determining the inner product structure of the given kernel elements

according to the presented procedure.

Davies-Harte method

As the previous methods, the procedure developed by Davies and Harte [5] also focuses on

finding the square root of Ψη by taking circulant matrix embedding into account. Note

that this algorithm was proposed by Davies and Harte and was generalized by Wood

and Chan [15] and later by Dietrich and Newsam [6] according to [2]. The main idea of

the method is embedding the Ψη,N covariance matrix in the circulant covariance matrix,

C, which algorithm is based on the following theorem [2]. The whole procedure will be

introduced later, including the details for fractional Wiener integrals of Hölder continuous

integrands, which will be investigated in the next section.
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Theorem 3.2.1. The C circulant matrix with M ×M dimensions has a representation

C = QΛQ∗, where

Λ = diag(λ0, λ1, ..., λM − 1), λk =
M−1
∑
j=0

cjexp{−2πi
jk

M
}

is the diagonal matrix of eigenvalues of C, and the matrix Q is defined as

Q = (qjk)M−1j,k=0, qjk =
1√
M

exp{−2πijk
M
},

and Q∗ denotes the conjugate transpose of Q.

Recall, that in order to simulate Gaussian processes, one need to find the square

root matrix of the covariance matrix, i.e. ψψT = Ψη, then the matter in hand isonormal

process can be determined by multiplying the matrix ψ with a standard normal vector

(ε1, ..., εN)T . The main advantage of this method can be derived from its complexity of

order O(N logN), which made it probably the most efficient among the exact methods

[13]. Note that several circulant embedding methods have already been published, see

e.g. [6, 3, 10].
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Chapter 4

Generator system for fractal noise

driven stochastic processes

In this section there will be presented several methods for isonormal processes determined

by certain kernel space and inner product structure, e.g. fractional Wiener process,

fractional Ornstein-Uhlenbeck process. It will be shown how can be derived the matter

in hand stochastic processes from the introduced isonormal process framework and how

can be applied the investigated procedures for certain processes. Moreover, there will

be presented a method based on circulant matrix embedding for simulating fractional

Wiener integrals of Hölder-continuous integrands. An additional interesting point is that

there will be investigated simulation procedures not only for the case of the time grid is

assumed to be equidistant, but for any arbitrary time grid, which generalization can be

done for some processes without causing too much increase in the execution time, while

in some cases it needs to be applied other more computational demanding algorithms to

overcome this issue.

4.1 Fractional Wiener processes

The Fractional Wiener process, which was developed by Mandelbrot [11], can be inter-

preted as the generalisation of the standard Wiener process in the sense that the long-

and short-term dependency of the process can be adjusted by adding the Hurst exponent

to the concept. The definition and some basic properties of fractional Wiener processes,

needed to the investigation of simulating fractal noise, will be introduced below.

A {WH
t , t ≥ 0} fractional Wiener process is defined as a centered Gaussian process

with the following covariance structure

⟨WH
s ,W

H
t ⟩L2(Ω) =

1

2
(t2H + s2H − ∣t − s∣2H),

where the H Hurst exponent has to be an element of the (0,1) interval.
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Remark. Note that determining the mean value and the covariance structure is enough

to specify the distribution of a Gaussian process, which means in this case that the

distribution of a fractional Wiener process is unique for fixed Hurst exponent.

Lemma 4.1.1. As a corollary of the Kolmogorov-Chentsov continuity theorem, fractional

Wiener processes have continuous modification with probability 1. Moreover, for any

γ ∈ (0, h) this modification is γ-Hölder continuous.

Equidistant time grid

Consider the task of generating discrete trajectories of fractional Wiener processes, {WH
t ∶

t ∈ [0, T ]}, for a given Hurst exponent, H ∈ [0,1], over equidistant time grid. Therefore,

the discretized noise process, {ŴH
t }t∈[0,T ], with respect to the given Hurst exponent and

time interval, can be obtained by taking the equidistant partition of the given time scale,

[0, T ], and the fractional Wiener process by applying the previously defined T operator,

i.e.

{ŴH
t (ω)}t∈[0,t] ≐ T (T,N,WH(ω, .)).

