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1 Introduction

A lot of research has been done on the question of whether a triangle or a
quadrilateral of a given shape can be inscribed in a Jordan curve.

One of the most famous problems in this field is Toeplitz’ conjecture[1] which
we will call the inscribed square problem. It states that every Jordan curve
contains the four vertices of a square and was proposed by Otto Toeplitz in
1911. Since then numerous methods have been used to tackle the problem,
but the general case remains unsolved.

The aim of this thesis is to review the literature on the inscribed square prob-
lem as well as variants regarding other quadrilaterals and triangles, showcas-
ing various different ways of approaching such problems.

We start the thesis by inspecting equilateral triangles. We showcase some
exemplary and easy-to-understand proofs, which serve as a motivation for
our next section on triangles with arbitrary side lengths. The inscribability
of triangles was not as historically well-discussed as the inscribed square
problem, or inscribed quadrilaterals in general. Because of this, most of the
results we discuss come from M. D. Meyerson [2] and M J. Nielsen [3]. We end
our discussion on triangles with some discussion on higher-dimensional curves
and showcase a fairly new result by A. Gupta and S. Rubinstein-Salzedo [4].

The second part of the thesis discusses quadrilaterals. We again start with
special classes of curves, for which, as the results of V. Klee, M. Wagon [5]
and M. J. Nielsen and S. E. Wright [6] showcase, an even stronger version of
the inscribe square conjecture holds. We then take a look at generalizations
of the conjecture to rectangles and rhombi. H. Vaughan showcased a solution
to the rectangular variant in a lecture, which was later summarized by M.
D. Meyerson [7]. The question of whether every Jordan curve inscribes a
rhombus was answered by M. J. Nielsen [6] based on the polygonal version of
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the mountain climbing theorem, first stated by T. Homma [8]. Nielsen also
presented some remarkable statements about inscribed rhombi, based on the
works of A. Emch [9] [10].

Finally, we take a look at the inscribed square problem itself. Although the
general problem is still unsolved, it was shown to be true for C2 curves by
L. G. Schnirelmann [11], for analytic curves by A. Emch [9] and for locally
monotone curves by W. Stromquist [12].

Most of the proofs mentioned in the thesis have their foundation in topology,
such as proving intersection by the Jordan curve theorem. However, the
research conducted by Terrence Tao [13] indicates that a complete proof of
the inscribed square problem might require a combination of different, more
advanced techniques. Nevertheless, the problem and its variants are still
actively researched and the prevailing belief is that the conjecture will likely
be solved in the foreseeable future.
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2 Preliminaries and notation

As the thesis revolves around polygons inscribed in Jordan curves, we need
to clarify what we mean by inscribed and Jordan curve.

Definition 2.1 (Jordan curve). A Jordan curve is a simple closed curve in
the plane, or more formally, the image of an injective continuous map of a
circle into the plane.

Alternatively:

Definition 2.2 ((parametrized) Jordan curve). A (parametrized) Jordan
curve is the image of a continuous map φ : [0, 1] → R2 such that φ[0] = φ[1]

and φ is injective on [0, 1).

The former is usually denoted as J , while the latter is denoted as φ(t).
Although Jordan curves are only defined in the plane, for sake of clarity we
will refer to planar simple closed curves as planar Jordan curves and use the
term simple closed curve in higher dimensions.

Most of the proofs in the thesis heavily rely on the Jordan Curve theorem:

Theorem 2.3 (Jordan curve theorem). Let J be a Jordan curve. Then
R2−J consists of two components. One of these components is bounded and
the other is unbounded, and the curve J is the boundary of each component.

The Jordan curve theorem is our most powerful tool for proving inscribabil-
ity. Unfortunately, it cannot be used when working with higher dimensional
curves, as it is not true that a smooth curve in Rn divides the space into two
components.

Theorems from analysis often require compactness. We will denote the clo-
sure of a set X as cl(X).
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We will refer to the bounded connected component of the complement of
a Jordan curve as the interior of J , denoted as In(J), and refer to the
unbounded component as the exterior of J , denoted as Ex(J). These are not
to be confused with int(J) and ext(J), the topological interior and exterior
of J .

Figure 2.1

Definition 2.4. We say that the polygon P is inscribed in the Jordan curve
J if J contains all vertices of P .

Figure 2.2: The square S inscribed in J

As we can see, a polygon does not have to lie inside the curve to be inscribed
in J . It can cross J infinitely many times as long as its vertices remain on J .

Several problems discussed in the thesis mention some condition of smooth-
ness. We say that a curve is smooth if it has a regular parametrization of
class C1.
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3 Equilateral triangles

Theorem 3.1. Let J be a simple closed curve in the plane. Then J contains
the vertices of an equilateral triangle.

