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Introduction

Overview

The dissertation includes three main parts: machine learning points of view

method of fundamental solutions, method of particular solutions and machine learn-

ing framework for solving stiff ordinary differential equations- partial differential

equations(ODEs-PDEs).

The purpose of the first part (the first and second chapters) is to introduce two

approaches to solving homogeneous Laplace’s equation and Helmholtz’s equation.

We use mesh-free methods which are based on the relation among fundamental solu-

tions and can be implemented by neural networks. We construct an approximation

of an analytical solution as a linear combination of fundamental solutions at outer

points. We also try to find a mapping between fundamental solutions at boundary

points and interior points. The first one is memory-efficient and the learning data in

the second one is independent of the boundary conditions. Both of these methods

work efficiently giving small errors in a variety of domain shapes and in case of

different boundary conditions. Moreover, the different neural networks can lead to

the same accuracy.

The second part(the third chapter) is the extension of the first part, we develop

the method of particular solutions for dealing with inhomogeneous problems. The

numerical experiments demonstrate the efficiency of this method. In collaboration

with Izsák and Gábor [1], the convergence rate for three-dimensional domains in

both L2-norm and H1-norm was also added to this thesis in chapter 4.

Chapter 5, on the other hand, is independent of the first two parts. We use

transfer learning to accelerate the accuracy without decreasing the step size. The

method’s idea is adapted from the multigrid methods to optimize the loss function.

In this part, we propose two improvements: the one-by-one loss optimizer and more
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flexible neural network architectures. It can be applied for stiff problems, both ODEs

and PDEs. The numerical results show that it outweighs the standard numerical

methods.

Literature review

The method of fundamental solutions (MFS), initiated in [2], has a long history.

The main idea of this approach is to approximate the solution u of some boundary

value problem Lu = 0 as a linear combination of some fundamental solutions of the

free-space differential operator L. Owing to this simple principle and the mesh-free

nature of the corresponding approximations, it became a popular computational

tool in the engineering practice [3]. Corresponding algorithms were developed for

a number of linear differential operators including inhomogeneous problems and

time-dependent cases [4] and later on, for non-linear operators [5], as well.

Recently, the development of the practice and software tools for neural networks

made it as one of the most powerful tools in applied mathematics. In this way, it is a

natural attempt, to apply this tool somehow for the solution of the major problems

in numerical analysis. An important class of these problems is the numerical solution

of PDE’s. Accordingly, some related works were published in the last years. The main

research direction was to mimic the geometry of the domain and the corresponding

finite element or finite difference discretization, called the physics informed neural

networks. At the level of the linear solvers, their motivation was the multigrid method

and related convolutional neural networks were constructed. This is extended to a

number of PDE’s and a whole library of neural networks was prepared for computing

[6].

The cornerstone of the corresponding convergence theory is the approximation

property of the family of fundamental solutions for L. For this, a general result - us-

ing Holder norms - was developed in [7], with a summary of the preceding results. A

convergence rate depending on the discretization parameters is, however, missing in

these works. Regarding this, a significant result was developed earlier in [8] for (two-

dimensional) Jordan domains with an analytic boundary. Later on, a full analysis

was performed in [9], where the case of the Dirichlet Laplacian operator and the unit

disk was investigated. In both cases, an exponential convergence rate was proved in

a special Fourier type norm and in the ∥.∥∞-norm, respectively. The analysis was
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further extended to the spheres [10] and for the Helmholtz operator in [11] and error

estimates were developed in the ∥.∥2-norm. Regarding the practical numerical sim-

ulations, we have to face with huge condition numbers in the corresponding linear

systems [12]. To avoid direct solution algorithms, the least-squares approach was

proposed, for an advanced version, see [13] . This approach is of great importance

in case of computationally expensive problems [14]. The aim of the present contri-

bution is to extend the above approximation results in two ways. First, we prove

them on general 3-dimensional domains with a given convergence rate. Second, the

corresponding error estimates will be given in the natural energy norm ∥.∥H1 . After

collecting the mathematical tools, we prove the main result, where the theory of

the boundary integral methods will be utilized. We also demonstrate the efficiency

of the method in a real 3D-case. Finally, we discuss the results and mention new

perspectives.

In [15] and [16], the physics informed neural networks(PINNs) were introduced

to solve ODEs/PDEs relied on the physics-based laws of nature such as conserva-

tion of mass, energy and momentum. There are three scenarios according to the

ratio between physical invariances and data that can be utilized in the training pro-

cess. Adding the physical constraints can assist in generalisation improvement in

case we have fewer data and it saves the computational time by reducing the free

parameter of neural networks in case we have heavy data. The first scenario is to

simulate a massive amount of data and try to minimize the least square error be-

tween the data and the neural network approximation. There is no guarantee that

these conservation terms are preserved and the amount of data to be trained is not

feasible when we investigate three-dimensional problems. The second scenario is to

impose conservation laws as constraints (see [17]). It poses issues that training the

network efficiently with these constraints and designing neural network architectures

properly. The last one is the combination of the above two scenarios when the loss

includes both penalties from the data and the physical rules. It has many advantages

like not requiring meshes and can be scope with higher-order problems with auto-

matic differentiation tools. Nevertheless, in [18], pointed out that PINNs fail to learn

the relevant Physics in all cases they observed. For example, the PINNs performed

badly in the advection equation when the velocity parameter is big and it also fails

to solve the Fisher equation and the Burger equation when the diffusion terms are

significant. Compared to the existent convention methods, the PINNs are slower due
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to the full-batch optimization and the complexity of the neural network structure.

That is the main reason that we follow the direction of using other families based on

existing numerical methods to enhance the numerical solutions. The slight variation

of PINNs is numerical Physics-Informed Neural Network (N-PINN) ([19]) that the

structure of neural networks is adapted from familiar numerical schemes. In [20] and

[21], they put more neural network layers in the relation between numerical solutions

at the two consecutive times and apply the convection methods on the finer grids to

obtain the synthesis training data. This is the offline training process for building

up a simple model on the course grids with optimized parameters and has the same

accuracy when solving on the fine grids. In chapter 5 of this thesis, we propose the

continuations of this paper [22] where the sequence-to-sequence technique can be

applied and the number of free parameters is generalized.
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Chapter 1

Method of fundamental solutions for

Laplace equations

The basic idea to use fundamental solutions for training was taken from the

original work [23]. I have further developed this method to get the approach in

Section 1.1. Furthermore, both approaches were implemented and tested in a number

of cases. The basis of this chapter is my TDK work submitted in October 2021.

1.1 The first approach

1.1.1 The Laplace’s equation with Dirichlet boundary condi-

tions

Let us consider the Laplace equation{
∆u = 0 in Ω

u = g on ∂Ω
(1.1.1)

for the unknown function u ∈ H1(Ω) on the domain Ω ⊂ Rd with Dirichlet boundary

conditions given by g ∈ H
1
2 (∂Ω).

In the sense of distribution, the fundamental solution of the Laplacian operator

is a solution of the first equation in (1.1.1) if 0 ̸∈ Ω. Using the notation ωd for the

surface of the d-dimensional unit sphere, this can be given explicitly as

ϕ : Rd \ {0}, ϕ(x) =

{
− 1

2π
log(|x|) for d = 2
1

(d−2)ωd|x|d−2 for d ≥ 3.

7



1. Method of fundamental solutions for Laplace equations

y2

Ω

y1

y3

c1

c2

cm

x1

x2

xn

Figure 1.1: Inner (blue), boundary (green) and outer (brown) points.

Take n arbitrary boundary points x1, x2, . . . , xn ∈ ∂Ω and m arbitrary points

c1, c2, . . . , cm ∈ ΩC , which will be called the outer points, see Figure 1.1. The fun-

damental solution associated with the point cj in case of d = 2 is

ϕcj(x) = ϕ(x− cj) = − 1

2π
log(|x− cj|). (1.1.2)

We will approximate the solution of (1.1.1) as a linear combination of the functions{
ϕcj

}m
j=1

. This method was first proposed in [2], whenever for its convergence on an

arbitrary domain still no rigorous proof was developed.

A main motivation of this approximation is the fact that according to the theory

of boundary integral equations [24], there is a unique function G ∈ H− 1
2 (∂Ω) such

that
u(x) =

∫
∂Ω

ϕ(x− y)G(y) dy. (1.1.3)

If this could be approximated with an appropriate sum, we would get a sum of some

terms ϕc∗j
. At the same time, on the boundary point c∗j , the function ϕc∗j

becomes

singular. Therefore, instead of c∗j , we rather choose an outer point cj close to c∗j .

In any case, if we take more outer points, we can enhance accuracy of the ap-

proximation. In concrete terms, we are looking for the approximation

u(x) ≈
m∑
j=1

ajϕcj(x), (+ constant), (1.1.4)

where the coefficients aj will be determined by the boundary condition such that

m∑
j=1

ajϕcj(xi) ≈ g(xi) i = 1, 2, . . . , n. (1.1.5)
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1. Method of fundamental solutions for Laplace equations

...
...

ϕc1(xi)

ϕc2(xi)

ϕc3(xi)

ϕcm(xi)

H1

Hn

g(xi)

Input
layer

Hidden
layer

Ouput
layer

Figure 1.2: Neural network structure of the first approach

In the language of neural networks, we are looking for the parameters a1, a2, . . . , am
such that the corresponding linear mapping in (1.1.4) delivers a minimal error in

(1.1.5). A training data pair consisting an input and output data is associated to

the boundary point xi. Accordingly:

• The input of the training data includes n vectors of length m:

(ϕc1(xi), · · · , ϕcm(xi)), where i = 1, · · · , n.

• The output of the training data are boundary function values at the point xi
: g(xi), where i = 1, . . . , n).

• Weights in the most simple case (in lack of a hidden layer) are aj and in the

general case, these are components to get aj.

• We use the least square loss function with regularization.

The setup of the corresponding neural network is displayed in Figure (1.2).

Using the gradient-based methods and tuning the parameters properly to mini-

mize the mean squared error, we obtain the desired parameters a1, a2, . . . , am. This

model gives us the approximation of u at any inner point, let say yk, then

u(yk) ≈
m∑
j=1

ajϕcj(yk).

9



1. Method of fundamental solutions for Laplace equations

1.1.2 The Laplace’s equation with Neumann boundary con-

ditions

The general interior Neumann problem for Laplace’s equation in Ω can be for-

mulated as follows: {
∆u = 0 in Ω
∂u
∂n

= fn on ∂Ω,
(1.1.6)

where n is a unit outward normal vector to the boundary ∂Ω and fn is a prescribed

function defined on the Lipschitz boundary ∂Ω of the domain Ω ⊂ Rd.

