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Chapter 1

Introduction

The thesis presents the results appeared in [2] with the addition of Section 3.2 which
builds upon results from discussions at the Emléktábla Workshop on Matroid Optimiza-
tion, 2022.

Given a matroid M over a ground set S, the exchange axiom implies that for any pair
of bases R and B there exists a sequence of exchanges that transforms R into B, and
the shortest length of such a sequence is |R − B|. In the light of this, it is natural to
ask whether analogous results hold for basis pairs instead of single bases. More precisely,
let (R, B) be an ordered pair of disjoint bases of M , and let e ∈ R and f ∈ B be such
that both R′ := R − e + f and B′ := B + e − f are bases. In such a case, we call the
exchange feasible and say that the pair (R′, B′) is obtained from (R, B) by a symmetric
exchange. Using this terminology, we define the exchange distance (or distance for
short) of two pairs of disjoint bases P1 = (R1, B1) and P2 = (R2, B2) to be the minimum
number of symmetric exchanges needed to transform the former into the latter if such a
sequence exists and +∞ otherwise. We call two pairs of disjoint bases equivalent if their
exchange distance is finite. A sequence of symmetric exchanges starting from a pair P1 is
called strictly monotone with respect to another pair P2 (or strictly monotone
for short when P2 is clear from the context) if each step decreases the difference between
the first member of the current pair and that of P2. In other words, a strictly monotone
exchange sequence uses elements only from (R1 ∩ B2) ∪ (R2 ∩ B1) and at most once.

At this point it is not clear (I) when the distance of two pairs will be finite, and (II)
if their distance is finite, whether we can give an upper bound on it.

Regarding question (I), one can formulate an obvious necessary condition for the dis-
tance of P1 and P2 to be finite, namely R1 ∪ B1 = R2 ∪ B2 should certainly hold –
two pairs with this property are called compatible. In [16], White conjectured that
two basis pairs P1 and P2 are equivalent if and only if they are compatible. While the
conjecture was verified for various matroid classes, it remains open in general. By re-
lying on the constructive characterization of bispanning graphs, Farber, Richter, and
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Shank [8] proved White’s conjecture for graphic and cographic matroids, while Farber [7]
settled the statement for transversal matroids. Bonin [5] verified the conjecture for sparse
paving matroids. The case of strongly base orderable matroids was solved by Lasoń and
Micha lek [13]. McGuinness [14] extended the graphic case to frame matroids satisfying a
certain linearity condition. Kotlar and Ziv [12] showed that any two elements of a basis
have a sequential symmetric exchange with some two elements of any other basis. At the
same time, Kotlar [11] proved that three consecutive symmetric exchanges exist for any
two bases of a matroid, and that a full sequential symmetric exchange, of length at most
6, exists for any two bases of a matroid of rank 5.

The question can be formulated in a more general way. Let X = (X1, . . . , Xm) be a
sequence of bases of a matroid M , and assume that there exist e ∈ Xi − Xj, f ∈ Xj − Xi

with 1 ≤ i < j ≤ m such that both Xi − e + f and Xj + e − f are bases. Then we say
that X ′ = (X1, . . . , Xi−1, Xi −e+f, Xi+1, . . . , Xj−1, Xj +e−f, Xj+1, . . . , Xm) is obtained
from X by a symmetric exchange. Two sequences X and Y are equivalent if Y can be
obtained from X by a composition of symmetric exchanges. Furthermore, X and Y are
called compatible if |{i : s ∈ Xi, 1 ≤ i ≤ m}| = |{i : s ∈ Yi, 1 ≤ i ≤ m}| for every
s ∈ S. The more general version of White’s conjecture is the following:

Conjecture 1.1 (White). Two basis sequences X and Y of the same length are equivalent
if and only if they are compatible.

Much less is known about question (II), that is, the optimization version of the prob-
lem. Gabow [9] studied sequential symmetric exchanges and posed the following problem,
which was later stated as a conjecture by Wiedemann [17] and by Cordovil and Moreira [6]:

Conjecture 1.2 (Gabow). Let A and B bases of the same matroid of rank r. Then there
are orderings A = (a1, . . . , ar) and B = (b1, . . . , br) such that {a1, . . . , ai, bi+1, . . . , br} and
{b1, . . . , bi, ai+1, . . . , ar} are bases for i = 0, . . . , r.

In other words: for any two disjoint bases R and B of a matroid M , there is a sequence
of r symmetric exchanges that transforms the pair P1 = (R, B) into P2 = (B, R). The
rank of the matroid is a trivial lower bound on the minimum number of exchanges needed
to transform a pair (R, B) into (B, R), and the essence of Gabow’s conjecture is that
that many steps might always suffice. The relation between the conjectures of White
and Gabow is immediate: the latter would imply the former for sequences of the form
(R, B) and (B, R). Gabow’s conjecture was verified for partition matroids, matching
and transversal matroids, and matroids of rank less than 4 in [9], and an easy reasoning
shows that it also holds for strongly base orderable matroids as well. The graphic case
was settled by Wiedemann [17], Kajitani, Ueno, and Miyano [10], and Cordovil and
Moreira [6].

2



In general, if M has rank r, then r − |R1 ∩ R2| is an obvious lower bound on the
exchange distance of P1 = (R1, B1) and P2 = (R2, B2). However, it might happen
that more symmetric exchanges are needed even if M is a graphic matroid; see [7] or
Figure 5.2 for a counterexample. As a common generalization of the conjectures of White
and Gabow, Hamidoune [6] proposed a rather optimistic variant stating that

Conjecture 1.3 (Hamidoune). Let P1 = (R1, B1) and P2 = (R2, B2) be compatible basis
pairs of a rank-r matroid M over a ground set S. Then the exchange distance of P1 and
P2 is at most r.

Recently, Bérczi and Schwarcz [3] showed that Hamidoune’s conjecture hold for split
matroids, a large class that contains paving matroids as well. While studying a specific
maker-breaker game on bispanning graphs, Andres, Hochstättler and Merkel [1] showed
that there is an exchange sequence between any two pairs of disjoint spanning trees of a
wheel of rank at least four using only so-called left unique exchanges. They also asked
whether the exchange distance of compatible basis pairs of a matroid can be bounded by
a polynomial of the rank – this latter problem is a weakening of Hamidoune’s conjecture.

Let w : S → R+ be a weight function on the elements of the ground set S. Given a pair
(R, B) of disjoint bases, we define the weight of a symmetric exchange R′ := R−e+f

and B′ := B + e − f to be w(e) + w(f), that is, the sum of the weights of the exchanged
elements. Analogously to the unweighted setting, we define the weighted exchange
distance (or weighted distance for short) of two pairs of disjoint bases P1 = (R1, B1)
and P2 = (R2, B2) to be the minimum total weight of symmetric exchanges needed to
transform the former into the latter if such a sequence exists and +∞ otherwise. As a
weighted extension of Hamidoune’s conjecture, we propose the following.

Conjecture 1.4. Let P1 = (R1, B1) and P2 = (R2, B2) be compatible basis pairs of a
matroid M over a ground set S, and let w : S → R+ be a weight function. Then the
weighted exchange distance of P1 and P2 is at most w(R1 ∪ B1) = w(R2 ∪ B2).

By setting the weight function to be identically one, we get back Hamidoune’s conjec-
ture. It is worth mentioning that a strictly monotone exchange sequence transforming P1

into P2 is optimal in every sense, i.e., it has both minimum length and minimum weight.

Outline of the thesis. In Chapter 2 we describe basic notations and explain the
fundamental concepts used throughout the thesis. We also also look at some elementary
observations on wheels.

