


Complexity of Stable Matching
Problems

MSc Thesis
2022. May

Author:
Gergely Kál Csáji

Supervisors:
Tamás Király, associate professor at the Department of Operations

Research, Eötvös Loránd University
and

Péter Biró, senior research fellow at the Institute of Economics,
Hungarian Academy of Sciences

Faculty of Science, Eötvös Loránd University



Contents
1 Introduction 4

2 The Stable Marriage problem 5
2.1 Structure of stable matchings . . . . . . . . . . . . . . . . . . . . 7
2.2 The rotation poset and its applications . . . . . . . . . . . . . . . 9
2.3 The Stable Matching Polytope . . . . . . . . . . . . . . . . . . . 12
2.4 Stable Marriage with Ties . . . . . . . . . . . . . . . . . . . . . . 16
2.5 The Stable Allocation problem . . . . . . . . . . . . . . . . . . . 19

3 The Stable Roommates problem 21
3.1 The algorithm of Irving . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Tan’s algorithm and stable partitions . . . . . . . . . . . . . . . . 26
3.3 Stable roommates with ties . . . . . . . . . . . . . . . . . . . . . 29
3.4 The Stable Activities problem and the Stable b-matching problem. 31

4 The Stable Hypergraph matching problem 33
4.1 Scarf’s Lemma and its connection with stable mathings . . . . . 34
4.2 Hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Tractable cases of the stable hypergraph matching problem . . . 40

5 The Hospital-Resident problem with couples 43
5.1 Hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 The Stable Flow problem 47
6.1 Reduction to Stable Allocation . . . . . . . . . . . . . . . . . . . 48
6.2 The Stable Multicommodity Flow problem . . . . . . . . . . . . . 50

7 Back to the Hospital-Resident-Couple problem 63
7.1 Finding near-feasible solutions . . . . . . . . . . . . . . . . . . . 63
7.2 Hardness of f-hrc . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2



Acknowledgements
I would like to thank my supervisor, Tamás Király for introducing me to this

topic and guiding me to successfully start my research in the field. I am grateful
for the many advice and remarks I received from him and looking forward to
continue working together with him.

I would also like to thank Péter Biró, my other supervisor, for providing
many interesting research topics to me and for allowing me to get a job joining
his research group.

I am also thankful for Kirstóf Bérczi, who also included me in his research
group and have worked together with me on many interesting research questions.

I thank God for the countless blessings I received in this time and for being
the rock I can base my life on.

Finally, I would like to thank my girlfriend, my family and my friends for
supporting me during my studies and always being there for me when I needed
it.

3



1 Introduction
In this thesis we give a comprehensive review about stable matchings and

some of their most interesting generalizations. The thesis follows a complexity
theoretic viewpoint, therefore when we will deal with given problems, our main
aim is to either show that the problem is hard, for example NP-hard, or to give a
polynomial-time algorithm. For some problems, even more efficient algorithms
are available than the ones mentioned in here, but from our complexity theoretic
viewpoint, they are not as important. Instead, we try to include as many of the
most interesting topics in the field and their complexity as we can.

Stable matchings were introduced by a seminal paper of Gale and Shapley
[12] in 1962. The original problem describes two sided matching markets, where
the agents have preferences on each other. The aim is to match them in a way
such that there will be no pair of agents, who mutually would like to deviate
from the outcome, e.g. both of them prefers the other to the one he/she got.
These types of pairs would likely lead to a chain of deviations, destabilizing the
market, which we are trying to avoid.

Since the introduction of stable matchings, an enormous amount of research
has been done in the field and countless generalizations and special cases has
been considered. For a quite comprehensive review of the current state and aims
of the field, see the book of David Manlove [23]. For a more detailed review of
the two original problems: the stable marriage and the stable roommates, see
the book of Gusfield and Irving [13].

Stable matching problems have also many applications. Two of the most well
known applications are the US National Resident Matching Program (NRMP)
and the university application mechanisms in several countries, for example in
Hungary. We will deal with those problems in much more detail in the following
sections.

A similar model is also used to describe Kidney Exchange Programs (KEPs).
Here, the agents are donor-recipient pairs. The motivation is that in many cases,
there is a friend or relative to the patient who is willing to be a donor for the
patient but for some medical reasons they are not compatible. Therefore, they
search for a cycle of donor-recipient pairs such that each donor is compatible
with the next recipient of the cycle. Here the graph in the background has a
vertex for each donor-recipient pair, and the directed edges represent that the
donor is compatible with the recipient. Also, based on how similar they are in
terms of blood types, etc it is possible to give certain preferences for the vertices.

Apart from providing a comprehensive review of many generalizations of
the stable matching problem, the thesis contains several new results too. For
example, the theorems of Section 4.2 and 4.3, Section 6.2, and Section 7.2 are
mainly new results that are also available in my working paper [7]. Also, the
thesis contains simpler proofs for many known results, than the original ones.

The thesis is organized the following way. In Section 2, we introduce the
original Stable Marriage problem (sm) and investigate its structural and algo-
rithmic properties. We also deal with some simple generalizations, for example
when the agents are allowed to be indifferent between some other agents in

4



their preferences. In Section 3, we describe the other classical problem in the
field, the Stable Roommates problem (SR) and describe the novel polynomial-
time algorithm of Irving that solves it. Again, we also consider some simple
extensions of the problem and their computational complexity. In Section 4, we
move on to a the case, where the underlying structure is a hypergraph, called
the Stable Hypergraph Matching problem. We also explore a fundamental result
of Scarf, closely related to stable matching problems. In Section 5 and 7, we
consider a generalization, that is motivated by real-life application, the Hospital
Resident Couple problem (hrc). Finally, in Section 6, we move on to a slightly
more abstract problem, called the Stable Flow problem (sf), where instead of
a matching of the agents, we are searching for flows in a network.

2 The Stable Marriage problem
The original problem on the field, proposed by Gale and Shapley in their

landmark paper in 1962 [12], is the so called stable marriage problem. The
main difference here from the well known marriage problem is that here the
agents on the two sides of the graph (the men and women respectively) have
preferences on each other, which to be fair is a quite reasonable assumption in
many applications. Formally, let G = (U, W, E) be a bipartite graph. Suppose
that for each woman w ∈ W there is a strict preference list >w over the men,
and for each man m ∈ U there is a preference list >m over the women. If a
man m is not on w’s list, then we will say that m is unacceptable to w. We will
always assume that acceptability is mutual, that is m finds w acceptable if and
only if w finds m acceptable. This will be represented by an edge joining m and
w in G.

Let M be a matching in G, that is, a subset of edges such that each vertex
is incident to at most one edge. Denote the partner of an agent a in M by
pM (a). Note that if a is unmatched, then pM (a) = ∅. We will assume that the
preferences of the agents satisfy that they prefer every acceptable partners to
being left alone.

Definition 2.1. We say that an edge mw blocks M , if m >w pM (w) and
w >m pM (m), that is both of them would prefer to switch from their current
partners to each other.

Observe, that such pairs would likely lead to new connections, such that
some agents would switch partners and some agents would be left alone. Such
actions would destabilize the market, so we want to avoid having blocking pairs.
This motivates the following definition:

Definition 2.2. A matching M is called stable if there is no pair blocking M .

The first question arising is that when does a stable matching exists and how
can we find one? The answer is, as shown by Gale and Shapley in their original
paper is that a stable matching always exists and it can be found by a simple

5



Algorithm 1 Gale-Shapley algorithm
Initialize M := ∅
prop(m) :=first woman in m’s preference list
while There is a man m who is free in M and prop(m) ̸= ∅ do

Let w = prop(m)
if m >w pM (w) then

M := M ∪mw − pM (w)w
else

M := M
prop(m) :=next woman in m’s preference list

end if
end while

and elegant algorithm, see Algorithm 1 (prop(m) denotes the best woman in
m’s list, he hasn’t proposed to yet).

Now we show that the algorithm terminates in a stable matching in O(|E|)
time.

Theorem 2.3. (Gale, Shapley [12] The Gale-Shapley algorithm always returns
a stable matching M with running time O(|E|).

Proof. In each iteration there is a proposal happening and if a man m have
proposed to a woman w, then he never proposes to her again. That means the
number of iterations is at most the number of possible proposals, which is |E|.

Now let M be the output of the algorithm. It is clear that M is a matching.
To prove stability let us suppose for the contrary that there is an edge mw
that blocks M . This means that m prefers w to pM (m) (remember pM (m) can
be the empty set if every woman rejected m). But then m had to propose to
w during the algorithm, and w had to reject m (possibly at a later iteration).
That means w got a better partner and since all women can only improve their
position in the algorithm it follows that pM (w) >w m, contradiction.

Lemma 2.4. In each possible iteration of the (men proposing) Gale-Shapley
algorithm, it returns the same matching M . Also, each man m gets the best
possible partner he can get in any stable matching in M .

Proof. Suppose one execution of the algorithm yielded a matching M but there
is an other stable matching M ′, such that w′ = pM ′(m) >m pM (m) = w. That
means, that w′ had to reject m, because she was engaged to a better partner m′.
Furthermore, suppose that this rejection was the first rejection that happened
between a man m and a woman w such that there is a stable matching containing
mw. (We will call such pairs stable pairs in the future) Now, m′ hasn’t been
rejected by any stable partner yet, so w′ >m′ pM (m′). But then w′m′ blocks
M , contradiction.

Notice that this lemma states quite a remarkable fact: if we assign every
man the best possible stable partner he can get, than we not only obtain a

6



matching, but a stable matching. In the next sections, we will see that there
are several similar properties of stable matchings, for example they admit a nice
lattice structure.

One can show in a similar way that, in this matching M each woman obtains
the worst possible stable partner she can get. Also by symmetry, if we run the
algorithm with women as proposals, than the resulting matching will be optimal
for the woman and worst for the men. In the following sections, we will call this
man optimal stable matching Mo and the woman optimal stable matching Mz.

2.1 Structure of stable matchings
In this section we discuss the basic structural properties of stable match-

ings. We will assume that the preference lists are complete, that is no man and
woman consider each other unacceptable, and that the set of men and the set
of woman have the same size, that is |A| = |B|. This can be assumed without
loss of generality, by adding dummy agents to one side who are worst for every-
one and extending the preference lists to complete by adding the unacceptable
agents to the end. Then, a stable matching M ′ from the new instance gives a
stable matching M in the original by deleting the edges from it that correspond
to originally unacceptable relations. (for any possible blocking edge mw, at
least one of them had a better partner in M ′, but if such an edge was deleted
because it was an unacceptable edge, then since mw is worse, it is also an un-
acceptable edge, so it is deleted). For the other direction, a stable matching
M can be extended to a stable matching M ′ in the new instance by finding a
stable matching between the originally unassigned agents.

The section summarizes the corresponding results from the book of Gusfield
and Irving [13], where a much more detailed version is available.

Theorem 2.5. Let M and M ′ be two stable matchings with mw ∈ M and
mw /∈ M ′. Then precisely one of {m, w} have a better partner in M than
in M ′. Furthermore, the number of people, who prefer M is the same as the
number of people who prefer M ′.

Proof. Let U and W denote the sets of men and woman who prefer M to M ′,
and U ′ and W ′ the ones who prefer M ′. Then, since there can be no pair
(m, w) ∈ U ×W ∪ U ′ ×W ′ (otherwise mw would block M or M ′), it follows
that |U | ≤ |W ′| and |U ′| ≤ |W |. But |U | + |U ′| = |A| = |B| = |W | + |W ′|, so
|U | = |W | and |U ′| = |W ′|

Definition 2.6. We say that M dominates M ′, if every man has an at least as
good partner in M then in M ′. If there is a man, who obtains a strictly better
partner, then we say that M strictly dominates M ′.

This dominance defines a partial order ⪯ on the set of stable matchings.
As we have seen, the unique largest element is Mo, while the unique smallest
element is Mz, the man and woman optimal stable matchings respectively. Now
we prove another interesting result that is a more general theorem than lemma

7



2.4: if we take any two stable matchings and assign to every man their better
partner in the two matchings, then we get another stable matching.
Theorem 2.7. Let M and M ′ be two different stable matching. Then, if we
give each man his better partner in M ∪ M ′, then the result M ′′ is a stable
matching.
Proof. First suppose that there are two men m ̸= m′ who receive the same
partner in M ′′. Then one of them, say m prefers M and the other M ′ and
w = pM (m) = pM ′(m′). So by applying theorem 2.5 to mw we get that w
prefers M ′ and to m′w we get that w prefers M , contradiction. So M ′′ is
indeed a matching.

Now suppose that there is a blocking edge mw. That means that m likes w
better than both pM (m) and pM ′(m). Also w likes m better than her current
partner, that is either pM (w) or pM ′(w). Either way, we get that mw blocks M
or M ′, contradiction again.

Note that these theorem has quite strong consequences too. It means by
"adding" stable matchings, we can obtain new stable matchings that dominate
both the original ones. Also, by symmetry it is easy to see that we get a stable
matching if each man obtains his worse partner too.
Definition 2.8. Let M ∧M ′ denote the matching where each man gets his
better partner and M ∨M ′ the matching where they get the worse one.

LetM denote the set of stable matchings. Now it’s easy to see that ∧M∈MM =
Mo and ∨M∈MM = Mz. We will show that the set of stable matchings form a
distributive lattice.
Definition 2.9. A partial order (P,⪯) forms a distributive lattice if

1. For every a, b ∈ P there is an element a ∧ b called the meet, such that
a ∧ b ⪯ a, a ∧ b ⪯ b and for every c ∈ P such that c ⪯ a and c ⪯ b it
follows that c ⪯ a ∧ b.

2. For every a, b ∈ P there is an element a ∨ b called the join, such that
a ⪯ a ∨ b, b ⪯ a ∨ b and for every c ∈ P such that a ⪯ c and b ⪯ c it
follows that a ∨ b ⪯ c.

3. For every a, b, c ∈ P it holds that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Theorem 2.10. In the stable marriage problem the partial order (M,⪯) forms
a distributive lattice, with M ∧M ′ being the meet and M ∨M ′ being the join.
Proof. M ∧M ′ ⪯ M, M ′ is immediate from the definitions. Now let N be a
matching such that N ⪯M and N ⪯M ′. That means that in N each man gets
an at most as good partner as their worse partner in M ∪M ′. So N ⪯M ∧M ′

by definition. The other case is similar.
Finally, let M, N, L be stable matchings. It is easy to verify that each man

gets the same partner in M ∧ (N ∨L) and in (M ∧N) ∨ (M ∧L) and similarly
with the other property.

8



Now we return to the case where the preference list might be incomplete and
the two sides can have different cardinalities. Here of course a stable matching
may leave some agents without a partner. The interesting fact is, that every
stable matching matches the same set of agents, so if an agent is unassigned in
one stable matching, then he/she is unassigned in all of them.

Theorem 2.11. Every Stable matching M matches the same set of agents.

Proof. Suppose there is a man m who is matched in a stable matching M but
is not in M ′. Let w be his partner in M . Now, w has to be matched by M ′,
otherwise mw would block M ′, and by lemma 2.5 she prefers M ′. Let m′ be her
partner. Again m′ has to be matched in M ,... etc we obtain an infinite chain
of agents that cannot get back to m, since m is alone in M ′, contradiction.

2.2 The rotation poset and its applications
In the previous section we have seen that the set of stable matchings have a

really nice structure. In this section we describe a quite powerful representation
of the set of stable matchings that has many algorithmic benefits for several
problems. Furthermore, we show that this representation is quite compact and
even better, it can be explicitly constructed in O(|V |2) time.

Definition 2.12. LetM(m, w) denote the set of stable matchings that contain
the edge mw.

It is easy to see that if M and M ′ are inM(m, w), then so are M ∧M ′ and
M ∨M ′, so M(m, w) is a (possibly empty) sublattice of M. So we can define
the man optimal matching in M(m, w), let this be M(m, w).

Definition 2.13. A stable matching M is called irreducible, if M = M(m, w)
for some edge mw.

Denote the set of irreducible matchings by I(M) and let (I(M),⪯) be the
partial order on I(M) defined by the same domination relation.

Definition 2.14. Let (R,⪯) be a partial order and S ⊂ R. We say that S is a
closed subset, if no element in R \ S precedes any element in S.

Definition 2.15. Let M be a stable matching. The irreducible support of M ,
denoted by U(M) is {M(m, w) : (m, w) ∈M}.

Now we show that a stable matching M can be generated by assigning each
man the worst partner he has in any stable matching among U(M).

Lemma 2.16. For any stable matching M , M = ∨U(M).

Proof. If there would be an edge m1w1 ∈M \ ∨U(M), then since M(m1, w1) ∈
U(M), there is an edge m2w2 ∈ M , such that in M(m2, w2) m1 gets a strictly
worse partner than w1. But M(m2, w2) is the man optimal stable matching
containing m2w2, so it dominates M , contradiction.

9



Let U(M) be the set of irreducible matchings that dominate some matching
in U(M), which is the closure of U(M). Then, similarly M = ∨U(M).

Lemma 2.17. There is a set S of stable matchings not containing M , such
that M = ∨S, if and only if M /∈ I(M)

Proof. The if part has already been shown in the previous lemma. For the other
direction, suppose M is in I(M). But, since M /∈ S and every matching in S
strictly dominates M , for any mw ∈ M there is the matching M(m, w) ∈ S
strictly dominating M , contradiction.

Lemma 2.18. Different closed subsets of I(M) yield different stable matchings.

Proof. Suppose S ̸= T are closed subsets, but ∨T = ∨S. Since S and T are
closed, there is a matching M = M(m, w) in S \ T (by symmetry), such that
M does not dominate any matching in T . Clearly, the partner of m in ∨S is
no better than w. Suppose the same holds for ∨T . Then, there is a matching
M ′ ∈ T , such that pM ′(m) ≤m w. But this means that M ′, which is dominated
by M ′ ∧M(m, w) is dominated by M(m, w) too, since mw ∈ M ′ ∧M(m, w),
contradiction.

From these lemmas the following nice characterization theorem follows:

Theorem 2.19. The stable matchings and the closed subsets of (I(M),⪯) are
in one to one correspondence, such that M = ∨S, where S is the set of stable
matchings that dominate M . Furthermore if S and S′ are two closed subsets of
(I(M),⪯), then M = ∨S dominates M ′ = ∨S′, if and only if S ⊂ S′.

Also the set I(M) can be constructed in polynomial time. We only need
to modify the Gale-Shapley algorithm the following way, to find M(m, w) or
report that no stable matching containing mw exist: During the algorithm,
every woman other than w rejects m, and w rejects any man other than m. It
is easy to see that this algorithm returns M(m, w), if it exists.

There is an other representation of stable matchings, that is even more useful,
that uses so called rotations. First, we introduce the notion of rotations. For
a matching M , let sM (m) denote the first woman w on m’s list, such that w
strictly prefers m to her partner pM (w) in M , if there is any.

Definition 2.20. ρ = (m0, w0), .., (mr−1, wr−1) is called a rotation (exposed)
in M , if wi+1 = sM (mi) and wi = pM (mi) for each i = 0, .., r − 1 (mod r).

If ρ is a rotation exposed in a stable matching M , then the elimination of ρ
from M , denoted by M/ρ is the matching where we delete the edges miwi from
M and add the edges miwi+1.

Lemma 2.21. If M is a stable matching and ρ = (m0, w0), .., (mr−1, wr−1)
is a rotation exposed in M , then M ′ = M/ρ is also a stable matching and M
dominates M ′.

10



Proof. First we show that M ′ is stable. Suppose there is a blocking edge mw.
Since M was stable, only edges adjacent to some mi or wi agent in ρ could
become blocking. But each wi got strictly better, so any blocking edge must
contain an mi ∈ ρ. To block, w has to be better for mi than wi+1 = sM (mi),
but by the definition of sM (mi), w likes her partner in M better, so she also
likes her partner in M ′ better than m.

The domination follows from the fact that each woman got weakly better in
M ′, therefore by theorem 2.5 each man got weakly worse, so M ′ is dominated
by M .

By a chain of Theorems and Lemmas similar to the ones before, one can
prove that the set Π(M) consisting of the rotations has a nice partial order such
that it is isomorphic to I(M) after the removal of the man optimal matching
Mo, which results in the following two characterization theorems. A detailed
approach can be found in the book of Gusfield and Irving [13].

Theorem 2.22. [13] A rotation ρ′ precedes ρ in Π(M) if and only if ρ′ has to
eliminated in any chain of rotation elimination starting from Mo that results in
a stable matching M , where ρ becomes exposed.

Theorem 2.23. [13] The following statements are true:

• There is a one to one correspondence between the closed subsets of Π(M)
and the stable matching.

• A closed set S ⊂ Π(M) corresponds to a stable matching M , if and only if
M is obtained from the man-optimal stable matching Mo, by eliminating
the rotations of S in any (possible) order. Also that is the only way to
obtain M from Mo by rotation eliminations.

• If S and S′ are the set of rotations corresponding to stable matchings M
and M ′, then M dominates M ′ if and only if S ⊂ S′.

Furthermore, it is also possible to construct a graph G(M), whose vertices
are the rotations, such that its transitive closure is exactly Π(M).

This rotation poset can be used for several purposes. For example we can
use it to find minimal weight stable matchings or stable matchings with forced
and forbidden edges. However, these kind of problems will have a much easier
solution after we have described the stable matching polytope, that is the poly-
tope whose vertices are exactly the characteristic vectors of stable matchings,
so we do not describe them here.

An interesting application however, that uses rotations but there is no known
algorithm for it using the stable matching polytope is robust matchings. A k-
robust matching is a matching M such that not only M is stable, but if we
make k swaps in the preferences of the agents in any possible way (where a
swap stands for interchanging two adjacent agents in a preference list), then M
still remains stable. There is a novel algorithm from Chen et al. [6] that can
decide whether there exist a k-robust matching and if yes, it can find one in

11



polynomial-time. The algorithm’s heart is the nice structure of the rotations we
have described in the previous theorems.

Therefore, while some problems are much easier to solve using the stable
matching polytope, in many cases the rotation poset can be an at least as
powerful tool too.

2.3 The Stable Matching Polytope
In this section we introduce perhaps the most powerful characterization of

stable matchings, called the stable matching polytope. It is a polytope whose
vertices correspond to the characteristic vectors of stable marriages.

The first one to characterize the stable matching polytope was Vande Vate
[36]. However, this characterization only worked for the case when the graph was
a complete bipartite graph. Later, Rothblum [32] gave an alternative description
of the stable matching polytope, that worked for any bipartite graph. In this
thesis, we follow a simplified proof by Roth et al. [31]. In the beginning of this
section we recall two well known theorems in operation research. The first is
the Duality theorem. It relates the so called primal and dual programs. The
primal linear program is of the form

max(cx):
Ax ≤ b
x ≥ 0,

where A is an n × m matrix, c ∈ Rm is the cost function and b ∈ Rn is the
bounding vector.

The Dual program of such an instance is:

min(yb):
yA ≥ c
y ≥ 0.

Theorem 2.24. (Duality theorem) The primal program has a finite optimum
value, if and only if the dual has too. Also, in this case the two values are equal,
so max cx = min yb.

The other theorem we will use is about the relation of the optimal primal-
dual solution pairs.

Theorem 2.25. Let x be an optimum solution of the primal, and y an optimum
solution of the dual. Then the two vectors satisfy the complementary slackness
conditions, that are:

1. (Ax− b)iyi = 0, for i = 1, .., n, where vi denotes the i-th component of v,
and

2. (yA− c)jxj = 0 for j = 1, .., m.

Reversely, if x and y are two solutions satisfying these conditions, then cx = yb,
so they are optimal solutions.