Again, we are looking for an approximation in form (1.1.4). At the same time,

we have to replace the Dirichlet boundary conditions with Neumann type boundary

conditions such that we obtain

∂

∂n
u(xi) ≈

m∑
j=1

aj
∂

∂n
ϕcj(xi). (1.1.7)

Here using c = [c1, c2] for a generic outer point and x = [x1, x2] for a generic inner

point, we have
∂

∂x1
ϕc(x) = − 1

2π

x1 − c1
(x1 − c1)2 + (x2 − c2)2

∂

∂x2
ϕc(x) = − 1

2π

x2 − c2
(x1 − c1)2 + (x2 − c2)2

.

Accordingly, the new neural network should be altered in terms of the inputs and

outputs as follows:

• Training data input includes vectors
(

∂
∂n
ϕc1(xi), · · · , ∂

∂n
ϕcm(xi)

)
, where i =

1, · · · , n.

• Training data output are boundary function at the point xi : fn(xi) (i =

1, · · · , n).

After training, we obtain the weights a1, a2, . . . , am in the approximation (1.1.4).

10



1. Method of fundamental solutions for Laplace equations

1.1.3 The Laplace’s equation with mixed boundary condi-

tions

For the definition of mixed boundary condition for the Laplace equation, we split

∂Ω of two disjoint parts, Γ1 and Γ2, such that ∂Ω = Γ1 ∪ Γ2. Then the problem{
∆u = 0 in Ω

u|Γ1
= g and ∂u

∂n

∣∣
Γ2

= f
(1.1.8)

is called the Laplace equation with mixed boundary condition, which, for f ∈

H− 1
2 (∂Ω) and g ∈ H

1
2 (∂Ω) has a unique solution u ∈ H1(Ω).

In this case, the neural network is a combination of the two networks above: the

Dirichlet input-output training data is: (ϕc1(xi), · · · , ϕcm(xi)) and g(xi) where xi ∈

Γ1 and the Neumann input-output training data includes
(

∂
∂n
ϕc1(xi), · · · , ∂

∂n
ϕcm(xi)

)
and fn(xi) where xi ∈ Γ2.

1.2 The second approach

1.2.1 The Laplace’s equation with Dirichlet boundary condi-

tions

We discuss another approach to design the neural network, which uses only the

fundamental solutions as learning data. Here, for each outer point cj,

• The input of training data is a vector of length n:
(
ϕcj(x1), · · · , ϕcj(xn)

)
.

• The output of training data is ϕcj(y) where y is an interior point, where we

want to estimate the solution.

This idea is visualized in Figure 1.3.

Here we assume that fundamental solution at any inner point can be written as

linear combination of fundamental solution at boundary points as

ϕcj(y) ≈
n∑

i=1

biϕcj(xi). (1.2.1)

11



1. Method of fundamental solutions for Laplace equations

...
...

ϕcj(x1)

ϕcj(x2)

ϕcj(x3)

ϕcj(xn)

H1

Hn

ϕcj(y)

Input
layer

Hidden
layer

Ouput
layer

Figure 1.3: Neural network structure of the second approach

Using approximation (1.1.4), we get

u(y) ≈
m∑
j=1

ajϕcj(y) ≈
m∑
j=1

aj

n∑
i=1

biϕcj(xi) =
n∑

i=1

m∑
j=1

ajbiϕcj(xi) ≈
n∑

i=1

biu(xi).

Hence, the numerical solution at the inner point y can be estimated by linear com-

bination of this function at the boundary points.

1.2.2 The Laplace’s equation with Neumann boundary con-

ditions

We assume that at the source point cj, the fundamental solution of the any points

can be approximated by a linear combination of derivative of fundamental solution

of the boundary points:

ϕcj(y) ≈
n∑

i=1

bi
∂

∂n
ϕcj(xi).

Using the approximation in (1.1.4), we get

u(y) ≈
m∑
j=1

ajϕcj(y) ≈
m∑
j=1

aj

n∑
i=1

bi
∂

∂n
ϕcj(xi) =

n∑
i=1

m∑
j=1

ajbi
∂

∂n
ϕcj(xi) ≈

≈
n∑

i=1

bi
∂

∂n
u(xi).

12



1. Method of fundamental solutions for Laplace equations

Accordingly, the structure of neural network is the following:

• Training data input includes vectors
(

∂
∂n
ϕcj(x1), · · · , ∂

∂n
ϕcj(xn)

)
, where j =

1, · · · ,m.

• The output of training data is ϕcj(y) where y is an inner point.

1.2.3 The Laplace’s equation with mixed boundary condi-

tions

Let us consider the mixed boundary value problem with the conditions in (1.1.8).

The second approach is estimating the fundamental solution at an inner point

by both fundamental solution and derivative of fundamental solution at boundary

points

ϕcj(y) ≈
∑
xi∈Γ1

biϕcj(xi) +
∑
x′
i∈Γ2

b′i
∂

∂n
ϕcj(x

′
i). (1.2.2)

Indeed, the neural network will optimize the parameters {bi}, {b′i} here.

Using approximation (1.1.4) again, we get

u(y) ≈
∑
xi∈Γ1

biu(xi) +
∑
x′
i∈Γ2

b′i
∂

∂n
u(x′i).

Hence, the output of training data in the second method is always the fundamental

solution ϕcj(y) and the input data in mixed boundary problem is

(
ϕcj(x1), · · · , ϕcj(xn),

∂

∂n
ϕcj(x

′
1), · · · ,

∂

∂n
ϕcj(x

′
n)

)
,

where x1, · · · , xn are boundary points generated on Γ1 and x′1, · · · , x′n are generated

on Γ2.

1.3 Numerical experiments

In this section, we dig deep into how these methods work on specific problems,

how to set up the position of collocation points, source points and how to tune

parameters properly. In particular, we focus to the following questions.

• What is the optimal number (or rather: the ratio) of the boundary and outer

points?

13



1. Method of fundamental solutions for Laplace equations

Figure 1.4: The outer and boundary points for example 1

• What is the optimal distance of the outer points from the boundary?

• What is the optimal distribution of the boundary and outer points?

• Does the two approaches deliver similar accuracy?

• With an optimal choice of all parameters, which convergence rate can be

achieved?

• What is the setup and the parameters in a neural network used in the com-

putations?

1.3.1 Dirichlet boundary condition on the unit square

Example 1. In a unit square Ω = {x, y | 0 < x < 1, 0 < y < 1} let us consider the

following equation
∆u = 0 for (x, y) ∈ Ω

u(x, 0) = 0, u(x, 1) = sin(πx) for 0 < x < 1

u(0, y) = 0, u(1, y) = 0 for 0 < y < 1.

(1.3.1)

The analytical solution of this problem is:

u(x, y) =
1

eπ − e−π
sin(πx)

(
eπy − e−πy

)
.

Firstly, we implement the first method by choosing the position of outer points on a

square which is obtained by a magnification of the unit square (see Figure 1.4). We

define the magnification factor ϵ as the distance between two parallel sides of each

square.

In Figure 1.5 (left figure), we use the following parameters:

14



1. Method of fundamental solutions for Laplace equations

Figure 1.5: Analytic and numerical solutions are solved by the first approach (left)
and the second approach (right) of example 1

• number of boundary points: 32,

• number of outer points: 8192,

• magnification factor: ϵ = 0.1,

• learning rate: 0.1,

• number of epochs =1000,

• layers: 1 hidden layer with size of 100,

• loss function after training: 0.0003839250421151519.

15



1. Method of fundamental solutions for Laplace equations

The number of boundary and outer points Error (Frobenius
norm)

n = 16,m = 64 0.2461622809658327
n = 32,m = 64 0.3182853004347026
n = 32,m = 128 0.21974143048835057
n = 16,m = 128 0.18014076148115063
n = 16,m = 512 0.10919759728510069
n = 16,m = 2048 0.07990843843706859
n = 32,m = 8192 0.04762830527750495

Table 1.1: The effect of the number of boundary points and outer points (the first
approach)

Figure 1.6: The effect of ϵ and the number of epochs(the first approach)

The role of the number of boundary points and source points is important. In Table

1.1, we run on different values of n(the number of boundary points) and m (the

number of boundary points) with ϵ = 0.2. We observe that the more outer points we

generate, the more accuracy we get for the Frobenius norm. The number of outer

points should exceed the number of boundary points because we can approximate

the boundary values more accurately using a long linear combination of fundamental

solutions. Note that the solution given by the neural network is not unique, so we

may get results far away from the true solution but have small losses. Luckily, in

this example, the divergence between the two solutions is insignificant.

The distance between two squares can change the error slightly, but the numeri-

cal solution is close to the analytical solution in general. According to the Figure

1.6 (left), ϵ should be between 0.05 and 0.1 to get an optimal numerical solution.

Increasing the number of epochs will also decrease the error (see Figure 1.6 -right).

Now we turn to the second approach. We want to plot the whole function in

this example to compare it to the first method. We expect to get the value of every

16



1. Method of fundamental solutions for Laplace equations

Collocation
points

True solu-
tion (100, 100) (400, 400) (1000, 1000) (1000, 100) (100, 1000)

(0.2, 0.2) 0.034124 0.03115696 0.0338244 0.03507766 0.03429693 0.03419725
(0.5, 0.5) 0.199268 0.2008082 0.20086792 0.20041794 0.19841382 0.19588123
(0.7, 0.7) 0.311947 0.3144576 0.3115651 0.3125463 0.3116747 0.3061932
(0.2, 0.7) 0.226643 0.22474924 0.22370611 0.22674346 0.22672111 0.2225104
(0.7, 0.2) 0.046969 0.04574379 0.04649694 0.04676051 0.04662241 0.04642019

Table 1.2: The different choices of the number of boundary points and outer
points, ϵ = 0.15(the second approach)

Collocation points True solution ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.025
(x, y) = (0.2, 0.2) 0.034124 0.0347167 0.03429693 0.03295259 0.03433963
(x, y) = (0.5, 0.5) 0.199268 0.19874202 0.19841382 0.2012808 0.19995686
(x, y) = (0.7, 0.7) 0.311947 0.3124724 0.3116747 0.3126797 0.3119331
(x, y) = (0.2, 0.7) 0.226643 0.22637717 0.22672111 0.22672312 0.2267626
(x, y) = (0.7, 0.2) 0.046969 0.04597505 0.04662241 0.04752169 0.04735678

Table 1.3: The different choices of magnification factor (the second approach),
n = 1000,m = 100

grid point precisely, not only the network in general. It enhances considerably the

complexity of the neural network and the time to train the model. It is an obstacle

when tuning the parameters, so our technique is to train the network to learn the

value in one grid point. Then we apply these parameters in the neural network to

all other points. Figure 1.5(right) illustrates the numerical solution of the second

approach with 320 boundary points, 60 source points and ϵ = 0.025.

