Eötvös Loránd Tudományegyetem Természettudományi Kar

Nem szimmetrikus elliptikus peremérték-feladatok iterációs megoldása

BSc Szakdolgozat

Lados Bálint István

Matematika BSc Alkalmazott matematikus szakirány

> Témavezető: Karátson János

Alkalmazott Analízis és Számításmatematikai Tanszék

Budapest, 2023

Tartalomjegyzék

Be	vezet	és	2
1.	Meg	oldhatósági tételek	3
	1.1.	Operátoregyenletek megoldhatósága	3
	1.2.	Bilineáris formák, Lax–Milgram-lemma	5
2.	Pere	emérték-feladatok gyenge megoldása	7
	2.1.	Szoboljev-terek	7
	2.2.	Szimmetrikus elliptikus peremérték-feladat	8
	2.3.	Nem szimmetrikus elliptikus peremérték-feladat	9
3.	A ko	onjugált gradiens-módszer	11
	3.1.	Kvadratikus funkcionál, Gâteaux-derivált	11
	3.2.	A gradiens-módszerről általában	12
	3.3.	A KGM egyenletesen pozitív operátorra	13
	3.4.	A KGN korlátos, nem önadjungált operátorra	18
	3.5.	A prekondicionált KGN-módszer	19
4.	Pere	emérték-feladatok iterációs megoldása	21
	4.1.	Gyenge megoldás nem szimmetrikus operátor esetén Hilbert-térben	21
	4.2.	KGN-módszer az energiatérben	22
	4.3.	A KGN-módszer alkalmazása elliptikus peremérték-feladatokra	23
5.	Vég	es differenciás megvalósítás	27
	5.1.	Numerikus közelítés	27
	5.2.	Tesztfeladatok	28
	5.3.	A konvergencia vizsgálata	31
	5.4.	Egy fizikai modell	35
6.	Füg	gelék	36
Hi	vatko	zások	43

Bevezetés

A folyadékok áramlásának egyik általános modelljét a Navier–Stokes-egyenletek írják le. Ezek linearizált változatának alapvető építőköveként tekinthetünk a konvekció-diffúziós egyenletek-re, melyek lehetnek például egy szennyezőanyag koncentrációjának vagy egy folyadék hőmér-sékletének modelljei egy áramló közegben. Erről bővebben az [1] könyvben olvashatunk.

A szakdolgozatom célja, hogy az ezeket is magában foglaló nem szimmetrikus elliptikus peremérték-feladatok megoldhatóságát vizsgáljam, majd a konjugált gradiens-módszer (KGM) segítségével iterációs módszert dolgozzak ki a feladat megoldására. Ehhez a [2]-ben szereplő eredményeket használtam fel. A dolgozat részét képezi még az algoritmus számítógépes megvalósítása, példákon való tesztelése és numerikus vizsgálata.

A dolgozat négy részre tagolódik. Először a funkcionálanalízis eszközeivel operátoregyenletek és bilineáris formák megoldhatósági tételeit és az ezzel kapcsolatos alapvető fogalmakat ismertetjük, majd a dolgozat fő alanyaként szolgáló nem szimmetrikus elliptikus peremértékfeladatok bemutatása után közvetlenül alkalmazzuk az eredményeket a gyenge megoldás létezésének és egyértelműségének bizonyítására.

Ezután az operátoregyenletek megoldására szolgáló konjugált gradiens-módszer ismertetése következik, melynek felépítését és konvergenciáját részletesen tárgyaljuk. Ennek általánosabb változata a KGN-módszer, melynek a peremérték-feladatoknál jól alkalmazható prekondicionált változatával ér véget ez a szakasz.

A két elmélet ötvözésével először általános nem korlátos, nem szimmetrikus operátorokra alkalmazzuk a prekondicionált KGN-módszert egy megfelelő korlátos operátorra való visszavezetéssel, majd ugyanezt elvégezzük a nem szimmetrikus elliptikus peremérték-feladatot meghatározó operátor esetén is. Az így kapott iterációs megoldási módszert több változatban is ismertetjük.

Végül az algoritmust véges differenciás diszkretizációval megvalósítjuk, majd a számítógépes programot kidolgozott példákon teszteljük. A program futása során tapasztalt konvergenciát összehasonlítjuk az idevonatkozó elméleti eredményekkel. A dolgozat végén megoldunk egy egyszerű fizikai modellből származó konvekció-diffúziós egyenletet.

A dolgozathoz készített MATLAB programkódokat a függelék tartalmazza.

1. Megoldhatósági tételek

A dolgozat során operátoregyenletekkel és iterációs megoldási módszereikkel foglalkozunk, melyhez elengedhetetlen a megoldás létezésének és egyértelműségének vizsgálata. Megmutatjuk, hogy az olyan $A: H \to H$ Hilbert-térbeli leképezésekre, amelyekre $A \in B(H)$, azaz A folytonos (korlátos) és lineáris, milyen megoldhatósági tételek teljesülnek koercivitási feltételek mellett. Ezután hasonló keretek között vizsgáljuk a $H \times H$ szorzattéren értelmezett bilineáris formákat és a velük kapcsolatos megoldhatósági tételeket. Az eredményeket valós és komplex értékű függvényekre egyaránt ismertetjük, azonban a későbbi fejezetekben leginkább valós Hilbert-terekben dolgozunk. A párhuzamos tárgyalás során \mathbb{K} -val jelöljük, ha \mathbb{R} vagy \mathbb{C} esetén is igaz az állítás.

1.1. Operátoregyenletek megoldhatósága

Legyen *H* valós vagy komplex Hilbert-tér. Azt a kérdést szeretnénk vizsgálni, hogy egy $A \in B(H)$ operátor mikor *bijekció*, azaz teljesül-e, hogy bármely $b \in H$ esetén létezik egyértelműen olyan $x^* \in H$, amire $Ax^* = b$. Erre adunk elégséges feltételeket, de előtte néhány fontos alapfogalmat definiálnunk kell.

1.1. Definíció. Egy $A \in B(H)$ operátor *önadjungált*, ha $\langle Ax, y \rangle = \langle x, Ay \rangle, \forall x, y \in H$.

1.2. Állítás. *Ha H komplex Hilbert-tér, akkor egy* $A \in B(H)$ *operátor pontosan akkor önadjun*gált, ha $\langle Ax, x \rangle$ valós értékű, $\forall x \in H$.

1.3. Definíció. Egy $A \in B(H)$ önadjungált operátor

- *pozitív*, ha $\langle Ax, x \rangle \ge 0, \forall x \in H$;
- *szigorúan pozitív*, ha $\langle Ax, x \rangle > 0$, $\forall x \in H$ és $x \neq 0$;
- egyenletesen pozitív, ha $\exists m > 0$: $\langle Ax, x \rangle \ge m ||x||^2$, $\forall x \in H$.

1.4. Megjegyzés. Az itt definiált operátorok komplex esetben mind önadjungáltak, mert $\langle Ax, x \rangle$ valós értékű, így alkalmazható az 1.2 állítás. Ha *H* valós Hilbert-tér, akkor külön megköveteljük, hogy az operátorok önadjungáltak legyenek.

1.5. Definíció. Egy $A \in B(H)$ operátor *koercív*, ha $\exists m > 0$: Re $\langle Ax, x \rangle \ge m ||x||^2$, $\forall x \in H$.

1.6. Megjegyzés. Ha *H* valós Hilbert-tér, akkor a definícióban Re $\langle Ax, x \rangle$ helyett $\langle Ax, x \rangle$ -t nézzük. Ekkor $A \in B(H)$ pontosan akkor egyenletesen pozitív, ha koercív és önadjungált.

1.7. Definíció. Legyen $A \in B(H)$ szigorúan pozitív operátor. Az $\langle x, y \rangle_A := \langle Ax, y \rangle$ skalárszorzatot az A operátorhoz tartozó *energia-skalárszorzatnak*, az $||x||_A = \sqrt{\langle Ax, x \rangle}$ indukált normát *energianormának* nevezzük.

1.8. Állítás. *Ha* $A \in B(H)$ egyenletesen pozitív operátor, akkor $(H, \|\cdot\|_A)$ is Hilbert-tér.

Bizonyítás. Az egyenletes pozitivitással $||x||_A$ alulról becsülhető, a Cauchy–Schwarz-egyenlőtlenséggel és *A* korlátosságával pedig felülről becsülhető a következő módon:

$$m||x||^2 \le \langle Ax, x \rangle = ||x||_A^2 \le ||Ax|| ||x|| \le ||A|| ||x||^2, \quad \forall x \in H.$$

A két norma ekvivalenciájából következik az állítás.

Idézzük fel a funkcionálanalízisből jól ismert Riesz-féle reprezentációs tételt, melynek a megoldhatósági tételekben fontos szerepe lesz.

1.9. Tétel (Riesz reprezentációs tétele). Legyen H Hilbert-tér. Ekkor minden $\phi : H \to \mathbb{K}$ folytonos lineáris funkcionálhoz létezik egyértelműen $y \in H$, hogy

$$\phi x = \langle x, y \rangle, \quad \forall x \in H.$$

1.10. Tétel. $Ha A \in B(H)$ egyenletesen pozitív operátor, akkor A bijekció.

Bizonyítás. Mivel *A* egyenletesen pozitív, így az 1.8 állítás szerint $(H, \|\cdot\|_A)$ is Hilbert-tér. Ebben a térben rögzített $b \in H$ esetén a $\phi : H \to \mathbb{K}$, $\phi v := \langle v, b \rangle$ funkcionál lineáris a skalárszorzat első változóbeli linearitása miatt, és folytonos is:

$$|\phi v| = |\langle v, b
angle| \le ||v|| ||b|| \le \left(rac{1}{\sqrt{m}} ||b||
ight) ||v||_A, \quad orall v \in H,$$

ahol először a Cauchy–Schwarz-egyenlőtlenséget használtuk, majd az *A* operátor egyenletes pozitivitását: $||v||_A^2 = \langle Av, v \rangle \ge m ||v||^2 \implies ||v|| \le \frac{1}{\sqrt{m}} ||v||_A$.

Az 1.9 Riesz-féle reprezentációs tétel szerint $\exists !x^* \in H$, amire $\phi v = \langle v, x^* \rangle_A$, $\forall v \in H$ esetén, azaz:

$$\langle v,b\rangle = \phi v = \langle v,x^*\rangle_A = \langle Av,x^*\rangle = \langle v,Ax^*\rangle, \quad \forall v \in H.$$

A fenti egyenlőség pontosan akkor teljesül $\forall v \in H$ -ra, ha $Ax^* = b$. Ezért $\forall b \in H$ esetén $\exists !x^* \in H$, amire $Ax^* = b$, tehát A bijekció.

1.11. Tétel. $Ha A \in B(H)$ koercív operátor, akkor A bijekció.

Bizonyítás. Az A operátor koercivitása miatt:

$$m\|x\|^{2} \leq \operatorname{Re} \langle Ax, x \rangle \leq |\langle Ax, x \rangle| \leq \|Ax\| \|x\|, \quad \forall x \in H$$
$$\Rightarrow \quad m\|x\| \leq \|Ax\|, \quad \forall x \in H$$

Ebből következik, hogy A injektív. Indirekt tegyük fel, hogy A nem injektív, azaz $\exists x, y \in H$, $x \neq y$, amire $Ax = Ay \Rightarrow 0 = ||A(x-y)|| \ge m||x-y|| \ge 0 \Rightarrow ||x-y|| = 0$.

Megmutatjuk, hogy az A^* operátor is koercív:

$$\operatorname{Re}\langle A^*x,x\rangle = \operatorname{Re}\overline{\langle x,A^*x\rangle} = \operatorname{Re}\langle x,A^*x\rangle = \operatorname{Re}\langle Ax,x\rangle \ge m\|x\|^2, \quad \forall x \in H.$$

Ezért az A^* operátorra is igaz, hogy minden $x \in H$ esetén $m||x|| \le ||A^*x||$, így A^* is injektív.

Tekintsük az Ax = b operátoregyenlet szimmetrizáltját: $A^*Ax = A^*b$. Erre teljesül, hogy

- (i) A^*A önadjungált: $\langle A^*Ax, y \rangle = \langle Ax, Ay \rangle = \langle x, A^*Ay \rangle, \forall x, y \in H$.
- (ii) A^*A egyenletesen pozitív: $\langle A^*Ax, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2 \ge m^2 ||x||^2, \forall x \in H.$

Az 1.10 tételt az A^*A operátorra alkalmazva következik, hogy A^*A bijekció, ezért van olyan $x^* \in H$, hogy $A^*Ax^* = A^*b$. Ebből A^* injektivitása miatt következik, hogy x^* megoldása az Ax = b egyenletnek, és A injektivitása miatt más megoldás nem létezhet, vagyis A bijekció. \Box

1.2. Bilineáris formák, Lax–Milgram-lemma

Legyen *H* valós vagy komplex Hilbert-tér. Ebben a fejezetben az előzőekhez hasonló megoldhatósági tételeket szeretnénk megfogalmazni kétváltozós leképezésekre.

1.12. Definíció. Egy $B: H \times H \rightarrow \mathbb{R}$ leképezés

- (a) bilineáris, ha mindkét változójában lineáris;
- (b) *szimmetrikus*, ha $B(x, y) = B(y, x), \forall x, y \in H$;
- (c) *korlátos*, ha $\exists M > 0$: $|B(x,y)| \leq M ||x|| ||y||, \forall x, y \in H$;
- (d) *koercív*, ha $\exists m > 0$: $B(x, x) \ge m ||x||^2$, $\forall x \in H$.

1.13. Definíció. Egy $B: H \times H \to \mathbb{C}$ leképezés

- (a) *konjugáltan bilineáris*, ha első változójában lineáris, második változójában konjugáltan lineáris;
- (b) *konjugáltan szimmetrikus*, ha $B(x,y) = \overline{B(y,x)}, \forall x, y \in H$;
- (c) *korlátos*, ha $\exists M > 0$: $|B(x,y)| \leq M ||x|| ||y||, \forall x, y \in H$;
- (d) *koercív*, ha $\exists m > 0$: Re $B(x, x) \ge m ||x||^2$, $\forall x \in H$.

1.14. Megjegyzés. A (konjugáltan) bilineáris leképezéseket gyakran (konjugáltan) bilineáris formáknak nevezzük.

1.15. Tétel (Korlátos formák Riesz-reprezentációja). Legyen $B: H \times H \to \mathbb{K}$ korlátos, (kon*jugáltan) bilineáris forma. Ekkor létezik egyetlen olyan* $A \in B(H)$ operátor, amelyre

$$B(x,y) = \langle Ax, y \rangle, \quad \forall x, y \in H.$$

Bizonyítás. Legyen $y \in H$ rögzített, és $\phi_y \colon H \to \mathbb{K}$, $\phi_y x := B(x, y)$. Ez a funkcionál lineáris, mivel *B* az első változójában lineáris, és korlátos is *B* korlátossága miatt:

$$|\phi_{\mathbf{y}}x| = |B(x, \mathbf{y})| \le (M||\mathbf{y}||)||x||, \quad \forall x \in H.$$

Tehát $\|\phi_y\| \le M \|y\|$. A ϕ_y -ra alkalmazható az 1.9 Riesz-féle reprezentációs tétel, ezért $\exists ! y^* \in H$, melyre $\phi_y x = \langle x, y^* \rangle$, $\forall x \in H$. Ha bevezetjük a $Cy := y^*$ jelölést, akkor $B(x, y) = \langle x, Cy \rangle$, $\forall x \in H$. Ebből adódik, hogy $C \in B(H)$, mert *B* és a skalárszorzat (konjugáltan) bilineáris, illetve *C* korlátos:

$$||Cy|| = ||y^*|| = ||\phi_y|| \le M ||y||,$$

ahol az utóbbi egyenlőség azért teljesül, mert egyrészt $|\phi_y x| = |\langle x, y^* \rangle| \le ||x|| ||y^*|| \Rightarrow ||\phi_y|| \le ||y^*||$, másrészt $x = \frac{y^*}{||y^*||}$ -ra $\phi_y x = ||y^*||$. Ezért az $A := C^*$ operátorra teljesül a tétel állítása. \Box

1.16. Megjegyzés. Az A operátort gyakran a B forma Riesz-reprezentánsának hívjuk.

1.17. Állítás. Legyen $B: H \times H \to \mathbb{K}$ korlátos, (konjugáltan) bilineáris forma, és $A \in B(H)$ a *B* forma Riesz-reprezentánsa.

- (i) B pontosan akkor (konjugáltan) szimmetrikus, ha A önadjungált.
- (ii) B pontosan akkor koercív, ha A koercív.

Bizonyítás. Az 1.1 és 1.5 definíciókban szereplő fogalmak egybeesnek az 1.12 és 1.13-ban definiáltakkal, ha $B(x,y) = \langle Ax, y \rangle, \forall x, y \in H.$

Most már minden eszköz a rendelkezésünkre áll, hogy bizonyítsuk a Lax–Milgram-lemmát, amely alapvető fontosságú lesz a nem szimmetrikus elliptikus peremérték-feladat gyenge megoldásának vizsgálatánál.