12



Definition 2.26. Let G = (U, W, E) be a bipartite graph with preferences on
the vertices. Let P be the polytope defined by

{x ∈ Rm×n : x ≥ 0, x(E(v)) ≤ 1 ∀v ∈ U∪W, x(ϕ(e)) ≥ 1 ∀e ∈ E xmw = 0 ∀mw /∈ E},

where E(z) denotes the edges incident to z in E and ϕ(uv) = {f : f ≥u uv or
f ≥v uv}.

First, we state a Lemma about the primal and dual solutions of P . Observe
that the dual of max(

∑
m,w xmw) : x ∈ P is

min(
∑

m∈U ym +
∑

w∈W yw −
∑

m,w ymw) :
ym + yw −

∑
w′<mw ymw′ −

∑
m′≤wm ym′w ≥ 1,

y ≥ 0.

So in our case, complementary slackness for an optimal primal-dual pair x, y is
equivalent to the following:

1. if x(E(v)) < 1, then yv = 0,

2. if x(ϕ(mw)) > 1 then ymw = 0

3. if ym + yw −
∑

w′<w ymw′ −
∑

m′<m ym′w > 1, then xmw = 0.

Lemma 2.27. Each x ∈ P is an optimal solution of max(
∑

mw∈E xmw) :
x ∈ P . Also, letting ym =

∑
w∈W xmw, yw =

∑
m∈U xmw and ymw = xmw, y is

an optimal dual solution.

Proof. Let x ∈ P be an arbitrary solution and let y be as stated. y is a feasible
dual solution, since ym + yw −

∑
w′<mw ymw′ −

∑
m′≤wm ym′w =

∑
w∈W xmw +∑

m∈U xmw−
∑

w′<mw ymw′−
∑

m′≤wm ym′w =
∑

w′>mw xmw′+
∑

m′>wm xm′w ≥
1 and also y ≥ 0.

Furthermore
∑

m∈U ym+
∑

w∈W yw−
∑

m,w ymw = 2
∑

m,w xmw−
∑

m,w xmw =∑
m,w xmw, so the objective functions cx and yb have the same value, so by the

duality theorem both x and y are optimal primal and dual solutions respec-
tively.

Remark 2.28. This lemma implies that for each x ∈ P , if
∑

w∈W xmw > 0,
then there is an optimal dual solution with ym > 0. Then, by complementary
slackness, each optimal solution, so each x′ ∈ P must satisfy that

∑
w∈W x′

mw =
1. Also, if xmw > 0, then

∑
w′>mw x′

mw′ +
∑

m′>wm x′
m′w + x′

mw = 1 for every
x′ ∈ P by complementary slackness, since

∑
w′>mw x′

mw′ +
∑

m′>wm x′
m′w +

x′
mw = y′

m + y′
w −

∑
w′<w y′

mw′ −
∑

m′<m y′
m′w.

Now we state the main theorem of this section.

Theorem 2.29. The polytope P is exactly the convex hull of the characteristic
vectors of stable matchings.

13



Proof. First, let M be a stable matching. Then, the characteristic vector of M ,
denoted by χM is inside P . The first two set of constraints are obviously satisfied
since M is a matching, and if there would be an edge e with x(ϕ(e)) < 1, then
by the integrality of χm x(ϕ(uv)) = 0, meaning uv /∈M and also, no edge better
than uv for u or v is in M , so uv blocks M , contradiction.

Similarly, if x is an integer solution of P , then it is a characteristic vector
of a matching M , and it is stable, since a blocking edge uv would mean that
x(ϕ(uv)) = 0.

It remains to show that any vector x ∈ P can be written as a convex com-
bination of characteristic vectors of stable matchings. First, we state a lemma:

Lemma 2.30. Let x ∈ P be a vector. For each man m ∈ U , we assign m the
best possible partner among the ones with xmw > 0. If no such woman exists
for m, then m remains free. Denote the resulting edge set Mx. Then, Mx is a
stable matching. Also, each woman w gets the worst possible partner among the
ones with xmw > 0.

Proof. First we show that Mx is a matching. Suppose there is two men m and m′

who obtain the same partner w in Mx and assume by symmetry that m >w m′.
Then, by the construction of Mx :

∑
w′:w′>mw xmw′ = 0, since m obtained

its best partner with xmw′ > 0. So by x satisfying x(ϕ(mw)) ≥ 1 it must
hold that

∑
m′′:m′′≥wm xm′′w = 1. But m′ <w m and xm′w > 0, contradicting

x(E(w)) ≤ 1. So Mx is a matching.
Suppose mw blocks Mx. Then, m prefers w to his partner, meaning

∑
w′≥mw xmw′ =

0. This implies
∑

m′>wm xm′w = 1, so w must have a partner she prefers to m,
contradiction.

Now we prove that each woman with
∑

m∈U xmw > 0 obtains her worst
partner in Mx. Let w be a woman and m be the worst partner of w with
xmw > 0. Then, ∑

m′>wm

xm′w < 1 =
∑

m′∈U

xm′w =
∑

m′≥wm

xmw,

by remark 2.28 about complementary slackness. Also,
∑

w′>mw xmw′+
∑

m′>wm xm′w+
xmw = 1.

This means that
∑

w′>mw xmw′ = 0, meaning mw ∈Mx.

Finally, we prove the theorem. Let x ∈ P be an arbitrary non integer
vector and let z be the incidence vector of Mx. Since z is integral, z ̸= x. We
will show that there is a 0 < δ < 1, such that yδ = x−δz

1−δ ∈ P . Then, since
x = δz + (1 − δ)yδ, we can write x as a convex combination of two different
vectors in P , meaning x is not an extreme point of P .

First we show that, for δ small enough, yδ ≥ 0. But this follows from the
fact that zmw = 0, if xmw = 0, by the definition of Mx.

To see that yδ(E(v)) ≤ 1 for any v ∈ U ∪W notice that if
∑

w∈W xmw = 1,
then

∑
w∈W zmw = 1, and similarly for woman, so for any δ, the condition is

14



satisfied. And as we have observed, if
∑

w∈W xmw < 1, then it is 0 and so is∑
w∈W zmw, so again, any δ suffices.
Lastly, we need to show that yδ(ϕ(mw)) =

∑
w′≥mw yδ

mw′ +
∑

m′>wm yδ
m′w ≥

1 for all mw ∈ E. Writing∑
w′≥mw

yδ
mw′ +

∑
m′>wm

yδ
m′w = 1

1− δ
(x(ϕ(mw))− δz(ϕ(mw))

we see that the situation would not hold for arbitrary small positive δ, if and
only if x(ϕ(mw)) = 1, but z(ϕ(mw)) > 1. But z(ϕ(mw)) > 1 means that
both m and w is matched to someone they prefer more than each other in Mx.
This implies

∑
w′>mw xmw′ > 0. By Lemma 2.30, w is matched to her worst

choice among the man with xmw > 0, so we get that
∑

m′>wm xm′w = 1. But
combining these two conditions, we get that x(ϕ(mw)) > 1, contradiction.

Being able to characterize stable matching by the extreme points of a poly-
tope allows us to compute efficiently stable matchings of minimal/maximal
weight for any cost function.

For example, by taking c(mw) = rm(w) + rw(m) (where rm(w) = k, if w
is the k-th worse woman for m) we can find the so called egalitarian stable
matching that maximizes the sum of the "satisfaction" of the agents in both
side.

Theorem 2.31. For any cost function c on the edges, a minimum weight stable
matching can be found in polynomial-time.

Another very interesting problem is the stable matching problem with forced
and forbidden edges. Here we are given a set of forbidden edges F1 ⊂ E and a
set of forced edges F2 ⊂ E and we want to find a stable matching containing all
forced edges and none of the forbidden edges, if any.

But notice, that now with the LP description of stable matchings, we can just
find the extreme point of P , minimizing the cost function c, such that c(e) = 1,
for e ∈ F1, c(e) = −1 for e ∈ F2, and c(e) = 0 otherwise. It is straightforward
to verify, that if a minimum cost matching has cost less than or equal to −|F2|,
then it satisfies the requirements and otherwise no such stable matching exists.
These problems only have complex combinatorial algorithms. Some of them
may be faster then solving the above linear program, but for our complexity
theoretic viewpoint, they are not very important, the main takeaway here is
that thanks to this characterization, all these problems can be easily solved in
polynomial time.

Corollary 2.32. A stable matching that contains a given set of edges F1 and
excludes another set of edges F2 can be found in polynomial-time, if there is
any.

15



2.4 Stable Marriage with Ties
Now suppose the preference lists are not strict, so there can be agents who

are indifferent between some other agents. This is represented by ties in the
preference lists. If there are ties, then different notions of blocking and stability
arises. These are the following. Let (G, <) be a bipartite graph with preferences
and let M be a matching.

Definition 2.33. A pair mw weakly blocks, if m ≥w pM (w), w ≥m PM (m) and
at least one of them strictly prefers the other to his/her partner. A pair mw
strongly blocks if m >w pM (w) and w >m pM (m).

Definition 2.34. M is weakly stable if there is no strongly blocking pair to M .
M is strongly stable if there is no weakly blocking pair.

The most common notion in the literature in the case of ties is weak stability,
so we are considering that in this thesis also. From here on, when saying stability
in a preference structure with ties, we will always mean weak stability.

If the task is to only find a (weakly) stable matching, then the problem is
easy. We can just break the ties arbitrarily and run the Gale-Shapley algorithm.
We know that for any breaking of ties there always exists a stable matching and
this matching is stable in the original instance too, since if there would be a
strongly blocking pair, than that would block in the instance with no ties too.

So at first everything looks just as nice as in the strict case. However, there
are some properties that no longer hold if we allow ties. For example it will
no longer be true that each stable matching covers the same set of agents: just
consider a K1,2 graph, where the agent who is alone ranks the other two agents
in a tie. Then, both possible matchings are stable, but cover different vertices.

Therefore an important question that arises is that can we find a maximum
cardinality stable matching when ties are allowed? Sadly, the answer seems to
be no, as the problem is NP-complete, which was shown by Manlove et al. [24].
At least, the NP-completeness of this problem allows for some nice and elegant
reductions for other hard variants of the stable matching problem. Note that
if the preference lists are complete, than the Gale-Shapley algorithm returns a
complete stable matching, therefore in that case, the problem is solvable. So we
suppose that the preference lists can be incomplete.

com-smti
Input: A bipartite graph G and preference profile P with ties
Question: Is there a complete weakly stable matching?

Theorem 2.35. [24] com-smti even if the ties only occur on one side of the
graph.

Proof. NP-containment is trivial.
We reduce from the exact-maximal-matching proven to be NP-complete

by Horton et al. [14]. In this problem we are given a graph G, an integer
number k and the task is to determine whether there exists an inclusionwise
maximal matching M , such that |M | = k. They also showed NP-hardness for

16



the case when the graph G is a subdivision graph, that is G can be obtained
from another graph G′ by substituting each edge with a path of length 2 (or
equivalently divide each edge with a point). Therefore we can suppose that
G = (U, W, E) is bipartite and one side of the vertices all have degree 2. We
can assume that G was connected and not a tree, so |U | ≥ |W |. Furthermore,
we can assume that |U | = |W |, because otherwise if |U | = |W |+ r, then we can
add r distinct K1,2-s to the graph, such that the two sides will have the same
size and there is a maximal matching of size k in the original if and only if there
is one of size k + r in the new one. Also, this way we preserve that one side of
the vertices all have degree 2.

So let G = (U, W, E), |U | = |W | = n, and k ∈ Z be an instance of exact-
maximal-matching. We construct a new bipartite graph H = (A, B, F ), where
A = U ∪ U ′ ∪ X, U = {m1, .., mn}, U ′ = {m′

1, .., m′
n}, X = {x1, .., xn−k} and

B = W ∪ Y ∪ Z, W = {w1, .., wn}, Y = {y1, ..yn} and Z = {z1, .., zn−k}. The
graph between U and W is the same as G, so we can suppose that each man
in U has exactly 2 neighbours in W . Let this two neighbours of mi be denoted
by wji

and wki
, ji < ki. We define for each wj ∈ W a set Mj consisting of the

neighbours of wj in U . Also, we define a set M ′
j consisting of those m′

i-s, such
that miwj ∈ E and j = ki.

The preferences of the agents are the following:

mi : yi > wji
> wki

> [Z]
m′

i : yi > wki

xi : [W ]
wj : (Mj ∪M ′

j) > (X)
yj : (mj , m′

j)
zj : (U)

for each i = 1, .., n and j = 1, ..n. The notation [S] for a set S denotes an
arbitrary strict order on the elements of S and (S) denotes that the agents in
S are tied. The edges of F are exactly between those pairs that consider each
other acceptable.

Now let us suppose that we have a maximal matching M of size k. Then,
we make a matching M ′ as follows: For each edge miwj ∈ M , if j = ji, then
we add miwji

and m′
iyi to M ′, otherwise we add miyi and m′

iwki
. Those n− k

men m′
i that are still unmatched are matched to the corresponding yi in M ′.

The n − k unmatched wj-s are paired with the agents from X arbitrarily and
the n− k unmatched mi-s are paired with the agents from Z arbitrarily.

It is easy to see that M ′ is a complete matching. Suppose there is a strictly
blocking pair to M ′. Then, the woman in the pair has to be from W , since the
other women are indifferent between their partners. Also, the man has to be
from U (since a woman from W could only improve with someone from U ∪U ′,
but from U ′ every man is either with its first choice, or their only better choice
yj is with someone better than them), so suppose the blocking pair is (mi, wj).
But this means that mi is with a woman from Z, so m′

i has to be with yi and wj

17



is with a man from X. From this we get that mi and wj are both not covered
by M , but they are adjacent, contradiction.

For the other direction suppose M ′ is a complete weakly stable matching.
Then each yi is paired with one of mi or m′

i, so the edge set M that we obtain
by adding those miwj edges such that mi or m′

i is with wj in M ′ is a matching.
Since M ′ is complete, k of the wj-s are matched to agents in U ∪U ′, so |M | = k.
Suppose that M is not maximal. Then there is an edge miwj that can be added
to M . That means that m′

i was matched to yi, mi to someone from Z and wj

to someone from X. But then the pair (mi, wj) would block M ′, contradiction.

Actually, it is possible to show by a similar reduction that the following
stronger theorem is also true:

Theorem 2.36. com-smti is NP-complete, even if only the women’s lists con-
tain ties, and if a woman’s list contain a tie, than her preference list only consist
of a single tie of length 2.

Let max-smti be the problem of finding a maximal cardinality weakly stable
matching. By theorem 2.36, it is NP-hard to find one. However, there is a
simple 3

2 -approximation by Király [19] for the case when the ties are on one side
only. He also gave a 5

3 -approximation algorithm for the general case, that has
been improved by McDermind [25] to a 3

2 -approximation algorithm later. For
the one-sided tie case, the current best algorithm is a (1 + 1

e ) approximation
by Lam and Plaxton [21]. Here, we only describe the simple 3

2 -approximation
algorithm for the one-sided ties case.

Suppose ties are only in the preference lists of the women.

Algorithm 2 (Király)
Initialize M := ∅, each m ∈ U is free and unpromoted
prop(m) :=first woman in m’s preference list
while there is a man m who is free in M and prop(m) ̸= ∅ do

Let w = prop(m)
if m >w pM (w) or (m ∼w pM (w), m is promoted but pM (w) is not) then

M := M ∪mw − pM (w)w
else

M := M
prop(m) :=next woman in m’s preference list
if prop(m) = ∅ and m in unpromoted then

m becomes promoted
prop(m) :=first woman in m’s preference list

end if
end if

end while

Informally, the algorithm is really similar to a standard Gale-Shapley algo-
rithm, with the following difference: Each man m, if he has been rejected by all

18



women, becomes promoted and starts to propose to the women again. Now that
he is promoted, any woman who would be indifferent between him and an other
man, if he is promoted but the other is not, she will prefer him and reject the
other. It is easy to see that this algorithm terminates in at most 2|E| iteration,
therefore it is also polynomial.

Theorem 2.37. Algorithm 2 produces a (weakly) stable matching M , such that
if MOP T is a maximal cardinality stable matching, then |MOP T | ≤ 3

2 |M |.

Proof. Let M be the matching given by the algorithm. First we show that M
is stable.

Suppose there is an edge mw (strongly) blocking M . Than, m prefers w
to his partner (if there is any), therefore he has been proposed to w. But w
rejected m, which is only possible if w already had an at least as good partner
as m and since each woman’s position weakly improves during the algorithm,
this also holds in M , therefore mw is not strictly blocking, contradiction.

Now we show that if MOP T is a maximal cardinality stable matching, then
|MOP T | ≤ 3

2 |M |. Take the symmetric difference of M and MOP T . Every
component of it is either a path or a cycle. Clearly, every component has at
least two edges, since both matchings must be inclusionwise maximal, since they
are stable. We show that there is no component such that it has more than 3

2
as many edges from MOP T . To show this, we only have to show that there is no
component with 2 edge from MOP T and one edge from M . Suppose there is a
component C line that. Let the vertices of C be {m1, m2, w1, w2} and suppose
m1w1, m2, w2 ∈MOP T and m1w2 ∈M .

m1w1 does not block M and w1 is free in M , therefore m1 prefers w2 to w1.
m1w2 does not block MOP T , therefore w2 weakly prefers m2 to m1.

During the algorithm, since w1 is unassigned in M (so noone proposed to
her), m1 cannot have proposed to everyone in his preference lists and so he
cannot become promoted. But m2 is unassinged M too, so he must got promoted
and then rejected again by w2, which could only happen, if w2 strictly prefers
m1. But then m1w2 strongly blocks MOP T , contradiction.

2.5 The Stable Allocation problem
In this section we describe a generalization of the stable matching problem,

where both the vertices and the edges are allowed to have capacities, introduced
by Baiou and Balinski [2], which is called the stable allocation problem.

Let G = (U, W, E) be a bipartite graph and suppose each v ∈ U ∪W has
a strict ranking >v on the adjacent edges. Furthermore, suppose that we are
given a capacity b(v) for each v ∈ U ∪W and a capacity c(e) for each e ∈ E.
An allocation x is called stable, if there is no edge uw, such that xuw < c(u, w),∑

w′∈W xuw′ < b(u), or there is a w′, with xuw′ > 0 and w′ <u w, and similarly∑
u′∈U xu′w < b(w) or there is a u′ with xu′w > 0 and u′ <w u.

19



By a straightforward adaptation of the Gale-Shapley algorithm, one can
always find a stable solution in pseudo-polynomial time, but it is not at all
trivial how to solve this problem in truly polynomial time.

Here, we describe briefly an algorithm by Dean and Munshi [10]. Since
the two sides have capacities now, it is more convenient to call them jobs and
machines. For ease of notation, we refer to the jobs simply as i ∈ U and to the
machines as j ∈W.

We add a dummy job, indexed as job 1, that has capacity large enough in
order for all the original machines to be matched to it. Also, its adjacent edges
have large enough capacity too. Job 1 ranks every machine in an arbitrary
order, while every machine ranks job 1 as the worst acceptable partner. Then,
we also add a dummy machine, indexed as machine 1, which we add to the end
of the preference list of each job (even job 1). Machine 1 ranks the jobs in an
arbitrary order, ending with job 1 and has capacity large enough such that each
original job can be fully assigned to it. Furthermore, we make this capacity in
a way such that the sum of capacities are the same for both sides.

The reason behind this is to force that in any stable solution all agents are
fully matched.

Given an assignment x, for each machine j ∈ W , we denote by rj the least
preferred job i, with xij > 0. Also, for each job i, denote by qi the most
preferred machine with xij < c(i, j). qi will be the proposal pointer pointing to
the current best partner of i, while rj will be the refusal pointer, pointing to
the edge where the machine j would reject in the Gale-Shapley algorithm too.

We also define a graph G(x), such that G(x) has vertex set U ∪W and the
edge set of G(x) is {jrj | j ∈W}∪{qii | i ∈ U −{1}}. Let C be a component of
G(x). We say that component C is fully assigned, if each job i ∈ C is saturated
in x. It is also easy to see from the definition of G(x), that each component has
the same number of edges and vertices, so it contains a unique cycle, except the
one containing the dummy machine being a tree.

Now we describe the algorithm. The algorithm starts with the assignment
x in which every job but the dummy is unassigned, and every machine is fully
assigned to job 1. Then, in each step, we choose a component C in the graph
G(x) that is not fully assigned. Then, if C does not contain the dummy machine,
then take the unique cycle DC in C and increase the value of x by δ(DC) =
min{xrjj | j ∈ DC ∩W, c(i, qi) − xiqi | i ∈ DC ∩ U} on the edges of the form
iqi and decrease it by δ(DC) on the edges of the form rjj. (note that the cycle
must be alternating between these two kind of edges).

If C is the tree component containing machine 1, then take any job i that
is not fully assigned. Then, take the unique path PC from i to machine 1. Job
i proposes δ(PC) = min{xrjj | j ∈ PC ∩W ; c(i, qi) − xiqi

| i ∈ PC ∩ U ; b(i) −∑
j∈W xij} to ri. Then, if qi becomes oversaturated, it refuses

∑
i′∈U xi′qi +

δ(PC)− c(qi) on the edge rqiqi, if it is greater than 0. (by the choice of δ(PC),
we know that the xrqi

qi
value is at least as big as the refused value). Then we

iterate proposals and rejection on the path PC , until we arrive at a machine that
does not become oversaturated. Notice, that the dummy machine can receive
even all the assignments from the original jobs, therefore we surely arrive at

20



such a machine in PC .
Then, we update the qi-s, the rj-s, and G(x) and start again, until all com-

ponents are fully assigned in G(x).

Theorem 2.38. [10] The algorithm computes a stable solution in O(|E| log(|V |))
time.

Proof. The proof of the running time requires a special data structure, called
dynamic trees, which we omit here. We only prove that the running time is
polynomial in |V |, |E|. Notice, that during the algorithm it never happens that
the x value of an edge increases and then decreases, or decreases and then
increases. Therefore, if an edge leaves G(x), it never becomes a part of it again.
Also, in each iteration, an edge leaves G(x) (and an other one enters) or a
job becomes fully saturated, therefore the number of iterations is bounded by
|E|+ |V |. It is also clear that each iteration can be executed in polynomial time,
so the algorithm is polynomial.

To show that the algorithm computes a stable allocation, we show that it
induces a set of proposals and rejections that a modified Gale-Shapley algorithm
also could have done. If we augment on a path, then it is true, however if the
augmentation is on a cycle, then in a Gale-Shapley execution, no job would have
proposed, because they were saturated.

Therefore, we modify the original instance as follows. Let x denote the solu-
tion output by the algorithm and xo denote the job optimal stable assignment.
For each job i ∈ U , let l(i) denote the least-preferred machine in i’s preference
list for which xil(i) > 0. For every j ≥i l(i) except the dummy machine, set
c(i, j) = xij . Finally, increase b(i) by one for all jobs i ∈ U .

The crucial observation is that the job-optimal assignment for the new in-
stance is almost identical to x, except with the one extra unit for each job being
assigned to the dummy machine. Also, it is possible that the Gale-Shapley al-
gorithm applied to the new instance I ′ only uses the proposals to the dummy
machine at the very end of its execution. This means that the difficulty with
cycle components no longer remains, as every job in I ′ is only partially as-
signed through the entire process of building xo. Therefore, the augmentations
performed by the algorithm correspond to a set of aggregated proposals and
rejections that the GS algorithm could have performed on I ′ with the right or-
der of proposals, meaning x = xo. This proves that x is a (job optimal) stable
assignment.

3 The Stable Roommates problem
The stable roommates (sr) problem is the version of the stable matching

problem, where the underlying graph is not bipartite. So the agents cannot be
separated into two types, like in the stable marriage problem. The problem is
called stable roommates problem, because it can be interpreted as the agents
being students who are assigned to rooms of size two. Each student has a ranking

21



of the other students that represents his/her preference over who he/she would
like to share a room with.

