

Eötvös Loránd University - Faculty of Science

Label Setting Algorithms for
Solving the Column Generation

Subproblem of the Vehicle Routing
Problem

Götz Ádám
BSc in mathematics

Supervisor:
Szabó Eszter
PhD student

Department of Operations Research

Budapest, 2023

Acknowledgements

I would like to express my gratitude to my family, friends, and teachers for their
emotional and material support. I am especially thankful to fiance, Kata, who
stood by me and believed in me during the most difficult moments, and to Eszter,
who patiently offered explanations for topics that occurred throughout the writing
my thesis.

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Graph theory . 4
2.2 Mathematical programming . 5
2.3 Travelling Salesman Problem . 6
2.4 Branch and Bound . 7
2.5 Column generation . 8
2.6 Branch and Price . 10

3 Capacitated Vehicle Routing Problem with Time Windows 11
3.1 Naive formulation . 13
3.2 Set partitioning model . 15
3.3 Set covering model . 15
3.4 Column generation for CVRPTW 16

4 Elementary Shortest Path Problem with Resource Constraints 18
4.1 General label setting algorithm 19
4.2 Bidirectional labeling algorithm 21
4.3 State space augmenting algorithms 26

5 Heuristics 29
5.1 A greedy approach . 30
5.2 Clarke and Wright’s Savings algorithm 30

6 Summary 33

7 Bibliography 35

List of frequently used abbreviations in my thesis

The following mathematical symbols and abbreviations are going to be used in
my thesis.
∈ - an element of a set
̸∈ - not an element of a set
R - set of real numbers
Z - set of integers
Rn - a n dimensional vector over R
Rm×n - a matrix of size m× n with m rows and n columns over R
IP - Integer programming
LP - Linear programming
MILP - Mixed integer linear programming
VRP - Vehicle routing problem
CVRP - Capacitated vehicle routing problem
VRPTW - Vehicle routing problem with time windows
CVRPTW - Capacitated vehicle routing problem with time windows
SPPRC - Shortest path problem with resource constraints
ESPPRC - Elementary shortest path problem with resource constraints
S-ESPPRC - S-Elementary shortest path problem with resource constraints
CG - Column generation
NP-Complete - Nondeterministic polynomial time - complete
TSP - Traveling salesman problem

Chapter 1

Introduction

Vehicle routing (VRP) [Dantzig and Ramser, 1959] is a combinatorial optimization
problem that aims at finding a cost optimal set of routes in a graph given certain
constraints. It is a more general version of the well known travelling salesman
problem (TSP) with multiple agents. VRP emerges from logistics, where we need
to satisfy the demands of customers for products at different locations. Decision
versions of VRPs answer the question: Given a graph G, is there a feasible set
of routes that serve all customers and have an associated cost less than K ∈ R.
If this decision can be made quickly, one can use this result to find an optimal
solution efficiently via binary search or other techniques.

Decision versions of VRPs are NP-Complete, since a witness can be checked in
polynomial time and and VRP is generalisation of the travelling salesman problem
that is proven to be NP-complete [Karp, 1972]. In conclusion, while the idea of
a polynomial time optimization algorithm for VRP is unrealistic, a well-designed
approach can effectively address VRP for a restricted number of customers, of-
fering practical applicability in real-life scenarios. To compare the efficiency of
different algorithmic approaches, one can use benchmark data sets. One famous
and frequently used benchmark for the Capacitated Cehicle Routing Problem with
Time Windows (CVRPTW) is the Solomon data set.

Real life applications require multiple additional constraints including factors
such as availability of customers and staff, waiting times, vehicle capacities, pri-
orities among deliveries and possible combinations of these. Some of the known
variants of VRP are the following. In each problem the goal is to optimize its ob-
jective function that usually means the minimizing the sum of total travel costs.

1. Multi-Depot Vehicle Routing Problem (MDVRP) As the name suggests, in
MDVRP there are multiple depots and each depot has an associated fleet
of vehicles. In real life it could be a franchise with several shops across the
country. A solution to this version is presented by [Mirabi et al., 2016].

1

2. Capacitated Vehicle Routing Problem (CVRP). In CVRP, each vehicle has
a limited capacity, that cannot be exceeded by its load. It is useful if the
package sizes are comparable to the size of the transporting vehicle. For
more detail see the article [Toth and Vigo, 2002].

3. Pickup and Delivery Problem (PDP). PDP is divided into to parts: Vehicles
have to collect items from a subset of customers and deliver it to an other
subset of customers. Food delivery or e-commerce businesses may use some
variant of this problem. An example for a different objective function is given
by [Guo and Wang, 2023] where the goal is to maximize the total number
of collected goods.

4. Vehicle Routing Problem with Backhauls (VRPB). In VRPB, some vehicles
are used to transport goods from a central depot to customers, while others
are used to collect goods from customers and bring them back to the depot.
An in-depth traversal of the topic given by [Santos et al., 2019].

5. Split Delivery Vehicle Routing Problem (SDVRP) [Archetti and Speranza,
2012]. SDVRP allows a customer to be visited by multiple vehicles, that
can split the shipment into smaller tasks. This is applicable when the ship-
ment is much larger than one transport vehicle. An example can be the
transportation of construction material to large building sites.

6. Vehicle Routing Problem with Time Windows (VRPTW). In VRPTW each
customer has a specific time window during which they can be visited and
there is also a time frame in which the business can operate. With the
additional capacity constraint CVRPTW is at spotlight of this thesis.

7. Multi Commodity Vehicle Routing Problem (MCVRP). In the article of
[Dellaert et al., 2021] it is combined with CVRPTW. In MCVRP there are
multiple commodities that may not be compatible with each vehicle nor
with other goods. Chemicals and food products may be a good example for
that.

8. Stochastic Vehicle Routing Problem (SVRP). In many cases costs, waiting
times and task duration at a customer behave like random variables. SVRP
offers a method to incorporate randomness into our solution. An example of
this approach is given by [Adulyasak and Jaillet, 2016].

The aim of my thesis is to build up the mathematical background for finding
an exact solution for a family of vehicle routing problems [Michelini, 2019] with a
strong focus on the CVRPTW (Capacitated Vehicle Routing Problem with Time

2

Windows). The framework for the solution is the following. A set covering model
is created, and a linear relaxation of the problem is solved with branch and price.
The obtained pricing subproblem is an elementary shortest path problem with
resource constraints (ESPPRC). ESPPRC is solved by a state space augmenting
dynamic programming algorithm [Lozano et al., 2016] and its outcome is used to
generate columns in the branch and price scheme. A representation of the process
is visualized in figure 2.1. At the end of my thesis I discuss some heuristics that
can provide a good "warm start" for more complex methods.

3

Chapter 2

Preliminaries

2.1 Graph theory

Definition (Edge weighted digraphs). Let G = (V,A) be a collection of nodes V

and edges A. Each edge connects two distinct vertices. An edge eij ∈ A goes from
vertex i to j and has a weight cij.

Definition (Path). An s − t path p is an alternating sequence of vertices and
edges starting with vertex s ∈ V and ending in vertex t ∈ V . Each edge eij in p

is preceded by i and followed by j in the sequence. Note that this definition allows
the repetition of nodes and edges.

Definition (Multiplicity of nodes). Let p be a path in a directed graph G. Define
Mp(i) to be the multiplicity of node i ∈ V on p. Mp(i) denotes the number of times
i appears along p.

