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CHAPTER 1

Introduction

The goal of this thesis is to investigate Arens–Eells spaces and to show that

there is a connection to the optimal transport problem, by demonstrating that the

Arens–Eells norm has a close connection to the 1-Wasserstein distance, a widely

used norm in the theory of optimal transport.

In the first part we will discuss Arens–Eells spaces. The space of Lipschitz

functions mapping from M to R is a vector space, but it is not a proper metric

space since every constant function has a Lipschitz norm of 0. This problem can

be rectified by choosing a point, and only considering functions that are 0 at this

point, since this way only the constant 0 function will have a Lipschitz norm of

0. This way we can define a metric space of these Lipschitz functions, called

Lip0(M). A question that naturally arises is whether this space has a predual; we

will see that it in fact does, this being the Arens–Eells space.

To illustrate one of the most important concepts concerning the theory of

Arens-Eells spaces, the so-called molecule, let’s consider C[0, 1] with the sup norm.

We can define δ(t) : C[0, 1] → R functions, called evaluation functionals, by

δ(t)(f) = f(t) = ⟨f, δ(t)⟩

for all f ∈ C[0, 1]. This delta function is in the dual of C[0, 1], and its norm is 1.

Moreover, the supremum norm can be written as

(1.1) ∥f∥∞ = sup
{
|f(x)| : x ∈ [0, 1]

}
= sup

{
|⟨f, δ(x)⟩| : x ∈ [0, 1]

}
.

Now consider Lip0(M), and let us define the so-called elementary molecules:

mxy = δ(x)− δ(y) (x, y ∈ M).

2



1. INTRODUCTION 3

Similarly to C([0, 1]) case, mxy is in the dual of Lip0(M), and the norm of Lip0(M)

can be written as

∥f∥Lip = sup

{∣∣∣∣f(x)− f(y)

ϱ(x, y)

∣∣∣∣ : x, y ∈ [0, 1], x ̸= y

}

= sup

{∣∣∣∣⟨f,mxy⟩
ϱ(x, y)

∣∣∣∣ : x, y ∈ [0, 1], x ̸= y

}
.

(1.2)

We can see the obvious analogy between (1.1) and (1.2). With the help of

molecules, we will define the Arens–Eells spaces, and we will then present some

examples of it, and we will prove some of its key properties.

In the second part we will give an overview of the problem of optimal transport

and introduce the Wasserstein–space. The optimal transport problem originates

from not long before the French Revolution, when Gaspard Monge published some

results on moving soil in an optimal way. Since then it grew into an extensive field,

investigating how one probability measure can be transformed into an other most

efficiently, with respect to a predetermined cost function. It can be used anywhere

from meteorology [1], [2] and economics [3], [4], [5] to image processing [6], [7], [8].

In the third part, we will investigate how the Arens–Eells norm is related to

the Wasserstein distance.



CHAPTER 2

Arens–Eells spaces

2.1. Construction

In this chapter, we will construct the Arens–Eells space with the help of the

previously introduced elementary molecules. What follows is mainly based on the

3rd chapter of [9].

Definition 2.1. A pointed metric space (M,ϱ, e) is a metric space with a distin-

guished element e ∈ M , called the base point. We will see in section 2.3, that the

choice of this base point e, doesn’t change the structure of the Arens–Eells space.

Definition 2.2. Let (M,ϱ) and (M̂, ϱ̂) be two metric spaces, and f : M → M̂

be a mapping between the two. The Lipschitz constant of f is defined by

∥f∥Lip = sup

{
ϱ̂(f(x), f(y))

ϱ(x, y)
: x ̸= y ∈ M

}
.

If this Lipschitz constant is finite, we call f a Lipschitz function.

The collection of real-valued f : M → R Lipschitz functions is denoted by Lip(M).

Let (M,ϱ, e) a pointed metric space. We denote the collection of real-valued

Lipschitz functions that vanish at e by

Lip0(M) =
{
f ∈ Lip(M) : f(e) = 0

}
.

One of the key notions of this thesis is the evaluation functional on Lip0(M).

Definition 2.3. For a point x ∈ M and a function f ∈ Lip0(M) we define the

evaluation functional δ(x) : M → Lip0(M) by δ(x) := f(x).

We immediately remark that the evaluation at e vanishes so δ(e) is the zero

functional.
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2.1. CONSTRUCTION 5

Definition 2.4. We define the support of a real-valued f : M → R function,

denoted as supp(f) as the set of points, where it is non-zero. That is

supp(f) =
{
x ∈ M : f(x) ̸= 0

}
.

Definition 2.5. A molecule of a set M is defined to be a function m : M → R

such that its support is finite and
∑

x∈M m(x) = 0.

We call molecules in the form of δ(x)− δ(y) elementary molecules and we denote

them as mxy.

If (M,ϱ, e) is a pointed metric space, with base point e, then it is customary

to write mey as my. We can always write m as a linear combination of these

elementary molecules:
∑

x∈M axmx, where ax = m(x).

We define the duality between a real-valued function f and a molecule m by

(2.1) ⟨f,m⟩ =
∑
x∈M

f(x)m(x).

Definition 2.6. Let (M,ϱ, e) a pointed metric space. We define the Arens-Eells

norm of a molecule as

∥m∥Æ = inf

{
n∑

i=1

|ai|ϱ(xi, yi) : m =
n∑

i=1

aimxiyi

}
.

In other words we write m as a combination of molecules in all possible ways and

we take the one with the smallest possible ”cost”. We will expand on what exactly

we mean by cost in chapter 4.