Formally, we are given a graph G = (V, E) and a ranking >v for each vertex
v ∈ V . We would like to find a matching M that is stable in the same sense as
before, so there is no blocking pair uv, with both of them preferring each other
to their current partner in M .

3.1 The algorithm of Irving
Irving’s algorithm [15] was the first efficient algorithm for the stable room-

mates problem. The algorithm checks whether there is a complete stable match-
ing in an SR instance, and if yes it finds one. The algorithm works for the case
when the preference lists are complete, so each participants ranks all of the oth-
ers or in other words, the underlying graph is complete. Obviously, in such an
instance only a complete matching can be stable if |V | is even, and a matching
leaving out exactly one vertex, if |V | is odd.

But as we show in the following lemma, we can find a stable matching in any
SR instance if there is any by reducing it to an instance where the preferences
are complete and |V | is even, so we can use Irving’s algorithm on this new
instance.

Lemma 3.1. Let G = (V, E) be a stable roommates instance. Then, there is an
other instance G′ = (V ′, E′), such that |V ′| is even, G′ is complete and there is
a complete stable matching M ′ in G′, if and only if there is a stable matching
M in G, which can be found by taking M = M ′ ∩ E.

Proof. Suppose that |V | is even and fix an ordering v1, .., vn on the vertices.
Make the graph G complete by adding all the remaining edges and extend
the preferences by adding the originally unacceptable agents to the end of the
preference lists in the order we fixed in the beginning.

Suppose M is a stable matching of G. Let the vertices that are not matched
in M be U = {vi1 , ..., vik

} with i1 < i2 < .. < ik. Clearly, no two agents in U
can be acceptable to each other in G, since then they would block M .

We make a matching M ′ by adding the edges vi1vi2 , ..., vik−1vik
to M .

Suppose there a blocking edge ab to M ′ in G′. ab cannot be an original edge
by the stability of M . If a or b is assigned in M , say a, then by the construction
of the preferences, a prefers pM (a) = pM ′(a) to b, contradiction.

Otherwise, if a, b ∈ U , then let a = vi, b = vj , i < j. Then, by the
construction of M ′, a is matched to an agent who is before b in the order of the
vertices, so again a prefers its partner to b, contradiction.

So if there is a stable matching in G, then there is a complete stable matching
in G′, and furthermore M ′ ∩ E = M.

Now suppose there is a complete stable matching M ′ in G′ and let M =
M ′ ∩ E. So we take the edges of M ′ that are edges in G.

Suppose there is a blocking edge ab ∈ E to M . ab did not block M ′, so
one of them, let’s say a had a better partner in M ′. But since b is already

22



acceptable to a, so is his/her partner in M ′ meaning the edge is also in M , so
a has a partner better than b in M , contradiction.

If the number of vertices is not even, then we add an additional vertex, that
will be the worst choice for every original agent, whose ranking will be the same
as the ordering of the vertices. Then, in the same way we can show that any
stable matching M can be extended to a complete stable matching in G′ and
any complete stable matching in G′ defines a stable matching in G.

Now we describe the algorithm of Irving. It consists of two phases. The first
phase has proposals and rejections like the Gale-Shapley algorithm, while in the
second phase, we reduce the preference lists further by eliminating rotations
until each preference list only consists of a single entry.

First we introduce some notations and definitions.

Definition 3.2. A preference table T is a table whose rows are the agents, and
the entries in row v are the other agents in the order of v’s preference list.

We assume that in the beginning each agent finds every other acceptable
and throughout the algorithm we will maintain that agent u is in v’s row if and
only if v is in u’s row. For an agent v let fT (v), sT (v) and lT (v) denote the
first, second and last entries in v’s row in the preference table T .

Phase 1: In the beginning of phase 1, each agent is free. Then, while there
is a free agent v who has a nonempty list in T , it proposes to its first entry u
in T and becomes semiengaged to u. Then, for every agent z who were already
semiengaged to u we assign them to be free again and lastly, for each agent z
who is worse than v for u, we delete each pair (u, z) from the preference table
T (so we delete the corresponding entry in both agent’s row). Let us call the
reduced preference table T remaining at the end of phase 1, a phase 1-table.

Remark 3.3. If T is a phase 1-table, then

1. v = fT (u) if and only if u = lT (v)

2. (u, v) is deleted from T if and only if lT (u) >u v or lT (v) >v u.

We will call a table stable, if it satisfies 1. and 2., and no agent has an empty
list.

Lemma 3.4. Let T be a phase 1-table. Then all stable pairs are included in T

Proof. Suppose (u, v) is the first stable pair deleted during phase 1. Suppose it
happened because an agent z proposed to u. Then, u prefers z to v, so z can
have no stable partner better than u, because (u, v) was the first stable pair
deleted. But then, any stable matching containing the edge uv is blocked by
uz, contradiction.

Corollary 3.5. If an agent v has an empty list in T , then there is no stable
matching.

23



Lemma 3.6. If every agent in T has only one entry, then the entries define a
stable matching.

Proof. By remark 3.3 no pair (u, v) not in T can block any matching with all
pairs included in T . Also if each agent has exactly one entry in T , then these
entries define a unique matching, containing all pairs of T , so it is stable.

Because of this, in the case when there is an agent with an empty list remain-
ing, the algorithm terminates saying there is no stable matching. Also, if each
agent has exactly one entry, than the algorithm outputs the unique matching
defined by them, which we have seen is stable.

Otherwise, we proceed to the second phase of the algorithm.

Definition 3.7. Let T be a phase 1-table. ρ = (u0, v0), ..., (ur−1, vr−1) is called
a rotation exposed in T, if vi = fT (ui) and vi+1 = sT (ui) for each i. {u0, .., ur−1}
is called the U set of ρ and {v0, .., vr−1} the V set of ρ.

Since ui+1 = lT (vi+1) = lT (sT (ui)), any ui uniquely determines a rotation
as does any vi.

Lemma 3.8. If T is a phase 1-table, such that no agent’s list is empty and there
is a list that have more than one entry, then there exists a rotation ρ exposed in
T .

Proof. If an agent v has only one entry u in its list, then by remark 3.3 it is the
only one entry in u’s list. So for each agent u with more than one entry, sT (u),
fT (u) and lT (u) has also more than one entry. So starting from one such agent
u and then always stepping to lT (sT (u)), sooner or later we find a cycle that
corresponds to the U set of a rotation. Letting vi = fT (ui) and vi+1 = sT (ui)
we can find a rotation ρ exposed in T .

Phase 2: Iteratively, find a rotation ρ exposed in the current table T and
eliminate it, which means that we delete every entry worse than ui−1 in vi’s
row. We denote the table obtained from T by eliminating ρ, T/ρ.

Lemma 3.9. Suppose ρ is a rotation exposed in T and that there are no empty
list in T/ρ. Then

1. fT/ρ(ui) = vi+1 for every i

2. lT/ρ(vi) = ui−1 for every i and

3. fT/ρ(u) = fT (u) for each agent not in the U set and lT/ρ(v) = lT (v) for
each agent not in the V set of ρ.

Proof. Since ui = lT (vi), (ui, vi) is deleted. Also (ui, vi+1) cannot be deleted,
since otherwise it could only be because of ui, meaning that ui = vj for some j
and it prefers uj−1 to vi+1, which means that every entry in ui’s row got deleted
(since vi+1 was the second best uj−1 = vi, that is also deleted), contradiction.

24



All entries worse than ui−1 for vi are deleted. If (ui−1, vi) were deleted
too, then ui−1 = vj and prefers uj−1 to vi, so vj ’s row would become empty,
contradiction.

The first entry in any agent’s row outside of U can’t be in the V set of ρ, so
they are not deleted. Similarly for the last entries for the agents not in V .

Lemma 3.10. Let ρ be a rotation exposed in a stable table T . If T/ρ contains
no empty lists, then T/ρ is also stable.

Proof. Condition 1 follows directly from the previous lemma. To see that if
(u, v) /∈ T/ρ if and only if lT/ρ(u) >u v or lT/ρ(v) >v u, notice that if (u, v) got
deleted during the elimination of ρ, then one of the agents say u was in the V
set of ρ, so every agent remaining in u’s list is better than v.

Now we arrive at the main theorem which is the heart of Irving’s roommates
algorithm.

Theorem 3.11. If table T contains a stable matching and ρ is a rotation ex-
posed in T , then T/ρ also contains a stable matching.

Proof. Let M be a stable matching in T . Suppose there is a pair (ui, vi) ∈ ρ
that is not matched in M . Then, ui is matched to vi+1 = sT (ui) or someone
worse. By the stability of M , this implies that vi+1 is matched to ui or someone
better than ui. Since ui+1 = lT (vi+1), this means that ui+1vi+1 /∈ M and vi+2
is matched to ui+1 or someone better,..., every vj is matched to uj−1 or someone
better, so no edges of M are deleted when eliminating ρ, meaning M is a stable
matching in T/ρ also.

Now suppose all of the pairs (ui, vi) are matched in M . Then, the sets U
and V of ρ are disjoint. Because otherwise, suppose ui = vj for some i, j. Then
fT (ui) = vi = uj = lT (vj) = lT (ui), meaning ui’s row contains only one entry,
contradiction.

So, if we assign the pairs (ui, vi+1), i = 0, .., r − 1 to each other instead, we
obtain another matching M ′. Also, these edges all remain after the elimination
of ρ.

Now suppose that M ′ is not stable and there is a blocking edge ab.
If one of them, say a = ui for some i, then b = vi. But vi is matched to

ui−1, who it prefers to ui, contradiction.
If a = vi for some i and b ̸= ui, then there is an agent x, who prefers vi to

its current partner and vi prefers x to ui−1. But then, if x ̸= vj for any j, then
since ui−1 >vi

ui, the edge vix would block M , which was stable, contradiction.
And if x = vj for some j, then again, the edge vivj would block M , since both
of them were assigned to their worst choice in M .

If a, b are not in the U or V sets of ρ, then both a and b receive the same
partner in M ′ as in M , so ab would block M too, contradiction.

So M ′ is a stable matching that is contained in T/ρ.

Summerizing the results, we get that during the second phase of the algo-
rithm, either the table contains an agent with an empty list and then there is

25



no stable solutions; each agent’s list contain exactly one entry which defines a
stable matching, or if not, then we can always find a rotation ρ, and by elimi-
nating ρ we obtain a table with strictly less entries, such that this reduced table
also contains at least one stable matching, if the original contained one. So the
algorithm indeed produces a correct result and finds a stable matching if there
is any and can be implemented in polynomial-time.

For the sake of completeness, we give a pseudocode of the algorithm in
Algorithm 3.

Algorithm 3 Irving’s algorithm
Initialize each agent v to be free and T to be a complete table
Phase 1:
while ∃x, such that x is free and has a nonempty preference list do

y := fT (x)
for each z who was semiengaged to y do

z becomes free
end for
x becomes semiengaged to y
for each v who is worse for y than x do

delete (y, v) from T
end for

end while
Phase 2:
while There is an agent whose list has at least 2 entries in T and no list in
T is empty do

Find a rotation ρ exposed in T
T := T/ρ

end while
if Some list is empty in T then

OUTPUT: No stable matching
else

OUTPUT: T , which corresponds to a stable matching
end if

3.2 Tan’s algorithm and stable partitions
It is important to note that there is an even more powerful similar algorithm

for the stable roommates problem, in the sense that it can be used for finding
a stable half integral matching even if there is no integral one. This algorithm
is due to Tan [35]. It finds a so called stable partition of a stable roommates
problem which is described the following way:

Definition 3.12. Let (G, >) be a stable roommates instance. A stable partition
of (G, >) is a permutation π : V → V such that for each vi ∈ V :

1. if π(vi) ̸= π−1(vi), then viπ(vi), viπ
−1(vi) ∈ E and π(vi) >vi

π−1(vi) and

26



2. For each vj adjacent to vi if π(vi) = vi or vj >vi π−1(vi), then π−1(vj) >vj

vi.

We call an agent v a singleton in π, if π(v) = v.

Theorem 3.13. (Tan) [35] Let (G, >) be a stable roommates instance. Then,
it admits a stable partition π, which can be found in O(|V |2) time. Furthermore
each stable partition has the same set of singleton agents and the same set of
odd cycles. Finally, there exists a stable matching if and only if there exist a
stable partition without odd cycles of length ≥ 3.

Now we show that this stable partition can be used to find a stable half-
integral matching. Suppose we have a stable partition π. Define a half-integral
matching Mπ as follows:

• if vi is a singleton then it is unassigned in Mπ,

• otherwise, if π(vi) = π−1(vi), then Mπ(viπ(vi)) = 1,

• for every other vi, Mπ(viπ(vi)) = Mπ(viπ
−1(vi)) = 0.5,

• for every other edge Mπ(e) = 0.

Lemma 3.14. If π is a stable partition, then Mπ is a stable half-integral match-
ing.

Proof. Suppose there is a blocking edge vivj .
By (1) of definition 3.12, no edge of the form viπ(vi) blocks, so vj /∈ {π(vi), π−1(vi)}.
But then, if vi is unassigned (meaning π(vi) = vi) or vj >vi

π−1(vi) (note
that π−1(vi) is the worse edge in Mπ for vi if it has two different half edges),
then by (2) of definition 3.12, π−1(vj) >vj vi, so vj is saturated with better
agents than vi, contradiction.

Stable partitions are useful for many kind of problems. One such problem
is, when we are given a stable roommates instance, and we want to remove
a minimal number of agents such that the remaining graph admits a stable
matching. It has been shown by Tan [34], that this number is exactly the
number of odd cycles in (any) stable partition.

Here, we give a new, much simpler proof to show that removing one agent
from each odd cycle of a stable partition is optimal. Let us call a set S ⊂ V
removable, if G− S admits a stable matching. We describe a simple algorithm
that first computes a stable partition and then deletes an agent from each odd
cycle and matches the remaining agents, presented as Algorithm 4; and then we
prove its optimality. Note, however, that a removable set does not necessarily
contain a vertex from each odd cycle, so optimality is not obvious. We show
the correctness of the algorithm in the proof of the theorem below.

Theorem 3.15. Algorithm 4 runs in in polynomial time and finds a smallest
removable set.

27



Algorithm 4
Input: A graph G = (V, E) with strict preferences >v on the vertices.
Output: A smallest removable set S ⊆ V and a stable matching M in
G− S.

1: Set S ← ∅ and M ← ∅.
2: Find a stable partition π using Theorem 3.13.
3: Let C1, . . . , Ck be the set of odd cycles of π of length ≥ 3, and let

Ck+1, . . . , Cl be the set of even cycles of π. Let {vi
0, . . . , vi

ji
} denote the

vertices of Ci, where π(vi
ji

) = vi
0, and π(vi

j) = vi
j+1 otherwise.

4: for i = 1, . . . , k do
5: Set S ← S + vi

0 and M ←M ∪ {v2j−1v2j | 1 ≤ j ≤ ji/2}.
6: end for
7: for i = k + 1, . . . , l do
8: Set M ←M ∪ {v2j−2v2j−1 | 1 ≤ j ≤ ji/2}.
9: end for

10: return S, M

Proof. By Theorem 3.13, the algorithm has polynomial running time. We prove
the correctness in two steps. First, we show that Algorithm 4 outputs a remov-
able set.

Lemma 3.16. Algorithm 4 outputs a set S ⊆ V and a matching M that is
stable in G− S.

Proof. Let uv be an edge of G−S not in M ; we show that uv is not a blocking
edge. Recall that π denotes the stable partition of (G, >) obtained by applying
Tan’s algorithm.

Assume first that at least one of u and v is a singleton in π, say, π(u) = u.
Then for any of its neighbors w ∈ N(u), we have π(w) ̸= w, π(w) >w u, and
π−1(w) >w u since π is a stable partition. In particular, this holds for v. Since
v is matched to either π(v) or π−1(v) in M , uv is not a blocking edge.

Consider the case when π(u) ̸= u and π(v) ̸= v. Since every vertex in V \ S
that is not a singleton in π gets a partner in M , both u and v are matched
by the algorithm. If u ̸= π(v) and v ̸= π(u), then π(v) >v u, π−1(v) >v u or
π(u) >u v, π−1(u) >u v hold as π is a stable partition. As u is matched to one
of the vertices π(u), π−1(u) and v is matched to one of the vertices π(v), π−1(v),
uv is not a blocking edge. Therefore we may assume that π(u) = v. However,
as u and v are not in S and uv is not in M , v is matched to π(v) in M . By
π(v) >v u, uv is not a blocking edge.

It remains to show that the size of a removable set cannot be smaller than
the number of odd cycles in a stable partition.

Lemma 3.17. The minimum size of a removable set is equal to the number of
odd cycles of length at least 3 in any stable partition π.

28



Proof. Let S∗ be a removable set, and let M∗ be a stable matching in G− S∗.
Since π is a stable partition, every odd cycle of length at least 3 in π must
either have a vertex in S∗ or a vertex u matched in M∗ to a partner better
than π−1(u). Indeed, if this does not hold for a cycle, then there is a vertex v
in the cycle that is unmatched or matched to a worse partner than vπ(v) and
vπ−1(v). But then π−1(v)v blocks, since π−1(v) is not matched to anyone that
is better than v by our assumption. We call a vertex v ∈ V \ S∗ out-dominated
if it is matched in M∗ to a vertex u ̸= π(v) with u >v π−1(v). A vertex u is
an in-dominator if it is the partner in M∗ of an out-dominated vertex v. Note
that u prefers π(u) and π−1(u) to v because π is a stable partition.

Let C = {v1, . . . , vt} be an arbitrary cycle of length at least 2 in π such that
π(vi) = vi+1, and let vi1 , . . . , viz be the in-dominator vertices in C. Observe
that these vertices are pairwise non-adjacent on the cycle C as an adjacent pair
would block M∗. Also, each of vi1−1, . . . , viz−1 must be either in S∗ or out-
dominated. Indeed, if for some 1 ≤ j ≤ z the vertex vij−1 is not in S∗ and also
not out-dominated, then the edge vij−1vij

blocks as vij
is an in-dominator.

Suppose now that t is odd. We claim that there is at least one vertex in
C \ {vi1−1, . . . , viz−1} that is either in S∗ or is out-dominated. To see this,
consider the paths obtained by removing the vertices {vi1−1, vi1 , . . . , viz−1, viz

}
from C. Since t is odd, one of the paths contains an odd number of vertices; we
may assume that this path is v1, . . . , vp for some odd p. If none of these vertices
is deleted or out-dominated, then at least one them, say vi, must be unmatched
or matched in M∗ to a vertex worse than π−1(vi). If i ̸= 1, then vi−1vi blocks
M∗, a contradiction. If i = 1, then vt = π−1(v1) is an in-dominator as v1 is the
first vertex of the path. This implies that vtv1 blocks M∗, a contradiction again.
That is, at least one of the vertices v1, . . . , vp is deleted or out-dominated.

We conclude that the number of in-dominators in each odd cycle C is at
most the sum of the numbers of out-dominated and deleted vertices in C minus
one. If C is an even cycle, then the number of in-dominators is at most the sum
of the numbers of out-dominated and deleted vertices. Finally, a singleton in
π cannot be an in-dominator. It follows from the definitions that the number
of in-dominators and the number of out-dominated vertices are the same. By
combining these observations, we get that |S∗| is at least the number of odd
cycles in π.

The theorem follows by Lemmas 3.16 and 3.17.

3.3 Stable roommates with ties
In the previous section we have seen that the stable roommate problem can

be solved in polynomial time. However, the algorithm of Irving only worked for
the case when the preference lists did not contain any ties. Can we use the same
algorithm to decide if there is a stable matching when ties are allowed? Here
again, by stable we mean weakly stable, so there is no v1v2 edge, such that both
of them strictly prefer each other to their partner.

29



srt
Input: A complete graph G and >v weak preferences
Question: Is there a weakly stable matching M?
srti
Input: An arbitrary graph G and >v weak preferences
Question: Is there a weakly stable matching M?

In this case, even if we only want to find a stable matching and each prefer-
ence list is complete, the problem becomes NP-hard, which was first shown by
Ronn [30]. The trick that we used for the bipartite case, where we broke the
ties arbitrarily does not work here, since there are exponentially many possible
choices for that and some choice could lead to an instance that admits a stable
matching but some not.

This problem is NP-complete even if each preference list is at most 3 long
as shown by [8]. Here we give a different, simpler proof of their result. First
we prove hardness for complete graph, but the same proof works for the short
preference list case, simply by dropping all edges that are worse than the third
for each agent.
Theorem 3.18. srt is NP-complete, even if each tie is of length 2 and are at
the top of the preference lists.
Proof. NP containment is trivial.

We reduce from the NP-complete problem (2,2)-e3-sat, proven to be NP-
complete by Berman et al. [3]. Here, we are given a CNF ϕ, such that each
clause contains exactly three literals and each variable appears exactly twice in
both negated and non negated form.

Let ϕ be an instance of (2,2)-e3-sat, let X1, .., Xn be the variables and let
C1, .., Cm be the clauses. We construct an srt instance as follows:

For each clause Cj , we create 3 clause agents c1
j , c2

j and c3
j .

For each variable Xi we create 4 literal agents x1
i , x2

i , x1
i , x2

i .
Finally, for each i, we create two selector agents s1

i and s2
i .

We define f(ck
j ) to be xl

i, if the k-th literal in Cj is the l-th appearance of
Xi and to be xl

i, if the k-th literal in Cj is the l-th appearance of Xi. Similarly,
define g(xl

i) to be ck
j , if the l-th occurrence of Xi is in the k-th place of clause

Cj and g(xl
i) to be ck

j , if the l-th occurrence of Xi is at the k-th place of Cj .
The preferences are the following:

c1
j : f(c1

j ) > c2
j > c3

j > ..., j = 1, ..., m
c2

j : f(c2
j ) > c3

j > c1
j > ... , j = 1, ..m

c3
j : f(c3

j ) > c1
j > c2

j > ..., j = 1, ...m

s1
i : (x1

i , x1
i ) > ..., i = 1, ..n

s2
i : (x2

i , x2
i ) > ..., i = 1, .., n

x1
i : s1

i > x2
i > g(x1

i ) > ..., i = 1, .., n

x1
i : s1

i > x2
i > g(x1

i ) > ..., i = 1, ..n

x2
i : s2

i > x1
i > g(x2

i ) > ..., i = 1, ..n

x2
i : s2

i > x1
i > g(x2

i ) > ..., i = 1, ..n,

30



where > ... means that the rest of the agents are ranked in (an almost) arbitrary
order at the end. The only thing we care about this order is that for the ck

j

vertices the rest of the ck
j′ , j′ ̸= j vertices are ranked in a way such that each

ck
j′ is better than each ck

j′′ , if j′ < j′′.
Suppose there is a satisfying assignment to ϕ. Then, for each clause Cj there

is at least one true literal. Create a matching M as follows: If Xi is true, than
we add x1

i s1
i and x2

i s2
i to M and also x1

i g(x1
i ), x2

i g(x2
i ), otherwise we add x1

i s1
i ,

x2
i s2

i , x1
i g(x1

i ) and x2
i g(x2

i ).
Then, if there is a j, such that only one ck

j is matched to a literal agent,
then we match the other two. Finally, for those j, such that exactly two ck

j -s
are matched to literal agents, we match these clause agents among each other
by ordering them with respect to j and then starting from the first, match each
of them with the next one in the line.

Suppose there is a blocking pair to M . It cannot contain any agent that is
matched with its first partner. Also it cannot contain any agent, such that their
better partners are all with their first choices. Therefore, it could only contain
agents of the type ck

j , that are not matched to any of their first 3 choice. But
among these, it is easy to check that M is a stable matching, since all their
rankings are just the same as the order of their j indices.