Definition (Path elementarity). Let p be a path in a directed graph G. Path p is
elementary if Mp(v) ≤ 1 for all v ∈ V (p). Elementary paths are also called routes
or simple paths. The set of elementary paths between s and t is denoted with Pst.
In my thesis P usually stands for Pst, unless indicated otherwise.

Definition (Path cost). Let p be a path in G, with edge weights cij for edges
eij ∈ A. We define the cost of p to be the sum of all edges along p. Let E(p) be set
of edges that are on p.

c(p) =
∑

(i,j)∈E(p)

cij

4

2.2 Mathematical programming

Mathematical programming is a problem solving technique. In its most general
form it consists of a problem space, defined by a set of constraints H. Let X be
a set of solutions that respects all constraints h ∈ H and an objective function
f(x) : x → R. The goal is to find elements x that minimize/maximize the value
of f(x) for elements x ∈ X.

Linear programming

Linear programming is a member of the mathematical programming methods, that
is characterised by both of its constraints and objective function being linear.

Definition (Primal problem). The standard form of a linear programming prob-
lem is

Ax = b

x ≥ 0

max cx

where A is an m × n matrix and x ∈ Rn column vector and c ∈ Rm is a row
vector. This is called the primal problem and if a vector x ∈ Rn satisfies

Ai∗x = bi ∀i := 1...m

and cx is indeed maximal, then x is a primal optimal solution.

Sometimes it is easier to model problems using inequalities or omitting the
non-negativity constraint. Note that all of these alternative formulations can be
rewritten into the standard form above. In VRP and many other applications,
instead of maximizing the objective function, a minimization is needed. A trans-
formation between minimization and maximization is also easy in each direction,
(the objective function must be multiplied by -1).

Definition (Dual problem). Every system of linear (in)equalities has a dual prob-
lem. The corresponding dual problem for the standard form in the previous defi-
nition is the following.

yA ≥ c

min yb

5

Where A, b and c are the same vectors and matrices as in the primal problem and
y is a row-vector. y is a dual solution if

yA∗j ≥ cj ∀j := 1...n

and optimal if it also minimizes the function yb.

To solve the primal and dual problems simultaneously, one can use the sim-
plex algorithm. For LP problems there exists a polynomial algorithm [Karmarkar,
1984], but typically a variant of the simplex method is used, which is exponential
in worst-case but polynomial in expected run-time [Borgwardt, 1987].

Integer programming

Integer programming denotes mathematical programming problems that require
their solution vector’s elements to be integers.

Definition (Integer linear programming, ILP). Integer linear programming is a
special optimization problem, where x ∈ Zn meanwhile being a solution to a set of
linear inequality constraints.

Integer linear programming is NP-Complete since any given solution can be
verified in polynomial time and every SAT (Satisfiability Problem) formula can
be translated into an integer programming problem also in polynomial time. It
is proven by the Cook-Levin theorem that SAT is in NP-C [Cook, 1971], [Levin,
1973] thus IP is NP-Complete as well. For every IP problem there exists a linear
programming relaxation that omits integrality constraints. This relaxation does
usually not provide a good approximation of the integer optimum, but it can
serve as a lower bound for minimization and as an upper bound for maximization
problems.

2.3 Travelling Salesman Problem

Travelling Salesman is a widely known optimization problem, that searches for the
shortest circle visiting all vertices exactly once in a given weighted, directed graph
D = (V,A). Sometimes it is assumed that weights are symmetric, meaning cij =

cji, non-negative and satisfy the triangle inequality (metric TSP). The decision
version TSP is NP-complete since deciding the existence of a Hamiltonian cycle
in a graph is NP-complete.

There are known approximation algorithms that find solutions close to opti-
mum. One famous algorithm from Christofides provides a 1.5-approximation ratio

6

for the TSP [Christofides, 1976]. TSP can be formulated as an integer program-
ming problem as follows.

min
∑

(i,j)∈A

cijxij (2.3.1)

xij ∈ {0, 1} (2.3.2)

∑
j∈δ+(i)

xji = 1 ∀i ∈ V (2.3.3)

∑
j∈δ−(i)

xij = 1 ∀i ∈ V (2.3.4)

∑
δ−(S)

≥ 1 ∀S ⊂ V, S ̸= ∅ (2.3.5)

xij is a binary variable that is 1 if the edge (i, j) is used and 0 otherwise. The
variable cij denotes the cost of edge (i, j). The set δ+(i) is the set of predecessors
and δ−(i) is the set of successors of vertex i. Condition 2.3.5 states that every real
subset of V must have at least 1 outgoing edge that prevents multiple disjoint
circles as a solution.

It is easy to see that this formulation requires an exponential number of rows
that are difficult to handle both in space and in time. Column (or in this case rather
row) generation proves to be a powerful tool that can be used to solve to linear
relaxation of the problem. Initially only a polynomial size subset of the constraints
are considered. In each step some rows, violating the original constraints, are added
to the examined part. This process is further described in paragraph 2.5.

2.4 Branch and Bound

Branch and bound is a technique to solve combinatorial optimization problems.
The general scheme consists of the following steps. Branch and bound divides
the problem into smaller subproblems, that are solved recursively. One important
attribute of the subproblems is that the solution of the original problem is also a
solution to one of the smaller problems. In each iteration the algorithm discards
subproblems those theoretical optimum is worse than the best solution found so
far. If there are no more subproblems to be examined, it returns the best solution
so far, that is indeed optimal. Here is an example using BNB to solve an IP
problem. Let S∗

0 be an optimization problem defined as

S∗
0 := {Ax = b;x ≥ 0;min cx, x ∈ Zm}.

7

Algorithm 2.1 Branch and bound
1: Let S0 be the the LP-relaxation of S∗

0

2: Let OPT be the smallest integer solution found so far
3: OPT := EstimatedOptimum(S∗

0)
4: Let L be a list of subproblems.
5: L← S0

6: while L is not empty do
7: Select S ∈ L
8: Remove S from L
9: OPT ∗ := Min(S)

10: if OPT ∗ > OPT then
11: Continue
12: else
13: x∗ := ArgMin(S)
14: if x∗ is integral then
15: OPT := OPT ∗

16: else
17: Let x∗

i be a fractional component.
18: S1 = AddConstraint(S, xi ≤ ⌊x∗

i ⌋)
19: S2 = AddConstraint(S, xi ≥ ⌈x∗

i ⌉)
20: L← S1, S2

In line (3) an upper bound can be calculated using heuristics. Frequently used
heuristics for VRPTW are described in section 5. L ← S adds the subprob-
lem S to the list of subproblems L. An LP-solver calculates Min(S) for S re-
turning its minimum. ArgMin(S) returns the vector x for which cx is minimal.
AddConstraint(S, s′) adds the constraint s′ to the problem S.

2.5 Column generation

Some problems are easier to formulate using the linear combination of feasible
configurations, such as VRP. Let us consider a matrix in which columns represent
feasible paths of one vehicle. A solution to the VRP is the union of several vehicle
paths and can be described as a combination of their associated columns. Since the
number of columns is exponentially large in this case, the problem needs a different
approach. Experiments show that column generation is efficient for solving such
type of problems. The following is a general scheme for generating columns that
are going to used for finding solutions.