We call the completion of the space of molecules of M with this norm the Arens–

Eells space over M , and we denote it by Æ(M). This space is also known as the

Lipschitz-free space over M .

To prove that this is indeed a norm we need a lemma:

Lemma 2.7. Let M be a metric space, m be a molecule, and let f : M → R

be a Lipschitz function. If m can be written in the form of
∑n

i=1 aimxiyi, then

|⟨f,m⟩| ≤ ∥f∥Lip ·
∑n

i=1|ai|ϱ(xi, yi).
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Proof. By definition, and the triangle inequality we have

∣∣⟨f,m⟩
∣∣ = ∣∣∣∣∣⟨f,

n∑
i=1

aimxiyi⟩

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

ai(f(xi)− f(yi))

∣∣∣∣∣ ≤
n∑

i=1

|ai||f(xi)− f(yi)|.

Since the Lipschitz norm is defined by a supremum of the numbers

|f(xi)− f(yi)|
ϱ(xi, yi)

,

we know that
|f(xi)− f(yi)|

ϱ(xi, yi)
≤ ∥f∥Lip,

and thus multiplying this inequality by ϱ(xi, yi) and substituting |f(xi) − f(yi)|

by ∥f∥Lip · ϱ(xi, yi) we get

∣∣⟨f,m⟩
∣∣ ≤ n∑

i=1

|ai||f(xi)− f(yi)| ≤ ∥f∥Lip ·
∑

|ai|ϱ(xi, yi).

□

Lemma 2.8. Let m =
∑

x∈M axmx be a molecule. The expression defined by

∥m∥Æ = inf
{ n∑

i=1

|ai|ϱ(xi, yi) : m =
n∑

i=1

aimxiyi

}
is a norm.

Proof. The infimum above is finite, since every molecule has at least one rep-

resentation as a linear combination of elementary molecules. It is obvious that

∥m∥Æ ≥ 0 for all m. Next we show that ∥m∥Æ = 0 if and only if m = 0. Assume

that m ̸= 0. According to Lemma 2.7
∣∣⟨f,m⟩

∣∣ ≤ ∥f∥Lip ·
∑

|ai|ϱ(xi, yi), for all

∥f∥Lip ≥ 0, so we only need to show that if m ̸= 0 then ∃f :
∣∣⟨f,m⟩

∣∣ ̸= 0. Since

m ̸= 0, there is at least one x̂ ∈ M such that m(x̂) ̸= 0. Furthermore, the sup-

port m is finite, therefore there exists an a > 0 such that for all x ∈ supp(m), x ̸=

x̂ : ϱ(x, x̂) > a. Now define f as f(x) = max
{
a−ϱ(x, x̂), 0

}
. By the construction,

for every x′ from the support, ϱ(x′, x̂) > a, therefore f(x′) = 0. In other words, f

peaks at x̂, and vanishes on all other points of the support. For this f , we have

|⟨f,m⟩| = f(x̂)m(x̂) = am(x̂) > 0. Next we show that ∥λm∥Æ = |λ|∥m∥Æ for all

λ ∈ R and m ∈ Æ(M). This holds since λm =
∑

λaimxiyi , if m =
∑

aimxiyi .
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Thus

∥λm∥Æ = inf
{ n∑

i=1

|λai|ϱ(xi, yi) : m =
n∑

i=1

aimxiyi

}
= inf

{
|λ| ·

n∑
i=1

|ai|ϱ(xi, yi) : m =
n∑

i=1

aimxiyi

}
= |λ|∥m∥Æ.

To show the triangle inequality, let m and m′ be two molecules, and consider

all possible representations of m, m′, and m+m′

Am := {
n∑

i=1

aimxi,yi |m =
n∑

i=1

aimxi,yi}, Am′ := {
k∑

i=1

a′imx′
i,y

′
i
|m =

k∑
i=1

a′imx′
i,y

′
i
}

Am+m′ := {
l∑

i=1

a′′imx′′
i ,y

′′
i
|m+m′ =

l∑
i=1

a′′imx′′
i ,y

′′
i
}

For any two representations from Am and A′
m, their sum will be a representation

of m +m′, but of course, there can be representations of m +m′ that cannot be

written in this form. This means that

Am + Am′ ⊆ Am+m′ ,

and therefore the infimum over Am+m′ will be smaller than the sum of the infimums

over Am and Am′ , which implies ∥m+m′∥Æ ≤ ∥m∥Æ + ∥m′∥Æ.

□

Another way of constructing the Arens–Eells space, as seen in [10], is to use

the evaluation functionals δ(x). Then the Arens–Eells space, in this construction

often denoted by F(M), comes from the closed linear span of these evaluation

functionals, a subspace of Lip0(M)∗:

F(M) = span
{
δ(x) : x ∈ M

}
⊆ Lip0(M)∗.

The norm then becomes the restriction of the norm on Lip0(M)∗ to F(M).

2.2. Examples

In this section, we will present a few examples of Arens–Eells spaces, based

on [9] and [10].
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Example 2.9. Let M = {0, 1}, ϱ(0, 1) = 1, and the base point be 0.

Then Lip0(M) =
{
f : ∥f∥Lip < ∞, f(0) = 0

}
∼= R, because

f(1)− f(0)

ϱ(1, 0)
= f(1) < ∞, for all f : M → R,

and Æ(M) = span
{
δ(0), δ(1)

}
= span

{
δ(1)

}
= R.

