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Introduction

Singularity theory studies the local behaviour of an algebraic set X. In smooth
points, X locally looks like a linear subspace. However, there can be singular points
where the local picture is much more complicated. For example, X can intersect
itself. The main idea is then to find a parametrization from a smooth algebraic set
X̃, called a resolution.

The first chapter serves as an introduction to singularity theory. For curve singu-
larities, the resolution is essentially unique and can be given by blowing up points.
The resolution of surface singularities is much more complicated as several different
resolutions can exist. Nevertheless, resolution graphs encode a lot of information
about the singularity. We conclude this chapter by the fundamental theorem of
Hironaka, stating that resolutions exist for every algebraic set.

The second chapter is devoted to simple surface singularities. These are an im-
portant class of singularities arising from group actions. We give a realization as
singularities of algebraic sets and calculate the corresponding resolution graphs.

In the third chapter, we give a quick overview of the representation theory of
finite groups with special emphasis on irreducible representations. From irreducible
representations we construct the so-called McKay graph. The resolution graphs of
simple surface singularities are then reconstructed as the McKay graph of the cor-
responding group.

The McKay correspondence was first proved by case-by-case calculations. In the
final chapter, we give a more geometric approach and mention several reformulations
of the original correspondence.

As algebraic geometry gets highly abstract very quickly, several proofs are omit-
ted. Throughout the thesis, the emphasis is on understanding key examples and
working out some crucial calculations in detail. In the same vein, I structured the
thesis to emphasise the geometric insights opposed to the formal treatment of the
literature.



Chapter 1

Singularities

1.1 Curve singularities

1.1.1 Plane algebraic curves

Definition 1.1.1. An affine algebraic curve C = {(x, y) | f(x, y) = 0} is the zero
set of a polynomial f with complex coefficients.

Definition 1.1.2. The degree of a curve is simply the degree of the polynomial f .

One can find several examples in the high-school curriculum such as lines and
conics having degrees 1 and 2. In some sense, these are the simplest curves.

If we increase the degree, the behaviour of the curves gets much more compli-
cated. Exceptional points can appear already for degree 3 and it is hard to interpret
the local picture.

The main tool in analysis for local investigations is the Implicit function theorem,
which states that if the differential of f , df = (∂f

∂x
, ∂f
∂y

) does not vanish at a point p
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of the curve, then the curve is smooth at p with tangent vector orthogonal to the
differential at p.

However, at the special points where the differential vanishes the curve is not
smooth and the tangent space is more difficult to define.

Definition 1.1.3. The curve C is singular at a point p ∈ C if ∂f
∂x

(p) = ∂f
∂y

(p) = 0.
The singular locus of a curve is the set of singular points.

Example 1.1.4. We calculate the singular points of the cusp given by the equation
y2 − x3 = 0.

The differential is (∂(y2−x3)
∂x

, ∂(y2−x3)
∂y

) = (−3x2, 2y). As expected from the picture,
the cusp has only one singularity, at the origin.

By the previous example, it is natural to think that singular points form a finite
set, but we have to be careful with curves such as C = {(x, y) | x2 = 0}. In this
case the whole curve will be singular. To avoid this problem we have to consider
irreducible curves.

Definition 1.1.5. A curve C is irreducible if the defining polynomial f is irreducible.

Theorem 1.1.6. The singular locus of an irreducible curve C is finite.

Proof. By definition, the singular locus is the intersection of the curves correspond-
ing to f , ∂f

∂x
and ∂f

∂y
. We show that already the intersection of f and one of its

partial derivatives is finite. This will follow from the more general lemma below:
The intersection of two curves satisfying some mild conditions is always finite.

Lemma 1.1.7 (Shafarevich). Let f, g ∈ C[x, y] be polynomials, and f irreducible.
If f does not divide g, then the system f(x, y) = g(x, y) = 0 has a finite number of
solutions.