1. Initialize the Restricted Master Problem (RMP) with columns for which
there is a primal solution.

2. Calculate the primal and dual solutions of the RMP.

8

3. Check if the dual solution satisfies the inequalities for all columns. If not,
add the column violating the inequalities to the RMP and go back to (2).

4. There must be no more columns violating the constraints. As a conclusion
the primal and dual solutions are both feasible, and due to complemen-
tary slackness the value of their objective functions must be equal and the
optimum have been found.

We can check an exponential number of columns in a reasonable time in the
following way. The dual optimal solution to the RMP is denoted with η. Let B

be a matrix formed from the basis vectors of the primal optimal solution in the
Simplex algorithm. B is non singular, therefore η can be calculated via

η = cB ·B−1.

Let us introduce the following notations. θr := ηAr where Ar is the column of A
associated with route r and the cost of route r as cr := c(r). The dual problem
states that

θr ≤ cr

must be fulfilled for all feasible routes r. Reformulated, the reduced cost function
is the following.

0 ≤ cr − θr

One can notice that it is sufficient to calculate

min cr − θr. (2.5.1)

If the minimum value is less than zero then there is a column that does not satisfy
the dual inequalities and it is added to the RMP. If the minimum is greater or
equal than zero, then all values are greater or equal than zero, which implies the
feasibility of the dual solution. As described above, a solution must be optimal if
it is both primal and dual feasible and for which complementary slackness is also
fulfilled.

Solving the minimization problem 2.5.1 leads to a combinatorial optimization
problem that is more manageable than the original problem. In CVRPTW the
dual problem is an elementary shortest path problem with resource constraints
(ESPPRC) that can be solved using labeling algorithms. Solving ESPPRC is de-
scribed in detail in sections 4.1 and 4.3.

9

2.6 Branch and Price

Branch and price is a combination of branch and bound and column generation
in the same model. The framework is outlined in figure 2.1. After branching,
two new instances are created of the problem with added constraints, described in
algorithm 2.1. After examining both branches, the algorithm returns to the parent
node. If there are no more parent nodes to return to, the algorithm terminates
with the best solution found so far. Colors indicate that the algorithm modifies
or leaves currently inspected "iteration".

Figure 2.1: Simplified flowchart of the Branch and Price framework

10

Chapter 3

Capacitated Vehicle Routing
Problem with Time Windows

CVRPTW is the combination of the Capacitated Vehicle Routing Problem and the
Vehicle Routing Problem with Time Windows. The goal is to minimize travel costs
such that the solution respects capacity and time window constraints. Besides
travel times, tasks of different lengths at each node are added to the problem. To
incorporate this into the model, closing times are adjusted with consideration of
task duration. In order to better simulate real-world scenarios, vehicles are granted
the flexibility to wait at their next destination prior to commencing their tasks.

In following chapters the depot is split in nodes s and t unless noted otherwise.
Node s is the starting node and it has only the outgoing edges of the depot whilst
t denotes the end node with incoming edges of the depot.

Definition (Resource feasibility). Let R be the set of resources and W be the
resource limit vector W = (W1, ...,WR) with Wi ∈ R+. Let wk

ij ∈ R+ be the
consumption of resource Wk on an edge (i, j) ∈ A and let wij = (w1

ij, ..., w
R
ij) be

the collection of consumed resources on the eij. On each path p the accumulated
consumption of resource Wk is computed by

Wk(p) :=
∑

(i,j)∈A(p)

wk
ij

and W (p) is defined as the collection of resources consumed along p

W(p) =
(
W 1(p), ...,WR(p)

)
A path p is resource feasible if

W(p) ≤ W

11

meaning that the inequality holds for all k ∈ {1, ...,R}

Wk(p) ≤ Wk

Definition (Feasibility of multiple paths). A set S ⊆P of paths is feasible, if p
is feasible ∀p ∈ S.

In the above definition of resource feasibility, consumption of resources happens
on edges. Resource consumption on vertices can be transformed easily into the
"edge-resource" form by adding the consumption of node j ∈ V to all edges
(i, j) ∈ A.

Definition (Sufficiency of multiple paths). A set S ⊆P of paths is called suffi-
cient if every node v ∈ V is an element of at least one path p ∈ S. It translates
to the real world as demands of all customers being satisfied.

Definition (Cost of multiple paths). Let c(S) denote the cost of a set of paths as
in

c(S) :=
∑
p∈S

c(p)

Definition. Resource Constrained Vehicle Routing Problem searches for a suffi-
cient set of resource constrained elementary paths S∗ ⊆ P from s to t that is
minimal, meaning

c(S∗) ≤ c(S), ∀S ⊆P that are sufficient and feasible

CVRP is an instance of a resource constrained VRP with only one capacity-
resource. VRPTW is somewhat more complex due to the inclusion of time con-
straints for all nodes. For this to work with the previous definitions only the time
constraints of the nodes on the current path are taken into account.

12

3.1 Naive formulation

In this section a detailed mixed integer formulation of the combined CVRPTW
problem is presented. The following notations are used in this section.

V : Set of nodes (other than the depot).

A: Set of arcs.

s: Depot, with only the outgoing edges.

t: Depot, with only the incoming edges.

U : Set of vehicles.

u ∈ U : One of the vehicles.

xu
ij: Decision variable, denoting the usage of arc (i, j) by vehicle u.

cij: Cost of arc (i, j) ∈ A

ai: Opening time of node i.

bi: Adjusted closing timei.

si: Task duration at node i.

Tij: traveling time between (i, j).

tui : Time variable. Starting time of vehicle u at node i.

M : A very large number.

δ+(i) := {∀j : (j, i) ∈ A} - Set of vertices prior to node i.

δ−(i) := {∀j : (i, j) ∈ A} - Set of vertices subsequent to node i.

Q: Capacity of each vehicle

di: Size of the demand of customer i.

The CVRPTW model is described by the following (in)equalities and objective
function.

min
∑
u∈U

∑
(i,j)∈A

cijx
u
ij (3.1.1)

subject to
xu
ij ∈ {0, 1} (3.1.2)

13

∑
u∈U

∑
j∈δ−(i)

xu
ij ≥ 1 ∀i ∈ V (3.1.3)

∑
j∈δ−(s)

xu
sj ≤ 1 ∀u ∈ U (3.1.4)

∑
i∈δ+(j)

xu
ij −

∑
i∈δ−(j)

xu
ji = 0 ∀u ∈ U, j ∈ V (3.1.5)

ai ≤ tui ≤ bi ∀u ∈ U, i ∈ V (3.1.6)

tui + si + Tij − tuj ≤M(1− xu
ij) u ∈ U, (i, j) ∈ A, j ̸= t (3.1.7)

tui + si + Tit − bt ≤M(1− xu
it) u ∈ U, i ∈ δ+(t) (3.1.8)∑

i∈V

di
∑

j∈δ+(i)

xu
ij ≤ Q ∀u ∈ U (3.1.9)

Details and explanations for the model are listed below.

• We assume that cij is uniform for all vehicles, symmetric and satisfies the
triangle inequality. Usually cij is the result of running an All Pairs Shortest
Path algorithm on the original data.

• Closing time of node i is shifted by its task duration bi := b∗i − si, where b∗i

denotes the original closing time.

• Uniformity among vehicle capacities is assumed by using a common Q. This
could be uniquely defined for each vehicle but it would make the model even
more complicated.

