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Abstract

The aim of this thesis is to explore the notions of measure and Baire category in
different settings and to survey dualities between them. The main sources of this
work are John C. Oxtoby’s book Measure and Category, which focuses on the real
line, and Alexander S. Kechris’ book Classical Descriptive Set Theory. Although we
follow the structure of Oxtoby’s book, we present several results in a more general
setting.

We begin by introducing basic notions and theorems on Baire category and
measurability. We introduce sets that do not have the Baire property (BP) and are
non-measurable.

We study the following classical theorems from measure theory together with
their categorical duals: Lusin’s theorem, Egoroff’s theorem, Fubini’s theorem and
the Poincaré recurrence theorem. We present a generalised version of the Sierpiński–
Erdős duality theorem and the Duality Principle. We also introduce the density
topology in Rp, which is interesting on its own: in this topological space, a set is
Lebesgue measurable if and only if it has the BP.

In the last chapter, we build on the theory of infinite games and the density
topology to prove that in a Polish space every analytic set is universally measur-
able and has the BP.
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Chapter 1

Introduction

This thesis provides a glimpse into my studies in a few branches of mathematical
analysis. I am fortunate to have had the guidance and support of my supervi-
sor throughout the course of my work. He suggested two main topics that could
shape the trajectory of my thesis: the exploration of dualities between measure
theory and Baire category, and the study of descriptive set theory. While initially
separate, these two topics naturally converged as I read John C. Oxtoby’s book
Measure and Category [3] and learnt about descriptive set theory from my super-
visor.

In the second chapter, we lay the foundation by introducing some basic notions
and propositions from descriptive set theory, measure theory and Baire category,
most of which will reoccur frequently throughout this thesis. These include Polish
spaces and their completely metrisable subspaces, the regularity of finite Borel
measures on Polish spaces, Radon measures and their properties in Polish spaces,
the σ-ideal of meagre sets, the σ-algebra of sets that have the Baire property and
the Baire Category Theorem.

In the third chapter, we extend Oxtoby’s [3] investigations of measure theory
and Baire category from the real line with the Lebesgue measure to Polish spaces
with continuous Radon measures. That is, we preserve the most important prop-
erties of the space and the measure: separability, complete metrisability, and the
inner regularity, local finiteness and continuity of the measure. As we will see, the
majority of the theorems presented in this chapter rely on these properties. In this
setting, we explore classical theorems in measure theory and their Baire category
analogues, such as Lusin’s theorem and its dual, which characterise µ-measurable
and Baire measurable functions based on how well they can be approximated by
continuous functions. Another example is Egoroff’s theorem, which guarantees
that pointwise convergence of a series of functions can be strengthened to uni-
form convergence on an arbitrarily large set. This theorem does not have a Baire
category analogue. We also study the well-known theorem of Fubini and its Baire
category counterpart, the Kuratowski–Ulam theorem. Both of these theorems of-
fer profound insights by establishing equivalent statements about the sections of
sets that possess certain properties, namely measurability or the Baire property.

4



Chapter 1. Introduction

Then we prove the Poincaré recurrence theorem, which states that in certain dy-
namical systems, almost every point is recurrent, with the exception of a meagre
set of measure zero. Next, we present a generalised version of the Sierpiński–
Erdős duality theorem, which says that, assuming the continuum hypothesis, in
an uncountable Polish space X with a continuous Radon measure there is an in-
volution f : X → X such that f(E) is meagre if and only if E is a nullset. There-
fore, if a proposition P involves only the notions of measure zero, meagreness
and purely set-theoretic notions, the proposition P ∗ obtained by interchanging
the terms "meagre" and "of measure zero" holds if and only if P holds. Further-
more, we introduce the density topology. In this topology, a set is meagre if and
only if it is a Lebesgue nullset, and it has the Baire property if and only if it is
Lebesgue measurable. We build on these results in Chapter 4.

In the last chapter of this thesis, we study descriptive set theory, specifically fo-
cusing on analytic sets. We are inspired by Kechris’ work [1] and use the dynamic
framework of infinite games to explore the properties of these sets. We examine
well-known games like Choquet and strong Choquet, as well as different versions
of the Banach–Mazur game. Our main objective is to prove the following two re-
sults: analytic sets have the Baire property and they are universally measurable.
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Chapter 2

Preliminaries

This chapter presents definitions of essential notions in descriptive set theory,
measure theory and Baire category. Additionally, it serves as a practical toolbox,
providing a collection of useful short lemmas and propositions that we repeatedly
utilise in the thesis.

2.1 Notations

In this section, we provide a list of common notations that are used throughout
the thesis.

Notation 2.1. Let X be an arbitrary set and A ⊆ X . We denote the complement of
A with respect to X by X \ A = Ac.

Notation 2.2. The symmetric difference of the sets A and B is A∆B = (A \ B) ∪
(B \ A).

Notation 2.3. We denote the disjoint union of sets by ∪̇.

Notation 2.4. Let (X, d) be a metric space, let x ∈ X and r > 0. Then we denote
the open ball of centre x and radius r by B(x, r).

Notation 2.5. We denote the cardinality of the continuum by c.

Notation 2.6. Let X and Y be arbitrary sets and A ⊆ X ×Y . The projection prX(A)
of A on X is {x ∈ X : ∃y ∈ Y (x, y) ∈ A}. We denote the vertical x-section of A by
Ax = {y ∈ Y : (x, y) ∈ A}, and the horizontal y-section by Ay = {x ∈ X : (x, y) ∈
A}.

Notation 2.7. We denote the Lebesgue measure onRp by λ and the outer Lebesgue
measure by λ.
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Chapter 2. Preliminaries 2.2. Polish spaces

2.2 Polish spaces

In this section, we present a collection of well-known theorems and lemmas from
descriptive set theory. While these results are widely recognised in the field, we
omit their proofs since the development of basic notions of descriptive set theory
is not the main topic of this thesis.

Definition 2.8. [1, Def 3.1] A topological space (X, τ) is completely metrisable if
there exists a complete metric d on X that induces the topology τ .

Definition 2.9. [1, Def 3.1] A topological space X is a Polish space if it is separable
and completely metrisable.

Definition 2.10. [1, Ch 3.] The Cantor space is C = 2N, the product of infinitely
many copies of {0, 1} with the discrete topology.

Definition 2.11. [1, Ch 3.] The Baire space is N = NN, the product of infinitely
many copies of N with the discrete topology.

Lemma 2.12. [1, Thm 3.11] If X is a metric space and Y ⊆ X is completely metrisable,
then Y is Gδ. Conversely, if X is completely metrisable and Y ⊆ X is Gδ, then Y
is completely metrisable. In particular, if X is a Polish space, then Y ⊆ X is Polish
⇐⇒ Y ⊆ X is Gδ.

Lemma 2.13. [1, Thm 17.10, Thm 17.11] Every finite Borel measure µ on a Polish space
X is regular, that is, for any µ-measurable set B ⊆ X we have

µ(B) = inf{µ(U) : U ⊇ B, U open} = sup{µ(K) : K ⊆ B, K compact}.

Lemma 2.14. [1, Thm 6.2] If X is a nonempty perfect Polish space, there is an embedding
of the Cantor space into X .

Theorem 2.15 (Cantor–Bendixson). [1, Thm 6.4] Let X be a Polish space. Then for any
closed set F ⊆ X there exist a perfect set P and a countable set M such that F = P ∪̇M .

Corollary 2.16. [1, Cor 6.5] Any uncountable Polish space contains a homeomorphic
copy of C and in particular has cardinality continuum.

Proposition 2.17. The Cantor space is homeomorphic to the product of two copies of
itself: C ∼= C × C.

2.3 Measure theory

In this section, we focus on presenting the key definitions in measure theory that
are crucial for the thesis, particularly those that might not be covered in our BSc
programme. We prioritise explaining the concepts that are essential in the follow-
ing chapters, such as the properties of a Radon measure.
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2.3. Measure theory Chapter 2. Preliminaries

Definition 2.18. Let (X, M, µ) be a measure space. A set A ⊆ X has measure zero
and is called a nullset if and only if there exists B ∈ M such that A ⊆ B and
µ(B) = 0. (For notational simplicity, we write µ(A) = 0.)

Definition 2.19. Let X be an arbitrary set and let N be a family of subsets of X .
Then N is a σ-ideal if the following hold:

• ∅ ∈ N .

• If A ∈ N and B ⊆ A, then B ∈ N .

• If (An) is a sequence of sets in N , then ⋃
n∈N

An ∈ N .

The following proposition follows immediately from the definitions.

Proposition 2.20. In a measure space (X, M, µ) the sets of measure zero form a σ-ideal.

In general, σ-ideals serve as a way to capture notions of smallness in mathe-
matical analysis.

Remark 2.21. We will need the following identity: for any sets A, B, C the follow-
ing holds: A∆B = C ⇐⇒ A∆C = B.

Proposition 2.22. Let (X, M, µ) be a measure space and let N be the σ-ideal of the
nullsets. Then the family of sets {M∆N : M ∈ M, N ∈ N } is a σ-algebra and it is
generated by M∪N . In fact, the following holds: σ(M∪N ) = {M ∪N : M ∈ M, N ∈
N }.

Proof. Let A = {M∆N : M ∈ M, N ∈ N }. Since A contains both M and N , and
A ⊆ σ(M∪N ), it suffices to show that A is a σ-algebra. The empty set is in both M
and N , so ∅ = ∅∆∅ ∈ A. Now let M∆N ∈ A with M ∈ M, N ∈ N , and let us show
that its complement is also in A. We have (M∆N)c = M c∆N ∈ A since M c ∈ M.
For the countable union, let (Mn) be a sequence of sets in M and let (Nn) be a
sequence in N . We need to check whether ⋃

n∈N
(Mn∆Nn) is in A. Since ⋃

n∈N
Mn ∈

M, by Remark 2.21, it suffices to show that
( ⋃

n∈N
(Mn∆Nn)

)
∆
( ⋃

n∈N
Mn

)
∈ N .

We have that
( ⋃

n∈N
Mn

)
\
( ⋃

n∈N
(Mn∆Nn)

)
⊆ ⋃

n∈N
Nn ∈ N and

( ⋃
n∈N

(Mn∆Nn)
)

\( ⋃
n∈N

Mn

)
⊆ ⋃

n∈N
Nn ∈ N , hence by Proposition 2.20, their union is in N .

To prove the second part, let M∆N ∈ σ(M ∪ N ) with M ∈ M, N ∈ N and let
N ′ ∈ M ∩ N be such that N ⊆ N ′. Then we have that M \ N = (M \ N ′) ∪ ((N ′ ∩
M) \ N), so M∆N = (M \ N ′) ∪ ((N ′ ∩ M) \ N) ∪ (N \ M), where (M \ N ′) ∈ M
and (((N ′ ∩ M) \ N) ∪ (N \ M)) ∈ N , which concludes the proof. □
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Chapter 2. Preliminaries 2.3. Measure theory

Definition 2.23. Let (X, M, µ) be a measure space and let N be the σ-ideal of
nullsets. We define the σ-algebra of measurable sets as M′ = {M ∪ N : M ∈
M, N ∈ N } = σ(M ∪ N ) and µ extends to M′: for all M ∈ M and N ∈ N we
have µ(M ∪ N) = µ(M).