1.18. Tétel (Lax–Milgram-lemma). Legyen H valós Hilbert-tér, $B: H \times H \to \mathbb{R}$ korlátos, koercív bilineáris forma. Ekkor minden $\phi: H \to \mathbb{R}$ korlátos lineáris funkcionálhoz létezik egyetlen olyan $u \in H$, amelyre

$$B(u,v) = \phi v, \quad \forall v \in H.$$

Bizonyítás. *B*-re teljesülnek az 1.15 tétel feltételei. Legyen $A \in B(H)$ a *B* Riesz-reprezentánsa:

$$B(u,v) = \langle Au,v \rangle, \quad \forall u,v \in H.$$

Hasonlóan, rögzített ϕ -re teljesülnek az 1.9 Riesz-féle reprezentációs tétel feltételei. Legyen $b \in H$ a ϕ Riesz-reprezentánsa:

$$\phi v = \langle v, b \rangle, \quad \forall v \in H.$$

B koercív, ezért az 1.17 állítás szerint *A* is koercív. Az 1.11 megoldhatósági tétel miatt létezik egyértelműen $u \in H$, amelyre Au = b. Ekkor erre az *u*-ra és *b*-re:

$$B(u,v) = \langle Au, v \rangle = \langle b, v \rangle = \langle v, b \rangle = \phi v, \quad \forall v \in H.$$

2. Peremérték-feladatok gyenge megoldása

Ebben a szakaszban bemutatjuk a nem szimmetrikus elliptikus peremérték-feladatot és a megoldhatóságával kapcsolatos eredményeket. Először bevezetjük a Szoboljev-tereket, majd ismertetjük a dolgozatban vizsgált többdimenziós peremérték-feladatot, végül megmutatjuk a gyenge megoldás létezését és egyértelműségét.

2.1. Szoboljev-terek

Legyen $\Omega \subset \mathbb{R}^n$ Lebesgue-mérhető halmaz. Definiáljuk a peremérték-feladatok vizsgálatához szükséges függvénytereket, melyek közül esetünkben a $H_0^1(\Omega)$ Szoboljev-tér lesz a legfonto-sabb. Ezután kimondunk néhány tételt és állítást, melyeket a későbbiekben gyakran fogunk használni.

2.1. Definíció. Az $L^2(\Omega)$ tér elemei azok a Lebesgue-mérhető függvények, melyekre $||f||_{L^2} := \sqrt{\int_{\Omega} |f|^2}$ véges. Két függvényt azonosnak tekintünk, ha majdnem mindenütt (m. m.) egyenlőek.

2.2. Definíció. Az $L^{\infty}(\Omega)$ tér elemei azok a Lebesgue-mérhető függvények, melyekre $||f||_{L^{\infty}} :=$ ess sup $(f) = \inf\{\sup_{\Omega \setminus N} |f| : N \subset \Omega$ nullmértékű $\}$ véges. Két függvényt azonosnak tekintünk, ha majdnem mindenütt (m. m.) egyenlőek.

2.3. Megjegyzés. Az L^{∞} -normát gyakran *lényeges szuprémumnak* is nevezik.

2.4. Definíció. Ha **b**: $\Omega \to \mathbb{R}^n$ egy vektorértékű leképezés, akkor $\|\mathbf{b}\|_{L^{\infty}} := \text{ess sup } |\mathbf{b}|$, azaz **b** L^{∞} -normáját úgy számíthatjuk ki, hogy a $|\mathbf{b}|$ számértékű leképezésnek vesszük a lényeges szuprémumát.

2.5. Tétel. $(L^2(\Omega), \|\cdot\|_{L^2})$ és $(L^{\infty}(\Omega), \|\cdot\|_{L^{\infty}})$ Banach-terek.

2.6. Állítás. $L^2(\Omega)$ Hilbert-tér az $\langle f,g \rangle_{L^2} := \int_{\Omega} fg$ skalárszorzattal, ha f,g valós értékű négyzetesen Lebesgue-integrálható függvények. Az indukált norma a korábban bevezetett $\|\cdot\|_{L^2}$.

Legyen $\Omega \subset \mathbb{R}^n$ korlátos tartomány szakaszonként sima peremmel.

2.7. Definíció. A $H_0^1(\Omega)$ *Szoboljev-tér* elemei azon $u \in L^2(\Omega)$ függvények, melyeknek minden elsőrendű disztribúciós parciális deriváltja létezik és $L^2(\Omega)$ -beli, illetve $u_{|\partial\Omega} = 0$ is teljesül nyomértelemben.

2.8. Definíció. Legyen $u: \mathbb{R}^n \to \mathbb{R}$ differenciálható függvény. Az *u gradiense* az az *n*-dimenziós oszlopvektor, melynek *i*. eleme az *u i*. változó szerinti parciális deriváltja. Jele: ∇u .

2.9. Tétel. $H_0^1(\Omega)$ Hilbert-tér az $\langle u, v \rangle_{H_0^1} := \int_{\Omega} \nabla u \cdot \nabla v$ skalárszorzattal.

2.10. Definíció. Legyen $v: \mathbb{R}^n \to \mathbb{R}^n$ differenciálható függvény. A *v* Jacobi-mátrixának főátlóbeli összegét a *v divergenciájának* nevezzük, és div(*v*)-vel jelöljük.

2.11. Definíció. Az $u: \mathbb{R}^n \to \mathbb{R}$ kétszer differenciálható függvény esetén legyen $\Delta u := \operatorname{div}(\nabla u)$, ahol Δ -t *Laplace-operátornak* nevezzük.

2.12. Tétel (Green-formula). Legyen $\Omega \subset \mathbb{R}^n$ korlátos tartomány, melyre $\partial \Omega \in PC^1$, és $p \in C^1(\overline{\Omega})$. Ekkor minden $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ és $v \in C^1(\overline{\Omega})$ függvényre teljesül, hogy

$$\int_{\Omega} -\operatorname{div}\left(p\nabla u\right)v = \int_{\Omega} p\nabla u \cdot \nabla v - \int_{\partial\Omega} p \,\partial_{\nu} u \,v \,d\sigma$$

2.13. Következmény. *Ha a Green-formula feltételei mellett* $v_{\mid \partial \Omega} = 0$ *is teljesül, akkor*

$$\int_{\Omega} -\operatorname{div}\left(p\nabla u\right)v = \int_{\Omega} p\nabla u \cdot \nabla v.$$

2.14. Állítás (Poincaré–Friedrichs-egyenlőtlenség). *Ha* $\lambda_1 a - \Delta$ operátor legkisebb sajátértéke Ω -n a homogén Dirichlet-peremfeltétel mellett, akkor:

$$\|u\|_{H^1_0}^2 \ge \lambda_1 \|u\|_{L^2}^2, \quad \forall u \in H^1_0(\Omega).$$

2.15. Megjegyzés. A $-\Delta$ operátor sajátértékei az $u_{|\partial\Omega} = 0$ peremfeltétel mellett pozitívak. Legyen ugyanis λ sajátérték. Ekkor $\exists u \neq 0$ sajátfüggvény, amire $-\Delta u = \lambda u$. Az egyenletet *u*-val szorozva és Ω -n integrálva kapjuk a Green-formulát és a peremfeltételt felhasználva, hogy

$$\int_{\Omega} -u\Delta u = \int_{\Omega} |\nabla u|^2 = \lambda \int_{\Omega} u^2.$$

Mivel nemnegatív, nem azonosan nulla függvényeket integrálunk, az egyenlőség csak $\lambda > 0$ esetén teljesülhet.

2.2. Szimmetrikus elliptikus peremérték-feladat

A nem szimmetrikus eset előtt felvázoljuk a szimmetrikus elliptikus peremérték-feladatot, amely az előbbi egy speciális esete. Ezért külön nem is igazoljuk a megoldhatóságát, hiszen a nem szimmetrikus eset eredményei közvetlenül átvihetők ezekre a feladatokra is.

Legyen $\Omega \subset \mathbb{R}^n$ korlátos tartomány szakaszonként sima peremmel. Tekintsük az alábbi *szimmetrikus elliptikus peremérték-feladatot* a homogén Dirichlet-peremfeltétel mellett:

$$\begin{cases} Lu := -\operatorname{div}(p\nabla u) = f, \\ u_{|\partial\Omega} = 0. \end{cases}$$

Feltesszük azt is, hogy $p \in L^{\infty}(\Omega)$ és $p(x) \ge m > 0$ (m. m. $x \in \Omega$).

Tegyük fel, hogy $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ klasszikus megoldása a feladatnak. Az egyenlet mindkét oldalát egy $v \in C_0^1(\Omega)$ *tesztfüggvénnyel* megszorozva, majd integrálva és a Green-formulát felhasználva kapjuk, hogy

$$\int_{\Omega} p \nabla u \cdot \nabla v = \int_{\Omega} f v.$$

Ezáltal egy másik gyengébb megoldásfogalomhoz jutunk, mivel *u*-nak nem kell kétszer folytonosan differenciálhatónak lennie, hogy értelmesek legyenek a képletben szereplő kifejezések. A fenti eredmények alapján bevezethetjük az alábbi skalárszorzatot:

$$[u,v] := \int_{\Omega} p \nabla u \cdot \nabla v.$$

A feladat szimmetrikus elnevezése abból adódik, hogy a tesztfüggvény segítségével kapott kifejezés szimmetrikus bilineáris formát határoz meg. Ez a megoldhatósággal kapcsolatos vizsgálatokat nagyban leegyszerűsíti a nem szimmetrikus esethez képest, amit a következő fejezetben részletesen tárgyalunk.

2.3. Nem szimmetrikus elliptikus peremérték-feladat

Legyen $\Omega \subset \mathbb{R}^n$ korlátos tartomány szakaszonként sima peremmel. Tekintsük az alábbi *nem szimmetrikus elliptikus peremérték-feladatot* a homogén Dirichlet-peremfeltétel mellett:

$$\begin{cases} Lu := -\operatorname{div}(p\nabla u) + \mathbf{b} \cdot \nabla u = f, \\ u_{|\partial\Omega} = 0. \end{cases}$$
(1)

Az alábbi feltételeket követeljük meg:

$$\begin{cases} p \in L^{\infty}(\Omega), \ p(x) \ge m > 0 \ (\text{m. m. } x \in \Omega); \\ \mathbf{b} \in C^{1}(\overline{\Omega}, \mathbb{R}^{n}), \ \text{div} \, \mathbf{b} = 0. \end{cases}$$
(2)

Az Lu = f másodrendű lineáris parciális differenciálegyenletnek nem minden esetben van $u \in C^2(\Omega)$ klasszikus megoldása, például ha p nem folytonos vagy az Ω tartomány speciális alakú. Ez motiválja a gyenge megoldás fogalmát, amely a Green-formula miatt $\forall u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ klasszikus megoldásra is teljesül, tehát kiterjeszti megoldásfogalmat. A feladat megoldhatóságát most valós értékű függvények között vizsgáljuk a $H_0^1(\Omega)$ Szoboljev-térben.

2.16. Definíció. Az $u \in H_0^1(\Omega)$ függvény gyenge megoldása az (1) peremérték-feladatnak, ha

$$\int_{\Omega} (p\nabla u \cdot \nabla v + (\mathbf{b} \cdot \nabla u)v) = \int_{\Omega} fv, \quad \forall v \in H_0^1(\Omega).$$
(3)

2.17. Megjegyzés. A szimmetrikus esettel ellentétben most az egyenlőség bal oldalán álló bilineáris forma nem szimmetrikus, sőt az összeg második tagja antiszimmetrikus, amit később a 4.18 állításban igazolunk.

2.18. Tétel. *Ha teljesülnek a (2)-ben előírt feltételek, akkor az (1) peremérték-feladatnak bár*mely $f \in L^2(\Omega)$ esetén létezik egyértelműen $u^* \in H^1_0(\Omega)$ gyenge megoldása.

Bizonyítás. Legyen $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ az a bilineáris forma, melyre:

$$B(u,v) = \int_{\Omega} (p\nabla u \cdot \nabla v + (\mathbf{b} \cdot \nabla u)v).$$

A bilinearitás következik a gradiens, a skalárszorzat és az integrálás linearitásából. Először megmutatjuk, hogy *B* korlátos, majd azt is, hogy koercív, végül alkalmazzuk a Lax–Milgram-lemmát.

$$|B(u,v)| = \left| \int_{\Omega} (p\nabla u \cdot \nabla v + (\mathbf{b} \cdot \nabla u)v) \right| \le \int_{\Omega} |p\nabla u \cdot \nabla v| + \int_{\Omega} |(\mathbf{b} \cdot \nabla u)v| = I_1 + I_2$$

Az integrál abszolút értékét úgy becsültük, hogy vettük az integrálandó függvény abszolút értékét, majd a háromszög-egyenlőtlenség segítségével egy kéttagú összeget kaptunk, amit tagonként tovább becsülünk.

$$I_{1} = \int_{\Omega} |p| |\nabla u \cdot \nabla v| \le \|p\|_{L^{\infty}} \int_{\Omega} |\nabla u \cdot \nabla v| \le \|p\|_{L^{\infty}} \int_{\Omega} |\nabla u| |\nabla v| \le \|p\|_{L^{\infty}} \|u\|_{H^{1}_{0}} \|v\|_{H^{1}_{0}}$$

Itt felhasználtuk, hogy feltevésünk szerint $p \in L^{\infty}(\Omega)$. Utána a becsléseknél először az \mathbb{R}^2 beli, majd az L^2 -beli Cauchy–Schwarz-egyenlőtlenséget használtuk azzal az észrevétellel, hogy $\|\nabla u\|_{L^2} = \|u\|_{H^1_0}$.

$$\begin{split} I_{2} &= \int_{\Omega} |\mathbf{b} \cdot \nabla u| |v| \leq \int_{\Omega} |\mathbf{b}| |\nabla u| |v| \leq \|\mathbf{b}\|_{L^{\infty}} \int_{\Omega} |\nabla u| |v| \leq \|\mathbf{b}\|_{L^{\infty}} \|u\|_{H_{0}^{1}} \|v\|_{L^{2}} \leq \\ &\leq \lambda_{1}^{-\frac{1}{2}} \|\mathbf{b}\|_{L^{\infty}} \|u\|_{H_{0}^{1}} \|v\|_{H_{0}^{1}} \end{split}$$

A becsléseknél sorban használtuk: \mathbb{R}^2 -beli Cauchy–Schwarz, $|\mathbf{b}| \in L^{\infty}(\Omega)$, L^2 -beli Cauchy–Schwarz, végül a Poincaré–Friedrichs-egyenlőtlenség.

$$\Rightarrow |B(u,v)| \le (\|p\|_{L^{\infty}} + \lambda_1^{-\frac{1}{2}} \|\mathbf{b}\|_{L^{\infty}}) \|u\|_{H_0^1} \|v\|_{H_0^1}, \quad \forall u, v \in H_0^1(\Omega).$$

A koercivitás bizonyításánál felhasználjuk a div $\mathbf{b} = 0$ feltételből és két függvény szorzatának deriválási szabályából adódó alábbi azonosságot:

$$\operatorname{div}(\mathbf{b}u^2) = (\operatorname{div}\mathbf{b})u^2 + \mathbf{b}\cdot\nabla(u^2) = \mathbf{b}\cdot\nabla(u^2) = 2(\mathbf{b}\cdot\nabla u)u \tag{4}$$

Az (1) peremérték-feladat kitűzésénél Ω -ra tett feltevések mellett a Gauss–Osztrogradszkij-tétel alkalmazható **b** u^2 -re, mely az $u_{|\partial\Omega} = 0$ peremfeltétel mellett

$$0 = \int_{\partial \Omega} (\mathbf{b}u^2) \cdot \mathbf{v} = \int_{\Omega} \operatorname{div}(\mathbf{b}u^2) = \int_{\Omega} 2(\mathbf{b} \cdot \nabla u)u.$$
 (5)

Ebből könnyen adódik a *B* koercivitása arra az m > 0 számra, melyre a feltételezésünk szerint $p(x) \ge m > 0$ (m. m. $x \in \Omega$).

$$B(u,u) = \int_{\Omega} (p|\nabla u|^2 + (\mathbf{b} \cdot \nabla u)u) = \int_{\Omega} p|\nabla u|^2 \ge m ||u||_{H_0^1}^2, \quad \forall u \in H_0^1(\Omega).$$

Legyen $f \in L^2(\Omega)$ rögzített és $\phi : H_0^1(\Omega) \to \mathbb{R}$, $\phi v := \int_{\Omega} f v = \langle f, v \rangle_{L^2}$. Ekkor

(i) ϕ lineáris a skalárszorzat linearitása miatt.

(ii)
$$\phi$$
 korlátos: $|\phi v| = |\langle f, v \rangle_{L^2}| \le ||f||_{L^2} ||v||_{L^2} \le \left(\lambda_1^{-\frac{1}{2}} ||f||_{L^2}\right) ||v||_{H_0^1}, \quad \forall v \in H_0^1(\Omega).$

Ezért a Lax–Milgram-lemma szerint $\exists ! u^* \in H_0^1(\Omega)$, amely teljesíti (3)-at.

2.19. Megjegyzés. Az általunk bevezetett peremérték-feladat konvekció-diffúziós állapotot ír le, azonban általánosabb alakban is tárgyalható, hasonló eredmények mellett.

- (a) A differenciálegyenletben szerepelhet nulladrendű *cu* tag is, ahol $c \in L^{\infty}(\Omega)$ és $c \ge 0$. A div $\mathbf{b} = 0$ és $c \ge 0$ feltétel együtt enyhíthető a $c \frac{1}{2}$ div $\mathbf{b} \ge 0$ egyenlőtlenséggel.
- (b) A *p* függvény helyett állhat egy $K: \Omega \to \mathbb{R}^{n \times n}$ leképezés, ahol a mátrix elemei mint $k_{ij}: \Omega \to \mathbb{R}$ függvények $L^{\infty}(\Omega)$ -ban vannak, és van olyan $k_0 > 0$ szám, hogy majdnem minden $x \in \Omega$ esetén

$$\sum_{i,j=1}^n k_{ij}(x)\xi_i\xi_j \ge k_0|\xi|^2, \quad \forall \xi \in \mathbb{R}^n.$$

Az általános feladat és megoldhatósága megtalálható a [4] könyv 3.2 fejezetében.