Since the values {ŴH
t }t∈[0,T ] form a Gaussian vector with a certain covariance matrix,

they can be simulated by applying the corresponding linear transform onto a sequence of

independently sampled standard normal variables.

Definition 4.1.1. A stochastic process (ξt)t≥0 is said to be self-similar if for any a > 0
there exists a b > 0 such that

(ξat)t≥0 = (bξt)t≥0.

In case of simulating fractional Wiener process, the H-self-similarity property of the

matter in hand process can be taken into account to simplify the generator procedure by

reducing an arbitrary time scale to the [0,1] interval, i.e. a simulated sequence over the

unit interval can be scaled as following to obtain a sequence over the [0, T ] interval

{ŴH
t }t∈[0,1] = (

N

T
)H{ŴH

t }t∈[0,T ],

which equation holds in distribution sense. This observation leads us to the amended

task of generating fractional Wiener process with respect to the [0,1] time scale. It is

also well-known that the increments of WH
t form a stationary Gaussian process, which

leads us to the idea of rather simulating the increments and taking the cumulative sum

of them to obtain the process than generating the actual process. Let me introduce an

operator for taking the increments of a certain function over the equidistant partition of

a given interval, I ∶ R ×N × RÐ→ RN , which can be formalised as

I(τ,N , ζ(.)) ≐ {T (τ,N , ζ(.))(1t= kτ
N
− 1

t= (k−1)τN
)}
N

k=1
. (4.1)
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Remark. The task of simulating discrete fractional Wiener processes with respect to

the given arbitrary time scale has been reduced to generating over the unit interval,

since the time attribute of the fractional Wiener process can be scaled into the unit

interval by a constant, depending only on the ratio of the time interval lengths and on

the corresponding Hurst exponent, thus an equality in distribution sense can be obtained

between the primary and the scaled time series. To be more precise it is enough to

come up with a simulation procedure for I(1,N,WH(ω, .)) because of the fact that the

following equation holds in distribution sense

(N
T
)
H

I(1,N,WH(ω, .)) = I(T,N,WH(ω, .)).

Consider the covariance structure of the matter in hand stationary time series given

by {ηi}Ni=1 ≐ I(1,N,WH(ω, .)), which can be written as following by the definition of the

fractional Wiener process:

Ψ
(1,k)
WH ≐ ⟨η1; ηk+1⟩L2(Ω) =

1

2
((k + 1)2H + (k − 1)2H − 2k2H).

Since ηn is a Gaussian sequence and the covariance matrix is positive definite, (ηn) can
be written as

η = ψ 1
2 ε, (4.2)

where ε ≐ (ε1, ..., εN)T is an independently sampled vector with standard normal distribu-

tion. This case has been investigated deeply in the (3.2.3) example of the previous section,

where it has been shown how the fractional Wiener noise process with arbitrary time gap

can be derived as an isonormal. Thus the increment process of the fractional Wiener

process can be simulated by applying the generator methods introduced for isonormal

processes. Moreover, it has been shown that the kernel space endowed with inner product

structure determined by the covariance function of the fractional noise process leads to an

indexed stationary process, which means for isonormal processes that the corresponding

process is strictly stationary, i.e. the more efficient methods for the stationary case can be

applied also. Note that the circulant matrix embedding based method will be precisely

described for fractional Wiener integrals, but it is the least computational demanding

among the exact methods and it can be obtained from the generator system of fractional

Wiener integrals by considering the constant one integrand case.
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The chart above shows the result of the execution time simulating discrete fractional

Wiener processes with respect to the Hurst parameter interval [0.01,0.03], i.e.
I(1,1500,WH(ω, .)), according to the introduced Cholesky, Hosking and Davies-Harte

methods. As mentioned before the [0.01,0.03] interval for the Hurst exponent of fractal

noise is one of the most relevant in mathematical finance, especially in the investigation

of the time-dependent correlation of given stock prices. So as expected, the circulant

embedding based method, in this case the Davies-Harte, is outstanding in the execution

time of simulating 10 sequences with 1500 grid points over the [0.01,0.03] Hurst interval,
compared to the Cholesky and Hosking methods.

Non-equidistant time grid

Consider the task of simulating fractional Wiener process over an arbitrary time grid

0 = t0 < t1 < ... < tN = T of the given [0, T ] interval. There are two different ways to

handle the issue coming up by omitting the equidistant assumption.