Proof. Let c be a point in the interior of J . Let C be the circle with the
smallest radius that has center c and meets J at some point x. Let y and z

be points on C such that △xyz is an equilateral triangle.

Let y and z move away from x until y or z meets J (without loss of generality,
we can assume y is on J at this point).

Now let y move continuously on J until the distance between x and y is
maximal, while letting z move in a way that keeps △xyz equilateral. This
way the curve described by z is a 60◦ rotation of the curve described by y,
meaning it is also a continuous simple arc. Equality xy = xz means that at
the end z is either on J or outside J , while at the beginning z lies inside J ,
thus, at some moment x, y and z are the vertices of an equilateral triangle
inscribed in J .

Although the proof is more complicated, A. N. Milgram [14] showed that
the result of Meyerson’s theorem holds even if J does not lie in the plane,
but is embedded in an n-dimensional metric space instead, where △xyz is
equilateral if and only if d(x, y) = d(y, z) = d(z, x).

3.1 Triods

Definition 3.2 (Triod). A triod T is the union of three arcs, L1, L2, L3,
which all share a common endpoint.

We will refer to the common endpoint as the juncture of T . L1, L2, L3 are
also called the legs of T and any two of the legs only meet at the juncture
(L1 ∩ L2 ∩ L3 = z). The other three endpoints of the legs: e1, e2, e3 are
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referred to as the endpoints of T . A triod can also be thought of as any
homeomorphic image of the letter “Y”.

Figure 3.1

Theorem 3.3. Every triod T in the plane contains the vertices of an equi-
lateral triangle with e1, e2 or e3 as a vertex.

Meyerson’s proof of this theorem is rooted in complex geometry, however,
Richard E. Schwarz [15] gave a proof that is simpler and more elegant. We
start by taking a look at polygonal triods (a triod is polygonal if it is a finite
union of line segments).

Lemma 3.4. Every polygonal triod contains the vertices of an equilateral
triangle with e1, e2 or e3 as a vertex.

Proof. The proof is by contradiction. Assume triod T does not satisfy the
Lemma. Let A be the union of the legs with endpoints e1 and e2. For any
x ∈ T define Ax as A rotated 60◦ about x. First, we take a look at the case
x ∈ T − ∂A. We then have A ∩ ∂Ax = ∂A ∩ Ax = ∅, otherwise the point
of intersection, its inverse image and the point x would form an equilateral
triangle. From this we can conclude that the number of intersections between
A and Ax is constant mod 2.

The same reasoning follows for A∩Ae1 , meaning we can assume A intersects
Ae1 only at e1. By compactness A intersects Ax only at x if x ∈ T is
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sufficiently close to e1. But then the number of intersections is odd for every
x ∈ T −∂A, meaning Ae3 ∩A ̸= ∅, therefore e3 is the vertex of an equilateral
triangle inscribed in T , which we assumed is false.

R. E. Schwarz showed that this proof can be extended to arbitrary triods by
first showing that it is true for triods that have line segments of length 1

n
at

their endpoints and then taking the limit as n → ∞.

Theorem 3.5. Every triod T has a leg Li, so that every point x ∈ Li − z is
a vertex of some equilateral triangle on T .

Proof. Suppose the theorem is false, thus all three legs have some point ai

that is not a vertex point (i = 1, 2, 3). Consider the triod T ′ ⊆ T with
endpoints a1, a2, a3. By Theorem 1.2, one of the endpoints is the vertex
point of some equilateral triangle in T ′ and by extension T . This contradicts
our assumption.
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3.2 Jordan curves

Theorem 3.6. Let J be a Jordan curve in the plane. Then at most two
points of J are not vertex points of some equilateral triangle on J .

Proof. Suppose there are three points x1, x2, x3 on J that are not vertex
points of some equilateral on J . Let T be any triod with endpoints x1, x2, x3

such that T ∈ J ∪ In(J):

Figure 3.2

By Theorem 1.4, we should have an endpoint xi, which is a vertex of some
equilateral triangle on T . From here we can use the method from Theorem 1.1
to get an equilateral on J with xi as a vertex, thus we have our contradiction.
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4 Arbitrary triangles

In this section, △abc will denote an arbitrary triangle with vertices a, b, c and
smallest angle θ. The next logical question to ask is whether the theorems
above apply to arbitrary triangles: Do planar Jordan curves have points that
form a triangle similar to △abc?

M. D. Meyerson [2] showed that most of the analysis generalizes well to
arbitrary triangles with minor changes.

Theorem 4.1 (Meyerson’s theorem). Let J be a planar Jordan curve. Then
J contains the vertices of a triangle similar to △abc.