Now suppose there is a stable matching M . Then, each sl
i has to be matched

to xl
i or xl

i, otherwise they would block. Similarly, for each j, there has to be
a ck

j agent that is matched to a literal agent. Also, it cannot happen that x1
i

and x2
i or x2

i and x1
i are both matched to a clause agent, since then they would

block with each other.
So if we let the satisfying assignment be such that Xi is true, if and only if

x1
i or x2

i is matched with s1
i or si2, then this assignment is consistent, and each

clause contains at least one true literal, so ϕ is satisfiable.

Theorem 3.19. srti is NP-complete even if each preference list is at most 3
long and if it contains a tie, then it is of length 2 and there is no other entry in
that list.

3.4 The Stable Activities problem and the Stable b-matching
problem.

In this section we consider some simple generalizations of the stable room-
mates problem, that can be reduced easily to the stable roommates problem, so
they can be solved in polynomial-time.

The first such problem is the stable activities problem (sa), introduced by
Cechlárová and Fleiner [5]. In sa, two agent can participate in several differ-
ent activity and the rankings can depend on which activity they would spend
with another agent. This can be represented as the underlying graph G having
parallel edges, and the agents have preferences over these edges instead of the

31



other agents. Here of course, we have to define blocking by an edge, not just an
agent-pair.

sa
Input: A multigraph G and >v strict rankings on the adjacent edges
Question: Is there a stable matching M?

Now we show that such an instance can be reduced to a stable roommates
instance efficiently.

Theorem 3.20. (Cechlárová and Feliner)[5] Any instance (G, <) of the stable
activities problems can be reduced to an instance (G′, <′) of the stable roommates
problem, such that the stable solutions correspond to each other.

Proof. The reduction used is the following. Substitute each edge e = uv of
G with a gadget Guv. The vertices of Guv will be u0

e, u1
e, u2

e, v0
e , v1

e , v2
e and the

edges are uue
0, ue

0ue
1, ue

1ve
2, ve

2ve
0, ve

0ve
1, ve

1ue
2 and ve

0v. The preferences of the new
vertices are:

ue
0 : ue

1 > u > ue
2

ue
1 : ve

2 > ue
0

ue
2 : ue

0 > ve
1

ve
0 : ve

1 > v > ve
2

ve
1 : ue

2 > ve
0

ve
2 : ve

0 > ue
1

Also, we transform the rankings of the original agents v ∈ G such that for
each edge uv, we substitute e with ve

0. Obviously, the new instance is a stable
roommate instance, since there are no parallel edges.

Suppose M is a stable matching in (G, <). Then, make M ′ by substituting
each edge e = uv with uue

0, vve
0, ue

1ve
2 and ue

2ve
1. For the edges uv not in M , if

uv was dominated at u, we add the edges ue
1ve

2, ue
0ue

2, ve
0ve

1 otherwise the edges
ue

0ue
1, ue

2ve
1, ve

0ve
2.

Assume that M ′ is not stable. Suppose the blocking edge is of type uue
0

for some u. This means u prefers ue
0 to his/her partner in M ′. But than, ue

0
was matched to his favourite partner, contradiction. Also, from any edge in the
gadgets not in M ′, one of the endpoints have a strictly better partner, so those
edges cannot block either.

Now suppose we have a stable matching M ′ in (G′, <). Then, if an edge
uue

0 is in M ′, then by the stability of M ′ ue
2ve

1 ∈ M ′, and also ue
1ve

2, ve
0v ∈ M ′,

since otherwise one of ue
0ue

2, ue
2ve

1 or ve
0ve

1 would block M ′. So uue
0 ∈ M ′ if and

only if vve
0 ∈ M ′ and we can define M such that e = uv ∈ M if and only if

{uue
0, vve

0} ⊂M ′.
Suppose edge e = uv blocks M . Then both u and v prefer e to their partner,

so they prefer ue
0 and ve

0 to their partners in M ′ respectively. Since M ′ is stable,
u0 and v0 must have their first partners in M ′. But then, ve

2 must be unmatched,
so ue

1ve
2 blocks M ′, contradiction.

32



Now we briefly talk about another generalization of the stable roommates
problem, where the agents can have integer capacities. Let G = (V, E) be a
graph with >v preferences of the vertices. Furthermore, for each vertex v we
are given a number b(v) denoting the capacity of v.

Definition 3.21. An edge set M is called a stable b-matching, if for every
v ∈ V : |e ∈M : v ∈ e| ≤ b(v) and for each f = uv /∈ M edge it holds that at
least one of {u, v} are saturated (meaning |e ∈M : v ∈ e| = b(v)) with strictly
better agents.

The stable b-matching problem can easily be reduced to a simple stable
roommates problem by making b(v) copies of each vertex v and then all possible
b(u) · b(v) copies of each e = uv edge and finally setting all preferences of the
copy vertices the same as the original, with the extension that the copies of the
same vertex are ranked according to their indices. Since we can suppose without
loss of generality that b(v) ≤ |E| for each v ∈ V , this reduction is polynomial
and therefore the problem can be solved in polynomial-time.

There are more efficient algorithms of course for the stable b-matching prob-
lem, for example even Irving’s algorithm can be generalized for it too, as de-
scribed by Cechlárová and Fleiner in [5].

4 The Stable Hypergraph matching problem
A quite straightforward generalization of the standard stable matching prob-

lem is to consider hypergraph instead of graphs. This means that now we do
not need to pair the agents, there can be coalitions of any sizes and the agents
have preferences over these possible coalitions containing them. For example
in the stable roommates problem , if the rooms are of size 3, then the possi-
ble allocations assign triplets of agents to rooms, so it can be seen as a stable
matching problem in a 3-uniform hypergraph. Another example is the stable
family problem, where the agents can be partitioned to three groups: the men,
the women and the dogs. Each has preference lists over the possible pairs of the
two different types of agents he or she finds acceptable. This problem is called
the stable family problem or the 3-dimensional stable matching problem, which
we will study in more detail in the next sections. Furthermore, we can have
capacities on the vertices. Now we describe the stable hypergraph matching
problem formally.

Let H = (V, E) be a hypergraph. For each v ∈ V there is a capacity kv ∈ Z
and a strict preference list >v on the hyperedges containing v.

Definition 4.1. A fractional hyperedge matching M : E → R+ is called feasible,
if

∑
e:v∈e M(e) ≤ kv for all v ∈ V and M(e) ≤ 1 for all e ∈ E .

Definition 4.2. Given a fractional matching M , a hyperedge f is called block-
ing, if M(f) < kf and for each v ∈ f , either v is unsaturated by M or there is
an fv ∈ E , such that v ∈ fv, M(fv) > 0 and fv <v f.

33



Definition 4.3. A fractional matching M is called stable, if there are no block-
ing hyperedges.

fractional hypergraph matching
Input: A hypergraph H = (V, E), strict orderings >v and kv capacities.
Output: A stable fractional matching M .

If the hypergraph is also 3-partite and 3-uniform, and each capacity is 1, then
the instance corresponds to a stable family instance. So we define f-sfp as
follows.

f-sfp
Input: A 3-partite, 3-uniform hypergraph H = (V, E) and strict orderings
>v.
Output: A stable fractional matching M .

The class PPAD
The class PPAD, introduced by Papadimitriou [28] is a complexity class

consisting of search problems, where the existence of a solution is guaranteed.
Generally, PPAD-hard problems are considered as hard problems, so efficient
algorithms for them are unlikely to exist.

When considering polynomial-time reducibility among (search) problems in
PPAD, we always mean two polynomial-time computable functions f and g, such
that f maps a given instance IA of problem A to an instance IB of problem B
and if y is a solution for f(IA) then g(y, IA) is a solution for IA.

4.1 Scarf’s Lemma and its connection with stable math-
ings

In this section we study a fundamental result proven by Scarf. It is a Lemma
that plays a central role in the study of many variants of stable matchings, and
can be used for countless existential proofs and complexity theoretic reductions.
Although the Lemma originally was stated for so called non-transferable utility
games to prove the existence of the fractional core ( a game theoretic concept
representing fairness), it can be stated in many equivalent forms. We will mainly
need the following one:

Lemma 4.4. [33] Let Q be an n×m nonnegative matrix, such that every column
of Q has a nonzero element and let q ∈ Rn

+. Suppose every row i has an strict
ordering >i on those columns j for which Qij > 0. Then there is an extreme
point of {Qx ≤ q, x ≥ 0}, that dominates every column in some row, where
we say that x ≥ 0 dominates column j in row i, if Qix = qi and j ≤i k for all
k ∈ {1, ..., m}, such that Qikxk > 0.

Another great feature of this Lemma is that its proof is algorithmic, so not
only can we use this to prove the existence of fractional solutions in several
versions of the stable matching problem, we can algorithmically find one too.
Also, the algorithm is guaranteed to be finite, although its running time can

34



be exponential, which is not surprising, since it is used to solve PPAD-hard
problems.

Because of the remarkable importance of this theorem, we present here the
original version too, with a slightly simplified proof by Aharoni and Holzman
[1].

Lemma 4.5. (Scarf [33]) Let m < n ∈ N and let B be an m×n real matrix that
satisfies that the first m columns form an identity matrix. Let C be another m×n
matrix such that cii ≤ cik ≤ cij for all i, j ≤ m, i ̸= j, k > m and finally let b
be a real m-dimensional vector such that {x : Bx = b} is a bounded polyhedron.
Then, there exists a subset J ⊂ [n] of size m for which the following hold:

1. ∃x ∈ Rn: Bx = b and xj = 0 if j /∈ J

2. For every 1 ≤ k ≤ n ∃i ∈ [m] such that cik ≤ cij for all j ∈ J .

Proof. To simplify the proof we first introduce some definitions.

Definition 4.6. A column ck is J -subordinated at i, if cik ≤ cij ∀j ∈ J .
ck is J -subordinated if there is an index i, where is J -subordinated. J is
subordinating for C, if every column of C is J -subordinated.

Definition 4.7. J ⊂ [n] is a feasible basis for (B, b), if |J | = m and if the
columns of B corresponding to the indices in J are linearly independent, then
b belongs to the cone spanned by those columns.

Definition 4.8. We say that the pair (B, b) is non-degenerate if b is not in the
cone spanned by fewer than m columns of B.

Definition 4.9. C is ordinal-generic if all the elements in each row of C are
distinct.

It is easy to observe that subsets of subordinating sets are subordinating.
Also, we can perturb b a little such that (B, b) becomes non-degenerate and
every feasible basis of the perturbed instance is a feasible basis of the original
too. Similarly we can perturb C a little such that the subordinating sets doesn’t
change and the conditions of the theorem still holds, so from now on we will
assume that C is ordinal generic and (B, b) is non-degenerate. Notice that if we
find a set J that is both subordinating and a feasible basis, than we are done.
We will use the following, well-known lemma:

Lemma 4.10. If J is a feasible basis and k /∈ J , then there is a unique index
j ∈ J such that J − j + k is a feasible basis too.

To prove the claims of the theorem, first we prove a technical lemma for it.

Lemma 4.11. If K is a subordinating set of size m− 1, then

1. if K ⊂ [m] (the first m columns), then there is a unique j, such that K+ j
is subordinating and

2. otherwise there are two such index j.

35



Proof. Introduce a function f , such that f(i) is the (unique) index in k ∈ K
such that cik is minimal. Furthermore, because every column ck is subordinated
by K for some i, at row i cik is minimal among all cij , j ∈ K, so f is surjective.
Now, since K has size m − 1, there is only one h ∈ K for which there are two
i1, i2 ∈ [m] such that f(i1) = f(i2) = h and for every other there are precisely
one. One can show similarly that if K + j is subordinating, then every column
ck k ∈ K + j there is an i, such that at row i, cik is minimal among all cil,
l ∈ K+ j. That means that there is an a ∈ {1, 2} such that cial < ciak for every
l such that cl is not K-subordinated at any i ̸= ia. So let Sa denote the set of
those l /∈ K that are not subordinated at any i ̸= ia.

Observation: K+ j is subordinating if and only if there is an a ∈ {1, 2} such
that j ∈ Sa and ciaj ≥ cial, l ∈ Sa.

Suppose that K ⊂ [m]. Then, since the first m columns of B form an identity
matrix, f(i) = i for all i ∈ K, so precisely one of i1 and i2 belong to K. Suppose
it is i1. Then S1 = ∅, because the columns not in K are subordinated at i2 and
S2 = [n] \K ̸= ∅, which proves the first case, since there can only be one j such
that K + j is subordinating by the above observation.

OtherwiseK\[m] ̸= ∅. Then neither i1 nor i2 belongs toK, because otherwise
f(i1) = f(i2) = i1 (or i2) but for j ∈ K \ [m], ci2j < ci2i1 (by the conditions on
the matrix C), contradiction. Hence, both S1 and S2 will be nonempty because
ciia

> cij for i ̸= ia meaning cia is not K-subordinated at any i ̸= ia, so ia ∈ Sa.
Again, by the observation above, we are done.

Now finally we can prove Scarf’s lemma. Make a bipartite graph G =
(A, B, E), where A is the set of the feasible bases containing 1 and B is the
set of subordinating sets of size m not containing 1 and there is an edge be-
tween F ∈ A and S ∈ B if and only if F \ S = {1}. If F ∈ A is subordinating,
then we found a right basis. Otherwise suppose that F is not and that F is not
isolated. By our Lemma, F can have degree one or two, and it can only be 1
if F ⊂ [m], so F = [m]. Similarly if a set S ∈ B is not a feasible basis and
have positive degree, then by the definition of the edges |S \ F | = 1 for each
neighbour of S. Let F be a neighbour and let the element in S \ F be s. By
lemma 4.10 there is a unique f ∈ F such that F ′ = F − f + s is a feasible basis.
f ̸= 1, since then F = S would be a feasible subordinating basis. This means
that S has degree two and its two neighbours are F and F ′.

So we can conclude that every vertex of the graph that does not represent
a feasible and subordinating basis has degree 0 or 2, and F = [m] has degree
1. So by parity arguments, there is an other vertex X with degree 1, which can
only happen if X is a feasible subordinating basis, so the proof is complete.

Remark 4.12. Although the above proof does not explicitly describe the algo-
rithm used for finding a solution, it basically just travels the path starting from
[m] in the graph G until it reaches a feasible subordinating basis.

36



scarf
Input: A nonnegative matrix Q, a nonnegative vector q and strict orderings
>i for each row.
Output: A dominating extreme point of {Qx ≤ q, x ≥ 0}.

Scarf’s lemma can be used to prove the existence of stable fractional solutions
in many problems. For example, to prove that there always exists a stable
fractional solution in a Stable Hypergraph matching instance, we only have to
reduce the problem to scarf. But the reduction is quite simple: we take Q
to be the incidence matrix of the hypergraph with the rows being the vertices
and use the same rankings. The bounding vector consists of the capacities
of the vertices. It is straightforward to check that a dominating solution will
correspond to a stable fractional solution. Also, if the matrix is TU, then Scarf’s
lemma also guarantees the existence of an integral stable solution.

Theorem 4.13. In any hypergraphic preference system, there always exists a
stable fractional matching.

4.2 Hardness results
In this section, building on the lemma of Scarf we will prove several hard-

ness results about variants of the stable hypergraph matching problem and its
fractional version fractional hypergraph matching. By theorem 5.6 we
get the following result:

Theorem 4.14. Deciding if there exists an integer stable hypergraph matching
is NP-hard, even if each capacity is one and each vertex has degree at most two.

It is also easy to see NP-containment, since the stability of a given match-
ing can be checked in polynomial time, by going through the hyperedges and
checking whether they block.

Now we turn our attention to the fractional case. Let fractional hyper-
graph matching denote the problem of finding a stable fractional matching in
a hypergraphic preference system. The first ones to show the hardness of frac-
tional hypergraph matching were Kintali et al. [17]. They also proved the
PPAD-hardness of scarf. (Note that fractional hypergraph matching
can be considered a special case of scarf).

Theorem 4.15. (Kintali et al.) fractional hypergraph matching with
unit capacities and scarf are PPAD-complete.

The proofs follow a long chain of reductions and are quite technical, so we
omit them here. Instead, we will prove that even more restricted versions of the
fractional hypergraph matching problem are PPAD-complete. The first
such restriction we consider is the degree of the vertices. We have seen that
the integral version of the problem is hard even if each degree is 2. Here we
show a similar result of Ishizuka and Kamiyama [16], who proved the fractional
problem is hard even if the degrees are at most three.

37



Theorem 4.16. (Ishizuka and Kamiyama) fractional hypergraph match-
ing is PPAD-complete, even if d(v) ≤ 3 for each v ∈ V .

Proof. We will reduce from the unit capacity general version of the fractional
hypergraph matching problem. Let H = (V, E) be a hypergraph and let >v

denote the preferences of the vertices. Make a new hypergraph H′ = (V ′, E ′) the
following way. The vertex set of H′ will be V ′ = {vi : v ∈ V, i = 1, ..., d(v)} ∪
{v′

i : v ∈ V, i = 1, ..., d(v) − 1}. For each e ∈ E we make a hyperedge e′ =
{vr(v,e) : v ∈ e}, where r(v, e) is the rank of e in v’s preference list, so it is 1,
if e is v’s best choice, 2 if it is v’s second, ... and d(v) if it is v’s worst. So for
a hyperedge e we make a hyperedge e′ consisting of the r(v, e)-th copies of the
v vertices in e. Let E′ = {e′ : e ∈ E}. Then we define the edge set of H′ as
E ′ = E′ ∪ {{vi, v′

i}, {v′
i, vi+1} : v ∈ V, i = 1, ..., d(v)− 1}.

Denote hv
i the hyperedge in E′ containing vi. The rankings of the new

instance will be the following.
v1 : hv

1 >v1 {v1, v′
1} for every v ∈ V

vi : {v′
i−1, vi} >vi hv

i >vi {vi, v′
i} for every v ∈ V and i = 2, ..., d(v)− 1

vd(v) : {v′
d(v)−1, vd(v)} >vd(v) hv

d(v) for every v ∈ V

v′
i : {vi, v′

i} >v′
i
{v′

i, vi+1} for each v ∈ V , i = 1, ..., d(v)− 1

Obviously, this hypergraph satisfies that each vertex has degree at most 3. Now
we show that if we find a fractional stable hypergraph matching M ′ in this
instance, then by taking M(e) = M ′(e′) we get a feasible stable fractional
matching in the original. For this we need two lemmas.

Lemma 4.17. For any v ∈ V and any i = 1, ..., d(v)−1 we have that
∑i

j=1 M ′(hv
j )+

M ′({vi, v′
i}) = 1

Proof. We prove this by induction. Suppose i = 1. Then, since M ′ is a feasible
matching, M ′(hv

1) + M ′({v1, v′
1}) ≤ 1. Suppose it is strictly less than 1. Then,

v1 is unsaturated in M ′ which would mean that {v1, v′
1} blocks, contradiction.

Now suppose we know the statement for i < k. By induction
∑k

j=1 M ′(hv
j ) =

1 − M ′({vk−1, v′
k−1}) + M ′(hv

k), so the statement is equivalent to M ′(hv
k) +

+M ′({vk, v′
k}) = M ′({vk−1, v′

k−1}).
Now, if M ′({vk, v′

k}) + M ′(hv
k) < M ′({vk−1, v′

k−1}) ≤ 1 −M ′({v′
k−1, vk})

(because M ′ is feasible), we have that vk is unsaturated in M ′, so {vk, v′
k}

blocks M ′, contradiction.
On the other hand, if M ′({vk−1, v′

k−1}) < M ′({vk, v′
k}) + M ′(hv

k) ≤ 1 −
M ′({vk, v′

k−1}), then v′
k−1 is unsaturated, so {vk, v′

k−1} blocks.
So it must hold that M ′({vk−1, v′

k−1}) = M ′({vk, v′
k}) + M ′(hv

k)

Lemma 4.18. For any v ∈ V and i = 1, .., d(v)−1 it holds that M ′({v′
i, vi+1} =∑i

j=1 M ′(hv
j ).

Proof. By our previous Lemma
∑i

j=1 M ′(hv
j ) = 1−M ′({vi, v′

i}), so it is enough
to show that M ′({v′

i, vi+1}) + M ′({vi, v′
i}) = 1. It must be ≤ 1, since M ′ is

38



feasible. If it would be strictly less than one, then v′
i would be unsaturated, so

{v′
i, vi+1} would block, contradiction.

Now let M(e) = M ′(e′). For every v ∈ V , we have that
∑

e:v∈e M(e) =∑d(v)
j=1 M ′(hv

j ) = 1−M ′({vd(v)−1, v′
d(v)−1})+M ′(hv

d(v)) = M ′({v′
d(v)−1, vd(v)})+

M ′(hv
d(v)) ≤ 1, where we used the two lemmas and the feasibility of M ′. So M

is a feasible matching.
Suppose there is a blocking hyperedge f to M . Since M ′ was stable, f ′ does

not block M ′. This means that there is a v ∈ f and i ∈ {1, ..., d(v)} such that
f ′ is dominated at vi. This means that M ′({vi, v′

i−1}) = 1 −M(f ′). But by
our lemmas, M ′({vi, v′

i−1}) =
∑i−1

j=1 M ′(hv
j ), so f is dominated at v in M too,

contradiction.

Ishizuka and Kamiyama [16] also showed that the problem becomes polynomial-
time solvable if the degrees of the vertices can be at most two. Their algorithm
was the following: Let the hypergraph be H = (V, E). Make the edge graph of
H, that is the graph H with vertex set U = E and there is an edge between
two vertices of the graph if the corresponding two hyperedges intersect. Now,
make a superorientation of the edge graph. A superorientation is an orientation,
where we are allowed to orient some edges both ways. If all common vertices
of two hyperedge e and f prefer e to f , then orient the edge between e and f
towards f . If all of them prefer f to e, then we orient is towards e. Otherwise
we orient the edge ef in both directions.

Now, we iteratively check whether there are vertices in U such that they
have no incoming edges (which can be either one-way or two-way edges). If
there is a vertex u ∈ U , then we add the hyperedge corresponding to u in our
matching with full weight and remove the vertex and its neighbours from H.

If there are no such vertices left in the edge graph, then we put the hyperedges
corresponding to all of the remaining vertices to M with half weight.

Lemma 4.19. This algorithm computes a stable fractional hypergraph match-
ing.

Proof. In the algorithm, if we include a hyperedge e containing a vertex v with
weight one, then no other hyperedge containing v is added later, since we delete
them from H (because they intersected e, so they were neighbours). Also, each
degree is at most two, so adding both hyperedges containing v with half weight
does not violate the capacity constraints either, so M is feasible.

Suppose there is a blocking edge f to M . If M(f) = 0, then f was deleted,
so we added a hyperedge e, such that there was a vertex v ∈ f ∩e who preferred
e and M(e) = 1, contradiction. If M(f) = 1

2 , then since f had an incoming edge
form a vertex, there is an edge e with M(e) = 1

2 , such that there is a vertex
v ∈ e ∩ f preferring e, so v is saturated and f cannot block, contradiction.

Now, we show that the problem remains hard even if we restrict both the
degree and the size of the hyperedges to 3, which is a new result that I have

39



proven in [7]. We need another theorem from the same paper, that we will only
prove later in Section 7.
Theorem 4.20. [7] The f-sfp problem is PPAD-hard.
Theorem 4.21. [7] Fractional hypergraph matching is PPAD-complete
even if each hyperedge has size at most 3, and each vertex has degree at most 3,
each capacity is 1 and the hypergraph is polynomial-time 3 edge-colorable.
Proof. For this we will use that since f-sfp is PPAD-complete, it is enough to
apply the reduction used by Ishizuka and Kamiyama [16] to those hypergraphs
that correspond to an sfp instance, because we can reduce any hypergraph to
a stable family instance as a first step.

Then, we make the same construction as Ishizuka and Kamiyama. So let
V ′ = {vi : v ∈ V, i = 1, ..., d(v)} ∪ {v′

i : v ∈ V, i = 1, ..., d(v) − 1} and
E ′ = E′ ∪ {{vi, v′

i}, {v′
i, vi+1} : v ∈ V, i = 1, ..., d(v)− 1} again.