A straightforward procedure can be that at first determining an appropriate kernel

space and equip it with the corresponding inner product structure then by considering the

isonormal process defined over the introduced kernel space can be simulated according

to the methods have been presented previously, where the obtained isonormal process is

actually the fractional Wiener process. Let theWT,H kernel space consist of the elements

{1[0,s] ∶ s ∈ [0, T ]} which space is endowed with the inner product based on the covariance

structure of the fractional Wiener process

⟨1[0,s],1[0,t]⟩WT,H ≐
1

2
(s2H + t2H − ∣t − s∣2H),

where note that the way the form of the kernel elements has been determined as indicator
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functions of certain intervals is just for simplification, since there could be considered any

Hilbert space endowed with the inner product structure similar to the form written above.

Now, the uniquely defined isonormal process over the Hilbert spaceWT,H is the fractional

Wiener process, i.e. choosing the kernel elements with indices according to the given time

grid {1[0,tj]}Nj=0 leads to the discretized sequence of the fractional Wiener process, which

is aimed to be simulated. Since in arbitrary case the matter in hand sequence does not

form a stationary sequence, the only method which can be applied under these conditions

is the Cholesky decomposition based procedure investigated before.

Another possible procedure can be obtained by introducing auxiliary time points and

generating the corresponding auxiliary random variables instead of the straightforward

method to simulate over non-equidistant time grid, where it will be shown that this

method will be much more efficient than the previously introduced because of the appli-

cability of the circulant matrix embedding based algorithm. Let the given time grid be

denoted as 0 = t0 < t1 < ... < tN = T as before and let me introduce an auxiliary time grid

0 = t′0 < t
′

1 < ... < t
′

N = T , where the t
′

j ≐ jT /N time point is one of the equidistant time

grid over [0, T ] including N + 1 observation points. Recall that the most efficient exact

methods are the ones based on circulant matrix embedding, which procedures can be

applied only for stationary sequences. Thus, simulate the increment process of the frac-

tional Wiener process over the auxiliary time grid according to the Davies-Harte method

and then get the cumulative sum of the increments to obtain the auxiliary discretized

process as before. The trick now is applying the self-similarity property of the fractional

Wiener process to determine the values according to the given {tj}Nj=0 observation points

by deriving it from the auxiliary variables. So, we have that the following equation holds

true in distribution sense for any 0 ≤ j ≤ N

WH(1[0,t′j]) = (
Ntj
jT
)
H

WH(1[0,tj]),

which means that to obtain the variables aimed to be simulated it is actually enough to

multiply the generated auxiliary random variables by a scalar number, i.e. the computa-

tional demanding of simulating fractional Wiener process over non-equidistant time grid

according to the presented steps is still O(N logN).

4.2 Integrals of Hölder-continuous functions with re-

spect to fractional Wiener process

In this section the task of simulating fractional Wiener integrals of Hölder continuous

functions will be investigated according to two different conceptions: a procedure de-

rived from the general isonormal generator by determining the kernel space and the inner
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product structure properly and another method can be obtained by simuating the frac-

tional Wierner inrcements efficiently and weighing the increments by the corresponding

discretized values of the integrand. Note that this section will include the introduction

and the precise description of the previously mentioned circulant matrix based algorithm,

which has been developed for simulating stationary Gaussian sequences [10].

Consider the class of stochastic process for any given H ∈ [0,1] Hurst exponent and
for any time interval [0, T ]

SH,T ≐ {∫
τ

0
ϕ(s)dWH

s , τ ∈ [0, T ]}. (4.3)

Since it is not aimed to simulate Skorohod integrals, additional assumptions are needed to

handle the introduced class of stochastic integrals as pathwise Riemann-Stieltjes integrals.

Thus let me assume that the kernel functions are λ-Hölder continuous, where λ has to

be greater than 1−H, which condition leads us to the previously mentioned case, see the

proof for example in [16].