3. A konjugált gradiens-módszer

A következőkben az operátoregyenletek megoldását visszavezetjük a kvadratikus funkcionál minimalizálási problémájára, majd egyenletesen pozitív operátorok esetén ezt felhasználva a konjugált gradiens-módszerrel iterációs lépésekkel közelítjük a megoldást, ami lineáris konvergenciát eredményez. Ha az operátor nem önadjungált, akkor a KGN-módszerrel visszavezetjük az önadjungált esetre. Bevezetjük a KGN prekondicionált változatát is, amely növeli a konvergencia sebességét, és jól alkalmazható a peremérték-feladatok megoldásánál.

3.1. Kvadratikus funkcionál, Gâteaux-derivált

Legyen *H* valós vagy komplex Hilbert-tér, $A: H \supset H$ szigorúan pozitív operátor, $f \in H$ adott vektor. Itt $A: H \supset H$ azt jelöli, hogy $D(A) \subset H$ altér.

3.1. Definíció. Az Au = f operátoregyenlethez tartozó $\phi : H \to \mathbb{R}$ kvadratikus funkcionál

- (a) komplex esetben: $\phi(u) := \langle Au, u \rangle 2 \operatorname{Re} \langle f, u \rangle$;
- (b) valós esetben: $\phi(u) := \langle Au, u \rangle 2 \langle f, u \rangle$.

3.2. Állítás. *Ha az Au* = f egyenletnek létezik $u^* \in D(A)$ megoldása, akkor az egyenlethez tartozó ϕ kvadratikus funkcionálnak u^* minimumhelye, és min $\phi = \phi(u^*)$ csak itt vétetik fel.

Bizonyítás. Legyen $u \in D(A) \setminus \{u^*\}$.

$$\begin{split} \phi(u) &= \langle Au, u \rangle - 2 \operatorname{Re} \langle f, u \rangle = \langle Au, u \rangle - \langle f, u \rangle - \langle f, u \rangle = \langle Au, u \rangle - \langle f, u \rangle - \langle u, f \rangle = \\ &= \langle Au, u \rangle - \langle Au^*, u \rangle - \langle u, Au^* \rangle = \langle A(u - u^*), u \rangle - \langle u, Au^* \rangle = \\ &= \langle A(u - u^*), u - u^* \rangle + \langle A(u - u^*), u^* \rangle - \langle u, Au^* \rangle = \\ &= \langle A(u - u^*), u - u^* \rangle + \langle Au, u^* \rangle - \langle Au^*, u^* \rangle - \langle u, Au^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^* \rangle - \langle Au^*, u^* \rangle = \langle A(u - u^*), u - u^*$$

Az utolsó egyenlőség az A szimmetrikus tulajdonsága miatt igaz: $\langle Au, u^* \rangle = \langle u, Au^* \rangle, \forall u \in D(A).$

$$\begin{split} \phi(u^*) &= \langle Au^*, u^* \rangle - \langle Au^*, u^* \rangle - \langle u^*, Au^* \rangle = - \langle Au^*, u^* \rangle \\ \Rightarrow \quad \phi(u) &= \langle A(u - u^*), u - u^* \rangle + \phi(u^*) > \phi(u^*), \end{split}$$

mivel $u - u^* \neq 0$ és *A* szigorúan pozitív.

3.3. Következmény. Az Au = f egyenlet megoldásához elég a hozzá tartozó ϕ kvadratikus funkcionált minimalizálni.

3.4. Definíció. Legyenek *X*, *Y* normált terek. Az $F : X \to Y$ operátor *Gâteaux-deriválható* az $u \in X$ pontban, ha

(i) minden $v \in X$ esetén létezik az alábbi határérték:

$$\partial_{v}F(u) := \lim_{t \to 0} \frac{F(u+tv) - F(u)}{t};$$

(ii) az $F'(u): X \to Y, F'(u)v := \partial_v F(u)$ leképezés folytonos lineáris operátor X-ből Y-ba.

Legyen *H* valós Hilbert-tér és $\phi : H \to \mathbb{R}$ funkcionál. Ekkor a Gâteaux-deriválhatóság definíciójában X = H és $Y = \mathbb{R}$, ezért $\phi'(u)$ korlátos lineáris funkcionált határoz meg *H*-ból \mathbb{R} -be. A Riesz-féle reprezentációs tétel szerint minden rögzített $u \in H$ vektorhoz létezik egyetlen olyan $\Phi'(u) \in H$ vektor, amire

$$\phi'(u)v = \langle v, \Phi'(u) \rangle, \quad \forall v \in H.$$

3.5. Állítás. Legyen H valós Hilbert-tér, ϕ az Au = f operátoregyenlethez tartozó kvadratikus funkcionál. A ϕ Gâteaux-deriváltja tetszőleges $u \in H$ esetén:

$$\phi'(u)v = 2 \langle Au - f, v \rangle, \quad \forall v \in H.$$

Bizonyítás. Először meghatározzuk $\phi(u)$ -t és $\phi(u+tv)$ -t.

$$\begin{split} \phi(u) &= \langle Au, u \rangle - 2 \langle f, u \rangle, \\ \phi(u+tv) &= \langle A(u+tv), u+tv \rangle - 2 \langle f, u+tv \rangle = \\ &= \phi(u) + 2t \langle Au - f, v \rangle + t^2 \langle Av, v \rangle, \quad \forall u, v \in H, \ \forall t \in \mathbb{R}. \end{split}$$

Ezért a Gâteaux-deriválhatóság fogalmában szereplő határérték:

$$\phi'(u)v = \partial_v \phi(u) = \lim_{t \to 0} \frac{\phi(u+tv) - \phi(u)}{t} = \lim_{t \to 0} \frac{2t \langle Au - f, v \rangle + t^2 \langle Av, v \rangle}{t} =$$
$$= \lim_{t \to 0} (2 \langle Au - f, v \rangle + t \langle Av, v \rangle) = 2 \langle Au - f, v \rangle.$$

Ez rögzített $u \in H$ esetén $\forall v \in H$ -ra létezik, és a skalárszorzat tulajdonságai alapján folytonos lineáris funkcionált definiál, így ϕ valóban Gâteaux-deriválható.

3.6. Következmény. A ϕ kvadratikus funkcionál Gâteaux-deriváltjának Riesz-reprezentánsa:

$$\Phi'(u) = 2(Au - f), \quad \forall u \in H.$$

3.2. A gradiens-módszerről általában

A véges dimenzióban ismert iterációs megoldási módszereket szeretnénk a funkcionálanalízis eszközeivel a végtelen dimenziós esetre kiterjeszteni. Először ismertetjük a gradiens-módszer alapgondolatát, majd alkalmazzuk a kvadratikus funkcionál minimalizálására.

Legyen *X* Banach-tér, $\phi : X \to \mathbb{R}$ funkcionál. Egy olyan iterációt konstruálunk a ϕ lokális minimalizálására, amely egy kezdeti $u_0 \in X$ pontból minden lépésben a legnagyobb csökkenés irányába lép tovább, melynek meghatározásához a korábban ismertetett Gâteaux-deriváltat fogjuk használni. Tegyük fel tehát, hogy a ϕ funkcionál $\forall u \in X$ pontban Gâteaux-deriválható.

- Legyen $u_0 \in X$ tetszőleges.
- Ha $n \in \mathbb{N}$ és u_n -t már ismerjük, akkor $u_{n+1} := u_n + t_n v_n$, ahol $t_n > 0$ konstans és $v_n \in X$ a legnagyobb csökkenés iránya $\forall n \in \mathbb{N}$.

3.7. Állítás. *Ha* X = H *Hilbert-tér és* ϕ *Gâteaux-deriválható, akkor* $-\Phi'(u_n)$ *számszorosa a leggyorsabb ereszkedés iránya.*

Bizonyítás. Minden $n \in \mathbb{N}$ -re olyan v_n -t szeretnénk találni, amely minimalizálja a $\phi'(u_n)v = \partial_v \phi(u_n)$ Gâteaux-deriváltat. A Cauchy–Schwarz-egyenlőtlenséget felhasználva

$$|\langle \Phi'(u_n), v \rangle| \le \|\Phi'(u_n)\| \|v\| \Rightarrow$$
$$\partial_v \phi(u_n) = \langle \Phi'(u_n), v \rangle \ge -\|\Phi'(u_n)\| \|v\|.$$

Feltehető, hogy $\Phi'(u_n) \neq 0$, mert különben ϕ konvexitása miatt (3.17 állítás) ez azt jelentené, hogy $u_n = u^*$, vagyis megtaláltuk a pontos megoldást. A fenti egyenlőtlenség akkor teljesül egyenlőséggel, ha $v_n = -\frac{\Phi'(u_n)}{\|\Phi'(u_n)\|}$, azaz v_n minimalizálja $\phi'(u_n)$ -t.

3.8. Következmény. Az általános iterációs lépés: $u_{n+1} := u_n - t_n \Phi'(u_n)$, ahol $t_n > 0$ állandó.

Legyen *H* valós Hilbert-tér, $A \in B(H)$ egyenletesen pozitív operátor és $f \in H$ tetszőleges. Keressük az Au = f operátoregyenlet megoldását, amely az 1.10 megoldhatósági tétel szerint egyértelműen létezik. A 3.3 következmény alapján az $u^* \in H$ megoldás meghatározásához az egyenlethez tartozó ϕ kvadratikus funkcionált kell minimalizálni, amit a gradiens-módszerrel szeretnénk megvalósítani.

Korábban már meggondoltuk (3.6), hogy kvadratikus funkcionál esetében $\Phi'(u) = 2(Au - f)$, ezért a leggyorsabb ereszkedés iránya -(Au - f) számszorosa. Az iterációs lépés tehát:

$$u_{n+1} := u_n - t_n (Au_n - f) = u_n - t_n r_n.$$

3.9. Definíció. Az $r_n := Au_n - f$ vektort *reziduális hibavektornak* nevezzük.

3.10. Megjegyzés. Természetes módon azt várjuk, hogy az r_n hibavektor a 0-hoz tartson, de az iteráció konvergenciáját nem bizonyítottuk. Nem adtuk meg a $t_n > 0$ lépésköz-sorozatot sem, de a következő fejezetekben az eddigi eredményekre épülő konjugált gradiens-módszert részletesebben is tárgyaljuk.

3.3. A KGM egyenletesen pozitív operátorra

Legyen *H* valós Hilbert-tér, $A \in B(H)$ egyenletesen pozitív operátor és $f \in H$ tetszőleges. Most az iterációban a korábban bevezetett r_n reziduális hibavektorok helyett a p_n , úgynevezett *konjugált irányok* rendszere szerint közelítjük a megoldást, ahol a konjugált tulajdonság azt jelenti, hogy bármely két különböző $i \neq j$ indexre p_i és p_j A-ortogonálisak, azaz $\langle Ap_i, p_j \rangle = 0$. Legyen $H_n := \text{span}\{p_0, p_1, \dots, p_n\}$ az első *n* konjugált irány által kifeszített vektortér.

A konjugált gradiens-módszer (KGM) algoritmusa, első változat:

- Legyen $u_0 \in H$ tetszőleges kezdővektor és $p_0 := r_0 = Au_0 f$.
- Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n -t ismerjük:

$$\begin{cases} u_{n+1} := u_n - \alpha_n p_n, \text{ abol } \alpha_n = \frac{\langle r_n, p_n \rangle}{\langle A p_n, p_n \rangle}; \\ p_{n+1} := r_{n+1} - \beta_n p_n, \text{ abol } \beta_n = \frac{\langle A r_{n+1}, p_n \rangle}{\langle A p_n, p_n \rangle}. \end{cases}$$

3.11. Állítás. Az iterációban szereplő α_n és β_n együtthatók mellett a következők teljesülnek:

- (*i*) $r_{n+1} = r_n \alpha_n A p_n$,
- (*ii*) $\langle r_{n+1}, p_n \rangle = 0$,
- (*iii*) $\langle Ap_{n+1}, p_n \rangle = 0.$

Bizonyítás.

(i) Alkalmazzuk az A operátort u_{n+1} -re, majd vonjuk ki belőle f-et.

$$Au_{n+1} = Au_n - \alpha_n Ap_n \quad \Rightarrow \quad r_{n+1} = Au_{n+1} - f = (Au_n - f) - \alpha_n Ap_n = r_n - \alpha_n Ap_n.$$

(ii) Írjuk át r_{n+1} -et az előző eredmény szerint, majd helyettesítsük α_n -t a definíciója alapján.

$$\langle r_{n+1}, p_n
angle = \langle r_n - \alpha_n A p_n, p_n
angle = \langle r_n, p_n
angle - \alpha_n \langle A p_n, p_n
angle =$$

= $\langle r_n, p_n
angle - rac{\langle r_n, p_n
angle}{\langle A p_n, p_n
angle} \langle A p_n, p_n
angle = 0.$

(iii) Használjuk fel p_{n+1} rekurzióját, majd β_n definícióját.

$$egin{aligned} &\langle Ap_{n+1},p_n
angle = \langle A(r_{n+1}-eta_np_n),p_n
angle = \langle Ar_{n+1},p_n
angle -eta_n\langle Ap_n,p_n
angle = \ &= \langle Ar_{n+1},p_n
angle - rac{\langle Ar_{n+1},p_n
angle}{\langle Ap_n,p_n
angle}\langle Ap_n,p_n
angle = 0. \ \ \Box \end{aligned}$$

3.12. Definíció. A $K_n := \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^nr_0\}$ vektorteret *Krylov-altérnek* nevezzük.

3.13. Állítás. *Legyen* $n \in \mathbb{N}$, *ekkor* $r_n \in K_n$ *és* $p_n \in K_n$.

Bizonyítás. Teljes indukcióval bizonyítjuk az állítást. Ha n = 0, akkor $p_0 = r_0 \in K_0 = \text{span}\{r_0\}$. Legyen $n \in \mathbb{N}$ tetszőleges, és tegyük fel, hogy (n - 1)-ig teljesül az állítás.

Az $r_n = r_{n-1} - \alpha_{n-1}Ap_{n-1}$ rekurziót felhasználva $r_n \in K_n$, mivel az indukciós feltevés szerint $r_{n-1} \in K_{n-1} \subset K_n$ és $Ap_{n-1} \in A(K_{n-1}) \subset K_n$, így a két tag lineáris kombinációja is K_n -beli. Hasonlóan $p_n \in K_n$ is teljesül, hiszen a $p_n = r_n - \beta_{n-1}p_{n-1}$ rekurzióban $r_n \in K_n$ az előző meggondolás miatt, és $p_{n-1} \in K_{n-1} \subset K_n$ az indukciós feltevés szerint.

3.14. Tétel. *Legyen* $n \in \mathbb{N}$ *, ekkor*

- (i) $\langle r_{n+1}, p_i \rangle = 0$, i = 0, 1, ..., n (ortogonális tulajdonság)
- (*ii*) $H_n = K_n$
- (*iii*) $\langle r_{n+1}, Ap_i \rangle = 0, \ i = 0, 1, \dots, n-1$
- (*iv*) $\langle Ap_{n+1}, p_i \rangle = 0$, i = 0, 1, ..., n (konjugált tulajdonság)

Bizonyítás. A négy állítást egyszerre bizonyítjuk teljes indukcióval. Az n = 0 esetet mindegyiknél külön megmutatjuk. Legyen $n \in \mathbb{N}$ tetszőleges, és tegyük fel, hogy (n-1)-ig teljesülnek az 1., 2., 4. állítások. A 3. állítás indukció nélkül következik a többiből.

(i) Ha n = 0, akkor ⟨r₁, p₀⟩ = 0 a 3.11 állítás második pontja szerint. Ugyanezért minden n-re ⟨r_{n+1}, p_n⟩ = 0, tehát elég i = 0,...,n − 1-re vizsgálni. Az indukciós feltevés szerint ezekre az indexekre ⟨r_n, p_i⟩ = 0 és ⟨Ap_n, p_i⟩ = 0.

$$\langle r_{n+1}, p_i \rangle = \langle r_n - \alpha_n A p_n, p_i \rangle = \langle r_n, p_i \rangle - \alpha_n \langle A p_n, p_i \rangle = 0$$

(ii) Ha n = 0, akkor $H_0 = \text{span}\{p_0\} = \text{span}\{r_0\} = K_0$. A 3.13 állítás miatt $p_i \in K_i \subset K_n$, ha i = 0, ..., n, ezért $H_n \subset K_n$, ahol K_n a definíciója szerint legfeljebb n + 1 dimenziós. Ha a $\{p_i : i = 0, ..., n\}$ vektorrendszer független, akkor készen vagyunk, hiszen $H_n n + 1$ dimenziós altere K_n -nek, vagyis $H_n = K_n$.

Feltehetjük, hogy $p_0 = Au_0 - f \neq 0$, mert egyébként ez azt jelentené, hogy u_0 megoldása az operátoregyenletnek. Tegyük fel, hogy $\{p_i: i = 0, ..., n\}$ független vektorrendszer. Mivel $p_{n+1} = r_{n+1} - \beta_n p_n$, és az első rész szerint $r_{n+1} \perp H_n$, ezért $p_{n+1} \notin H_n$, azaz $\{p_i: i = 0, ..., n+1\}$ továbbra is független rendszer minden $n \in \mathbb{N}$ -re.