• Constraint 3.1.2 prescribes that xu
ij is a binary variable. In a solution xu

ij is
1, if vehicle u uses arc (i, j) and 0 otherwise.

• The objective function 3.1.1 prescribes that the sum of the cost of all used
vertices should be minimized.

• Inequality 3.1.3 guarantees that every node must be visited by at least one
vehicle.

• Equality 3.1.4 assures that each vehicle leaves the depot at most once.

• Equality 3.1.7 makes sure that xu is a flow, which means that every vehicle
going into node i leaves the node.

• Inequality 3.1.6 prescribes that each task must be started once the node is
open and it must be finished before it is closed.

• In inequality 3.1.7 the following is described: If an arc xu
ij is used, the task

at vertex j can only be started after arriving at vertex j. This property is

14

not required for the depot as it would make the solution infeasible. This is
due to the fact that it eliminates cycles (if task lengths and travelling times
have non-zero values).

• Inequality 3.1.8 is the previous requirement rewritten for the depot. It en-
sures the feasibility of starting a task at node i and going back to the depot
before its closing time.

• Inequality 3.1.9 assures that each vehicle has a load less than its capacity.
The model assumes that each vehicle reaching node i is delivering a load as
well. This implies that loads cannot be split up.

It turns out that this formulation is not practical when building large scale models
but it provides a starting point to better understand the following approaches.

3.2 Set partitioning model

Let Ω denote the set of feasible routes that satisfy constraints described in sub-
section 3.1. air is 1, if route r visits vertex i and 0 otherwise. In set partitioning
cr is total length of route r ∈ Ω. The ILP form of the the model is the following.

min
∑
r∈Ω

cryr (3.2.1)

subject to
yr ∈ {0, 1} (3.2.2)

∑
r∈Ω

airyr = 1 ∀i ∈ V (3.2.3)

yr is a decision variable, that is 1, when route r is used and 0 otherwise. Our
goal is to find a solution that visits each vertex exactly once. Equations in 3.2.3
establish that every node must be visited by exactly one route.

3.3 Set covering model

Set covering is a seemingly weaker version of a set partitioning model, where 3.2.3
is changed to 3.3.3. It implies that every node must be covered by at least one
route instead of a strict equality.

min
∑
r∈Ω

cryr (3.3.1)

15

subject to
yr ∈ {0, 1} (3.3.2)

∑
r∈Ω

airyr ≥ 1 ∀i ∈ V (3.3.3)

This formulation is usually preferred to a set partitioning model, because the
dual variables of the relaxed problem are non-negative, that leads to a more stable
algorithm.

3.4 Column generation for CVRPTW

Set covering described in 3.3 is an IP problem with an exponential number of
columns, since the number of feasible routes in a graph is exponential as well.
Branch and Price is generally a good candidate to solve this type of problems.
The speed of the algorithm heavily depends on the starting configuration and
chosen algorithm to solve the pricing subproblem. Besides, additional inequalities
can be added to the master problem to narrow down the search space. In my thesis,
my focus will be on improving the pricing algorithm, but alongside I will introduce
some heuristics and inequalities alongside to boost performance. As described in
section 2.5 finding a column that violates the dual constraint

0 ≤ cr − θr

leads to an elementary shortest path problem with resource constraints (ESP-
PRC). Let E(r) be the set of arcs that belong to a route r. Let C(r) be the
reduced cost of r.

C(r) = cr − θr

In more detail C(r) can be written out as

C(r) =
∑

(i,j)∈E(r)

cij −
∑

(i,j)∈E(r)

ηi.

This also defines a reduced edge weight Cij = cij − ηi. Let r∗ ∈ Ω be path for
which the following holds

C(r∗) ≤ C(r), ∀r ∈ Ω.

16

If C(r∗) < 0, then a column with negative reduced cost have been found that can
be added to the subproblem. If C(r∗) ≥ 0, then C(r) ≥ 0 must be fulfilled for all
routes r ∈ Ω.

The objective of the ESPPRC is to find a shortest path from the depot to
the depot without the repetition of nodes in a graph meanwhile obeying resource
limitations. The depot is usually split into two nodes, the source s and the sink
node t. ESPPRC is NP-Complete as it can be reduced to the longest path problem
(since the reduced edge weight Cij can be negative as well).

17

Chapter 4

Elementary Shortest Path Problem
with Resource Constraints

The Elementary Shortest Path Problem with Resource Constraints arises as we
are try to solve the pricing subproblem of the VRP with at least one additional
constraint such as time windows or capacities of resources. In the following chapter
a more general definition of the ESPPRC is introduced and I present three algo-
rithms with progressively increasing complexity to solve the described problem
efficiently.

Definition (ESPPRC). Consider a directed graph G = (V,A) with no restriction
on edge weights cij ∈ R. Let R denote a set of resources and W = (W1, ...,WR)

be a resource limit vector. Resource consumption on edge (i, j) ∈ A is denoted
by wij = (w1

ij, ..., w
R
ij), where wR

ij ∈ R+. ESPPRC searches for an elementary s− t

path p ∈Pst that is resource feasible with respect to W while minimizing c(p), the
total cost along p.

In the setting of column generation cij = Cij, where Cij is the reduced cost
defined in the previous section. Resources and resource constraints remain the
same naturally occurring time and capacity constraints introduced in chapter 3.

To find an elementary shortest path respecting resource constraints labeling
algorithms are proposed. A label setting algorithm is a dynamic programming
method that sends "labels" from already reached vertices to their neighbouring
vertices in each iteration. Each route has an associated label and each label con-
tains information about their route such as its cost and its accumulated resource
consumption. Efficient labeling algorithms must have a set of additional rules to
limit the unnecessary generation of labels.

18

4.1 General label setting algorithm

In labeling algorithms each vi vertex has an associated set of labels, that represent
feasible paths from the source node to vertex vi. Each label can be described by a
tuple like lvi = (Cvi ,Wvi). For the sake of simplicity, vertex vi is denoted by i and
the label belonging to vi is denoted by li = (Ci,Wi). The symbol Wi stands for
two resources τi and qi. Resource τi measures the time elapsed between leaving
the source node s until the arrival at node i. and resource qi is the accumulated
load on the same path p. Ci is the reduced cost of path p. Label li can be written
out as

li = (Ci, τi, qi).

Let Γi denote the set of all labels li at node i. In the beginning of the algorithm
there is a single label in Γs with values of ls = (0, 0, 0). New labels are dynamically
sent from already reached vertices to their neighbours. The updates are carried
out until no more possible extensions are available. Rules for extending labels are
the following.

Cj := Ci + cij − ηj (4.1.1)

τj := max{τi + si + Tij, aj} (4.1.2)

qj := qi + dj (4.1.3)

Rule 4.1.1 ensures that cost Cj at label lj remains a reduced cost. Rule 4.1.2
states that the start time at node j cannot be less than the sum of the start time
at i, the task length si and the travel time Tij or less then the opening time aj.
Rule 4.1.3 prescribes that the accumulated load of a vehicle that visits node j

after visiting node i is the sum of its accumulated load until i and the load at j.
Label lj is added to Γj if τj ≤ bj and qj ≤ Q are fulfilled. Domination rules are

introduced to reduce the number of labels generated. The labels at each node are
the elements of a partially ordered set. Label l1i dominates label l2i if and only if

C1
i ≤ C2

i (4.1.4)

τ 1i ≤ τ 2i (4.1.5)

q1i ≤ q2i (4.1.6)

and at least one of the inequalities are strict. l2i is dominated by l1i because all
feasible extensions of l2i is worse than the extension of the label l1i . Each time a
label is extended to node j, the following routine is executed.