Non-equdistant time grid

Consider the Hilbert space KH,T,ϕ containing elements indexed as {kτ ∶ τ ∈ [0, T ]2} and
endow the space with the inner product determined for any s ≐ (s1, s2), t ≐ (t1, t2) ∈ [0, T ]2
as following

⟨ks, kt⟩KH,T,ϕ ≐
1

2
ϕ(s2)ϕ(t2)(∣s1 − t2∣2H + ∣s2 − t1∣2H − ∣s1 − t1∣2H − ∣s2 − t2∣2H),

where ϕ(.) is assumed to be a λ-Hölder continuous function with the condition λ >
1 −H. Now let me consider the isonormal process {ζ(k) ∶ k ∈ KH,T,ϕ} determined by the

introduced kernel space, which process does not satisfy the indexed stationary property,

i.e. there can be applied only the Cholesky decomposition based algorithm to simulate

sequences from the ζ(.) isonormal process. Now let me calculate the covariance structure

of the discretized fractional Wiener integral over the arbitrary time grid {tj}Nj=0 ∈ [0, T ]N+1
with the Hölder-continuous integrand ϕ(.):

⟨ϕ(tj)WH(1[tj−1,tj]), ϕ(tk)WH(1[tk−1,tk])⟩L2(Ω) =

= ϕ(tj)ϕ(tk)(⟨WH
tj
,WH

tk
⟩L2(Ω) − ⟨W

H
tj
,WH

tk−1
⟩L2(Ω) − ⟨W

H
tj−1 ,W

H
tk
⟩L2(Ω) + ⟨W

H
tj−1 ,W

H
tk−1
⟩L2(Ω))

= 1

2
ϕ(tj)ϕ(tk)(∣tj − tk−1∣2H − ∣tj − tk∣2H − ∣tj−1 − tk−1∣2H + ∣tj−1 − tk∣2H),

which means that the discretized sequence of the integral below can be simulated accord-

ing to the previously described Cholesky decomposition based method

∫
T

0
ϕ(s)dWH

s Ð→ {ϕ(tj)WH(1[tj−1,tj])}Nj=1,
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which sequence contains elements from the introduced space KH,T,ϕ.

Equdistant time grid

Now let me consider the task of simulating the matter in hand integrals over equidistant

time grid. So the task aimed to be solved has been precisely formalised as simulating

the discretized elements of SH,T with λ-Hölder continuous integrands, i.e. the following

sequences have to be generated efficiently

I(T,N,∫
T

0
ϕ(s)dWH(ω)s),

where recall that the I operator acts as a descretization operator on the determined

function over the given time interval and the corresponding time grid, which time grid is

assumed to be equidistant for the matter in hand operator.

The first simulate procedure for this case can be easily derived from the one inves-

tigated in case of non-equidistant time grid, since replacing tj with jT /N leads to the

following covariance structure

RWH ,ϕ(tj, tk) = ⟨ϕ(tj)WH(1[tj−1,tj]), ϕ(tk)WH(1[tk−1,tk])⟩L2(Ω)

= 1

2
( T
N
)
2H

ϕ(jT
N
)ϕ(kT

N
)(∣j − k + 1∣2H + ∣j − k − 1∣2H − 2∣j − k∣2H),

which let the sequence, obtained by the discretization of the investigated fractional Wiener

integral, to be simulated with the Cholesky algorithm, since the calculation above shows

that the elements of the discretization led sequence are elements of the space KH,T,ϕ.

Now, another procedure will be presented for simulating the fractional Wiener inte-

grals written in the same form as before and the conditions introduced previously are

assumed to hold too, which procedure is based on the circulant matrix embedding and it

is considered as the most efficient one among the exact methods.

If one aims at simulating discretized stochastic integrals with respect to an almost

surely continuous process, then the issue one has to face is generating discretized path-

wise Riemann-Stieltjes integrals, which simplifies the procedure to just calculating the

Riemann-Stieltjes sum according to the considered stochastic integral, i.e.

∫
T

0
h(s)dζ(ω)s Ð→ I(T,N,∫

T

0
h(s)dζ(ω)s),

where I(τ,N , h(.)) operator was defined in (4.1) as

{T (τ,N , h(.))(1t= kτ
N
− 1

t= (k−1)τN
)}
N

k=1
.
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Therefore, the following sequence is aimed to be simulated efficiently

I(T,N,∫
T

0
ϕ(s)dWH(ω)s).