Proof of the Lemma. We follow the proof in Shafarevich’s book [15]. The main idea
is to work in the Euclidean ring C(x)[y] instead of C[x, y]. By Gauss’s lemma, since
f and g were relatively prime in C[x, y], the same holds in our new ring. Now we
can use that the new ring is Euclidean, thus there exist r, q such that rf + qg = 1.
Multiplying by the denominators of r and q, we arrive at the equation r̃f + q̃g = h,
where h is a polynomial in x.

If (x1, y1) is a solution of f(x, y) = g(x, y) = 0, then the LHS of the equation is
zero. Therefore x1 must be a root of h. As h has a finite number of roots, the possible
x coordinates for solutions is finite. The proof is finished by a similar argument for
the y coordinate.
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The theorem immediately follows from the Lemma as f is irreducible and the
partial derivatives have lower degrees. So the only possibility for f dividing the
partial derivatives is if both partial derivatives are zero. But then f is constant
contradicting the assumption that f is irreducible.

Corollary 1.1.8. A curve has finitely many singularities if and only if every irre-
ducible factor in the decomposition of f has exponent one.

1.1.2 Blowup

In this chapter, we introduce the basic device for constructing resolutions. It is a
local surgery technique called blowup. The general idea is that each blowup makes
the singularity “more simple” and after a sequence of blowups we get a smooth
curve.

We motivate the definition by the following example:
Several singularities (nodes) locally look like two intersecting lines. The main

problem is that both lines are perfectly reasonable candidates for the tangent. There-
fore we replace the point with the parameter space of all lines through the point.
This will split the two lines as they correspond to different points in the parameter
space. The following picture is from [17].
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Definition 1.1.9. Let B be the set of all pairs (x, L), where L is a line through the
origin and x ∈ L. That is, B = {(x, L) ∈ C2 ×CP1| x ∈ L}. This is called the blowup
of the complex plane at the origin.

There is a natural projection from the blowup to the complex plane.

π : B → C2

(x, L) 7→ x.

This space B has the desired properties. The fiber of any point other than the
origin is a single point in B, namely (x, L) where L is the unique line through the
origin and x. On the other hand, the fiber of the origin is a projective line as the
origin lies on all the lines going through the origin.

We can also define the blowup algebraically. Let x1, x2 be the coordinates of x,
and a, b homogeneous coordinates of CP1. Then x ∈ L is equivalent to ax2 = bx1.
Thus B = {(x1, x2) × (a : b) ∈ C2 × CP1| ax2 = bx1}. The projection π restricted to
π−1(C2\{0}) is an algebraic ismorphism.

Remark: We can define the blowup at an arbitrary point by using a transla-
tion.

Now that we understand the blowup of the plane we can turn to the blowup
of plane curves.

Definition 1.1.10. Let C be a plane curve. The blowup of C at a point P is the
Zariski-closure of the preimage π−1(C\{P}) in B, where B is the prevously defined
blowup of the plane at P .

Intuitively, the preimage π−1(C\{P}) lacks finitely many points in the fiber of
the origin which will be in the Zariski-closure.

Example 1.1.11. We calculate the blowup of the curve given by the equation xy = 0.
This curve is the union of the two coordinate axes in the plane.

The blowup of this curve at the origin is given by the following system of equations:

xy = 0

ay = bx.
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We get a better picture by looking at the charts of the projective line. On the
first chart b = 1 and we get the equations:

xy = 0

ay = x.

We are interested in the preimage of the complement of the origin. Therefore a
must be 0. Consequently, x = 0 and y can be arbitrary nonzero complex number.
The Zariski-closure will be the whole line. We get a line at the other chart similarly.
The previously intersecting lines are now disjoint hence smooth.

Perhaps somewhat surprisingly blowing up works for more complicated singular-
ities as well.

Example 1.1.12. The blowup of the cusp x3 = y2 at the origin is smooth.

The equations for the blowup are

x3 = y2

ay = bx.