However, the purpose of using both approaches is not to estimate every point on

the domain. It measures specified source points without using discretization on this

domain (i.e.the mesh-free method). In Table 1.2, we use different values including the

number of boundary points and the number of outer points. It shows that the second

method performs moderately well even though the number of boundary points is

smaller or larger or equal to the number of outer points.

Similar to the first method, the loss decreases if the auxiliary boundary is closer to

the original boundary ∂Ω (or ϵ is smaller) which can be seen in Table 1.3.
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1. Method of fundamental solutions for Laplace equations

Position of inner
point Analytical solution Approach 2 Approach 1

(x, y) = (0.2, 0.2) 0.034124989219717516 0.03417236 0.03415351
(x, y) = (0.5, 0.5) 0.19926840766919335 0.1992962 0.19928508
(x, y) = (0.7, 0.7) 0.311947830115096 0.31381178 0.31188422
(x, y) = (0.2, 0.7) 0.22664336509760868 0.22663322 0.22663559
(x, y) = (0.7, 0.2) 0.04696901819829289 0.04670608 0.04691111

Table 1.4: The approximation of some interior points using both methods.

Figure 1.7: Nodal distribution of boundary and outer points.

1.3.2 Dirichlet boundary condition on the unit circle

Let us consider the Laplace equation (1.1.1) on the unit circle Ω = {x, y|x2+y2 ≤

1}, where the boundary condition is given with u(x, y) = ex cos y if x2 + y2 = 1.

We generate n junctions in the unitary circle in random direction (left) and uniformly

(right) in Figure 1.7. We have observed that only uniform nodal distribution leads

to an accurate approximation, large deviation between the distances of the nodal

points become to large computational error.

In Figure 1.8 ,we use 20 boundary points, 600 outer points, ϵ = 0.1, epoch = 2500.

The loss after training neural network is 0.001734, and the error with respect to

Frobenius norm is 0.04012585269.

We also use the second method to evaluate the numerical solution at some points:

(0, 0); (−0.5,−0.5); (0, 0.5); (0.6,−0.7) and can be illustrated in Table 1.5.
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1. Method of fundamental solutions for Laplace equations

Figure 1.8: The analytical and numerical solution on the unit circle

Collocation points True solution n=m=100,
ϵ = 0.1

n=m=100,
ϵ = 0.15

(x, y) = (0, 0) 1 0.9903376 1.0000083
(x, y) = (−0.5,−0.5) 0.53228073 0.5215831 0.53341687
(x, y) = (0, 0.5) 0.87758256 0.86393476 0.8772203
(x, y) = (0.6,−0.7) 1.3936333 1.3846822 1.3980508

Table 1.5: The numerical solution of specific points on the unit circle (the second
approach).

1.3.3 Dirichlet boundary conditions on the epitrochoid

We consider the Laplace equation 1.1.1 on the epitrochoid, where the boundary

points have the position of

(√
(a+ b)2 + 1− 2(a+ b) cos

(
aθ

b

)
cos θ,

√
(a+ b)2 + 1− 2(a+ b) cos

(
aθ

b

)
sin θ

)
.

In this example, we choose a = 4, b = 1, the value on boundary is u(x, y) = ex cos y.

Figure 1.9 is obtained by using 60 boundary points, 90 outer points, ϵ = 0.1 and

10000 epochs with the first approach.

1.3.4 Case study for Neumann type boundary conditions

Due to the non-uniqueness of the solution in the problem containing only

Neumann type boundary conditions, we investigate only the shape of numerical

solutions. The program gives different results each time we implement, so we only

show the best results. For the first approach, we run on the unit square.

Example 2. Consider in rectangular domain Ω = (0, 1) × (0, 1) using Cartesian
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1. Method of fundamental solutions for Laplace equations

Figure 1.9: The analytical and numerical solution on epitrochoid

Figure 1.10: The numerical solution of the Neumann problem using the first
approach.

coordinates

∆u = 0 for (x, y) ∈ Ω
∂

∂y
u(x, 0) = 2

π

eπ − e−π
sin(πx),

∂

∂y
u(x, 1) =

π

eπ − e−π
(eπ + e−π) sin(πx) for 0 < x < 1

∂

∂x
u(0, y) =

π

eπ − e−π
(eπy − e−πy),

∂

∂x
u(1, y) =

−π
eπ − e−π

(eπy − e−πy) for 0 < y < 1

(1.3.2)

The function u satisfying these equations is the same in Example 1, up to an

arbitrary additive constant term. Figure 1.10 displays a result we got, where the

error is equal to 0.5968903065215189.

For the second approach, we run on the unit circle (see section 4.2), the Neumann

conditions is given. The analytical solution is u(x) = ex cos y + c. In this example,

we try to get the numerical solution is close to the analytical solution with c = 0.
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1. Method of fundamental solutions for Laplace equations

Collocation points (0, 0) (−0.5,−0.5) (0, 0.5) (0.6,−0.7)
Analytical solution 1 0.53228073 0.87758256 1.39363332
Numerical solution 0.9999979 0.53227895 0.87758255 1.3936331

Table 1.6: The numerical solution at some points for the Neumann boundary value
problem using the second approach.

Figure 1.11: The analytical and numerical solution on Amoeba-like domain

1.3.5 Mixed boundary value problem on an Amoeba-like do-

main

Let us consider the Laplace equation 1.1.1 on the Amoeba-like domain, where

the boundary points have the position(
esin θ sin2(2θ) + ecos θ cos2(2θ)

)
(cos θ, sin θ) .

For 0 ≤ θ < π, Dirichlet boundary conditions are given, while for 0 ≤ θ < 2π we

prescribe Neumann boundary conditions such that the analytic solution is u(x, y) =

cos(x) cosh(y) + sin(x) sinh(y).

Figure 1.11 is obtained by using 60 boundary points, 90 outer points, ϵ = 0.1 and

10000 epochs. We have also implemented the second method for this problem. Using
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1. Method of fundamental solutions for Laplace equations

Collocation points (0, 0) (1, 1) (2, 0) (−1, 1)
Analytical solution 1 1.82262773 -0.41614683 -0.15516768
Numerical solution 1.0056722 1.823955 -0.43739626 -0.15932003

Table 1.7: The numerical solution of some points on the mixed boundary problem
using the second approach

Figure 1.12: The analytical and numerical solution on flower-like domain

50 boundary points and 200 outer points, ϵ = 0.1 with 90000 epochs, the result of

some points is showed in Table 1.7.

1.3.6 Mixed boundary condition problem on a flower-shaped

domain

Let consider the Laplace equation 1.1.1 on the flower-like domain, where the

boundary points have the position(
2 +

1

2
sin(kθ)

)
(cosx, sinx) ,

where k is a given integer. The boundary conditions in the domain In a model

problem with k = 6, Dirichlet boundary condition was used for 0 ≤ θ < π and

Neumann boundary condition for 0 ≤ θ < 2π such that the analytic solution is

u(x, y) = cos(x) cosh(y)+ sin(x) sinh(y). Figure 1.12 is obtained by using 60 bound-

ary points, 90 outer points, ϵ = 0.1 and 10000 epochs.

1.3.7 Different neural networks and comparisons.

Table 1.8 and 1.9 illustrates the results after implementing in different set up of

neural networks for both methods. The more complex neural networks we use in the
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1. Method of fundamental solutions for Laplace equations

Neural network Error
Linear Regression, no hidden layer, epochs = 1000 0.048206
Neural network, 1 hidden layer of size 100, epochs = 1000 0.026957
Neural network, 1 hidden layer of size 500, epochs = 1000 0.026286
Neural network, 2 hidden layers of size 100, epochs = 1000 0.022334
CNN with 2 fully connected layers, epochs = 10000 0.017556

Table 1.8: Different neural network structures for Example 1.

first approach, the more accuracy we get with the same number of epochs. But also

note that if we use complex neural networks, there are more unknown parameters

that cost the computation time. For example 1, we recommend using the neural

network with one hidden layer of "small" size. The second approach, otherwise,

does not affect by the structure of the neural network. We can achieve a reasonably

good numerical solution using a simple network with no hidden layer by increasing

the number of epochs.

To sum up, both methods are required a large enough number of outer points because

both use the approximation (1.1.4). In practice, if the number of exterior points is

more than 30 and the ratio between the number of boundary and outer points

is small (<1), we will get a reliable numerical solution. However, for the second

approach, a large enough number of boundary points has to be used to guarantee

that the approximation (1.2.1) or (1.2.2) has a small error. It avoids the error term

from approximation (1.1.4) directly and works for any ratio between the number of

boundary and outer points. Hence, the second method is applicable for the problem

which generating the equidistant outer points ineffectively, while the first method is

an incredibly good estimation when the auxiliary domain is formed effectively.

In a nutshell, with the optimal choice of all parameters, both methods operate

accurately with low error on the "smooth" boundary curve (see Table 1.4).
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1. Method of fundamental solutions for Laplace equations

Neural network (0, 0) (1, 1) (2, 0) (−1, 1)
Linear Regression, no hidden
layer, epochs = 60000 1.001674 1.822747 -0.4326400 -0.1545439

Neural network, 1 hidden layer
of size 100, epochs = 90000 0.998864 1.820469 -0.4302049 -0.1552322

Neural network, 2 hidden layers
of size 100, epochs = 90000 1.000284 1.821235 -0.4321503 -0.1545273

CNN with 2 fully connected lay-
ers, epochs = 300000 1.002132 1.820958 -0.4312253 -0.1556389

Analytical solution 1 1.8226277 -0.4161468 -0.1551676

Table 1.9: Different neural network structures for Amoeba-like domain problem
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Chapter 2

Method of fundamental solutions for

Helmholtz equations

2.1 Solving Helmholtz-type equations

Let us consider the two types of boundary homogeneous Helmholtz-type equa-

tion, including the monotone type{
∆2u− k21u = 0 on Ω

u|Γ1
= g and ∂u

∂n

∣∣
Γ2

= f.
(2.1.1)

and the oscillatory type {
∆2u+ k22u = 0 on Ω

u|Γ1
= g and ∂u

∂n

∣∣
Γ2

= f,
(2.1.2)

where Ω ⊂ Rn is an open set and ∂Ω consists of two disjoint parts, Γ1 and Γ2, such

that ∂Ω = Γ1 ∪ Γ2.