In Chapter 3 first we verify Conjecture 1.4 for strongly base orderable matroids, a
class with distinctive structural properties. Then we describe in detail an algorithm for
White’s conjecture for graphic matroids and observe that the number of steps is O(n2).
This latter result will follow from observing that every edge will be used at most n times.
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In Chapter 4, we work with a further strengthening of the conjecture where both
the length and the weight of the exchange sequence are ought to be bounded. The main
result in the thesis is a proof of the conjecture for graphic matroids of wheels. Though
wheels are structurally rather simple, the proof for this graph class is already non-trivial
and requires a thorough understanding of feasible exchanges. As a byproduct, we show
that the minimum number of steps required to transform P1 into P2 can be arbitrarily
large compared to the lower bound r − |R1 ∩ R2|.

Finally in Chapter 5 we prove the conjecture for spikes, an important class of 3-
connected matroids. Spikes are interesting because, as we show, one can define an arbi-
trarily large number of basis pairs without a strictly monotone exchange sequence between
any two of them. This is in sharp contrast to the case of wheels, where for any three pairs
of bases, there exist two with a strictly monotone exchange sequence between them.
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Chapter 2

Preliminaries

General notation. The set of nonnegative real numbers is denoted by R+. For subsets
X, Y ⊆ S, their symmetric difference is defined as X△Y := (X \ Y ) ∪ (Y \ X). When
Y consist of a single element y, then X \ {y} and X ∪ {y} are abbreviated as X − y and
X + y, respectively. Given a weight function w : S → R+ and a subset X ⊆ S, we use
the notation w(X) = ∑

s∈X w(s).

Matroids. We present two ways one can define a matroid.
A matroid is a pair (S, I) where S is a finite set and I is a family of subsets fulfilling

the following properties:

(I1) ∅ ∈ I,

(I2) X ⊆ Y ∈ I ⇒ X ∈ I,

(I3) X, Y ∈ I, |X| < |Y | ⇒ ∃e ∈ Y \ X such that X + e ∈ I.

We call the members of I independent sets and maximal independent sets are called
bases. We can also define a matroid with its bases. Let (S, B) be a pair where S is
a finite set and B (these are the bases of the matroid) is a family of subsets with the
following properties:

(B1) B is nonempty,

(B2) If A and B are distinct elements of B and a ∈ A \ B then there exists an element
b ∈ B − A such that A − a + b ∈ B.

Then the pair (S, B) forms a matroid. Property (B2) is called the basis exchange
property. It can be shown that (B2) is equivalent to the following:

(B2’) If A and B are distinct elements of B and a ∈ A \ B then there exists an element
b ∈ B − A such that A − a + b ∈ B and B − b + a ∈ B.
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Property (B2’) is called the symmetric exchange property.
If M is a rank-r matroid over a ground set S of size 2r such that S decomposes into

two disjoint bases R and B of M , then such a decomposition is called a coloring of
M . Throughout the thesis, we will refer to the elements of R and B as ‘red’ and ‘blue’,
respectively. A feasible exchange of elements r ∈ R and b ∈ B means that R − r + b

and B − b + r are both bases of M ; such an exchange is denoted by (r, b). We extend this
notation to a sequence of symmetric exchanges as well by writing (r1, b1), . . . , (rk, bk),
meaning that (R \ {r1, . . . , ri}) ∪ {b1, . . . , bi} and (B ∪ {r1, . . . , ri}) \ {b1, . . . , bi} are bases
for i = 1, . . . , k.

A matroid M is strongly base orderable if for any two bases B1, B2, there exists a
bijection ϕ : B1 → B2 such that (B1 \ X) ∪ ϕ(X) is also a basis for any X ⊆ B1, where
we denote ϕ(X) := {ϕ(e) | e ∈ X}. In this case one can easily see that (B2 \ ϕ(X)) ∪ X

is also a basis.
For a graph G = (V, E) on n vertices, the graphic matroid M = (E, I) of G is

defined on E by considering a subset F ⊆ E to be independent if it is a forest, that is,
I = {F ⊆ E | F does not contain a cycle}. If the graph is connected, then the bases of
the graphic matroid are exactly the spanning trees of G and the rank of the matroid is
n−1. A graph is called a bispanning graph if it is a union of two edge-disjoint spanning
trees. In such a case the graphic matroid defined on this graph can be decomposed into
the union of two disjoint bases.

Let S = {t, x1, y1, . . . , xr, yr} be a ground set of size 2r + 1 for some r ≥ 3, and let
C1 = {{t, xi, yi} | 1 ≤ i ≤ r} and C2 = {{xi, yi, xj, yj} | 1 ≤ i < j ≤ r}. Furthermore, let
C3 ⊆ {Z ⊆ S | |Z| = r, |Z ∩ {xi, yi}| = 1 for 1 ≤ i ≤ r} be such that the intersection of
any two members of C3 has size at most r − 2. Note that C3 might be empty. Finally,
define C4 = {C ⊆ S | |C| = r + 1, C ′ ̸⊆ C for C ′ ∈ C1 ∪ C2 ∪ C3}. Then the family
C = C1 ∪ C2 ∪ C3 ∪ C4 satisfies the circuit axioms, hence M = (S, C) is a rank-r matroid
with circuit family C. Matroids arising this way are called spikes, where t and the pairs
{xi, yi} are called the tip and the legs of the spike, respectively. It is not difficult to
check that restricting M to any 2r of its elements (or in other words, deleting any of its
elements) results in a matroid whose ground set decomposes into two disjoint bases.

Wheels. A graph G = (V, E) is called a wheel graph (or wheel for short) if it is
obtained by connecting a vertex, called the center of the wheel, to all the vertices of a
cycle of length at least three, called the outer cycle of the wheel. In particular, wheels
have at least four vertices. Edges connecting the center vertex with the vertices of the
outer cycle are called spokes, while the edges of the outer cycle are called rim edges.
Wheels are clearly planar, and so the order of the vertices on the outer cycle implies a
natural cyclic ordering of the spokes and the rim edges as well.
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(b) The coloring obtained by symmetrically
exchanging e and its pair φP,−(e).

Figure 2.1: Colorings containing four intervals. Thick rim edges correspond to boundary
edges. Note that both colorings have positive orientation.

It is not difficult to check that any wheel is the disjoint union of two spanning trees.
Therefore, a coloring of the graphic matroid of a wheel is basically a partition of its edge
set into two colors R and B such that both color classes form a spanning tree. A nice
property of wheels is that we have a fairly good understanding of the structure of their
colorings. Indeed, in order to decompose a wheel into two spanning trees, we first need to
split the spokes into two nonempty sets. Then, if a rim edge goes between the endpoints
of two spokes having the same color, then it automatically has to be colored with the
other color to obtain a basis. Hence it only remains to decide the color of the rim edges
going between the endpoints of spokes having different colors. However, once we fix the
color of any of those edges, it determines the color of all the remaining ones.

We call a maximal set of consecutive spokes of the same color an interval. By the
length and color of the interval we mean the number and color of the spokes in it,
respectively. Rim edges going between two intervals are called boundary edges. By
the above, for X ∈ {R, B}, either every interval of color X is followed by a boundary
edge of color X in a counterclockwise direction, or every interval of color X is followed
by a boundary edge of color X in a clockwise direction. This property is referred to as
the orientation of the coloring, and the orientation is called positive in the former and
negative in the latter case; see Figure 2.1a for an example. Orientations will play a
crucial role in whether one can go from one coloring to another using a small number of
exchanges or not.

Given a coloring P = (R, B) of the wheel graph, each spoke e is incident to two rim
edges. The rim edge sharing a vertex with e in the direction opposite of the orientation
of the coloring can always be exchanged with e. We denote this rim edge by φP,−(e),
while the other rim edge incident to e is denoted by φP,+(e); see Figure 2.1b for an
example. Both φP,− and φP,+ provide bijections between spokes and rim edges. Note
that these bijections are already determined by the orientation of P. If there are at least
four intervals in the coloring, then the feasible exchanges are exactly the ones exchanging
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e and φP,−(e) for some spoke e. When there are only two intervals in the coloring, then
there are other pairs that can be symmetrically exchanged.
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Chapter 3

Strongly base orderable and graphic
matroids

3.1 Strongly base orderable matroids

As a warm-up, we first consider the basic case of strongly base orderable matroids. For
strongly base orderable matroids, the proof of Conjecture 1.4 can be read out directly
from the proof of White’s Conjecture 1.1 in [13] for strongly base orderable matroids.
However, it might help the reader to get familiar with the notion of basis exchanges, and
also sheds light to the difficulties caused by the presence of a weight function.