On the chart b = 1, we obtain (ay)3 = y2. Equivalently, y2(a3y − 1) = 0. Thus the
blowup on this chart is the smooth curve given by the equation (a3y − 1) = 0.

On the second chart a = 1, we have x3 = (bx)2. By rearranging, we get x2(x −
b2) = 0. Therefore the exceptional divisor will be the point x = y = b = 0, a = 1
and the blowup on this chart is smooth as well, given by (x− b2).

Theorem 1.1.13. For every curve C, there exists a finite sequence of blowups such
that the resulting curve C̃ is smooth.

This smooth C̃ is a resolution of C with the map given by the blowups. The
main difficulty of the proof is to measure the “complexity” of the singularity. For
details see, Kollár’s book on resolution of singularities [5]. Also Fulton’s book [3] is
a wonderful introduction to algebraic curves.
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1.2 Surface singularities

With a thorough understanding of plane curves and their singularities, the general
focus is shifted to the study of higher dimensional varieties, most notably to sur-
faces. Even though the classification of smooth surfaces was achieved by Enriques
and the Italian school, and later a modern classification was provided by Kodaira,
singular surfaces still remain a flourishing part of algebraic geometry with many
open questions.

Definition 1.2.1. An affine algebraic (hyper)surface S in C3 is the zero set of a
complex polynomial on C3.

Definition 1.2.2. A point p ∈ S is singular if the differential of the defining poly-
nomial of S vanishes at p.

A new phenomenon appearing for surfaces is that the singular locus of an irre-
ducible surface can be one dimensional. For example, the Whitney umbrella given
by x2 = zy2 is singular among the z axis.

The figure is from [4].
To avoid this complication it is natural to work with normal surfaces, where the
singular locus has codimension 2, therefore the singularities are isolated. In this
case, we can examine the singularity with a (slightly changed) blow up at a point.

Definition 1.2.3. The blowup of C3 at the origin is the closed subset B of C3 ×
CP2 defined by the equations {xiyj = xjyi| 1 ≤ i, j ≤ 3} where xi are the affine
coordinates of C3 and the yi are homogeneous coordinates of CP2.



Surface singularities 9

Similarly to the curve case, there exists a natural projection π to C3.

Definition 1.2.4. The blowup of a surface S at a point p is the Zariski closure of
the preimage π−1(S\{P}) in B. The exceptional divisor is the preimage of P under
π.

Example 1.2.5 (The Double Cone). The Double Cone is given by the equation
x2 + y2 − z2 = 0.

If we blow up at the origin, (calling the homogeneous coordinates a, b, c), we arrive
at the system of equations:

x2 + y2 − z2 = 0

xb = ya

yc = zb

za = xc.

To understand the exceptional divisor we consider the affine chart c = 1 of CP2.
Thus we get the new equations,

x2 + y2 − z2 = 0

xb = ya

y = zb

za = x.

We then obtain z2(a2+b2−1) = 0. The exceptional divisor will be the intersection
of the algebraic sets given by z = 0 and a2+b2−1 = 0. As the picture below suggests,
the real solutions form a circle and the complex solutions form a complex projective
line. The following picture is from [17].
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1.2.1 The resolution graph

Generally, it is not enough to blow up points to get a resolution even for normal sur-
faces. Zariski proved that for every surface singularity a resolution can be obtained
by a sequence of blowing up points and normalizations.

Let S be a normal surface and π : S̃ → S be a resolution. Then the exceptional
divisor E will be 1-dimensional, therefore it is a union of curves E1, E2, ..., En. (We
can choose π so that the curves intersect transversally.)

Definition 1.2.6. The resolution graph is constructed as follows. Let the vertices
be the irreducible components Ei of the exceptional divisor. If two irreducible com-
ponents Ei and Ej intersect in k points, then we draw k edges between Ei and Ej.