• If lj is dominated by at least one label in Γj, the lj is discarded.

19

• If lj is not discarded, lj is added to Γj and all labels dominated by lj are
removed from Γj.

The algorithm terminates as there are no more labels to extend, returning the
minimal element of Γt.

Elementarity constraints

So far, this algorithm provides a solution to the shortest path problem with re-
source constraints (SPPRC) without the exclusion of non-elementary paths. Early
implementations of the algorithm did not try to eliminate all cycles. The stan-
dard method was to remove 2-cycles by forbidding the visit of direct predecessors,
because it was relatively easy to implement. A new component pi is added to
label li = (Ci,Wi, pi), that contains the parent node of i on the associated path.
A new extension rule is added that a label cannot be sent to its direct prede-
cessor [Desrochers et al., 1992]. To solve the ESPPRC, N elementarity resources
are added to each label [Feillet et al., 2004]. This problem is also called resource
constrained shortest path problem with node resources.

Definition. Each label in Γi is defined by the following tuple.

li := (Ci, τi, qi, (E
k
i)k) (Ek

i)k∈N (4.1.7)

The notation (Ek
i)k∈N can be unpacked as

li := (Ci, τi, qi, E
1
i , ..., E

N
i). (4.1.8)

For each label Ek
i is 1 if vertex k is visited by the associated path and 0

otherwise. Resource extension functions are completed with the following rule:

Ek
j :=

Ek
i + 1, , if k = j

Ek
i , if k ̸= j

(4.1.9)

A partial path with label lj is elementary if and only if Ek
i ≤ 1 for all k ∈ N .

Otherwise it cannot be added toΓj. A new domination rule for node resources is
also added to the program.

Ek,1
i ≤ Ek,2

i ∀k ∈ N (4.1.10)

The complete algorithm for solving ESPPRC [Michelini, 2019] is given in algo-
rithm (4.1).

20

Algorithm 4.1 Monodirectional dynamic programming algorithm for ESPPRC
1: procedure MDP
2: //Initialization//
3: Γs ← {(0, 0, 0, 0)}
4: E ← s
5: for all i ∈ V \ {s} do
6: Γi ← ∅
7: //Search//
8: while E ̸= ∅ do
9: Select i ∈ E

10: //Extension//
11: for all li ∈ Γi do
12: for all j ∈ δ−i such that Ej

i = 0 do
13: lj ← Extend(li, j)
14: if lj is feasible then
15: Ldcr(Γj, lj)

16: if Γj ̸= ∅ and j ̸= t then
17: E := E ∪ {j}
18: E := E \ {i}
19: return p∗

Definition. As introduced before Γi denotes set of labels at node i. In Γi ⊆ Γi are
the labels that are yet to be extended in the algorithm.

Definition. Let P∗ denote the set of paths assigned to labels at Γt at the algorithm
termination and p∗ be the path in P∗ that minimizes its associated reduced cost
C(p).

Vertices that are to be evaluated are in set E. These are nodes that already
have some assigned labels that are yet to be extended. Extend(li, j) is a function
that calculates the lj using the label extension rules 4.1.1, 4.1.2, 4.1.3 and 4.1.9.
Ldcr(Γj, lj) (Label dominance comparison routine) is a routine that compares
lj to labels in Γi according to dominance rules 4.1.4, 4.1.5, 4.1.6 and 4.1.10. If
lj is dominated by any label in Γj it has to be discarded and any label in Γj

dominated by lj has to be removed from Γi and Γi. If lj is not dominated by any
of the labels, it is added to Γj and Γj. The algorithm terminates in finite steps since
the accumulated resources of not yet extended labels are monotonically increasing
and resource constraints are finite as well.

4.2 Bidirectional labeling algorithm

Time complexity of algorithm 4.1 is heavily reliant on the number of labels created
during its completion. To improve expected run-time, bidirectional label extension

21

is proposed by [Righini and Salani, 2006]. The main idea is to apply forward
and backward searches starting from the source and the sink simultaneously and
combining their results. With some additional bounding rules, this reduces the
expected number of generated labels significantly.

To implement bidirectional search, new sets of labels are introduced. Γf
i is the

set of forward labels of node vi, previously denoted by Γi and Γb
i is the new set

of backward labels associated with vi. Forward labels are extended just as regular
labels in the previous algorithm. A backward label

lbi = (Cb
i , τ

b
i , q

b
i , (E

k
i)

b
k) ∈ Γb

i

represents the path from node i to the sink. (Cb
i , q

b
i , (E

k
i)

b
k) are analogous to the

forward case, they denote the cost, the accumulated load and the elementarity
constraints respectively. The resource τ bi stands for the time passed from the end of
service at node i until entering the sink. Backward label extensions are performed
starting at the sink with the label lbt = (0, 0, 0, 0) ∈ Γb

t . In each iteration, labels
in Γb

i are forwarded to the predecessors of node i. Time τ is not symmetrical for
forward and backward extensions, [Righini and Salani, 2006] propose the idea of
backward time windows. Regular time windows of node vi are shifted by the task
duration si:

[abi , b
b
i] := [ai + si, bi + si]

Note that bi + si is the actual closing time since bi was defined as bi = b∗i − si.
Let T := maxi∈V {bi + si + Tit} be the time of the latest possible arrival at node
t calculated from the adjusted closing times of each vertex. This is because the
latest feasible departure from vi is bi+si, since time window bi is already adjusted
in the CVRPWTW model by task length si. Reminder that tit is the traveling
time from vi to the sink. Backward label extensions on arc (j, i) ∈ A are carried
out in the following way.

Resource extension rules for backward labels

Label lbi is extended to label lbj.

τ bj := max{τ bi + si + Tij, T − bbj} (4.2.1)

Cb
j := Cb

i + cji − ηj (4.2.2)

qbj := qbi + dj (4.2.3)

Ek,b
j :=

Ek,b
i + 1 , if k = j

Ek,b
i , if k ̸= j

(4.2.4)

22

Backward label lbj is feasible regarding capacity and elementarity constraints
if and only if the next inequalities are fulfilled.

τ bj ≤ T − abj (4.2.5)

qbj ≤ Q (4.2.6)

Ek,b
j ≤ 1 ∀k ∈ N (4.2.7)

Feasibility constraint 4.2.5 checks that one leaves node j later than its latest
feasible arrival at j. Inequality 4.2.6 verifies that capacity constraints are fulfilled
and 4.2.7 is for checking elementarity conditions.

Domination rules for backward labels

Cb,1
i ≤ Cb,2

i (4.2.8)

τ b,1i ≤ τ b,2i (4.2.9)

qb,1i ≤ qb,2i (4.2.10)

Ek,b,1
i ≤ Ek,b,2

i ∀k ∈ N (4.2.11)

Similar to the forward case, a backward label lb,2i is dominated by label lb,1i if
and only if inequalities 4.2.8, 4.2.9, 4.2.10, 4.2.10 and 4.2.11 are satisfied with at
least one of the inequalities being strict.