Example 2.10. LetM = [0, 1], ϱ(x, y) = |x−y|, and the base point be 0. We will

show that Lip0(M) ∼= L∞[0, 1] and that the maps T1 : L∞([0, 1]) → Lip0([0, 1])

and T2 : Lip0([0, 1]) → L∞([0, 1]) are non-expansive, such that they are each

other’s inverses. This will imply that both are isometries, as the inverse of a non-

expansive function is non-contractive, and if a function is both non-expansive and

non-contractive, then it is an isometry.

Let T1 : L∞([0, 1]) → Lip0([0, 1]), where for all f ∈ L∞([0, 1])

(T1f)(x) =

∫ x

0

f(t) dt.

Then for all x < y ∈ [0, 1]∣∣∣(T1f)(y)− (T1f)(x)
∣∣∣ = ∣∣∣∣∣

∫ y

x

f(t) dt

∣∣∣∣∣ ≤ ∥f∥∞(y − x).

Dividing by y − x, we have ∥T1f∥Lip ≤ ∥f∥∞, thus (T1f) ∈ Lip0([0, 1]).

Let T2 : Lip0([0, 1]) → L∞([0, 1]), (T2f) = f ′. Since f is a Lipschitz function, we

can use the fundamental theorem of calculus, so we have

f(y)− f(x) =

∫ y

x

f ′(t) dt,

where f ′ exists almost everywhere and x < y ∈ [0, 1]. Based on the definition of

the derivative and the Lipschitz norm, if x < y ∈ [0, 1] and f ′ exists, we have

|f ′(x)| =

∣∣∣∣∣ limy→x

f(y)− f(x)

y − x

∣∣∣∣∣ = lim
y→x

∣∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣∣ ≤ ∥f∥Lip.

So ∥T2f∥∞ ≤ ∥f∥Lip and T2f ∈ L∞([0, 1]).

We also have

∀x : (T2T1f)(x) =

(∫ x

0

f(t) dt

)′

= f(x) and
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∀x : (T1T2f)(x) =

∫ x

0

f ′(t) dt = f(x),

thus T1 and T2 are each others inverses. So we conclude that Lip0(M) and L∞[0, 1]

are isometrically isomorphic. Now we use that Æ(M)∗ = Lip0(M) (we will prove

this in the next section), and that L1([0, 1]) is the unique predual of L∞[0, 1]

therefore Æ([0, 1]) = L1([0, 1]).

We will mention a few more examples without much explanation. First, we

mention thatÆ(N) ∼= l1(N) ∼= Æ(Z). For the second example, let M = ([0, 1], | · |),

and define M e as the metric space, where we add the point e to [0, 1], and define

its distance from every other point as 1. Then Æ(M e) ∼= l1(M). Last, if M is a

closed subset of R, with a measure of 0, then Æ(M) = l1(M).

2.3. Duality

In this section we will present a proof from [9] which shows that the dual of

the Arens–Eells space is linearly isometrically isomorphic to the Lip0(M) space,

meaning there exists a bijective linear map from one to the other, that preserves

norms.

Theorem 2.11. Let (M,ϱ, e) be a pointed metric space. ThenÆ(M)∗ ∼= Lip0(M).

Proof. To prove that Æ(M)∗ and Lip0(M) are isometrically isomorphic, we define

two maps T1 : Æ(M)∗ → Lip0(M) and T2 : Lip0(M) → Æ(M)∗ which are both

non-expansive, and they are eachother’s inverses. This will imply that T1 and T2

are isometries.

Let ϕ be an element of Æ(M) and define the map T1 : Æ(M)∗ → Lip0(M) by

(T1ϕ)(x) = ϕ(mx).

What we get, is an element of Lip0(M). Indeed∣∣(T1ϕ)(x)− (T1ϕ)(y)
∣∣ = ∣∣ϕ(mx)− ϕ(my)

∣∣ = ∣∣ϕ(mxy)
∣∣ ≤ ∥ϕ∥∥mxy∥Æ ≤ ∥ϕ∥ϱ(x, y),

therefore ∣∣(T1ϕ)(x)− (T1ϕ)(y)

ϱ(x, y)

∣∣ ≤ ∥ϕ∥
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so we get that T1ϕ is a Lipschitz function, and that

∥T1ϕ∥Lip ≤ ∥ϕ∥.

Moreover T1ϕ vanishes on e, and thus T1ϕ ∈ Lip0(M):

(T1ϕ)(e) = ϕ(me) = ϕ(δ(e)) = 0.

Now define T2 : Lip0(M) → Æ(M)∗. For any f ∈ Lip0(M) we need to show

that T2f is a bounded linear functional on Æ(M)∗. We define T2f on a dense

subspace by

(T2f)(m) = ⟨f,m⟩.

Since the set of molecules is dense, it is enough to show that T2f is bounded on

the set of molecules. Based on Lemma 2.7:

(2.2) |(T2f)(m)| = |⟨f,m⟩| ≤ ∥f∥Lip · ∥m∥Æ,

so ∥T2f∥ = sup (T2f)(m)
∥m∥Æ

≤ ∥f∥Lip, i.e. T2 is a non-expansive map.

Next we show that (T 2)−1 = T1, i.e., T2T1ϕ = ϕ for all ϕ ∈ Æ(M)∗. For all

p ∈ M , we have

(T2T1ϕ)(mp) = ⟨T1ϕ,mp⟩ = (T1ϕ)(p) = ϕ(mp).