Mumford in [8] showed that the link L can be obtained from the resolution
graph by the plumbing construction. Thus the resolution graph encodes the abstract
topological type of the singularity as, by Milnor [7], S is locally homeomorphic a
cone on L. Therefore the resolution graph is of primary interest as it can be used
to calculate the fundamental group of the link and also construct invariants of the
singularity. For more on surfaces, see [2] and [9].
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1.3 Resolution in higher dimension

In this chapter we mainly follow the book An Invitation to Algebraic Geometry by
K.E. Smith, L. Kahanpaeae, P.Kekaelaeinen, and W.N. Traves [17].

1.3.1 Affine algebraic sets

Definition 1.3.1. An affine algebraic set X in Cn is the common zero set of a
collection of polynomials on Cn. That is, if F = {Fi}i∈I , then X = {x ∈ Cn|Fi(x) =
0,∀i ∈ I}. We will use the notation V (F) for X.

In the abstract theory it is useful to allow several polynomials because affine
algebraic sets will be closed under intersection.

Lemma 1.3.2. The intersection of affine algebraic sets is an affine algebraic set.

Proof. Let Xα = V (Fα), α ∈ A be affine algebraic sets. Then
⋂
α∈A

V (Fα) = V (∪α∈AFα).

Lemma 1.3.3. The union of finitely many affine algebraic sets is an affine algebraic
set as well.

Proof. It is enough to prove the statement for the union of two affine algebraic sets.
We claim that

V (F) ∪ V (G) = V (FG).

It’s easy to check that every point in the union is contained in the RHS. The main
task is to prove that the RHS is contained in the LHS. For a proof by contradiction
let x ∈ V (FG) but x /∈ V (F) and x /∈ V (G). Since x /∈ V (F) there exists an f ∈ F
such that f(x) ̸= 0. Similarly, there is a g ∈ G with g(x) ̸= 0. But then f · g(x) ̸= 0
and f · g ∈ V (FG) which in a contradiction as x ∈ V (FG).

The whole space Cn = V (0) and ∅ = V (1) are affine algebraic sets. Thus we can
define a topology with the affine algebraic sets as closed sets.

Definition 1.3.4. The topology on Cn where the closed sets are exactly the affine
algebraic sets in Cn is called the Zariski topology on Cn.
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This is indeed a topology by the previous two lemmas. Affine algebraic sets are
closed in the usual Euclidean topology as well, but the converse is false. The Zariski
topology is much coarser than the Euclidean topology.

Now we define the maps between affine algebraic sets, called morphisms.

Definition 1.3.5. A morphism between affine algebraic sets X ⊆ Cn and Y ⊆ Cm

is the restriction of a polynomial map between the ambient spaces Cn and Cm, where
by polynomial map we mean that every component is a polynomial.

Definition 1.3.6. A morphism φ of affine algebraic sets X φ−→ Y is an isomorphism
if there exist an inverse morhism, that is, φ is bijective and φ−1 is a morphism as
well. Two affine algebraic sets are said to be isomorphic if there exists an isomor-
phism between them.

1.3.2 Projective algebraic sets

Algebraic geometers prefer to work in projective space rather than affine space for
several reasons. As the projective space is a compactification of affine space, algebraic
sets will be compact and also the intersection theory is much nicer.

Definition 1.3.7. The n-dimensional complex projective space CPn is the parameter
space of lines in Cn+1 going through the origin.

Alternatively, CPn can be defined by the so-called homogeneous coordinates.
Take Cn+1\{0} and factor out with the C∗ action of multiplication by a nonzero
constant. We denote the equivalence class of (x0, x1, ..., xn) by (x0 : x1 : ... : xn).

What are the projective algebraic sets? Polynomials in n + 1 variables are not
functions on CPn as they are (usually) not constant on an equivalence class.

Definition 1.3.8. A polynomial is called homogeneous if all the nonzero terms have
the same degree.