Label concatenation

Forward and backward labels are joined via label concatenation. For each edge
(i, j) ∈ A concatenated cost and resources of lfi and lbj are calculated with these
functions:

C(i, j) := Cf
i + Cb

j + cij (4.2.12)

τ(i, j) := τ fi + si + Tij + sj + τ bj (4.2.13)

q(i, j) := qfi + qbj (4.2.14)

C(i, j) is a function that calculates total cost of a concatenated path. Function
τ(i, j) calculates the total time elapsed between the departure from the source until
arrival at the sink. q(i, j) is the total accumulated load alongside the forward and
backward paths. A concatenated path is feasible if the following inequalities are
fulfilled.

23

τ ≤ T (4.2.15)

q ≤ Q (4.2.16)

Ek,f
i + Ek,b

j ≤ 1 ∀k ∈ N (4.2.17)

Inequalities 4.2.15, 4.2.16 are a trivial requirement, since total duration and load
must not break time window and capacity constraints. Inequality 4.2.17 states that
every node k should exclusively be visited by either the forward or the backward
path.

Restriction of elapsed time for forward and backward labels

It is apparent that bidirectional label extension leads to a duplication of states
that makes the computation of a solution more difficult to handle. In their paper
[Righini and Salani, 2006], authors describe two approaches to solve the issue of
state duplication: arc bounding and resource bounding.

For each label there is a set of feasible arcs on which label extensions can be
performed. Arc bounding computes an upper bound for size of this set by solv-
ing a multi-knapsack problem with regards to the resource constraints. Resource
bounding selects a critical resource that is monotonous along each path. Authors
chose τ as it fulfills this requirement. The idea is to bound the length of the par-
tial paths, by introducing further extension rules on its labels. Both forward and
backward label extension rules are complemented with conditions

τ fi ≤
T

2

τ bi ≤
T

2

where T is an upper limit for the path duration from s to t. This does not exclude
optimal solution, because each s − t path can be concatenated in a way, that i

and j are in the middle with respect to the elapsed time.

Duplicate elimination after label concatenation

Each feasible path can be constructed with multiple concatenations. For exam-
ple, let (i, j, k) be subsequent vertices in a given feasible path. Concatenation of
appropriate labels (lfi , l

b
j) and (lfj , l

b
k) produce the same outputs. To avoid unnec-

essary duplicates we can use the critical resource from the previous paragraph.
From all possible concatenations of an s− t path, the one is used, that minimizes

24

the distance
Φ(i,j) := |τ fi − τ bj |.

To find the edge, for which Φ(i,j) is indeed minimal, a duplicate eliminating algo-
rithm 4.2 [Michelini, 2019] can be used.

Algorithm 4.2 Duplicate elimination

1: procedure Halfway(lfi , lbj)
2: Φ(i,j) :=

∣∣τ fi − τ bj
∣∣

3: if τ fi < τ bj then
4: τ fj := τ f (lfi , j)

5: Φ(j,j+1) ←
∣∣τ fj − τ bj+1

∣∣
6: if Φ(i,j) < Φ(j,j+1) then
7: return true
8: else
9: return false

10: else
11: τ bi := τ b(lbj, i)

12: Φi−1,i ←
∣∣τ fi−1 − τ bi

∣∣
13: if Φ(i,j) ≤ Φ(i−1,i) then
14: return true
15: else
16: return false

Algorithm 4.2 returns true if (lfi , lbj) are halfway in the concatenated path and
returns false otherwise. τ f (lfi , j) is a function that returns the critical resource
consumption of the forward extended label. τ b(lbj, i) computes the same for the
backward extension from lbj. For any τ f and τ b, algorithm Halfway has a constant
run-time. Bidirectional search is described in algorithm 4.3 and the concatenation
algorithm is given in 4.5.

Algorithm 4.3 Bidirectional dynamic programming algorithm for ESPRC
1: procedure Bddpa
2: //Initialization//
3: for all i ∈ V do
4: Γf

i ← ∅, Γb
i ← ∅

5: Π← ∅, Γf
s ← {(0, 0, 0, 0)}, Γb

t ← {(0, 0, 0, 0)}, E ← {s, t}
6: //Search//
7: while E ̸= ∅ do
8: Select i ∈ E
9: EOL(i)

10: E := E \ {i}
11: Concatenate(G,Γf ,Γb)
12: return best path in Π

25

Algorithm 4.4 Extending all labels of Γf

i and Γ
b

i

1: procedure EOL(i)
2: //Extensions//
3: for all lfi ∈ Γ

f

i do //Forward extension//
4: for all j ∈ δ−i do
5: if Ej

i = 0 then
6: lj ← Extendf (li, j)
7: if lj is feasible then
8: Γf

j ← Ldcr(Γf
j , lj)

9: if Γ
f

j ̸= ∅ then
10: E := E ∪ {j}
11: for all lbi ∈ Γ

b

i do //Backward extension//
12: for all k ∈ δ+i do
13: if Ek,b

i = 0 then
14: lbk ← Extendb(lbi , k)
15: if lbk is feasible then
16: Γb

k ← Ldcr(Γb
k, l

b
k)

17: if Γb
k ̸= ∅ then

18: E := E ∪ {k}

Algorithm 4.3 extends labels simultaneously starting from s and t, limited
by resource extension rules and the limit of τ fi ≤ T/2 and τ bi ≤ T/2. Extensions,
similar to algorithm 4.1 are described in 4.4. Function Concat uses concatenation
rules 4.2.12,4.2.13 and 4.2.12.

Algorithm 4.5 Label concatenation for bidirectional search

1: procedure Concatenate(G,Γf ,Γb)
2: for all (i, j) ∈ A do
3: for all lfi ∈ Γf

i do
4: for all lbj ∈ Γf

j do
5: if Feasible(lfi , l

b
j) and Halfway(lfi , l

b
j) then

6: P := Concat(lfi , l
b
j)

7: Π := Π ∪ {P}
8: return best path in Π

4.3 State space augmenting algorithms

Introducing N node resources in 4.1.8 adds more complexity to the problem that
makes computation of an optimal solution even harder. It meant that initial al-
gorithms eliminated two-cycles but they did not incorporate all node resources.
Among others, [Kohl, 1995] and [Boland et al., 2006] proposed a restriction that

26

elementarity resources should only be demanded for a subset of nodes. Their strat-
egy was to dynamically extend the set of nodes those elementarity is demanded
until the point where a solution would be elementary with regards to all nodes.

Definition (S-ESPPRC). S-ESPPRC is a relaxation of the elementary shortest
path problem with resource constraints. Given S ⊆ V , the objective of S-ESPPRC
is finding a resource constrained shortest path p in the graph G from the starting
node s to the end node t such that the cost C(p) along p is minimal and no node
v ∈ S is visited more than once.

In case of S = ∅, S-ESPPRC reduces to the SPPRC and if S = V then
S-ESPPRC is equivalent to the ESPPRC.

Definition. Labels of the S-ESPPRC at node i are defined as follows.

lSi = (Ci, τi, qi, (E
k
i)k), k ∈ S (4.3.1)

lSi = (Ci, τi, qi, E
S1
i , ..., E

S|S|
i) (4.3.2)

Where S1, ..., S|S| define the elements of S in an arbitrary order.

To solve S-ESPPRC a modification of the Mdp or Bddpa described by algo-
rithms 4.1 and 4.3 can be used where labels are restricted as in 4.3.2. The modified
versions are going to be referred as S-Mdp and S-Bddpa.