Theorem 3.1. Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases
of a rank-r strongly base orderable matroid M over a ground set S, and let w : S → R+

be a weight function. Then there exists a sequence of exchanges of total weight at most
w(R1 ∪ B1) = w(R2 ∪ B2) that transforms P1 into P2 and uses each element at most
twice.

Proof. Let ϕ1 : R1 → B1 and ϕ2 : R2 → B2 be bijections such that (Ri \ X) ∪ ϕi(X) is
a basis for each X ⊆ Ri and i = 1, 2. Consider the bipartite graph G with vertex set
R1 ∪ B1 = R2 ∪ B2, and edges of the form eϕ1(e) for e ∈ R1 and fϕ2(f) for f ∈ R2. We
denote the color classes of G by S and T . Note that

S = (S ∩ R1) ∪ (S ∩ B1) = (R1 \ (R1 \ S)) ∪ ϕ1(R1 \ S)

and
T = (T ∩ R1) ∪ (T ∩ B1) = (R1 \ (R1 \ T )) ∪ ϕ1(R1 \ T ),

hence both S and T are bases of M . Let us define the basis pairs P = (S, T ) and
P′ = (T, S).
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By exchanging the elements between R1 \ S and S \ R1 according to ϕ1, we get a
sequence of weight w(R1△S) that transforms P1 into P. By exchanging the elements
between S \ R2 and R2 \ S according to ϕ2, we get a sequence of weight w(R2△S) that
transforms P into P2. The concatenation of these two sequences transforms P1 into P2,
has total weight w(R1△S) + w(R2△S), and uses each element at most twice.

By exchanging the elements between R1 \ T and T \ R1 according to ϕ1, we get a
sequence of weight w(R1△T ) that transforms P1 into P′. By exchanging the elements
between T \ R2 and R2 \ T according to ϕ2, we get a sequence of weight w(R2△T ) that
transforms P into P2. The concatenation of these two sequences transforms P1 into P2,
has total weight w(R1△T ) + w(R2△T ), and uses each element at most twice.

Since

w(R1△S) + w(R2△S) + w(R1△T ) + w(R2△T )
= (w(R1△S) + w(R1△T )) + (w(R2△S) + w(R2△T ))
= (w(R1) + w(B1)) + (w(R2) + w(B2)),

at least one of the above defined sequences has total weight at most w(R1 ∪B1) = w(R2 ∪
B2) and uses each element at most twice. This concludes the proof of the theorem.

3.2 Graphic matroids

The rank of the graphic matroid of a connected graph on n vertices is n − 1. Though
it is not stated explicitly, the algorithms of [8] and [4] that prove White’s conjecture for
graphic matroids give a sequence of exchanges of length at most O(n2), as was observed
by Bérczi, Kobayashi, Király and Szabó at the Emléktábla Workshop on Matroid Opti-
mization, 2022. It remains an intriguing open problem to improve the bound to O(n),
matching the order of the bound in the conjecture of Hamidoune. We present here the
algorithm in detail and study the number of steps it requires.

In what follows, we prove White’s conjecture for graphic matroids, together with an
upper bound on the number of exchanges.

Theorem 3.2. Let G = (V, E) be a bispanning graph and let M be its graphic matroid.
Let P1 = (R1, B1) and P2 = (R2, B2) be two pairs of disjoint bases of M . Then there
exists a sequence of O(n2) exchanges that transforms P1 into P2.

The proof will rely on a lemma made on bispanning graphs

Lemma 3.3. Let G = (V, E) be a bispanning graph. Then there exists a vertex with
degree at most 3.
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Proof. Let |V | = n, then |E| = 2n − 2. Suppose to the contrary that d(v) ≥ 4 for every
v ∈ V . Then we have

2n − 2 = |E| =
∑
v∈V

d(v)/2 ≥ 2n, (3.1)

a contradiction.

Now we prove Theorem 3.2.

Proof of Theorem 3.2. We will use induction on |V | = n. The case when n ≤ 3 is not
difficult to check.

Suppose that the statement holds for graphs with at most n vertices. We prove that
it also holds for graphs having n + 1 vertices. Using Lemma 3.3, we get that there exists
a vertex v, whose degree is at most 3. We discuss two cases based on the degree of v.
Recall that we refer to the elements of Ri and Bi as red and blue elements.

Case 1. v has degree 2.
Let e1 and e2 denote the two edges adjacent to v. e1 and e2 have different colors.

Since after every exchange both the red and blue subgraphs must stay spanning trees,
these two edges can only be exchanged with one another.

Delete v from the graph together with the two edges incident to it. Let G′ = G − v

denote the remaining graph, and let R′
i = Ri \ {e1, e2} and B′

i = Bi \ {e1, e2} for i = 1, 2.
Applying the inductive hypothesis to the pairs P′

1 = (R′
1, B′

1) and P′
2 = (R′

2, B′
2) of

disjoint spanning trees of the graph G′ we get an exchange sequence from P′
1 to P′

2. Now
apply the exact same sequence to G. At the end of the sequence the basis pair we acquire
is either (R2, B2) or (R2 − e1 + e2, B2 − e2 + e1). In the former case we have a sequence
that fulfills the required conditions. In the latter case the symmetric exchange of e1 and
e2 is feasible and exchanging them yields an exchange sequence from P1 to P2.

Case 2. v has degree 3.
Let the edges incident to v be a, b and c. We may assume that a, b ∈ R1 and c ∈ B1,

that is, a and b are red and c is blue at the start. At first we deal with the case when the
coloring of a, b and c remains the same, or all of them change in the second basis pair.

Case 2.1 Either a, b ∈ R2 and c ∈ B2, or a, b ∈ B2 and c ∈ R2.
By deleting v and the edges a, b, c the remaining graph will have n vertices, but it will

not be a bispanning graph. In order to overcome this we are going to insert a new edge e

into the graph. The new edge shall connect the end points of a and b that are not v and
let P′

1 = (R1−a−b+e, B1−c). If a, b ∈ R2 and c ∈ B2 then let P′
2 = (R2−a−b+e, B2−c)

and let P′
2 = (R2 − c, B2 − a − b + e) otherwise. Let this new graph be G′. P′

1 and P′
2

will form two disjoint spanning trees of G′. Now apply the inductive hypothesis to G′.
If e does not change color, then we can just use the same sequence in G.

11



If e changes color we have to simulate this in the original graph as well. Let f be
the edge which would be symmetrically exchanged with e. Now consider G. By the
symmetric exchange property c can be symmetrically exchanged with some edge. In
order to maintain both color classes being a spanning tree this edge can only be a or b.
We may assume it is exchangeable with b and exchange them. After this step a can be
symmetrically exchanged with f because exchanging e and f was feasible.

This way we could simulate an exchange of e with the edges a, b, c. Continuing the
process we will acquire a desired exchange sequence concluding this case.

Case 2.2 The coloring of a, b, c in P2 is not like in the previous case.
As we have observed before the edge c can be symmetrically exchanged with at least

one of a and b. We may assume that c and b can be exchanged.
Exchanging these two edges will result in a and c being red and b being blue. Observe

that in this case if P2 is colored the same way, that is a, c ∈ R2 and b ∈ B2 or they are
colored the opposite way, that is a, c ∈ B2 and b ∈ R2, then we are in exactly the same
situation as in Case 2.1. So we can use the same algorithm with these two extra steps.