Proof. Define the circle C as in Theorem 1.1. Let y and z be points on C

such that △xyz is similar to △abc, where the point x on J corresponding to
the maximal angle of △abc. Let y and z move outward from x until y or z

meets J (we can again assume that y is on J at this point).

Figure 4.1

Let p and q be maximally distant points on J . We first move x to p con-
tinuously, while keeping y in place and moving z in a way that keeps △xyz

similar to △abc. We then move y to q similarly, keeping x = p fixed.
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At this point, z must lie on or outside J , since x = p and y = q are maxi-
mally distant points on J and yz is the longest side of the triangle, thus the
argument from the proof of Theorem 1.1 follows.

Figure 4.2

4.1 Nielsen’s theorem

Although the proof is a lot more complex, Mark J. Nielsen [3] showed that a
much stronger version of Meyerson’s theorem is true.

Theorem 4.2 (Nielsen’s theorem). Let J be a planar Jordan curve. Let V
be the set of points on J that correspond to angle θ on a triangle similar to
△abc inscribed in J . Then V is dense in J .

Proof. Before we can prove the theorem, we shall introduce some notations.
Let δ ≥ 1 be the ratio of the sides of △abc that are adjacent to the angle θ.
Let φx : R2 → R2 be a family of similarity transformations (scaling rotations
about x) that are a composition of a rotation with angle θ about x and a
magnification by δ such that φx(x) = x for every x ∈ R2.

Assume x lies on J , then it is easily verified that for every y ∈ J − x :

△xyφx(y) is similar to △abc with the angle at x corresponding to angle θ.

We say that x ∈ J is a flat point of J if and only if there exists a bounding
pair (D,L), where D is a nontrivial disk and L is an open line segment such
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that x ∈ D ∩ L, D ⊂ cl(U) and L ∩ U = ∅, Where U is a component of
R2 − J and cl(U) is the closure of U .

Lemma 4.3. If x is a flat point of J then x ∈ V .

Proof. Assume x is a flat point of J . Let (D,L) be its bounding pair on J ,
thus (φx(D), φx(L)) is a bounding pair of x on φx(J). Let S be a square
with one side on φx(L), such that S meets the interior of φx(D), one side of
S is in φx(L) with x being the midpoint of this side, and S is small enough,
that S −φx(D) has two components: one inside J and the other outside J .

Figure 4.3

We can see that φx(J) meets both components of S − φx(D), meaning it
meets both the inside and outside of J , thus it intersects J at some point
y ̸= x. But then △xφ−1

x (y)y is a triangle inscribed in J similar to △abc,
with angle θ at x, so by definition x ∈ V .
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For our second lemma, we will define the set of accessible points:
Let A = {x ∈ J : there is a nontrivial disk D in cl(In(J)), such that x ∈
D∩ J}. Here In(J) denotes the interior of J , similarly Ex(J) will denote the
exterior of J .

Lemma 4.4. A is dense in J .

Proof. Let D be an arbitrarily small open disk with center x ∈ J . Let D′ be
a closed disk such that D′ ⊂ In(J)∩D. Move D′ toward x in a straight line
until it meets J at some point y. Then by definition y ∈ A, meaning there
are points of A arbitrarily close to x. This is true for all x ∈ J , thus A is in
fact dense in J .

It is easy to see that if a point x is accessible, meaning we can place a disk
in cl(In(J)) meeting J at x, then we can do the same with triangles of any
shape. We will use this fact in our third lemma and the rest of the proof.

Lemma 4.5. Let [x, y] be a line segment in cl(In(J)) with x, y ∈ J and at
least one of which is in A. Then at least one of {x, y} is in V .

Proof. Assume x ∈ A. We then have three cases:

Case 1: φx(y) ∈ J .
In this case, we have △xφx(y)y similar to △abc inscribed in J .

Case 2: φx(y) ∈ In(J).
Let z be a point on J at maximal distance from x, then:

∥φx(z)− x∥ = δ∥z − x∥ ≥ ∥z − x∥

Because of this, φx(z) must lie on the exterior of J , but φx(y) ∈ In(J).
In this case, there exists an arc of φx(J) from φx(y) to φx(z) that
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intersects J at some point y′ other than x. But then, similar to Lemma
3.3, we have △xφ−1

x (y′)y′ inscribed in J similar to △abc, with angle θ

at x. This implies x ∈ V .

Case 3: φx(y) ∈ Ex(J).
We will assume y ̸∈ V , and show that this implies x ∈ V . Similar to
case 2, φy(J) intersects Ex(J), thus φy(cl(In(J)))∩ Ex(J) ̸= ∅. But by
the assumption y ̸∈ V we know that the set φy(J)− y cannot intersect
J , meaning it lies entirely in Ex(J) and J − y lies in Ex(φy(J)).