Let f ∈ Lip0(M) and x ∈ M , then

(T1T2f)(x) = (T2f)(x) = ⟨f,mx⟩ =
∑
y∈M

f(y)mx(y) = f(x).

We have seen that T2T1ϕ = ϕ and T1T2f = f , therefore T1 and T2 are each other’s

inverses. □

An important consequence of the theorem is that the definition of the Arens–

Eells space doesn’t depend on the choice of base point.

2.4. Universal extension property

The property says that any Lipschitz map between a pointed metric space M

and a Banach–space V can be replaced by a combination of a map from M to
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Æ(M) and a unique linear map from Æ(M) to V . To prove this we once again

rely on [9]. First we need a lemma:

Lemma 2.12. For any metric space M , the equality ∥mxy∥Æ = ϱ(x, y) holds.

Moreover for all x, y ∈ M ∥·∥Æ is the largest of all seminorms ∥·∥0 on the space

of molecules, which satisfy ∥mxy∥0 ≤ ϱ(x, y) for all x, y ∈ M .

Proof. We know from the defintion that ∥mxy∥Æ ≤ ϱ(x, y). To see the converse

inequality, for a fixed y ∈ M let us define the function ϱy(x) = ϱ(x, y). It is a

Lipschitz function and its Lipschitz norm is 1, and therefore, according to (2.2)

we have

∥mx,y∥Æ · 1 ≥ |⟨ϱy(x),mx,y⟩| = ϱ(x, y).

Let ∥·∥0 be a seminorm on the space molecules, such that for each pair of

points x, y ∈ M we have ∥mxy∥0 ≤ ϱ(x, y). Using the triangle-inequality first,

then the assumption, we have

∥m∥0 =

∥∥∥∥∥∑ aimxiyi

∥∥∥∥∥
0

≤
∑

|ai|∥mxiyi∥0 ≤
∑

|ai|ϱ(xi, yi),

for all m =
∑

aimxiyi . Since the Arens–Eells norm is defined by the infimum of

the right-hand side, taking the infimum of this expression we get

∥m∥0 ≤ ∥m∥Æ.

□

With this lemma we can now prove the universal extension property:

Theorem 2.13. Let M be a pointed metric space, V be a Banach-space, and

f : M → V be a Lipschitz-map sending the base point to the zero element of V .

Then the map ι : x 7→ mx isometrically embeds M into Æ(M), moreover there

exists a unique bounded linear map F : Æ(M) → V , such that

F ◦ ι = f, and ∥F∥ = ∥f∥Lip.
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The theorem can be visualized with the following commutative diagram:

M

Æ(M) V

f
ι

F

Proof. First we have

∥ι(x)− ι(y)∥Æ = ∥mx −my∥Æ = ∥mxy∥Æ = ϱ(x, y)

for all x, y ∈ M as demonstrated by Lemma 2.12, proving this is indeed an

isometric embedding.

To prove the universality property, define F : Æ(M) → V by

F (m) =
∑

axf(x),

where m =
∑

axmx. First, we need to prove that F is bounded, that is ∃c > 0 for

∀m ∈ Æ(M) such that ∥Fm∥ ≤ c · ∥m∥Æ(M). Let ∥·∥0= 1
∥f∥Lip

∥F∥. For molecules

in form of δ(x)− δ(y) we have

∥mxy∥0 =
1

∥f∥Lip
∥F (mxy)∥

=
1

∥f∥Lip
∥F (ι(x)− ι(y))∥ =

1

∥f∥Lip
∥f(x)− f(y)∥ ≤ ϱ(x, y)

Thus by Lemma 2.12 we have

∥m∥0 =
1

∥f∥Lip
∥Fm∥ ≤ ∥m∥Æ.

Multiplying by ∥f∥Lip we have shown F is bounded and ∥F∥ ≤ ∥f∥Lip.
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If we show the reverse inequality too, we get ∥F∥ = ∥f∥Lip.

∥F∥ = sup
m ̸=m̃

{
∥F (m)− F (m̃)∥V

∥m− m̃∥Æ

}

≥ sup
δ(x)=m
δ(y)=m̃

{
∥F (δ(x))− F (δ(y))∥V

∥δ(x)− δ(y)∥Æ

}

= sup
x ̸=y

{
∥F (ι(x)− F (ι(y))∥V

ϱ(x, y)

}

= sup
x ̸=y

{
∥f(x)− f(y))∥V

ϱ(x, y)

}
= ∥f∥Lip.

□



CHAPTER 3

p-Wasserstein–spaces

In this chapter we introduce a special metric space, the so-called Wasserstein

space, which is closely related to the theory of optimal transportation. First, let

us introduce some important notions we will use in the following chapter.

Definition 3.1. Let (M,ϱ) be a metric space. Denote the sigma-algebra gener-

ated by the open sets in M by B. A set-function µ : B → R is called a measure if

it is σ-additive. We say that µ is finite if µ(M) is finite. If µ(M) = 1 and µ ≥ 0,

we call it a probability measure. We denote the set of probability measures over

M by P(M).

Definition 3.2. We say that a measure µ is finitely supported on M , if there ex-

ists a finite set
{
x1, x2, . . . , xn

}
⊆ M , such that µ =

∑n
i=1 λiδxi

, where
∑n

i=1 λi = 1

and λi > 0 for all i ∈
{
0, 1, . . . , n

}
.

The set
{
x1, x2, . . . , xn

}
is called the support of µ and is denoted by supp(µ).

The following notion will play a key role in the theory of optimal transport.