- (iii) Az első rész szerint $r_{n+1} \perp H_n$, mert minden báziselemére merőleges, és a második rész szerint $H_n = K_n$, tehát $r_{n+1} \perp K_n$. Ha $i \leq n-1$, akkor $Ap_i \in A(K_i) \subset K_{i+1} \subset K_n$.
- (iv) Ha n = 0, akkor $\langle Ap_1, p_0 \rangle = 0$ a 3.11 állítás harmadik pontja szerint. Ugyanezért minden *n*-re $\langle Ap_{n+1}, p_n \rangle = 0$, tehát elég i = 0, ..., n-1-re vizsgálni. Az indukciós feltevés szerint ezekre az indexekre $\langle Ap_n, p_i \rangle = 0$, és az előbb bizonyított harmadik állításból $\langle Ar_{n+1}, p_i \rangle = \langle r_{n+1}, Ap_i \rangle = 0$.

$$\langle Ap_{n+1}, p_i \rangle = \langle A(r_{n+1} - \beta_n p_n), p_i \rangle = \langle Ar_{n+1}, p_i \rangle - \beta_n \langle Ap_n, p_i \rangle = 0 \qquad \Box$$

3.15. Következmény. Az iterációban szereplő α_n és β_n együtthatókat egyszerűbb alakban is felírhatjuk:

$$\alpha_n = \frac{\|r_n\|^2}{\langle Ap_n, p_n \rangle}; \quad \beta_n = -\frac{\|r_{n+1}\|^2}{\|r_n\|^2}.$$

Bizonyítás. Az α_n esetében felhasználjuk a $p_n = r_n - \beta_{n-1}p_{n-1}$ és $\langle r_n, p_{n-1} \rangle = 0$ összefüggéseket.

$$\alpha_n = \frac{\langle r_n, p_n \rangle}{\langle Ap_n, p_n \rangle} = \frac{\|r_n\|^2 - \beta_{n-1} \langle r_n, p_{n-1} \rangle}{\langle Ap_n, p_n \rangle} = \frac{\|r_n\|^2}{\langle Ap_n, p_n \rangle}$$

Az így kapott új összefüggésből $\langle Ap_n, p_n \rangle = \frac{\|r_n\|^2}{\alpha_n}.$

$$\beta_n = \frac{\langle Ar_{n+1}, p_n \rangle}{\langle Ap_n, p_n \rangle} = \frac{\langle Ar_{n+1}, p_n \rangle}{\|r_n\|^2} \alpha_n = \frac{\langle r_{n+1}, \alpha_n Ap_n \rangle}{\|r_n\|^2} = \frac{\langle r_{n+1}, r_n - r_{n+1} \rangle}{\|r_n\|^2} = -\frac{\|r_{n+1}\|^2}{\|r_n\|^2}$$

Itt felhasználtuk, hogy $\alpha_n A p_n = r_n - r_{n+1}$ és $\langle r_{n+1}, r_n \rangle = 0$, mivel $r_n \in K_n$ és $r_{n+1} \perp K_n$.

A konjugált gradiens-módszer (KGM) algoritmusa, második változat:

- Legyen $u_0 \in H$ tetszőleges kezdővektor és $p_0 := r_0 = Au_0 f$.
- Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n -t ismerjük:

$$\begin{cases} u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n A p_n, \text{ ahol } \alpha_n = -\frac{\|r_n\|^2}{\langle A p_n, p_n \rangle};\\ p_{n+1} := r_{n+1} + \beta_n p_n, \text{ ahol } \beta_n = \frac{\|r_{n+1}\|^2}{\|r_n\|^2}. \end{cases}$$

3.16. Megjegyzés. Az α_n és β_n előjelét megváltoztattuk a korábbiakhoz képest, hogy a korrekciós tagok pozitív előjellel szerepeljenek az iterációban.

A gradiens-módszer alapgondolata az volt, hogy minden lépésben a legnagyobb csökkenés irányába lépünk, hogy minimalizáljuk a ϕ kvadratikus funkcionált. Megmutatjuk, hogy a konjugált gradiens-módszer esetén is minden lépéssel egyre nagyobb halmazon minimalizáljuk a ϕ funkcionált.

3.17. Állítás. $A \phi(u) = \langle Au, u \rangle - 2 \langle f, u \rangle$ kvadratikus funkcionál konvex.

Bizonyítás. A konvexitás elégséges feltétele, hogy ϕ' monoton operátor, azaz $\forall u, v \in H$ -ra:

$$\left\langle \Phi'(v) - \Phi'(u), v - u \right\rangle = \left\langle 2Av - 2f - 2Au + 2f, v - u \right\rangle = 2 \left\langle A(v - u), v - u \right\rangle \ge 2m \|v - u\|^2 \ge 0.$$

3.18. Állítás. $\phi(u_{n+1}) = \min \phi_{|u_0+K_n}$.

Bizonyítás. Elég megmutatni, hogy $\phi(u_{n+1}) = \min \phi_{|u_0+H_n}$ minden $n \in \mathbb{N}$ -re, hiszen korábban már bizonyítottuk, hogy $H_n = K_n$. Mivel $u_{n+1} = u_n + \alpha_n p_n$ és $H_n = \text{span}\{p_0, p_1, \dots, p_n\}$, ezért a rekurzióból látszik, hogy $u_{n+1} \in u_0 + H_n$. A ϕ konvexitása miatt a minimalizálás ekvivalens azzal, hogy

$$0 = \partial_p \phi(u_{n+1}) = \left\langle \Phi'(u_{n+1}), p \right\rangle = 2 \left\langle Au_{n+1} - f, p \right\rangle = 2 \left\langle r_{n+1}, p \right\rangle, \quad \forall p \in H_n.$$

Ez pedig teljesül az $r_{n+1} \perp H_n$ ortogonalitási tulajdonság miatt.

3.19. Tétel (A KGM minimalizáló tulajdonsága). Legyen u^* az Au = f operátoregyenlet megoldása és $e_n = u_n - u^*$ az iteráció hibavektora. Jelölje \mathbb{P}_n^1 azoknak a legfeljebb n-edfokú egyváltozós p_n polinomoknak a halmazát, amelyekre $p_n(0) = 1$. Ekkor

$$\|e_n\|_A = \min_{p_n \in \mathbb{P}_n^1} \|p_n(A)e_0\|_A.$$

Bizonyítás. A 3.2 állítás bizonyításánál megmutattuk, hogy $\phi(u) = \langle A(u-u^*), u-u^* \rangle + \phi(u^*)$ = $||u-u^*||_A^2 + \phi(u^*)$, ezért az u_n minimalizáló tulajdonsága miatt $||u_n-u^*||_A^2 = \phi(u_n) - \phi(u^*) = \min_{u \in u_0+K_{n-1}} ||u-u^*||_A^2 + \phi(u^*) - \phi(u^*) = \min_{u \in u_0+K_{n-1}} ||u-u^*||_A^2$, azaz

$$||e_n||_A = \min_{u \in u_0 + K_{n-1}} ||u - u^*||_A = \min_{e \in e_0 + K_{n-1}} ||e||_A.$$

Mivel a hibavektorral felírva $r_0 = Au_0 - f = Au_0 - Au^* = A(u_0 - u^*) = Ae_0$, így definíció szerint $K_{n-1} = \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{n-1}r_0\} = \text{span}\{Ae_0, A^2e_0, \dots, A^ne_0\}$. Ebből már látszik, hogy $e_0 + K_{n-1} = \{p_n(A)e_0 : p_n \in \mathbb{P}_n^1\}$, és

$$||e_n||_A = \min_{e \in e_0 + K_{n-1}} ||e||_A = \min_{p_n \in \mathbb{P}^1_n} ||p_n(A)e_0||_A.$$

A konjugált gradiens-módszer konvergenciáját abban az esetben bizonyítjuk, amikor A-nak létezik teljes ortonormált sajátvektorrendszere. Ehhez felhasználjuk az alábbi nevezetes tételt és állítást:

3.20. Tétel (Fourier-sorok főtétele). Legyen H Hilbert-tér, $(v_n) \subset H$ teljes ortonormált rendszer. Ekkor $\forall x \in H$ esetén $x = \sum_{i=1}^{\infty} \langle x, v_i \rangle v_i$.

3.21. Állítás. Legyen H Hilbert-tér, $(v_n) \subset H$ teljes ortonormált rendszer. Ekkor $\forall x \in H$ esetén:

$$x = \sum_{i=1}^{\infty} d_i v_i \quad \Rightarrow \quad ||x||^2 = \sum_{i=1}^{\infty} |d_i|^2.$$

3.22. Tétel (Lineáris konvergencia). *Ha* $A \in B(H)$ *egyenletesen pozitív operátor megfelelő* $M \ge m > 0$ állandókkal, hogy $m||u||^2 \le \langle Au, u \rangle \le M||u||^2$ ($\forall u \in H$), akkor a KGM iterációs lépéseiben az e_n hibavektorokra teljesül, hogy

$$\frac{\|e_n\|_A}{\|e_0\|_A} \le 2\left(\frac{\sqrt{M}-\sqrt{m}}{\sqrt{M}+\sqrt{m}}\right)^n, \quad \forall n \in \mathbb{N}.$$

Bizonyítás. Tegyük fel, hogy *A*-nak létezik teljes ortonormált sajátvektorrendszere. Legyenek λ_k az *A* sajátértékei, $\{u_k\} \subset H_A$ pedig a hozzájuk tartozó sajátvektorok sorozata, amely a feltevés szerint teljes ortonormált rendszert alkot. Ha az e_0 hibavektorra alkalmazzuk a Fourier-sorok főtételét a H_A energiatérben, akkor

$$e_0=\sum_{k=1}^{\infty}\langle e_0,u_k\rangle_A u_k.$$

A sajátértékek és sajátvektorok között fennálló $Au_k = \lambda_k u_k$ összefüggés miatt tetszőleges $p_n \in \mathbb{P}_n^1$ polinomra is teljesül, hogy $p_n(A)u_k = p_n(\lambda_k)u_k$.

$$\Rightarrow \quad p_n(A)e_0 = \sum_{k=1}^{\infty} \langle e_0, u_k \rangle_A \, p_n(A)u_k = \sum_{k=1}^{\infty} \langle e_0, u_k \rangle_A \, p_n(\lambda_k)u_k$$

A 3.21 állítást $p_n(A)e_0$ fenti alakjára alkalmazva:

$$\|p_n(A)e_0\|_A^2 = \sum_{k=1}^{\infty} |\langle e_0, u_k \rangle_A p_n(\lambda_k)|^2 \le \max_{\lambda_k} |p_n(\lambda_k)|^2 \sum_{k=1}^{\infty} |\langle e_0, u_k \rangle_A|^2 = \max_{\lambda_k} |p_n(\lambda_k)|^2 \|e_0\|_A^2.$$

Az *A* egyenletes pozitivitásából tudjuk, hogy $\lambda_k \in [m, M]$, ugyanis

$$egin{aligned} &\lambda_k \|u_k\|^2 = \langle \lambda_k u_k, u_k
angle \geq M \|u_k\|^2 & \Leftrightarrow & \lambda_k \geq m; \ &\lambda_k \|u_k\|^2 = \langle \lambda_k u_k, u_k
angle = \langle A u_k, u_k
angle \leq M \|u_k\|^2 & \Leftrightarrow & \lambda_k \leq M. \end{aligned}$$

A KGM minimalizáló tulajdonságát és a kapott egyenlőtlenséget felhasználva:

$$\frac{\|e_n\|_A}{\|e_0\|_A} = \min_{p_n \in \mathbb{P}_n^1} \frac{\|p_n(A)e_0\|_A}{\|e_0\|_A} \le \min_{p_n \in \mathbb{P}_n^1} \left\{ \max_{\lambda_k} |p_n(\lambda_k)| \right\} \le \min_{p_n \in \mathbb{P}_n^1} \left\{ \max_{\lambda \in [m,M]} |p_n(\lambda)| \right\} =: q(m,M).$$

Abban az esetben, ha *A*-nak nincs teljes sajátvektorrendszere, a $\sigma(A)$ spektrumról az előzőhöz hasonlóan megmutatható, hogy $\sigma(A) \subset [m, M]$. Ebből ugyanúgy az $\frac{\|e_n\|_A}{\|e_0\|_A} \leq q(m, M)$ becslést kapjuk a konvergenciára, azonban a bizonyítás részleteit most nem tárgyaljuk, de megtalálható a [2] könyv 16.2.2 fejezetében.

A q(m,M) approximációelméleti feladat megoldása ismert (lásd [5] 1.6.7 fejezet):

$$q(m,M) = \frac{1}{T_n\left(\frac{M+m}{M-m}\right)} = \frac{2\left(\frac{\sqrt{M}-\sqrt{m}}{\sqrt{M}+\sqrt{m}}\right)^n}{1+\left(\frac{\sqrt{M}-\sqrt{m}}{\sqrt{M}+\sqrt{m}}\right)^{2n}} \lesssim 2\left(\frac{\sqrt{M}-\sqrt{m}}{\sqrt{M}+\sqrt{m}}\right)^n,$$

ahol *T_n* az *n*-edfokú elsőfajú Csebisev-polinom.

3.4. A KGN korlátos, nem önadjungált operátorra

Az eddig tárgyalt konjugált gradiens-módszert szeretnénk kiterjeszteni arra az esetre, amikor az operátor nem egyenletesen pozitív. Legyen $A \in B(H)$ nem önadjungált operátor. Tegyük fel azt is, hogy A bijekció. Az Au = f egyenlet közvetlen megoldása helyett tekintsük az alábbi normálegyenletet:

$$A^*Au = A^*f.$$

Megmutatjuk, hogy a normálegyenlet megoldására visszavezethető az eredeti operátoregyenlet megoldása. Ehhez felhasználjuk az alábbi két tételt:

3.23. Tétel (Banach-féle homeomorfizmus-tétel). Legyenek X, Y Banach-terek és $A \in B(X,Y)$ bijekció. Ekkor $A^{-1} \in B(Y,X)$.

3.24. Tétel (Operátorokra vonatkozó ortogonális felbontás). Legyen $A \in B(H)$, ekkor

$$H = \overline{R(A)} \oplus \ker(A^*).$$

3.25. Állítás. $Az A^*Au = A^*f$ normálegyenletnek létezik egyértelműen $u^* \in H$ megoldása, és ez kielégíti az Au = f egyenletet.

Bizonyítás. Mivel $A \in B(H)$ bijekció, így a Banach-féle homeomorfizmus-tétel szerint A^{-1} folytonos, ezért $\exists \tilde{m} > 0$, hogy $||A^{-1}v|| \leq \tilde{m}||v|| = \frac{1}{m}||v||$, ha $m := \frac{1}{\tilde{m}}$. Speciálisan, hav = Au, akkor $||u|| = ||A^{-1}Au|| \leq \frac{1}{m}||Au||$. Ez pontosan akkor igaz, ha $m||u|| \leq ||Au||$. Ebből és a korlátosságból következik, hogy léteznek olyan $M \geq m > 0$ állandók, amire

$$m\|u\| \le \|Au\| \le M\|u\|, \quad \forall u \in H.$$

Négyzetre emelés után az $||Au||^2 = \langle Au, Au \rangle = \langle A^*Au, u \rangle$ egyenlőséget felhasználva

$$m^2 \|u\|^2 \le \langle A^* A u, u \rangle \le M^2 \|u\|^2, \quad \forall u \in H.$$

Ebből és az A^*A operátor önadjungáltságából következik, hogy A^*A egyenletesen pozitív. Ekkor az 1.10 megoldhatósági tétel szerint A^*A is bijekció, azaz a normálegyenletnek egyértelműen létezik $u^* \in H$ megoldása.

Az *A* feltevésünk szerint bijekció, ezért R(A) = H. Az ortogonális felbontási tétel szerint ekkor ker $(A^*) = \{0\}$, vagyis A^* injektív. Tehát u^* megoldása az Au = f egyenletnek is.

Ezzel visszavezettük a nem önadjungált esetet egy megfelelő egyenletesen pozitív operátorra, amelyre már alkalmazhatjuk a KGM algoritmusát. Ezt KGN-módszernek nevezzük.

A korábbi jelölések és szereposztás úgy módosul, hogy az A operátor és f jobboldal helyét a normálegyenletnek megfelelő A^*A és A^*f veszi át. Az $r_n = Au_n - f$ jelölést fenntartjuk az eredeti egyenlet reziduális hibavektorának, az algoritmusban eddig szereplő r_n -t pedig az $s_n =$ $A^*Au_n - A^*f = A^*(Au_n - f) = A^*r_n$ hibavektorral helyettesítjük. Emellett bevezetjük a $z_n = Ap_n$ jelölést is, és ennek megfelelően az α_n együttható nevezőjébe $\langle A^*Ap_n, p_n \rangle = ||Ap_n||^2 = ||z_n||^2$ kerül.