Definition. Let P∗(S) be the the set of paths assigned to labels at node t at the
end of the S-ESPPRC algorithm for a given set S and let p∗S be a path in P∗(S)

that minimizes path cost C(p).

In case there are more than one minimal cost path then an arbitrary choice can
be made. The following. For the algorithm to be deterministic the sub-procedure
terminates as the first path is found. The general scheme is described in algorithm
(4.6).

Algorithm 4.6 General state space augmenting algorithm (GSSAA) for S-
ESPPRC
1: procedure Gssa
2: //Initialization//
3: S := ∅
4: Use S-mdp(S) to get P∗(S) and s∗P
5: while s∗P is not elementary do
6: Update(S,S ∗(S))
7: Use S-mdp(S) to get P∗(S) and s∗P
8: return s∗P

27

Instead of using S-Mdp, Gssa can also use the bidirectional (S-Bddpa) ver-
sion of the label setting algorithm. There are several strategies to write the Up-

date(S,P∗(S)) function. Note that all strategies include choosing based on in-
formation obtained from P∗(S).

1. HMO (Highest multiplicity on the optimal path - one node)

In this approach p∗S is chosen from P∗(S) and node i is selected that max-
imizes Mp∗S

(i). If there are multiple nodes with the same multiplicity, the
algorithm chooses the first one along p. The Update(S,P∗(S)) procedure
just sets S := S ∪ {i}.

2. HMO-All (Highest multiplicity on the optimal path - all nodes)

This algorithm uses p∗S just as the algorithm above but now all nodes max-
imizing Mp∗S

are added to the updated set. Formally S ′ := {∀j ∈ V :

Mp∗S
(j) ≥Mp∗S

(i), ∀i ∈ V } and Update(S,P∗(S)) sets S := S ∪ S ′.

3. MO-All (Multiplicity more than one on the optimal path)

This algorithm also uses p∗S but S ′ contains all nodes that have a multiplicity
more than one. Formally S ′ := {∀i ∈ V : Mp∗S

(i) > 1 and the Update

function is defined as S := S ∪ S ′.

4. M-All (Multiplicity more than one on one of the paths)

This approach uses a random path p ∈ P∗(S) instead of p∗S. S ′ is defined
as S ′ := {∀j ∈ V : Mp(j) ≥Mp(i), ∀i ∈ V } and Update is S := S ∪ S ′.

5. All (no relaxation)

This is the previous label setting formulation that leads to the ESPPRC
with S initialized as S := V . There is no augmenting of S since there is only
one iteration of the algorithm.

In each algorithm the size of S is strictly increasing with each iteration. HMO
has the slowest growth as there is only one node being added and M-All has the
fastest pace. For comparison, the original label setting algorithm was also tested
by [Boland et al., 2006]. Numerical experiments showed that HMO performed
best in both time and memory usage the non-relaxed algorithm had the worst
performance.

28

Chapter 5

Heuristics

When tackling an optimization problem, a good "starting" solution can signifi-
cantly improve expected running-time. To find a good feasible solution, heuristics
can be applied. Heuristics are usually based on intuition and do not have a strong
mathematical background.

As defined in 3 The goal of VRP is to find S∗ ⊂ P that is sufficient and
feasible, for which

C(S∗) ≤ C(S ′)

for all sufficient and feasible sets S ′ ⊆P, where

C(S ′) :=
∑
p∈S′

cp

. Heuristic algorithms search for Ŝ that are sufficient and feasible and

C(Ŝ) ≤ αC(S∗)

where α ≥ 1 is called the approximation-ratio if it holds for all inputs. The set Ŝ
is not required to be optimal, but one needs to be able to calculate it relatively
fast. For many algorithms α(N) is a function of N that depends on the input
size and it is not a constant like in simpler examples. Heuristics often find local
optima, that are not guaranteed to be optimal but are than other configurations
in their "neighbourhood".

In this section, two heuristic approaches are given. The first is a greedy al-
gorithm, which is a simplified version of the mono-directional label setting algo-
rithm discussed in 4.1. The second algorithm is the Savings algorithm by Clarke
and Wright, a heuristic that gained popularity in the 1960s as one of the first
techniques to build up answer to the problem systematically.

29

5.1 A greedy approach

A greedy algorithm chooses its direction based on properties that are locally opti-
mal. Greedy algorithms provide an optimal solution on matroids but for VRP it is
easy to construct counterexamples for which greedy algorithms provide a solutions
that are far off from optimality. In algorithm 5.1, a simple example is given for a
greedy approach.

Algorithm 5.1 Greedy path construction
1: //Initialization//
2: Vvisited := {s}
3: Vunvisited := V \ {s, t}
4: Ctotal = 0
5: v := s
6: //Search//
7: while Vunvisited ̸= ∅ do
8: S := Feasible(δ−(v) ∩ Vunvisited)
9: if S = ∅ then

10: if v = s then
11: return Unfeasible.
12: else
13: Ctotal := Ctotal + cvt
14: v := s
15: else
16: w := Argmin{cvj|j ∈ S}
17: Ctotal := Ctotal + cvw
18: lw := Extend(lv, w)
19: Vvisited := Vvisited ∪ {w}
20: Vunvisited := Vunvisited \ {w}
21: v := w
22: return Ctotal

The function Feasible(A) selects feasible nodes from set A. A node j ∈ V

following i ∈ V is feasible if

ti + si + Tij ≤ bj (5.1.1)

ti + si + Tij + sj + Tjt ≤ bt (5.1.2)

q + qj ≤ Q (5.1.3)

5.2 Clarke and Wright’s Savings algorithm

The following algorithm as a heuristic for the CVRP was first proposed by [Clarke
and Wright, 1964]. This is a slightly modified version of it for directed graphs.
Nodes are denoted by Pi using the original notation of Clarke and Wright. Let P

30

be a path containing node Pi and let Pi−1, Pi+1 be nodes preceding and succeeding
Pi on path P .

1. Initialize paths P i := (P0, Pi, P0) of length 2 for all nodes. After initialization
every point is on exactly one path.

2. In every iteration the paths for each pair (Pi,Pj) can be written as

P i := (P0, ..., Pi−1, Pi, Pi+1, ..., P0)

P j := (P0, ..., Pj−1, Pj, Pj+1, ..., P0)

Since these paths directed, let us consider the following concatenations of
Pi and Pj.

(a) In this case the P i is redirected at Pi into Pj and cut off parts are
reconnected with each other.

P 1 := (P0, ..., Pi−1, Pi, Pj, Pj+1, ..., P0)

P 2 := (P0, ..., Pj−1, Pi+1, ..., P0)

(b) This version is the interchanged version of (a).

P 1 := (P0, ..., Pj−1, Pj, Pi, Pi+1, ..., P0)

P 2 := (P0, ..., Pi−1, Pj+1, ..., P0)

(c) The next case is similar to (a) but cut off parts are rerouted into the
depot.

P 1 := (P0, ..., Pi−1, Pi, Pj, Pj+1, ..., P0)

P 2 := (P0, ..., Pj−1, P0)

P 3 := (P0, Pi+1, ..., P0)

(d) This is similar to (b) but cut off parts are rerouted similar to (c).

P 1 := (P0, ..., Pj−1, Pj, Pi, Pi+1, ..., P0)

P 2 := (P0, ..., Pi−1, P0)

P 3 := (P0, Pj+1, ..., P0)

If Pi and Pj are on the same path, only (c) and (d) are possible choices.