Definition 3.3. Let µ, ν ∈ P . We call Π ∈ P(M ×M) is a coupling for µ and ν

if, for all A,B ∈ B, if their first marginal is µ, its second marginal is ν, that is,

(1) Π(A×M) = µ(A) and

(2) Π(M ×B) = ν(B).

for all A,B ∈ B. The set of couplings will be denoted by C(µ, ν).

Definition 3.4. Let µ be a measure and T be a measurable map. The measure

called the push-forward of µ by T , denoted by T#µ, is defined by

(T#µ)(A) = µ(T−1(A))

for every A ∈ B.
14
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Dirac measures will play a key role in this section, so we recall that if x ∈ M

then a Dirac measure concentrated to x is denoted by δx and is defined by

δx(A)

1, if x ∈ A

0, if x /∈ A
for all A ∈ B.

3.1. A short introduction to Optimal transport

The Optimal Transport problem was first introduced by Gaspard Monge, when

he proposed some results on moving soil from one point to another in an optimal

way. Later, Leonid Kantorovich also studied the problem, motivated by the issue

of distributing resources optimally.

Gaspard Monge was a French mathematician, he worked on many different

things, ranging from differential geometry [11] and descriptive geometry [12] to

cannon making [13].

Figure 1. Gaspard Monge, photo source: Wikipedia

In 1781, he proposed some results on moving soil from one location to another

in an optimal way, in both R2 and R3 [14]. Rather than Monge’s original formu-

lation of the problem, we will use a more modern one as introduced in the first

chapter of [15].

We are given two probability measures: µ ∈ P(M) and ν ∈ P(N) and a cost

function c : M ×N → R+ and we need to find a map T such that the transport

cost
∫
c(x, T (x)) dx is minimal, i.e., we want to find a map T which realizes the

minimum of the set

https://en.wikipedia.org/wiki/Gaspard_Monge
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{∫
c(x, T (x)) dx : T#µ = ν

}
,

where T#µ is the push-forward of µ. In other words, we are looking for the

cheapest way to transform µ into ν.

As we will see, the problem is ill-posed, as such a T might not exist, and

even if it exists, non-uniqueness can occur. First we show an example where the

transport problem cannot be solved.

Example 3.5. Consider a factory producing cars, and two stores selling them,

one requiring 1
3
of the factory’s production, the other 2

3
. This can be modelled by

setting µ = δF and ν = 1
3
δS1 +

2
3
δS2 .

F S1

S2

δF 1
3
δS1

2
3
δS2

We then need to transform µ into ν. This isn’t possible since for any possible

solution (i.e., transport map) T : M → M , we have:

T#(δx)(A) = δx(T
−1(A)) =

1, if x ∈ T−1(A)

0, if x /∈ T−1(A)

=

1, if T (x) ∈ (A)

0, if T (x) /∈ (A)
= δT (x)(A).

This means that T#(δx) = δT (x), so the push-forward of a Dirac measure is a Dirac

measure, but ν is not a Dirac measure.

Next we present an elementary example where the optimal solution is not

unique.

Example 3.6. Condider 4 points, A,B,C,D arranged in a square. Let µ =

1
2
δA + 1

2
δB and ν = 1

2
δC + 1

2
δD. To transform µ into ν, for the first map we have

T1(A) = C and T1(B) = D and for the second we have T2(A) = D and T2(B) = C.
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A

C

B

D

1
2
δA

1
2
δD

1
2
δC

1
2
δB

1
2

1
2

A

C

B

D

1
2
δA

1
2
δD

1
2
δC

1
2
δB

1
2

1
2

Here we can see that it doesn’t matter which plan we choose, the cost will be

the same for both maps, as the distance along the edges of the square are equal.

The solutions to the problem of optimal transport can greatly differ for differ-

ent choices of the cost function. We will illustrate this through the next example.

Example 3.7. We have n books displayed one after the other on a long bookshelf,

starting from the left. We buy a new book and want to display it on the very left.

We will have to move some books in order to liberate that place, so we formulate

a few Ti transport maps. In the first one, we move the book on the left to the

very end, after the last book, so T1(1) = n+ 1 and T1(k) = k for the rest. In the

second, we move every book to the left by one place, so T2(k) = k+1. In the third,

we move the fist book to the place of the third one, and move the third one to the

end of the row, so T3(1) = 3, T3(3) = n + 1 and T3(k) = k for the rest. We can

model this by using weighted Dirac-measures. In the beginning we have n books

in the first n places, we can write this as a sum of n weighted Dirac-measures

µ =
∑n

i=1
1
n
δi, after moving the book we will have n books in the first n+1 place,

except the first, so we will have ν =
∑n+1

j=2
1
n
δj.

Depending on the cost function, it will matter which map we choose.

First let the cost function c1(x, y) =
√
|y − x|.

In this case the cost of the first transport map is

Cc1(T1) =

∫
c1(x, T1(x)) dµ(x) =

1

n
· c1(x, T1(x)) =

1

n
·
√
(n+ 1)− 1 =

√
n

n
.

For the second transport map, we have:

Cc1(T2) =

∫
c1(x, T2(x)) dµ(x) =

∫ √
(x+ 1)− x dµ(x) =

∫
1 dµ(x) =

n+1∑
i=1

1

k
= 1.
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1 2 3 n-1 n

Figure 2. First map

1 2 3 n-1 n

Figure 3. Second map

1 2 3 n-1 n

Figure 4. Third map

And for the third transport map:

Cc1(T3) =

∫
c1(x, T3(x)) dµ(x) =

1

n

∫
c1(x, T3(x)) dδ1(x) +

1

n

∫
c1(x, T3(x)) dδ3(x)

=
1

n
·
√
3− 1 +

1

n
·
√

(n+ 1)− 3 =

√
2

n
+

√
n− 2

n
>

√
n

n
for n ≥ 3.