Definition 2.24. Let (X, M, µ) be a measure space and let N be the σ-ideal of
nullsets. Then for sets A and B in X let A ∼ B ⇐⇒ A∆B ∈ N . This is clearly an
equivalence relation.

Remark 2.25. Note that in a measure space (X, M, µ), a set A is measurable if and
only if there exists a set B ∈ M such that A ∼ B.

Definition 2.26. Let X be a Polish space and A ⊆ X . Then A is universally mea-
surable if it is µ-measurable for any σ-finite Borel measure µ on X .

If we have a Borel measure, then the measurable sets differ from Borel sets only
by a "noise" of measure zero. They capture the idea of being almost indistinguish-
able from Borel sets while still allowing for a negligible amount of noise in terms
of measure.

Definition 2.27. Let (X, M) and (Y, A) be two measurable spaces, f : X → Y a
measurable map and µ a measure on X . Then the pushforward measure f∗(µ) on
Y is defined by f∗(µ)(B) = µ(f−1(B)) for all B ∈ A.

Definition 2.28. Let (X, M, µ) be a measure space such that M contains every
singleton in X . Then µ is a continuous measure if µ({x}) = 0 for every x ∈ X .

Definition 2.29. Let (X, M) be a measurable space and x ∈ X a point. The Dirac

measure δx is defined as δx(A) =

0, x /∈ A

1, x ∈ A
for all A ∈ M.

Definition 2.30. Let (X, M, µ) be a measure space. Then µ is a discrete measure if
there exist a sequence (xn) in X and a sequence (αn) in R such that for all A ∈ M
we have µ(A) = ∑

n∈N
αnδxn(A).

Definition 2.31. Let X be a topological space and let µ be a measure on the Borel
sets of X .

• The measure µ is inner regular if for any open set G ⊆ X we have µ(G) =
sup{µ(K) : K ⊆ G, K is compact}.

• The measure µ is outer regular if for any Borel set B ⊆ X we have µ(B) =
inf{µ(G) : B ⊆ G, G is open}.

• The measure µ is locally finite if every point has a neighbourhood U for
which µ(U) < ∞.

• In a Hausdorff space X , a measure µ on the Borel sets of X is a Radon mea-
sure if it is inner regular and locally finite.

Lemma 2.32. A Radon measure µ on a separable metric space X is σ-finite. Moreover,
there exists a partition of X into countably many Gδ sets with finite measure.
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2.4. Baire category Chapter 2. Preliminaries

Proof. Since the measure is locally finite, every point x ∈ X has a neighbour-
hood Ux with finite measure, and by the Lindelöf property, we can select open
sets Ux1 , Ux2 , . . . such that ⋃

n∈N+
Uxn = X and µ(Uxn) < ∞.

Now let Gn = Uxn \
n−1⋃
i=1

Uxi
for all n ∈ N+. These are Gδ sets with finite measure.

□

Lemma 2.33. Let µ be a Radon measure on a separable metric space X . Then µ is outer
regular, moreover for any measurable set M and for all ε > 0 there exists an open set
G ⊇ M such that µ(G \ M) < ε.

Proof. First, let B be a Borel subset of X and fix any ε > 0. As constructed in the
proof of Lemma 2.32, let (Un) be a sequence of open sets such that ⋃

n∈N
Un = X

and µ(Un) < ∞ for all n ∈ N. Now lemmas 2.12 and 2.13 imply that there exist
open sets Gn ⊆ Un such that B ∩ Un ⊆ Gn and µ(Gn \ (B ∩ Un)) < ε

2n+1 . Now set
G = ⋃

n∈N
Gn. Consequently, µ(G \ B) < ε.

Since any measurable set M is contained in a Borel set B such that µ(B\M) = 0,
the statement follows for measurable sets as well. □

Remark 2.34. Let µ be a Radon measure on a separable metric space X . Then for
any measurable set M and for all ε > 0 there exists a closed set F ⊆ M such that
µ(M \ F ) < ε.

Proposition 2.35. Let µ be a Radon measure on the Borel sets of a Polish space X and let
N be a nullset. Then there is a Gδ nullset G such that N ⊆ G.

Proof. By definition, there is a Borel set B such that N ⊆ B and µ(B) = 0. By
Lemma 2.33, there exists a sequence of open sets (Gn) such that B ⊆ Gn and
µ(Gn \ B) < 1

n+1 . Now let G = ⋂
n∈N

Gn, which is clearly a Gδ nullset and N ⊆ G. □

2.4 Baire category

In this section, we provide a comprehensive exposition of every definition and
proof, recognising the importance of establishing a thorough familiarity with these
classes of sets. This is essential in order to effectively compare and contrast them
with their measure-theoretic counterparts.

Definition 2.36. [1, Ch 8.] In a topological space X , there are certain types of sets
in the sense of Baire category:

• A set A ⊆ X is nowhere dense if its closure has empty interior: int A = ∅.

10



Chapter 2. Preliminaries 2.4. Baire category

• A set A ⊆ X is meagre if it is a countable union of nowhere dense sets:
∃An, n ∈ N nowhere dense sets such that A = ⋃

n∈N
An.

• A set is comeagre if it is the complement of a meagre set.

Remark 2.37. [1, Ch 8.] A is nowhere dense ⇐⇒ A is nowhere dense ⇐⇒ A
c

is dense ⇐⇒ for every nonempty open set V ⊆ X there is a nonempty open set
V ′ ⊆ V such that A ∩ V ′ = ∅.

A set is comeagre if and only if it contains the intersection of a countable family
of dense open sets.

Proposition 2.38. [3, Thm 1.2] Let X be a topological space and A ⊆ X be a nowhere
dense set. Then any subset B of A is also nowhere dense.

Proof. The proof is simple: since B ⊆ A and int B ⊆ int A = ∅, the set B is
nowhere dense. □

Proposition 2.39. If X is a topological space, ∅ ≠ U ⊆ X open, A ⊆ U . Then:

1. The set A is nowhere dense in U if and only if A is nowhere dense in X .

2. The set A is meagre in U if and only if A is meagre in X .

Proof. Suppose that A ⊆ U is nowhere dense in X . By Remark 2.37, for ev-
ery nonempty open set U ∩ V there is a nonempty open V ′ ⊆ V ∩ U such that
V ′ ∩ (A ∩ U) ⊆ V ′ ∩ A = ∅, so A is nowhere dense in U . To prove the converse, let
A ⊆ U be nowhere dense in U . Let V ⊆ X be a nonempty open set. If V ∩ U = ∅,
then it is a suitable subset. Otherwise, V ∩ U is nonempty and relatively open in
U , so there is a nonempty open subset V ′ ⊆ V such that V ′ ∩ A = ∅. □

The following proposition follows immediately from the definitions.

Proposition 2.40. [1, Ch 8.] In a topological space X , the meagre sets form a σ-ideal.

Meagre sets, like sets of measure zero, also represent a notion of smallness, but
in a different sense. Intuitively, a meagre set can be thought of as a set that is "thin"
or "sparse" in some sense. Now we introduce the dual notion of measurability.

Definition 2.41. [1, Def 8.21] A subset A of a topological space X has the Baire
property if there exist an open set G and a meagre set P such that A = G∆P .

Thus, sets with the Baire property are similar to open sets, differing from them
only by a small, negligible subset, a meagre set.

Notation 2.42. We will abbreviate the term Baire property by BP.

11



2.4. Baire category Chapter 2. Preliminaries

Lemma 2.43. Let X be a topological space, let G ⊆ X be an open set and let F ⊆ X be
a closed set. Then the sets G \ G and F \ int F are nowhere dense.

Proof. It suffices to show that G \ G is nowhere dense. It is closed since G \ G =
G ∩ Gc, so we have to show that it has empty interior. Let U be an open set in
∂G = G\G. Then every x ∈ U has a neighbourhood that is disjoint from G, which
is impossible by x ∈ ∂G. Therefore, U is empty. □

Definition 2.44. Let X be a topological space. For sets A and B in X let A ≈
B ⇐⇒ A∆B is meagre. This is clearly an equivalence relation.
Remark 2.45. Note that in a topological space X , a set A has the BP if and only if
there exists an open set in the ≈-equivalence class of A.
Proposition 2.46. [3, Thm 4.1] A subset A of a topological space X has the BP if and
only if there exist a closed set F and a meagre set Q such that A = F∆Q.

Proof. Follows immediately from Lemma 2.43 and Remark 2.45. □

Proposition 2.47. [1, Prop 8.22] In any topological space, sets with the BP form a σ-
algebra, which is generated by the open sets and the meagre sets.

Proof. Let X be a topological space. First, we need to show that if a set A has
the BP, then so does Ac. The set A can be written as A = G∆P , where G is open
and P is meagre, so this means that Ac = (G∆P )c = Gc∆P . The set Gc is closed,
therefore, Ac has the BP by Proposition 2.46. Now let (An) be a sequence of sets
with the BP, and let An = Gn∆Pn with Gn open and Pn meagre for all n ∈ N. Let
G = ⋃

n∈N
Gn, P = ⋃

n∈N
Pn and A = ⋃

n∈N
An. This way, G is open, P is meagre and

G \ P ⊆ A ⊆ G ∪ P , from which we get that G∆A ⊆ P is meagre and A ≈ G,
therefore A has the BP. Since the empty set has the BP, we have proven that this is
a σ-algebra, and it is clear from the definition that it is the smallest one that con-
tains all open and meagre sets. □

Corollary 2.48. In a topological space X , every Borel set has the BP.

Definition 2.49. [1, Def 8.37] Let X and Y be topological spaces. A function
f : X → Y is Baire measurable if f−1(G) has the BP for every open subset G
of Y .
Proposition 2.50. [1, Prop 8.23] A subset of a topological space X has the BP if and only
if it is of the form G∪̇P , where G is a Gδ set and P is a meagre set (or of the form F \ Q,
where F is an Fσ set and Q is a meagre set).

Proof. If a set A has the BP, it is of the form A = U∆M , where U is open and M is
meagre. Any meagre set is contained in an Fσ meagre set by Remark 2.37, so let
F be a meagre Fσ set with A∆U ⊆ F . Then the set G = U \ F is Gδ and G ⊆ A
and the set P = A \ G ⊆ F is meagre. □
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Chapter 2. Preliminaries 2.4. Baire category

Proposition 2.51. Let X be a Polish space with a countable basis {Vn}n∈N and let A be
a subset of X . Then A has the BP if and only if for every basic open set Vn either A is
meagre in Vn or there exists a nonempty basic open V ′

n ⊆ Vn such that A is comeagre in
V ′

n.

Proof. First, let us assume that A has the BP and therefore can be represented as
A = U∆M , where U is open and M is meagre. Let Vn be a nonempty basic open
set. If Vn ∩ A ⊆ M , then A is meagre in Vn. If Vn ∩ A ∩ U ̸= ∅, then there exists a
basic open set V ′

n ⊆ Vn ∩U . This way, A is comeagre in V ′
n since V ′

n \A ⊆ M , which
is meagre.

To prove the converse, consider

U =
⋃

{Vn : Vn is basic open, A is comeagre in Vn}.