The fundamental solutions of the modified (2.1.1) and the original (2.1.2) Helmholtz

problems, respectively are given by

ϕ−(x, y) =


1
2π
K0(k1∥x− y∥) for d = 2
e−k1∥x−y∥

4π∥x− y∥
for d = 3

(2.1.3)

and

ϕ+(x, y) =


i
4
H

(1)
0 (k2∥x− y∥) for d = 2
e−ik2∥x−y∥

4π∥x− y∥
for d = 3,

(2.1.4)
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2. Method of fundamental solutions for Helmholtz equations

where K0 denotes the modified Bessel function of second kind of order zero and

H1
0 denotes the Hankel function of the first (See the Appendix A). In practice, the

function u is a real-valued function. Hence, we can assume the fundamental solution

of the oscillatory type problem is a real-valued function, namely

ϕ+(x, y) =


−1
4
Y0(k2∥x− y∥) for d = 2

cos(−k2∥x− y∥)
4π∥x− y∥

for d = 3,
(2.1.5)

where Y0 is the Bessel function of the second kind of order zero kind of order zero.

Using the method of fundamental solution (MFS), we estimate the solution as a

data-dependent linear combination

u(x) ≈
m∑
j=1

ajϕcj(x), (2.1.6)

where ϕ(x) is the fundamental solution for the corresponding problem.

From this, we construct the neural network design to find the coefficient {aj}mj=1

using the Dirichlet input-output training data:

[(ϕc1(xi), · · · , ϕcm(xi)) g(xi)] ,

where xi ∈ Γ1. Similarly, the Neumann input-output training data includes the pairs[(
∂

∂n
ϕc1(xi), · · · ,

∂

∂n
ϕcm(xi)

)
fn(xi)

]
,

where xi ∈ Γ2.

The output of training data of number j in the second method is always ϕcj(y)

and the input data in case of the mixed boundary value problem is(
ϕcj(x1), · · · , ϕcj(xn),

∂

∂n
ϕcj(x

′
1), · · · ,

∂

∂n
ϕcj(x

′
n)

)
,

where x1, · · · , xn are boundary points generated on Γ1, while x′1, · · · , x′n are gener-

ated on Γ2.
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2. Method of fundamental solutions for Helmholtz equations

2.2 Numerical results

2.2.1 Solving the modified Helmholtz equation on sphere

In the first example, the three-dimensional eigenvalue problem for the Laplace

operator problem is selected to divulge the competence of the proposed MFS. The

monotone type Helmholtz problem is with Dirichlet boundary conditions is the fol-

lowing: {
∆2u− 3u = 0 on Ω

u(x, y, z) = sinh(x+ y + z) on ∂Ω, (2.2.1)

where Ω = {(x, y, z)|x2 + y2 + z2 < 1}.

Before injecting the training data into the neural network, we should distribute the

boundary and auxiliary boundary surface such that points are evenly distributed.

We list four common distributions below.

a) The standard equiangular spherical coordinate distribution forming N1 lines

of latitude and N2 lines of longitude.

b) There are 6N2 + 6N + 2 points generated in the sphere which has positions(
sin
( nπ
2N

)
sin

(
kπ

3n

)
, sin

( nπ
2N

)
cos

(
kπ

3n

)
, cos

( nπ
2N

))
where k = 1, · · · , 6n and n = 1, · · ·N .

c) The Fibonacci lattice is expressed as a sequence of N points with coordinates

xk = sin(kπ(3−
√
5))

√√√√1−

(
1−

(
k

N − 1

)2
)2

yk = 1−
(

k

N − 1

)2

zk = cos(kπ(3−
√
5))

√√√√1−

(
1−

(
k

N − 1

)2
)2

,

where k runs from 0 to N − 1
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2. Method of fundamental solutions for Helmholtz equations

Collocation points Error(dis.1) Error(dis.2) Error(dis.3) Error(dis.4)
(0.6, 0.6, 0.1) -0.007686 0.00203109 0.00108302 -1.1682e-5
(0.3, 0.3, 0.3) -0.021422 0.00585616 0.00275302 -0.0003191
(0, 0, 0) -0.028143 0.00775653 0.00363088 -0.000422
(−0.6, 0.7,−0.3) -0.000238 0.0002373 -0.0003359 -0.0005813

Table 2.1: Different nodal distribution leads to different error distribution

d) (Golden spiral method)

xk =

(
1− 2

k

N − 1

)
sin(kπ(1 +

√
5))

yk =

(
1− 2

k

N − 1

)
cos(kπ(1 +

√
5))

zk = ±

√
1−

(
1− 2

k

N − 1

)2

,

where k = 0, · · · , N − 1.

For comparison, we generate 256 = 16 × 16 boundary points and 1444 = 38 × 38

outer points for the standard equiangular coordinates. For the distribution in (b), 254

(N = 6) points was created in boundary and 1442(N = 38) points in the pseudo-

boundary. We both set 255 boundary points and 1443 outer points on Fibonacci

lattice and spiral distribution. These distributions are visualized in Figure 2.1.

2.2.2 Solving modified Helmholtz equation on the cube

We first solve the following monotone type Helmholtz problem with Dirichlet

boundary conditions:{
∆2u− 3u = 0 on Ω

u(x, y, z) = sinh(x+ y + z) on ∂Ω, (2.2.2)

where Ω is the unit cube (0, 1)× (0, 1)× (0, 1).

Point Distribution: Discretizing in each direction using 10 points on the boundary

surface and using 40 points on the outer domain. The size of input data: 488× 9128

(see Figure 2.2). Parameters: 1 hidden layer of size 100, learning rate = 0.05, epoch

= 20000.

We estimate the error on some levels: z = 0.1 (maximum norm of error vector is

0.0162) ; z = 0.5 (maximum norm of error vector is 0.0378) ; z = 0.8 (maximum
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2. Method of fundamental solutions for Helmholtz equations

(a) Standard equiangulation (b) Enhanced standard distribution

(c) Fibonacci lattice (d) Golden spiral method

Figure 2.1: Nodal distributions on the sphere.
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2. Method of fundamental solutions for Helmholtz equations

Figure 2.2: Boundary and outer points for the problem (2.2.2).

norm of error vector is 0.0268 ). In Figure 2.3, we show the error function on the

different levels.

Figure 2.3: Error function on the different levels

2.2.3 Solving modified Helmholtz equation on the brick

{
∆2u− 3

64
u = 0 on Ω

u(x, y, z) = sinh(x
8
+ y

8
+ z

8
) on ∂Ω (2.2.3)

We consider the same above problem but on the brick of size 8× 5× 3.5. Step size

for boundary domain is: 0.5 m and stepsize for outer domain is 0.125 m, distance

between two domains is 0.3m. (See Figure 2.4). The error function for the points

(x, y, 1) is illustrated in the Figure 2.5
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Figure 2.4: Computation domain for the brick problem.

Figure 2.5: Error function on the level z = 1.

31



Chapter 3

Method of particular solutions

I partly follow in this chapter the recent work [4], where the original idea was

presented. According to some papers: [25] , [26], [27] , [28], we summarize the main

ideas here and complete it with some remarks and observations. The correspond-

ing numerical experiments were implemented myself and using the neural networks

approach to execute.

3.1 The method for Poisson equation

Let us consider the Poisson equation{
∆u = f in Ω

u = g on ∂Ω
(3.1.1)

for the unknown function u ∈ H1(Ω) on the domain Ω ⊂ Rd with Dirichlet boundary

conditions given by g ∈ H
1
2 (∂Ω).

We decompose the solution of the equation in (3.1.1) into two parts:

u = up + ul,

where up is the particular solution

∆up = f (3.1.2)
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3. Method of particular solutions

and ul is the solution of the Laplace equation{
∆ul = 0 in Ω

ul = g − up on ∂Ω.
(3.1.3)

To solve equation (3.1.3), we use the algorithm (MFS) in Chapter 1.

To find the particular solution representation of equation (3.1.2), we use radial ba-

sis function interpolation technique. The right hand side function of the Laplace

operator can be represented as linear combination of radial basis functions (RBFs)

f(x) =
n∑

i=1

aiφ(∥x− ci∥) (3.1.4)

The collocation points {ci}ni=1 are selected such that the function f is well-

approximated on the domain Ω. Substituting x = ci into equation (3.1.4), we obtain

the system of linear equations
φ(c1 − c1) φ(c2 − c1) · · · φ(cn − c1)
φ(c1 − c2) φ(c2 − c2) φ(cn − c2)

... . . .
φ(c1 − cn) φ(c2 − cn) · · · φ(cn − cn)



a1
a2
...
an

 =


f(c1)
f(c2)

...
f(c3)

 (3.1.5)

If we choose the collocation points well, the system of linear equations system delivers

a unique set of coefficients {ai}ni=1, which gives obviously an approximation of up as

follows:

up(x) =
n∑

i=1

aiψ(∥x− ci∥). (3.1.6)

Here ψ is defined implicitly as
−∆ψ = φ (3.1.7)

There are several possibilities to choose the radial basis function ϕ as shown in Table

3.1. The calculation for the corresponding ψ was proposed in [29]

Theorem 3.1.1. • If the RBF is thin plate splines, the particular solution for

(3.1.7) is

ψ(r) =


r2n+2 log r

4(n+ 1)2
− r2n+2

4(n+ 1)3
in R2

(2n)!r2n+2

(2n+ 2)!
in R3.

• If the RBF is inverse multiquadratics ϕ(r) =
1√

r2 + c2
, the particular solution
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3. Method of particular solutions

Type of RBF function

linear φ(r) = r
ad-hoc φ(r) = 1 + r
cubic φ(r) = r3

thin plate splines φn(r) =

{
r2n log r in R2

r2n−1 in R3

multiquadric φc(r) = (r2 + c2)(2k+1)/2

compactly supported φλ(r) =

{(
1− r

λ

)2 if r ≤ λ
0 if r > λ.

Table 3.1: Common types of radial basis functions.

for 3.1.7 is

ψ(r) =


√
r2 + c2 − c log(c+

√
r2 + c2) in R2

r2 + c2

2
+
c2

2r
log

(
r +

r2 + c2

c

)
− c in R3.

• If the BPF is multiquadratics ϕ(r) =
√
r2 + c2, the particular solution for 3.1.7

is

ψ(r) =


4c2 + r2

9

√
r2 + c2 − c3

3
log(c+

√
r2 + c2) in R2(

5c2

24
+
r2

12

)√
r2 + c2 +

c4
[
ln(r +

√
r2 + c2)− ln c

]
8r

− c3

3
in R3.