So in this case the first map is the best out of the three. It can be shown that if

the cost function is concave, then a transport with fewer but longer movements

is cheaper than a transport with many small movements.

Next let the cost function be c(x, y) = |y − x|. With similar calculations we

get:

Cc2(T1) =

∫
c2(x, T1(x)) dµ(x) =

1

n
· |(n+ 1)− 1| = 1,

Cc2(T2) =

∫
c2(x, T2(x)) dµ(x) =

∫
|(x+ 1)− x| dµ(x) =

n∑
i=1

1

n
= 1,

Cc2(T3) =

∫
c2(x, T3(x)) dµ(x) =

1

n
· |3− 1|+ 1

n
· |(n+ 1)− 3| = 1.
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So in this case it doesn’t matter which map we choose. This will be analogous

to the 1-Wasserstein distance we will introduce in the next section.

Last let the cost function be c(x, y) = |y − x|2. Then we get:

Cc3(T1) =

∫
c3(x, T1(x)) dµ(x) =

1

n
· |(n+ 1)− 1|2 = n,

Cc3(T2) =

∫
c3(x, T2(x)) dµ(x) =

n∑
i=1

1

n
· |(k + 1)− k|2 = 1,

Cc3(T3) =

∫
c3(x, T3(x)) dµ(x) =

1

n
· |3− 1|2 + 1

n
· |(n+ 1)− 3|2

=
22 + (n− 2)2

n
.

In this case, the second map is the best. Again, it can be shown that in the case

of convex cost functions, lots of small movements tend to be better than fewer

but longer movements.

A long time passed without significant development in the field. Then came

Leonid Kantorovich during the Second World War and revolutionized the theory

of optimal transport.

Kantorovich was a Russian mathematician and economist. Shortly before the

Second World War, he laid the foundations of linear programming in the publi-

cation [16], to find a solution to distributing resources to maximize output. The

war would interrupt his studies in this field, as he focused on tackling challenges

for the Red Army, such as during the siege of Leningrad, calculating how far each

vehicle had to be, to be able to safely transport supplies to the city over the frozen

lake. This effort was called the Road of Life [17]. He was still able to work on

economics-related problems, and after the war, he would become an influential

economist [18]. In 1975 Leonid Kantorovich and Tjalling C. Koopmans received

a Nobel-prize in economics ”for their contributions on the theory of optimum

allocation of resources” [19].
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Figure 5. Leonid Kantorovich, photo source: Nobel Foundation archive

He generalized the problem by getting rid of the mass splitting obstacle, in-

troducing the concept of coupling to the problem [20]. In this context, they are

called transport plans. With these, the Kantorovich formulation of the Optimal

Transport problem is

inf

{∫
M1×M2

c dΠ : Π ∈ C(µ, ν)

}
.

We can look at Π(A×B) as the mass moving from A to B, thus eliminating the

constraint of the Monge formulation about the discrete particles. It can be shown

that if the Kantorovich formulation has convex constraints, then we can calculate

this infimum by solving for the dual problem (in the operations research sense).

Example 3.8. Going back to the previous example, we can solve the allocation of

car production in the Kantorovich formulation. We can write down the coupling

between µ = 1 · δF and ν = 1
3
δS1 + 2

3
δS2 with a table, here Π is defined as

Π(F, S1) =
1
3
, Π(F, S2) =

2
3
and Π(·, ·) = 0 elsewhere:

F S1 S2

F 0 1
3

2
3

S1 0 0 0

S2 0 0 0

This time the infimum only has one element, so it is easy to calculate:∫
c(x, y) dΠ(x, y) = c(F, S1)·Π(F, S1)+c(F, S2)·Π(F, S2) =

1

3
c(F, S1)+

2

3
c(F, S2).

https://www.nobelprize.org/prizes/economic-sciences/1975/kantorovich/facts/
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3.2. Definition of p -Wasserstein–spaces

With Kantorovich’s formulation, i.e., with couplings, we can define the so-

called p-Wasserstein–space, where the role of the cost function is played by the

p-th power of the distance.

Definition 3.9. Let (M,ϱ) be a complete, separable metric space, and p ≥ 1 a

real number. Then we denote the set of probability measures with a finite p-th

moment by Pp(M). That is,

Pp(M) =

{
µ ∈ P(M) : ∃x0 ∈ M such that

∫
M

ϱ(x, x0)
p dµ(x) < ∞

}
.

On the set Pp(M) we can introduce the so-called p-Wasserstein distance as

follows.

Definition 3.10. For p ≥ 1, the p -Wasserstein distance on Pp(M) is defined by

dWp(µ, ν) = inf
Π∈C(µ,ν)

(∫
M×M

ϱ(x, y)p dΠ(x, y)

) 1
p

.

The set call Pp(M) endowed with the distance dWp is called the p -Wasserstein–

space.

It is known that the Wasserstein distance is a metric on Pp(M) (for the details

see chapter 6 of [21]), that is

(1) dWp(µ, ν) = 0 ⇔ µ = ν

(2) dWp(µ, ν) = dWp(ν, µ)

(3) ∀µ, ν, η : dWp(µ, η) ≤ dWp(µ, ν) + dWp(ν, η).