Observe that A is comeagre in U . Since U \U is nowhere dense, it suffices to show
that A \ U is meagre. Let Vn ⊆ U

c be a basic open set. Then A ∩ Vn is meagre in
Vn, since otherwise there would be a nonempty basic open set V ′

n ⊆ Vn ⊆ U
c such

that A is comeagre in V ′
n, but this is a contradiction since V ′

n ∩ U = ∅. Hence A \ U
is a countable union of meagre sets, therefore it is meagre, which concludes the
proof. □

Proposition 2.52. [1, Prop 8.1] In a topological space X , the following statements are
equivalent:

(i) Every nonempty open set is non-meagre.

(ii) Every comeagre set is dense.

(iii) The intersection of countably many dense open sets is dense.

Proof. By Remark 2.37, the statements (ii) and (iii) are clearly equivalent. If A is a
nonempty meagre open set, then its complement is not dense, thus (ii) =⇒ (i). If
a comeagre set does not meet a nonempty open set, then that open set is meagre,
so (i) =⇒ (ii), which concludes the proof. □

Definition 2.53. [1, Def 8.2] Atopological space X is a Baire space if the equivalent
statements of Proposition 2.52 hold in X .

Proposition 2.54. [1, Prop 8.3] Any open subset U of a Baire space X is also a Baire
space.

Proof. We will use Proposition 2.52 (iii) to prove this claim. Let (Un) be a sequence
of dense open sets in U , thus they are open in X as well. Then for all n ∈ N the set
Un ∪ U

c is dense in X and since X is a Baire space, ⋂
n∈N

(Un ∪ U
c) = ( ⋂

n∈N
Un) ∪ U

c is
also dense in X . Consequently, ⋂

n∈N
Un is dense in U . □
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Proposition 2.55. [3, Thm 9.2] A subset E of a Baire space X is comeagre if and only if
it contains a dense Gδ subset of X .

Proof. The proof follows from Remark 2.37 and Proposition 2.52. □

Theorem 2.56 (Baire Category Theorem). [1, Thm 8.4] Every completely metrisable
space is Baire.

Proof. Let (X, d) be a complete metric space and (Un) a sequence of dense open
sets in X . Fix any nonempty open set U . Since U ∩ U0 is nonempty open, we can
set an open ball B0 of radius < 1 such that B0 ⊆ U ∩ U0. In the nth step, where
n ≥ 1, let Bn be an open ball of radius < 1

n+1 such that Bn ⊆ Bn−1 ∩ Un. Let xn be
the centre of Bn for all n ∈ N. Then (xn) is a Cauchy sequence and since (X, d) is
complete, there exists x ∈ X such that xn → x ∈ ⋂

n∈N
Bn = ⋂

n∈N
Bn ⊆ ( ⋂

n∈N
Un) ∩ U ,

which concludes the proof. □

Remark 2.57. By Lemma 2.12 and the Baire Category Theorem, a Gδ subspace of
a completely metrisable space is also a Baire space.

The Baire Category Theorem guarantees that a nonempty Polish space is non-
meagre in itself. Therefore, meagre sets form a nontrivial σ-ideal, hence we obtain
a nontrivial notion of smallness, which can be used as an alternative to the mea-
sure theoretic notion of nullsets. In fact, it works in many cases when there is
no natural measure on a space. The Baire Category Theorem provides a powerful
tool in non-constructive proofs: if X is a Polish space of objects and P is a property
of these objects, then it is often easier to prove that objects lacking the property P
form a meagre set than to explicitly construct an object of property P . This can be
viewed as the topological dual of the random method in discrete mathematics.

Although they are very similar, the notions of nullsets and meagre sets do not
coincide, as the following theorem illustrates.

Theorem 2.58. Let X be a Polish space and µ a continuous Radon measure on X . Then
X can be decomposed into two sets A and B such that B = Ac, A is meagre and B is of
measure zero.

Proof. Since X is Polish, it is separable. Let {a1, a2, . . .} be a countable dense sub-
set of X . Since µ is continuous and locally finite, for every i, j ∈ N+ we can find an
open ball centred at ai with µ(Bi,j) < 1

2i+j . Now put Gj = ⋃
i∈N+

Bi,j and B = ⋂
j∈N+

Gj .

To show that B has measure zero we fix ε > 0 and prove that µ(B) < ε. There
exists j ∈ N+ such that 1

2j < ε and µ(B) ≤ µ(Gj) ≤
∞∑

i=1
µ(Bi,j) ≤

∞∑
i=1

1
2i+j = 1

2j < ε,
hence B has measure zero. By Remark 2.37, B is comeagre, so A = Bc is meagre,
which completes the proof. □

14
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Theorem 2.56 ensures that the partition into sets of measure zero and meagre
sets in Theorem 2.58 is not trivial when the entire space does not have measure
zero.

Corollary 2.59. Let X be a Polish space and µ a continuous Radon measure on the Borel
sets of X . Then any subset E ⊆ X can be decomposed into two sets A and B such that A
is meagre and B is of measure zero.

15



Chapter 3

Dual theorems

In this chapter, we study analogies between measure theory and Baire category by
exploring dual theorems, drawing inspiration from Oxtoby’s [3] work. However,
we go beyond the traditional scope of these theorems on the real line and extend
our exploration to Polish spaces. By doing so, we gain a deeper understanding of
these theorems and their applicability.

3.1 Bernstein sets

After introducing the notions of measurable sets and sets with the BP, a natural
question arises: are there sets in a given measure space that are not measurable
or lack the BP? In Oxtoby’s book [3], two examples are presented in the context
of the real line, both relying on the axiom of choice. The first example is the Vitali
set [3, Ch 5.], constructed by selecting one element from each coset of the rational
numbers. The proof of the Vitali set’s non-measurability and absence of the BP
relies on the translation invariance of Lebesgue measure and the continuity of
addition.

In Oxtoby’s book, the other example is the so-called Bernstein set. In this sec-
tion, we construct a Bernstein set in an arbitrary Polish space X , and we show
that such a set lacks the BP and is non-measurable with respect to any continuous
Radon measure on X . Let us start with a lemma concerning the cardinality of the
family of uncountable closed sets.

Lemma 3.1. In an uncountable Polish space X , the class of closed subsets of cardinality
c has cardinality c.

Proof. The space has a countable basis, so there are at most c open sets since every
open set can be written as a countable union of basis elements. Every closed set
is the complement of an open set, so there are at most c closed sets. By Corollary
2.16, there is a subspace C ⊆ X homeomorphic to C. Then, by Proposition 2.17,
we have that C ∼= C × C = ⋃

x∈C
({x} × C). Hence we obtained c many disjoint

16
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closed sets of cardinality c in X . □

The fact that both measurable sets and sets with the BP form σ-algebras sug-
gests that the desired set is likely to bear a striking resemblance to its complement.

Theorem 3.2 (Bernstein set). In an uncountable Polish space X , there exists a set B
such that both B and Bc meet every closed subset of X that has cardinality continuum.

Proof. Let {Pα : α < c} be a transfinite enumeration of all closed subsets of X
with cardinality continuum. By transfinite recursion, we can pick distinct points
aα, bα ∈ Pα such that aα, bα /∈ {aβ : β < α} ∪ {bβ : β < α}. This can be done, since
2|α| ≤ max{|α|, ℵ0} < c, while |Pα| = c.

Let B = {aα : α < c}. Now there is no α < c such that Pα ⊆ B or Pα ⊆ Bc. □

Theorem 3.3. Let X be a perfect Polish space, let µ be a continuous Radon measure on
X and let B be a Bernstein set. Then every measurable subset of B or Bc is of measure
zero, and similarly, every subset of B or Bc that has the BP is meagre. In particular, B is
non-measurable and lacks the BP.

Proof. Fix any measurable subset A of B. Every closed set contained in A is count-
able and therefore, of measure zero. Remark 2.34 implies that µ(A) = 0.

Now let A be a subset of B that has the BP. By Proposition 2.50, it can be writ-
ten as A = G∪̇P , where G is a Gδ-set and P is meagre. Then G is countable since
otherwise, by Lemma 2.14, we could find a Cantor set in G, which would contra-
dict the construction of B. Consequently, A is meagre. □

The following result is not particularly difficult to obtain, but it is rather sur-
prising. Although initially it was not easy to find sets that are non-measurable or
lack the BP, it turns out that there are actually many such sets.

Proposition 3.4. In a perfect Polish space X with a continuous Radon measure µ, any
measurable subset of positive measure contains a non-measurable subset, and any non-
meagre set contains a subset that lacks the BP.

Proof. Let B be a Bernstein set and let A be a measurable set with µ(A) > 0. Since
at most one of the sets A ∩ B and A ∩ Bc can have measure zero, by Theorem 3.3,
at least one of them is non-measurable. Similarly, if A is non-meagre, at most one
of the sets A ∩ B and A ∩ Bc can be meagre, so at least one of them lacks the BP. □

Corollary 3.5. Let X be a perfect Polish space and let µ be a nonzero continuous Radon
measure on X . Then there exists a set E ⊆ X that is µ-measurable but lacks the BP and
there exists a set F ⊆ X that has the BP but is non-measurable.

17
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Proof. By Theorem 2.58 there is a nonmeagre nullset E ′ ⊆ X and a meagre set
F ′ ⊆ X with positive measure. Now by Proposition 3.4 there are E ⊆ E ′ and
F ⊆ F ′ such that E is a nullset that lacks the BP and F is a non-measurable mea-
gre set. □

3.2 Lusin’s theorem

In this section, our objective is to approximate µ-measurable and Baire measurable
functions with continuous functions. Lusin’s theorem and its Baire category coun-
terpart provide a characterisation of µ-measurable and Baire measurable func-
tions based on the size of the set where the approximating functions remain con-
tinuous.

Theorem 3.6 (Lusin). Let X be a Polish space with a Radon measure µ and let Y be a
second countable space. A function f : X → Y is µ-measurable if and only if for every
ε > 0 there exists a closed set F ⊆ X with µ(F c) < ε such that f is continuous on F .

Proof. Let U1, U2, . . . be a countable basis of Y , and since f is measurable, we can
apply Lemma 2.33 and Remark 2.34 to the preimages of the basis elements: there
exist open sets G1, G2, . . . and closed sets F1, F2, . . . such that Fn ⊆ f−1(Un) ⊆ Gn

and µ(Gn\Fn) < ε
2n for all n ∈ N+. Let F = X\ ⋃

n∈N+
(Gn\Fn), so we have µ(F c) < ε

and F is closed. To see that f is continuous on F note that f−1(Un) ∩ F = Gn ∩ F
is indeed relatively open for all n ∈ N+.

To prove the converse, let F1, F2, . . . be a sequence of closed sets such that
µ(F c

n) < 1
n

, and the restriction fn = f |Fn is continuous for all n ∈ N+. We have
to show that for an arbitrary open set G the preimage f−1(G) is µ-measurable.
For each n there exists an open set Gn ⊆ X such that f−1

n (G) = Gn ∩ Fn. Let
F = ⋃

n∈N+
Fn. Since f−1(G) = (f−1(G) ∩ F ) ∪ (f−1(G) \ F ), it suffices to show that

these two sets are measurable. On the one hand, µ(f−1(G) \ F ) = 0, so it is µ-
measurable. On the other hand, f−1(G) ∩ F = ⋃

n∈N+
(f−1(G) ∩ Fn) = ⋃

n∈N+
f−1

n (G) =⋃
n∈N+

(Gn ∩ Fn), so it is also measurable. The proof is complete. □

The following theorem is the category analogue of Lusin’s theorem, offering a
more compelling result. While Lusin’s theorem allowed for an approximation of a
measurable function with an arbitrarily small ε error, the dual theorem is stronger.