A KGN-módszer algoritmusa:

- Legyen $u_0 \in H$ tetszőleges kezdővektor, $r_0 := Au_0 f$ és $p_0 := s_0 = A^*r_0$.
- Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} z_n := Ap_n; \\ u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ ahol } \alpha_n = -\frac{\|s_n\|^2}{\|z_n\|^2}; \\ s_{n+1} := A^* r_{n+1}; \\ p_{n+1} := s_{n+1} + \beta_n p_n, \text{ ahol } \beta_n = \frac{\|s_{n+1}\|^2}{\|s_n\|^2}. \end{cases}$$

A KGM konvergenciájából adódik az $||e_n||_{A^*A} = ||Ae_n|| = ||r_n||$ maradékvektorra a KGN konvergenciája az $M^2 \ge m^2 > 0$ állandókkal:

$$\frac{\|r_n\|}{\|r_0\|} \le 2\left(\frac{M-m}{M+m}\right)^n, \quad \forall n \in \mathbb{N}.$$

3.26. Megjegyzés. Mivel A^{-1} folytonossága miatt $m ||e_n|| \le ||Ae_n|| = ||r_n||$, ezért az $||e_n||$ hibavektorokra az alábbi konvergenciát kapjuk:

$$\frac{\|e_n\|}{\|r_0\|} \leq \frac{\|r_n\|}{m\|r_0\|} \leq \frac{2}{m} \left(\frac{M-m}{M+m}\right)^n, \quad \forall n \in \mathbb{N}.$$

3.5. A prekondicionált KGN-módszer

Ha az *A* operátorhoz tartózó *m* és *M* állandókkal az $\frac{M}{m}$ hányados túl nagy, akkor a konvergencia lassan megy végbe. A gyorsaság növelése érdekében bevezetjük a KGN prekondicionált változatát. Legyen $B \in B(H)$ egyenletesen pozitív operátor. A prekondicionálás akkor eredményes, ha a *B* operátorral az *A*-hoz képest hatékonyabban oldhatóak meg az operátoregyenletek, és a *B*-normával közelebb kerülnek az \tilde{m} és \tilde{M} határok, azaz

$$ilde{m} \|u\|_B^2 \leq \langle Au, u \rangle \leq ilde{M} \|u\|_B^2, \quad \forall u \in H,$$
 $rac{ ilde{M}}{ ilde{m}} \ll rac{M}{m}.$

Ekkor $\langle Au, u \rangle = \langle B^{-1}Au, u \rangle_B$, és a 4.11 tétel bizonyításához hasonlóan következik, hogy

$$\tilde{m}\|u\|_B \le \|B^{-1}Au\|_B \le \tilde{M}\|u\|_B, \quad \forall u \in H.$$

Alkalmazzuk az Au = f egyenlettel ekvivalens $B^{-1}Au = B^{-1}f$ egyenletre a KGN-módszert a B energiaterében! Az algoritmus során felhasználjuk, hogy a B energiaterében $(B^{-1}A)^* = B^{-1}A^*$, mivel $\langle B^{-1}Au, v \rangle_B = \langle Au, v \rangle = \langle u, A^*v \rangle = \langle u, B^{-1}A^*v \rangle_B$, $\forall u, v \in H$, ahol A^* a H-beli adjungált.

A prekondicionált KGN-módszer algoritmusa:

• Legyen $u_0 \in H$ tetszőleges kezdővektor.

$$\begin{cases} r_0 := B^{-1}Au_0 - B^{-1}f \quad \Leftrightarrow \quad Br_0 = Au_0 - f; \\ p_0 := s_0 = B^{-1}A^*r_0 \quad \Leftrightarrow \quad Bs_0 = A^*r_0. \end{cases}$$

• Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} z_n := B^{-1}Ap_n \iff Bz_n = Ap_n; \\ u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ abol } \alpha_n = -\frac{\|s_n\|_B^2}{\|z_n\|_B^2}; \\ s_{n+1} := B^{-1}A^*r_{n+1} \iff Bs_{n+1} = A^*r_{n+1}; \\ p_{n+1} := s_{n+1} + \beta_n p_n, \text{ abol } \beta_n = \frac{\|s_{n+1}\|_B^2}{\|s_n\|_B^2}. \end{cases}$$

3.27. Megjegyzés. A *B* operátor inverzét nem szükséges közvetlenül meghatározni, mert ez az iteráció során a Bx = y alakú segédfeladatok megoldásával helyettesíthető, mint ahogy ezt az algoritmusban jelöltük.

A konvergencia sebességét továbbra is a maradékvektorra kapott egyenlőtlenség határozza meg, azonban most a *B*-normában a javított \tilde{m} és \tilde{M} állandókkal:

$$\frac{\|r_n\|_B}{\|r_0\|_B} \le 2\left(\frac{\tilde{M}-\tilde{m}}{\tilde{M}+\tilde{m}}\right)^n, \quad \forall n \in \mathbb{N}.$$

4. Peremérték-feladatok iterációs megoldása

A 2.3 fejezetben bevezetett nem szimmetrikus elliptikus peremérték-feladatot definiáló L operátor nem korlátos és nem szimmetrikus. Ahhoz, hogy alkalmazni tudjuk a KGN-módszert a feladat megoldására, egy megfelelő S prekondicionáló operátor segítségével visszavezetjük a H_S energiatérben egy korlátos L_S operátorral való egyenletmegoldásra. Ennek megvalósítását ismertetjük a következő fejezetekben.

4.1. Gyenge megoldás nem szimmetrikus operátor esetén Hilbert-térben

Legyen *H* valós Hilbert-tér, és *L*: $H \supset \rightarrow H$ nem szimmetrikus, nem korlátos operátor. Tekintsük az Lu = g operátoregyenletet! A korábbiakhoz hasonlóan szeretnénk értelmezni az egyenlet gyenge megoldását a $g \notin R(L)$ esetben. Ehhez a feladatot egy szimmetrikus *S* operátor energiaterére vezetjük vissza.

4.1. Definíció. Egy $S: H \supset H$ nem korlátos lineáris operátor *egyenletesen pozitív*, ha

- (i) szimmetrikus, azaz $\langle Su, v \rangle = \langle u, Sv \rangle$, $\forall u, v \in D(S)$;
- (ii) $\exists q > 0$, amire $\langle Su, u \rangle \ge q ||u||^2$, $\forall u \in D(S)$.

4.2. Definíció. Legyen $S: H \supset H$ egyenletesen pozitív operátor. Az $\langle u, v \rangle_S := \langle Su, v \rangle$ bilineáris forma az *S*-hez tartozó *energia-skalárszorzat*, az *S energiatere* pedig $H_S := [D(S), \langle \cdot, \cdot \rangle_S]$, ami D(S) teljessé tétele az energia-skalárszorzattal.

4.3. Definíció. Legyen $S: H \supset H$ egyenletesen pozitív operátor. Az $L: H \supset H$ lineáris operátor *S-korlátos* és *S-koercív*, ha

- (i) $D(L) \subset H_S$, és D(L) sűrű H_S -ben;
- (ii) $\exists M > 0$ állandó, hogy $|\langle Lu, v \rangle| \leq M ||u||_S ||v||_S$, $\forall u, v \in D(L)$;
- (iii) $\exists m > 0$ állandó, hogy $\langle Lu, u \rangle \ge m ||u||_{S}^{2}, \quad \forall u \in D(L).$

4.4. Definíció. Legyen $L: H \supset H$ *S*-korlátos és *S*-koercív. Ekkor $L_S \in B(H_S)$ az az operátor, amelyre

$$\langle L_S u, v \rangle_S = \langle L u, v \rangle, \quad \forall u, v \in D(L).$$

4.5. Állítás. *Az L_S operátor jóldefiniált.*

Bizonyítás. Legyen $B: D(L) \times D(L) \to \mathbb{R}$, $B(u,v) := \langle Lu, v \rangle$ bilineáris forma, amely az *S*korlátosság definíciója szerint folytonos a H_S -normára nézve. Mivel D(L) sűrű H_S -ben, ez egyértelműen kiterjeszthető a $\overline{D(L)} = H_S$ térre úgy, hogy $\tilde{B}(u,v) := \lim_{n \to \infty} B(u_n,v_n)$, ahol $(u_n), (v_n) \subset$ D(L) olyan sorozatok, amelyekre $u_n \to u$ és $v_n \to v$. Megmutatható, hogy ez a kiterjesztés folytonos, megtartja az *M*-korlátot, és nem függ az $(u_n), (v_n)$ sorozat megválasztásától.

A \tilde{B} bilineáris forma korlátos a H_S térben, ezért az 1.15 korlátos formák Riesz-reprezentációja szerint létezik egyetlen olyan $L_S \in B(H_S)$ operátor, amelyre $\tilde{B}(u, v) = \langle L_S u, v \rangle_S$.

4.6. Megjegyzés.

- (a) A bizonyításban alkalmazott sűrűségi érv miatt határátmenettel következik, hogy
 - $|\langle L_S u, v \rangle_S| \leq M ||u||_S ||v||_S, \qquad \langle L_S u, u \rangle_S \geq m ||u||_S^2, \qquad \forall u, v \in H_S.$

(b) Ha $R(L) \subset R(S)$, akkor

$$\langle L_S u, v \rangle_S = \langle L u, v \rangle = \langle SS^{-1}Lu, v \rangle = \langle S^{-1}Lu, v \rangle_S, \quad \forall u, v \in D(L)$$

Ekkor tehát a D(L) sűrű altéren $L_S|_{D(L)} = S^{-1}L$.

4.7. Definíció. Legyen $L: H \supset H$ S-korlátos és S-koercív. Az Lu = g egyenlet gyenge megoldása az $u \in H_S$ vektor, ha

$$\langle L_S u, v \rangle_S = \langle g, v \rangle, \quad \forall v \in H_S.$$

4.8. Tétel. Bármely $g \in H$ esetén egyértelműen létezik gyenge megoldása az Lu = g egyenletnek.

Bizonyítás. Legyen $B: H_S \times H_S \to \mathbb{R}$, $B(u,v) := \langle L_S u, v \rangle_S$, amely korlátos és koercív a 4.6 megjegyzés (a) pontja szerint. Legyen továbbá $\phi: H_S \to \mathbb{R}$, $\phi v := \langle g, v \rangle$ korlátos lineáris funkcionál, ahol a ϕ korlátossága az 1.10 tétel bizonyításával analóg módon az *S* operátor egyenletes pozitivitásából következik. A Lax–Milgram-lemmát ezekre alkalmazva létezik egyetlen olyan $u^* \in H_S$, ami teljesíti a gyenge megoldás feltételét.

4.2. KGN-módszer az energiatérben

Legyen az $L: H \supset H$ nem szimmetrikus, nem korlátos lineáris operátor *S*-korlátos és *S*-koercív, és $g \in H$ tetszőleges. Szeretnénk közelítőleg meghatározni az Lu = g egyenlet gyenge megoldását. Ehhez a KGN-módszert fogjuk alkalmazni az L_S operátorra az *S* energiaterében.

4.9. Allítás. Egyértelműen létezik $g_S \in H_S$, hogy az $L_S u = g_S$ egyenlet megoldása és az Lu = g gyenge megoldása egybeesik.

Bizonyítás. Az $L_S u = g_S$ egyenlőség pontosan akkor teljesül, ha $\langle L_S u, v \rangle_S = \langle g_S, v \rangle_S$, $\forall v \in H_S$. Legyen $\phi : H_S \to \mathbb{R}$, $\phi v := \langle g, v \rangle$ funkcionál, amely lineáris a skalárszorzat linearitása miatt, és korlátos az *S* operátor egyenletes pozitivitása miatt:

$$\exists \tilde{m} > 0 \colon \|v\|_{S}^{2} \ge \tilde{m} \|v\|^{2} \quad \Rightarrow \quad |\phi v| = |\langle g, v \rangle| \le \|g\| \|v\| \le \left(\frac{1}{\sqrt{\tilde{m}}} \|g\|\right) \|v\|_{S}, \quad \forall v \in H_{S}.$$

A Riesz-féle reprezentációs tételt alkalmazva létezik egyértelműen $g_S \in H_S$, amire $\phi v = \langle g, v \rangle = \langle g_S, v \rangle_S$, $\forall v \in H_S$.

4.10. Megjegyzés. Ha $g \in R(S)$, akkor $\langle g_S, v \rangle_S = \langle g, v \rangle = \langle SS^{-1}g, v \rangle = \langle S^{-1}g, v \rangle_S$ teljesül minden $v \in H_S$ -re, tehát $g_S = S^{-1}g$.

Az L_S operátorról már megmutattuk, hogy $L_S \in B(H_S)$. Mivel ez a H_S térben koercív is, ezért alkalmazható az 1.11 megoldhatósági tétel, amely garantálja, hogy L_S bijekció. Ez a két tulajdonsága az operátornak már lehetővé teszi, hogy a KGN-módszerrel meghatározzuk az $L_S u = g_S$ operátoregyenlet megoldását a H_S térben.

- Legyen $u_0 \in H_S$ tetszőleges kezdővektor, $r_0 := L_S u_0 g_S$ és $p_0 := s_0 = L_S^* r_0$.
- Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} z_n := L_S p_n; \\ u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ abol } \alpha_n = -\frac{\|s_n\|_S^2}{\|z_n\|_S^2}; \\ s_{n+1} := L_S^* r_{n+1}; \\ p_{n+1} := s_{n+1} + \beta_n p_n, \text{ abol } \beta_n = \frac{\|s_{n+1}\|_S^2}{\|s_n\|_S^2}. \end{cases}$$

Abban az esetben, ha a 4.6 megjegyzés (b) pontja szerint $R(L) \subset R(S)$, akkor $L_S|_{D(L)} = S^{-1}L$. Ekkor D(L)-beli vektorok esetén z_n és s_{n+1} meghatározása a 3.5 fejezetben ismertetett prekondicionált módszerhez hasonlóan az S operátorral való egyenletmegoldásra vezethető vissza. Így kapjuk az $Sz_n = Lp_n$ és $Ss_{n+1} = L^*r_{n+1}$ segédfeladatokat.

4.11. Állítás. Az L operátor S-korlátosságának és S-koercivitásának definíciójában használt m és M állandókra teljesül a KGN-módszer konvergenciájában szereplő becslés a hibavektorokra.

Bizonyítás. A 4.6 megjegyzés (a) pontjában szereplő eredményeket felhasználva:

- (i) $m\|u\|_{S}^{2} \leq \langle L_{S}u, u \rangle_{S} \leq \|L_{S}u\|_{S}\|u\|_{S}, \quad \forall u \in H_{S} \implies m\|u\|_{S} \leq \|L_{S}u\|_{S}, \quad \forall u \in H_{S}.$
- (ii) $|\langle L_S u, v \rangle_S| \leq M ||u||_S ||v||_S$, $\forall u, v \in H_S \Rightarrow ||L_S||_S \leq M$.

A kettőt egybevéve kapjuk, hogy

$$m\|u\|_{S} \leq \|L_{S}u\|_{S} \leq M\|u\|_{S}, \quad \forall u \in H_{S}.$$

4.12. Következmény. A KGN-módszer konvergenciája az energiatérben:

$$\frac{\|r_n\|_S}{\|r_0\|_S} \le 2\left(\frac{M-m}{M+m}\right)^n, \quad \forall n \in \mathbb{N}.$$

4.3. A KGN-módszer alkalmazása elliptikus peremérték-feladatokra

Tekintsük a 2.3 fejezetben definiált (1) nem szimmetrikus elliptikus peremérték-feladatot a megfelelő feltételek mellett:

$$\begin{cases} Lu := -\operatorname{div}(p\nabla u) + \mathbf{b} \cdot \nabla u = f, \\ u_{|\partial\Omega} = 0. \end{cases}$$

A 2.18 tételben megmutattuk, hogy bármely $f \in L^2(\Omega)$ esetén létezik egyértelműen $u^* \in H_0^1(\Omega)$ gyenge megoldása a feladatnak. Szeretnénk közelítőleg meghatározni u^* -ot a KGN-módszer segítségével. Ehhez választunk egy megfelelő *S* prekondicionáló operátort, amelyre *L S*-korlátos és *S*-koercív, majd az *S* energiaterében alkalmazzuk a korábban ismertetett iterációs módszert.

Legyen $H = L^2(\Omega)$, és $S: H \supset H$ az a nem korlátos lineáris operátor, amelyre $D(S) = C^2(\Omega) \cap C_0^1(\overline{\Omega})$, és

$$Su := -\Delta u.$$

4.13. Állítás. Az S operátor egyenletesen pozitív.

Bizonyítás. Az *S* szimmetrikus, mivel a Green-formulát alkalmazva:

$$\langle -\Delta u, v \rangle_{L^2} = \int_{\Omega} -\Delta u \cdot v = \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} -\Delta v \cdot u = \langle u, -\Delta v \rangle_{L^2}, \quad \forall u, v \in D(S).$$

Az egyenletes pozitivitáshoz szükséges $q := \lambda_1 > 0$ állandót a Poincaré–Friedrichs-egyenlőtlenséget felhasználva kapjuk:

$$\langle -\Delta u, u \rangle_{L^2} = \int_{\Omega} |\nabla u|^2 = ||u||^2_{H^1_0} \ge q ||u||^2_{L^2}, \quad \forall u \in D(S).$$

4.14. Következmény. Az S energiatere $H_S = H_0^1(\Omega)$, és az energianorma $||u||_S^2 = \langle -\Delta u, u \rangle_{L^2}$.

4.15. Állítás. *Minden* $u \in D(S)$ -re $||u||_{S} = ||u||_{H_{0}^{1}}$.

Bizonyítás.

$$\|u\|_{H_0^1}^2 = \int_{\Omega} |\nabla u|^2 = \int_{\Omega} -\Delta u \cdot u = \langle -\Delta u, u \rangle_{L^2} = \|u\|_S^2, \quad \forall u \in D(S).$$

4.16. Következmény. Az L operátor S-korlátos és S-koercív.

Bizonyítás. A 2.18 tétel bizonyításában bevezetett B(u,v) bilineáris forma éppen az $\langle Lu,v \rangle_{L^2}$ skalárszorzat, ha $u, v \in D(L)$ teljesül és alkalmazzuk a Green-formulát. Ezért a *B* korlátosságánál és koercivitásánál használt konstansok jók lesznek az *L S*-korlátosságához és *S*-koercivitásához is. A bizonyításban a becsléseket ugyan H_0^1 -normában kaptuk, de a 4.15 állítás szerint ez *S*-normában is igaz.