Recall, that in case of simulating fractional Wiener processes, the fastest exact methods

are the circulant matrix embedding based algorithms. Thus, for discretized fractional

Wiener integrals the Fast Fourier Transform and circulant embedding based methods can

be applied with some additional steps, so the ideas of Davies and Harte [5], Wood and

Chan [15], Dietrich [6] and Kroese [10] will be used as weighing the efficiently simulated

increments with the corresponding discretized values of the kernel function. The method

will be presented according to Dietrich’s generalisation, but note that some tricks can be

added, which can give a boost to the execution time. Let me denote the auto-covariance

function describing the inner product structure of the stationary driving noise by ψ(.)
related to the time series below

I(T,N,∫
T

0
h(s)dWH(ω)s),

i.e. the values of ψ(.) for any time gap k can be determined as following based on the

calculation made for the case of simulating over non-equidstant time grid

ψ(k) ≐ RWH(1, k + 1)

= 1

2
((k − 2)2H + k2H − 2(k − 1)2H).

The main idea of the [5], [15], [6], [10] methods is embedding the covariance matrix in

the so-called circulant matrix, i.e.

C(ψ) ≐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0 c1 c2 . . . cM−2 cM−1

cM−1 c0 c1 . . . cM−3 cM−2

cM−2 cM−1 c0 . . . cM−4 cM−3

⋮ ⋮ ⋮ . . . ⋮ ⋮
c1 c2 c3 . . . cM−1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where C is a 2(N−1)×2(N−1) dimensional matrix, c0 = 1 and cj ≐ ψ(k)χ{1≤k≤N−1}+ψ(M−
k)χ{N≤k≤M}. Since Theorem (3.2.1) the following decomposition holds true C = QΛQ∗,
where the matrices Λ and Q can be written in the following form

Λ = diag(λ0, λ1, ..., λM − 1), λk =
M−1
∑
j=0

cjexp{ − 2πi
jk

M
}, qjk =

1√
M

exp{ − 2πijk
M
}.

Since this method is obtained as a generalisation of simulating any fractal noise, the prac-

tical realization of this approach requires the computation of discrete Fourier transform,
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see in [4], both direct and inverse with regard to [2]. The multiplication by the matrix

Q acts, up to the constant 1√
M
, as taking the discrete Fourier transform and similarly,

multiplying by the conjugate transpose of Q, up to the constant
√
M , is the same oper-

ation as taking the inverse discrete Fourier transform. Without going into the details of

the implementation tricks, an efficient exact method can be built up as following.

The first step is calculating the inner product structure of the driving noise over the the

grid one aims at simulating, i.e. ψ(1), ..., ψ(N−1) has to be determined, where ψ(k) is the
covariance between the first and the k+1th increment of the fractional Wiener process over

equidistant time grid. Now one can fill the elements c0, ..., cM−1 needed for the embedded

structure. The next step is acting the discrete Fourier transform on (c0, c1, ..., cM−1) and
taking the fast Fourier transform of the obtained eigenvalue vector, which has to be a

real vector theoritically, but numerical imprecision can lead to negligible imaginary parts,

so taking the real part of the obtained vector is suggested. In case of simulating several

realizations, the steps introduced above have to calculated only once. Note, that the

computation needed for generating one sequence can be reduced with some changes on

the presented methods according to [10]. The third step is taking the inverse fast Fourier

transform of and independent standard normal sequence (ε1, ..., εM) and multiplying the

obtained 1√
M
Q∗(ε1, ..., εM) element-wise with the square root of the vector determined in

the second step. The fractional Wiener increments can be obtained as the real part of the

fast Fourier transform of the result computed in the third step, i.e. I(T,N,WH(ω, .))
has been calculated. As the last step one has to multiply the previously determined

discrete driving fractional Wiener process element-wise with T (T,N,ϕ(.)) and taking

the cumulative sum of the result, which leads to I(T,N, ∫
T

0 ϕ(s)dWH(ω)s).

4.3 Multiple fractional Wiener integrals

There will be introduced a generator system for simulating multiple fractional Wiener

integrals of intgerands, which can be written as tensor product of Hölder continuous func-

tions, which class will be characterized precisely. Since the increments of the fractional

Wiener process are correlated and only the integrals of Hölder continuous functions can

be handled as Riemann-Stieltjes integrals, such subspaces of the L2(Ω) space can be sim-

ulated, where the direct sum of the subspaces form a strict subset of L2(Ω) unlike the

Wiener integrals introduced for the Wiener-Ito chaos decomposition.