Theorem 3.7. Let X be a topological space and Y be a second countable space. A function
f : X → Y is Baire measurable if and only if there exists a comeagre set A such that f is
continuous on A.

Proof. First, let us assume that f is Baire measurable. Let U1, U2, . . . be a countable
basis of Y . Then there exist open sets G1, G2, . . . and meagre sets P1, P2, . . . such
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that f−1(Un) = Gn∆Pn for each n ∈ N+. Let A = X \ ⋃
n∈N+

Pn, which is comeagre.
Now f |A is continuous because we have f−1(Un) ∩ A = (Gn∆Pn) ∩ A = Gn ∩ A,
which is relatively open.

To prove the converse, let us assume that f is continuous on a comeagre set A,
which means that for any open set U in Y , there exists an open set G in X such
that f |−1

A (U) = G ∩ A. Since G \ Ac = f |−1
A (U) ⊆ f−1(U) ⊆ f |−1

A (U) ∪ Ac = G ∪ Ac,
we can conclude that f−1(U) has the BP, so f Baire measurable. □

Remark 3.8. The natural dual of Theorem 3.7 fails even on [0, 1]. The characteristic
function of a Cantor set of positive measure is measurable but there is no set of
measure 1 on which it is continuous.

3.3 Egoroff’s theorem

The following result highlights the idea that pointwise convergence can be strength-
ened to uniform convergence on a large portion of the space, demonstrating the
interplay between measure theory and function convergence properties.

Theorem 3.9 (Egoroff). Let (X, µ) be a finite measure space and (Y, d) be a metric space.
If a sequence of functions fn : X → Y converges µ-almost everywhere to a limit function
f , then for every ε > 0, there is a measurable subset B of X such that (fn) converges to
f uniformly on B and µ(Bc) < ε.

Proof. Fix ε > 0. Let us define measurable sets An,k = ⋃
m≥n

{x ∈ X : d(fm(x), f(x)) ≥
1
k
} for all n, k ∈ N+. This way An,k ⊇ An+1,k, and by the definition of point-

wise convergence, we know that for any k ∈ N+ we have µ( ⋂
n∈N+

An,k) = 0. Since
µ(X) < ∞, we have continuity from above: for all k ∈ N+, there is an index n(k)
such that µ(An(k),k) < ε

2k . Let B = X \ ⋃
k∈N+

An(k),k. Then µ(Bc) < ε and for every

k ∈ N+ we have d(fm(x), f(x)) < 1
k

for all m ≥ n(k) and all x ∈ B. Therefore fn

converges to f uniformly on B. □

Unlike other theorems we have explored, this particular theorem does not
have an analogous result in Baire category theory. In fact, Oxtoby’s book provides
a counterexample [3, Page 38], even in the case of R, to illustrate this distinction.
We would expect that if a sequence of functions fn : R → R converges to f point-
wise, then there is a comeagre set B ⊆ R such that (fn) converges to f uniformly
on B.

We will present a sequence of functions that is pointwise convergent on R but
any set on which it converges uniformly is nowhere dense. This is much stronger
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than what we expect from a counterexample for this statement. Let

φ(x) =


2x, x ∈ [0, 1

2 ]
2 − 2x, x ∈ (1

2 , 1]
0, x ∈ R \ [0, 1]

.

Then lim
n→∞

φ(2nx) = 0 for all x ∈ R. Let {ri : i ∈ N+} be a dense sequence in R and

let fn(x) =
∞∑

i=1
2−iφ(2n(x − ri)) for all n ∈ N+. Then fn is continuous on R, since

it is the sum of a uniformly convergent series of continuous functions, and for
every x ∈ R we have lim

n→∞
fn(x) = 0. Now let (a, b) be an open interval. For some

i we have ri ∈ (a, b), and then sup
x∈(a,b)

fn(x) ≥ 1
2i for all sufficiently large n. Thus fn

does not converge uniformly on (a, b). Now let B be a set on which fn converges
uniformly. Then, by continuity, fn also converges uniformly on B. From what
we have shown, the set B cannot contain an interval and therefore it is nowhere
dense.

3.4 Fubini’s theorem

The following theorem is an important special case of Fubini’s theorem.

Theorem 3.10 (Fubini). Let (X, M, µ) and (Y, N , ν) be two measure spaces and A be a
(µ × ν)-measurable subset of X × Y . Then if X × Y is σ-finite or (µ × ν)(A) < ∞, the
following hold:

(i) The sections Ax are ν-measurable for µ-almost every x ∈ X (similarly for Y ).

(ii) (µ × ν)(A) = 0 ⇐⇒ ν(Ax) = 0 for µ-almost every x ∈ X ⇐⇒ µ(Ay) = 0 for
ν-almost every y ∈ Y .

Theorem 3.11 (Kuratowski–Ulam). [1, Thm 8.41] Let X and Y be second countable
topological spaces and let A ⊆ X × Y be a set with the BP. The following hold:

(i) The set {x ∈ X : Ax has the BP in Y } is comeagre in X and similarly for Y .

(ii) The set A is meagre in X × Y ⇐⇒ the set {x ∈ X : Ax is meagre in Y } is
comeagre in X ⇐⇒ the set {y ∈ Y : Ay is meagre in X} is comeagre in Y .

Proof. To prove the category analogue of Fubini’s theorem we need two lemmas.

Lemma 3.12. [1, Lemma 8.42] Let F be a subset of the product space X × Y , where X
and Y are topological spaces, and Y is second countable. If F is nowhere dense in X × Y ,
then the set {x ∈ X | Fx is nowhere dense in Y } is comeagre in X .
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Proof. We may assume that F is closed. Let U = (X × Y ) \ F , which is open,
therefore it suffices to show that Ux is dense for all but a meagre set of x ∈ X . Let
V1, V2, . . . be a countable basis of Y . Since for any G ⊆ X nonempty open we have
U ∩ (G × Vn) ̸= ∅, the projection Un = prX(U ∩ (X × Vn)) is dense open in X . If
x ∈ ⋂

n∈N+
Un, then Ux ∩ Vn ̸= ∅ for all n ∈ N+, thus Ux is dense. □

By taking a countable union, we get that if A ⊆ X × Y is meagre, then Ax is
meagre for all but a meagre set of x ∈ X , which proves ( =⇒ ) of (ii).

To prove (i) we write A as A = U∆M , where U is open and M is meagre. Since
Ax = Ux∆Mx for every x ∈ X , (i) follows from ( =⇒ ) of (ii).
Lemma 3.13. [1, Lemma 8.43] Let A ⊆ X and B ⊆ Y , where X and Y are second
countable topological spaces. Then A × B is meagre if and only if at least one of A and B
is meagre.

Proof. By ( =⇒ ) of (ii), if A × B is meagre but A is not, there exists x ∈ A such
that (A × B)x = B is meagre.

Now let us assume that A is meagre, so it can be written as A = ⋃
n∈N+

Fn, where
Fn is nowhere dense for all n. Then A × B = ⋃

n∈N+
(Fn × B), and it suffices to show

that Fn × B is nowhere dense. This is true because if G ⊆ X is a dense open set,
then G × Y is dense open in X × Y , hence Fn × B ⊆ Fn × Y is nowhere dense in
X × Y . □

Finally, we prove ( ⇐= ) of (ii). Let A ⊆ X × Y be a set with the BP for which
the set {x ∈ X : Ax is meagre in Y } is comeagre in X but A is non-meagre. Now A
can be written as A = U∆M with U open, M meagre. Since U cannot be meagre,
there exist open sets G ⊆ X , H ⊆ Y with G × H ⊆ U and G × H not meagre. By
Lemma 3.13, both G and H are non-meagre. Now, by our assumption and ( =⇒ )
of (ii), there is x ∈ G such that Ax and Mx are meagre, hence H ⊆ Ux ⊆ Ax ∪ Mx

is meagre, a contradiction. □

Remark 3.14. [1, Ch 8] Theorem 3.11 fails in the absence of the BP. In fact, there
exists a non-meagre subset A ⊆ [0, 1]2 with no 3 collinear points. This result relies
on the Axiom of Choice.

3.5 Poincaré recurrence theorem

Poincaré’s remarks on recurrence were made before the formal development of
measure theory and Baire category, yet they continue to hold in these frameworks.
His theorem on recurrence has significant implications in dynamics, across disci-
plines such as physics, astronomy, and chaos theory, shedding light on the long-
term behaviour of various systems.
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We begin by exploring Poincaré’s theorem within a broad context, and then
proceed to apply the findings to our specific space.

Definition 3.15. [3, Ch 17.] Let (X, S, µ) be a measure space and I ⊆ S be a
σ-ideal. Let T be a map of X into X .

• The map T : X → X is S-measurable, if T −1E ∈ S for all E ∈ S.

• The map T is measure-preserving if it is S-measurable and for every S ∈ S
we have µ(S) = µ(T −1(S)).

• The positive semiorbit of a point x is the sequence x, Tx, T 2x, . . .

• A point x in a set G is recurrent with respect to G if T ix ∈ G for infinitely
many positive integers i.

• A subset E of X is a wandering set if E, T −1E, T −2E, . . . are disjoint.

• The map T is dissipative if there is a wandering set in S \ I, otherwise it is
nondissipative.

• For E ⊆ X , let D(E) = {x ∈ E : T ix ∈ E for at most finitely many i ∈ N+}.

• The map T has the recurrence property if D(E) ∈ I for all E ∈ S. Note that if
T is S-measurable and E ∈ S, then D(E) ∈ S since D(E) = X \ ⋂

n∈N

⋃
i≥n

T −iE.

• If X is a topological space, then a point x ∈ X is recurrent under T if it is
recurrent with respect to every neighbourhood of itself.

Theorem 3.16. [3, Thm 17.2] Let T : X → X be an S-measurable map. It has the
recurrence property if and only if it is nondissipative.

Proof. If T has the recurrence property, it has to be nondissipative since otherwise
there would be a wandering set E ∈ S \ I for which D(E) = E contradicting the
recurrence property.

Now suppose that T is nondissipative and fix any E ∈ S . Consider F =
E \ ⋃

k∈N+
T −kE ∈ S. Observe that for every k ∈ N the set T −kF is wandering:

indeed, for any 0 ≤ i < j we have T −jF ∩ T −iF ⊆ T −jE \ ⋃
k∈N+

T −i−kE = ∅. Since

T is nondissipative, T −kF set belongs to I for all k ≥ 0, and so do ⋃
k∈N

T −kF and
H = E ∩ ⋃

k∈N
T −kF because I is a σ-ideal. On the other hand, H = D(E) because

for each k we have T −kF = {x ∈ X : T kx ∈ E, ∀i > k (T ix /∈ E)}. We conclude
that T has the recurrence property. □

Theorem 3.17. Let X be a Polish space with a finite Borel measure µ such that µ(U) > 0
for every nonempty open U ⊆ X . Let T be a measure-preserving homeomorphism of X
onto itself. Then for an open subset G ⊆ X every point in G is recurrent with respect to
G except for a meagre set of measure zero.
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Proof. Fix a nonempty open set G ⊆ X . First, let S be the σ-algebra of all µ-
measurable subsets of X and I be the σ-ideal of nullsets. Then T is S-measurable
and nondissipative since wandering sets are nullsets because µ(X) is finite. Thus,
by Theorem 3.16, T has the recurrence property. We conclude that almost every
point of G is recurrent with respect to G.