Consider the similar triangles T1 = △yxφy(x) and T2 = △xyφx(y).
We have [x, y] ⊂ cl(In(J)) and [φy(x), y) = φy[x, y) ⊂ Ex(J) meaning
these two segments are separated in T1 by J . But J does not cross
these segments, so there must be an arc R ⊂ T1 of J joining y to a
point on [x, φy(x)].
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We now apply φx to T1. Note that the angle of φx(T1) at φx(y) is not
greater than the angle of T2 at φx(y), since it is equal to θ, the smallest
angle of the triangle.

Figure 4.4

Note that ∥φx(φy(x))− φx(y)∥ = δ2∥x− y∥ ≥ ∥x− y∥. From this we
can conclude that the side [φx(φy(x)), φx(y)] of φx(T1) intersects [x, y].

Our assumption was φx(y) ∈ Ex(J), meaning J must separate [x, y]
and φx(y) in T2. But as seen on figure 4.4, some subarc of φx(R) ∩ T2

connects [x, y] and φx(y), implying J ∩ φx(R) ∩ T2 ̸= ∅.

By the assumption x ∈ A it can easily be shown that J ∩ φx(R) ∩ T2

cannot be the singleton set x, meaning J ∩φx(J) contains a point other
than x, thus for the same reason as in case 2, this implies x ∈ V .
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We can now prove the theorem, by showing that any arbitrary open set N

that intersects J also intersects V . Since J is locally connected, we can as-
sume N ∩ J is also connected. Let D be a closed disk in N , with its interior
intersecting J . Let H = D ∩ cl(Ex(J)). We now have two cases:

Case 1: H is convex.
If H is convex, then a portion of its boundary is an arc of J , meaning
it would contain flat points of J , which by Lemma 3.3 are in V , thus
we have N ∩ V ̸= ∅.

Case 2: H is not convex.
If H is not convex, then there are points z1, z2 ∈ H such that [z1, z2]

intersects In(J). Let x1, x2 be points in [z1, z2] ∩ J such that the line
segment (x1, x2) is in the interior of J . Let R ⊂ N be an arc of J from
x1 to x2 (such arc exists by the assumption that N ∩ J is connected).
We now have the Jordan curve J ′ = R ∪ [x1, x2] with In(J ′) ⊂ In(J).
Let B ∈ In(J ′) be a closed nontrivial disk. Move B parallel to [x1, x2]

in one direction until it meets R at some point a. Note that a ∈ A by
definition. Now move B parallel to [x1, x2] in the other direction, until
the point corresponding to a meets J at some point b. We now have a
line segment [a, b] ∈ cl(In(J ′)) ⊂ cl(In(J)), with a ∈ A, so by Lemma
3.5 at least one of a and b is in V , meaning N ∩ V ̸= ∅.

Nielsen noted that something like Theorem 3.6 is likely true for arbitrary
triangles. Proving this would strengthen the theorem considerably.
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5 Triangles inscribed in higher dimensional curves

At first look, one might hope that our results so far would generalize well
to simple closed curves embedded in n-dimensional Euclidean spaces. This
is not the case though, since most of our proofs so far rely heavily on the
Jordan curve theorem, which we cannot utilize here, as it is not true that
a simple closed curve divides the space into two components. This makes
achieving meaningful results considerably harder, and in many instances, it
can only be accomplished for special classes of curves.

5.1 Some notes on triods

Recall our main result from section 3.1:

Every triod T has a leg Li, so that every point x ∈ Li − z is a vertex of
some equilateral triangle on T .

The proof of this theorem does not use the Jordan curve theorem, nor does
it rely at all on the triod lying in the plane, meaning it is true for triods
in higher dimensional Euclidean spaces. Despite this, the theorem does not
seem to be useful when it comes to simple closed curves. It does however
give us a somewhat trivial but interesting result when it comes to higher
dimensional manifolds.[2]

Theorem 5.1. Let M be a connected k-manifold embedded in n-dimensional
Euclidean space. If 2 ≤ k < n then at most two points of M are not the
vertices of some equilateral triangle inscribed in M .

Proof. Assume x1, x2, x3 ∈ M are not vertices of some equilateral triangle
inscribed in M . Since M is a connected k-manifold with k ≥ 2, it is easy to
show that there exists some triod T ⊂ M with endpoints x1, x2, x3. But our
main theorem on triods implies that one of the endpoints has to be a vertex
point, thus we have our contradiction.
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5.2 Triangles in Rn

All of our previous discussions have centered around findings from the 20th
century. However, in this section, we will look at a fairly recent result from
2021 by A. Gupta and S. Rubinstein-Salzedo [16].