- (i) $D(L) := C^2(\Omega) \cap C_0^1(\overline{\Omega}) \subset H_S$, és D(L) sűrű H_S -ben.
- (ii) Az $M := \|p\|_{L^{\infty}} + \lambda_1^{-\frac{1}{2}} \|\mathbf{b}\|_{L^{\infty}}$ választással $|\langle Lu, v \rangle_{L^2}| \le M \|u\|_S \|v\|_S, \quad \forall u, v \in D(L).$
- (iii) Ha *m* az a szám, amire $p(x) \ge m > 0$ (m. m. $x \in \Omega$), akkor $\langle Lu, u \rangle_{L^2} \ge m ||u||_S^2$, $\forall u \in D(L)$.

4.17. Megjegyzés. A feladathoz tartozó gyenge megoldás, ami a 2.16 definícióban szerepel ugyanaz, mint amit a 4.7 definícióban általánosan a nem szimmetrikus, nem korlátos operátorokra értelmeztünk. Ennek oka, hogy a 2.18 tételben szereplő B(u,v) bilineáris formát (és hasonlóan a gyenge megoldás definíciójában szereplő feltételt) úgy választottuk meg, hogy bármely $u, v \in D(L)$ -re $B(u,v) = \langle Lu, v \rangle_{L^2}$ teljesüljön, ezért $B(u,v) = \langle L_Su, v \rangle_S$, $\forall u, v \in H_S$.

1. Algoritmus. Általános felírás.

A 4.2 fejezetben bemutatott általános iterációs eljárást most felírhatjuk az L elliptikus operátorra az $S = -\Delta$ prekondicionáló operátorral a $H_S = H_0^1(\Omega)$ térben. A peremérték-feladatot meghatározza az Lu = g operátoregyenlet, ahol most a feladat jelöléseinek megfelelően g := f.

- Legyen $u_0 \in H_0^1(\Omega)$ tetszőleges kezdőfüggvény, $r_0 := L_S u_0 g_S$ és $p_0 := s_0 = L_S^* r_0$.
- Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} z_n := L_S p_n; \\ u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ abol } \alpha_n = -\frac{\|s_n\|_{H_0^1}^2}{\|z_n\|_{H_0^1}^2}; \\ s_{n+1} := L_S^* r_{n+1}; \\ p_{n+1} := s_{n+1} + \beta_n p_n, \text{ abol } \beta_n = \frac{\|s_{n+1}\|_{H_0^1}^2}{\|s_n\|_{H_0^1}^2}. \end{cases}$$

Ha *m* az a szám, amire $p(x) \ge m > 0$ (m. m. $x \in \Omega$), és $M = ||p||_{L^{\infty}} + \lambda_1^{-\frac{1}{2}} ||\mathbf{b}||_{L^{\infty}}$, ahol λ_1 a $-\Delta$ operátor legkisebb sajátértéke Ω -n a homogén Dirichlet-peremfeltétel mellett, akkor

$$\frac{\|r_n\|_{H_0^1}}{\|r_0\|_{H_0^1}} = \sqrt{\frac{\int_{\Omega} |\nabla r_n|^2}{\int_{\Omega} |\nabla r_0|^2}} \le 2\left(\frac{M-m}{M+m}\right)^n, \quad \forall n \in \mathbb{N}.$$
(6)

2. Algoritmus. Tesztfüggvényes felírás a normák és skalárszorzatok kifejtésével.

Az algoritmusban bármely két vektor között pontosan akkor áll fenn egyenlőség, ha tetszőleges $v \in H_0^1(\Omega)$ tesztfüggvénnyel vett skalárszorzatuk is megegyezik a $H_0^1(\Omega)$ térben. A normákat és skalárszorzatokat a definíciónak megfelelő integrálképlettel átírjuk, illetve felhasználjuk a 4.9 állításban szereplő $\langle g_S, v \rangle_{H_0^1} = \langle g, v \rangle_{L^2}$ azonosságot és a 4.17 megjegyzésben szereplő $\langle L_S u, v \rangle_{H_0^1} = B(u, v)$ összefüggést. Az $\langle L_S^* u, v \rangle_{H_0^1}$ kiszámításához először határozzuk meg L^* -ot.

4.18. Állítás. *Minden* $v \in D(L)$ *esetén* $L^*v = -\operatorname{div}(p\nabla v) - \mathbf{b} \cdot \nabla v$.

Bizonyítás. A (4) azonossághoz hasonlóan div(buv)-t átírjuk másik alakba, majd alkalmazzuk a Gauss–Osztrogradszkij-tételt, mint az (5) egyenlőségnél.

$$\operatorname{div}(\mathbf{b}uv) = \operatorname{div}(\mathbf{b})uv + \mathbf{b} \cdot \nabla(uv) = \mathbf{b} \cdot \nabla(uv) = (\mathbf{b} \cdot \nabla u)v + (\mathbf{b} \cdot \nabla v)u$$
$$0 = \int_{\partial\Omega} (\mathbf{b}uv) \cdot \mathbf{v} = \int_{\Omega} \operatorname{div}(\mathbf{b}uv) = \int_{\Omega} (\mathbf{b} \cdot \nabla u)v + \int_{\Omega} (\mathbf{b} \cdot \nabla v)u.$$

A kapott eredményt és a Green-formulát felhasználva adódik, hogy

$$\langle Lu,v\rangle_{L^2} = \int_{\Omega} -\operatorname{div}(p\nabla u)v + \int_{\Omega} (\mathbf{b}\cdot\nabla u)v = \int_{\Omega} p\nabla u\cdot\nabla v - \int_{\Omega} (\mathbf{b}\cdot\nabla v)u = \langle u,L^*v\rangle_{L^2}. \quad \Box$$

Ekkor az alábbi algoritmushoz jutunk:

• Legyen $u_0 \in H_0^1(\Omega)$ tetszőleges kezdőfüggvény, és r_0, s_0, p_0 olyan, amire

$$\begin{cases} \langle r_{0}, v \rangle_{H_{0}^{1}} = \langle L_{S}u_{0}, v \rangle_{H_{0}^{1}} - \langle g_{S}, v \rangle_{H_{0}^{1}}, & \forall v \in H_{0}^{1}(\Omega) \\ \Leftrightarrow \quad \int_{\Omega} \nabla r_{0} \cdot \nabla v = \int_{\Omega} (p \nabla u_{0} \cdot \nabla v + (\mathbf{b} \cdot \nabla u_{0})v) - \int_{\Omega} gv, & \forall v \in H_{0}^{1}(\Omega); \\ \langle s_{0}, v \rangle_{H_{0}^{1}} = \langle L_{S}^{*}r_{0}, v \rangle_{H_{0}^{1}}, & \forall v \in H_{0}^{1}(\Omega) \\ \Leftrightarrow \quad \int_{\Omega} \nabla s_{0} \cdot \nabla v = \int_{\Omega} (p \nabla r_{0} \cdot \nabla v - (\mathbf{b} \cdot \nabla r_{0})v), & \forall v \in H_{0}^{1}(\Omega); \\ p_{0} := s_{0}. \end{cases}$$

• Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} \langle z_n, v \rangle_{H_0^1} = \langle L_S p_n, v \rangle_{H_0^1}, & \forall v \in H_0^1(\Omega) \\ \Leftrightarrow \quad \int_{\Omega} \nabla z_n \cdot \nabla v = \int_{\Omega} (p \nabla p_n \cdot \nabla v + (\mathbf{b} \cdot \nabla p_n) v), & \forall v \in H_0^1(\Omega); \\ u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ abol } \alpha_n = -\frac{\int_{\Omega} |\nabla s_n|^2}{\int_{\Omega} |\nabla z_n|^2}; \\ \langle s_{n+1}, v \rangle_{H_0^1} = \langle L_S^* r_{n+1}, v \rangle_{H_0^1}, & \forall v \in H_0^1(\Omega) \\ \Leftrightarrow \quad \int_{\Omega} \nabla s_{n+1} \cdot \nabla v = \int_{\Omega} (p \nabla r_{n+1} \cdot \nabla v - (\mathbf{b} \cdot \nabla r_{n+1}) v), & \forall v \in H_0^1(\Omega); \\ p_{n+1} := s_{n+1} + \beta_n p_n, \text{ abol } \beta_n = \frac{\int_{\Omega} |\nabla s_{n+1}|^2}{\int_{\Omega} |\nabla s_n|^2}. \end{cases}$$

3. Algoritmus. Felírás erős alakban, segédfeladatok bevezetésével.

Ha $R(L) \subset R(S)$ teljesül, akkor $L_S|_{D(L)} = S^{-1}L = (-\Delta)^{-1}L$. Ebből kapjuk "erős" alakban z_n -re a $-\Delta z_n = Lp_n$ és s_{n+1} -re a $-\Delta s_{n+1} = L^*r_{n+1}$ segédfeladatokat.

Az algoritmus tehát az alábbi alakban írható fel:

• Legyen $u_0 \in D(L)$ tetszőleges kezdőfüggvény. Legyen $p_0 := s_0$, és r_0, s_0 megoldása az alábbi feladatoknak:

$$\begin{cases} -\Delta r_0 = Lu_0 - g = -\operatorname{div}(p\nabla u_0) + \mathbf{b} \cdot \nabla u_0 - g \\ r_0|_{\partial\Omega} = 0 \end{cases}$$
$$\begin{cases} -\Delta s_0 = L^* r_0 = -\operatorname{div}(p\nabla r_0) - \mathbf{b} \cdot \nabla r_0 \\ s_0|_{\partial\Omega} = 0 \end{cases}$$

• Minden $n \in \mathbb{N}$ -re, ha már u_n , p_n , r_n , s_n -t ismerjük:

$$\begin{cases} -\Delta z_n = Lp_n = -\operatorname{div}(p\nabla p_n) + \mathbf{b} \cdot \nabla p_n \\ z_n|_{\partial\Omega} = 0 \end{cases}$$
$$u_{n+1} := u_n + \alpha_n p_n \text{ és } r_{n+1} := r_n + \alpha_n z_n, \text{ abol } \alpha_n = -\frac{\int_{\Omega} |\nabla s_n|^2}{\int_{\Omega} |\nabla z_n|^2} \\ \begin{cases} -\Delta s_{n+1} = L^* r_{n+1} = -\operatorname{div}(p\nabla r_{n+1}) - \mathbf{b} \cdot \nabla r_{n+1} \\ s_{n+1}|_{\partial\Omega} = 0 \end{cases}$$
$$p_{n+1} := s_{n+1} + \beta_n p_n, \text{ abol } \beta_n = \frac{\int_{\Omega} |\nabla s_{n+1}|^2}{\int_{\Omega} |\nabla s_n|^2}. \end{cases}$$

Ezzel a nem szimmetrikus elliptikus peremérték-feladat megoldását a homogén Dirichlet-peremfeltétel mellett sikerült visszavezetni Poisson-egyenletek megoldására, amely az eredetinél egyszerűbb feladat.

5. Véges differenciás megvalósítás

Szeretnénk közelítőleg meghatározni néhány konkrét nem szimmetrikus elliptikus peremértékfeladat gyenge megoldását a prekondicionált KGN-módszerrel. A gyakorlatban ezt úgy lehet megvalósítani, hogy a végtelen dimenziós feladatot diszkretizáljuk, azaz véges dimenzióban közelítjük, majd az így kapott lineáris egyenletrendszerre alkalmazzuk az iterációs megoldási módszert. A feladat diszkretizálását véges differenciák segítségével valósítjuk meg, melyhez a [3] szerinti közelítéseket használjuk. Ehhez készítünk számítógépes programokat, melyek megoldják a feladatot és ábrázolják a megoldást, összehasonlítják az elméleti és a gyakorlatban tapasztalt konvergencia sebességét, és megvizsgálják az iterációk számát többféle rácsfinomságra vonatkozóan. Először olyan kétdimenziós peremérték-feladatokat nézünk meg, ahol ismerjük a feladat pontos megoldását, majd megoldunk egy egyszerű fizikai modellből származó problémát is.

5.1. Numerikus közelítés

Legyen $k, l \in \mathbb{R}$ és k < l. Tekintsük az $\Omega := [k, l]^2 \subset \mathbb{R}^2$ négyzeten az alábbi peremértékfeladatot:

$$\begin{cases} Lu = a \,\partial_{xx}u + b \,\partial_{yy}u + c \,\partial_{x}u + d \,\partial_{y}u = f \\ u_{|\partial\Omega} = 0 \end{cases}$$
(7)

Legyenek $a,b,c,d,f: \Omega \to \mathbb{R}$ olyan függvények, amelyekre teljesülnek az (1) peremértékfeladat (2) feltételei. Osszuk fel az Ω négyzetet $(n+1)^2$ rácspontra úgy, hogy a négyzet csúcsaitól kezdve minden szomszédos rácspont között ugyanakkora távolság legyen, azaz $h := \frac{l-k}{n}$, és

$$w_h := \{(x_i, y_j) : x_i = k + ih, y_j = k + jh, i, j = 0, 1, \dots, n\}$$

5.1. Definíció. A $w'_h = \{(x_i, y_j) : x_i = k + ih, y_j = k + jh, i, j = 1, ..., n - 1\}$ a felosztás *belső pontjai*, $w_h \setminus w'_h$ pedig a felosztás *perempontjai*.

Jelölje $u_{i,j}$ a megoldás közelítő értékét a w_h szerinti felosztás (x_i, y_j) pontjában.

A rácspontokon szeretnénk minél jobban közelíteni a megoldás értékét. A peremfeltétel miatt a perempontokon azonosan nulla lesz a függvényérték, míg a belső pontokon a megoldást az alábbi *centrális differenciahányadosokkal* közelíthetjük $O(h^2)$ nagyságrendben:

$$\partial_{x} u_{i,j} \approx \frac{u_{i+1,j} - u_{i-1,j}}{2h} \qquad \qquad \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - u_{i,j-1}}{2h} \\ \partial_{xx} u_{i,j} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^{2}} \qquad \qquad \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{yy} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j} + u_{i,j}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j+1} - 2u_{i,j}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j} + u_{i,j}}{h^{2}} \\ \partial_{y} u_{i,j} \approx \frac{u_{i,j}$$

A parciális differenciálegyenletbe behelyettesítve a közelítéseket tetszőleges $1 \le i, j \le n-1$ indexekre az alábbi összefüggéseket kapjuk:

$$a(x_{i}, y_{j}) \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^{2}} + b(x_{i}, y_{j}) \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^{2}} + c(x_{i}, y_{j}) \frac{u_{i+1,j} - u_{i-1,j}}{2h} + d(x_{i}, y_{j}) \frac{u_{i,j+1} - u_{i,j-1}}{2h} = f(x_{i}, y_{j})$$

Ezt átrendezve minden belső pont és a vele szomszédos négy rácspont között a következő kapcsolat áll fenn:

$$u_{i+1,j} \cdot [2 \cdot a(x_i, y_j) + h \cdot c(x_i, y_j)] + u_{i-1,j} \cdot [2 \cdot a(x_i, y_j) - h \cdot c(x_i, y_j)] + u_{i,j+1} \cdot [2 \cdot b(x_i, y_j) + h \cdot d(x_i, y_j)] + u_{i,j-1} \cdot [2 \cdot b(x_i, y_j) - h \cdot d(x_i, y_j)] + u_{i,j} \cdot [-4 \cdot a(x_i, y_j) - 4 \cdot b(x_i, y_j)] = 2h^2 \cdot f(x_i, y_j)$$
(8)

Ez meghatároz egy $(n-1)^2$ egyenletből és ugyanennyi ismeretlenből álló lineáris egyenletrendszert, aminek a mátrixa öt átlótól eltekintve mindenhol nulla, amennyiben megfelelő sorrendben írjuk fel az egyenleteket. A számítógépes programban ez úgy lett megvalósítva, hogy az i, j indexekhez tartozó egyenleteket második index szerint csökkenő sorrendbe és ezen belül első index szerint növekvő sorrendbe rendeztem. Az átlók elemeit a (8) egyenletben szereplő együtthatók határozzák meg.

A lineáris egyenletrendszert a 3.5 fejezetben ismertetett prekondicionált KGN-módszerrel oldjuk meg. A Hilbert-tér, amiben dolgozunk, az $\mathbb{R}^{(n-1)^2}$ vektortér az $\langle u, v \rangle = \sum_{i=1}^{(n-1)^2} u_i v_i$ skalárszorzattal. A prekondicionálást a $-\Delta u = -\partial_{xx}u - \partial_{yy}u$ operátorhoz tartozó *S* mátrixszal végezzük, amit ugyanúgy a most ismertetett diszkretizációval kapunk. Kezdővektornak a nullvektort választjuk. Az algoritmus akkor áll le, ha $||r_i||_S = \sqrt{\langle Sr_i, r_i \rangle} <$ eps, ahol eps $\approx 10^{-16}$ elegendően kicsi szám. A prekondicionálással feltételezzük, hogy az *S* mátrixszal hatékonyan tudjuk megoldani az egyenletrendszereket, ezért a segédfeladatoknál a MATLAB beépített egyenletmegoldóját használjuk.

5.2. Tesztfeladatok

A program működésének ellenőrzése érdekében kidolgozunk néhány tesztfeladatot, ahol ismert a pontos megoldás, és ezzel össze tudjuk vetni az algoritmusból kapott közelítő megoldást.