Let me consider the following subspace of the kernel space L2([0, T ]p, µ):

MH
p ≐ {f ∶ [0, T ]p → R ∶ ∃ϕ ∈ L2([0, T ], µ), λ −Hölder continuous

and η ∶ f = η⊗p such that ∃(ϕn)n ⊂ ε1 ∶ ϕn
L2

Ð→ ϕ, η ∈ (ϕn)n},

where λ > 1 −H and η⊗p denotes the p-times tensor product of η with itself. Recall that
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the class of elementary functions have been determined as following

εp ≐ {f ∶ [0, T ]p → R ∶ f =∑
K

aK1AK,1×...×AK,p
(x), where AK,1, ...,AK,p are disjoints }.

So the simulating task has been formalised as investigating a generator procedure for

the multiple fractional Wiener integrals of the integrands belonging to the introduced

classMH
p , where let me denote the p-dimensional fractional Wiener integral operator as

Ĩp(.). One can observe that generating a discrete-time stochastic process obtained as

applying the Ĩp(.) operator onto an m̂⊗p ∈MH
p function is actually the task arises when

one aims at simulating stochastic process written in the from below over a given time

grid

∫
T

0
m⊗p(s)dWH

s ,

where m̂ is in fact the corresponding discretized integrand to m. So the class formalised

above includes such functions, which are related to Hölder-continuous functions as they

are the discretized versions of them with respect to any time grid of the [0, T ] interval.
Since the class has been determined as it consists of functions derived from considering

the multiple tensor product of a one-dimensional function with itself, the simulation of

such multidimensional integrals can be handled as multiple one-dimensional integrals,

i.e. for this case the computational demanding of generating a fractional Wiener integral

of any element of the class MH
p belongs only to the order of magnitude pO(N logN).

Moreover, a condition of the definition ofMH
p requires the tensor producted intergands

to be Hölder-continuous with the corresponding order, which let the integrals be handled

as pathwise Riemann-Stieltjes integrals, i.e. the procedures presented before for one-

dimensional fractional Wiener integrals can be applied for this case too.

Note that if one of the conditions cannot be satisfied then the generator procedures are

getting too complex and complicated to be derived from the previously presented exact

methods, e.g. if the tensor product property is violated then the kernel space cannot be

considered as the direct product of orthogonal spaces and the increments of the fractional

Wiener process are correlated, so the procedures have to be developed further, which is a

work in progress for me; in case of the kernel functions cannot be considered as Hölder-

continuous functions then the integrals have to be handled as Skorohod-integrals, which

is not aimed to be investigated at this point of my work.

4.4 Fractional Ornstein-Uhlenbeck processes

In this section an efficient generator procedure will be investigated in both equidistant and

non-equidistant cases and there will be handled differently the cases when the initial value

has chosen zero and non-zero. In case of the initial value of the corresponding stochastic
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differential equation describing a fractional Ornstein-Uhlenbeck process is chosen zero

then the unique pathwise solution of the differential equation can be written as a fractional

Wiener integral of an exponential function, which is actually an element of the class of

stochastic processes have been simulated previously. In case of non-zero initial value the

fractional Wiener increments will be generated and then the corresponding Lebesgue and

Riemann-Stieltjes integrals will be simulated, i.e. there will be applied Euler’s scheme to

generate the solution of the stochatic differential equation.

Let me consider the fractional Ornstein-Uhlenbeck process driven by fractional Wiener

process as the unique pathwise solution of the following stochastic differential equation

with the initial value ξ0 ∈ R

dξt = α(µ − ξt)dt + σtdWH
t , (4.4)

where α > 0 is the drift parameter, σt is the time-dependent diffusion parameter and the

µ constant is called the mean-reverting parameter. By applying the integral operator on

the both sides of the 4.4 equation the fractal noise driven Ornstein-Uhlenbeck processes

can be obtained as following

ξt = ξ0 + α∫
t

0
µ − ξsds + ∫

t

0
σsdW

H
s . (4.5)

Non-equidistant time grid

Let the time grid be any ordered sequence on the [0, T ] interval, i.e. {0 = t0 < t1 <
... < tN = T} and the value of the discretized fractional Ornstein-Uhlenbeck process with

respect to the given parameters and time grid can be written at the time point ti as below

ξti = ξ0 + α
i−1
∑
j=0
(µ − ξtj)(tj+1 − tj) +

i−1
∑
j=0
σtj+1(WH(1[tj, tj+1])).