Now, what is important to see is that because each e ∈ E had at most 3
vertices, so does E′ and so does E ′, therefore both the degree and the hyperedge
size constraints are satisfied in the new instance. It only remains to prove that
it can be edge-colored by 3 colors in polynomial time. For this, we will use the
following edge coloring: color each hyperedges in E′ red, each hyperedge of the
form {vi, v′

i} green, and each {v′
i, vi+1} yellow. Since for every vertex v only

one hyperedge can be it is i-th in the ranking, we get that each vertex can be
only adjacent to at most one red edge. It is easy to observe that each vertex
can only be in one {vi, v′

i} edge and one {v′
i, vi+1} edge too, so the coloring is

good indeed, and it can be done in linear time.

4.3 Tractable cases of the stable hypergraph matching
problem

In this section we show how the stable hypergraph matching, that is the
integer version of fractional hypergraph matching relates to finding ker-
nels in superorientations of graphs, as well as give some efficient algorithms for
special cases of the problem.
Definition 4.22. A hypergraph H = (V, E) is a subtree-hypergraph, if there is
a tree T = (V, E) on the ground set V , such that each hyperedge is a subtree
of T .
Definition 4.23. A superorientation of a graph G is an orientation of G where
each edge can be either simply oriented from one endpoint to the other, or in
both ways.
Definition 4.24. A superorientation of G is clique-acyclic, if there are no di-
rected cycles that contain only one-way edges and all of its vertices are part of
a clique K in G.
Definition 4.25. A kernel K of a superoriented graph G is a set of points
that is independent and absorbing, so from every vertex v not in K there is a
directed edge or a two-way edge to some point in K from v.

40



Definition 4.26. A graph G is chordal, if any cycle of length ≥ 4 has a chord.

Theorem 4.27. [7] If H = (V, E) is a subtree hypergraph, and each vertex
capacity is 1, then there always exists a stable integral hypergraph matching and
it can be found in polynomial time.

Proof. We reduce the problem to finding a kernel in a clique-acyclic superor-
ientation of a chordal graph that can be solved efficiently as proven by Pass-
Lanneau et al. [29]. We simply consider the edge graph of H, that is, for each
hyperedge F , we have a point vF , and two vertices are connected if and only if
the corresponding hyperedges intersect. Since H is a subtree hypergraph, the
edge graph is chordal. Now orient the edges the following way: if Fi ∩ Fj ̸= ∅
and each vertex in Fi ∩ Fj prefers Fj to Fi, then we orient the edge vFi

vFj

towards vFj . If there are vertices preferring Fi over Fj as well, then we orient
the edge vFivFj in both directions. This results in a superorientation that is
clique-acyclic, since the hyperedges of H have the the Helly property, so if any
two of some hyperedges intersect, then there is a point contained in all of them.
So any hyperedges that make a clique in the edge graph have a point in common,
so there cannot be a directed cycle (containing only one-way edges) in it.

Let us suppose we have found a kernel K. Then, the corresponding edges
form a stable matching: The points in K are independent, so the hyperedges
do not intersect, hence the capacity constraints are not violated. And if there is
a blocking hyperedge F , then it blocks each hyperedge in K (that it intersects)
on their common vertices, so every edge between vF and K points toward K,
contradiction.

A natural question to ask is that can it still be solved efficiently if we allow
the vertices to have capacities greater than one. Sadly, the answer is no, even
with very severe restrictions.

Theorem 4.28. [7] Deciding if there exists an integer stable hypergraph match-
ing is NP-complete, even if H is a subtree hypergraph, that tree is a star, only
one vertex has capacity greater than 1, and all hyperedge sizes are at most 4.

Proof. We will reduce from the stable family problem. Let the vertices of H be
the vertices of the stable family problem and one additional vertex x. Extend
each original hyperedge with x. The capacities will be the same, and let the
capacity of x be the number of hyperedges. It is easy to check that the stable
matchings of this instance will correspond to the stable matchings in the family
problem an vice versa.

Remark 4.29. Using the same construction, and the fact that the f -sfp is
PPAD-complete, it is easy to see that the problem of finding a stable fractional
solution in an instance of Theorem 4.28 is PPAD-complete too.

Finally, we construct a polynomial-time algorithm that finds an integral
stable matching for any capacities, if the hypergraph H = (V, E) is laminar,
that is, from any two intersecting hyperedges, one contains the other. The
algorithm is the following:

41



Algorithm 5
S := ∅ ▷ S will be the actual matching
C := ∅ ▷ C will denote the checked hyperedges
while E \ C ̸= ∅ do

Pick an inclusion-wise minimal hyperedge F in E \ C.
if F is not blocking with respect to S then
C := C ∪ {F}
S := S

else if F is blocking with respect to S then
C := C ∪ {F}
S := S ∪ {F}
If there were vertices in F that were saturated, then for each such

vertex take its worst hyperedge. Among these, remove the inclusion-wise
maximal ones from S.

end if
end while

Lemma 4.30. The output S by the algorithm is a stable feasible hypergraph
matching. Also, the running time is polynomial.

Proof. Since every time a vertex becomes oversaturated we delete one edge
containing it, the capacity constraints will be satisfied in the end, thus S is a
feasible matching. Let us suppose that there is a blocking hyperedge F .

If F was not included in S when it was checked by the algorithm, then
some vertex v of F had already been saturated with hyperedges better than F .
First notice that, since we always pick inclusion-wise minimal hyperedges, every
hyperedge that has already been checked at some point in the algorithm is either
contained in the current hyperedge or is disjoint from it. So if a hyperedge F ′

forces v to throw out one of its previous hyperedges, then F ′ contains all of
them and F ′ has to be better than one of them, so it is still better for v than
F . Also, since we only throw out the inclusion-wise maximal worst hyperedges,
that are all subsets of F ′, each vertex only loses at most one hyperedge, and if
it loses one, then it gains one with F ′, so v remains saturated. Therefore, v will
still be saturated with better hyperedges than F at the end of the algorithm,
so F cannot block, contradiction.

If F was in S, but got thrown out, then it had to be because it was the
worst hyperedge of a saturated vertex v. So in that step the vertex v remained
saturated, with strictly better hyperedges than F . Using the same argument as
before, v will still dominate F at the end of the algorithm, contradiction.

In every step, a hyperedge that was not marked becomes marked, so there
are |E| steps. A step consists of finding an inclusion-wise minimal unmarked
hyperedge, checking whether it is blocking, and if it is, then computing the
inclusion-wise maximal worst hyperedges of the saturated vertices. All of these
can be done in polynomial time, so the running time is polynomial.

42



5 The Hospital-Resident problem with couples
One of the first real life application of stable matching algorithms was the

American National Resident Matching Program, NRMP for short. Actually,
they used an algorithm similar to the Gale-Shapley algorithm even before the
mathematical foundations of the field in 1962. In the NRMP the task was to
assign residents to hospitals. Both the residents and the hospitals can submit
preferences on each other into the system and like in the case of the stable
marriage problem, we want to find an allocation of the residents such that there
is no resident hospital pair (d, h) such that the resident would prefer to leave
his or her current allocation and go to h and h would accept d, possibly by
sending away a worse resident. Similarly to the stable marriage problem, these
kind of pairs could start to launch a series of deviations that would destabilize
the market. It is not hard to see, that the Hospital-Resident problem (HR) can
be reduced to a simple stable marriage problem, we only need to make multiple
copies of the hospitals each with unit capacity, that all have the same rankings
as the original and extend the preferences of the residents over the hospitals by
ranking the copies among each other arbitrarily.

Another problem similar to HR is the university admission problem, where
there are universities instead of hospitals and students instead of residents. Also
the ranking of the universities can include ties if two students have the same
score, which makes the problem a little harder, but it is still possible to find
stable solutions satisfying certain fair requirements.

Before we proceed to the case involving couples, we investigate the original
problem a little deeper. First of all, we define the problem formally: letH be the
set of hospitals and let D be the set of doctors/residents. Each hospital h ∈ H
has a strict preference list >h on the doctors and each doctor d ∈ D has a >d

preference list over the hospitals. The hospitals also have kh ∈ Z capacities.

Definition 5.1. Let M be a matching, so for each resident d,
∑

h∈H M(d, h) ≤
1 and for each hospital h,

∑
d∈D M(d, h) ≤ kh. A pair (d, h) blocks M , if

h >d pM (d) and either
∑

d∈D M(d, h) < kh or there is a resident d′ at h, such
that d >h d′. We say that M is stable, if there is no blocking resident-hospital
pair.

We show that (not surprisingly) just like the stable matching problem, this
problem also has nice structural properties. First we prove the so called Rural
Hospital theorem.

Lemma 5.2. Let M be the resident-optimal stable matching (it exists by the
reduction to the stable marriage problem by making multiple copies of hospitals)
and let M ′ be another stable matching. Suppose hospital h does not reach its
capacity in M ′. Then, every resident that is assigned to h in M is also assigned
to h in M ′.

Proof. Suppose d is not at h in M ′ but at h in M . Then d prefers h to pM ′(d)
so (d, h) blocks M .

43



Theorem 5.3. (Rural Hospital theorem) In each Hospital-resident problem in-
stance the following hold:

1. Each hospital has the same number of residents in any stable matching,

2. The same residents are unassigned in every stable matching

3. If a hospital is under its quota in any stable matching then it gets the same
set of residents in every stable matching.

Proof. 1 and 2 follow directly from the fact that we can reduce a HR instance
to a stable matching instance by making kh copies of h that rank the residents
the same way, and the residents rank the copies among each other by their
indices. Since in any stable matching the same set of vertices is matched, this
proves 1. and 2. To see 3, we only need to use the previous lemma to see that
undersubscribed hospitals must have exactly the same set of agents in every
stable matching.

Also, because it can be reduced to the stable matching problem, it is still
true that if each resident picks their best choice hospital among their partner
hospitals in two different stable matching, then this also results in a stable
matching. And similarly, if each hospital picks the best (at most kh) residents
among their assigned residents in two different stable matchings, it also leads to
a stable matching. So in this problem the stable matchings form a distributive
lattice too.

Furthermore, again because of its simple reduction to the stable matching
problem, we can find minimal/maximal weight stable matchings in this problem
too.

5.1 Hardness results
Now we move on to the instance where couples are allowed too, called

Hospital-Resident-Couple problem, HRC for short. Surprisingly, the problem
becomes NP-hard even with this small additional condition, as we will soon
show. In this setting there are three sets, the hospitals H, the single residents
D and the couples C. The set of couples can be partitioned into two sets: the
set of men Cm and the set of women Cw. Each hospital h ∈ H has a capacity
kh ∈ N and a strict preference >h on the residents, that is the single residents
and the members of couples. Similarly each single resident d ∈ D has a strict
preference >d on the hospitals, and each couple c ∈ C has a strict preference list
>c on the pairs of hospitals. These preference lists need not be complete; if a
hospital/resident does not appear then we interpret it as being unacceptable. If
the lengths of the preference lists are bounded by some constant, then we call it
(α, β, γ)-hrc, where each single resident’s preference list has length at most α,
each couple’s preference list has length at most β and each hospital’s preference
list has length at most γ. If there are no single residents, then α is omitted.

The blocking coalitions in this setting are defined the following way:

44



Definition 5.4. Let M be a matching in the hrc.

1. A single resident-hospital pair (d, h) blocks, if d prefers h to its current
allocation in M (including the possibility that d is unassigned) and h is
either under its quota or has a worse resident in M than d,

2. A coalition (c, h, h′), h ̸= h′, c = (cw, cm) blocks, if c prefers (h, h′) to
M(c), h is unsaturated or has an at least as bad resident as cw (since cw

may already be at h, if h = M(cw)) and h′ is unsaturated or has an at
least as bad resident as cm,

3. A coalition (c, h, h) blocks if (h, h) >c M(c) and both cf and cm are in the
best kh residents for h in the set M(h) ∪ {cw} ∪ {cm}.

Definition 5.5. A matching M is stable if it is feasible (so no hospital exceeds
its quota and no resident has more than one position) and there are no coalitions
that block M .

hrc
Input: A set of hospitals H with >h strict preferences over D ∪ Cm ∪ Cw

and kh ∈ N capacities, a set of single residents D, with >d, d ∈ D strict
preferences over H and a set of couples C with >c, c ∈ C strict preferences
over H×H.
Question: Is there a stable matching M?

Now we prove that even with the severe restrictions that there are no single
residents, each capacity is 1 and the preference lists of all couples and hospitals
are at most 2 long the problem is still NP-hard.

Theorem 5.6. (Biró et al. [4]) It is NP-complete to decide if a given (2, 2)-hrc
instance admits a stable matching or not, even if all capacities are 1.

Proof. To show containment in NP we only need to see that we can check the
stability of a given matching M by going through all the possible coalitions
(which have size 3) and check if they are blocking, which can be done in poly-
nomial time.

To prove NP-hardness we will reduce from the NP-complete problem (2,2)-
e3-sat. (The NP-completeness of this problem were shown by Berman et al.[3]
). In this problem we have to decide whether a boolean formula φ in CNF
has a satisfying assignment, where φ contains exactly 3 literals in every clause
and every literal appears exactly twice in φ. Let X = {x1, .., xn} be the set of
variables and C = {C1, ..., Cm} be the set of clauses.

Then, we reduce it to an instance of the hrc as follows. The couples of the
hrc instance will be A ∪ B, where A = {(ar

i , br
i ) : r = 1, 2, i = 1, ..., n} and

B = {(cs
j , ds

j) : s = 1, 2, 3, j = 1, .., m}. The set of hospitals will be H ∪ T ,
where H = {hr

i : r = 1, .., 6, i = 1, ..., n}, T = {tr
j : r = 1, .., 6, j = 1, .., m}.

Define h(cs
j) to be h2r+1

i if the r-th appearance of xi is at position s at Cj ,
and h2r+2

i , if the r-th appearance of xi is at position s at Cj . Similarly let
c(h2r+1

i ) be cs
j if the r-th occurrence of literal xi is at the s-th position of Cj

45



and c(h2r+2
i ) be cs

j if the r-th occurrence of literal xi is at the s-th position
of Cj . So the possible applications, with the order of the preferences are the
following:

(a1
i , b1

i ) : (h1
i , h3

i ) > (h2
i , h4

i )
(a2

i , b2
i ) : (h2

i , h5
i ) > (h1

i , h6
i )

(c1
j , d1

j ) : (h(c1
j ), t4

j , ) > (t1
j , t3

j )
(c2

j , d2
j ) : (h(c2

j ), t5
j ) > (t2

j , t1
j )

(c3
j , d3

j ) : (h(c3
j ), t6

j ) > (t3
j , t2

j ).

The preferences of the hospitals are:

h1
i : a2

i > a1
i

h2
i : a1

i > a2
i

h3
i : b1

i > c(h3
i )

h4
i : b1

i > c(h4
i )

h5
i : b2

i > c(h5
i )

h6
i : b2

i > c(h6
i )

t1
j : c1

j > d2
j

t2
j : c2

j > d3
j

t3
j : c3

j > d1
j

t4
j : d1

j

t5
j : d2

j

t6
j : d3

j

We define two sets for each 1 ≤ i ≤ n:
Ti = {(a1

i , h2
i ), (a2

i , h1
i ), (b1

i , h4
i ), (b2

i , h6
i ), (c(h3

i ), h3
i ), (c(h5

i ), h5
i )} and

Fi = {(a1
i , h1

i ), (a2
i , h2

i ), (b1
i , h3

i ), (b2
i , h5

i ), (c(h4
i ), h4

i ), (c(h6
i ), h6

i )}.
First suppose that there is a satisfying assignment f to φ. We construct

a matching M that will be stable. If xi is true then we assign the pairs of Ti

to each other, otherwise we assign the pairs of Fi. If cs
j is assigned to h(cs

j)
this way, then we match ds

j to ts+3
j accordingly. Then, for every clause Cj we

do the following. If Cj has three true literals, then we do nothing, all couples
corresponding to Cj are already matched. If Cj has one false literal at place s
(1 ≤ s ≤ 3) then we add the pairs {(cs

j , ts
j), (ds

j , ts+2
j )} to M . If Cj has only one

true literal at position s then we add {(cs+1
j , ts+1

j ), (ds+1
j , ts+1

j )} to M . That
completes the construction of M .

Assume that M is not stable and there is a couple-hospital coalition blocking
M .

The couples of the form (ar
i , br

i ) are never unassigned and if one of them is
at their worse choice than one of their top choice hospital got a better resident,
so these couples cannot block.

46



A couple (cs
j , ds

j) cannot block M with (h(cs
j), ts+3

j ), since if they are not
matched to (h(cs

j), ts+3
j ), then since every hospital is full, h(cs

j) got a better
applicant.

Finally, a couple (cs
j , ds

j) also cannot block M with (ts
j , ts+2

j ), because that
would mean that (cs

j , ds
j) is unassigned, which can only happen if there is only

one true literal in Cj . But then (cs+2
j , ds+2

j ) is at (ts+2
j , ts+1

j ) so ts+2
j has a better

resident than ds
j .

This shows that the matching M is stable.
For the other direction let us suppose that M is a stable matching. Then,

both (a1
i , b1

i ) and (a2
i , b2

i ) must be matched for any i, since otherwise they would
block with their second choice. So either both of them are at their first choice
or both of them are at their second choice. By the construction of the instance
it is easy to see that if there is no couple (cs

j , ds
j) for some j such that they are

at their best option, then there can only be one couple from (c1
j , d1

j ), (c2
j , d2

j ),
(c3

j , d3
j ) that is assigned somewhere, but then one of the other two couples would

block with its second choice hospitals. So for each j there is an s such that
{(cs

j , h(cs
j), (ds

j , ts
j)} ⊂M .

So let hr
i = h(cs

j). Now we set the variables its truth values the following
way: if r is 3 or 5, then let xi be true, otherwise if r is 2 or 4, then let xi be
false. This guarantees that there is at least one true literal in each clause. We
only need to check that this truth assignment is well-defined. But this follows
from the fact that if there is a couple at (hr

i , ts
j), with r = 3 or r = 5, then

(b1
i , b2

i ) must be at (h4
i , h6

i ), so none of them can be assigned a couple member
of the set B and similarly for r ∈ {4, 6}.

Before we move on to some other interesting aspects of this problem, like
finding fractional or near feasible solutions, we make a detour to another gener-
alization of the stable matching problem, which will surprisingly be also useful
for some proofs about the Hospital-Resident-Couple problem.

6 The Stable Flow problem
In this section we study another generalization of the stable matching prob-

lem, the stable flow problem. It has been introduced by Fleiner [11]. It models
a more complex market, where some kind of commodity is forwarded through
agents, such that these agents can have preferences over who they buy from and
over who they sell to. The precise formulation of the problem is the following:

Let D = (V, A) be a directed graph with two special vertices s and t. s will
be called the source and t the terminal. We assume no arc enters s and no arc
leaves t. Furthermore, there is a capacity function on the edges c : A → R+.
Then the system (D, s, t, c) is called a network.

Definition 6.1. A flow of a network is a function f : A→ R on the edges, such
that 0 ≤ f(e) ≤ c(e) for each e ∈ A and for each vertex v ∈ V , with v /∈ {s, t} it

47



holds that
∑

uv∈A f(uv) =
∑

vu∈a f(vu), so the inflow and the outflow are the
same in every non source and non terminal vertex.

Now let us suppose that similarly to the other stable matching problems,
there are strict preference relations <v given for the vertices v on the arcs inci-
dent to v. Then this network with preferences can be interpreted as a network
of agents trading certain goods between each other, with the direction of the
arcs representing the way of the trade and the edge capacities the maximum
amount of goods an agent can sell to a certain other agent. Also, the agents
may have other agents whom they prefer to buy from, which gives rise to the
preferences on the edges.

What should then, in this new problem, the notion of stability mean? First
of all, if there is an unsaturated st path in the network, then each agent could sell
and receive more products along the path, so we want to avoid such situations.
Also if there is an unsaturated path between two agents with starting agent
being the source which can just send more, or one sending some flow to a worse
agent and the other being the terminal or one receiving from a worse source,
then they would like to send some amount of their trades along this path instead
which again would lead to instability. This motivates the following definition.

Definition 6.2. A walk P = (v1, e1, v2, ..., ek−1.vk) blocks the flow f , if the
following conditions hold:

• all the vertices are different, only v1 and vk can coincide,

• f(ei) < c(ei), i = 1, ..k,

• v1 = s or there is an arc v1u such that f(v1u) > 0 and v1u <v1 e1,

• vk = t or there is an arc uvk such that f(uvk) > 0 and uvk <vk
ek−1.

Definition 6.3. A flow f is stable if it admits no blocking walk.

As we will see in the next section, a stable flow always exists and furthermore,
if all capacities are integral, then there is a stable flow that is integral too.

6.1 Reduction to Stable Allocation
In this section we show how to find stable flows. As Fleiner showed [11], the

problem can be reduced to a stable allocation problem, which can be solved in
polynomial time, as we have seen.

Let us start with describing the reduction used by Fleiner. Let (D, s, t, c) be
the network with preferences on the vertices. Let q be a large integer, such that
for any vertex, the maximum size of flow that can travel through that vertex
is strictly less than q. For example q =

∑
e∈A c(e) + 1 obviously suffices. Now

we construct a bipartite graph GD = (U, W, E). For each v ∈ V we make two
vertices vin and vout, both with capacity q. Let U = {vin| v ∈ V, v ̸= s} and
W = {vout| v ∈ V, v ̸= t}. Then for each arc uv ∈ A we make an edge uoutvin

in GD with capacity c(uv). Furthermore add two edges between vin and vout,

48



each with capacity q for every vertex v ̸= s, t. We will refer to these edges as ev

and fv. The preferences for the vertices are the following: Each vertex vin ranks
ev best, then the other adjacent edges coming from the original network in the
same order, followed by fv at the bottom. The vout vertices rank fv first, then
the network edges in their original order and ev last. Now we show that the
stable matchings of GD and the stable flows are in an (efficiently computable)
bijection with each other.

Theorem 6.4. [11] Let (D, s, t, c) be a network with preferences. Then, a flow f
is stable if and only if there is a stable allocation g of GD with g(uoutvin) = f(uv)
for every u, v ∈ A.

Proof. Assume g is a stable allocation. Then, since no ev and fv edges are
blocking at least one of vin and vout is saturated. Furthermore, we can see that
both are saturated, since if for example vin would be unsaturated then g(fv) < q
and fv would be a blocking edge. So all edges are saturated which means that
the Kirchoff law is satisfied for f(uv) = g(uoutvin). The capacity constraints
are obviously satisfied too. Now let us suppose that f is not stable and there
is a path P = (v1, a1, .., vk) blocking f. That means f(a1) < c(a1) and there is
an arc v1u with positive f value that v1 prefers more. This implies that vout

1 vin
2

can only be dominated at vin
2 . This implies that vin

2 is saturated with better
edges so g(fv2) = 0 and g(ev2) > 0. Again, that means that vout

2 vin
3 can only be

dominated at vin
3 and continuing using this argument we obtain that vout

k−1vin
k

has to be dominated at vin
k . But since P is a blocking walk, there is an arc uvk

with f(uvk) > 0 that vk prefers less than vk−1vk and f(ak−1) < c(ak−1). But
that cannot happen if vk is dominated at vin

k , contradiction.
For the other direction suppose that f is a stable flow in D. Let S be the

set of those vertices v ∈ V , for which there is a path P = (v1, a1, ..., v) such that
the path is unsaturated by f and there is an arc v1u with f(v1u) > 0 that v1
prefers less than a1. Now define g as g(uoutvin) = f(uv),

g(ev) =
{

q −
∑

u∈V , if v ∈ S

0 otherwise
and g(fv) =

{
q −

∑
u∈V , if v /∈ S

0 otherwise
.