Ha $p \in C^1(\Omega)$, akkor az (1) peremérték-feladat átírható a következő alakba:

$$Lu = -\operatorname{div}(p\nabla u) + \mathbf{b} \cdot \nabla u = -\partial_x(p\partial_x u) - \partial_y(p\partial_y u) + b_1\partial_x u + b_2\partial_y u =$$

= $-p\Delta u + (b_1 - \partial_x p)\partial_x u + (b_2 - \partial_y p)\partial_y u = f$

Tehát adott p(x,y) függvény és $\mathbf{b}(x,y) = (b_1(x,y), b_2(x,y))$ vektormező esetén a (7) feladatbeli jelölésekkel:

$$a(x,y) = b(x,y) := -p(x,y)$$
$$c(x,y) := b_1(x,y) - \partial_x p(x,y)$$
$$d(x,y) := b_2(x,y) - \partial_y p(x,y)$$

5.2. Példa. Tekintsük a szokásos peremérték-feladatot az $\Omega = [0, 1]^2$ négyzeten az alábbi függvényekkel:

$$p(x,y) = 1 + \frac{x^2 + y^2}{2}, \quad \mathbf{b}(x,y) = \left(y - \frac{1}{2}, -x - \frac{1}{2}\right)$$

Legyen f(x, y) olyan, hogy a feladat megoldása u(x, y) = x(1-x)y(1-y) legyen.

A megadott *p* függvény parciális deriváltjai $\partial_x p = x$ és $\partial_y p = y$, ezért ezekkel a függvényekkel a következő differenciálegyenlethez jutunk:

$$Lu = -\left(1 + \frac{x^2 + y^2}{2}\right)\Delta u + \left(-x + y - \frac{1}{2}\right)\partial_x u + \left(-x - y - \frac{1}{2}\right)\partial_y u = f$$

A példában szereplő függvényekre teljesülnek a (2) feltételek. Könnyen látható, hogy $||p||_{L^{\infty}} = 2$, és m = 1-re $p(x, y) \ge m > 0$ minden $(x, y) \in \Omega$ esetén. Emellett **b** folytonosan differenciálható és div **b** = 0. Tudjuk, hogy bármely $f \in L^2(\Omega)$ függvényhez létezik egyetlen gyenge megoldása a feladatnak. Legyen a feladat (gyenge) megoldása

$$u(x,y) = x(1-x)y(1-y).$$

5.3. Állítás. A megadott u(x,y) függvényre teljesül, hogy $u \in H_0^1(\Omega)$.

Bizonyítás. Ha x = 0, x = 1, y = 0 vagy y = 1, akkor u(x, y) = 0, ezért $u_{|\partial\Omega} = 0$. Mivel $u \in C^1(\Omega)$, ezért u és parciális deriváltjai négyzetesen integrálhatók, vagyis $L^2(\Omega)$ -beliek.

Határozzuk meg u első- és másodrendű parciális deriváltjait!

$$\partial_x u = (1 - 2x)y(1 - y) \qquad \qquad \partial_y u = (1 - 2y)x(1 - x)$$
$$\partial_{xx} u = -2y(1 - y) \qquad \qquad \partial_{yy} u = -2x(1 - x)$$

Ezeket a differenciálegyenletbe behelyettesítve megkapjuk a kívánt f(x, y) függvényt:

$$f(x,y) = -\left(1 + \frac{x^2 + y^2}{2}\right)\left(-2y(1-y) - 2x(1-x)\right) + \left(-x + y - \frac{1}{2}\right)(1-2x)y(1-y) + \left(-x - y - \frac{1}{2}\right)(1-2y)x(1-x).$$

1. ábra. Az 5.2 példa numerikus megoldása n = 25, 50, 100 rácsfinomság mellett.

n	5	10	25	50	100	200	400
$\ e\ _{\infty}$	2.08e-17	4.16e-17	9.02e-17	1.67e-16	1.73e-16	4.79e-16	7.22e-16
h^2	0.04	0.01	0.0016	4e-04	1e-04	2.5e-05	6.25e-06

1. táblázat. A numerikus és pontos megoldás közti legnagyobb eltérés a rácspontokon ($||e||_{\infty}$) és h^2 értéke különböző *n*-ekre az 5.2 példában.

5.4. Példa. Tekintsük a szokásos peremérték-feladatot az $\Omega = [0, 1]^2$ négyzeten az alábbi függvényekkel:

$$p(x,y) = 1 + \frac{x^2 + y^2}{2}, \quad \mathbf{b}(x,y) = (1,1)$$

Legyen f(x, y) olyan, hogy a feladat megoldása $u(x, y) = \sin(\pi x) \sin(\pi y)$ legyen.

A példában szereplő függvények most az alábbi differenciálegyenletet határozzák meg:

$$Lu = -\left(1 + \frac{x^2 + y^2}{2}\right)\Delta u + (1 - x)\partial_x u + (1 - y)\partial_y u = f$$

Mivel az előző példához képest p változatlan, így most hasonlóan m = 1 és $||p||_{L^{\infty}} = 2$. A **b** vektormező konstans, ezért teljesülnek rá a szükséges feltételek. Legyen a feladat (gyenge) megoldása

$$u(x, y) = \sin(\pi x)\sin(\pi y).$$

Az 5.3 állításban szereplő megfontolásokhoz hasonlóan $u \in H_0^1(\Omega)$. Határozzuk meg u első- és másodrendű parciális deriváltjait!

$$\partial_x u = \pi \cos(\pi x) \sin(\pi y) \qquad \qquad \partial_y u = \pi \sin(\pi x) \cos(\pi y)$$
$$\partial_{xx} u = -\pi^2 \sin(\pi x) \sin(\pi y) \qquad \qquad \partial_{yy} u = -\pi^2 \sin(\pi x) \sin(\pi y)$$

Ezeket a differenciálegyenletbe behelyettesítve megkapjuk a kívánt f(x, y) függvényt:

$$f(x,y) = -\left(1 + \frac{x^2 + y^2}{2}\right) \left(-2\pi^2 \sin(\pi x) \sin(\pi y)\right) + (1 - x)\pi \cos(\pi x) \sin(\pi y) + (1 - y)\pi \sin(\pi x) \cos(\pi y).$$

Az 1. és 2. táblázat adatai azt mutatják, hogy a véges differenciás közelítés jól működik ezekre a tesztfeladatokra. Az 1. táblázat arra enged következtetni, hogy az 5.2 példa polinom-megoldását a felosztás finomságától függetlenül nagy pontossággal meg tudjuk közelíteni a rácspontokon, míg a 2. táblázat szerint az 5.4 példa közelítő megoldása a várt $O(h^2)$ nagyságrendű hibát mutatja.

2. ábra. Az 5.4 példa numerikus megoldása n = 25, 50, 100 rácsfinomság mellett.

n	5	10	25	50	100	200	400
$\ e\ _{\infty}$	0.0321	0.00856	0.00137	3.41e-04	8.54e-05	2.13e-05	5.34e-06
h^2	0.04	0.01	0.0016	4e-04	1e-04	2.5e-05	6.25e-06

2. táblázat. A numerikus és pontos megoldás közti legnagyobb eltérés a rácspontokon ($||e||_{\infty}$) és h^2 értéke különböző *n*-ekre az 5.4 példában.

5.3. A konvergencia vizsgálata

Meg szeretnénk vizsgálni, hogy a tesztfeladatok megoldása során a prekondicionált KGNmódszerben az $||r_i||_S$ valódi értéke és a (6)-ban kapott elméleti felső korlát hogyan viszonyul egymáshoz. Megnézzük azt is, hogy ez különböző rácsfelosztások mellett hogyan változik.

5.5. Állítás. Legyen $\Omega_1 = [0, a] \times [0, b]$ téglalap adott a és b paraméterekkel. Ezen a tartományon $a - \Delta$ operátor sajátértékei a homogén Dirichlet-peremfeltétel mellett:

$$\lambda_{n,m} = \pi^2 \left(rac{n^2}{a^2} + rac{m^2}{b^2}
ight), \quad orall n,m \in \mathbb{N}^+.$$

5.6. Következmény. $A - \Delta$ operátor legkisebb sajátértéke az $\Omega = [0, 1]^2$ négyzeten:

$$\lambda_1 := \lambda_{1,1} = 2\pi^2.$$

Az 5.2 és 5.4 példákban szereplő p(x,y) függvényre teljesül, hogy bármely $(x,y) \in \Omega$ esetén $1 \le p(x,y) \le 2$, ezért m = 1 és $||p||_{L^{\infty}} = 2$.

Számítsuk ki az 5.2 példában $\|\mathbf{b}\|_{L^{\infty}}$ -t és a konvergenciához tartozó *M* állandót!

$$\|\mathbf{b}\|_{L^{\infty}} = \max_{(x,y)\in\Omega} \sqrt{\left(y-\frac{1}{2}\right)^2 + \left(-x-\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4}+\frac{9}{4}} = \frac{\sqrt{10}}{2}$$
$$M = \|p\|_{L^{\infty}} + \lambda_1^{-\frac{1}{2}} \|\mathbf{b}\|_{L^{\infty}} = 2 + \frac{\sqrt{10}}{2\sqrt{2}\pi} = 2 + \frac{\sqrt{5}}{2\pi}$$

Ezekkel az állandókkal a (6) szerinti becslés:

$$\frac{\|r_n\|_S}{\|r_0\|_S} \le 2\left(\frac{M-m}{M+m}\right)^n = 2\left(\frac{1+\frac{\sqrt{5}}{2\pi}}{3+\frac{\sqrt{5}}{2\pi}}\right)^n = 2\left(\frac{2\pi+\sqrt{5}}{6\pi+\sqrt{5}}\right)^n \approx 2\cdot(0.4040)^n =: K_n^{(1)}, \quad \forall n \in \mathbb{N}.$$

Végezzük el ugyanezt a számolást az 5.4 példában szereplő függvényekre is!

$$\|\mathbf{b}\|_{L^{\infty}} = \sqrt{1^2 + 1^2} = \sqrt{2}$$
$$M = \|p\|_{L^{\infty}} + \lambda_1^{-\frac{1}{2}} \|\mathbf{b}\|_{L^{\infty}} = 2 + \frac{\sqrt{2}}{\sqrt{2}\pi} = 2 + \frac{1}{\pi}$$

Ezekkel az állandókkal a (6) szerinti becslés:

$$\frac{\|r_n\|_S}{\|r_0\|_S} \le 2\left(\frac{M-m}{M+m}\right)^n = 2\left(\frac{1+\frac{1}{\pi}}{3+\frac{1}{\pi}}\right)^n = 2\left(\frac{\pi+1}{3\pi+1}\right)^n \approx 2\cdot (0.3973)^n =: K_n^{(2)}, \quad \forall n \in \mathbb{N}.$$

Vezessük be a $t_i = \frac{\|r_i\|_S}{\|r_0\|_S}$ és $q_i = \frac{\|r_i\|_S}{\|r_{i-1}\|_S} = \frac{t_i}{t_{i-1}}$ jelöléseket. Ezeket a számokat az 5.2 példa numerikus megoldása során a 3. táblázat, az 5.4 példa esetén pedig az 5. táblázat szemlélteti. Megfigyelhető, hogy a t_i hányadosok a fentebbi becsléseknek megfelelően végig a K_i felső korlát alatt maradnak, és a 4. és 6. táblázat szerint az egymást követő reziduális hibavektorok *S*-normájának aránya nagyobb rácsfinomságok esetén közel kerül az $\frac{M-m}{M+m} \approx 0.4$ számhoz.

A táblázatok adatai azt mutatják, hogy a rácsfelosztás finomításával az iteráció hasonlóan megy végbe, és nagy rácsfinomságok esetén a konvergenciát meghatározó számok közel kerülnek egymáshoz, nem mutatnak jelentős eltérést. A 3. és 4. ábra szerint az iterációk száma eleinte gyorsan növekszik, majd egy ponton túl a felosztás finomításával az algoritmus lépésszáma már nem nő számottevően. Mindez azt igazolja, hogy a konvergencia *rácsfüggetlen*, azaz a konvergencia hányadosa korlátos marad a diszkretizáció finomítása során, és az elméleti eredmények jól jellemzik az iterációs módszer aszimptotikus viselkedését.

3. ábra. Az algoritmus lépésszáma az 5.2 példában különböző *n*-ekre.

i	$K_i^{(1)}$	n = 25		n = 50		n = 100	
i		t _i	q_i	t _i	q_i	t _i	q_i
1	0.808	0.228	0.228	0.229	0.229	0.229	0.229
2	0.326	0.0630	0.276	0.0633	0.277	0.0633	0.277
3	0.132	0.0186	0.295	0.0188	0.297	0.0188	0.297
4	0.0533	0.00570	0.306	0.00577	0.308	0.00579	0.308
5	0.0215	0.00177	0.311	0.00181	0.314	0.00182	0.314
6	0.00870	0.000558	0.315	0.000576	0.318	0.000580	0.319
7	0.00351	0.000176	0.316	0.000185	0.320	0.000187	0.321
8	0.00142	5.58e-05	0.316	5.95e-05	0.322	6.04e-05	0.324
9	0.000573	1.76e-05	0.315	1.93e-05	0.323	1.96e-05	0.325
10	0.000232	5.53e-06	0.314	6.25e-06	0.324	6.40e-06	0.326

3. táblázat. Az 5.2 példában az első tíz iterációs lépés során tapasztalt számok (t_i, q_i) és az elméleti felső korlát $(K_i^{(1)})$ n = 25, 50, 100 rácsfinomság mellett.

n	5	10	25	50	100	200	400
\overline{q}	0.139	0.246	0.300	0.313	0.321	0.323	0.324
D(q)	0.0817	0.0315	0.0178	0.0181	0.0191	0.0196	0.0198

4. táblázat. Az algoritmus futása során tapasztalt q_i számok átlaga (\overline{q}) és szórása (D(q)) az 5.2 példában különböző rácsfinomságokra.

4. ábra. Az algoritmus lépésszáma az 5.4 példában különböző *n*-ekre.

i	$K_i^{(2)}$	n = 25		n = 50		n = 100	
		t _i	q_i	t _i	q_i	t _i	q_i
1	0.795	0.215	0.215	0.215	0.215	0.216	0.216
2	0.316	0.0564	0.262	0.0565	0.262	0.0565	0.262
3	0.125	0.0162	0.288	0.0163	0.288	0.0163	0.289
4	0.0498	0.00487	0.300	0.00491	0.301	0.00492	0.302
5	0.0198	0.00150	0.308	0.00152	0.310	0.00153	0.310
6	0.00787	0.000469	0.312	0.000480	0.315	0.000482	0.316
7	0.00313	0.000148	0.315	0.000153	0.319	0.000154	0.319
8	0.00124	4.66e-05	0.316	4.91e-05	0.321	4.96e-05	0.322
9	0.000493	1.47e-05	0.316	1.58e-05	0.323	1.61e-05	0.324
10	0.000196	4.64e-06	0.315	5.13e-06	0.324	5.23e-06	0.325

5. táblázat. Az 5.4 példában az első tíz iterációs lépés során tapasztalt számok (t_i, q_i) és az elméleti felső korlát $(K_i^{(2)})$ n = 25, 50, 100 rácsfinomság mellett.

n	5	10	25	50	100	200	400
\overline{q}	0.160	0.230	0.295	0.312	0.319	0.322	0.323
D(q)	0.0816	0.0401	0.0194	0.0205	0.0218	0.0224	0.0224

6. táblázat. Az algoritmus futása során tapasztalt q_i számok átlaga (\overline{q}) és szórása (D(q)) az 5.4 példában különböző rácsfinomságokra.

5.4. Egy fizikai modell

Megoldjuk az [1] könyv 6.1.4 példáját.

Legyen $\Omega = [-1, 1]^2$, és tekintsük azt a peremérték-feladatot, hogy

$$-\frac{1}{200}\Delta u + 2y(1-x^2)\partial_x u - 2x(1-y^2)\partial_y u = 0.$$

Az ennek megfelelő függvények: $p(x,y) = \frac{1}{200}$, $\mathbf{b}(x,y) = (2y(1-x^2), -2x(1-y^2))$, f(x,y) = 0. A feladathoz tartozó Dirichlet-peremfeltétel most nem homogén: a négyzet három oldalán nulla, a negyedik oldalon u(1,y) = 1 bármely $y \in [-1,1]$ -re.

Ez a feladat egy üreg (pl. kétrétegű üveg belseje) hőmérséklet-eloszlásának egyszerű modellje, ahol az egyik külső fal melegebb a többihez képest. A **b** vektormező egy forgó áramlást határoz meg. Mivel a megadott konvekció-diffúziós egyenletben $||p||_{L^{\infty}}$ nagyon kicsi, ezért a folyamatban a konvekció dominál, míg a diffúzió csak kis mértékben jelentkezik.

Az inhomogén Dirichlet-peremfeltétel miatt a numerikus közelítés annyiban változik, hogy a megoldandó lineáris egyenletrendszer jobb oldalán az f függvény értékeit módosítani kell a peremfeltételnek megfelelően. A homogén esetnél ezzel azért nem kellett foglalkozni, mert a perempontokon azonosan nulla volt a függvényérték, most viszont a (8) egyenletben szereplő nem nulla perempontokat tartalmazó tagokat ki kell vonni az egyenlet jobb oldalából. Az így kapott egyenletrendszert az eddigiekkel megegyező módon a prekondicionált KGN-módszerrel oldjuk meg.