We are left with only two possibilities for the coloring of a, b, c in P2. If a ∈ B2 and
b, c ∈ R2 then we can symmetrically exchange a with b or c. In either case we are left with
a case already solved. Similarly if a ∈ R2 and b, c ∈ B2 then again we can symmetrically
exchange a with either b or c, and both colorings will give us already solved cases. This
way we have found an exchange sequence for all possible colorings for an n + 1 vertex
graph.

To bound the length of the sequence thus obtained, we analyse the steps of the
algorithm. In particular, we claim that every edge is used in at most n exchanges (where
n is the number of vertices).

The proof is by induction on |V |. Indeed, suppose we know the statement for some
n. Consider a graph G with n + 1 vertices. If we are in the case when G has a degree
2 vertex then we only have to use the edges incident to it at most once. If there is a
vertex with degree 3, then the steps we used to simulate the exchange made in G − v,
used each edge incident to v once. By the induction hypothesis, this results in at most n

exchanges for these edges, but we may need an extra exchange for each of them to make
the colorings to look like as in Case 2.1. The edges not incident to v are used at most n

times by the induction hypothesis. This results in at most n + 1 uses for each edge.
Since G is a bispanning graph, it has 2n − 2 edges. As we used each edge at most n

times, the total number of exchanges is bounded by (2n − 2)n/2.

Remark 3.4. The same analysis shows that if a weight function w : E → R+ is given,
then the algorithm results in a sequence of exchanges of total weight at most n · w(E).
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Chapter 4

Wheels

Our first main result is a proof of Conjecture 1.4 for the graphic matroid of wheels. In
fact, we prove a much stronger statement: we verify that for any pair P1 = (R1, B1) and
P2 = (R2, B2) of colorings of a wheel G = (V, E), there exists a sequence of exchanges
of length at most r and total weight at most w(E) that transforms P1 into P2 and uses
each edge at most twice.

Throughout the chapter, we assume that P1 has positive orientation. For ease of
notation, we introduce φ⊕ := φP1,+ and φ⊖ := φP1,−. Recall that both φ⊖ and φ⊕

provide a bijection between spokes and rim edges.
First we settle the case when the two colorings have the same orientation.

Lemma 4.1. Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V, E)
with the same orientation. Then there exists a strictly monotone sequence of exchanges
that transforms P1 into P2.

Proof. Exchange each spoke e that has different color in P1 than in P2 with its pair
φ⊖(e) in an arbitrary order, only paying attention to always have at least one spoke in
both color classes. Once the spokes have the right colors, that is, they are colored as in
P2, the rim edges are also colored as required. Indeed, the orientation was not changed
during the procedure and the coloring of the spokes together with the orientation of the
coloring uniquely determines the colors of the rim edges.

Remark 4.2. Exchanging a spoke e with its pair φ⊖(e) does not reverse the orientation
of the coloring. Therefore, if the initial coloring P1 = (R1, B1) and the target coloring
P2 = (R2, B2) have different orientations, then any sequence of feasible exchanges must
go through a coloring of the graph with only two intervals. This results in reversing the
orientation of a coloring to be costly, as one needs to make exchange steps that, at least
seemingly, bring the colorings further away from each other in the sense that they increase
the symmetric difference of R1 and R2. The class of wheels is particularly interesting as

13
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Figure 4.1: A pair of P1 = (R1, B1) and P2 = (R2, B2) with (n − 1) − |R1 ∩ R2| = 2. The
colorings have opposite orientations, hence any sequence of exchanges that transforms
P1 into P2 goes through a coloring having two intervals, implying that their exchange
distance is at least n−1

4 .

they admit colorings P1 = (R1, B1) and P2 = (R2, B2) for which the minimum number of
steps required to transform P1 into P2 is arbitrarily large compared to the trivial lower
bound (n − 1) − |R1 ∩ R2|; see Figure 4.1 for an example.

Next we consider colorings with different orientations and a bounded number of in-
tervals in one of the color classes.

Lemma 4.3. Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V, E)
with different orientations where P1 has at most four intervals, and let w : E → R+ be a
weight function. Then there exists a sequence of exchanges of length at most n − 1 and
total weight at most w(E) that transforms P1 into P2 and uses each edge at most twice.

Proof. We will distinguish two main cases based on the number of intervals in P1. Recall
that P1 is assumed to have positive orientation throughout.

Case 1. P1 has two intervals.

Case 1.1. P1 has an interval of length one.
We may assume that there exists a red interval of length one, and let c denote the

unique spoke in it. We denote by a the spoke following c in negative direction, and further
define b := φ⊕(a) = φ⊖(c) and d := φ⊕(c). Note that a and b are blue, while d is a red
edge; see Figure 4.2a. As P2 has negative orientation, a and φ⊕(a) = b have different
colors in P2, and the same holds for c and φ⊕(c) = d. Hence the set of edges among a,
b, c and d that have different colors in P1 and P2 is either {a, c}, {a, d}, {b, d} or {b, c}.
In the first three cases, changing the color of the two edges is a feasible exchange which
reverses the orientation. Once the orientation of the coloring is reversed, there exists

14



a strictly monotone exchange sequence to P2 by Lemma 4.1, altogether resulting in a
strictly monotone exchange sequence from P1 to P2.

The only remaining case is when the set of edges among a, b, c and d that need to
change color is {b, c}. In this case, the difficulty comes from the fact that these edges do
not define a feasible exchange between the two color classes. In order to overcome this,
extra steps are needed to reverse the orientation. Let s be an arbitrary red spoke of P2.
Note that s ̸∈ {a, c} as we are in the case when a and c are blue in P2. As P1 has a
unique red spoke, namely c, we get that s is blue in P1, and φ⊕(s) is red in P1 and blue
in P2 since P2 has negative orientation. Consider the two exchange sequences of length
three (b, d), (s, φ⊕(s)), (c, d) and (a, c), (s, φ⊕(s)), (a, b). Both of these sequences reverse
the orientation of the coloring and fix the colors of the edges a, b, c and d. Therefore,
after applying any of them, there exists a strictly monotone exchange sequence to P2 by
Lemma 4.1 that uses all the remaining edges in E − {a, b, c, d} at most once. Thus in
overall, we get an exchange sequence that uses each edge in E − {a, d} at most once,
does not use one of a and d and uses the other twice. Hence the length of the sequence
is at most half of the number of edges, that is, n − 1. If w(a) ≥ w(d), then starting the
sequence with (b, d), (s, φ⊕(s)), (c, d), while if w(a) < w(d), then starting the sequence
with (a, c), (s, φ⊕(s)), (a, b) ensures that total weight of the exchange sequence is at most
w(E), concluding the proof of the case.

Case 1.2. Both intervals of P1 have length at least two.
Let c denote the last spoke of the red interval in positive direction and let d := φ⊕(c).

Furthermore, let a be the last spoke of the blue interval in positive direction and let
b := φ⊕(a), see Figure 4.2b. Similarly to Case 1.1, the set of edges among a, b, c and d

that have different colors in P1 and P2 is either {a, c}, {a, d}, {b, d} or {b, c}. However,
now fixing the orientation is even simpler than before as any of the exchanges (a, c), (a, d),
(b, c) and (b, d) is feasible. After reversing the orientation using one of these exchanges,
there exists a strictly monotone exchange sequence to P2 by Lemma 4.1, altogether
resulting in a strictly monotone exchange sequence from P1 to P2.

We denote the number of spokes in R1, R2, B1 and B2 by r1, r2, b1 and b2, respectively.
Let 2q denote the number of intervals in P1, and let I1, . . . , I2q denote the intervals in
a positive direction, where intervals with odd indices have color red and intervals with
even indices have color blue. Furthermore, for 1 ≤ i ≤ 2q, we define

xi := ∑[w(e) | e ∈ Ii ∪ φ⊖(Ii), e has the same color in P1 and P2],
yi := ∑[w(e) | e ∈ Ii ∪ φ⊖(Ii), e has different colors in P1 and P2].