It is easy to see that all vertices are saturated by g in GD and that the
capacity constraints are not violated. Let us suppose that there is a blocking
edge. First assume it is of the form ev or fv. But these edges are the worst ones
for one of their endpoints, so since every vertex is saturated they cannot block.
Now assume the blocking edge is uoutvin. If v ∈ S, then then g(fv) = 0 and there
is a path that is unsaturated, ends at v and is not dominated at its startpoint. So
if there would be an edge wv that v prefers less with f(wv) = g(woutvin) > 0,
then P would be a blocking path to f, contradiction. Lastly, if v /∈ S then
g(ev) = 0 and g(fv) > 0 and the path P = (u, uv, v) is unsaturated and not
dominated at u, so it is dominated at v, meaning that uoutvin is dominated at
vin, contradiction. So g is a stable allocation.

This lemma leads to the following theorem:

49



Theorem 6.5. [11] In every (D, s, t, c) network with preferences there exists
a stable flow that can be found in polynomial time. Also, if the capacities are
integral, then there is a stable integral flow.

Another remarkable consequence of this is that just like in the stable mar-
riage problem, the same set of agents are matched in every stable matching, so
all of them has the same size, the same is true for stable flows too, that is, all
stable flows have the same size, which can be proved by the above reduction
and a use of the Rural Hospital theorem.

Theorem 6.6. Let (D, s, t, c) be a network with preferences and f1,f2 be two
different stable flows. Then the two flows have same size, moreover f1(e) = f2(e)
for all arcs leaving s and all arcs entering t.

6.2 The Stable Multicommodity Flow problem
In this section we generalize the concept of stable flows even further, allow-

ing multiple commodities to be forwarded through the network. It has been
introduced by Király and Pap [18]. In this model, the agents can sell different
types of products between each other and have preferences that can depend
on the type of the product too. Also, importantly, we allow the carriers of the
commodities to have preferences over the product they transport, so in this case
even the edges will have preferences too. Most results of this section are new
results from my working paper [7].

Now we formalize the problem precisely.
In the stable multicommodity flow problem, we are given a directed graph

D = (V, E) with sources s1, .., sn and sinks t1, .., tn, one for each of the n com-
modities. Each vertex v ∈ V has orderings >j

v, j = 1, ..., n on the edges incident
to v. Furthermore, each e ∈ E has an ordering >e on the set of commodities.
Each edge has c(e) and cj(e) capacities too, where c(e) is the upper bound on
the sum of the flow on e and cj(e)-s are the upper bounds on the commodity
flows f j(e). Let δj(v) denote the outflow and ρj(v) the inflow of a vertex v with
respect to f j . So a flow f = (f1, .., fn) is called feasible, if δj(v) = ρj(v) for
each j = 1, .., n and v ∈ V \{sj , tj}, f j(e) ≤ cj(e) for each e ∈ E and j = 1, .., n
and

∑n
j=1 f j(e) ≤ c(e) for all e ∈ E.

Now we can introduce the notion of stability in multicommodity flows.

Definition 6.7. A walk W = (v1, a1, ..., vk) blocks with respect to commodity
j, if the following four conditions hold:

1. f j(ai) < cj(ai), i = 1, .., k,

2. v1 = sj or there exists an u ∈ V such that f j(v1u) > 0 and v1u <j
v1

v1v2,
so v1 likes v2 more to send commodity j to,

3. vk = tj or there exists a w ∈ V , such that f j(wvk) > 0 and wvk <j
vk

vk−1vk,

50



4. if
∑n

j=1 f j(ai) = c(ai), then there exists some j′ ̸= j, such that f j′(ai) > 0
and j′ <ai

j, so if an arc is saturated, then there is some commodity flow
on it, that the arc is willing to trade in order to send more of commodity
j.

Definition 6.8. A multicommodity flow is called stable, if it is feasible, and
there is no blocking walk with respect to any commodity.

smf
Input: An instance I of the stable multicommodity flow problem.
Output: A stable fractional multicommodity flow f .

ismf
Input: An instance I of the stable multicommodity flow problem.
Question: Is there an integral stable multicommodity flow?

The variants of these two problems where the number of commodities are a
fixed constant k will be denoted as k-smf and k-ismf respectively.

First we give a simpler proof of the existence of a stable multicommodity
flow, first proven by Király and Pap [18], that also shows that smf is in PPAD:

Theorem 6.9. [7] The smf problem can be reduced to scarf in polynomial-
time, so in every multicommodity flow instance there always exist a stable frac-
tional solution.

Proof. We will construct a matrix (see Figure 1) and apply Scarf’s Lemma, then
prove that all the dominating solutions correspond to stable multicommodity
flows. Then, since a dominating solution always exists, we are done. Let Q be
the following matrix: It has n|E|+ 2n|V | columns and (n + 1)|E|+ 2n|V | rows.
The columns are indexed by ej

i , i = 1, . . . , |E|, j = 1, . . . , n and these correspond
to the f j(ei) values in the solution. The remaining 2n|V | columns are indexed
by vj,in

i , i = 1, . . . , |V |, j = 1, . . . , n and vj,out
i , i = 1, . . . , |V |,j = 1, . . . , n and

we will need them to maintain that δj(v) = ρj(v) for every v, j. The rows are
the following:

1. First we add one row for each ei ∈ E. There are n 1-s in each row,
such that Qei,ej

i
= 1 for j = 1, . . . , n, and the other entries are 0. The

constraints on the right side are the c(ei) capacities and the ranking of
the columns are the same as the <ei

ranking of the edges.

2. Then we add n|E| rows for each ej
i that have only one 1-s, such that

Qej
i
,ej

i
= 1 and 0 otherwise. Obviously these rows do not need orderings.

The constraint on the right side for these rows are the cj(ei) capacities.

3. Then we have a row vj,in
i for each vi ∈ V and j = 1, . . . , n. In the first

n|E| columns Qvj,in
i

,ej′ = 1 if and only if e = uvi for some u ∈ V and
j = j′ and 0 otherwise. Furthermore, Qvj,in

i
,vj,in

i
= 1 and Qvj,in

i
,vj,out

i
= 1

and the other entries are 0. The right side has constraints q(vi), where

51



E1 E2 En V 1,inV 1,out V n,inV n,out

E

E1

En

V 1,in

V 1,out

V n,in

V n,out

≤

≤

I I I

I 0 0

0 I

Ain

Aout

0

0

0

0

0

0

0

0

Ain

Aout

0

0

0

0

I

I

I

I

00

0 0II

I I

c(E)

c1(E)

q(V )

q(V )

cn(E)

q(V )

q(V )

0

0

Figure 1: The matrix used in the reduction. Ain and Aout denote the in and
out incidence matrices of D respectively.

q(vi) is large enough such that at least one of xvj,in
i

and xvj,out
i

has to be
positive in order to achieve equality. (For example summing c(e) on the
adjacent edges to v and adding 1 is enough). The ranking on the columns
are the following: The worst entry in row vj,in

i is vj,out
i , the best is vj,in

i

and the others are ranked according to >j
vi

.

4. Finally we have a row vj,out
i for each vi ∈ V and j = 1, . . . , n. Here

Qvj,out
i

,ej′ = 1 if and only if e = viu for some u ∈ V and j = j′, 0
otherwise, and Qvj,out

i
,vj,out

i
= 1, Qvj,out

i
,vj,in

i
= 1 same as above. The

constraints will be the same q(vi)-s too. The ranking on the columns are
the following: The worst entry in row vj,out

i is vj,in
i , the best is vj,out

i and
the others are ranked according to >j

vi
.

Now, we have a polyhedron {Qx ≤ q, x ≥ 0}, which satisfies the conditions
of Scarf’s lemma, so we know that there is some solution x∗ that dominates
every column. We have to show that f = (f1, . . . , fn), f j(e) = x∗

ej is a feasible
flow and that it is stable.

Lemma 6.10. f is a feasible flow, that is δj(v) = ρj(v) for each j = 1, . . . , n
and v ∈ V \ {sj , tj}, f j(e) ≤ cj(e) for each e ∈ E and j = 1, . . . , n and∑n

j=1 f j(e) ≤ c(e) for all e ∈ E.

Proof. First of all, because of the first (n + 1)|E| rows, the conditions f j(e) ≤
cj(e) and

∑n
j=1 f j(e) ≤ c(e) are trivially satisfied. To show that the inflows and

outflows are equal everywhere we need to observe the other rows. Let us take
any commodity j ∈ {1, . . . , n} and any vertex vi ∈ V \ {sj , tj}. We know that
since x∗ is a dominating it dominates both of columns vj,in

i and vj,out
i . Because

52



of the construction of the matrix they can only be dominated at row vj,in
i or

vj,out
i . We have two cases:

a) If they are dominated at separate rows, then by definition, both row
binds (the constraint is satisfied with equality). That means δj(vi) = ρj(vi) =
q(vi)− x∗

vj,out
i

− x∗
vj,in

i

, so we are done in this case.
b) If they are both dominated at, say row vj,in

i , then since column vj,in
i is

the best for this row, it can only be dominated, if every other x coordinate is
zero, where there is a 1 in row vj,in

i . So x∗
vj,in

i

= q(vi). Then, because of x∗ ≥ 0,
and Qvj,out

i
x∗ ≤ q(vi), and Qvj,out

i
,vj,in

i
= 1 we can see that every other entry is

zero in row vj,out
i too. So δj(vi) = ρj(vi) = 0. The case when the columns are

dominated in row vj,out
i is analogous.

Lemma 6.11. f is stable.

Proof. Let us suppose f is not stable and there exists a blocking walk W =
(v1, a1, . . . , vk) with respect to some commodity j. Since x∗ is a dominating
solution, it dominates every column. First observe, that the aj

i -s cannot be
dominated at row aj

i , since that would mean that they are saturated by f j ,
which contradicts the fact that W is a blocking walk. They also cannot be
dominated at the ai rows, since that would mean that

∑n
l=1 f l(ai) = c(ai) and

for every j′ ̸= j for which f j′(ai) > 0, ai prefers aj′

i to aj
i , so there is no j′ ̸= j

such that f j′(ai) > 0 and j′ <ai
j, contradiction.

Now let us look at where aj
1 is dominated. If v1 ̸= sj and it is dominated

at row vj,out
1 , then that means that every entry that vj,out

1 prefers less has value
0 in x∗. So there is no v1u ∈ E, such that f j(v1u) > 0 and v1u <j

v1
v1v2,

contradiction. If v1 = sj , then there is no vj,out
1 row, so aj

1 obviously cannot be
dominated there.

So the only possible case left is that it is dominated at row vj,in
2 . So by the

domination we can see that x∗
vj,out

2
= 0, since it is the worst column for this row,

so it is worse than aj
1 too. This also means that x∗

vj,in
2

> 0, since one of them
has to be positive, because the corresponding row binds. So if we take a look
at aj

2, it still cannot be dominated at row a2 or aj
2, and neither at row vj,out

2 ,
since that would mean that every entry that the row prefers less is zero in x∗,
but we have just seen that x∗

vj,in
2

> 0 and since it is the worst column it is also
worse than aj

2. So aj
2 can only dominated at row vj,in

3 . Continuing using the
same argument we can conclude that aj

k−1 has to be dominated at row vj,in
k . If

vk = tj , then there is no such row, contradiction. If not, then this would mean
that there is no uvk ∈ E, such that f j(uvk) > 0 and uvk <j

vk
vk−1vk, because

of the domination, so we get a contradiction in this last case too.

So now we can conclude that the multicommodity flow given by x∗ is a stable
multicommodity flow indeed, and as a consequence of Scarf’s lemma, one always
exists.

53



Next we prove a useful lemma, that shows that every instance of the sta-
ble multicommodity flow problem can be reduced to a much simpler one in
polynomial-time, such that the solution of the two instances are in a bijection,
which preserves integrality.

Lemma 6.12. [7] For every k ∈ N, we can reduce any instance of k-smf
or k-ismf in polynomial time to another instance of k-smf or k-ismf where
every commodity has the same terminal and source, the >i

v preferences are the
same for all i for any v ∈ V , there are no commodity specific capacities and
ρ(v) + δ(v) ≤ 3 for all non s, t vertices.

Proof. First we use the reduction used by Cseh [9] to get a version that satisfies
the first three conditions. Now let v be any non s, t vertex and let e1 >v e2 · · · >v

ek be its incoming edges and f1 >v f2 · · · >v fl be its outgoing edges (after the
reduction). Then we substitute each vertex v with a gadget Gv. Gv will consist
of vertices v′

1, . . . , v′
k and v′′

1 , . . . , v′′
l . There is a v′

iv
′
i−1 and a v′′

i vi+1 arc for all
i and a v′

1v′′
1 arc. These have large enough capacity, such that they cannot be

saturated (for example
∑k

i=1 c(ei)+1). These edges can forward any commodity
and have arbitrary preferences on them. Then for every ei = uv, i = 1, . . . , k
we make an arc e′

i = u′′
j v′

i that has the same capacity and preferences on the
commodities as ei, where j is the rank of ei in u’s preference list. Similarly
for each fj = vw we make an arc f ′

j = v′′
j w′

i, where i is the rank of fj in w’s
ranking. Furthermore, let the rankings of the new vertices be e′

i >v′
i

v′
i+1v′

i and
f ′

j >v′′
j

v′′
j v′′

j+1.
It is clear that a flow f can be extended to a flow f ′ in the new graph and

vice versa any flow f ′ in the new graph can be reduced to a flow in the original
graph by contracting the vertices in the gadgets, since any flow can only enter
a gadget on a copy of an original edge and leave on a copy of another original
edge. It is also clear that this preserves integrality.

Now let us suppose f was stable but there is a blocking walk W ′ = (v1, a1, . . . , vk)
with respect to commodity j to f ′. That means that all ai-s are either unsat-
urated or there is a worse (for them) commodity flowing through them, v1 = s
or there is an edge v1u such that f ′j(v1u) > 0, v1u <v1 v1v2 and vk = t or there
is an edge wvk with f ′j(vk) > 0 and wvk <vk

vk−1vk. But this means that the
corresponding walk W in the original graph will be a blocking walk too, since if
any v′

i copy of v in a gadget has incoming flow from the worse edge than a1 = e′
i,

then v has incoming flow from a worse edge than ei too, since only paths that
come from a worse edge can use v′

i+1v′
i, and analogously for outgoing edges. So

W blocks with commodity j, contradiction. The other direction is similar, since
if each edge of a walk is unsaturated/or there is a worse commodity on them,
then in the new graph this is also true because the v′

iv
′
i−1, v′

1v′′
1 and v′′

i v′′
i+1

edges cannot be saturated. Also, if there was a flow coming from a worse edge
for v than some e, then this flow uses a v′

iv
′
i−1 edge to vi (for some i, such that

e is v’s i-th choice) which is worse for v′
i than e′

i and if there was a flow leaving
on a worse edge f for v then this flow leaves v′′

j on a v′′
j v′′

j+1 edge which is worse
for v′′

i , than f ′
j so we get a blocking walk again, contradiction

54



Remark 6.13. Because the smf problem is PPAD-hard for unit capacities, we
can assume that the q(v) values we need to reduce smf to scarf are bounded
above by the number of edges. That means, making q(v) copies of objects in
our reduction can be done in polynomial-time.

Using that smf is in PPAD and it is PPAD-hard, as proven by Király and
Pap [18], the following theorem is immediate.

Theorem 6.14. The smf problem is PPAD-complete.

Now we strengthen this result by showing that the problem remains PPAD-
complete for very restricted instances and only 3 commodities. Recall from
theorem 4.21 that Fractional hypergraph matching is PPAD-complete
even if each hyperedge has size at most 3, and each vertex has degree at most
3, each capacity is 1 and the hypergraph is polynomial-time 3 edge-colorable.

Theorem 6.15. [7] 3-smf is PPAD-complete even if all capacities are 0 or 1, all
commodities have the same source and terminal and the subgraphs corresponding
to the edges that can forward a commodity form disjoint st paths.

Proof. Since we have proven that Fractional hypergraph matching is
PPAD-complete even if the hypergraph is 3 edge-colorable, we only need to
reduce hypergraphs with this property. But before we make the reduction, we
color the edges of the hypergraph with 3 colors as mentioned before. The trick
is that now we will only need 3 commodities, one for each color.
Let us describe the reduction itself. Let our (3-colorable) hypergraph be (V, E),
V = {v1, . . . , vn}. Now the new graph for the 3-smf instance will have the
following vertices: for each vi ∈ V we have two vertices v′

i and v′′
i . Further-

more we make a source s and a sink t. The edges will be the following: For
each i we add an edge ei = v′

iv
′′
i with capacity 1, that can only forward the

commodities corresponding to the colors of the edges adjacent to vi (so other
commodity capacities are 0). The ranking of ei on the relevant commodities is
the same as the ranking of vi on the adjacent hyperedges. Then, for each hyper-
edge e = {vj , vk, vl} (we can suppose the hypergraph is 3 uniform by padding
smaller hyperedges with dummy vertices) we add sv′

j , v′′
j v′

k, v′′
k v′

l and v′′
l t edges

that can only carry the commodity corresponding to the color of e.
Now observe that because of the properties of the coloring, for each com-

modity, the edges that it can travel on form internally disjoint st paths. So
each commodity i can only flow on a path corresponding to a hyperedge of
color i, and for each hyperedge of color i we can send a flow of commodity
i on the corresponding path. So the fractional flows correspond to fractional
matchings and vice versa. Furthermore, a blocking hyperedge would mean that
the corresponding path is blocking, and a blocking st path would mean that the
corresponding hyperedge is blocking. Since a blocking walk can only start from
s and end in t in this graph, we are done.

Now we turn our attention to the integral case and prove that deciding if
there exists an integral stable multicommodity flow is hard even if we have only

55



three commodities. First, we mention that the containment of ismf in NP is
already known:

Lemma 6.16 (Király and Pap [18]). ismf is in NP.

Proof. It suffices to prove that it can be verified if a given flow is stable or not.
Suppose we are given a multicommodity flow f . For each pair u, v ∈ V and
commodity j ∈ [n], we make a directed graph Du,v;j , where only edges with
f j(e) < cj(e) are included, and saturated edges are only included, if there is a
commodity j′, that is worse for e and f j′(e) > 0. Also, if u ̸= sj , we delete the
worst edge uv′ for u with f j(uv′) > 0 and every edge worse that uv′. Similarly,
if v ̸= tj , we delete the worst edge u′v with f j(u′v) > 0 and every worse edge
for v.

It is easy to see that if Du,v;j contains an uv path, than it will block. Sim-
ilarly, if f is not stable, then there is a blocking walk W = {v1, e1, .., vk}, so
when u = v1 and v = vk, we will find a blocking walk.

This shows that deciding the stability of a given flow f can be done in
polynomial-time, even for fractional flows.

Recall the following theorem (theorem 5.6) we proved in the previous section.
Now we state it in more detail, but the proof is exactly the same.

Theorem 6.17 (Biró et al.). (2,2)-hrc is NP-complete, even if the following
conditions hold:
I) Each hospital has capacity one,
II) Each hospital appears at most once in every couple’s preference list,
III) There are no single residents,
IV) Most hospitals receive applications only from men or women (we will call
these man; and woman-Hospitals respectively) and the hospitals for which this
is not true can be grouped to triangles (hi

1, hi
2, hi

3) with couples ci
1, ci

2, ci
3 such

that they only receive application from ci
1, ci

2, ci
3 and the preference lists are the

following:
ci

1 : (∗, ∗) > (hi
1, hi

2)
ci

2 : (∗, ∗) > (hi
2, hi

3)
ci

3 : (∗, ∗) > (hi
3, hi

1)
hi

1 : ci
3 > ci

1
hi

2 : ci
1 > ci

2
hi

3 : ci
2 > ci

3,
where ∗-s denote man or woman-hospitals. Furthermore each man; or woman-
hospital only receives at most one application from these triangles.

We will need the details of the construction, so we describe it again here.
The reduction is from the problem problem (2,2)-e3-sat, that is the problem
of deciding if a given Boolean formula φ in CNF over a set of variables V is
satisfiable, where φ has the following properties: (i) each clause contains exactly
3 literals and (ii) for each vi ∈ V , each of literals vi and vi appears exactly twice
in φ. Let V = {v1, . . . , vn} be the set of variables and C = {c1, . . . , cm} be the

56



set of clauses. Then the couples of the hrc insctance will be A∪B, where A =
{(ar

i , br
i ) : r = 1, 2, i = 1, . . . , n} and B = {(cs

j , ds
j) : s = 1, 2, 3, j = 1, . . . , m}.

The hospitals will be H ∪ T , where H = {hr
i : r = 1, . . . , 6, i = 1, . . . , n},

T = {tr
j : r = 1, . . . , 6, j = 1, . . . , m}. Define h(ds

j) to be h2r+1
i if the r-th

appearance of vi is at position s at cj , and h2r+2
i if the r-th appearance of vi is

at position s at cj . Similarly let d(h2r+1
i ) be ds

j if the r-th occurrence of literal
vi is at the s-th position of cj and d(h2r+2

i ) be ds
j if the r-th occurrence of literal

vi is at the s-th position of cj . So the possible applications, with the order of
the preferences are the following:
(a1

i , b1
i ) : (h1

i , h3
i ) > (h2

i , h4
i )

(a2
i , b2

i ) : (h2
i , h5

i ) > (h1
i , h6

i )
(c1

j , d1
j ) : (t4

j , h(d1
j )) > (t3

j , t1
j )

(c2
j , d2

j ) : (t5
j , h(d2

j )) > (t1
j , t2

j )
(c3

j , d3
j ) : (t6

j , h(d3
j )) > (t2

j , t3
j ).

Theorem 6.18. [7] 3-ismf is NP-complete even if all capacities are 0 or 1, all
commodities have the same source and terminal and the subgraphs corresponding
to the edges that can forward a commodity form disjoint st paths.

Proof. The problem is in NP by Lemma 6.16, so we only have to prove NP-
hardness.

We will prove that the instances we can get in the reduction of theorem 5.6
can be further reduced to an instance of a Fractional hypergraph match-
ing problem, where the hypergraph is 3 edge-colorable. Then we are done,
because we can use the same reduction as in the proof of Theorem 6.15, since
it preserves integrality too and its two-way, so stable matchings correspond to
stable flows and vice versa.

Let our hypergraph be H = (V, E), where V = A ∪ B ∪ H ∪ T , and the
hyperedges are the possible couple-hospital triples. Since in the hrc instance,
each couple only applies to a given hospital in one of their choices, the rankings
of the hospitals on the residents can be extended to a ranking on the couples
(since from every couple only one of them applies to any given hospital). This
also means that any hospital and couple vertex uniquely defines a hyperedge in
E if one exists. So the preferences of a hospital h on the couples can be directly
extended to the preference of vertex h on the adjacent hyperedges. The couples’
preferences are easily extended too.

Now it is easy to observe that integral stable matchings of the two instances
correspond to each other, since a blocking (c, h, h′) coalition would mean a
blocking hyperedge and vice versa. So again, it only remains to prove that we
can color the hyperedges of H by three colors.

First, we color the edges that contain couples of the form (cs
j , ds

j). We claim
that we can color these in such a way that any such edge containing a hospital
of the form h3

i , h4
i , h5

i or h6
i will be green or red. But this can be seen from the

fact that these couples can be partitioned to groups of three, whose hyperedges
only intersect other edges outside (and only ones containing (ar

i , br
i ) couples) in

the h3
i , h4

i , h5
i and h6

i vertices. Also in any group, a hospital of this form can

57



only be in one hyperedge, since we know it is in at most two, and one of them
contains an (ar

i , br
i ) pair. So we can just color two of the three hyperedges of

the form ((cs
j , ds

j), ts+3
j , h(ds

j)) green and the third red and we can still color the
remaining ((c1

j , d1
j ), t3

j , t1
j ), ((c2

j , d2
j ), t1

j , t2
j ) and ((c3

j , d3
j ), t2

j , t3
j ) edges properly.