Let γ : [0, 1] → Rn be a parametrization of the simple closed curve J .

The functions

F x
δ (y, z) : (x, x+ δ)× (x, x+ δ) → [0,∞)

and
Gx

δ (y, z) : (x− δ, x)× (x, x+ δ) → [0,∞)

will denote the functions that measure the angles between γ(x)γ(y) and
γ(x)γ(z) respectively.

△abc will denote an arbitrary triangle with vertices a, b, c and angles θ1 ≤
θ2 ≤ θ3.

Theorem 5.2. If lim sup
δ→0+

F x
δ < θi < lim inf

δ→0+
Gx

δ for some i ∈ {1, 2, 3} and

x ∈ (0, 1) then γ(x) is a vertex of some triangle similar to △abc inscribed in
J with angle θi at γ(x).

Although the proof of this theorem is not within the realm of this thesis,
assuming smoothness greatly simplifies the proof while still retaining the
fundamental concepts.

Theorem 5.3. Let J be a smooth simple closed curve in Rn. Then every
point of J is the vertex of a triangle similar to △abc.

Proof. We define T (x, y) as the set of points z for which △xyz is similar to
△abc with angles at x, y, z corresponding to angles at a, b, c respectively.
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Figure 5.1: T (x, y) in R3

With x = γ(s), for every t ∈ [0, 1] we will define the scaled isometry It that
maps T (γ(s), γ(t)) to the (n− 2)-sphere S = {z ∈ Rn−1 : ∥z∥ = 1}.

To prove the theorem we need to show that for any x ∈ J there exists a point
y ∈ J − x such that T (x, y) ∩ J ̸= ∅. Equivalently, for any s ∈ [0, 1] there
exists t ∈ [0, 1]− s such that It(γ) ∩ S ̸= ∅.

Lemma 5.4. Assume there is a point γ(s) for which no such t exists, then
for any t1, t2 ∈ [0, 1]− s we have It1(γ) ≃ It2(γ) in Rn − S.

Proof. This can be verified with the homotopy Ht1,t2(·, T ) = I(1−T )t2+(T )t1(γ).

We now assume there exists some s ∈ [0, 1) that satisfies the conditions of
lemma 5.4. We choose t1 such that ∥γ(t1)− γ(s)∥ is maximal. Then It2(γ) is
homotopic in Rn−S to the constant path at γ(s) by straight-line homotopy.

Since J is smooth, there exists some δ > 0 such that |Rn−1 ∩ Is+δ(γ)| ≥ 2,
but the only point in int(S)∩Is+δ(γ) is Is+δ(γ(s + δ)), where int(S) is the
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interior of S when taking Rn−1 as its ambient space. This means there are
parts of Is+δ(γ) in both the interior and the exterior of S, thus Is+δ(γ) is not
homotopic in Rn − S to the constant path at γ(s), meaning Is+δ(γ) ̸≃ It1(γ)

in Rn − S. This contradicts Lemma 5.4.
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6 Quadrilaterals

While the inscribed square problem in its general form remains unsolved,
there are certain special cases that can be solved with relative ease. In this
section, we will explore these particular cases.

6.1 Symmetric curves

V. Klee and M. Wagon [5] showed that if a Jordan curve is symmetric about
a point, then it inscribes rectangles of all types.

Here Q will denote an arbitrary rectangle with θ denoting the greater angle
between the diagonals.

Theorem 6.1. Let J be a Jordan curve in the plane that is symmetric about
a point z. Then J contains the vertices of some rectangle similar to Q.

Proof. We can assume z is the origin. Let x be a point closest to 0. Let L be
the line segment [w,−w] that separates J into two arcs: A and A′. Consider
the Jordan curve J ′ = A ∪ L. Let φ be a rotation about the origin with
angle ϑ. Since L and φ(L) only meet at the origin, the Jordan curves J ′ and
φ(J ′) must intersect at some other point y ∈ A ∩ φ(A) and so we have our
rectangle with vertices {y, φ−1(y),−y, φ−1(−y)} ∈ J .

M. J. Nielsen and S. E. Wright showed that a similar argument applies to
Jordan curves with line symmetry. [6]

Theorem 6.2. Let J be a Jordan curve in the plane that is symmetric
through a line. Let Q be any rectangle. Then J contains the vertices of
some rectangle similar to Q.