By the above definitions, we have w(Ii ∪ φ⊖(Ii)) = xi + yi for 1 ≤ i ≤ 2q, and ∑2q
i=1(xi +

yi) = w(E).
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Figure 4.2: Illustration of the cases in the proof of Lemma 4.3.

Case 2. P1 has four intervals.
Since r1 + r2 + b1 + b2 = 2(n − 1), we have min{r1 + r2, b1 + b2} ≤ n − 1. We may

assume that r1 + r2 ≤ n − 1. We distinguish two cases based on the structure of the red
intervals in P1.

Case 2.1. P1 has no red interval of length one.
Take one of the intervals Ij ∈ {I1, I3} and exchange each spoke p in Ij with its pair

φ⊖(p). The coloring thus obtained has only two intervals from which the red has length
more than one, hence there exists a strictly monotone exchange sequence to P2 as in Case
1.2. Note that each edge is used at most twice during this process, and the edges used
twice are exactly the edges of Ij having the same color in P1 and P2. The length of the
exchange sequence thus obtained is

|Ij| + |(Ij ∪ I2 ∪ I4) ∩ R2| + |I4−j ∩ B2| ≤ |Ij| + |(I1 ∪ I2 ∪ I3 ∪ I4) ∩ R2| + |I4−j|
= r1 + r2

≤ n − 1.

In order to bound the total weight of the exchanges, note that we used edges twice only
from Ij ∪φ⊖(Ij), and all the other edges were used only if their color had to change. Thus
the total weight of the exchange sequence is 2xj + y1 + y2 + y3 + y4. As 2 min{x1, x3} ≤
x1 + · · · + x4, we get 2 min{x1, x3} + y1 + y2 + y3 + y4 ≤ w(E). Hence choosing j ∈ {1, 3}
such that xj = min{x1, x3} leads to an exchange sequence with the required properties.

Case 2.2. P1 has a red interval of length one.
Our approach is similar to that of Case 2.1 with slight modifications. By applying

the same algorithm, the analysis goes through if the the red interval whose edges are not
used before reversing the orientation has length at least two. Indeed, the bounds on the
length and weight of the exchange sequence remain valid since we did not use the length
of the intervals in the proof. However, a problem occurs if at the orientation reversal step
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we have an interval of length one, that is, when the algorithm starts with a red interval,
say I3 due to x3 ≤ x1, and the other red interval I1 has length one.

Let P′
1 denote the coloring obtained by the exchanges so far, that is, by exchanging

each spoke p in I3 with its pair φ⊖(p). At this point, our goal is to reverse the orientation
and then find a strictly monotone sequence to P2. Note that this is exactly the same
scenario we had in Case 1.1, hence we use an analogous notation that we had there. That
is, let c denote the unique red spoke of P′

1 and a be the spoke following c in a negative
direction. Furthermore, define b := φ⊕(a) = φ⊖(c) and d := φ⊕(c), see Figure 4.2c.
Similarly to Case 1.1, the set of edges among a, b, c and d that have different colors
in P′

1 and P2 is either {a, c}, {a, d}, {b, d} or {b, c}. In the first three cases, changing
the color of the two edges is a feasible exchange which reverses the orientation and fixes
the color of all four edges a, b, c and d. Once the coloring is reversed, there exists a
strictly monotone exchange sequence to P2 by Lemma 4.1. The length and weight of the
exchange sequence can be bounded analogously to Case 2.1.

The only remaining case is when the set of edges among a, b, c and d that need to
change color is {b, c}. Let s be an arbitrary red spoke of P2. Note that s ̸∈ {a, c} as we
are in the case when a and c are blue in P2. As P′

1 has a unique red spoke, namely c,
we get that s is blue in P′

1, and φ⊕(s) is red in P′
1 and blue in P2 since P2 has negative

orientation. Consider the two exchange sequences of length three (b, d), (s, φ⊕(s)), (c, d)
and (a, c), (s, φ⊕(s)), (a, b). Both of these sequences change the orientation of the coloring
and fix the colors of the edges a, b, c and d. Therefore, after applying any of them, there
exists a strictly monotone exchange sequence to P2 by Lemma 4.1. If w(a) ≥ w(d),
then use the sequence (b, d), (s, φ⊕(s)), (c, d) for reversing the orientation, and use (a, c),
(s, φ⊕(s)), (a, b) otherwise. In what follows, we bound the length and weight of the
sequence obtained.

Suppose first that r1 + r2 < n − 1. The length of the exchange sequence is

|I3| + 3 + |(I2 ∪ I3 ∪ I4 − s) ∩ R2| = (r1 − 1) + 3 + (r2 − 1) = r1 + r2 + 1 ≤ n − 1.

We used edges twice only from I3 ∪ φ⊖(I3) ∪ {d} if w(a) ≥ w(d), and only from I3 ∪
φ⊖(I3) ∪ {a} otherwise. Thus the total weight of the exchange sequence is at most

2x3 + 2 min{w(a), w(d)} + y1 + y2 + y3 + y4 ≤ 2x3 + x2 + x4 + y1 + y2 + y3 + y4 ≤ w(E),

where we used that 2 min{w(a), w(d)} ≤ 2 min{x4, x2} ≤ x2 + x4 and x3 ≤ x1.
We are left with the case when r1 + r2 = n−1, there exists a red interval consisting of

a single spoke c, and the edges c and φ⊖(c) have different colors in P′
1 and P2. Then, by

r1 + r2 + b1 + b2 = 2n − 2, we get that b1 + b2 = n − 1 also holds. Up to this point the two
colors played different roles in the proof of Case 2 as we used the fact that r1 +r2 ≤ n−1.
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However, now the same inequality holds for the number of blue spokes as well, hence we
can switch the roles of the two colors. In particular, if none of the blue intervals in P1

have length one, then we are done. Thus suppose that the red interval I1 consisting of
the single spoke c is followed in positive direction by a blue interval I2 consisting of the
single spoke e; the case when a blue interval of length one is followed in positive direction
by a red interval of length one can be proved analogously. We denote by a the spoke
before c in negative direction, and further define b := φ⊕(a) = φ⊖(c), d := φ⊕(c) = φ⊖(e)
and f := φ⊕(e), see Figure 4.2d. Recall that we are in the case when the set of edges
among a, b, c and d that need to change color is {b, c}. However, this means that among
the edges c, d, e and f , the set of edges that need to change color cannot be {d, e}. That
is, if we start by exchanging each spoke p in I4 with its pair φ⊖(p), then the resulting
coloring P′′

1 can be transformed into P2 by a strictly monotone sequence of exchanges,
and the analysis of the second paragraph of Case 2.2 applies.

Our last technical lemma shows that when one of the colorings has at least six intervals,
then there exists a sequence of exchanges that has low weight with respect to two arbitrary
weight functions simultaneously.

Lemma 4.4. Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V, E)
with different orientations such that P1 has at least six intervals, and let w1, w2 : E → R+

be weight functions. Then there exists a sequence of exchanges of total wi-weight at most
wi(E) for i = 1, 2 that transforms P1 into P2 and uses each edge at most twice.

Proof. Let w ∈ {w1, w2}, and let us define Ii, xi and yi for 1 ≤ i ≤ 2q as in the proof of
Lemma 4.3, where the xi and yi values are computed with respect to w. We distinguish
two cases based on the remainder of the number of intervals modulo four.

Case 1. q = 2k + 1 for some integer k ≥ 1.
For an index 1 ≤ j ≤ 4k +2, exchange each spoke e ∈ ⋃k

i=1 Ij+2i−1 with its pair φ⊖(e),
and do the same for each spoke e ∈ ⋃2k

i=k+1 Ij+2i (all indices are meant in a cyclic order).
After these exchanges, the resulting coloring P′

1 has two intervals: Ij ∪ Ij+1 ∪ · · · ∪ Ij+2k

has the same color in P′
1 as Ij in P1, and Ij+2k+1 ∪ Ij+2k+2 ∪ · · · ∪ Ij+4k+1 has the other

color. Note that none of these two intervals has length one as k ≥ 1. Therefore, there
exists a strictly monotone exchange sequence from P′

1 to P2 by Case 1.2 of Lemma 4.3.
Our goal is to bound the w-weight of the above defined sequence of exchanges.