31

3. Let sij denote the maximal savings between Pi and Pj that is the maximum
of the following values.

s
(a)
ij := c(Pi, Pi+1) + c(Pj−1, Pj)− c(Pi, Pj)− c(Pj−1, Pi+1)

s
(b)
ij := c(Pj, Pj+1) + c(Pi−1, Pi)− c(Pj, Pi)− c(Pi−1, Pj+1)

s
(c)
ij := c(Pi, Pi+1) + c(Pj−1, Pj)− c(Pi, Pj)− c(Pj−1, P0)− c(P0, Pi+1)

s
(d)
ij := c(Pj, Pj+1) + c(Pi−1, Pi)− c(Pj, Pi)− c(Pj−1, P0)− c(P0, Pi+1)

4. In each round calculate the sij savings from (a) to (d) for all pairs (Pi, Pj)

and save the maximal feasible savings for each pair. A saving is feasible if
the concatenated path is feasible.

5. Reduce total cost by concatenating Pi and Pj for (i, j) that maximizes sij.
If max sij ≤ 0 return the current set of paths.

32

Chapter 6

Summary

In my thesis I reviewed parts of the theory of solving the Vehicle Routing Problem
with Time Windows. The main idea of my thesis was to formulate VRP as a set
covering problem that can be solved with branch and price.

As part of branch and price, a new sub-problem of identifying columns that
violate dual constraints arose. The dual subproblem was formulated as an Ele-
mentary Shortest Path Problem with Resource Constraints, for which I presented
three dynamic programming algorithms. Each algorithm uses the idea of sending
labels to neighbouring vertices iteratively. Labels contain information about their
assigned route, such as accumulated load, route length and route duration. As
there are an exponential number of labels generated, a restriction of unnecessary
label generation is a must. To restrict the generation of labels and reducing time
and space complexity, two more advanced algorithms are introduced. The first
algorithm takes a bidirectional approach, and the second algorithm relaxes the
elementary condition of the ESPPRC and augments its state space only requiring
necessary node resources.

Last but not least I examined two heuristics to solve VRP with less compu-
tation power. Heuristics do not provide an optimal solution but sometimes these
algorithms are good enough for one’s purposes or can be used as a starting point
for BNP. There are many heuristics and metaheuristics that provided a closer-
to-optimal solution that are not part of my thesis but could be useful in future
work.

In the future I would like to build up a general VRP model using Python,
since up until now I only implemented part of the heuristics, and label setting
algorithms mentioned in the thesis. Python-MIP seems to be a great library to
start with as it supports open-source and state-of-the-art commercial solvers such
as COIN-OR1 and Gurobi2. From a mathematical perpective I want to explore

1COIN-OR Linear Programming Solver - CLP (https://github.com/coin-or/Clp)
2GUROBI - (https://www.gurobi.com/)

33

https://github.com/coin-or/Clp
https://www.gurobi.com/

valid inequalities and more advanced heuristics, that can help creating an algo-
rithm that can efficiently operate with inputs of real world scale. As part three I
would like to create graphical user interface (GUI), to make it into a user friendly
application for others to experiment with.

34

Chapter 7

Bibliography

[Adulyasak and Jaillet, 2016] Adulyasak, Y. and Jaillet, P. (2016). Models and
algorithms for stochastic and robust vehicle routing with deadlines. Transporta-
tion Science, 50(2):608–626.

[Archetti and Speranza, 2012] Archetti, C. and Speranza, M. G. (2012). Vehicle
routing problems with split deliveries. International Transactions in Opera-
tional Research, 19(1-2):3–22.

[Boland et al., 2006] Boland, N., Dethridge, J., and Dumitrescu, I. (2006). Accel-
erated label setting algorithms for the elementary resource constrained shortest
path problem. Operations Research Letters, 34:58–68.

[Borgwardt, 1987] Borgwardt, K. H. (1987). The Polynomiality of the Expected
Number of Steps, pages 142–186. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Christofides, 1976] Christofides, N. (1976). Worst-case analysis of a new heuristic
for the travelling salesman problem. Operations Research Forum, 3.

[Clarke and Wright, 1964] Clarke, G. and Wright, J. W. (1964). Scheduling of ve-
hicles from a central depot to a number of delivery points. Operations Research,
12(4):568–581.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, page 151–158, New York, NY, USA. Association for Computing
Machinery.

[Dantzig and Ramser, 1959] Dantzig, G. B. and Ramser, J. H. (1959). The truck
dispatching problem. Management Science, 6(1):80–91.

35

[Dellaert et al., 2021] Dellaert, N., Van Woensel, T., Crainic, T. G., and Dashty
Saridarq, F. (2021). A multi-commodity two-echelon capacitated vehicle rout-
ing problem with time windows: Model formulations and solution approach.
Computers Operations Research, 127:105154.

[Desrochers et al., 1992] Desrochers, M., Desrosiers, J., and Solomon, M. (1992).
A new optimization algorithm for the vehicle routing problem with time win-
dows. Operations Research, 40(2):342–354.

[Feillet et al., 2004] Feillet, D., DEJAX, P., Gendreau, M., and Gueguen, C.
(2004). An exact algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing problems. Networks,
44:216–229.

[Guo and Wang, 2023] Guo, Q. and Wang, N. (2023). The vehicle routing problem
with simultaneous pickup and delivery considering the total number of collected
goods. Mathematics, 11(2).

[Karmarkar, 1984] Karmarkar, N. (1984). A new polynomial-time algorithm for
linear programming. In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, STOC ’84, page 302–311, New York, NY, USA. As-
sociation for Computing Machinery.

[Karp, 1972] Karp, R. (1972). Reducibility among combinatorial problems. vol-
ume 40, pages 85–103.

[Kohl, 1995] Kohl, N. (1995). Exact methods for time constrained routing and
related scheduling problems. PhD thesis.

[Levin, 1973] Levin, L. A. (1973). Universal sequential search problems. Probl.
Peredachi Inf., 9(3):265–266.

[Lozano et al., 2016] Lozano, L., Duque, D., and Medaglia, A. L. (2016). An exact
algorithm for the elementary shortest path problem with resource constraints.
Transportation Science, 50(1):348–357.

[Michelini, 2019] Michelini, S. (2019). A comparative study of labeling algorithms
within the branch-and-price framework for vehicle routing with time windows.

[Mirabi et al., 2016] Mirabi, M., Shokri, N., and Sadeghieh, A. (2016). Modeling
and solving the multi-depot vehicle routing problem with time window by con-
sidering the flexible end depot in each route. International Journal of Supply
and Operations Management, 3(3):1373–1390.

36

[Righini and Salani, 2006] Righini, G. and Salani, M. (2006). Symmetry helps:
Bounded bi-directional dynamic programming for the elementary shortest path
problem with resource constraints. Discrete Optimization, 3(3):255–273. Graphs
and Combinatorial Optimization.

[Santos et al., 2019] Santos, M., Amorim, P., Marques, A., Carvalho, A., and
Barbosa-Povoa, A. (2019). The vehicle routing problem with backhauls to-
wards a sustainability perspective: a review. TOP, 28.

[Toth and Vigo, 2002] Toth, P. and Vigo, D. (2002). Models, relaxations and
exact approaches for the capacitated vehicle routing problem. Discrete Applied
Mathematics, 123(1):487–512.

37