Equivalently, P (λx0, λx1, ..., λxn) = λdegP · P (x0, x1, ..., xn) for every λ ∈ C. In
particular, P (x0, x1, ..., xn) = 0 ⇒ P (λx0, λx1, ..., λxn) = 0 therefore the zero set of
homogeneous polynomials is well-defined.

Definition 1.3.9. A projective algebraic set in CPn is the common zero set of a
collection of homogeneous polynomials in n+ 1 variables.

We can define the Zariski topology for the projectice space similarly to the affine
case. The definition of morphisms becomes a bit more technical.
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Definition 1.3.10. Let X ⊆ CPn and Y ⊆ CPm be projective algebraic sets. We
call a map φ : X → Y a morphism of projective algebraic sets if the following holds:
For every p ∈ X there exists a nonempty Zariski-open neighborhood U of p, and
homogeneous polynomials F0, F1, ..., Fm ∈ C[x0, x1, ..., xn] such that φ|U : U → W

agrees with the polynomial map
U −→ W

u 7−→ (F0(u) : F1(u) : ... : Fm(u)).

Notice that every component of the polynomial map must have the same degree
and they can’t simultaneously vanish in U . Moreover, for different points in V we
might have to choose different neighborhoods and polynomials.

1.3.3 Quasi-projective algebraic sets

We have developed affine and projective algebraic sets seperately. These are special
cases of the more general notion of a quasi-projective algebraic set.

Definition 1.3.11. A quasi-projective algebraic set X is a locally Zariski-closed
subset of CPn i.e. X is the intersection of a Zariski-open and a Zariski-closed set.

Every affine algebraic set X = V (F) is quasi-projective as the projective alge-
braic set corresponding to the homogenization of F intersected with the correct chart
is X itself. Projective algebraic sets are quasi-projective as well since the ambient
projective space is Zariski-open.

The morphisms of quasi-projective algebraic sets are defined the same way as
morphisms of projective algebraic sets.

We will also need the product of two quasi-projective algebraic sets. The product
of affine algebraic sets can be easily understood but for the quasi-projective case we
need a new tool, the Segre embedding.

Definition 1.3.12. The Segre embedding is the following map from the product of
projective spaces into a higher dimensional projective space:

CPn × CPm
Σn,m−−−→ CP(n+1)(m+1)−1

((x0 : x1 : ... : xn), (y0 : y1 : ... : ym)) 7−→ (x0y0 : x0y1 : ... : xnym).

Theorem 1.3.13. The image of the Segre embedding is a projective variety. More-
over, if X ⊆ CPn and Y ⊆ CPm are quasi-projective algebraic sets, then the image
of Σn,m|X×Y is a quasi-projective algebraic set.
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1.3.4 Hironaka’s theorem

Definition 1.3.14. A morphism of quasi-projective algebraic sets X
π−→ Y is a

projective morphism if X is a closed subset of the product variety

X ⊆ Y × CPn

and X π−→ Y is the restriction of the projection onto Y .

Definition 1.3.15. Let π be a morphism of quasi-projective algebraic sets X π−→ Y .
If there exists a dense open subset U ⊆ X such that π|U is an isomorphism onto
some dense open subset in Y , then π is called birational.

Theorem 1.3.16 (Hironaka). For every quasi-projective algebraic set Y , there exists
a smooth quasi-projective algebraic set Ỹ with a projective birational morphism Ỹ

π−→
Y .

On the proof:
We have seen that blowing up points is not enough even for surfaces. The idea is

to blow up higher dimensional algebraic subsets of the singular locus as well. Hiron-
aka managed to show that a sequence of carefully chosen blowups will eventually
terminate thus giving a resolution. Even though Hironaka’s proof can be considered
algorithmic, it is hard to use it for practical calculations.



Chapter 2

Simple surface singularities

In this chapter, we take a closer look at an important family of singular surfaces.

Definition 2.0.1. Let G be a finite subgroup of SU(2). A simple surface singularity
is a singularity of the orbit space C2/G.