Now, the remaining edges form disjoint quartets, apart from the h≥3
i ver-

tices. But we now know that on every h3
i , h4

i , h5
i and h6

i there is only green
and red hyperedges. It is straightforward to verify that in every case we can
color the ((a1

i , b1
i ), h1

i , h3
i ), ((a2

i , b2
i ), h2

i , h5
i ), ((a1

i , b1
i ), h2

i , h4
i ) and ((a2

i , b2
i ), h1

i , h6
i )

hyperedges properly with 3 colors. For example when h3
i and h4

i are red and
h5

i and h6
i are green the following coloring will be appropriate: ((a1

i , b1
i ), h1

i , h3
i )

and ((a2
i , b2

i ), h2
i , h5

i ) yellow, ((a1
i , b1

i ), h2
i , h4

i ) green and ((a2
i , b2

i ), h1
i , h6

i ) red.

If the number of commodities are only two, then if we assume that the
two sources and terminals are the same, and the edges corresponding to one
commodity form disjoint st paths, then the problem always admits a stable
integral multicommodity flow, and it can be found in polynomial time.

Lemma 6.19. [7] 2-ismf and 2-smf can be solved in polynomial time by Algo-
rithm 6 if the two sources and terminals are the same, and the edges that can
forward a given commodity form disjoint st paths.

Proof. Since in a network like this every blocking walk has to be an st path,
we only have to check the stability regarding these. But if an st path would
block with respect to commodity 1, then the path is unsaturated by commodity
1, so there was a step when we decreased a flow, but in the last such step, an
edge that prefers commodity 2 became saturated, so the path cannot block. A
path also cannot block with commodity 2, because otherwise we would have
sent more flow of commodity 2 in the steps corresponding to that path.

Algorithm 6
Saturate all st paths corresponding to commodity 1 with commodity 1.
Let P1,..,Pk be the st paths that can forward commodity 2.
for i = 1, ..., k do

while Pi is not saturated with commodity 2 and all saturated edges e ∈ Pi

that forward a positive value of commodity 1 prefer commodity 2 do
increase the flow of commodity 2 on Pi by 1,
decrease the flow of commodity 1 on the commodity 1 st paths that

became oversaturated, by 1.
end while

end for

An immediate consequence is the following:

Theorem 6.20. Every instance of the fractional hypergraph matching
where the hypergraph is 2 edge-colorable always admits an integral stable match-
ing and it can be found in polynomial time.

58



Remark 6.21. The algorithm of Ishizuka and Kamiyama also works for the
2 edge-colorable case, since then all degrees are at most 2, but only if each
capacity is 1. Furthermore, their algorithm only returns a half integer solution
and it can happen that it returns a fractional solution even if there is an integer
one. It is easy to check that for example in an even cycle, where everyone prefers
its left neighbor, there exists a stable matching, but the algorithm of Ishizuka
and Kamiyama returns the fractional matching with all edge weights set to 0.5.

If we do not require the edges which can forward a given commodity to form
disjoint st paths, then we can further reduce the number of commodities needed
for NP-completeness to two.

Theorem 6.22. [7] 2-ismf is NP-complete even if all capacities are 0 or 1.

Proof. We will prove this by reducing the version of (2,2)-hrc described in
theorem 6.17.

Let I be an instance of hrc. We call a couple c ordinary if cm only applies
to man-hospitals and cw only applies to woman-hospitals.

We construct an instance I ′ of 2-ismf the following way: First of all let
us make a source vertex s that will be the source of every commodity, and a
sink vertex t that will be the sink of every commodity. Then, for each cou-
ple c we assign vertices v(cm) and v(cw) and an edge e(c) = v(cm)v(cw) with
c(e(c)) = c1(e(c)) = c2(e(c)) = 1. If c is ordinary, then let e(c)’s ranking
on the commodities be 1 >e(c) 2 (for non-ordinary couples we will clarify this
later). Next for every man-hospital h, we assign a vertex v(h) and an edge
e(h) = sv(h) with c(e(h)) = c1(e(h)) = c2(e(h)) = 1. Then, since h can appear
at most twice on the preference lists of couples, we make one or two edges from
v(h) to the v(cm) vertices of these couples. If c is an ordinary couple, then
the edge v(h)v(cm) can only carry commodity 1 (so other capacities are 0) if
h is in c’s first choice, and commodity 2 if it’s in c’s second choice. If c is not
ordinary, then the edge v(h)v(cm) can forward only one commodity too, that
will be clarified later in the description of the gadgets. Now if the two edges
leaving v(h) can carry only different commodities, then there is no need to rank
the outgoing edges, but we rank the commodities on e(h) in such a way that
the commodity that can travel to the better couple for h is first and the other
is second. If the two edges can only carry the same commodity, then we do not
need rankings on e(h), since only one commodity will be able to travel on it,
but we rank the two outgoing edges the same way as h ranks the two couples
they are pointing to. Similarly, we make vertices v(h), and edges v(cw)v(h) and
v(h)t for all woman-hospitals. The rankings, incoming edges and capacities are
made symmetrically.

For a triumvirate (c1, c2, c3) consisting of non-ordinary couples we make the
following gadgets (see Figure 2 ):

We make four vertices u12, v12, u3, v3 and edges su12, u12v(cm
1 ), u12v(cm

2 ),
v(cw

1 )u3, v(cw
2 )v3 and v12t each with capacities c(e) = c1(e) = 1, c2(e) = 0. We

add further edges sv(cm
3 ), v(cw

3 )u3, v3t with capacities c(e) = c2(e) = 1, c1(e) =
0. Finally we add an u3v12 edge with c(u3v12) = c1(u3v12) = c2(u3v12) = 1,

59



s

u12

cm1

cw1

cm2

cw2

v3u3
cm3

cw3

hm
1 hm

2

hw
2

hm
3

hw
3

hw
1

11

1 1

2

2

2

2

1

2

2

2

2

2 > 1 2 > 1

1 > 2 2

1

1

1

2 > 1
1 > 2

2
1

t

1

2

v12

Figure 2: The gadget used in the reduction of Theorem 6.22. The hm
i and hw

i

hospitals are ci’s first choice hospitals. Label 1 on an edge means c1(e) = 1,
c2(e) = 0, similarly for 2 and 1 > 2, 2 > 1 labels represent the edge’s ranking
when both commodity can travel on it.

with ranking 2 > 1 and a v12v3 edge, which can forward commodity 1 from v3
to v12 and commodity 2 from v12 to v3 (but only one unit of flow can go through
it), with ranking 1 > 2. We can implement this two-way edge with a subgadget
G′ the following way: make two more vertices v′

12 and v′
3 and add directed edges

v3v′
3 and v′

12v12 with unit capacity that can only carry commodity 1 v12v′
3 and

v′
12v3 with unit capacity that can only carry commodity 2 and an edge v′

3v′
12

with c(v′
3v′

12) = c1(v′
3v′

12) = c2(v′
3v′

12) = 1 and preference 1 > 2. It is easy to
check that this subgadget only lets commodity 1 and commodity 2 flow in the
direction we want it, and since both must pass through edge v′

3v′
12, the total

flow on v3v12 is at most one. From these new vertices only u12 and v12 need
rankings, since only they have two incoming/outgoing edges that can forward
the same commodity. Let u12v(cm

1 ) >u12 u12v(cm
2 ) and u3v12 >v12 v3v12 be

their preferences.

60



Later, we will refer to all these edges that we added as gadget edges. Now
we can describe the non-ordinary couple-hospital edges’ preferences: if cj ’s first
choice is (hj , h′

j), then the edges v(hj)v(cm
j ) and v(cw

j )v(h′
j) can only carry

commodity 2 if j = 1, 2 and commodity 1, if j = 3. Furthermore let the
preferences on the v(cm

j )v(cw
j ) edges be 2 > 1, if j = 1, 2 and 1 > 2, if j = 3.

The flows and matchings will correspond to each other the following way: if
an integer flow of commodity 1 or 2 flows through an ordinary couple’s edge e(c),
then in the corresponding matching c is matched to their first or second choice
respectively. If no flow uses e(c), then c remains unassigned. If the integer
flow uses edges v(h)v(cm) and v(cw)v(h′) then cm is assigned to h and cw is
assigned to h′. If c = cj j = 1, 2 is part of a triumvirate, then if commodity 2
flows through v(cm

j )v(cw
j ) (and then through corresponding hospitals) then cj

is matched to its first choice and if commodity 1 flows through v(cm
j )v(cw

j ) (and
then through the gadget to t) then cj is matched to its second choice (hj , hj+1).
Similarly for c3 with the difference that commodity 1 means it is matched to
its first choice and commodity 2 (which can flow through the gadget) that it is
matched to its second choice.

Conversely, if an ordinary couple c is matched to hospitals (h, h′), then we
send a flow of commodity 1 or 2 (depending on whether its c’s first or second
choice) through s → v(h) → v(cm) → v(cw) → v(h′) → t. If a non-ordinary
couple cj is matched to its first choice, then we do the same, if it is matched to its
second choice, then we send a flow of commodity 1 if j = 1, 2 and commodity 2,
if j = 3 through the gadget. (For clarity, the path for c1 is s→ u12 → v(cm

1 )→
v(cw

1 ) → u3 → v12 → t, and for c2 it is s → u12 → v(cm
2 ) → v(cw

2 ) → u3 →
v12 → t and finally for c3 it is s→ v(cm

3 )→ v(cw
3 )→ u3 → v12 → v3 → t).

Lemma 6.23. If M is a feasible matching in I, then the constructed flow f is
feasible in I ′ and vice versa.

Proof. Let M be a feasible matching. Then, every couple is assigned to at most
one hospital and every hospital has at most one resident. So on each path that
goes through an ordinary couple’s edge, there is at most one unit of flow and
similarly through each sv(h) and v(h)t edge for each man or woman-hospital.
Other edges not in gadgets are only forwarding flow between these types of
edges, so they aren’t oversaturated either.

To see the flow is feasible on the gadget edges too, observe that its feasibility
on the v(cm

j )v(cw
j ) edges follow from the same argument, and on the other edges

it could only fail if we send more than one unit of flow through su12, u3v12 or
v12v3, but either would mean that two of the corresponding c1, c2, c3 couples are
assigned to h1, h2, h3, so at least one hospital exceeds its quota, contradiction.

Now, if f is feasible, then on each couple and ordinary hospital edge there
is at most one unit of flow, so the capacity constraints of couples and man; or
woman-hospitals are satisfied. And since only one unit of flow can run on each
of the edges su12, u3v12 or v12v3, the capacity of the non-ordinary hospitals are
satisfied too.

Lemma 6.24. M is stable if and only if f is stable.

61



Proof. Suppose M is stable, but f is not, so there exists a blocking path W
with commodity l (l = 1 or 2). It can only be a path, since the set of edges on
which a given commodity can travel form an acyclic graph.

Case a) W does not go through a gadget edge.
Case a1) W is an s→ t path.
In this case W goes through an sv(hm) edge, an e(c) edge and a v(hw)t edge

too. All of them are either unsaturated or a worse commodity goes through
them, which means that the couple is either unemployed or it is at its second
choice, while (hm, hw) is its first choice, hm is either empty, or the man at hm

is worse for hm and similarly for hw. But either of the options means that
(c, hm, hw) is a blocking coalition, contradiction.

Case a2) W is not an s→ t path.
This means that it starts at a vertex v(hm) or ends at a vertex v(hw) or

both. It cannot start or end at any other vertex, since there is no other vertex
from where there are two outgoing or two incoming edges that could carry the
same commodity (except in the gadget). If W starts at v(hm), then there has
to be a flow of the same commodity on the other edge from v(hm), that v(hm)
prefers less. But this means that hm has a resident it prefers less than cm.
Similarly if W ends at v(hw) then the resident at hw is worse for hw than cw.
So we get that (c, hm, hw) is a blocking coalition in this case too, contradiction
again.

Case b) W goes through a gadget edge.
By the construction of the gadgets we basically have only 3 choices for (W, l):

The first one is W = s → u12 → v(cm
1 ) → v(cw

1 ) → u3 → v12 → t and
l = 1, which would mean that c1 is unassigned (because v(cm

1 )v(cw
1 ) has to be

unsaturated, since 2 > 1 for them), and commodity 2 does not flow through
the gadget, since then (W, 1) would not be blocking on u3v12. So c3 is not
assigned to (h3, h1), therefore (c1, h1, h2) blocks, contradiction. Here, since
u12v(cm

1 ) >u12 u12v(cm
2 ) and u3v12 >v12 v3v12, W could start at u12 and end

at v12, but this would mean the same (here we know in addition that c2 must
be at (h2, h3), but that does not change the blocking of (c1, h1, h2), since c1 is
better than c2 at h2).

The second choice is W = s→ v(cm
3 )→ v(cw

3 )→ u3 → v12 → v3 → t, l = 2.
This means that c3 is unassigned and commodity 1 does not flow through the
gadget on v3v12 (since commodity 2 could not block there), so c2 is not assigned
to (h2, h3) and therefore (c3, h2, h3) blocks.

The third choice is W = s→ u12 → v(cm
2 )→ v(cw

2 )→ u3 → v12 → t, l = 1.
This means c1 is not at (h1, h2) (since then su12 would be saturated ) and c2 is
unassigned, so (c1, h1, h2) blocks, contradiction again.

Now let us suppose we have a stable flow f , but there is a coalition (c, h, h′)
blocking M .

Case a) c is an ordinary couple.
Then h = hm and h′ = hw for some man; and woman-hospitals respectively.

Since c prefers these to its current assignment, either there is no flow through
e(c) or it is of commodity 2. The hospitals would hire the residents in c too,
which means by the definition of the rankings, that either there is no flow

62



through sv(hm) and v(hw)t or another type of flow goes through them that the
corresponding edges prefer less, or if the same commodity goes through them,
then v(hi) would prefer to send or receive the commodity on the other edge.
Either would mean that there is a blocking path through these vertices (with
commodity 1 if it was c’s fist choice and commodity 2 otherwise), contradiction.

Case b) c is not an ordinary couple.
If h and h′ are man; and woman-hospitals respectively, then using the same

reasoning and that since c cannot be at its first choice, the edge v(cm
j )v(cw

j ) is
either empty or has the commodity which it prefers less, we can construct a
blocking walk with commodity 2 (j = 1, 2) or commodity 1 (j = 3) through
v(h), e(c) and v(h′) again.

If (c, h, h′) = (c1, h1, h2), then c1 is unassigned and c3 cannot be at (h3, h1),
so there is no flow of commodity 2 through the gadget. There may be a flow
through s → u12 → v(cm

2 ) → v(cw
2 ) → u3 → v12 → t, but since u12v(cm

1 ) >u12

u12v(cm
2 ) and u3v12 >v12 v3v12, either W = s→ u12 → v(cm

1 )→ v(cw
1 )→ u3 →

v12 → t or W = u12 → v(cm
1 ) → v(cw

1 ) → u3 → v12 is a blocking walk with
commodity 1.

If (c, h, h′) = (c2, h2, h3), then c2 is unassigned and c1 cannot be at (h1, h2),
so there can only be a flow of commodity 2 on the gadget, but either way
W = s→ u12 → v(cm

2 )→ v(cw
2 )→ u3 → v12 → t blocks with commodity 1.

Finally if (c, h, h′) = (c3, h3, h1), then c3 is unassigned and c2 isn’t at (h1, h2),
therefore W = s → v(cm

3 ) → v(cw
3 ) → u3 → v12 → v3 → t blocks with

commodity 2.

So we have proven that integral stable matching in I and integral stable
flows in I ′ correspond to each other, which proves that 2-ismf is NP-complete
indeed.

7 Back to the Hospital-Resident-Couple prob-
lem

7.1 Finding near-feasible solutions
Although as we have shown, stable matching need not exist in instances of

the Hospital-Resident problem, where couples are allowed, and even deciding
their existence in a given instance is NP-hard. in this section we will show
that at least we can always find so called near feasible solutions, although not
necessarily in polynomial time.

To be able to always find stable matchings, we relax the capacity constraints
of the hospitals, such that each kh capacity can be violated by at most 2. As we
will see, this is enough to guarantee the existence of a stable solution. Since the
quotas can be violated now, we call such solutions near-feasible stable solutions.

The rest of the section summarizes the results of Nguyen and Vohra [27].
First of all we extend the rankings of the hospitals on the residents to a

strict ranking over all the possible coalitions. For a hospital h, if two coalitions

63



contain h, then h ranks these two coalitions according to the worst resident in
the coalition that is applying to h (this is only relevant when both members of
a couple c apply to h). In the case when this resident is the same, h breaks the
ties according to the strict preference of the resident/couple that is contained
in both coalitions.

Then, we make a matrix Q whose columns are the possible (d, h) and (c, h, h′)
coalitions and the rows are the elements of H ∪ D ∪ C. There is a 1 in the
corresponding entry of the matrix Q, if the agent/hospital corresponding to the
row is a part of the coalition corresponding to the column and a 0 otherwise.
The only exception is when the row is some hospital h, and the column is a
coalition of the form (c, h, h). In that case the corresponding entry in Q is 2.
The bounding vectors are 1 in the residents and couples’ rows and kh in the
hospital’s rows.

Equivalently, we take the matrix describing the following inequalities:∑
d∈D

x(d,h) +
∑
c∈C

∑
h′ ̸=h

(x(c,h,h′) + x(c,h′,h)) +
∑
c∈C

2x(c,h,h) ≤ kh ∀h ∈ H

∑
h∈H

x(d,h) ≤ 1 ∀d ∈ D∑
h,h′∈H

x(c,h,h′) ≤ 1 ∀c ∈ C

Call this system {Qx ≤ q}. Since we have extended the rankings of the
hospitals on the residents to a strict ranking on the coalitions, we now have a
strict ordering on the columns for each row of the matrix, therefore it satisfies
the conditions of Scarf’s lemma, meaning that there always exists a dominating
extreme point solution x ≥ 0.

Definition 7.1. For convenience, we say that h weakly prefers resident r1 to
r2 if r1 >h r2 or r1 = r2.

Lemma 7.2. Let x be a dominating solution of {x : Qx ≤ q, x ≥ 0} and
suppose x is integral. Then, x is a stable matching.

Proof. Suppose there is a blocking coalition to x.
If it is of the form (d, h), then d is unassigned or at a worse hospital in x

and also, h is unsaturated or has a worse resident r, than d. This means that
column (d, h) is not dominated, contradiction.

If the blocking coalition is of the form (c, h, h′) with h ̸= h′, then c is unas-
signed or at a worse choice. Similarly, h is either unsaturated or has a resident
r such that h weakly prefers cw to r, and for h′ it is also the case. By the defi-
nition of the rankings, any of the possibilities mean that the column (c, h, h′) is
not dominated at any row, contradiction.

If the coalition is of the form (c, h, h), then again c is unassigned or at a
worse place and h has 2 or more free places; or h has only 1 free space and there
is a resident r such that h weakly prefers a member of c to r; or h is full and
there are two residents r1, r2 at h such that h weakly prefers the worse member

64



of c to both r1 and r2; or if the better member of c is already at h, then it is
enough that there is a resident r1 such that the worse member of the couple
is preferred to r1 by h. Again, by the definitions of the rankings, all of the
possibilities lead to the fact that column (c, h, h) is not dominated.

Now we state a crucial lemma that guarantees that rounding a fractional
dominating solution in a certain way results in a near-feasible stable matching.

Lemma 7.3. Let x be a (fractional) dominating extreme point of the system
{Qx ≤ q, x ≥ 0} and let x be an integer vector that satisfies the following
properties:

1. If xi = 0 for a coalition i, then xi = 0,

2. If
∑

h x(d,h) = 1 for a single doctor d, then
∑

h x(d,h) = 1 and similarly
for couples if

∑
h,h′ x(c,h,h′) = 1, then

∑
h,h′ x(c,h,h′) = 1.

Then, if we let k′
h = Qhx, if Qhx = kh and k′

h = max{Qhx, kh} otherwise, then
x corresponds to a stable matching with respect to the new k′

h capacities.

Proof. Suppose that there is a blocking coalition (d, h) to x. If (d, h) was dom-
inated at row d in x, then each h′ with x(d,h′) > 0 is at least as good as h for d,
so by condition 1 and 2 d is at a better hospital than h, contradiction. If it was
dominated at h, then h was saturated in x, so by the definition of k′

h, it is also
saturated in x. And since h weakly preferred everyone with a positive x value
to d, by condition 1, this still holds for x, therefore h is saturated with better
residents, contradiction. One can check similarly that any coalition involving a
couple also cannot block, so by our previous lemma, since x is integral, it is a
stable matching.

Also, by the definition of the k′
h capacities, it is trivial that x is a feasible

matching with respect to those quotas.

Now we describe the algorithm of Nguyen and Vohra [27] for finding a near
feasible stable solution. Its main idea is just to find a fractional dominating
solution with Scarf’s algorithm and then round it to an integral solution in a
way such that the capacities do not change a lot. First, we add an aggregate
capacity row∑

h

(
∑
d∈D

x(d,h) +
∑
c∈C

∑
h′ ̸=h

(x(c,h,h′) + x(c,h′,h)) +
∑
c∈C

2x(c,h,h)) ≤
∑

h

kh

to {Qx ≤ q}.

Theorem 7.4. (Nguyen and Vohra) [27] Let I be an instance of the hrc. Then,
there always exists k′

h capacities for each h ∈ H satisfying that |kh − k′
h| ≤ 2

∀h ∈ H and
∑

h kh ≤
∑

h k′
h ≤

∑
h kh + 4, such that there is a stable integral

matching M with respect to the k′
h capacities and these k′

h capacities and the
matching M can be found by the ir algorithm.

65



Algorithm 7 ir algorithm
Step 0: Let x := x be a dominating extreme point of {Qx ≤ q, x ≥ 0} found
by Scarf’s algorithm
Step 1:
if x is integral then

STOP
else if There is a hospital row Qh with Qh(⌈x⌉ − ⌊x⌋) ≤ 3 then

Eliminate it and go to Step 2.
else if There are at most 2 non-binding couple or single doctor rows such
that each of them contains a fractional variable then

Eliminate the aggregate capacity constraint and go to Step 2.
end if
Step 2: Find an extreme point z∗ maximizing

∑
i zi such that:

• zi = xi if xi = 0 or 1
• if Qdx = 1, then Qdz = 1, if Qcx = 1, then Qcz = 1 and if Qhx = kh

then Qhz = kh

• z satisfies all remaining capacity constraints
x := z∗ and go to Step 1.

Proof. First we prove that if the algorithm terminates, then it returns a near
feasible stable solution.

Suppose the algorithm terminated with an integral solution x∗. Define the
capacities k′

h as in Lemma 7.3. Notice that a hospital’s capacity only changes
if we eliminate its row: it can only increase if we eliminate its row, and it could
only decrease if its row was binding originally, but then it is always binding in
the solution until its row is eliminated. Observe that we only eliminate rows
satisfying Qh(⌈x⌉ − ⌊x⌋) ≤ 3, and for Qhx to change through the rounding, x
has to have corresponding fractional components, meaning that if Qhx is an
integer value strictly between Qh⌊x⌋ and Qh⌈x⌉ , then Qhx∗ can only change
by at most 2 and otherwise Qhx < kh. Hence, we only change the capacity if it
increases and it can only increase by less than 3, so it will be at most kh + 2 in
the end. This proves that |kh − k′

h| ≤ 2 for all h ∈ H.
Since in each iteration we find an extreme point z∗ that maximizes

∑
i zi,∑

h kh cannot decrease. Also, it can only increase if we delete the aggregate
capacity constraint. But that can only happen, if there are at most 2 doctor or
couple rows such that they can be rounded up, so

∑
h kh can only increase by

at most 4.
To show that x∗ is stable, we observe that the conditions of lemma 7.3 are

satisfied, therefore by lemma 7.3, x∗ is stable.
It only remains to prove that the algorithm terminates, which means that if

the solution x is not yet integral, then at least one of the elimination conditions
have to be satisfied.