Proof. Without loss of generality, we can make the assumption that J is
symmetric through the x-axis, intersecting it at (−1, 0) and (1, 0). Then
(x, y) ∈ J implies π(x, y) = (x,−y) ∈ J . The origin lies in the inside of J , so
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there is a rectangle similar to Q with vertices {(−a, 0), (a, 0), (−a, b), (a, b)}.
Let L be the line containing (−a, b) and (a, b), then L intersects J at two
points: p1 = (x1, b) and p2 = (x2, b). Assume x1 < 0 and x2 > 0. Let V be
the union of the line segments connecting the origin to p1 and p2. Let J ′ be
the Jordan curve consisting of V and the arc A of J from p1 to p2. Let φ be
the homeomorphism defined by φ(x, y) = (x+y(2a

b
), y). It is easy to see that

V and φ(V ) only meet at the origin, thus by the Jordan curve theorem J ′

must meet φ(J ′) at some point z ∈ φ(A). The nature of φ is such that the
rectangle with vertices {z, φ−1(z), π(z), π(φ−1(z))} ⊂ J is similar to Q.

6.2 Inscribed rectangles

The most natural way to relax the inscribed square problem is to ask whether
every Jordan curve inscribes a rectangle. H. Vaughan proved this to be true
in his lecture Rectangles and simple closed curves which M. D. Meyerson [7]
later summarized.

Theorem 6.3. Let J be a Jordan curve in the plane. Then J contains the
vertices of a rectangle.

Proof. In order to prove the theorem, we will prove that there exist two
distinct pairs of points on J which are the same distance apart from each
other pairwise and their midpoint (which corresponds to the midpoint of the
rectangle) is the same.

Notice that since J is topologically equivalent to a circle, the set of pairs of
points on our curve: J × J is topologically equivalent to a torus. To not
allow degenerate rectangles, we must associate pairs (x, y) ∈ J × J with
(y, x). With some topological arguing, we can see that the surface S we get
is a Möbius strip.
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Figure 6.1

We now define the function f : S → R3 which maps each pair of points on
J above the midpoint of the two points with the z-coordinate equal to the
distance between them. Notice that f is continuous and for all x ∈ J we
have f(x, x) = x.

Assume f is an injection. This means that f(S) is a Möbius strip in the
half-space x ≥ 0 and meets the plane x = 0 at its boundary. f(S)∪In(J) is
then the topological equivalent of the projective plane RP 2 embedded in R3,
which is a contradiction, thus there must be two distinct pairs of points on
J that map to the same point.

Unfortunately, the same cannot be said about simple closed curves in higher
dimensional curves, since as Meyerson noted, it can easily be shown that
there are simple closed curves in R3 that do not have an inscribed rectangle.

Figure 6.2: J does not contain the vertices of a rectangle
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6.3 Inscribed rhombi

Our next question is whether every Jordan curve inscribes a rhombus. M. J.
Nielsen [17] showed this to be the case using the well-known theorem known
as the mountain climbing problem, first proved by T. Homma [8], which
states that two climbers can scale a two-dimensional mountain starting at
opposite sides while always staying at the same height.

For the sake of our theorem, it is sufficient to consider the piecewise linear
version of the problem.

Theorem 6.4 (Polygonal mountain climbing problem [18]). Let f, g : [0, 1] →
[0, 1] be piecewise linear continuous functions with f(0) = g(0) = 0 and
f(1) = g(1) = 1. Then there exist piecewise linear continuous functions
r, s : [0, 1] → [0, 1] with r(0) = s(0) = 0 and r(1) = s(1) = 1 such that
f ◦ r = g ◦ s.

This powerful tool gives us a much stronger result compared to what our
original question proposes:

Theorem 6.5. Let J be a polygonal Jordan curve and L be any line in the
plane. Then J inscribes a rhombus with two sides parallel to L.

Proof. Without loss of generality, we can assume L is parallel to the x-axis
and zmin, zmax are points on J with minimal and maximal y-coordinates 0

and 1 respectively. Then zmin and zmax split J into two arcs: A1 and A2.
The theorem can be restated as follows:

There exists piecewise-linear continuous functions x1, x2, y : [0, 1] → R such
that (xi(0), y(0)) = zmin, (xi(1), y(1)) = zmax and (xi(t), y(t)) ∈ Ai for all
t ∈ [0, 1] and i ∈ {1, 2}.

Let γi(t) = (ui(t), vi(t)) be parametrizations of Ai from zmin to zmax for
i = 1, 2. Since v1 and v2 are piecewise linear and continuous, by theorem 6.4
there exists r, s : [0, 1] → R piecewise-linear continuous functions r, s with
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r(0) = s(0) = 0 and r(1) = s(1) = 1 such that v1 ◦ r = v2 ◦ s. And thus we
have our functions:

x1(t) = u1(r(t)),

x2(t) = u2(s(t)),

y(t) = v1(r(t)).

This essentially concludes our proof, although some explanation may be
needed.