To make sense of this definition we have to construct these orbit spaces as alge-
braic surfaces, but as a first step we classify the finite subgroups of SU(2).

2.1 The finite subgroups of SU(2)

In this section we closely follow Lindh [6]. Using the quaternions, it can be shown
that there exists a ϕ homomorphism from SU(2) to SO(3) with kernel {±I}. Thus
it is crucial to understand the finite subgroups of SO(3).

It is a well-known fact that every element of SO(3) is a rotation by some angle
around an axis. Therefore we can represent every element of a finite subgroup G by
a pair of antipodal points where the corresponding axis intersects the unit sphere.
We can get a lot of information by the action of G on these antipodal pairs.

Lemma 2.1.1 (Burnside). Let G be a finite group acting on a finite set X. We
denote by Xg the elements fixed by g. Then the number N of orbits is

N = 1
|G|

∑
g∈G

|Xg| (2.1.1)

Using this formula we get the number of orbits instantly. Every element of G
except the identity fixes exactly two points. Therefore,

N = 1
|G|

(2(|G| − 1) + |X|) (2.1.2)
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By rearranging the terms, we get

2(1 − 1
|G|

) = N − |X|
|G|

(2.1.3)

The orbits partition X thus |X| = ∑N
i=1 G(xi), where each xi is in a different

orbit. We can rewrite the previous equation as

2(1 − 1
|G|

) = N − |X|
|G|

= N −
∑N
i=1 G(xi)

|G|
=

N∑
i=1

(1 − G(xi)
|G|

). (2.1.4)

Moreover, by the Orbit-Stabilizer theorem

2(1 − 1
|G|

) =
N∑
i=1

(1 − G(xi)
|G|

) =
N∑
i=1

(1 − 1
|Gxi

|
). (2.1.5)

If |G| ≥ 2, then 1 ≤ 2(1 − 1
|G|) < 2. On the other hand, the cardinality of the

stabilizer of xi is at least 2 as the identity and the rotation through xi fixes xi. Thus
every term on the RHS is at least 1

2 . Consequently, N ≤ 3, the number or orbits is
at most 3. Also as the LHS is at least than 1 and every term of the RHS is smaller
than 1, N must be at least 2.

If N = 2, then

2(1 − 1
|G|

) = (1 − G(x1)
|G|

) + (1 − G(x2)
|G|

). (2.1.6)

By rearranging the terms, we obtain

2
|G|

= G(x1)
|G|

+ G(x2)
|G|

. (2.1.7)

Therefore,
2 = G(x1) +G(x2) = |X|. (2.1.8)

Thus there are only two antipodal points. Every element of G acts as a rotation
around the same axis. Then G is a cyclic group.

For the case N = 3, we have the equation:

2(1 − 1
|G|

) = (1 − 1
|Gx1|

) + (1 − 1
|Gx2|

) + (1 − 1
|Gx3|

). (2.1.9)

Equivalently,
1

|Gx1|
+ 1

|Gx2|
+ 1

|Gx3|
= 1 + 2

|G|
. (2.1.10)

Since the LHS is greater than 1, the equation has only finitely many solutions, see
the table below. These groups arise as the symmetry groups of polyhedrons.
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Groups As symmetries |Stabilizers| |G|
Dn regular n-agon 2, 2, n 2n
T Tetrahedron 2, 3, 3 12
O Octahedron 2, 3, 4 24
D Dodecahedron 2, 3, 5 60

Now we can classify the finite subgroups of SU(2).

Theorem 2.1.2. Every finite subgroup of SU(2) is a preimage of a finite subgroup
of SO(3) by ϕ or a cyclic group of odd order.

Proof. IfG is an even subgroup of SU(2) then by Cauchy’s theorem it has an element
of order 2. The only order 2 element of SU(2) is −I. Since the kernel of ϕ is {±I},
G is a preimage indeed.