Since the Euler’s scheme is aim to be applied the increments of the sequence deter-

mined previously have to be calculated, so the ith increment of the discretized fractional

Ornstein-Uhlenbeck process can be obtained as

ξti − ξti−1 = α(µ − ξti−1)(ti − ti−1) + σti(WH(1[ti−1,ti])).

As the first step the {WH(1[ti−1,ti])}Ni=1 fractional Wiener increments will be simulated,

where recall that clearly the most efficient generator method is the circulant matrix

embedding based. The mentioned simulating method can be applied only for stationary

Gaussian sequences, so there will be simulated auxiliary increments over equidistant

time grid and the obtained values will be scaled properly according to the self-similarity

property of the fractional Wiener process. Thus let me introduce the ausxiliary time grid
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{0 = t′0 < ... < t′N = T}, where t′j is actually the j + 1th time point of the equidistant time

grid, i.e. t′j ≐ jT /N . Since the following equation holds in distribution sense for any

0 ≤ j ≤ N the previously trick can be applied to obtain the increments over the arbitrary

time grid through the properly scaled auxiliary variables

WH(1[0,t′j]) = (
Ntj
jT
)
H

WH(1[0,tj]),

where despite the additional calculations the computational demanding of the simulation

of the fractional Wiener increments over arbitrary time grid is still O(N logN). Now,

initialize the value of the discretized fractional Ornstein-Uhlenbeck process ξ0 by the

given initial value. The next step is calculating the first increment of the discretized

stochastic process according to the procedure formalised above with respect to the given

parameters, the simulated corresponding fractional Wiener increment and the determined

initial value, so ξt1 − ξ0 has been calculated, i.e. the value of the fractional Ornstein-

Uhlenbeck process at the first time point can be obtained as (ξt1 − ξ0) + ξ0. Now, in

case of any index 1 ≤ i ≤ N the corresponding simulation step is based on the previously

determined increment ξti−1−ξti−2 , the calculated value at the time point ti−2, the simulated

corresponding increment WH([1[ti−1,ti]]) and the given parameters α,µ, σti and it can be

obtained by determining the increment first as ξti−ξti−1 = ξti−(ξti−1−ξti−2)+ξti−2 . Note that
the most efficient way to handle the calculation presented above is caching in the memory

the increments, but the increments only and as the last step the exact values can be given

back, where the obtained boost of this concept rises higher in case of simulating longer

and longer series, which depends also on the cache memory limit of the used computer.

In case of zero initial value the pathwise unique solution of the stochastic differential

equation 4.4 can be written as a fractional Wiener integral in the form below

ξt = −σ∫
t

0
e−α(t−s)dWH

s ,

where its discretization over the arbitrary time grid {0 = t0 < t1 < ... < tN = T} can be

obtained as

ξt0 ≐ 0 ξti ≐ −σ
i

∑
j=0

e−α(T−tj)WH(1[tj−1,tj]),

which is actually an element of the class of farctional Wiener integrals of Hölder continu-

ous functions, i.e. it can be simulated according to the presented methods for the matter

in hand class with the corresponding integrand.

Note that for equidistant time grid the investigated procedures can be applied by

omitting the step of scaling the increments according to the self-similarity property.
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The chart above has been obtained as testing how many times faster the implemented

class of the presented method is able to simulate the given number of fractional Ornstein-

Uhlenbeck sequences, with the given Hurst exponent from the investigated [0.01,0.03]
interval over 1500 grid-points in the [0,1] time interval, than the procedure based on the

fact that the driving noise is simulated by the Python package fBM and the standard

solution method is applied to the given stochastic differential equation. One may notice

the improvement can be observed as getting smaller and smaller Hurst exponents, it is

caused by the stabilisation of the inner product structure embedding on the edges of

the [0,1] interval, which cannot be reached by the procedures implemented in the fBM

package.
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