3.2 The method for modified Helmholtz equations

Let us consider the modified Helmholtz equation{
∆u− k2u = f in Ω

u = g on ∂Ω.
(3.2.1)

A similar method can be applied to solve this equation. We use the approximation

u(x) =
n∑

i=1

aiψ(∥x− ci∥) +
m∑
j=1

bjϕ(∥x− dj∥). (3.2.2)

The fundamental solution for the modified Helmholtz equation is

ϕ(r) =
e−kr

4πr
.

34



3. Method of particular solutions

The particular solution ψ satisfies

∆ψ − k2ψ = φ,

where φ is the radial basis function.

If we choose the radial basis function as the general spline basis function of order n,

we obtain
φn(r) =

{
r2n log r in R2

r2n−1 in R3.
(3.2.3)

According to [30], the corresponding three-dimensional particular solution can be

written as

ψ(r) = A
sinh(kr)

r
+B

cosh(kr)

r
+

n∑
i=−1

Ckr
i.

To guarantee the smoothness at r = 0, we choose coefficient A,B,C to have

ψn+1(r) =
(2n)! cosh(kr)

rk2n+2
−

n∑
k=0

(2n)!

(2k)!

r2k−1

k2n−2k+2
(3.2.4)

For instance,

ψ1(r) =
cosh(kr)

rk2
− 1

rk2
, ψ2(r) =

2(cosh(kr)− 1)

rk4
− r

k2
.

Remark 3.2.1. • The particular solution of the general spline basis function

for modified Helmholtz equation in 2D can be given as

− 1

k2

n∑
i=1

(
∆

k2

)i

r2n log(r)− (2n)!!

k2n+2
K0(kr).

• For the Helmholtz equation (∆ + k2)ψ = ϕ, the particular solution of the

general two-dimensional spline basis function is

− 1

k2

n∑
i=1

(
∆

k2

)i

r2n log(r)− (−1)n(2n)!!

k2n+2
K0(kr),

while in three space dimensions, we have

− 1

k2

n∑
i=1

(
∆

k2

)i

r2n−1 − 2(−1)n(2n)!!

k2n+2

e−kr

r
.
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3. Method of particular solutions

3.3 An alternative method for Helmholtz equation

We can consider the Helmholtz equation as the implicit Poisson equation{
∆u = k2u+ f in Ω

u = g on ∂Ω.
(3.3.1)

Using the radial basis function and the fundamental solution for the Poisson equa-

tion, we represent the solution as

u(x) =
n∑

i=1

aiψ(∥x− ci∥) +
m∑
j=1

bjϕ(∥x− dj∥), (3.3.2)

where n,m are the number of inner and outer points we generate. The fundamental

solutions and particular solution we use is the same in the case of the Poisson

equation. These were rather discussed for the Helmholtz equation in the Chapter 2.

Taking the Laplace operator and using the definition of particular solution and

fundamental solution, we get

∆u(x) =
n∑

i=1

aiφ(∥x− ci∥). (3.3.3)

Substituting into the equation (3.3.1) , for all x ∈ Ω we have

n∑
i=1

ai
(
φ(∥x− ci∥)− k2ψ(∥x− ci∥)

)
+

m∑
j=1

bj
(
−k2ϕ(∥x− dj∥)

)
= f(x). (3.3.4)

If we choose x = ck (k = 1, · · · , n), we obtain system of n equations

n∑
i=1

ai
(
φ(∥ck − ci∥)− k2ψ(∥ck − ci∥)

)
+

m∑
j=1

bj
(
−k2ϕ(∥ck − dj∥)

)
= f(ck) (3.3.5)

We obtain also p equations using (3.3.2) if we take the value on p boundary points

el (l = 1, · · · , p)

n∑
i=1

aiψ(∥el − ci∥) +
m∑
j=1

bjϕ(∥el − dj∥) = g(el). (3.3.6)

We inject both equation 3.3.5 and 3.3.6 into the linear neural network to approximate

the coefficients ai and bj. In details, the training data includes n+ p training input-
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3. Method of particular solutions

output.

• Input: A vector of size n+m: [(φ(∥ck − ci∥)− k2ψ(∥ck − ci∥),−k2ϕ(∥ck − dj∥)],

Output: f(ck)

• Input: A vector of size n+m: [ψ(∥el − ci∥), ϕ(∥el − dj∥)], Output: g(el)

To compute the numerical solution, we inject the input [ψ(∥x − ci∥), ϕ(∥x − dj∥)]

into the trained neural network.

Remark 3.3.1. In practice, we are using the compactly supported RBFs in both

2D and 3D

ϕλ(r) =

{(
1− r

λ

)2
if r ≤ λ

0 if r > λ

The corresponding particular solution are

ψλ(r) =


r4

16λ2
− 2r3

9λ
+
r2

4
if r ≤ λ

13λ2

144
+
λ2

12
log
( r
λ

)
if r > λ

in 2D

ψλ(r) =


r4

20λ2
− r3

6λ
+
r2

6
if r ≤ λ

λ2

12
+

λ3

30r
if r > λ.

in 3D

3.4 The method of particular solutions for the wave

equation

We wil also use the method of particular solutions for the following wave equa-

tion: 
∆u =

1

c2
∂2u

∂t2
in Ω

u(x, y, z, t) = g(t) on ∂Ω

u
∣∣∣
t=0

= I1(x, y, z),
∂u

∂t

∣∣∣
t=0

= I2(x, y, z) in Ω.

For the numerical solution, we discretize the time-interval into uniform time-steps

of length δt and use the notation

u(x, y, z, nδt) = un.
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3. Method of particular solutions

We apply the so-called Houbolt method to approximate second order derivative with

respect to time:

∂2un

∂t2
≈ 1

δt2
(
2un − 5un−1 + 6un−2 − un−3

)
. (3.4.1)

Hence, at each time level, we are solving the modified Helmholtz equation∆un − 2

c2δt2
un =

1

c2δt2
(−5un−1 + 6un−2 − un−3) in Ω

un = g(nδt) on ∂Ω.

Note that to solve the modified Helmholtz equation, we only have to take the value

of f at the collocations points and the value of g at the boundary points.

Since it is a three-step method, we use compute first three numerical solution by

first-order explicit Euler method to initiate the computation with (3.4.1)

u0 = u
∣∣∣
t=0

u1 = u
∣∣∣
t=0

− δt
∂u

∂t

∣∣∣
t=0

u2 = u
∣∣∣
t=0

− 2δt
∂u

∂t

∣∣∣
t=0
.

The following algorithm summarizes the method we use t o solve the wave equation

Algorithm 1 MFS-MPS algorithm to solve the wave equation
Subprogram Helmholtz-solver()

1 Input: k2 RHS function vector [f(c1), f(c2), · · · , f(cn)]3 Boundary function vec-
tor [g(e1), g(e2), · · · , g(ep)]4 return numerical solution

Procedure Main-loop()
1 Initialization u(0), u(1), u(2) for i= 3 to T/δt do
2 k =

√
2

cδt
, RHS-vector = 1

c2δt2
(−5u(i− 1) + 6u(i− 2)− u(i− 3)),

3 boundary-vector = [g(el, iδt)]l=1,··· ,p4 u(i) = Helmholtz-solver(k,RHS-
vector, boundary-vector)

end
5 return u(T/δt)
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3. Method of particular solutions

3.5 Numerical experiments

Example 3.5.1. In an attempt to test the algorithm, we consider the following

Poisson equation in the domain of a unit 3-dimensional cube{
∆u = −2 in Ω

u(x, y, z) = −1
3
(x2 + y2 + z2) on ∂Ω.

(3.5.1)

We use 150 boundary points and 1350 outer points. For the radial basis function

we chose the multiquadric function given with

φ(r) =
√
r2 + c2. (3.5.2)

The particular solution corresponding to the above multiquadric function is

ψ(r) =

{
c3

3
if r = 0(

5c2

24
+ r2

12

)√
r2 + c2 +

c4[ln(r+
√
r2+c2)−ln c]
8r

if r ̸= 0.
(3.5.3)

Table 3.2 shows the absolute error at some points

:(0, 0, 0); (0.5, 0.5, 0.5); (0.1, 0.2, 0.3); (0.15, 0.95, 0.5); (0.73, 0.86, 0.97) with dif-

ferent choice of parameter c in mulitiquadrarics function. According the results,

c = 3 is the optimal choice for this problem.

x 0 0.5 0.1 0.15 0.73
y 0 0.5 0.2 0.95 0.86
z 0 0.5 0.3 0.5 0.97

u(x, y, z) 0 -0.25 -0.0466 -0.3916 -0.7378

c=1 1.62e-4 7.62e-5 7.33e-4 2.12e-3 5.34e-4

c=3 1.16e-4 7.63e-5 4.28e-5 1.23e-3 3.52e-3

c=5 9.13e-4 2.86e-4 4.9e-3 5.84e-3 9.79e-3

c=7 2.96e-3 2.29e-4 1.4e-3 1.08e-3 9.45e-3

c=9 1e-1 6.2e-4 5.26e-2 2.41e-2 8.61e-2

Table 3.2: Absolute error in approximation to u(x, y, z) of Poisson equation.

Example 3.5.2. We consider the Helmholtz equation on a unit 3D cube{
∆u− k2u = (1− k2)(ex + ey + ez) in Ω

u(x, y, z) = ex + ey + ez on ∂Ω.
(3.5.4)
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3. Method of particular solutions

In this example, we set k =
√
3 and use 1000 collocation points, 1350 outer

points and 150 boundary points. The radial basis functions are general spline basis

function(3.2.3) and the corresponding particular solution are the finite sum of 3.2.4.

Table 3.3 displays the error estimation in maximum norm of some specific points

with the choices for particular solutions. If the finite sum with bigger n for particular

solution, the more accuracy we obatain for numerical solution.

x 0 0.5 0.3 0.15 0.25
y 0 0.5 0.4 0.95 0.85
z 0 0.5 0.5 0.5 0.94

u(x, y, z) 3 4.946163 4.490404 5.396265 6.183653

n = 2 7.99e-7 2.582e-1 2.45e-1 3.74e-2 4.047 e-2

n = 3 1.34e-6 8.518e-2 9.848e-2 1.14e-2 3.431e-3

Table 3.3: Absolute error in approximation to u(x, y, z) for Helmholtz equation.