Secondly, if G is and odd subgroup, then ϕ is an isomorphism restricted to G

and ϕ(G) is an odd subgroup of SO(3). Using the classification, ϕ(G) can only be a
cyclic group.

The preimages of Dn, T, O, and I are denoted as BDn, BT, BO, and BD.
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2.2 Orbit spaces as affine algebraic sets

In this section we realize the orbit spaces C2/G as algebraic sets. The fundamental
idea is to understand algebraic sets by the (polynomial) functions on them.

2.2.1 Radical ideals

Recall that an affine algebraic set X is the common zero set of a collection of
polynomials F i.e. X = V (F). We can assume that F is an ideal as the common
zero set of a collection of polynomials is the same as the common zero set of the
ideal generated by them. However, it is important to realize there is still ambiguity
in the definition as an algebraic set can correspond to several ideals.

An ideal gives rise to an algebraic set by taking the common zero set. Conversely,
if X is an algebraic set, then the set of polynomial functions vanishing on X, denoted
by I(X), is an ideal. Notice that ideals arising as I(X) have the following property.

Definition 2.2.1. An ideal I is radical if fn ∈ I implies f ∈ I for every positive
integer n.

For a polynomial f , if fn vanishes at a point, then also f vanishes there. Therefore
I(X) is a radical ideal, indeed. If we restrict ourselves to radical ideals, we get a
bijective correspondence.

Theorem 2.2.2. The previously defined functions V and I are bijections between
affine algebraic sets and radical ideals. Moreover, I is the inverse of V .

This is a direct consequence of Hilbert’s Nullstellensatz, which can be found in
every standard book on algebraic geometry, for example, in Perrin [10].

2.2.2 The coordinate ring of an algebraic set

The ring of (polynomial) functions on an algebraic set X is called the coordinate
ring of X.

Definition 2.2.3. Let X be an algebraic set. Then the coordinate ring of X is

A(X) = C[x1, x2, ..., xn]/I(X)

where I(X) is the ideal of polynomials vanishing on X.

The name comes from the fact that A(X) is isomorphic to the ring of polynomial
functions on the ambient space Cn restricted to X.
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Lemma 2.2.4. The coordinate ring

A(X) = C[x1, x2, ..., xn]/I(X)

is a finitely generated algebra over C and has no nilpotent elements.

Proof. A(X) is generated by the restrictions of the coordinate functions x1, ..., xn

thus it is finitely generated. Let f be a nilpotent element of A(X), that is, fn = 0 for
some positive integer n. Equivalently, fn ∈ I(X). Since I(X) is radical, f ∈ I(X).
So f = 0 in A(X).

The converse is also true.

Theorem 2.2.5. If A is a finitely generated C-algebra that has no nilpotent elements
(i.e. it is reduced), then A is a coordinate ring of an affine algebraic set.

Proof. Since A is finitely generated, there is a surjective homomorphism

φ : C[y1, y2, ..., yk] ↠ A

taking yi to the ith generator of A. By the first isomorphism theorem,

A ∼= C[y1, y2, ..., yk]/ kerφ.

We have to check that kerφ is a radical ideal. If fn ∈ kerφ i.e φ(fn) = 0, then
since φ is a homomorphism, φ(f)n = 0. But the only nilpotent element in A is 0, so
φ(f) = 0. Therefore kerφ is nilpotent indeed. Then by Theorem 2.2.2., kerφ = I(X)
for some algebraic set X.

Thus a realization of an object as an algebraic set can be done by showing that
the ring of functions on that object is a reduced finitely generated C-algebra.

One could argue that there is still ambiguity about the constructed algebraic
set X as we get different algebraic sets from different surjective homomorphisms
onto A. However, the constructed algebraic sets have isomorphic coordinate rings.
It can be shown that the coordinate rings of two algebraic sets are isomorphic if and
only if they are isomorphic as algebraic sets. The surjective homomorphisms onto A
correspond to different embeddings of an “abstract” algebraic set into affine space.
A more modern approach would be to take X = Spec A.
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2.2.3 Invariant polynomials

Definition 2.2.6. A group action on a vector space V is a map

η : G× V → V

such that η(e, v) = v and η(g, η(h, v)) = η(gh, v) holds for ∀g ∈ G, v ∈ V . We also
make the assumption that the action is linear, that is, η(g, ·) is a linear map from
V to V .