Let δ(t) denote the distance between x1(t) and x2(t) and let t∗ ∈ (0, 1) be
such that δ(t∗) is maximal. Then δ(0) = δ(1) = 0 and since x1(t) and x2(t)

are continuous, δ is also continuous, thus for all d ∈ (0, δ(t∗)) there exists
0 < td1 < t∗ < td2 < 1 such that δ(td1) = δ(td2) = d. Let R(d) denote the
ratio between the sides of the parallelogram with vertices: {(x1(t

d
1), y(t

d
1)),

(x2(t
d
1), y(t

d
1)), (x1(t

d
2), y(t

d
2)), (x2(t

d
2), y(t

d
2))}. Note that R maps (0, δ(t∗)) to

(0,∞) continuously, thus for some d′ ∈ (0, δ(t∗)) we have R(d′) = 1. And so
we have our rhombus.

M. J. Nielsen showed that with some analysis it is possible to extend this re-
sult to arbitrary Jordan curves by approximating them with polygonal curves
and taking the limit. Additionally, he theorized that since the orientation of
the line L is arbitrary, there could be a way to use this degree of freedom to
find inscribed squares.

26



7 The inscribed square problem

In this section, we take a look at our main conjecture first formulated by O.
Toeplitz [1]:

Conjecture 7.1 (The inscribed square problem). Every planar Jordan curve
J contains the vertices of a square.

The problem has been proven for certain special classes of curves, however,
as of writing this thesis, the main conjecture remains unsolved.

Due to the technical nature of several proofs, this section shall serve as a
compilation of results regarding the square peg problem.

7.1 Convex curves

A. Emch was among the first to study the inscribed square problem and
solved it for convex curves. [9]

Theorem 7.2. Let J be a convex Jordan curve in the plane. Then J contains
the vertices of a square.

Although his proof preceded theorem 6.5 and the formulation of the mountain
climbing problem, he used a similar technique of examining an infinite family
of rhombi to show that at least one of them is a square inscribed in J .

He later examined relaxing the criteria of convexity and obtained the follow-
ing more general result [10]:

Theorem 7.3. Let J be a closed curve formed by a finite number of ana-
lytic arcs with a finite number of inflections and other singularities. Then J

contains the vertices of a square.
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7.2 Smooth curves

L. G. Schnirelmann proved the theorem to be true for C2 curves [11]:

Theorem 7.4. Let J be a C2-continuous closed curve. Then J contains the
vertices of a square.

W. Stromquist [12] strengthened this theorem considerably, showing that it
suffices that J is “locally monotone”:

Theorem 7.5. Let J be a Jordan curve on which every point x has a neigh-
borhood Nx and a direction dx such that no chord of J is contained in Nx

and parallel to dx. Then J contains the vertices of a square.

This covers C1 curves, convex curves and polygons, as they each satisfy the
above condition.

W. Stromquist also showed that theorem 7.5 can be extended to smooth
curves in Rn if we do not require the vertices to lie in the same plane.

Theorem 7.6. Let J be a smooth simple closed curve in Rn. Then J contains
the vertices of a quadrilateral with equal sides and equal diagonals.
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8 A different perspective on squares

Our last section is dedicated to Terrence Tao’s 2017 paper [13] on the in-
scribed square problem, in which he theorized that counting intersections
and other homological arguments (such as the ones explored in this thesis so
far) are not sufficient to solve the inscribed square problem. He did not man-
age to solve the conjecture, however, his work included various new results
and provided new ways of looking at the problem.

8.1 The periodic inscribed square problem

The main area of Tao’s interests were some periodic versions of the inscribed
square problem.

Conjecture 8.1 ((polygonal) periodic inscribed square problem). Let γ1, γ2
be two disjoint (piecewise linear) simple closed curves in the cylinder R/Z×R
which have a winding number of ±1. Then γ1 ∪ γ2 contains the vertices of a
square.

Here winding number of ±1 means the curves can travel back and forth
through periods as long as the difference between the number of travels in
each direction is 1.

Figure 8.1: an example of a periodic curve with winding number 1

Tao’s conjecture is open for both smooth and polygonal curves. However,
proving any version of it would not directly resolve the inscribed square
problem. Nevertheless, Tao did show however, that the inscribed square
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problem does imply the polygonal version of conjecture 8.1. He did this by
transforming γ1 ∪ γ2 into a Jordan curve γ in a way such that for any square
inscribed in γ, a corresponding square can be found inscribed in γ1 ∪ γ2.

This explains Tao’s interests, as finding a counterexample for the polygo-
nal version of conjecture 8.1 would disprove the inscribed square problem.
Tao noted that the chances of this happening are low, as he believes both
conjectures are likely to be true.

8.2 Finding squares via integration

We start by defining the set of (non-degenerate) squares in the plane by their
vertices.