5. ábra. A fizikai modell numerikus megoldása n = 100 rácsfinomság mellett.

6. Függelék

6.1. Program. Az 5.2 és 5.4 tesztfeladatok numerikus megoldása véges differenciás diszkretizációval és prekondicionált KGN-módszerrel, majd a megoldás ábrázolása (1. és 2. ábra).

```
1
   function [iter, fact, diff, h] = fdm(n, show)
2
   % n: rácsfinomság; show: ábrázolja-e a megoldást. fdm(100, true)
3
4
  %% A megfelelo függvények beállítása
  \% a*u_xx + b*u_yy + c*u_x + d*u_y = f; sol: pontos megoldás
5
6
7
   % ----- 5.2 példa -----
  |\% a0 = @(x,y) -(1 + (x^2 + y^2)/2);
8
  |\% b0 = @(x,y) -(1 + (x^2 + y^2)/2);
9
10 \% c0 = @(x,y) (y-(1/2)-x);
11 |\% d0 = @(x, y) (-x - (1/2) - y);
12 |\% f0 = @(x,y) -(1 + (x^2 + y^2)/2) *((-2) *x*(1-x) + (-2) *y*(1-y)) + (y)
      -0.5-x) *(1-2*x) *...
13
  %
                  y*(1-y)+(-x-0.5-y)*(1-2*y)*x*(1-x);
14 |\% \text{ sol0} = @(x, y) x * (1-x) * y * (1-y);
15
16 % ----- 5.4 példa -----
17
   a0 = @(x,y) -(1 + (x^2 + y^2)/2);
18 b0 = @(x,y) -(1 + (x^2 + y^2)/2);
19 c0 = @(x, y) 1-x;
20 d0 = @(x, y) 1-y;
21
   f0 = @(x,y) -(1 + (x^2 + y^2)/2) *(-2*pi^2*sin(pi*x)*sin(pi*y)) + ...
22
       (1-x)*(pi*cos(pi*x)*sin(pi*y)) + (1-y)*(pi*cos(pi*y)*sin(pi*x));
23
   sol0 = @(x,y) sin(pi*x)*sin(pi*y);
24
25 %% Elemenkénti kiértékelés beállítása
26 a = @(x, y) arrayfun(a0, x, y);
27 b = @(x, y) \ arrayfun(b0, x, y);
28 c = @(x, y) arrayfun(c0, x, y);
29
  d = @(x,y) arrayfun(d0,x,y);
30 | f = @(x, y) arrayfun(f0, x, y);
   sol = @(x,y) arrayfun(sol0,x,y);
31
32
33 %% A rácsfinomság és a [k,l]^2 tartomány beállítása
34 \ \% \ n = 200;
35 k = 0;
36 1 = 1:
37 \mid h = (1-k) / n;
38 | row = n-1;
39
40 %% Az (X,Y) rácspontok létrehozása
41 | x = linspace(k, 1, n+1);
42 | x = x (2: end - 1);
43 X = repmat(x, 1, row)';
44 |Y_a = repmat(x, row, 1);
45 | Y = flip(Y_a(:));
```

```
46 %% A mátrix átlóinak létrehozása vektorként
47 B = f(X, Y);
48 | main_diag = -4*a(X, Y) - 4*b(X, Y);
49
   up_diag_1 = 2*a(X, Y) + h*c(X, Y);
50 | up_diag_1 = up_diag_1(1:end-1);
51
   for i = row : row : ((row^2) - 1)
52
       up_diag_1(i)=0;
53
   end
54
   up_diag_2 = 2*b(X, Y) - h*d(X, Y);
   up_diag_2 = up_diag_2(1:end-row);
55
   low_diag_1 = 2*a(X, Y) - h*c(X, Y);
56
57
   low_diag_1 = low_diag_1(2:end);
   for i = row : row : ((row^2) - 1)
58
59
       low_diag_1(i) = 0;
60 end
   low_diag_2 = 2*b(X, Y) + h*d(X, Y);
61
62 \mid low_diag_2 = low_diag_2(row+1:end);
63
64 %% Az átlókat egy ritka mátrixba rendezzük
  |A = sparse(row^2, row^2);
65
66 | A = spdiags([[low_diag_1;0] main_diag [0;up_diag_1]], -1:1, A);
67 | A = spdiags(low_diag_2, -row, A);
68 |A = spdiags([(1:row)'; up_diag_2], row, A);
69 A = 1/(2*(h^2)) * A;
70
71 %% Megoldjuk az Au=B lineáris egyenletrendszert
72
   [u, iter, V] = precgn(A, B);
73
   fact = V(:, 4);
74
75 |%% Ábrázoljuk a megoldást, ha show = true
76 [XX, YY] = meshgrid([k x 1], [1 flip(x) k]);
77
   res = reshape(u, [row row]) ';
78 |ZZ = zeros(row+2);
79 |ZZ(2:row+1, 2:row+1) = res;
80 | sol_val = sol(XX, YY);
   diff = max(max(abs(ZZ-sol_val)));
81
   disp("Legnagyobb eltérés: " + diff)
82
83
   disp("h^2: " + h^2)
   if show
84
85
        figure
86
       subplot(1,2,1)
       surf(XX, YY, ZZ);
87
88
       view(3);
89
       xlabel('x')
90
       ylabel('y')
91
       zlabel('Numerikus megoldás')
92
       % zlim([0 1])
93
       title("n = " + n)
   end
```

```
94
```

6.2. Program. A prekondicionált KGN-módszer algoritmusa, és táblázat készítése az algoritmus futásáról (3. és 5. táblázat).

```
1
   function [u, counter, V] = precgn(A, b)
 2
 3
   %% Prekondicionáló mátrix
4
   d = size(A, 1);
 5 | S = gen(round(d^{0.5})+1);
6
7
   %% Kezdovektorok, segédváltozók
  u = zeros(d, 1);
8
   r = S \setminus (A * u - b);
9
10 | s = S \setminus (A' * r);
11 p = s;
12 r0_s = dot(S*r, r)^{0.5};
   counter = 1;
                           % Lépésszám
13
14 |V = zeros(1,4);
                          % Táblázat
15\% q = 0.4040;\% Elméleti konvergencia az 5.2 példában16q = 0.3973;\% Elméleti konvergencia az 5.4 példában
17
18 %% Iteráció
   while dot(S*r, r)^0.5 > eps
19
20
        z = S \setminus (A * p);
21
        alpha = (-1) * dot(S*s, s) / dot(S*z, z);
        u = u + alpha * p;
22
23
        r_p = r;
24
        r = r + alpha * z;
25
        s_p = s;
26
        s = S \setminus (A' * r);
27
        beta = dot(S*s, s) / dot(S*s_p, s_p);
28
        p = s + beta * p;
29
        V(counter, 1) = counter;
        V(counter, 2) = (dot(S*r, r)^{0.5}) / r0_s;
30
31
        V(counter, 3) = 2*(q^counter);
32
        V(counter, 4) = (dot(S*r, r)^{0.5}) / (dot(S*r_p, r_p)^{0.5});
33
        counter = counter + 1;
34 | end
35
36 counter = counter -1;
37
   T = array2table(V, ...
         'VariableNames', { 'iter', '|| r_n || s', 'bound', 'ratio '});
38
39
   disp(T);
```

6.3. Program. Az S prekondicionáló mátrix létrehozása.

```
function A = gen(n)
 1
 2 %% A megfelelo függvények beállítása
 3
   a0 = @(x, y) -1;
4 | b0 = @(x, y) -1;
 5 | c0 = @(x, y) 0;
 6
   d0 = @(x, y) 0;
 7
  %% Elemenkénti kiértékelés beállítása
8
9 a = @(x, y) arrayfun(a0, x, y);
10 b = @(x, y) arrayfun(b0, x, y);
11 | c = @(x, y) \ arrayfun(c0, x, y);
12 d = @(x, y) \ arrayfun(d0, x, y);
13
14 %% A rácsfinomság és a [k,1]^2 tartomány beállítása
15 k = 0;
16 | 1 = 1;
17 h = (1-k) / n;
18 \text{ row} = n-1;
19
20 % Az (X,Y) rácspontok létrehozása
21 | x = linspace(k, 1, n+1);
22 | x = x (2: end - 1);
23 X = repmat(x, 1, row)';
24 |Y_a = repmat(x, row, 1);
25 | Y = flip(Y a(:));
26
27 %% A mátrix átlóinak létrehozása vektorként
28 main_diag = -4*a(X, Y) - 4*b(X, Y);
29 up_diag_1 = 2*a(X, Y) + h*c(X, Y);
30
   up_diag_1 = up_diag_1(1:end-1);
31 for i = row : row : ((row^2) - 1)
32
        up_diag_1(i)=0;
33
   end
34 | up_diag_2 = 2*b(X, Y) - h*d(X, Y);
   up_diag_2 = up_diag_2(1:end-row);
35
36 | low_diag_1 = 2*a(X, Y) - h*c(X, Y);
   low_diag_1 = low_diag_1(2:end);
37
38
   for i = row : row : ((row^2) - 1)
39
        low_diag_1(i)=0;
40
   end
41 \log_{diag_2} = 2 \cdot b(X, Y) + h \cdot d(X, Y);
42
   low_diag_2 = low_diag_2(row+1:end);
43
44 %% Az átlókat egy ritka mátrixba rendezzük
45 | A = sparse (row ^2, row ^2);
46 |A = spdiags([[low_diag_1;0] main_diag_[0;up_diag_1]], -1:1, A);
47 |A = spdiags(low_diag_2, -row, A);
48 |A = spdiags([(1:row)';up_diag_2], row, A);
49 |A = 1/(2*(h^2)) * A;
```

6.4. Program. Grafikon készítése az iterációk számáról (3. és 4. ábra).

```
X = [3:10, 10:5:100, 100:10:200];
1
  Y = X;
2
3
   counter = 1;
   for i = X
4
5
       [num, fact, diff, h] = fdm(i, false);
6
       Y(counter) = num;
7
       counter = counter + 1;
8
       disp(i)
9
   end
   scatter(X,Y,150, "filled ")
10
11
   xlabel ("A rácsfelosztás finomsága (n)")
   ylabel ("Iterációs lépések száma")
12
```

6.5. Program. Táblázat készítése a reziduális hibavektorok normájának átlagos csökkenéséről (4. és 6. táblázat).

```
X = [5, 10, 25, 50, 100, 200, 400];
1
2
  Y = X;
3 Z = X;
4
   counter = 1;
   for i = X
5
6
       [num, fact, diff, h] = fdm(i, false);
7
       Y(counter) = mean(fact);
8
       Z(counter) = std(fact);
9
       counter = counter + 1;
10
       disp(i)
11
   end
12
   T = array2table([X' Y' Z'], ...
13
        'VariableNames', { 'n', 'mean', 'std '});
14 | disp(T);
```

6.6. Program. Táblázat készítése a véges differenciás közelítés hibájáról (1. és 2. táblázat).

```
X = [5, 10, 25, 50, 100, 200, 400];
1
2
  Y = X;
3 | Z = X;
   counter = 1;
4
5
   for i = X
        [num, fact, diff, h] = fdm(i, false);
6
7
       Y(counter) = diff;
8
       Z(counter) = h^2;
9
        counter = counter + 1;
        disp(i)
10
11
   end
12
   T = array2table([X' Y' Z'], ...
13
        'VariableNames', { 'n', 'max_diff', 'h^2' });
   disp(T);
14
```

6.7. Program. A fizikai modell numerikus megoldása (5. ábra).

```
a0 = @(x, y) - 1/200;
 1
 2
   b0 = @(x, y) -1/200;
 3
   c0 = @(x, y) 2*y*(1-x^2);
  d0 = @(x, y) -2*x*(1-y^{2});
4
 5
   f0 = @(x, y) 0;
 6 | up0 = @(x, y) 0;
 7
   down0 = @(x, y) 0;
8
   left0 = @(x, y) 0;
9
   right0 = @(x,y) 1;
10
   %% Elemenkénti kiértékelés beállítása
11
   a = @(x, y) arrayfun(a0, x, y);
12
   b = @(x,y) arrayfun(b0,x,y);
13
14 c = @(x, y) arrayfun(c0, x, y);
15 d = @(x, y) \ arrayfun(d0, x, y);
16 | f = @(x, y) arrayfun(f0, x, y);
   up = @(x, y) arrayfun(up0, x, y);
17
18 down = @(x, y) arrayfun(down0, x, y);
   left = @(x,y) arrayfun(left0,x,y);
19
   right = @(x,y) arrayfun(right0,x,y);
20
21
22 %% A rácsfinomság és a [k,l]^2 tartomány beállítása
23 n = 100;
24 | \mathbf{k} = -1;
25 | 1 = 1;
26 \mid h = (1-k) / n;
27 | row = n-1;
28
29 %% Az (X,Y) rácspontok létrehozása
30 | x = linspace(k, 1, n+1);
31 | x = x(2:end-1);
32 X = repmat(x, 1, row)';
33 Y_a = repmat(x, row, 1);
34 | Y = flip(Y_a(:));
35
36 %% A mátrix átlóinak létrehozása vektorként
37 B = 2*(h^2)*f(X, Y);
38 | main_diag = -4*a(X, Y) - 4*b(X, Y);
   up_diag_1 = 2*a(X, Y) + h*c(X, Y);
39
40
   up_diag_1 = up_diag_1(1:end-1);
   for i = row : row : ((row^2) - 1)
41
42
        up_diag_1(i)=0;
43
   end
44
   up_diag_2 = 2*b(X, Y) - h*d(X, Y);
   up_diag_2 = up_diag_2(1:end-row);
45
   low_diag_1 = 2*a(X, Y) - h*c(X, Y);
46
   low_diag_1 = low_diag_1(2:end);
47
   for i = row : row : ((row^2) - 1)
48
49
        low_diag_1(i)=0;
50 end
```

```
low_diag_2 = 2*b(X, Y) + h*d(X, Y);
51
52
   low_diag_2 = low_diag_2(row+1:end);
53
54 %% Az átlókat egy ritka mátrixba rendezzük
55 A = sparse(row^2, row^2);
56 |A = spdiags([[low_diag_1;0] main_diag [0;up_diag_1]], -1:1, A);
57 |A = spdiags(low_diag_2, -row, A);
   A = spdiags([(1:row)'; up_diag_2], row, A);
58
59
   A = 1/(2*(h^2)) * A;
60
61
   %% Módosítjuk a B vektort a peremfeltételek szerint
62
   for i=1:row
63
        B(i) = B(i) - (2*b(X(i), Y(i)) + h*d(X(i), Y(i)))*up(X(i), 1);
64
   end
   for i = ((row^2) - row + 1) : (row^2)
65
        B(i) = B(i) - (2*b(X(i), Y(i)) - h*d(X(i), Y(i)))*down(X(i), k);
66
67
   end
68
    for i = row : row : (row^2)
69
        B(i) = B(i) - (2*a(X(i), Y(i)) + h*c(X(i), Y(i)))*right(1, Y(i));
70
   end
71
    for i=1:row:(row^2)
72
        B(i) = B(i) - (2*a(X(i), Y(i)) - h*c(X(i), Y(i)))*left(k, Y(i));
73
   end
74
   B = 1/(2*(h^2)) * B;
75
76 |%% Megoldjuk az Au=B lineáris egyenletrendszert
77
   [u, iter, V] = precgn(A, B);
78
79 %% Ábrázoljuk a megoldást
   [XX,YY] = meshgrid([k x 1],[1 flip(x) k]);
80
81
   res = reshape(u, [row row]) ';
   ZZ = zeros(row+2);
82
83 |ZZ(2:row+1, 2:row+1)| = res;
84
85 |up_val| = up(XX, YY);
86 down val = down(XX,YY);
87
   left_val = left(XX, YY);
88 right_val = right(XX,YY);
89
   ZZ(1, 1:end) = up_val(1, 1:end);
90 ZZ(row+2, 1:end) = down val(row+2, 1:end);
   ZZ(1:end, row+2) = right_val(1:end, row+2);
91
92
   ZZ(1:end, 1) = left_val(1:end, 1);
93
94 figure
95
   subplot (1,2,1)
    surf(XX, YY, ZZ);
96
97
    xlabel("x");
98
   ylabel("y");
    zlabel("Numerikus megoldás");
99
   view(3);
100
    title ("n = " + n);
101
```

Hivatkozások

- [1] ELMAN, H. C.; SILVESTER, D. J.; WATHEN, A. J.: *Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics*. Oxford University Press, 2014
- [2] KARÁTSON, J.: Numerikus funkcionálanalízis. Typotex, 2014
- [3] KARÁTSON, J.; HORVÁTH, R.: Numerical Methods for Elliptic Partial Differential Equations. https://kajkaat.web.elte.hu/pdnmell-ang-2022.pdf
- [4] KNABNER, P.; ANGERMANN, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, 2021
- [5] STOYAN, G.; TAKÓ, G.: Numerikus módszerek 1. Typotex, 2021
- [6] THE MATHWORKS, INC.: *MATLAB version 9.11.0.2022996 (R2021b) Update 4*. Natick, Massachusetts, 2021. https://www.mathworks.com/help/matlab/

NYILATKOZAT

Név: Lados Bálint István

ELTE Természettudományi Kar, szak: Matematika BSc

NEPTUN azonosító: BC26UA

Szakdolgozat címe: Nem szimmetrikus elliptikus peremérték-feladatok iterációs megoldása

A **szakdolgozat** szerzőjeként fegyelmi felelősségem tudatában kijelentem, hogy a dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül nem használtam fel.

Budapest, 2023.05.30.

Lados Balint

a hallgató aláírása