Second, let S be the σ-algebra of subsets of X that have the BP, and let I be the
σ-ideal of meagre sets. Again, T is S-measurable. Note that there is no non-empty
open wandering set since they are not nullsets. Let E = U∆P be a wandering set
with the BP, where U is open and P is meagre. For any integers 0 ≤ i < j we have
T −iE ∩T −jE = ∅, so T −iU ∩T −jU ⊆ T −iP ∪T −jP , hence T −iU ∩T −jU is a meagre
open set, thus, by Theorem 2.56, it is empty. Now U is an open wandering set
and therefore empty, hence E is meagre. Thus, T is nondissipative, so it has the
recurrence property. We conclude that comeagre many points of G are recurrent
with respect to G. □

The Poincaré recurrence theorem tells us that in certain dynamical systems the
set of non-recurrent points can be considered "small" in terms of both measure and
Baire category.
Theorem 3.18 (Poincaré recurrence theorem). Let X be a Polish space with a finite
measure µ, for which µ(U) > 0 for any open set U . Let T : X → X be a measure-
preserving homeomorphism. Then µ-almost every and comeagre many points in X are
recurrent under T .

Proof. Let U1, U2, . . . be a countable basis of X , and let Ek ⊆ Uk be the set of points
that are not recurrent with respect to Uk. By Theorem 3.17, Ek is a meagre set of
measure zero for each k ≥ 1, so the set E = ⋃

k∈N+
Ek is also a meagre set of measure

zero. We have to show that any x ∈ Ec is recurrent under T . Let U be a neigh-
bourhood of x. Then x ∈ Uk ⊆ U for some k and x /∈ Ek, therefore T ix ∈ Uk ⊆ U
for infinitely many positive integers i, thus x is recurrent under T . □

3.6 Sierpiński–Erdős duality theorem

In this section we are going to prove the following metatheorem.
Theorem 3.19 (Duality Principle). [3, Thm 19.4] (CH) Let P be any proposition in-
volving solely the notions of measure zero, meagreness and notions of pure set theory. Let
P ∗ be the proposition obtained from P by interchanging the terms "set of measure zero"
and "meagre set" wherever they appear. Then each of the propositions P and P ∗ implies
the other.

The Duality Principle is implied by the following theorem, which serves as
a sufficient condition to establish the duality between measure theory and Baire
category theory.
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Theorem 3.20 (Sierpiński–Erdős). [3, Thm 19.3] (CH) Let X be an uncountable Polish
space with a continuous Radon measure µ. There exists an involution f : X → X such
that for any E ⊆ X the image f(E) is meagre if and only if µ(E) = 0, and µ(f(E)) = 0
if and only if E is meagre.

The proof of this theorem relies on two purely set-theoretic theorems.

Theorem 3.21. [3, Thm 19.5] Let X be a set of cardinality ℵ1 and let K be a family of
subsets of X that satisfies the following:

(i) K is a σ-ideal.

(ii) The union of K is X .

(iii) K has a subclass G of cardinality ≤ ℵ1 such that each member of K is contained in
some member of G.

(iv) The complement of each set in K contains a set of cardinality ℵ1 that belongs to G.

Then there exists a decomposition of X into ℵ1 disjoint sets Xα, each of cardinality ℵ1,
such that a subset E of X belongs to K if and only if it is contained in a countable union
of the sets Xα.

Proof. Let G = {Gα : α < ω1} and Hα = ⋃
β≤α

Gβ and Kα = Hα \ ⋃
β<α

Hβ . Let
B = {α < ω1 : Kα is uncountable}. By properties (i) and (iv), the set B is un-
bounded. Hence, there exists an order-preserving bijection ϕ : ω1 → B. For every
α < ω1 let Xα = Hϕ(α) \ ⋃

β<α
Hϕ(β). Then, by construction, the sets Xα are disjoint

and they belong to K. Each of the sets Xα has cardinality ℵ1 because Xα ⊇ Kϕ(α)
and Kϕ(α) is uncountable. By property (iii), for any set E ∈ K there exists an or-
dinal β < ω1 such that E ⊆ Gβ . Then there exists α < ω1 such that β < ϕ(α), and
therefore E ⊆ Gβ ⊆ Hβ ⊆ Hϕ(α) = ⋃

γ≤α
Xγ . Observe that by property (ii), we have

X = ⋃K ⊆ ⋃
α<ω1

Xα. Consequently, {Xα : α < ω1} is a decomposition of X with
the required properties. □

Theorem 3.22. [3, Thm 19.6] Let X be a set of cardinality ℵ1. Let K and L be two families
of subsets of X that satisfy the properties (i)−(iv) from Theorem 3.21. Suppose that there
exist complementary sets M and N such that M ∈ K and N ∈ L. Then there exists a
one-to-one map f of X onto itself such that f = f−1 and such that f(E) ∈ L if and only
if E ∈ K.

Proof. Let {Xα : α < ω1} be the decomposition of X corresponding to K as in the
proof of Theorem 3.21. We may assume that M is part of the generating class G and
that G0 = M . Then X0 = M because M cannot be countable since the complement
of N contains a set of cardinality ℵ1 that belongs to L. Similarly, let {Yα : α < ω1}
be the decomposition of X corresponding to L with Y0 = N . Then M = ⋃

0<α<ω1
Yα
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and N = ⋃
0<α<ω1

Xα. Since N = M c, the sets Xα and Yα for 0 < α < ω1 constitute
a decomposition of X into sets of cardinality ℵ1. Let fα : Xα → Yα be a bijection
for every 0 < α < ω1. Now let f equal to fα on Xα and equal to f−1

α on Yα for
0 < α < ω1. Thus, f is a one-to-one map of X onto itself, f = f−1, and since
X0 = ⋃

0<α<ω1
Yα and Y0 = ⋃

0<α<ω1
Xα, we have that f(Xα) = Yα for all 0 ≤ α < ω1.

Theorem 3.21 implies that f(E) ∈ L if and only if E ∈ K. □

Lemma 3.23. [3, Thm 19.1] Let X be an uncountable Polish space with a continuous
Radon measure µ. The complement of any set of measure zero in X contains a set of
measure zero of cardinality c. The complement of any meagre set in X contains a nowhere
dense set of cardinality c.

Proof. Let A ⊆ X be a nullset. Then there exists a Borel set B ⊇ A such that
µ(B) = 0. By Remark 2.34, the set Bc contains an uncountable compact set, which,
by Lemma 2.12 and Corollary 2.16, contains a subspace C homeomorphic to C.
Now Proposition 2.17 says that C ∼= C × C = ⋃

x∈C
({x} × C). Now we have to

show that there is x ∈ C for which µ({x} × C) = 0. Suppose the contrary. By
Lemma 2.32, there exists a sequence of Gδ sets Gn ⊆ X such that ⋃

n∈N
Gn = X and

µ(Gn) < ∞ for all n ∈ N. Now let Cn,k = {x ∈ C : µ(Gn ∩ ({x} × C)) ≥ 1
k
} for all

n, k ∈ N, k ≥ 1. We have that ⋃
n∈N,k∈N+

Cn,k = C, which is of cardinality continuum,

so there exist n ∈ N and k ∈ N+ such that Cn,k contains infinitely many points.
Now, using the fact that sets of the form {x} × C are pairwise disjoint, we have
that µ(Gn) ≥ ∑

x∈Cn,k

µ(Gn ∩ ({x} × C)) ≥ ∑
x∈Cn,k

1
k

= ∞, which is a contradiction.

Consequently, there exists x ∈ C such that µ({x} × C) = 0.

Similarly, let A ⊆ X be a meagre set. then it is contained in an Fσ meagre set
B, so Bc is an uncountable Gδ set and by Corollary 2.16, it contains a subspace C
homeomorphic to C. By Proposition 2.17 we have that C ∼= C ×C = ⋃

x∈C
({x}×C).

Now we have to show that there is x ∈ C for which {x} × C is nowhere dense.
Suppose the contrary. These are closed sets, so we have that int({x} × C) ̸= ∅ for
all x ∈ C. But then we obtained continuum many disjoint nonempty open sets in
X , which contradicts the fact that X is separable. Thus, there is x ∈ C such that
{x} × C is nowhere dense. □

Proof of Theorem 3.20. By Theorem 3.22 and Theorem 2.58, it suffices to verify
that both the family of meagre sets and the family of nullsets satisfy properties
(i) − (iv) of Theorem 3.21. Let K denote the class of meagre sets and L denote the
class of sets of measure zero. To verify the conditions stated in Theorem 3.21, we
focus on the following properties. The class K is generated by the Fσ meagre sets,
while L is generated by the Gδ sets of measure zero by Proposition 2.35. Notably,
both of these classes have cardinality continuum. By assuming the continuum
hypothesis, we satisfy the third condition, and the fourth condition follows from
Lemma 3.23. The first two conditions are clear.
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3.7 Baire meets Lebesgue

In this section, whenever we write "measurable", we mean Lebesgue measurable.

The density topology offers a new way to understand Lebesgue measurability
by linking it directly to the Baire property in a different topology. This perspective
allows us to explore the relationship between Lebesgue measurability and the
underlying structure of the density topology, revealing the connections between
measure theory and Baire category theory in a fresh and insightful manner.

Definition 3.24. [2, Ch 7.] Let A ⊆ Rp be an arbitrary set, x ∈ Rp a point. Then

d(x, A) = lim sup
r→0

λ(B(x, r) ∩ A)
λ(B(x, r))

is the upper density of A at x, and

d(x, A) = lim inf
r→0

λ(B(x, r) ∩ A)
λ(B(x, r))

is the lower density of A at x. If these are equal, then d(x, A) = d(x, A) = d(x, A)
is the density of A at x. The point x is a density point of A if d(x, A) = 1.

Lemma 3.25. [2, Lemma 7.1] For any A ⊆ Rp and x ∈ Rp we have

d(x, A) + d(x, Ac) ≥ 1,

and if d(x, A) = 0, then d(x, Ac) = 1. If A is measurable, then d(x, A) + d(x, Ac) = 1,
and d(x, A) = 1 implies d(x, Ac) = 0.

Proof. Since λ is subadditive, we have λ(A∩B(x, r))+λ(B(x, r)\A) ≥ λ(B(x, r)).
By dividing and taking the limsup of both sides we get

d(x, A) ≥ lim sup
r→0

(
1 − λ(B(x, r) \ A)

λ(B(x, r))

)
= 1 − lim inf

r→0

λ(B(x, r) \ A)
λ(B(x, r)) = 1 − d(x, Ac)

This implies the other statements since if A is measurable, then

λ(A ∩ B(x, r)) + λ(B(x, r) \ A) = λ(B(x, r)).

□

Theorem 3.26 (Lebesgue’s density theorem). [2, Thm 7.2] For any Lebesgue measur-
able set A ⊆ Rp, the density of A is 1 at almost every point in A.

Definition 3.27. [2, Ch 7.] Let A ⊆ Rp. A set M ⊆ Rp is a measurable hull of
A if M is measurable, A ⊆ M and if N is a measurable set containing A, then
λ(M \ N) = 0.

It is easy to prove the following well-known lemma.
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Lemma 3.28. [2] Any set A ⊆ Rp has a measurable hull M for which λ(A) = λ(M).