Example 3.5.3. We are using the same example as Example 3.5.2 and the radial

basic functions are multiquadrics function with different value of c.

x 0 0.5 0.3 0.15 0.25
y 0 0.5 0.4 0.95 0.85
z 0 0.5 0.5 0.5 0.94

u(x, y, z) 3 4.946163 4.490404 5.396265 6.183653

c = 1 4.882e-2 3.315e-2 9.002e-2 6.384e-2 9.963e-3

c = 3 0.6045 0.3071 0.5323 0.0523 0.3614

Table 3.4: Absolute error in approximation to u(x, y, z) for Helmholtz equation
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Chapter 4

Error analysis

This chapter is an extended version of [1] where I contribute the implementation

part.

4.1 Recent results

Katsurada and Okamoto ([31]), and Fairweather and Karageorghis ([32]) derived

an error bound for the MFS type numerical solution of the Dirichlet - Laplace equa-

tion (1.1.1) on the two-dimensional disk. They have assumed that the boundary

data g is analytic, solution is analytic and furthermore that u can be extended (con-

tinued) to be harmonic. Under these condtions, they have established the following

error estimation:
∥u− uM∥L∞(Ω) ≤ C

( ρ
R

)M
, (4.1.1)

where R is the radius of a circle including the outer points. This shows that the

MFS is exponentially convergent with respect to increasing M , or R.

Betcke ([11]) obtained the same results for Helmholtz operator ∆ + k2I and

Balakrishnan and Ramachandran ([33]); Barnett and Betcke ([11]); Bogomolny ([34])

and for the modified Helmholtz operator ∆− k2I.

The estimate 4.1.1 was proved by Katsurada ([35], [8]) for domains with an an an-

alytical Jordan curve as a boundary.

In case u is not analytically continuable to the whole plane, but rather only up to
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4. Error analysis

an extension B(0; r0) Kitagawa ([36], [37]) proved:

∥u− uM∥L∞(Ω) ≤ ∥u∥L∞(∂B(0,r0))(
2

1− ρ
R

)[
(1 + A(R, p))

(
ρ

r0

)M/3

+ 4
( ρ
R

)M/3
]

where A(R, ρ) is some constant between 1 and 2. The price to pay for this excellent

exponential convergence is that the condition number of the coefficient matrix of

the resulting linear system of equations grows exponentially with respect to M.

4.2 Our results

For our approach, we recall the single layer representation. According to this,

the solution u(x) of (1.1.1) can be given by

u(x) =

∫
∂Ω

ϕ(x− y)G(y) dy. (4.2.1)

We extend the boundary to avoid the singularity of the integral. We denote Ω′ ⊃ Ω

be a extended domain containing pseudo boundary domain of Ω and we rewrite 4.2.1

formula as
u(x) =

∫
∂Ω′

ϕ(x− y)G(y) dy. (4.2.2)

In practice, we can put the following assumptions on the domain Ω′

• The domain Ω′ is a closed triangular Lipschitz surface with triangles {Tn}Nn=1

• Let {yn}Nn=1 are the centroids of the corresponding triangles {Tn}Nn=1. Then we

assume
sup
x∈∂Tj

|x− yj| ≤ h ∀ j = 1, 2, · · · , N

• There exist a positive number d such that

inf
x∈Ω,y∈Ω′

|x− y| ≥ d

Fixing the points yj of the triangles, we define the numerical solution with parameter

h as follows:

uh(x) =
N∑
j=1

∫
Tj

ϕ(x− yj)G(y) dy =
N∑
j=1

∫
Tj

G(y) dyϕ(x− yj). (4.2.3)
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4. Error analysis

In this way, the numerical solution can be represented by a linear combination of

fundamental solutions, where the linear coefficients are aj =
∫
Tj
G(y) dy.

Theorem 4.2.1. Under the conditions 4.2, the MFS converges with second order

in maximum norm
|u(x)− uh(x)| ≤ Ch2

where C > 0 is independent of the step size h.

Proof. Comparing (4.2.2) and (4.2.3), we have

|u(x)− uh(x)| =

∣∣∣∣∣
N∑
j=1

∫
Tj

ϕ(x− y)− ϕ(x− yj)G(y) dy

∣∣∣∣∣
≤

N∑
j=1

∫
Tj

|ϕ(x− y)− ϕ(x− yj)||G(y)| dy.

Using the Cauchy–Schwarz inequality, we obtain

|u(x)− uh(x)| ≤
N∑
j=1

√∫
Tj

|ϕ(x− y)− ϕ(x− yj)|2 dy
∫
Tj

|G(y)|2 dy.

Using the formula for the fundamental solution of three-dimensional Laplace oper-

ator∫
Tj

|ϕ(x− y)− ϕ(x− yj)|2 dy =

∫
Tj

∣∣∣∣ 1

|x− y|
− 1

|x− yj|

∣∣∣∣2 dy

=

∫
Tj

∣∣∣∣ |x− y| − |x− yj|
|x− y||x− yj|

∣∣∣∣2 dy

≤
∫
Tj

∣∣∣∣ |y − yj|
|x− y||x− yj|

∣∣∣∣2 dy [triangular inequality]

≤
∫
Tj

|y − yj|2

d4
dy [minimum distance assumptions]

≤
∫
Bj

|y − yj|2

d4
dy.

In the last inequality, Bj denotes the open disk centered at yj with radius h and lies

in the same plane with Tj.

We can calculate the integral∫
Bj

|y − yj|2

d4
dy =

π

2d4
h4.
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4. Error analysis

To sum up, we have

|u(x)− uh(x)| ≤
N∑
j=1

√
π

2d4
h4
∫
Tj

|G(y)|2 dy =

√
π√
2d2

∥G∥L2(∂Ω1)h
2.

Here C =
√
π√
2d2

∥G∥L2(∂Ω) depends on Ω and triangulation and independent of the

parameter h.

Theorem 4.2.2. Under the conditions 4.2, the MFS converges with second order

in the H1−norm, i.e., we have

|u(x)− uh(x)|H1(Ω) ≤ Ch2,

where C > 0 is independent of the step size h.

Proof.

|u(x)− uh(x)|H1(Ω) ≤

√∫
Ω

sup
x∈Ω

|u− uh|2 + sup
x∈Ω

|∇(u− uh)|2.

Using Theorem 4.2.1, we have

sup
x∈Ω

|u− uh|2 ≤ C1h
4.

Therefore, we have to prove

sup
x∈Ω

|∇(u− uh)|2 ≤ C2h
4.

Indeed, we can prove all partial derivatives have the same property

sup
x∈Ω

|∂k(u− uh)|2 ≤ Ckh
4

for all k = 1, 2, 3.

Similar to the estimation of |u− uh|, we have:

|∂k(u(x)− uh(x))|2 ≤
N∑
j=1

√∫
Tj

|∂k(ϕ(x− y)− ϕ(x− yj))|2 dy
∫
Tj

|G(y)|2 dy.
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4. Error analysis

The first integral term can be estimated as

|∂k(ϕ(x− y)− ϕ(x− yj))| =
∣∣∣∣2(xk − yk)

|x− y|3
− 2(xk − (yj)k)

|x− yj|3

∣∣∣∣
= 2

∣∣∣∣(xk − yk)|x− yj|3 − (xk − (yj)k)|x− y|3

|x− y|3|x− yj|3

∣∣∣∣
≤ 2

∣∣∣∣(xk − yk)|x− yj|3 − (xk − yk)|x− y|3

|x− y|3|x− yj|3

∣∣∣∣+ 2

∣∣∣∣(xk − yk)|x− y|3 − (xk − (yj)k)|x− y|3

|x− y|3|x− yj|3

∣∣∣∣
= 2

∣∣∣∣(xk − yk)(|x− yj|3 − |x− y|3)
|x− y|3|x− yj|3

∣∣∣∣+ 2

∣∣∣∣(xk − yk)− (xk − (yj)k)

|x− yj|3

∣∣∣∣
≤ 2

|x− y|(|x− yj| − |x− y|)(|x− yj|2 + |x− yj||x− y||x− y|2)
|x− y|3|x− yj|3

+ 2
|y − yj|
|x− yj|3

≤ 2|y − yj|
(

1

|x− y|2|x− yj|
+

1

|x− y||x− yj|2
+

1

|x− yj|3
+

1

|x− yj|3

)
≤ 8|y − yj|

d3

.

Inserting this to the previous expression, we have

|∂k(u(x)− uh(x))|2 ≤
N∑
j=1

√
32π

d6
h4
∫
Tj

|G(y)|2 dy =
4
√
2π

d3
∥G∥L2(∂Ω1)h

2,

as stated in the theorem.

4.3 Numerical experiments

The method was tested on the domain (−1, 1)3 B1(1) using the analytic solution

u(x, y, z) = ex
2−y2sin(2xy)z. The outer points {yj}Nj=1 were placed on the enlarge-

ment of ∂Ω centered at origin with scale factor 1 + α = 1.15and 1 + α = 1.2,

respectively. A surface grid was applied here to distribute them quasi-uniformly. For

a visualization, see Figure 4.1

In the first series of experiments, we took N = M such that a complete linear sys-

tem was solved numerically. In the vicinity of the boundary, the computations are

unreliable due to the large values of the functions ϕj here. Therefore, in the test,

we have computed the norms sup |u(x)− uh(x)| and sup |∇u(x)−∇uh(x)| sam-

pled on a quasi uniform grid ∂Ω′,in, which consists of 6970 points in the domain

(−0.5, 0.5)3 \B0.5(0.5). The corresponding results are shown in Table 4.1. Whenever

the functions {ϕj}Nj=1 have the approximation property given in Theorem 4.2.1, the

determination of the optimal coefficients {aj}Nj=1 would require in general, a linear
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4. Error analysis

Figure 4.1: The computational domain and outer points with α = 0.15.

Table 4.1: Error estimation when N =M in the maximum norm with α = 0.15
(up) and α = 0.2 (down).

N = M h sup |u(x)− uh(x)| sup |∇u(x)−∇uh(x)|

206 0.4 1.10e-2 6.63e-2
473 0.4/

√
2 2.21e-3 1.84e-2

735 0.2 1.15e-3 9.74e-3
1620 0.2/

√
2 1.28e-4 9.19e-4

2819 0.1 7.46e-5 3.83e-4
5899 0.1/

√
2 2.83e-6 1.82e-5

11052 0.05 2.03e-7 1.11e-6

N = M h sup |u(x)− uh(x)| sup |∇u(x)−∇uh(x)|

206 0.4 5.56e-3 4.82e-2
473 0.4/

√
2 1.40e-3 9.59 e-3

735 0.2 3.72e-4 1.28e-3
1620 0.2/

√
2 7.58e-5 3.97 e-4

2819 0.1 5.71e-5 2.28e-4
5899 0.1/

√
2 2.91e-7 1.46e-6

11052 0.05 8.43e-9 4.48e-8

system of size N ×N . To save computational time and avoiding badly conditioned

problems, it was advised to take less boundary points. The underdetermined lin-

ear system was solved then in the least square-sense. The corresponding results are

shown in Table 4.1.