Now we collect a few important observations about the basic properties of the

Wasserstein–space:

• If we take the optimal transport problem, with cost function c(x, y) =

ϱ(x, y)p, the Wasserstein distance becomes the cost of the optimal trans-

port plan in the Kantorovich formulation.

• If one of µ or ν is the Dirac measure, then the set of transport plans has

only one element, the product measure. In this case it is easy to calculate



22 3. p-WASSERSTEIN–SPACES

the Wasserstein distance:

dWp(µ, δx0) =

(∫
M×M

ϱ(x, y)p d(µ× δx0)(x, y)

) 1
p

=

(∫
ϱ(x, x0)

p dµ(x)

) 1
p

.

• If both µ and ν are the Dirac measures, then their Wasserstein distance

is just the distance of their supporting points in the underlying space:

dWp(δx, δx0) = ϱ(x, x0).

• It can be shown, that every measure in the p-Wasserstein–space can be

approximated by a convex combination of Dirac measures. That is, for

all µ ∈ Wp(M) and for all ε > 0 there exists a probability measure

ν =
∑n

i=1 λiδxi
such that dWp(µ, ν) < ε.

• If µ =
∑k

i=1 λiδxi
, ν =

∑l
j=1 λ̃yjδyj have a finite support, then their

optimal coupling Π has also a finite support. The Wasserstein distance

then becomes

dWp(µ, ν) =

(∫
ϱ(x, y)p dΠ(x, y)

) 1
p

=

(∑∑
ϱ(x, y)p · Π(x, y)

) 1
p

.



CHAPTER 4

The 1-Wasserstein distance and the Arens-Eells norm

In this chapter, we will talk about how optimal transport comes into the picture

with the Arens–Eells spaces, and we will see how the 1-Wasserstein distance and

the Arens–Eells norm are related. We will rely on chapter 3.3 of [9].

Let µ, ν ∈ W1(M) be two finitely supported measures, and consider µ − ν.

Then (µ − ν)(M) = µ(M) − ν(M) = 1 − 1 = 0, and it has a finite support. So

we can analyse it through the Arens–Eells space, by treating it as a molecule. We

will see that ∥µ− ν∥Æ = dW1(µ, ν).

To find the analogue to the concept of coupling, let’s think of molecules in the

following way: let m be a molecule, and let us think of x ∈ M as either a factory

or a store depending on whether m(x) is greater or smaller than 0. We have some

factories and stores with a specified amount of production and demand, now we

need to get the goods from the factories to the stores. Define h : M2 → R+ such

that

m =
∑

x,y∈M

h(x, y)mxy.

This is equivalent to saying that for all x ∈ M we have

m(x) =
∑
y∈M

(h(x, y)− h(y, x)).

We will call this h function the transport plan, and the number h(x, y) represents

the amount of goods that need to be transported from x to y. We define the cost

of the transport plan as
∑

h(x, y)ϱ(x, y). Thus the minimal cost of the transport

plan becomes the Arens-Eells norm.

We will see that in this case there always exists an optimal transport plan.

We saw in example 3.7, that the optimum may not be unique, but we can choose

an optimal one where there is no point we both ship to and ship from.

23
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Theorem 4.1. For every molecule m on a metric space M , there exists a finitely

supported function ĥ, such that ĥ : M2 → R+ and

(1) m =
∑

xy ĥ(x, y)mxy

(2) ∥ĥ · ϱ∥1 = ∥m∥Æ
(3) ĥ(x, y) > 0 ⇒ m(x) > 0 and m(y) < 0

(4) ∥ĥ∥1 = 1
2
∥m∥1

Proof. First we prove (1) and (2). Let A be the support of m. Then identifying

a function h : A2 → R+ with a point in R|A|2 , we can see that the set

C = {h : m =
∑
x,y

h(x, y)mxy}.

is nonempty and closed. It is nonempty because every molecule has at least one

representation, and it is closed because if we take a sequence hi ∈ C, meaning

for each hi : m =
∑

x,y hi(x, y)mxy, then their limit h must also satisfy m =∑
x,y h(x, y)mxy.

Since
∑

x,y|h(x, y)|ϱ(x, y) is continuous in h and tends to infinity as h → ∞, and

C is nonempty and closed, it follows that it attains its minimum on C, i. e. there

exists a h such that ∑
x,y

|h(x, y)|ϱ(x, y) = ∥h · ϱ∥1 = ∥m∥Æ.

It can be shown, that the norm on Æ(A) is equal to the norm on Æ(M) (as

seen in Theorem 3.7 in [9]), thus replacing the minimising function h, with h̃ =

h+(x, y) + h−(x, y), we get a A2 → R+ function satisfying (1) and (2).