Definition 8.2.

S=
{(

(x, y), (x+a, y+b), (x+a−b, y+a+b), (x−b, y+a)
)
∈(R2)4 : (a, b) ̸=(0, 0)

}
Using this notation we can see that a parametrized Jordan curve γ inscribes
a square if and only if γ4 ∩ S ̸= ∅.

In order to make the problem more analytically approachable, we define the
closure cl(S), which includes degenerate squares (with (a, b) = (0, 0)).

Tao’s approach was to approximate γ by a polygonal curve and then take
limits. This proved difficult in the general case, as the squares on polygonal
approximations of γ could shrink to a point when taking the limit. However,
under certain assumptions, it does solve some cases not covered by previous
results.

Theorem 8.3. Let γ be the union of two curves which are graphs of two
Lipschitz functions f, g : [t0, t1] → R that have Lipschitz constants less than
one. Then γ contains the vertices of a square.
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This case is not covered by the locally monotone theorem, as γ is not mono-
tone at the endpoints of γ1 and γ2.

Proof. Let γ1(t) = (x(t), y(t)) parametrize the graph of f . By methods
similar to those seen in theorem 3.1 we can show that for any point (x(t), y(t))
on γ1 there is a unique pair (a(t), b(t)) for which γ2(t) = (x(t) + a(t), y(t) +

b(t)) lies in the graph of f and γ4(t) = (x(t) − b(t), y(t) + a(t)) lies in the
graph of g.

We define the simple curve γ3(t) = (x(t) + a(t) − b(t), y(t) + a(t) + b(t)).
Notice that γ3 has the same endpoints as the other three curves. If for some
t∗ ∈ (t0, t1) the point γ3(t

∗) lies on the graph of g then we have our square:
(γ1(t

∗), γ2(t
∗), γ3(t

∗), γ4(t
∗)) ∈ γ4 ∩ S.

Figure 8.2

Assume no such t∗ exists. We now examine the following expression:∫
γ1

y dx−
∫
γ2

y dx+

∫
γ3

y dx−
∫
γ4

y dx

These integrals should be interpreted as Riemann–Stieltjes integrals:∫
γ1

y dx =

∫ t1

t0

y(t) dx(t)
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By using our parametrization, with some calculation almost everything can-
cels out and we can simplify our expression:∫

γ1

y dx−
∫
γ2

y dx+

∫
γ3

y dx−
∫
γ4

y dx =

=

∫ t1

t0

y(t) dx(t)−
∫ t1

t0

(y(t) + b(t)) (dx(t) + da(t))+

+

∫ t1

t0

(y(t)+a(t)+b(t)) (dx(t)+da(t)−db(t))−
∫ t1

t0

(y(t)+a(t)) (dx(t)−db(t)) =

=

∫ t1

t0

a(t) da(t)−
∫ t1

t0

b(t) db(t).

From the nature of the parametrization, we can conclude that a and b are
Lipschitz continuous, thus the fundamental theorem of calculus applies:∫ t1

t0

a(t) da(t)−
∫ t1

t0

b(t) db(t) =

(
1

2
a2(t1)−

1

2
a2(t0)

)
−
(
1

2
b2(t1)−

1

2
b2(t0)

)
.

It does not take much convincing to see that the square (γ1(t), γ2(t), γ3(t), γ4(t))
shrinks to a point near t0 and t1, thus a(t0) = b(t0) = a(t1) = b(t1) = 0 and
our expression must evaluate to zero.

Observe that γ1 and γ2 are different parametrizations of the same curve. This
means the first two terms of our four-term expression must be equal. We now
have: ∫

γ1

y dx−
∫
γ2

y dx+

∫
γ3

y dx−
∫
γ4

y dx = 0

and ∫
γ1

y dx−
∫
γ2

y dx =

∫ t1

t0

f(t) dt−
∫ t1

t0

f(t) dt = 0.
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By subtraction we get∫
γ3

y dx−
∫
γ4

y dx =

∫
γ3

y dx−
∫ t1

t0

g(t) dt = 0.

Since we assumed that γ3 does not cross the graph of g, by the Jordan curve
theorem the curve γ3 ∪ γ4 must enclose some non-empty bounded region Ω.
By Stokes’ theorem we have∫

Ω

y dx =

∫
γ3

y dx−
∫
γ4

y dx = 0,

meaning the area of Ω is 0, which is a contradiction.

Remark. The proof relies on γ3 being simple and the functions a, b being
Lipschitz continuous. Both of which can be proven with some analysis.

It is worth mentioning that the same method can be used to prove the pe-
riodic inscribed square problem in the case of γ1 and γ2 being graphs of
Lipschitz functions with Lipschitz constant less than one.
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