Lemma 3.29. [2, Lemma 7.3] Let A ⊆ Rp and M be its measurable hull. Then for
any measurable set B, we have λ(A ∩ B) = λ(M ∩ B) and for all x ∈ Rp we have
d(x, A) = d(x, M) and d(x, A) = d(x, M).

Proof. Let N be a measurable hull of A ∩ B that is a subset of the measurable
set M ∩ B. Let C = (M \ B) ∪ N be another measurable set that contains A, thus
λ(M \C) = 0 and λ((M ∩B)\N) = 0 because (M ∩B)\N ⊆ M \C. Consequently,
λ(A ∩ B) = λ(N) = λ(M ∩ B). The other two statements follow immediately. □

Theorem 3.30. [2, Lemma 7.4] Let A ⊆ Rp. Then d(x, A) = 1 at almost every point in
A. The set A is measurable if and only if d(x, A) = 0 at almost every point in Ac.

Proof. The first part of the theorem follows from Lemma 3.29 and Theorem 3.26.
Also by Lebesgue’s density theorem and Lemma 3.25, we only need to prove that
if d(x, A) = 0 at almost every point in Ac, then A is Lebesgue measurable. Let
M be a measurable hull of A. Then at almost every point x in M \ A we have
d(x, A) = d(x, M) = 1. On the other hand, at almost every point x in M \ A we
have d(x, A) = 0 by assumption. Hence λ(M \ A) = 0 and A is measurable. □

Definition 3.31. [2, Ch 8] A subset A of Rp is called d-open, if it is Lebesgue mea-
surable and for all x ∈ A we have d(x, A) = 1.

Theorem 3.32. [2, Thm 8.1] The d-open sets form a topology on Rp.

Proof. It is clear that ∅ and Rp are d-open. Now let A and B be d-open sets. For
arbitrary x ∈ A ∩ B we have d(x, A) = d(x, B) = 1, so by Lemma 3.25 and the
measurability of A and B we get that d(x, Ac) = d(x, Bc) = 0. By taking their
union, d(x, Ac ∪ Bc) = 0 and by Lemma 3.25, d(x, A ∩ B) = 1. Thus A ∩ B is
d-open.

Now we have to check if an arbitrary union of d-open sets is also d-open. Let
Ai be d-open sets for all i ∈ I and A = ⋃

i∈I
Ai. If x ∈ Ai for some i ∈ I , we have

d(x, A) ≥ d(x, Ai) = 1, so d(x, A) = 1. It remains to prove that A is Lebesgue
measurable. Fix a point x ∈ A, then there exists i ∈ I such that x ∈ Ai. Then
d(x, Ai) = 1 and since Ai is measurable, by Lemma 3.25, we have d(x, Ac

i) = 0.
Now d(x, Ac) = 0 follows from Ac ⊆ Ac

i . Thus, by Theorem 3.30, we conclude that
A is Lebesgue measurable. □

Definition 3.33. [2, Ch 8.] The topology of d-open sets is called the density topol-
ogy. We denote it by τd.

Remark 3.34. Observe that the density topology on Rp is finer than the Euclidean
topology.
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Notation 3.35. [2, Ch 8.] Let d-int A (resp. d-cl A) denote the interior (resp. closure)
of the set A with respect to the density topology.

Theorem 3.36. [2, Thm 8.2] If A ⊆ Rp is Lebesgue measurable, then

d-int A = {x ∈ A : d(x, A) = 1}.

For any B ⊆ Rp,
d-cl B = B ∪ {x ∈ Rp : d(x, B) > 0}.

Proof. Let A1 = {x ∈ A : d(x, A) = 1}. Since d-int A is d-open and d-int A ⊆ A, for
all x ∈ d-int A we have d(x, A) = d(x, d-int A) = 1. Therefore d-int A ⊆ A1. Since
A is measurable and λ(A \ A1) = 0 by Theorem 3.30, A1 is measurable as well.
Furthermore, for all x ∈ A1 we have d(x, A1) = d(x, A) = 1. Thus A1 is d-open
and A1 ⊆ d-int A. The proof of the first claim is complete.

Now let B be an arbitrary subset of Rp. Suppose that x /∈ B and d(x, B) = 0.
Let M be a measurable hull of B. Then Lemma 3.29 implies that d(x, M) = 0 and
by Lemma 3.25, we have that d(x, M c) = 1. Set D = d-int (M c ∪ {x}). Then by the
first part of this theorem, x ∈ D. Since D ∩ B = ∅ and D is d-open, we obtain that
x /∈ d-cl B. Hence d-cl B ⊆ B ∪ {x ∈ Rp : d(x, B) > 0}.

Now suppose that x /∈ d-cl B. Then x has a neighbourhood in τd that does not
meet B, that is, there exists a d-open set D such that x ∈ D and D ∩ B = ∅. Then

d(x, D) = 1 L. 3.25=⇒ d(x, Dc) = 0 B⊆Dc

=⇒ d(x, B) = 0 =⇒ x /∈ B∪{x ∈ Rp : d(x, B) > 0},

which concludes the proof. □

It is immediate from Theorem 3.36 that every set of measure zero is d-closed.
In particular, every countable set is d-closed and we obtain further theorems.

Theorem 3.37. [2, Thm 8.4] For any set A ⊆ Rp, the following are equivalent:

(i) The set A is nowhere dense in the density topology.

(ii) The set A is meagre in the density topology.

(iii) The set A is of measure zero.

Proof. The implications (iii) =⇒ (i) =⇒ (ii) are clear. By Theorem 3.26 and
Theorem 3.36, if a measurable set is nowhere dense, it has measure zero since oth-
erwise its d-interior would not be empty. If a set A is nowhere dense in the density
topology, d-cl A is nowhere dense and measurable, therefore λ(A) ≤ λ(d-cl A) = 0.
This proves (i) =⇒ (iii) and consequently, by taking a countable union, it proves
(ii) =⇒ (iii) as well. □

Theorem 3.38. [2, Thm 8.10] For any set A ⊆ Rp, the following are equivalent:
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(i) The set A is Fσ in the density topology.

(ii) The set A is Gδ in the density topology.

(iii) The set A is Borel in the density topology.

(iv) The set A has the BP in the density topology.

(v) The set A is Lebesgue measurable.

Proof. The implications (i) =⇒ (iii), (ii) =⇒ (iii) and (iii) =⇒ (iv) are
clear by Corollary 2.48. By Theorem 3.37, (iv) implies (v). It suffices to prove
(v) =⇒ (i) and (v) =⇒ (ii). If A is Lebesgue measurable, it can be written as
A = F ∪ N where F is Fσ in the euclidean topology and λ(N) = 0. Since τd is
finer than the Euclidean topology, F is Fσ in the density topology as well and N is
d-closed by Theorem 3.36. We conclude that A is Fσ in the density topology. Now
(v) =⇒ (ii) follows by taking complements. □
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Chapter 4

Analytic sets are nice

We have seen that Borel sets have the BP (Corollary 2.48) and are universally mea-
surable (Definition 2.26). It is a naturally arising question whether this holds for
a larger family of sets. In this chapter, we introduce the family of analytic sets,
which is significantly broader than the σ-algebra of Borel sets, and we prove that
every analytic set has the BP and is universally measurable. To achieve this, we
draw upon the beautiful theory of infinite games following Kechris’ work [1].

The motivation behind the definition and study of analytic sets was when
Lusin noticed that the following seemingly true proposition is actually false: For
every Borel set B ⊆ R2 the projection of B on the x-axis is Borel. The key to the often
overlooked error is that the identity f(A∩B) = f(A)∩f(B) is not true in general,
it may fail even if A, B ⊆ R2 are Borel and f : R2 → R is the projection on the
x-axis. In fact, projections of Borel sets form a much larger family. We call them
analytic.

Definition 4.1. [1, Def 14.1] Let X be a Polish space. A set A ⊆ X is analytic if it
is a continuous image of a Polish space.

Definition 4.2. Let X be a Polish space. A set B ⊆ X is co-analytic if Bc is analytic.

The following examples illustrate that many nicely definable sets are analytic,
so it is indeed useful to explore the properties of this class of sets.

Example 4.3. Let C[0, 1] be the space of continuous real-valued functions on [0, 1]
with the supremum norm. Then the set

A = {f ∈ C[0, 1] : ∃x0 ∈ [0, 1] f is not differentiable at x0}

is analytic but not Borel.

Example 4.4. [1, Thm 27.5] Let X be a Polish space and let K(X) be the hyperspace
of compact sets in X , which is also a Polish space with the Hausdorff metric. The
set

{K ∈ K(X) : K is uncountable}
is analytic. If X is uncountable, then it is not Borel.
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Example 4.5. [1, Ex 27.15] Let X be a Polish space. The following set is analytic in
XN:

{(xn) ∈ XN : (xn) has a convergent subsequence}.

If X is not Kσ, then it is not Borel.

The development of even the basic theory of analytic sets lies beyond the scope
of this thesis. Here we list only the most important facts:

Theorem 4.6. [1, Ex 14.3, Thm 14.2, Prop 14.4] Let X be a Polish space. The following
hold:

• Let A ⊆ X . Then A is analytic ⇐⇒ A is the projection of a closed set in X × N .

• The image of an analytic set under a Borel isomorphism between Polish spaces is
analytic.

• Every Borel set is analytic, but if X is uncountable, then the converse does not hold.

• Let (An) be a sequence of analytic sets. Then the sets ⋂
n∈N

An and ⋃
n∈N

An are also
analytic.

4.1 Infinite games

In order to study certain properties of analytic sets, such as measurability and
whether or not they have the BP, we will strongly rely on the theory of infinite
games. We will start with the basic concepts.

Definition 4.7. [1, Ch 2.] Let A be a nonempty open set. We denote by An the set
of finite sequences of length n from A:

An = {(a0, . . . , an−1) : ∀i < n (ai ∈ A)}.

If n = 0, we have A0 = {∅}. The empty sequence is ∅.

The set of all finite sequences from A is

A<N = {(a0, a1, . . . , an−1) : n ∈ N, ∀i < n (ai ∈ A)} =
⋃

n∈N
An.

If s, t ∈ A<N, we say that s is an initial segment of t and t is an extension of s
if there exists m ≤ length (t) such that s = t|m. We write s ⊆ t.

The concatenation of two sequences s = (s0, . . . , sn−1), t = (t0, . . . , tm−1) ∈
A<N is the sequence (s0, . . . , sn−1, t0, . . . , tm−1) and we denote it by sˆt.
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Definition 4.8. [1, Def 2.1] A tree on a set A is a subset T of A<N that is closed
under initial segments: (a0, . . . , an−1) ∈ T, k ≤ n =⇒ (a0, . . . , ak−1) ∈ T . The
elements of T are the nodes of T .

The body of T is the set of all infinite branches in T :

[T ] = {(a0, a1, . . .) ∈ AN : ∀n ∈ N (a0, . . . , an−1) ∈ T}.

A tree T is pruned if every node has a proper extension in T , that is,
(a0, . . . , an−1) ∈ T =⇒ ∃an ∈ A (a0, . . . , an−1, an) ∈ T .

Equip the set A with the discrete topology, and then we can view AN as the
product space of infinitely many copies of A.

Lemma 4.9. [1, Ch 2.] In the space AN the following sets form a basis:

Ns = {x ∈ AN : s ⊆ x},

where s ∈ A<N.