For computing the L1, L2, H1− norm error we use 5 points Gaussian quadrature

approximation for each tetrahedron. For example, to measure the computational

error in the L1−norm, we have

|u(x)− uh(x)|L1 =
N∑
j=1

V ol(Tj) ·
∫
Tj

|u(x)− uh(x)|dx

≈ V ol(Tj) ·
N∑
j=1

5∑
i=1

si|u((wj)i)− uh((wj)i)|,
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Table 4.2: Error estimation with different (N,M) in different norms(α = 0.2)

(M,N) Maximum norm L1-norm L2-norm H1-norm Running time

(140,384) 1.01e-2 1.46e-3 1.65e-3 6.05e-3 0.36s
(140,735) 4.47e-3 3.98e-4 6.28e-4 3.20e-3 0.5s
(140,2819) 1.72e-3 1.31e-4 2.07e-4 1.45e-3 0.61s
(140,11052) 1.43e-3 1.25e-4 1.92e-4 1.34e-3 1.52s
(384,735) 2.08e-3 3.29e-4 4.03e-4 1.48e-3 0.5s
(384,2819) 3.23e-4 2.02e-5 2.67e-5 1.65e-4 0.78s
(384,11052) 1.91e-4 3.28e-5 4.01e-5 1.62e-4 1.3s
(735,2819) 4.92e-5 5.43e-6 7.39e-6 4.29e-5 1.01s
(735,11052) 6.26e-5 1.01e-5 1.28e-5 3.98e-5 2.92s
(2819,11052) 1.37e-6 6.55e-8 1.17e-7 6.15e-7 22.7s

where
w1 = (1/4, 1/4, 1/4, 1/4)

w2 = (1/2, 1/6, 1/6, 1/6)

w3 = (1/6, 1/2, 1/6, 1/6)

w4 = (1/6, 1/6, 1/2, 1/6)

w5 = (1/6, 1/6, 1/6, 1/2)

and we have used the weights

(s1, s2, s3, s4) = (−4/5, 9/20, 9/20, 9/20, 9/20).

In both cases, on the grid, we have experienced an even higher convergence rate as

suggested in Theorem 4.2.1. Also, Table 4.2 confirms the earlier observation that

choosing M > N is beneficial to reduce the computing time for a certain level of

accuracy. In all cases, the computations were carried out using an Intel 5i processor

with 4 GB memory.
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Chapter 5

Adaptive finite difference methods

using artificial neural networks

This chapter continues the work in [22]. The term "adaptive" methods here is

comprehended as adjusting the choice of free parameters (not as adaptive in time as

usual). The application of these adaptive finite difference schemes is to build up an

optimal model publicity while the training process is conducted at the center(offline

training).

5.1 Motivations

The motivation to improve the finite difference methods comes from the chal-

lenge when solving a stiff problem for ODE’s. It requires extremely small step sizes:

unless, the scheme becomes unstable. For example, let us consider the Dashquist

test problem with λ = −25:

u′(t) = −25u(t) t > 0, u(0) is given. (5.1.1)

The analytical solution of it is u(t) = e−25t → 0 when t→ ∞.

We can use a simple numerical method, e.g., the explicit Euler method with a large

step size ∆t = 1/10 to estimate the solution at final time T = 1. In Figure 5.2,

we can see that the numerical solution is oscillatory because it does not satisfy the

stability condition λ∆t < 1. Also, if we change the step size to be ∆t < 1/25 then

the scheme becomes stable.

Questions: Is there any method which can solve the problem with the same step
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5. Adaptive finite difference methods using artificial neural networks

size using a simple formula like the forward Euler method?

In general, if there is a given numerical scheme to solve a specific problem, can we

enhance the precision of the method with the same step size?

5.2 Description of a neural network-based method

for solving ODEs

The aim of the method is to enhance the accuracy of some known schemes by

using the neural networks to minimize the loss without changing the step size. An

appropriate neural network architecture can be defined as the set of neural networks,

where each sub-neural net simulates one-step in the loop of the numerical scheme.

The output of such a numerical solution at a specific time corresponds to the output

of such a sub-neural net and this also serves as the input of the next sub-neural net.

For a schematic picture, see Figure 5.1).

We consider a general initial-value problem for an ODE

U ′(t) = f(U(t), t), t ∈ [0, T ]; U(0) is given.

For the sake of simplicity, we discretize the time into N uniform intervals corre-

sponding to N sub neural networks. On each sub-network j, we use a set of weight

parameters wj−1.

Un,NN denotes the output of the nth sub-network in the consecutive approximation

to U(0). This can be recognized as the numerical solution at time t = n∆t where

∆t = T/N . In this way, formally, for all j = 0, · · · , N − 1

Uj+1,NN = NNO(wj, Uj,NN).

Pre-trained weights can be adapted from an existing numerical scheme and coincide

on every sub-network w0 ≡ · · · ≡ wN−1.

If the baseline approximation we use is sufficiently accurate, the initial weights are

close to the optimal points that can save time for training.

Training data set can be generated mainly by two ways

• Using the exact or analytical data. It is not applicable for all problems, but it

can be utilized for testing the model.
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5. Adaptive finite difference methods using artificial neural networks

U0 U1 UN−1 UN· · ·

Figure 5.1: Neural network architecture for ODE

• Using high-resolution data. We may use the same method with smaller step

size or higher order method.

The number of training data equals to the number of generated initial values U(0).

For the specific problem, the model for generating initial value is different.

To train the networks, we propose two types of training: all-in-one and one-by-one.

In all-in-one training, we compute the loss function on the whole network and train

once. The loss function usually define as

L(w0, · · · , wN−1) =
∑
i

∑
n

|U i
n,NN − U i

n,exact|2.

We sometimes also use the modified loss function

L(w1, · · · , wN−1) =
∑
i

∑
n

∣∣∣∣U i
n,NN − U i

n,exact

Un,exact

∣∣∣∣2 .
This training was proposed in [22] and leads to a really fast computation. However,

it has its disadvantage that the loss function is well-optimized only on the a few first

weights and stuck at the local minimum on the last weights. It can be explained

by the dependence of numerical solutions on the weights at different times. While

wN−1 appears only in the loss of the last sub-network |
∑

i U
i
N,NN(t) − U i

N,exact(t)|2,

the first weight w1 appears in every loss components.

In the one-by-one approach, we move stepwise from the first sub-network the last

one. It means that after training the first sub-network, we get the first optimal

weights w1 and the output U1 which is the input for the second sub-network, and

the loss for second sub-network only depends on the weights w2. In general, we define
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5. Adaptive finite difference methods using artificial neural networks

the loss and the time step as

Lj(wj) =
∑
i

|U i
j,NN − U i

j,exact|2

wj = argminjLj

Uj+1 = NNO(wj, Uj).

The optimization algorithm may varied including standard gradient descent, stochas-

tic gradient descents, quasi Newton methods and Nelder–Mead Simplex algorithm.

The test data is generated in the same way as the training data set. Using this, we

can evaluate the model by one of three metrics: Mean Absolute Error (MAE), Mean

Squared Error (MSE), Root Mean Squared Error (RMSE).

5.3 Numerical Experiments for ODEs

5.3.1 A motivating example

The explicit Euler step for the model problem (5.1.1) can be given as

un+1 = un +∆tf(un) = (1− 25∆t)un.

According to this formula, we can generalize geometric growth in the form

un+1 = gnun.

As initial value choose 50 random numbers from the interval [0, 1]. With all-by-one

training, the loss function is

L(g1, · · · , g10) =
10∑
i=1

10∑
n=1

∣∣∣∣uin,NN − uin,exact
uin,exact

∣∣∣∣2 .
Note that we divide with uin,exact in each components, due to uin,exact → 0 when

t→ ∞. By using the BFGS algorithm, the optimized coefficient can be seen in Table

5.1. Comparing to the one-by-one training, it converges to the global minimum is

g0 = · · · = g9 = e−25∆t ≈ 0.08208.
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Table 5.1: The optimized coefficients obtained by all-in-one and one-by-one
training.

g0 = g1 = g2 g3 g4 g5 g6 g7 g8 g9

all-in-one 8.208e-02 8.211e-02 -1.635e-03 -4.033 -1.670e-03 -4.034 -1.664e-03 -4.0470

one-by-one 8.208e-02 8.208e-02 8.208e-02 8.208e-02 8.208e-02 8.208e-02 8.208e-02 8.208e-02

Figure 5.2: Analytical solution and numerical solutions solving by explicit Euler
method and the adaptive method of the motivation example with the initial value

u0 = 5.

5.3.2 System of ODEs

Example 5.3.1. Let us consider the following initial values problem for a second

order ODE: 
u′′(t) + c2u(t) = 0 t ∈ (0, 1),

u(0) = u0,

u′(0) = 0

.

The analytical solution for this problem is u(t) = u0 cos(ct).

If we set v(t) = −cv(t), we reduce the second order ODE to the system of ODEs

U(t)′ =

(
u
v

)′

= F
(
U
)
=

(
−cv
cu

)
.

We start from the BDF2 method as a baseline method

3

2
Un − 2Un−1 +

1

2
Un−2 = ∆tF (Un).

The general form of this method - depending on the parameter gn - is the following:

(1 + gn)Un − (1 + 2gn)Un−1 + gnUn−2 = ∆tF (Un) n ≥ 2. (5.3.1)

In case of BDF2, we have gn = 0.5 for every step. This parameter may effect the
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Un−2

Un−1

Un

1 + 2gn

−gn
M(gn,∆t)

Figure 5.3: The neural network structure for one-step ODE.

performance in the stiff problems. The artificial neural network can modify the

parameter gi suitably for each time step. For simplicity, we only discretize the domain

with 3 uniform time-intervals and step size ∆t = 1/3.

In this example, we specify F (U) =

0 −c

c 0

U and rewrite (5.3.1) as

Un =
1

(1 + gn)2 + (c∆t)2

[
1 + gn −c∆t
c∆t 1 + gn

]
((1 + 2gn)Un−1 − gnUn−2).