Exchanging each spoke e in ⋃k
i=1 Ij+2i−1 ∪ ⋃2k

i=k+1 Ij+2i with its pair φ⊖(e) has weight

k∑
i=1

(xj+2i−1 + yj+2i−1) +
2k∑

i=k+1
(xj+2i + yj+2i).
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Then the strictly monotone sequence to P2 has weight

k∑
i=0

yj+2i +
k∑

i=1
xj+2i−1 +

2k∑
i=k

yj+2i+1 +
2k∑

i=k+1
xj+2i.

The total weight is then

2 ·

 k∑
i=1

xj+2i−1 +
2k∑

i=k+1
xj+2i

+
4k+2∑
i=1

yi.

Therefore the total w-weight of the exchange sequence is at most w(E) = ∑4k+2
i=1 (xi + yi)

if and only if
k∑

i=1
xj+2i−1 +

2k∑
i=k+1

xj+2i ≤
k∑

i=0
xj+2i +

2k∑
i=k

xj+2i+1. (Aw(j))

Consider inequalities Aw(j) and Aw(j + 1). The sum of these two inequalities gives
(4k+2∑

i=1
xi

)
− (xj + xj+2k+1) ≤

(4k+2∑
i=1

xi

)
+ (xj + xj+2k+1).

As this inequality clearly holds, at least one of Aw(j) and Aw(j + 1) must hold as well.
Furthermore, Aw(j) is identical to Aw(j +2k +1). These together imply that Aw(j) holds
for at least k + 1 choices of j from {1, . . . , 2k + 1} for w ∈ {w1, w2}. Therefore, there
exists an index j for which both Aw1(j) and Aw2(j) are satisfied. As each edge is used at
most twice, the statement follows.

Case 2. q = 2k for some integer k ≥ 2.
Our approach is similar to that of Case 1. For an index 1 ≤ j ≤ 4k, exchange each

spoke e ∈ ⋃k−1
i=1 Ij+2i−1 with its pair φ⊖(e), and do the same for each spoke e ∈ ⋃2k−1

i=k Ij+2i.
After these exchanges, the resulting coloring P′

1 has two intervals: Ij ∪ Ij+1 ∪· · ·∪ Ij+2k−1

has the same color in P′
1 as Ij in P1, and Ij+2k ∪ Ij+2k+1 ∪ · · · ∪ Ij+4k−1 has the other

color. Note that none of these two intervals has length one as k ≥ 2. Therefore, there
exists a strictly monotone exchange sequence from P′

1 to P2 by Case 1.2 of Lemma 4.3.
Our goal is to bound the w-weight of the above defined sequence of exchanges.

Exchanging each spoke e in ⋃k−1
i=1 Ij+2i−1 ∪ ⋃2k−1

i=k Ij+2i with its pair φ⊖(e) has weight

k−1∑
i=1

(xj+2i−1 + yj+2i−1) +
2k−1∑
i=k

(xj+2i + yj+2i).

Then the strictly monotone sequence to P2 has weight

k−1∑
i=0

yj+2i +
k−1∑
i=1

xj+2i−1 +
2k∑

i=k

yj+2i−1 +
2k−1∑
i=k

xj+2i.
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The total weight is then

2 ·
(

k−1∑
i=1

xj+2i−1 +
2k−1∑
i=k

xj+2i

)
+

4k∑
i=1

yi.

Therefore the total w-weight of the exchange sequence is at most w(E) = ∑4k
i=1(xi + yi)

if and only if
k−1∑
i=1

xj+2i−1 +
2k−1∑
i=k

xj+2i ≤
k−1∑
i=0

xj+2i +
2k−1∑

i=k−1
xj+2i+1. (Bw(j))

Consider inequalities Bw(j) and Bw(j + 1). The sum of these two inequalities gives
( 4k∑

i=1
xi

)
− (xj + xj+2k−1) ≤

( 4k∑
i=1

xi

)
+ (xj + xj+2k−1).

As this inequality clearly holds, at least one of Bw(j) and Bw(j + 1) must hold as well.
This implies that Bw(j) holds for at least 2k choices of j from {1, . . . , 4k}. Note that if
the number of such choices is exactly 2k, then Bw(j) holds either for all odd or for all
even indices.

Now consider inequalities Bw(j) and Bw(j + 2k). The sum of these two inequalities
gives ( 4k∑

i=1
xi

)
− (xj+2k−1 + xj+4k−1) ≤

( 4k∑
i=1

xi

)
+ (xj+2k−1 + xj+4k−1).

As this inequality clearly holds, at least one of Bw(j) and Bw(j + 2k) must hold as well.
As the parities of j and j + 2k are the same, this, together with the above observation,
implies that Bw(j) holds for at least 2k +1 choices of j from {1, . . . , 4k} for w ∈ {w1, w2}.
Therefore, there exists an index j for which both Bw1(j) and Bw2(j) are satisfied. As each
edge is used at most twice, the statement follows.

With the help of Lemmas 4.1, 4.3 and 4.4, we are ready to prove the main result of
the thesis.

Theorem 4.5. Let P1 = (R1, B1) and P2 = (R2, B2) be colorings of a wheel G = (V, E),
and let w : E → R+ be a weight function. Then there exists a sequence of exchanges of
length at most n − 1 and total weight at most w(E) that transforms P1 into P2 and uses
each edge at most twice.

Proof. If the colorings have identical orientation, then the theorem follows by Lemma 4.1.
Indeed, the length and the weight of any strictly monotone sequence of exchanges that
transforms P1 into P2 achieves the natural lower bounds (n − 1) − |R1 ∩ R2| ≤ n − 1 and
w(R1△R2) ≤ w(E), respectively, and uses each edge at most once.
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Hence assume that the colorings have different orientations. If P1 has at most four
intervals, then the theorem immediately follows by Lemma 4.3. Otherwise, Lemma 4.4
with the choice w1 := w and w2 ≡ 1 ensures the existence of a sequence of exchanges of
total weight at most w1(E) = w(E) and length at most w2(E)/2 = |E|/2 = n − 1 that
uses each edge at most twice, concluding the proof.
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Chapter 5

Spikes

In this chapter, we prove that a strengthening of Conjecture 1.4 analogous to Theo-
rem 4.5 holds for spikes as well. That is, consider a rank-r spike M over ground set S,
and let w : S → R+ be a weight function. We show that for any two compatible basis
pairs P1 = (R1, B1) and P2 = (R2, B2), there exists a sequence of exchanges of length at
most r and total weight at most w(S) that transforms P1 into P2 and uses each element
at most twice.

Recall that S = {t, x1, y1, . . . , xr, yr}, where t is the tip and {xi, yi} for 1 ≤ i ≤ r are
the legs of the spike. Hence there is exactly one element s ∈ S that is not contained in
R1 ∪ B1 = R2 ∪ B2; for short, we say that the pairs P1 and P2 miss the element s. We
distinguish two cases depending on whether this element is the tip of M or not.

Lemma 5.1. Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases
of a rank-r spike M over a ground set S missing the tip t, and let w : S → R+ be a weight
function. Then there exists a sequence of exchanges of length at most r and total weight
at most w(S − t) that transforms P1 into P2 and uses each element at most twice.

Proof. Let Z ⊆ S − t be a subset of size r. Then Z is a basis of M if and only if one of
the followings hold.

1. There exist indices k and ℓ such that {xk, yk} ⊆ Z, {xℓ, yℓ} ∩ Z = ∅ and |{xi, yi} ∩
Z| = 1 for all 1 ≤ i ≤ r, i ̸∈ {k, ℓ}.