The map T 7→ [T ] is a bijection between pruned trees on A and closed subsets of AN.

We define two-person infinite games in a general setting, so that later in the
case of specific games the notions of strategy and winning strategy will be familiar.

Definition 4.10. [1, Ch 20.] Let L ̸= ∅ be an arbitrary set. During the game, I and
II take turns in playing elements of L.

Let T ⊆ L<N be a pruned tree. This is the set of legal positions in the game.
Players I and II take turns in playing

I l0 l2 . . .
II l1 l3

with lk ∈ L and (l0, . . . , lk−1) ∈ T for all k ∈ N.

Let NI ⊆ [T ] be a set. I wins a run (l0, l1, . . .) of the game if (l0, l1, . . .) ∈ NI ,
otherwise II wins. We call NI the winning set of player I. (It is also called the payoff
set.)

We denote this game by G(T, NI)

Definition 4.11. [1, Ch 20.] A nonempty pruned subtree σ ⊆ T is a strategy for
player I if the following hold:

(i) if (l0, l1, . . . , l2j) ∈ σ, then for all l2j+1 ∈ L, (l0, l1, . . . , l2j, l2j+1) ∈ σ;

(ii) if (l0, l1, . . . , l2j−1) ∈ σ, then for a unique l2j ∈ L, (l0, l1, . . . , l2j−1, l2j) ∈ σ.
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A strategy σ for I is winning in G(T, NI) if [σ] ⊆ NI . That is, if player I follows
σ, then she wins.

We can define strategy and winning strategy for player II if we swap the pari-
ties. A strategy τ is winning for II if [τ ] ∩ NI = ∅.

Remark 4.12. I and II cannot have winning strategies simultaneously.

Definition 4.13. [1, Ch 20.] A game is determined if one of the players has a win-
ning strategy.

The following theorem is a fundamental tool for deciding whether a particular
game is determined.

Theorem 4.14 (Gale–Stewart). [1, Thm 20.1] Let T be a nonempty pruned tree on L.
Let NI ⊆ [T ] be closed or open in [T ]. Then G(T, NI) is determined.

Let us start our journey through infinite games with the Choquet game, which
characterises Baire spaces.

Definition 4.15. [1, Def 8.10] Let X be a nonempty topologcial space. We de-
fine the Choquet game GX of X as follows: player I and II take turns in playing
nonempty open subsets of X

I U0 U1 . . .
II V0 V1

so that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. Player II wins this run of the game if⋂
n∈N

Vn = ⋂
n∈N

Un ̸= ∅, otherwise I wins.

Theorem 4.16 (Oxtoby). [1, Thm 8.11] Let X be a nonempty topological space. Then X
is a Baire space ⇐⇒ player I has no winning strategy in the Choquet game GX .

Proof. ( ⇐= ) Suppose that X is not a Baire space, so there exists a nonempty
open set U0 and a sequence (Gn) of dense open sets such that ⋂

n∈N
Gn ∩ U0 = ∅. We

will describe a winning strategy for player I that starts with the set U0. Then, if II
plays V0 ⊆ U0, player I can follow by U1 = V0 ∩ G0 ̸= ∅ since G0 is dense. Player
I will continue this strategy: if II plays Vn, then we have Vn ∩ Gn ̸= ∅, and I can
play Un+1 = Vn ∩ Gn for any n ∈ N. Therefore, ⋂

n∈N
Un ⊆ ⋂

n∈N
Gn ∩ U0 = ∅, and this

is indeed a winning strategy for player I.

( =⇒ ) Now suppose that I has a winning strategy σ and let U0 be the first move
of player I according to σ. By Proposition 2.54, it suffices to prove that U0 is not
Baire. We will construct a nonempty pruned subtree S ⊆ σ such that for any p =
(U0, V0, . . . , Un) ∈ S, the set Up = {Un+1 : (U0, V0, . . . , Un, Vn, Un+1) ∈ S} consists of
pairwise disjoint open sets and⋃Up is dense in Un. We will construct S inductively
by selecting which sequences of length n from σ we put in S. First, ∅ ∈ S and if
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(U0, V0, . . . , Un−1, Vn−1) ∈ S, then (U0, V0, . . . , Un−1, Vn−1, Un) ∈ S for the unique Un

response of player I for which (U0, V0, . . . , Un−1, Vn−1, Un) ∈ σ. The harder part
is selecting which Vn responses of player II to add to p = (U0, V0, . . . , Un) ∈ S.
For any Vn ⊆ Un, if V ∗

n = Un+1 is what σ requires I to play next, then Un+1 is
a nonempty open subset of Vn. By Zorn’s Lemma, there exists a maximal col-
lection Vp of nonempty open subsets Vn ⊆ Un such that the sets {V ∗

n : Vn ∈ Vp}
are pairwise disjoint. Put in S all (U0, V0, . . . , Un, Vn) with Vn ∈ Vp. Then Up =
{Un+1 : (U0, V0, . . . , Un, Vn, Un+1) ∈ S} = {V ∗

n : Vn ∈ Vp} consists of pairwise dis-
joint sets and ⋃Up is dense in Un, since if there was a nonempty open set Ṽn ⊆ Un

that is disjoint from ⋃Up, then Vp ∪ {Ṽn} would violate the maximality of Vp.

Now let Wn = ⋃{Un : (U0, V1, . . . , Un) ∈ S}. It follows by induction that Wn is
open and dense in U0 for all n ∈ N. We claim that (Wn) is a sequence of dense open
sets in U0 with empty intersection. Otherwise, if x ∈ ⋂

n∈N
Wn, there exists a unique

(U0, V0, U1, V1, . . .) ∈ [S] such that x ∈ Un for all n ∈ N, so ⋂
n∈N

Un ̸= ∅, contradicting
the fact that (U0, V0, . . .) ∈ [σ] and σ is a winning strategy for I. Thus, U0 is not a
Baire space and the proof is complete. □

Definition 4.17. [1, Def 8.12] A nonempty topological space X is a Choquet space
if player II has a winning strategy in GX .

Remark 4.18. [1, Ch 8.] Every Choquet space is a Baire space since both players
cannot have winning strategies.

Remark 4.19. [1, Ex 8.15, 8.16] Let X be a nonempty topological space. The follow-
ing implications hold: X is Polish =⇒ X is a completely metrisable space =⇒
X is Choquet =⇒ X is Baire.

Proof. The only implication we need to prove is that completely metrisable spaces
are Choquet. In the Choquet game on X , player II selects a nonempty open set Vn

such that V n ⊆ Un and diam(Vn) < 1
n+1 for all n ∈ N. Since the space is complete,⋂

n∈N
V n = ⋂

n∈N
Vn ̸= ∅ and player II wins. □

Now we turn to the Banach–Mazur game, which is considered the starting
point of the theory of infinite games.

Definition 4.20. [1, Ch 8.] Let X be a nonempty topological space and let A ⊆ X .
The Banach–Mazur game, denoted by G∗∗(A), is defined as follows: players I and
II take turns in playing nonempty open sets

I U0 U1 . . .
II V0 V1

so that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . .. Player II wins this run of the game if and
only if ⋂

n∈N
Vn = ⋂

n∈N
Un ⊆ A, otherwise I wins.

Theorem 4.21 (Banach–Mazur, Oxtoby). [1, Thm 8.33] In the game G∗∗(A) the fol-
lowing hold:
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(i) A is comeagre ⇐⇒ II has a winning strategy in G∗∗(A).

(ii) If X is Choquet and there is a metric d on X whose open balls are open in X , then
A is meagre in some nonempty open set ⇐⇒ I has a winning strategy in G∗∗(A).

Proof. (i)( =⇒ ) Let (Wn) be a sequence of dense open sets such that ⋂
n∈N

Wn ⊆ A.
Let II play Vn = Un ∩ Wn. Then ⋂

n∈N
Vn ⊆ ⋂

n∈N
Wn ⊆ A, hence II wins.

( ⇐= ) As in the proof of Theorem 4.16.

(ii)( =⇒ ) Let us assume that A is meagre in a nonempty set U0. Let (Wn) be
a sequence of dense open sets in U0 such that ⋂

n∈N
Wn ⊆ Ac. Since U0 is Choquet,

player I has a winning strategy in the following game:

I U1 . . .
II V0 V1

so that U0 ⊇ V0 ⊇ U1 ⊇ . . . , Un, Vn nonempty open and I wins if ⋂
n∈N

Un ̸= ∅.
Let σ be the winning strategy of I in this game. From here we can describe a
winning strategy in the Banach–Mazur game for I by starting with U0. Then II
plays V0 ⊆ U0, to which I responds with the unique U1 for which (W0 ∩ V0, U1) ∈
σ. Now II plays V1 ⊆ U1 and I responds with the unique U2 for which (W0 ∩
V0, U1, W1 ∩ V1, U2) ∈ σ and so on. This way, ⋂

n∈N
Un ̸= ∅ and ⋂

n∈N
Un ⊆ ⋂

n∈N
Wn ⊆ Ac,

so I wins.

( ⇐= ) Suppose that I has a winning strategy σ and the first move is U0 ac-
cording to it. We can construct another winning strategy σ′ for I which also starts
with U0 and in the nth move it produces Un with diam(Un) < 2−n for all n ≥ 1.
This is possible because in the nth move I may pretend that diam(Vn−1) < 2−n by
choosing a V ′

n−1 ⊆ Vn−1 with diam(V ′
n−1) < 2−n and responding by σ. This way⋂

n∈N
Un is a singleton contained in Ac. As in the first part and Theorem 4.16, by

"starting the game" after U0, we get that A is meagre in U0. □

Remark 4.22. Let X be a Polish space and A ⊆ X . If A has the BP, then G∗∗(A) is
determined by Proposition 2.51 and Theorem 4.21.

We will need another variant of the Banach–Mazur game.

Definition 4.23. Two games G and G′ are equivalent if I (resp. II) has a winning
strategy in G if and only if I (resp. II) has a winning strategy in G′.

Definition 4.24. [1, Ch 8.] Let X be a topological space. A collection of nonempty
open sets in X is a weak basis if any nonempty open set contains one of them.

Remark 4.25. [1, Ch 21.] Let X be a Choquet space with a topology τ that admits a
metric d whose open balls are open in (X, τ). Let W be a weak basis for (X, τ) and
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I U0 U1 . . .
II V0 V1

let A ⊆ X . This variant of the Banach–Mazur game is defined as follows: players
I and II take turns in playing nonempty open sets

so that Un, Vn ∈ W , diam(Un), diam(Vn) < 2−n, U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . ..
Player II wins this run of the game if and only if ⋂

n∈N
Vn = ⋂

n∈N
Un ⊆ A, otherwise I

wins.

As in the proof of Theorem 4.21, if a player has a winning strategy, since X is
Choquet, she can modify the winning strategy so that ⋂

n∈N
Vn = ⋂

n∈N
Un becomes a

singleton. Therefore, in the above definition of the game we can replace ⋂
n∈N

Vn =⋂
n∈N

Un ⊆ A with ⋂
n∈N

V
d

n = ⋂
n∈N

U
d

n ⊆ A.