Suppose the contrary. If all Qh rows and the aggregate capacity row have

66



been eliminated, then the remaining matrix is TU, because in each column there
is at most one nonzero element, which is a 1. So all extreme points of it are
integer valued, which would mean that x is integer, contradiction.

Otherwise, suppose there are some remaining Qh rows.
We will use the following well known lemma:

Lemma 7.5. (Lau et. al.[22]) Let x∗ be an everywhere strictly positive extreme
point of {Qx ≤ q, x ≥ 0}. Then the number of variables equals the maximum
number of linearly independent binding rows (where Qix

∗ = qi) of Q.

Let us make a matrix Q′ by deleting the columns i of Q whose xi components
are already integral. Furthermore let q′ = q − Q′′x′′, where Q′′ consists of the
columns whose xi components are integer and x′′ is the restriction of x to those
components. For the rest it obviously still holds that Q′x′ ≤ q′. Furthermore,
if x was an extreme point of {Qx ≤ q, x ≥ 0}, then x′ is an extreme point of
{Q′x ≤ q′, x ≥ 0}, which is everywhere strictly positive. This results in the
following Lemma:

Lemma 7.6. Let x be an extreme point of {Qx ≤ q, x ≥ 0}. Then, the number
of non-integral components of x, which is the number of columns of Q′, is equal
to the maximum number of linearly independent rows of Q′.

Denote by k the number of components of x′. We give each component of x′

1 token. Then, we redistribute the tokens among the rows of Q′ the following
way.

If the corresponding component is (d, h), then we give 3
4 token to d and 1

4
token to h.

If the corresponding component is (c, h, h′), then we credit c with 1
2 token

and h, h′ with 1
4 token each.

Because for each remaining hospital row Qh(⌈x⌉ − ⌊x⌋) ≥ 4, since none of
them can be eliminated, each hospital gets at least 4 · 1

4 = 1 tokens. Similarly,
each binding couple or single doctor row has to get tokens from at least 2 rows,
since each component of x′ is fractional. Therefore, they also get at least 2· 12 = 1
or 2 · 3

4 = 3
2 tokens respectively. So every binding row apart from the aggregate

capacity row obtains at least one token.
Case a) The aggregate capacity row has been eliminated.
In this case, all of the tokens are distributed among the hospital, doctor and

couple rows. As we have seen, each such binding row must get at least one token
and since x′ is an extreme point, there are at least k of them. That can only
happen if there are exactly k and each get exactly 1 token.

This means that no single doctor row binds, since then it would get more
than one token, as we have seen.

Since every component of x′ is strictly positive, it follows that there cannot
be columns corresponding to single doctors and all such rows that have a nonzero
element must bind. So we can throw out these all zero rows and get a matrix
where every row binds.

67



Therefore, for each remaining row it holds that either∑
c∈C

∑
h′ ̸=h

(x(c,h,h′) + x(c,h′,h)) +
∑
c∈C

2x(c,h,h) = kh

or ∑
h,h′∈H

x(c,h,h′) = 1

But then each type of the rows has to sum up to the same, contradicting the
fact that the rows must be linearly independent.

Case b): The aggregate capacity row hasn’t been eliminated.
Then, we know that at least k− 1 tokens are distributed among the binding

constraints that are not the aggregate capacity row, since there are at least
k − 1 of them (since the aggregate capacity row could bind too). But, since
the aggregate capacity row cannot be eliminated, there are at least 3 doctor or
couple rows that do not bind, but contain a fractional variable. Therefore, these
non-binding additional rows must get at least 3

2 tokens combined, meaning the
number of tokens are more than k, contradiction.

7.2 Hardness of f-hrc
In this section we show that even the fractional version of the hrc problem

is hard. To be more precise, we show that it is PPAD-complete.
This has important implications, since as we have just seen, there are al-

gorithms for finding near feasible stable matchings that start with finding a
fractional stable matching first, but now that we know that fractional solutions
are also hard to find, such methods usually will not be efficient.

This section also contains new results, that appeared in my working paper
[7].

We also show the hardness of the fractional version of the 3-dimensional
stable matching problem, or stable family problem. This problem is simply the
restriction of the stable hypergraph matching problem to 3-uniform, 3-partite
hypergraph. Then, the three classes of the vertices are usually interpreted as
the men, women and dogs respectively, hence its name. The hardness of the
integral version, that is deciding whether a stable matching always exists in such
an instance was one of the 12 open problems proposed by Knuth [20] and has
been answered to be indeed NP-hard by Ng and Hirschberg [26]. The fractional
version however has not been studied yet. Since it is a special version of the
stable hypergraph matching problem, as we have seen, Scarf’s Lemma implies
that there is always a fractional solution.

Lemma 7.7. The smf is polynomial-time reducible to f-sfp.

Proof. First consider the matrix we used to reduce smf to scarf as shown in
Figure 1. First of all we can assume, that each commodity has the same source

68



and sink as proven in [9], so for each commodity we have vi,in and vi,out rows
for the same set of vertices. For reasons clarified later, instead of one vi,in and
one vi,out column, we make q(v) columns of both of them. We will call these
vi,out

j , j = 1, .., q(v). The orderings of the rows will be almost the same, we
just have to rank the q(v) columns of vi,out and vi,in among each other, but
we can rank these arbitrarily, for example let vi,out

1 be the best and vi,out
q(v) be

the worst. Then we add two new rows for each vi,in
j and vi,out

j , j = 1, .., q(v)
such that there is a 1 in the corresponding column and 0 everywhere else with
bounding vector all 1. (so we make two identity matrices). Moreover we add
si,out and ti,in rows (with 1 in the columns corresponding to the appropriate
edges and 0 elsewhere), with large enough bounding vectors, such that there
cannot be any solution where these rows bind, so no column can be dominated
here. It is straightforward to verify that an original dominating solution x can
be extended to x′ such that it remains a dominating solution and vice versa. In
one direction, we only have to fill up the vi,out

j components starting from the
best and always filling up the next in the ranking. Then the ej columns are
obviously still dominated. If a vi,in

j row is fully filled up, then it is dominated
at the newly added identity matrix. If there is a vi,in

j row that is not fully filled
up, then vi,in had to be dominated at row vi,out (otherwise xvi,in would be q(v),
so every component would be filled up). Since this row still has to bind and
the vi,in

j -s are its worst columns, a partially filled up (there can only be at most
one) and every empty (by our rule of filling up they have to be worse) columns
are dominated here, so all of them are dominated somewhere. The reasoning
with the vi,out

j -s is symmetric. In the other direction we just have to sum up the
vi,out

j and vi,in
j components. If all vi,in

j -s are dominated in the identity matrix,
then their sum is q(v), so vi,in is dominated at row vi,in. If there is one that is
dominated at row vi,in or vi,out, then similarly vi,in is dominated here too.

Now we make a couple of observations about this matrix:

1. We can swap the rows of the matrix, such that it has an identity matrix
at its bottom.

2. The remaining matrix can be seen as the incidence matrix of a 3-uniform
3-partite hypergraph, because each column has exactly three 1-s. If it is
of type ei, e = uv, then the 1-s are at row e, row vi,in and row ui,out.
If it is of type v

i,in/out
j , then there is a 1 at vi,in-s row, vi,out’s row, and

one of the newly added v
i,in/out
j rows, that is not moved to the bottom

identity matrix. Furthermore, we can see that if we partition the rows
to E ∪ { newly added rows}, vi,in rows and vi,out rows, then each column
(hyperedge) contains exactly one vertex from each class. It is important
to note that here the si,out and ti,in rows are counted among the vi,in and
vi,out rows respectively, not among the newly added rows.

3. Since the stable multicommodity flow problem is still ppad-hard if all edge
capacities are 0 or 1, and each added v

i,in/out
j row has upper bound 1, we

69



E1 E2 . . . En V 1,in
1 V 1,in

2 V 1,in
q(v) V 2,in

1 V 2,in
q(v) V n,in

1 V n,in
q(v)

E

V 1,in

V 1,out

V n,in

V n,out

V 1,out
1 V 1,out

q(v) V n,out
1 V n,out

q(v)

V 1,in
1

V 1,in
q(v)

V n,out
q(v)

Ain

Aout

Ain

Aout

I I I 0 0 0 0 0 0 0 0 0 0 0

0

0 0

0

0

0

E1

En

V 1,in
1

V n,out
q(v)

I

0 I

I I I

I I

I I

I I

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0

0

0

1

q(v)

1

1

0

0

0 0 0 0 0

≤

≤

≤

≤

I I I

I I

0

0 I I

I I

Figure 3: The new matrix for the reductions of lemma 7.7 and 7.9

can assume that the bottom identity matrix has the all 1 bounding vector,
so in our hypergraph all hyperedges have unit capacity, therefore we have
a standard Fractional hypergraph matching problem.

Let the preferences of the vertices on the hyperedges be the same as the
corresponding row’s preferences on the nonzero columns. What remains to be
shown is, that the stable matchings of the 3-partite hypergraph correspond to
the stable solutions of the scarf instance.

Let us suppose that we have a stable fractional matching, but the corre-
sponding vector is not a dominating one. Then there has to be a column that
is not dominated at any row. But this means, that each of the three rows that
could dominate are either nonbinding, or there are less preferred columns with
nonzero value. So the edge corresponding to the column is a blocking edge,
contradiction.

However, we are still not completely done, since in a f-sfp instance we need
that every vertex has capacity 1 too. We will construct another 3-partite hy-
pergraph from the previous one in the following way: Let the three classes
be X, U and V with X = E ∪ { newly added rows}. Take each vertex v
of the hypergraph that has capacity q(v) > 1 (they can only be from U or
V ) and make q(v) copies of that vertex, that will all have capacity 1. (We
can assume that q(v) is integer). Then for each (x, u, v) hyperedge we make
(x, ui, vj) hyperedges for all i = 1, .., q(u), j = 1, ..., q(v). Let the ui ver-
tices’ ranking of the hyperedges be the same as the u vertices’ ranking with
the extension that for a given (x, u, v) hyperedge, (x, ui, v1) >ui (x, ui, v2)....
Similarly for the vj-s. The x vertices’ preferences are extended in such a
way that if (x, u, v) >x (x, u′, v′), then (x, ui, vj) >x (x, u′

k, v′
l) for all i, j, k, l.

Furthermore, we rank the (ui, vj) pairs in an arbitrary way. For example,
(x, u1, v1) >x (x, u1, v2) >x (x, u2, v1) >x (x, u1, v3)....

70



Now let us suppose we have a stable fractional matching in this new graph.
We obtain a matching for the original hypergraph by summing on the hyperedges
corresponding to the same original one. Since each of those contain the same
x vertex with capacity 1, this new matching will be feasible too. Now let us
suppose that there is a blocking hyperedge (x, u, v). So x is unsaturated or
prefers (u, v) to some (u′, v′), where he is matched with some positive value.
This means that x is unsaturated or there is an (u′

k, v′
l) where x is matched with

positive value, that it prefers less than any (ui, vj). Similarly u is unsaturated or
there is a v′, such that (x′, u, v′) <u (x, u, v), and (x′, u, v′) has positive value in
the matching. In the first case, there has to be an i, such that ui is unsaturated,
and in the second case if (x, u, v) >u (x′, u, v′), then (x, ui, vj) >ui

(x′, ui, v′
k)

for any i, j, k, so there is at least one (i, k) pair that is both worse and has
positive value. Using the same argument for v, we get that there is a pair i, j,
such that (x, ui, vj) is a blocking edge, contradiction.

Since this hypergraph is 3-partite and had all one edge and vertex capacities,
it corresponds to a stable family instance, so we reduced the problem to f-
sfp.

Remark 7.8. We have to be careful, because making q(v) copies of vertices is
not necessarily polynomial in the input if the q(v)-s can be arbitrarily large, but
from Lemma 6.12 and the fact that ppad-completeness holds for 0/1 capacities
we we can assume that each q(v) is at most 4.

Lemma 7.9. The smf is polynomially reducible to f-hrc.

Proof. First we reduce it to the 3-partite stable hypergraph problem with vertex
capacities as before (so here we do not make q(v) copies of the vertices in U and
V ). Then we observe that, since we can assume that the aggregate capacities of
the stable multicommodity flow were all 0 or 1, and the newly added v

i,in/out
j

rows have capacity 1 too, all vertices in the X = E ∪ { newly added rows} class
of our hypergraph have capacity 1. Now let the elements of the X class be
the couples, and the hospitals will consists of the union of the other two classes’
vertices. The ranking of the couples on the pairs of hospitals will be the same as
the corresponding vertex’s ranking on the hyperedges containing it. (The other
hospital pairs will be considered unacceptable to the couple). Now observe that
any two vertices with one from X uniquely determines a hyperedge, if there is
any, because e (e = uv) and ui,out uniquely determines the last vertex, that
is vi,in, and vice versa, so the ranking on the hyperedges containing a vertex
v gives a unique ranking on the vertices of X adjacent to v. So the hospital’s
ranking on the couples will be the following: c > c′ for h, if (c, h, ∗) >h (c′, h, ∗)
in the hypergraph, where (c, h, ∗) denotes the unique hyperedge containing c
and h. Furthermore let the hospital’s capacities be the q(v) capacities of the
vertices.

Now let us suppose we have a stable matching in the f-hrc instance. Assume
that there is a blocking hyperedge (x, u, v) in the 3-partite stable hypergraph
problem. Then x prefers (x, u, v) to some (x, u′, v′), where it is matched with
some positive value meaning (u, v) >x (u′, v′) or it is unsaturated. u is either

71



unsaturated, or there is a hyperedge (x′, u, v′), that it prefers less (here v could
be v′, but x ̸= x′ because of our observation). But (x, u, v) >u (x′, u, v′) means
that in the hospital’s ranking, u prefers (the corresponding member of) x more
than x′. Similarly either v is unsaturated, there is an x′ at v, that it prefers less
than x. So (x, u, v) would form a blocking coalition, contradiction.

As a consequence, we have the following theorems:

Theorem 7.10. The f-hrc problem is ppad-complete, even if each hospital
only receives applications from men or women.

Theorem 7.11. The f-sfp problem is ppad-complete.

Conclusions
In this thesis we gave a short introduction to some of the most important

generalizations of the stable matching problem. Of course, with the countless
new results that have been discovered since the introduction of the field, a
complete review of all the aspect of the problem would be impossible.

Here, we focused on a complexity theoretic viewpoint and analyzed which
kind of generalizations make the problem hard, and which are still efficiently
solvable. We have seen many from both cases: on one side the clever algorithms
of Irving and Fleiner for the stable roommates and stable flow problems re-
spectively, while on the other side the stable hypergraph matching problem and
stable multicommodity flow problem that are NP-hard even with very severe
restrictions and they even stay hard if we only want to find a fractional solution.
Also, interestingly, just allowing ties or couples make the problem intractable.

Whilst most of the problems we introduced here have been thoroughly stud-
ied, the number of open questions are still uncountable. One such intriguing
open question is whether there is an efficient algorithm for the stable hypergraph
matching problem, if the underlying hypergraph is Totally Unimodular (which
means its incidence matrix is TU). Then, by Scarf’s Lemma, we know a stable
solution always exists. Or a similar question is whether this holds for normal
hypergraphs and unit capacities. Interestingly, solving the latter problem would
also answer a long standing open question about graph kernels, namely whether
it is possible to find a kernel in a superoriented perfect graph efficiently.

References
[1] Ron Aharoni and Ron Holzman. “Fractional Kernels in Digraphs”. In: J.

Comb. Theory Ser. B 73.1 (May 1998), pp. 1–6. issn: 0095-8956. doi:
10.1006/jctb.1997.1731. url: https://doi.org/10.1006/jctb.
1997.1731.

[2] Mourad Baıou and Michel Balinski. “The stable allocation (or ordinal
transportation) problem”. In: Mathematics of Operations Research 27.3
(2002), pp. 485–503.

72

https://doi.org/10.1006/jctb.1997.1731
https://doi.org/10.1006/jctb.1997.1731
https://doi.org/10.1006/jctb.1997.1731


[3] Piotr Berman, Marek Karpinski, and Alexander Scott. Approximation
hardness of short symmetric instances of MAX-3SAT. Tech. rep. 2004.

[4] Péter Biró, David F Manlove, and Iain McBride. “The hospitals/resi-
dents problem with couples: Complexity and integer programming mod-
els”. In: International Symposium on Experimental Algorithms. Springer.
2014, pp. 10–21.

[5] Katarına Cechlárová and Tamás Fleiner. “On a generalization of the stable
roommates problem”. In: ACM Transactions on Algorithms (TALG) 1.1
(2005), pp. 143–156.

[6] Jiehua Chen, Piotr Skowron, and Manuel Sorge. “Matchings under pref-
erences: Strength of stability and tradeoffs”. In: ACM Transactions on
Economics and Computation 9.4 (2021), pp. 1–55.

[7] Gergely Csáji. “On the complexity of Stable Hypergraph Matching, Stable
Multicommodity Flow and related problems”. In: (2021).

[8] Ágnes Cseh, Robert W Irving, and David F Manlove. “The stable room-
mates problem with short lists”. In: Theory of Computing Systems 63.1
(2019), pp. 128–149.

[9] Ágnes Cseh and Jannik Mattuschke. “New and Simple Algorithms for
Stable Flow Problems”. In: Algorithmica 81 (Jan. 2019). doi: 10.1007/
s00453-018-00544-7.

[10] Brian C Dean and Siddharth Munshi. “Faster algorithms for stable allo-
cation problems”. In: Algorithmica 58.1 (2010), pp. 59–81.

[11] Tamás Fleiner. “On stable matchings and flows”. In: International Work-
shop on Graph-Theoretic Concepts in Computer Science. Springer. 2010,
pp. 51–62.

[12] David Gale and Lloyd S Shapley. “College admissions and the stability of
marriage”. In: The American Mathematical Monthly 69.1 (1962), pp. 9–
15.

[13] Dan Gusfield and Robert W Irving. The stable marriage problem: structure
and algorithms. MIT press, 1989.

[14] Joseph Douglas Horton and Kyriakos Kilakos. “Minimum edge dominating
sets”. In: SIAM Journal on Discrete Mathematics 6.3 (1993), pp. 375–387.

[15] Robert W Irving. “An efficient algorithm for the “stable roommates” prob-
lem”. In: Journal of Algorithms 6.4 (1985), pp. 577–595.

[16] Takashi Ishizuka and Naoyuki Kamiyama. “On the Complexity of Stable
Fractional Hypergraph Matching”. In: ISAAC. 2018.

[17] Shiva Kintali et al. “Reducibility among fractional stability problems”. In:
SIAM Journal on Computing 42.6 (2013), pp. 2063–2113.

[18] Tamás Király and Julia Pap. “Stable Multicommodity Flows”. In: Algo-
rithms 6 (Mar. 2013), pp. 161–168. doi: 10.3390/a6010161.

73

https://doi.org/10.1007/s00453-018-00544-7
https://doi.org/10.1007/s00453-018-00544-7
https://doi.org/10.3390/a6010161


[19] Zoltán Király. “Better and simpler approximation algorithms for the sta-
ble marriage problem”. In: Algorithmica 60.1 (2011), pp. 3–20.

[20] DE Knuth. “Mariages stables et leurs relations avec d’autres problemes
combinatoires, Les Presses de l’Universite de Montreal (1976), English
translation by M. Goldstein: Stable Marriage and its Relation to other
Combinatorial Problems”. In: CRM Proceedings and Lecture Notes. Vol. 10.
1997.

[21] Chi-Kit Lam and C Gregory Plaxton. “A (1+ 1/e)-approximation algo-
rithm for maximum stable matching with one-sided ties and incomplete
lists”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM. 2019, pp. 2823–2840.

[22] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in
combinatorial optimization. Vol. 46. Cambridge University Press, 2011.

[23] David Manlove. Algorithmics of matching under preferences. Vol. 2. World
Scientific, 2013.

[24] David F Manlove et al. “Hard variants of stable marriage”. In: Theoretical
Computer Science 276.1-2 (2002), pp. 261–279.

[25] Eric McDermid. “A 3/2-approximation algorithm for general stable mar-
riage”. In: International Colloquium on Automata, Languages, and Pro-
gramming. Springer. 2009, pp. 689–700.

[26] Cheng Ng and Daniel S. Hirschberg. “Three-Dimensional Stabl Match-
ing Problems”. In: SIAM Journal on Discrete Mathematics 4.2 (1991),
pp. 245–252. doi: 10.1137/0404023. eprint: https://doi.org/10.
1137/0404023. url: https://doi.org/10.1137/0404023.

[27] Thành Nguyen and Rakesh Vohra. “Near-Feasible Stable Matchings with
Couples”. In: American Economic Review 108.11 (Nov. 2018), pp. 3154–
69. doi: 10.1257/aer.20141188. url: https://www.aeaweb.org/
articles?id=10.1257/aer.20141188.

[28] Christos H Papadimitriou. “On the complexity of the parity argument and
other inefficient proofs of existence”. In: Journal of Computer and system
Sciences 48.3 (1994), pp. 498–532.

[29] Adèle Pass-Lanneau, Ayumi Igarashi, and Frédéric Meunier. “Perfect graphs
with polynomially computable kernels”. In: Discrete Applied Mathematics
272 (2020), pp. 69–74.

[30] Eytan Ronn. “On the complexity of stable matchings with and without
ties”. PhD thesis. Yale University, 1986.

[31] Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. “Stable match-
ings, optimal assignments, and linear programming”. In: Mathematics of
operations research 18.4 (1993), pp. 803–828.

[32] Uriel G Rothblum. “Characterization of stable matchings as extreme points
of a polytope”. In: Mathematical Programming 54.1 (1992), pp. 57–67.

74

https://doi.org/10.1137/0404023
https://doi.org/10.1137/0404023
https://doi.org/10.1137/0404023
https://doi.org/10.1137/0404023
https://doi.org/10.1257/aer.20141188
https://www.aeaweb.org/articles?id=10.1257/aer.20141188
https://www.aeaweb.org/articles?id=10.1257/aer.20141188


[33] Herbert E Scarf. “The core of an N person game”. In: Econometrica:
Journal of the Econometric Society (1967), pp. 50–69.

[34] Jimmy JM Tan. “A maximum stable matching for the roommates prob-
lem”. In: BIT Numerical Mathematics 30.4 (1990), pp. 631–640.

[35] Jimmy JM Tan. “A necessary and sufficient condition for the existence
of a complete stable matching”. In: Journal of Algorithms 12.1 (1991),
pp. 154–178.

[36] John H Vande Vate. “Linear programming brings marital bliss”. In: Op-
erations Research Letters 8.3 (1989), pp. 147–153.

75


	Introduction
	The Stable Marriage problem
	Structure of stable matchings
	The rotation poset and its applications
	The Stable Matching Polytope
	Stable Marriage with Ties
	The Stable Allocation problem

	The Stable Roommates problem
	The algorithm of Irving
	Tan's algorithm and stable partitions
	Stable roommates with ties
	The Stable Activities problem and the Stable b-matching problem.

	The Stable Hypergraph matching problem
	Scarf's Lemma and its connection with stable mathings
	Hardness results
	Tractable cases of the stable hypergraph matching problem

	The Hospital-Resident problem with couples
	Hardness results

	The Stable Flow problem
	Reduction to Stable Allocation
	The Stable Multicommodity Flow problem

	Back to the Hospital-Resident-Couple problem
	Finding near-feasible solutions
	Hardness of f-hrc