2. |Z ∩ {xi, yi}| = 1 for all 1 ≤ i ≤ r and Z is not a circuit of M .

Bases of the latter type are called transversal bases as they intersect every leg of M ,
while bases of the former type are called non-transversal bases.

Case 1. Both R1 and R2 are non-transversal.
We may assume that both x1 and y1 are red and both xr and yr are blue in P1. Note

that in this case exchanging the elements xi and yi is feasible for 2 ≤ i ≤ r − 1. As R2 is
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x1 = xk xℓ xr

y1 yℓ yr

R1

R2

(a) Case k = 1.

x1 xℓ xr

y1 yℓ yr

R1

R2

xk

(b) Case 2 ≤ k ≤ r − 1.

x1 xℓ xr = xk

y1 yℓ yr

R1

R2

(c) Case k = r and 2 ≤ ℓ ≤ r − 1.

x1 = xℓ xr = xk

y1 yℓ yr

R1

R2

(d) Case k = r and ℓ = 1.

Figure 5.1: Illustration of Case 1 of Lemma 5.1.

non-transversal, there exist indices 1 ≤ k, ℓ ≤ r such that xk and yk are both red and xℓ

and yℓ are both blue in P2. We distinguish cases based on the values of k and ℓ.

Case 1.1. k = 1.
Exchange xi and yi for all 2 ≤ i ≤ r − 1 for which i ̸= ℓ and the color of xi differs in

P1 and P2. If ℓ ̸= r, then exchange the unique element of {xℓ, yℓ} ∩ R1 with the unique
element of {xr, yr} ∩ R2.

Case 1.2. 2 ≤ k ≤ r − 1.
We may assume that x1 and xr are blue in P2 and xk is red in P1. Exchange x1 with

yk, then exchange xi and yi for all 2 ≤ i ≤ r − 1 for which i ̸∈ {k, ℓ} and the color of xi

differs in P1 and P2. Moreover, if ℓ ̸= r then exchange the unique element of {xℓ, yℓ}∩R1

with yr.

Case 1.3. k = r and 2 ≤ ℓ ≤ r − 1.
Exchange the unique element of {xℓ, yℓ}∩R1 with xr. Then exchange xi and yi for all

2 ≤ i ≤ r − 1 for which i ̸= ℓ and the color of xi differs in P1 and P2. Finally, exchange
the unique element of {x1, y1} ∩ B2 with yr.

Case 1.4. k = r and ℓ = 1.
Suppose first that there exists an index 2 ≤ j ≤ r − 1 such that xj has different colors

in P1 and P2. We may assume that xj is red in P1. Exchange x1 with yj, then exchange
xi and yi for all 2 ≤ i ≤ r − 1 for which i ̸= j and xi has different colors in P1 and P2.
Finally, exchange y1 and xr, and exchange xj with yr. This results in a strictly monotone
exchange sequence that transforms P1 into P2.

The only remaining case is when xi has the same color in P1 and P2 for all 2 ≤ i ≤
r − 1, we may assume that they are all red. We may also assume that w(y2) ≤ w(x2).
Consider the exchange sequence (x1, y2), (y1, xr), (y2, yr) of length 3 ≤ r. The only
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element that is used twice is y2, while x2 was not used at all, hence the sequence has total
weight at most w(E) by w(y2) ≤ w(x2).

Case 2. Both R1 and R2 are transversal bases.
If R1 and R2 differ in only one leg, say R1 ∩{xi, yi} ≠ R2 ∩{xi, yi}, then exchanging xi

and yi is feasible. Otherwise we may assume that x1, x2 ∈ R1 and y1, y2 ∈ R2. Exchange
x1 and y2, then exchange xi and yi for all 3 ≤ i ≤ r for which the color of xi differs in P1

and P2. Finally, exchange x2 and y1.

Case 3. Exactly one of R1 and R2 is a transversal basis.
We may assume that R1 is non-transversal such that both x1 and y1 are red and both

xr and yr are blue in P1. Exchange xi and yi for all 2 ≤ i ≤ r − 1 for which the color
of xi differs in P1 and P2. Then exchange the unique element of {x1, y1} ∩ B2 with the
unique element of {xr, yr} ∩ R2.

Concluding the above, in all cases except Case 1.4, the resulting sequence of exchanges
is strictly monotone and uses each element at most twice, hence the bounds on the length
and the total weight follow. In Case 1.4, we showed that the bounds hold, concluding
the proof of the lemma.

Now we consider the case when P1 and P2 miss a non-tip element, say, x1.

Lemma 5.2. Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases of
a rank-r spike M over a ground set S missing the non-tip element x1, and let w : S → R+

be a weight function. Then there exists a sequence of exchanges of length at most r and
total weight at most w(S −x1) that transforms P1 into P2 and uses each element at most
twice.

Proof. Let Z ⊆ S − x1 be a subset of size r. Then Z is a basis of M if and only if one of
the followings hold.

1. t ∈ Z, y1 ∈ Z, {xℓ, yℓ} ∩ Z = ∅ for an index 2 ≤ ℓ ≤ r, |{xi, yi} ∩ Z| = 1 for all
i ∈ {2, . . . , r}, i ̸= ℓ.

2. t ∈ Z, y1 ̸∈ Z, |{xi, yi} ∩ Z| = 1 for all 2 ≤ i ≤ r.

3. t ̸∈ Z, y1 ∈ Z, |{xi, yi} ∩ Z| = 1 for all 2 ≤ i ≤ r, Z is not a circuit.

4. t ̸∈ Z, y1 ∈ Z and there exist indices k and ℓ such that {xk, yk} ⊆ Z, {xℓ, yℓ}∩Z = ∅
and |{xi, yi} ∩ Z| = 1 for all 2 ≤ i ≤ r, i ̸∈ {k, l}.

5. t ̸∈ Z, y1 ̸∈ Z, {xℓ, yℓ} ⊆ Z for an index 2 ≤ ℓ ≤ r, |Z ∩ {xi, yi}| = 1 for all
i ∈ {2, . . . , r}, i ̸= ℓ.
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Note that a basis Z of type 4 does not appear as a member of a pair of disjoint bases
since (S − x1) \ Z is not a basis. We will distinguish two cases based on the coloring of t

and y1.

Case 1. t and y1 have the same color in at least one of P1 and P2.
We may assume that t and y1 are both red, and xr and yr are both blue in P1.

Exchange xi and yi for all 2 ≤ i ≤ r − 1 for which |R2 ∩ {xi, yi}| = |B2 ∩ {xi, yi}| = 1 and
xi have different colors in P1 and P2. Let P′

1 = (R′
1, B′

1) denote the coloring obtained this
way. Note that all elements have the same color in P′

1 and P2, except possibly t, y1, xr, yr

and at most one leg {xℓ, yℓ}. We distinguish further cases based on the colors of t and y1

in P2.

Case 1.1. t and y1 are both red in P2.
Let ℓ denote the unique index for which both xℓ and yℓ are blue in P2. If ℓ = r, we

need no further exchanges. If ℓ ̸= r, exchange the element of the leg {xℓ, yℓ} which is red
in P1 with the element of leg {xr, yr} which is red in P2.

Case 1.2. Exactly one of t and y1 is red in P2. In this case exactly one of t and y1 and
exactly one of xr and yr need to change colors and their exchange is feasible.

Case 1.3 Both t and y1 are blue in P2.
Let ℓ denote the unique index for which xℓ and yℓ are both red in P2. If ℓ = r, then

consider the exchange sequences (y1, xr), (t, yr) and (y1, yr), (t, xr) of length two. At least
one of them is feasible since at most one of B′

1 − xr + y1 and B′
1 − yr + y1 forms a circuit

by |(B′
1 − xr + y1) ∩ (B′

1 − yr + y1)| = r − 1. Adding this to the exchange sequence that
transformed P1 into P′

1 we get a strictly monotone exchange sequence from P1 to P2.
If 2 ≤ ℓ ≤ r − 1, then we may assume that xℓ is red and yℓ is blue in P1, while xr is

red and yr is blue in P2. If the exchange (y1, xr) is feasible, then adding (y1, xr), (t, yℓ)
to the exchange sequence that transformed P1 into P′

1 results in a strictly monotone
exchange sequence. From now on we assume that (y1, xr) is not feasible which means
that B′

1 − xr + y1 forms a circuit. As the intersection of two circuits cannot have size
r − 1, this implies that both B′

1 − yr + y1 and B′
1 − {xr, yℓ} + {xℓ, y1} are bases.