It is easy to check that this variant is essentially equivalent to the original one
from Definition 4.20, so Theorem 4.21 applies to this variant as well.
Definition 4.26. [1, Ch 21.] Let X be a Choquet space with a topology τ that admits
a metric d whose open balls are open in (X, τ). Let W be a weak basis for (X, τ)
and let F ⊆ X × N . The unfolded Banach–Mazur game, denoted by G∗∗

u (F ), is
defined as follows: players I and II take turns in playing nonempty open sets and
additionally II plays y(n) ∈ N in the nth round

I U0 U1 . . .
II y(0), V0 y(1), V1

so that Un, Vn ∈ W , diam(Un), diam(Vn) < 2−n, U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . ..
Player II wins this run of the game if and only if ⋂

n∈N
V

d
n × {y} = ⋂

n∈N
U

d
n × {y} ⊆ F ,

otherwise I wins.
Theorem 4.27. [1, Thm 21.8] Let X be a Choquet space with a topology τ that admits a
metric d whose open balls are open in (X, τ). Let F ⊆ X × N and A = prX F . Then

(i) I has a winning strategy in G∗∗
u (F ) =⇒ A is meagre in a nonempty open set.

(ii) II has a winning strategy in G∗∗
u (F ) =⇒ A is comeagre.

Proof. (ii) If II has a winning strategy in G∗∗
u (F ), then she clearly has a winning

strategy in G∗∗(A) and we can apply Theorem 4.21.

(i) Let σ be a winning strategy for I and let U0 be the first move according to it.
Our goal is to show that A is meagre in U0. Now fix a nonempty sequence u ∈ N<N.
The sequence (U0, V0, U1, V1, . . . , Un) with n ≤ length(u) or (U0, V0, U1, V1, . . . , Un, Vn)
with n < length(u) is compatible with σ, u if (U0, (u(0), V0), U1, (u(1), V1), . . . , Un),
respectively (U0, (u(0), V0), U1, (u(1), V1), . . . , Un, (u(n), Vn)) is in σ. As in the proof
of Theorem 4.16, we can construct for every u a tree Tu of sequences compatible
with σ, u such that
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1. For any (U0, V0, U1, V1, . . . , Un) ∈ Tu, the family of sets

U = {Un+1 : (U0, V0, U1, V1, . . . , Un, Vn, Un+1) ∈ Tu}

is pairwise disjoint and ⋃U is dense in Un if n < length(u).

2. If u ⊆ u′, then Tu is the restriction of Tu′ to the sequences as above with
n ≤ length(u), respectively n < length(u).

Then the set Wu = ⋃{Ulength(u) : (U0, V0, U1, V1, . . . , Ulength(u)) ∈ Tu} is open and
dense in U0 for every u ∈ N<N. Let G = ⋂

u∈N<N
Wu. Then G is comeagre in U0

and it suffices to show that G ⊆ Ac, that is, if x ∈ G, then for all y ∈ N we
have (x, y) /∈ F . Fix y ∈ N . Then x ∈ ⋂

u∈N<N
Wu ⊆ ⋂

n∈N
Wy|n, so there is a unique

(U0, V0, . . . , Un, Vn, . . .) such that x ∈ Un for each n and

(U0, (y(0), V0), U1, (y(1), V1), . . . , Un, (y(n), Vn), . . .) ∈ [σ].

Thus, (x, y) /∈ F and the proof is complete. □

Proposition 4.28. Let X be a Polish space. If F ⊆ X × N is closed, then G∗∗
u (F ) is

determined.

Proof. Consider the map f : [S] → X × N , (U0, (y(0), V0), . . .) 7→ (x, y) where
{x} = ⋂

n∈N
U

d
n (see Remark 4.25). It suffices to show that this function is continuous

because then NII is closed and, by Theorem 4.14, it is determined.

Let us fix any ε > 0 and n ∈ N. If f((U0, (y(0), V0), . . .)) = (x, y), we need a neig-
bourhood of (U0, (y(0), V0), . . .) which maps to B(x, ε) × [(y(0), y(1), . . . , y(n − 1))].
Choose k ∈ N such that k ≥ n and 2−k < ε. Then f([(U0, (y(0), V0), . . . , Uk)]) ⊆
B(x, 2−k) × [(y(0), . . . , y(k − 1))] ⊆ B(x, ε) × [(y(0), y(1), . . . , y(n − 1))]. □

Corollary 4.29. Let X be a Polish space and A an analytic set. Then A is either meagre
in a nonempty open set or comeagre in X .

Proof. By Theorem 4.6, there exists F ⊆ X ×N closed such that A = prX F . Then,
by Proposition 4.28, we have that G∗∗

u (F ) is determined and consequently, Theo-
rem 4.27 implies that A is either meagre in a nonempty open set or comeagre in
X . □

4.2 Analytic sets have the BP

Theorem 4.30 (Lusin–Sierpiński). [1, Thm 21.6] Let X be a Polish space and A ⊆ X
an analytic set. Then A has the BP.
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Proof. Let V0, V1, . . . be a countable basis of X . For a fixed n ∈ N, by Lemma 2.12
and Theorem 4.6, we have that Vn is a Polish space and A ∩ Vn is analytic in Vn, so
Corollary 4.29 implies that either A is comeagre in Vn or there exists a nonempty
open set V ′

n ⊆ Vn such that A is meagre in V ′
n. We may assume that this V ′

n is basic
open since if a set is meagre in an open set, then it is meagre in every open subset
of it. Thus, for every n ∈ N the set Ac is either meagre in Vn or comeagre in some
nonempty basic open V ′

n ⊆ Vn. Hence, by Proposition 2.51, Ac has the BP, and
this, together with Proposition 2.47, implies that A has the BP, which concludes
the proof. □

4.3 Analytic sets are universally measurable

To prove our other main theorem, we need that the density-topology on (0, 1) is
Choquet.
Lemma 4.31. [1, Ex 17.47] Let A ⊆ (0, 1) be a Lebesgue measurable set and let x ∈
d-int A. Then for every ε > 0 there is a nonempty closed set P ⊆ A such that x ∈ d-int P
and diam(P ) < ε.

Proof. Let r0 > 0 such that r0 < min(x, 1 − x, ε
2). By definition, x is a density point

of A, so there is a strictly decreasing sequence (rn) in (0, r0) such that lim
n→∞

rn = 0
and for all 0 < r ≤ rn we have λ(A ∩ B(x, r)) > (1 − 1

2n+1 )λ(B(x, r)). Now
let Pn be a closed set such that Pn ⊆ (B(x, rn) \ B(x, rn+1)) ∩ A and λ(Pn) ≥
(1 − 1

2n+1 )λ((B(x, rn) \ B(x, rn+1)) ∩ A). Set P = {x} ∪ ⋃
n∈N

Pn, then x is a density
point of P . It remains to prove that P is closed. Let (yn) be a sequence in P that
converges in (0, 1). If the set I = {k ∈ N : ∃n ∈ N yn ∈ Pk} has infinitely many
members, then yn → x. Otherwise, {yn : n ∈ N} ⊆ ⋃

k∈I
Pk, which is a compact set

and therefore contains the limit. □

Lemma 4.32. [1, Ex 17.47] The space (0, 1) with the density topology is a Choquet space.

Proof. We will describe a winning strategy for player II in the Choquet game on
((0, 1), τd). In the nth step player I plays Un d-open. Let xn ∈ Un. By Lemma
4.31, there is a nonempty closed set Pn ⊆ Un (in the Euclidean topology) with
xn ∈ d-int Pn and diam(Pn) < 1

n+1 . Now let II play d-int Pn. Then we have⋂
n∈N

Un = ⋂
n∈N

Pn ̸= ∅. Therefore, II wins the Choquet game and (0, 1) is a Cho-
quet space. □

Theorem 4.33 (Lusin). [1, Thm 21.10] In a Polish space X every analytic set is univer-
sally measurable.

Proof. Let S ⊆ X be an analytic set. We will prove some propositions, which will
reduce this general setting to a much simpler one.
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Proposition 4.34. Let µ be a σ-finite measure on a measurable space (X, M). Then
there exists a probability measure ν on (X, M) such that for all A ⊆ X µ(A) = 0 ⇐⇒
ν(A) = 0.

Proof. Let (An) be a sequence of sets in M such that ⋃
n∈N

An = X and µ(An) < ∞

for all n ∈ N. Then let us define T =
∞∑

n=0
2−n−1 µ(An)

1 + µ(An) , where the sum is
clearly convergent. It is straightforward to verify that the probability measure
ν(A) = 1

T

∞∑
n=0

2−n−1 µ(A ∩ An)
1 + µ(An) (for all A ∈ M) is indeed equivalent to µ. □

Proposition 4.35. Let M be a σ-algebra on X that contains all singletons in X . Let µ
be a finite measure on the measurable space (X, M). Then there exist a discrete measure
µd and a continuous measure µc on (X, M) such that µ = µd + µc.

Proof. Let Dn = {x ∈ X : µ({x}) > 1
n
} for all n ∈ N+ and let D = {x ∈

X : µ({x}) > 0}. Thus, D = ⋃
n∈N+

Dn. Every Dn is finite since µ is finite, hence
D is countable. For a set A ∈ M let µd(A) = µ(A ∩ D) and µc(A) = µ(A \ D).
Cleary, µd is discrete and µc is continuous. □

Let µ be a σ-finite Borel measure on X . By definition, the σ-algebra of measur-
able sets is generated by the σ-ideal of nullsets and the Borel sets. By propositions
4.34 and 4.35, we can assume, without loss of generality, that µ is a continuous
probability measure.

Proposition 4.36. [1, Thm 17.41] Let X be a Polish space and let µ be a continuous Borel
probability measure on X . Then there exists a measure-preserving Borel isomorphism
(X, µ) → ((0, 1), λ).

By Proposition 4.36 and Theorem 4.6, we can assume that X = (0, 1) and µ is
Lebesgue measure.

Let P = Sc and µ∗(H) = sup{µ(A) : A ⊆ P, A Borel} for all H ⊆ (0, 1). Then
there are Borel sets An ⊆ P such that µ∗(P ) − 1

n+1 < µ(An) for all n ∈ N. Let
A = ⋃

n∈N
An. Clearly, A ⊆ P is Borel and µ(A) = µ∗(P ). Now for the set P ′ = P \ A

we have µ∗(P ′) = 0 and P ′ is co-analytic. If µ(P ′) = 0, then since P = P ′ ∪ A,
we have that P is µ-measurable and so is S. Therefore, it remains to prove that
µ(P ′) = 0.

By Lemma 4.32, the space (0, 1) with the density topology is Choquet and the
density topology is finer than the Euclidean topology. Then we can apply the dou-
ble topology variant of the general unfolded Banach–Mazur game (presented in
Definition 4.26) to X = (0, 1), τ = the Euclidean topology and τ ′ = the density
topology, since there is a closed set F ⊆ (0, 1) × N (where (0, 1) carries the Eu-
clidean topology) such that pr(0,1) F = P ′c. By Theorem 4.27, we have that either
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P ′c is comeagre or else P ′c is meagre in a nonempty open set in the density topol-
ogy. In the first case, by Theorem 3.37, P ′ is of measure zero, and we are done. In
the second case, let U be a nonempty open set in the density topology so that U \P ′

is meagre. By Theorem 3.37, µ(U \ P ′) = 0. Then there exists a Borel set B such
that U \ P ′ ⊆ B and µ(B) = 0. Since U \ B ⊆ P ′ is measurable and µ(U \ B) > 0,
we get that µ∗(P ′) > 0, which is a contradiction. The proof is complete. □
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