The ANN structure is described in Figure 5.3, where M(gn,∆t) is a linear operator

defined as
M(gn,∆t) =

1

(1 + gn)2 + (c∆t)2

[
1 + gn −c∆t
c∆t 1 + gn

]
. In the implementation, we can simply define the one-step function, with inputs

gn, Un−1, Un−2

To generate appropriate training data, we utilize the initial data ui0, where i =

1, · · · , I are random points in the domain [0, 1], with I the number of training data.

We don’t apply the same method on the finer grid; instead, we use the exact solution

U i
0,exact(t) = (ui0 cos(ct), u

i
0 sin(ct)) i = 1, · · · , I.

We define the loss function as

L(g2, g3) =
I∑

i=1

3∑
n=2

|U i
n,NN − U i

n,exact|2.

The gradient descent method for this example is a standard full-batch gradient

descent.

The method can perform with more accuracy if the ANN structure have more free

parameters. Namely, let an, bn, dn be the coefficients in the following expression to

53



5. Adaptive finite difference methods using artificial neural networks

approximate U ′
n :

anUn + bnUn−1 + dnUn−2 = ∆tU ′
n = ∆tF (Un) n ≥ 2.

We can rewrite this as

Un =
1

a2n + (c∆t)2

[
an −c∆t
c∆t an

]
(−bnUn−1 − dnUn−2).

For training, we use c = 50, I = 10 and U1 = (u0 cos(∆t), u0 sin(∆t)). The trained

coefficients can be seen in Table 5.2.

Table 5.2: Optimized weights obtained by different techniques.

Techniques Weights for U2 approximation Weights for U3 approximation

all-in-one g2 = −2.507 g3 = −6.745

one-by-one
(1 parameter) g2 = −2.356 g3 = −15.586

one-by-one
(multiple parameters) (a2, b2, d2) = (2.096, 2.397,−4.580) (a3, b3, d3) = (−2.757, 6.360,−15.534)

We take randomly an initial value from the test set and plot the numerical

solutions by using different techniques in Figure 5.4.

Figure 5.4: Comparison of numerical solutions to the analytical solution:
(Adaptive1) all-in-one training, (Adaptive2) one-by-one training with one

parameter, (Adaptive3) one-by-one training with more parameters
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5.3.3 Case study for a non-linear ODE

Example 5.3.2. We will investigate the numerical solution of the initial value prob-

lem
dy

dt
= y2 − y3

y(0) = δ

0 < t <
2

δ
,

which is a simple model of flame propagation ([38]).

In practice, if a match is set to light, the ball of flame grows rapidly until it reaches

a critical size. Then it remains at that size because the amount of oxygen being

consumed by the combustion in the interior of the ball balances the amount available

through the surface.

The scalar variable y(t) represents the radius of the ball. The y2 and y3 terms come

from the surface area and the volume. The critical parameter is the initial radius,

δ , which is "small". We seek the solution over a length of time that is inversely

proportional to δ.

In this example, we use the step size ∆t = 5 with 50 intervals. The baseline method

is RK4 and we replace the fixed coefficients of RK4 by free parameters to obtain

general explicit RK methods with 4 stages. We suppose

yn+1 = yn + h (b1k1 + b2k2 + b3k3 + b4k4) ,

tn+1 = tn + h

for n = 0, 1, 2, 3, ..., 39, where

k1 = f(tn, yn),

k2 = f

(
tn +

h

2
, yn + ha21k1

)
,

k3 = f

(
tn +

h

2
, yn + ha31k1 + ha32k2

)
,

k4 = f (tn + h, yn + ha41k1 + ha42k2 + ha43k3) .

The set of weights for each sub-network includes 10 parameter

(b1, b2, b3, b4, aij|4 ≥ j > i ≥ 1). We try to find the optimized weights starting

from the values (1/6, 1/3, 1/3, 1/6, 1/2, 0, 1/2, 0, 0, 1), such that numerical solutions

are close to training data which is obtained by decreasing the step size 100 times.

The initial values are 100 random numbers from [0, 0.01].
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We have used the analytical solution

y(t) =
1

(W (aea−t) + 1)
,

where a = 1
δ
− 1 and W denotes the Lambert function, which is the solution to

W (z)eW (z) = z.

Figure 5.5 illustrates the analytical and numerical solutions solving RK4 and adap-

tive RK4 methods.

Figure 5.5: Numerical solutions and the analytical solution for flame propagation
problem

5.4 Case study for the Burgers equation

Let us consider an initial value problem for the general conservation law{
∂tu(t, x) + (∂xf(u))(t, x) = 0 (t, x) ∈ (0, T )× R

u(x, 0) = u0(x)
(5.4.1)

Taking f(u) = u2

2
gives the Burgers equation, which is widely investigated in the

numerical studies. In the general model, u is the conserved quantity and f(u) denotes

its flux.

5.4.1 Numerical schemes as a neural net

Based on the finite volume method, we are starting with a general conservative

scheme
Un
j+1 = Un

j − ∆t

∆x
(f̂n

j+ 1
2
− f̂n

j− 1
2
),
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where

• we consider a uniform tessellation of the spatial domain (here R) into cells Ij,

• Un
j is the cell-average of u in Ij, which serves as unknowns in the discretized

system,

• f̂n
j+ 1

2

is the estimation of the flux on the right-hand boundary point of Ij.

The essence of the different approaches is an appropriate approximation of the

numerical flux. We start from the so-called Lax–Friedrichs scheme, which is given

by

f̂n
j+ 1

2
=

1

2

(
f(Un

j ) + f(Un
j+1)

)
− 1

2
max{f ′(Uj), f

′(Uj+1)}(Un
j+1 − Un

j )

f̂n
j− 1

2
=

1

2

(
f(Un

j−1) + f(Un
j )
)
− 1

2
max{f ′(Uj−1), f

′(Uj)}(Un
j − Un

j−1).

We can represent the Lax–Friedrichs scheme in the form of neural network approx-

imately in Figure 5.6.

• The maximum can be represented as a sum of two ReLU functions

|a| = ReLU(a) + ReLU(−a)

• The maximum function can be rewrite as

max(a, b) = a+ ReLU(b− a)

• The product operator and x → x2 mapping can be represented by ϵ− ap-

proximation neural nets. In practice, we can use artificial neural networks (the

function itself) instead to make it less complicated.

5.4.2 Adaptive method

Weights determination. For each sub-network, we introduce new weights

w1, w2, w3, w4, which assign possibly different weights to define new numerical flux

functions as

f̂n
j+ 1

2
= w1

(
f(Un

j ) + f(Un
j+1)

)
− w2max{f ′(Uj), f

′(Uj+1)}(Un
j+1 − Un

j )

f̂n
j− 1

2
= w3

(
f(Un

j−1) + f(Un
j )
)
− w4max{f ′(Uj−1), f

′(Uj)}(Un
j − Un

j−1).
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+
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Figure 5.6: The neural network structure for one-step Lax-Friedrichs scheme

Then in each step, we apply

Un
j+1 = Un

j − ∆t

∆x

[
w1

(
f(Un

j ) + f(Un
j+1)

)
− w3

(
f(Un

j−1) + f(Un
j )
)

−w4max{f ′(Uj−1), f
′(Uj)}(Un

j − Un
j−1)− w2max{f ′(Uj), f

′(Uj+1)}(Un
j+1 − Un

j )
]
.

The initial training data We use the family of the functions below as initial

functions in the training data

u0(x) =

{
1
2α
(x+ 1)α if − 1 ≤ x ≤ 1

1 if 1 < x ≤ 2
,

where α is chosen randomly 25 times in the interval [0; 2]. We use the same Lax–

Friedrichs methods but in the finer grid: 10 times finer in both the time and the

spatial coordinates.

The test example we are using is u0(x) = H(x), whereH(x) is the Heaviside function.

The exact solution is

u(t, x) =


1 if t < x,

x if 0 < x < t,

0 if x < 0.
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However, we do not use it for comparison because we are not always can find an

analytical solution for arbitrary initial solution. Figure 5.7 shows how close the

trained numerical solution can become to the numerical solution on the the finer

resolution.

Figure 5.7: The numerical solutions solved in coarse grid, fine grid by L-F scheme
and by neural network.

To make it more obvious, we calculate the ratio

R(x) =
|uLF (x)− ufiner(x)|

|uAdaptive LF(x)− ufiner(x)|
(5.4.2)

of the pointwise errors. This shows how much the computational error can be reduced

if the adaptive approach is applied. For the numerical results, see Figure 5.8.

Figure 5.8: The ration of errors in (5.4.2).
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Appendix A

Special functions

A.1 Bessel functions

Bessel functions([39]) are analytical solutions y(x) of Bessel’s differential equa-

tion
x2
d2y

dx2
+ x

dy

dx
+
(
x2 − α2

)
y = 0.

Bessel functions of the first kind of order α, denoted as Jα(x), diverge as x tends to

zero and has a form of series expansion:

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

,

where Γ(z) is the gamma function.

The Bessel functions of the second kind of order α, denoted by Yα(x) , that have

a singularity at the origin are also the solutions of the Bessel’s equation.

For non-integer α, Yα(x) is related to the first kind Bessel functionsJα(x) by the

formula
Yα(x) =

Jα(x) cos(απ)− J−α(x)

sin(απ)
.

In the case of integer order n, the function is defined by taking the limit as a non-

integer α tends to n:
Yn(x) = lim

α→n
Yα(x).
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A. Special functions

A.2 Modified Bessel functions

The first and second kind of modified Bessel function of order α(or occasionally

the hyperbolic Bessel functions), denoted by Iα(x) and Kα(x) are the two linearly

independent solutions to the modified Bessel’s equation:

x2
d2y

dx2
+ x

dy

dx
−
(
x2 + α2

)
y = 0.

It is an extension of the Bessel functions for complex arguments x, and an important

special case is that of a purely imaginary argument. The modified Bessel functions

of the first and second kind and are represented as follow:

Iα(x) = i−αJα(ix) =
∞∑

m=0

1

m! Γ(m+ α + 1)

(x
2

)2m+α

,

Kα(x) =
π

2

I−α(x)− Iα(x)

sinαπ
.

A.3 Hankel functions

The Hankel functions of the first and second kind of order α ,H(1)
α (x) andH(2)

α (x),

respectively are two linearly independent solutions to Bessel’s equation:

H(1)
α (x) = Jα(x) + iYα(x),

H(2)
α (x) = Jα(x)− iYα(x).

The following expression shows the relation between the Hankel functions and the

modified Bessel functions:

Kα =

{
π
2
iα+1H

(1)
α (ix) −π < arg x ≤ π

2
π
2
(−i)α+1H

(2)
α (−ix) −π

2
< arg x ≤ π

.
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