If w(xℓ) ≥ w(yr), then extend the exchange sequence from P1 to P′
1 by the exchanges

(y1, yr), (yℓ, t), (xr, yr). The feasibility of these exchanges follows from B′
1 − yr + y1 being

a basis. The total length of the exchange sequence is at most (r − 3) + 3 = r. The
sequence does not use xℓ, it uses yr twice, and all the other elements at most once, so it
has weight at most w(E) by the assumption w(xℓ) ≥ w(yr).

If w(xℓ) < w(yr), then extend the exchange sequence from P1 to P′
1 by the exchanges

(xℓ, xr), (y1, yℓ), (xℓ, t). The feasibility of these exchanges follows from B′
1 − {xr, yℓ} +

{xℓ, y1} being a basis. The total length of the exchange sequence is at most (r−3)+3 = r.
The sequence does not use yr, it uses xℓ twice, and all the other elements at most once,
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so it has weight at most w(E) by the assumption w(xℓ) < w(yr).

Case 2. t and y1 have different colors in both P1 and P2.
We may assume that y1 is red and t is blue in P1. Observe that each leg contains one

red and one blue element in any of the colorings P1 and P2. If every leg is colored the
same way in P1 and P2, then the exchange distance of P1 and P2 is at most one. Hence
we may assume that x2 ∈ B1 ∩ R2 and y2 ∈ B2 ∩ R1.

Case 2.1. y1 is blue and t is red in P2.
Exchange x2 with y1. After this step, both y1 and t is blue, hence we can exchange xi

and yi for all 3 ≤ i ≤ r for which xi has different colors in P1 and P2. Finally, exchange
y2 with t.

Case 2.2. y1 is red and t is blue in P2.
If w(y1) ≤ w(t), exchange y1 with x2. After this step, exchange xi and yi for all

3 ≤ i ≤ r for which xi has different colors in P1 and P2. Finally, exchange y1 with
y2. This exchange sequence does not use t, uses y1 twice and all the other elements at
most once. These imply that its length is at most r and total weight is at most w(E) by
w(y1) ≤ w(t).

If w(y1) > w(t), exchange t with y2. After this step, exchange xi and yi for all
3 ≤ i ≤ r for which xi has different colors in P1 and P2. Finally, exchange t with x2.
This exchange sequence does not use y1, uses t twice and all the other elements at most
once. These imply that its length is at most r and total weight is at most w(E) by
w(y1) > w(t).

Concluding the above, in all cases except Cases 1.3 and 2.2, the resulting sequence of
exchanges is strictly monotone and uses each element at most twice, hence the bounds on
the length and the total weight follow. In Cases 1.3 and 2.2, we showed that the bounds
hold, concluding the proof of the lemma.

Theorem 5.3. Let P1 = (R1, B1) and P2 = (R2, B2) be compatible pairs of disjoint bases
of a rank-r spike M over a ground set S, and let w : S → R+ be a weight function. Then
there exists a sequence of exchanges of length at most r and total weight at most w(S)
that transforms P1 into P2 and uses each element at most twice.

Proof. The theorem follows by combining Lemmas 5.1 and 5.2.

Remark 5.4. The orientation of colorings of wheels played a crucial role in the existence
of strictly monotone exchange sequences. In particular, among any three basis pairs there
exists two having the same orientation, and for those there exists a strictly monotone
sequence of exchanges. Spikes are interesting because one can define an arbitrarily large
number of colorings without a strictly monotone exchange sequence between any two of
them.
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To see this, consider the spike1 M defined by

C3 := {C ⊆ S : |C| = r, |C ∩ {xi, yi}| = 1 for 1 ≤ i ≤ r, |C ∩ {x1, . . . , xr}| is odd}.

Consider all pairs (R, B) of disjoint sets of size r for which y1 ∈ R, t ∈ B, |R ∩ {xi, yi}| =
|B ∩ {xi, yi}| = 1 for all 2 ≤ i ≤ r, and |R ∩ {x2, . . . , xr}| is even. There are 2r−2 such
pairs. Note that all such pairs (R, B) are colorings of the matroid obtained from M by
deleting x1. Further observe that any feasible exchange uses at least one of y1 and t.
Indeed, exchanging xi with yj for some 2 ≤ i, j ≤ r results in an odd number of red
elements in {x2, . . . , xr}, meaning that the red elements form a circuit, showing that the
exchange is non-feasible. Exchanging xi with xj or yi with yj for some 2 ≤ i, j ≤ r,
i ̸= j results in either {t, xi, yi} or {t, xj, yj} forming a blue circuit, hence the exchange
is non-feasible. This implies that there exists no strictly monotone exchange sequence
between any two distinct colorings of this form.

1This matroid is interesting on its own as it is the unique rank-r binary spike, see [15] for details.
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Conclusions

We proposed a weighted generalization of Hamidoune’s conjecture on the exchange
distance of compatible basis pairs. We verified the conjecture for strongly base orderable
matroids, and its strengthening in which the exchange sequence had small length and
weight simultaneously for split matroids, graphic matroids of wheels, and spikes. For the
latter three classes, our proofs also imply polynomial-time2 algorithms that determine
the required exchange sequences. For strongly base orderable matroids, we get a similar
result if, for any pair of bases, a bijection ϕ between them ensured by strongly base
orderability can be computed in polynomial time.

Motivated by Lemma 4.4, it would be tempting to formulate a conjecture stating
that there always exists an exchange sequence that has small weight with respect to two
weight functions w1 and w2 simultaneously. However, this is not true in general. Let
G = (V, E) be a complete graph on four vertices with edge set E = {a, b, c, d, e, f}, and
let M be the graphic matroid of G, see Figure 5.2.

b b

bb

b b

bb

a cb

d

f

e

(a) Coloring P1 = (R1, B1) of K4.

b b

bb

b b

bb

a cb

d

f

e

(b) Coloring P2 = (R2, B2) of K4.

Figure 5.2: Example showing that the statement of Lemma 4.4 is not true in general.
Any exchange sequence that transforms (R1, B1) into (R2, B2) uses one of b and e twice.
If w1(b) = 1 and 0 otherwise, and w2(e) = 1 and 0 otherwise, then any sequence violates
the weight constraint for at least one the weight functions.

Interestingly, G is a wheel, but M can be also obtained by deleting the tip of a spike.
Consider two colorings P1 = (R1, B1) and P2 = (R2, B2) of G where R1 = {a, b, c}, B1 =
{d, e, f}, R2 = {b, d, f} and B2 = {a, c, e}. It is not difficult to check that any sequence
of exchanges that transforms P1 into P2 uses at least one of the edges b and e twice. This

2In matroid algorithms, it is usually assumed that the matroids are given by independence oracles,
and the complexity of the algorithm is measured by the number of oracle calls and other conventional
elementary steps.
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implies that if we set w1(b) := 1 and 0 otherwise, and we set w2(e) := 1 and 0 otherwise,
then any exchange sequence has w1-weight or w2-weight at least 2 = 2w1(E) = 2w2(E).

On the other hand, no counterexample is known for the case when w2 ≡ 1, that
is, when one would like to find an exchange sequence that has small length and weight
simultaneously. Even more, both Theorems 4.5 and 5.3 ensured the existence of an
exchange sequence that uses each element at most twice. A rather optimistic conjecture
would state the existence of a sequence of exchanges that, besides having small length
and weight, also has this property.
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