Now we’ll prove (3) and (4). Consider the set of those positive functions that

satisfy (1) and (2). Since this set is closed, there is an element h0 with minimal 1

norm. Then for all x ∈ M we have h0(x, x) = 0, because if h0(x, x) > 0 for some

x ∈ M , then changing it to h0(x, x) = 0 would still satisfy (1) and (2), but the l1

norm would be lowered. So we have h0(x, x) for all x. Now assume that we have

three points p, q, r ∈ M such that h(p, q) > 0 and h(q, r) > 0. Then we can set h1

as
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a := min{h0(p, q), h0(q, r)}

h1(p, q) = h0(p, q)− a,

h1(q, r) = h0(q, r)− a,

h1(p, r) = h0(p, r) + a

and h0 = h1 elsewhere. Then one can show that ∥h1 · ϱ∥1≤ ∥h0 · ϱ∥1. Indeed,

∥h1 · ϱ∥1 =
∑
x,y

|h1(x, y) · ϱ(x.y)|

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

|h1(x, y) · ϱ(x, y)|+ |h1(p, q) · ϱ(p, q)|

+ |h1(q, r) · ϱ(q, r)|+ |h1(p, r) · ϱ(p, r)|

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

|h0(x, y) · ϱ(x, y)|+ |(h0(p, q)− a) · ϱ(p, q)|

+ |(h0(q, r)− a) · ϱ(q, r)|+ |(h0(p, r)− a) · ϱ(p, r)|

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

h0(x, y) · ϱ(x, y) + (h0(p, q)− a) · ϱ(p, q)

+ (h0(q, r)− a) · ϱ(q, r) + (h0(p, r) + a) · ϱ(p, r)

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

h0(x, y) · ϱ(x, y) + h0(p, q) · ϱ(x, y)

+ h0(q, r) · ϱ(q, r) + h0(p, r) · ϱ(p, r)

− a · (ϱ(p, q) + ϱ(q, r)− ϱ(p, r))
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As per the triangle inequality, we have:∑
(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

h0(x, y) · ϱ(x, y) + h0(p, q) · ϱ(x, y)

+ h0(q, r) · ϱ(q, r) + h0(p, r) · ϱ(p, r)

− a · (ϱ(p, q) + ϱ(q, r)− ϱ(p, r))

≤
∑

(x,y) ̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

h0(x, y) · ϱ(x, y) + h0(p, q) · ϱ(x, y)

+ h0(q, r) · ϱ(q, r) + h0(p, r) · ϱ(p, r)

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y)̸=(r,p)

|h0(x, y) · ϱ(x, y)|+ |h0(p, q) · ϱ(x, y)|

+ |h0(q, r) · ϱ(q, r)|+ |h0(p, r) · ϱ(p, r)| = ∥h0 · ϱ∥1.

But ∥h1∥1< ∥h0∥1, here we can omit the absolute values again:

∥h1∥1 =
∑∣∣h1(x, y)

∣∣ = ∑
(x,y) ̸=(p,q)
(x,y) ̸=(q,r)
(x,y)̸=(r,p)

∣∣h1(x, y)
∣∣+ ∣∣h1(p, q)

∣∣+ ∣∣h1(q, r)
∣∣+ ∣∣h1(r, p)

∣∣

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y) ̸=(r,p)

h1(x, y) + h1(p, q) + h1(q, r) + h1(r, p)

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y) ̸=(r,p)

h0(x, y) + (h0(p, q)− a) + (h0(q, r)− a) + (h0(r, p) + a)

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y) ̸=(r,p)

h0(x, y) + h0(p, q) + h0(q, r) + h0(r, p)− a

<
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y) ̸=(r,p)

h0(x, y) + h0(p, q) + h0(q, r) + h0(r, p)

=
∑

(x,y)̸=(p,q)
(x,y)̸=(q,r)
(x,y) ̸=(r,p)

|h0(x, y)|+ |h0(p, q)|+ |h0(q, r)|+ |h0(r, p)| = ∥h0∥1.
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This contradicts the minimality property of h, thus there aren’t p, q, r ∈ M ,

such that h(p, q) > 0 and h(q, r) > 0, that is to say there isn’t a point where

we both ship to and ship from, proving (3). Since h0 is non-negative, we have

m+(x) =
∑

y h0(x, y) for all x ∈ M , thus ∥h0∥1 = ∥m+∥1 = 1
2
∥m∥1, proving

(4). □

Consider two finitely supported measures µ and ν. Denote the union of their

supports by X. Then the coupling Π between the two is also finitely supported.

We can describe the transformation between the two measures by a coupling,

which is in this case a table representing X ×X, just as in example 3.8. Let λij

be the table’s entries, meaning λij is the amount we want to transport from xi to

xj. Then the coupling can be written as

Π =
∑

(xi,xj)∈X×X

λijδxixj
.

Now, as in the beginning of the chapter, consider µ − ν. We discussed, that

it can be treated as a molecule, let us denote the difference by m. What the first

proposition of theorem 4.1 tells us, is that we can always find an optimal function

ĥ, such that

m =
∑

(xi,xj)∈X×X

ĥ(xi, xj)mxixj
.

Next, if we set λij := ĥ(xi, xj), and we calculate the cost of the transport from µ

to ν with respect to Π, and use the second proposition of Theorem 4.1, we get:

dW1(µ, ν) =

∫
X×X

ϱ(u, v) dΠ(u, v)

=

∫
X×X

ϱ(u, v) d
( ∑

(i,j)∈X×X

λijδxiyj

)
(u, v)

=
∑

(i,j)∈X×X

λij

∫
X×X

ϱ(u, v) dδxiyj(u, v) =
∑

(i,j)∈X×X

λijϱ(xi, xj)

= ∥ĥ · ϱ∥1 = ∥m∥Æ = ∥µ− ν∥Æ.
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According to Theorem 4.1, we have that this cost is optimal, thus

∥µ− ν∥Æ =

∫
X×X

ϱ(u, v) dΠ(u, v) = dW1(µ, ν),

meaning that we found an optimal coupling through the Arens–Eells space.
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[11] Gaspard Monge, Application de l’analyse à la géométrie, Bachelier, Paris, 1850.
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