We will use the notation g · v for η(g, v).
The main question is what the polynomial functions on the orbit space V/G are.
The action of G on V induces an action on the polynomials on V by

g · f(x1, x2, ..., xn) = f(g−1 · (x1, x2, ..., xn)).

Definition 2.2.7. The invariant polynomials of a group action by G on an n-
dimensional complex vector space V , denoted by C[x1, x2, ..., xn]G, are the polynomi-
als on V that are invariant under the action of the entire group G, that is,

g · f = f (2.2.1)

for every g ∈ G.

These are indeed functions on V/G as an invariant polynomial is constant on an
orbit.

Example 2.2.8 (Symmetric polynomials). If G is the symmetric group acting on
V by permuting the basis vectors, then the invariant polynomials are exactly the
symmetric polinomials.

The invariant polynomials form a subring of the polynomials on V hence the
ring of invariant polynomials is reduced. We now have to show that it is finitely
generated.

Before proving this we define the Reynolds operator which will play a crucial
role.

Definition 2.2.9. The Reynolds operator ρ : C[x1, x2, ..., xk] → C[x1, x2, ..., xk]G is
defined as

ρ(f) := 1
|G|

∑
g∈G

g · f. (2.2.2)
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The essential property of the Reynolds operator that it fixes the invariant poly-
nomials. Moreover, it preserves the degree.

Theorem 2.2.10 (Hilbert’s finiteness theorem). Let G be a finite group acting on
a finite dimensional vector space. Then the ring of invariant polynomials is finitely
generated.

Proof. We follow the proof from Lindh [6]. As G acts linearly, a p polynomial is
invariant if and only if the homogeneous parts of p are invariant. Therefore it is
natural to work primarily with homogeneous polynomials.

Let I be the ideal genarated by the nonconstant homogeneous invariant polyno-
mials. By Hilbert’s basis theorem the polynomial ring over the complex numbers is
Noetherian, thus every ideal is finitely generated. Let f1, f2, ..., fk be the generators
of I.

We show that the invariant polynomials are exactly the elements of the subalge-
bra C[f1, f2, ..., fk]. The elements of C[f1, f2, ..., fk] are invariant polynomials indeed
since ∀i, fi is invariant and the sums and products of invariant polynomials are
invariant as well.

To prove that every invariant polynomial is in C[f1, f2, ..., fk], we proceed by
induction on the degree. If f is a constant polynomial, then it is in C[f1, f2, ..., fk]
trivially. Now let f be a homogeneous invariant polynomial of degree d. By definition
f ∈ I, thus f is expressible as

f =
k∑
i=1

hifi. (2.2.3)

Applying the Reynolds operator, we obtain

f = ρ(f) = ρ(
k∑
i=1

hifi) =
k∑
i=1

ρ(hifi) =
k∑
i=1

ρ(hi)fi. (2.2.4)

Hence ρ(hi) is invariant and deg(hi) < deg(f). By induction, ρ(hi) ∈
C[f1, f2, ..., fk]. Consequently, f ∈ C[f1, f2, ..., fk]. As the homogeneous invariant
polynomials generate the invariant ring, the proof is finished.
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2.3 Generators and relations

For finite subgroups of SU(2), the ring of invariant polynomials and the corre-
sponding algebraic sets were computed explicitly by Klein, and more recently by
Dolgachev.

We shall cover the case of cyclic groups without going too much into the details.
The cyclic group of order n as a subgroup of SU(2) is given by

k 7→

εk 0
0 ε−k


where ε is the first nth root of unity. It acts on C2 as

x
y

 7→

 εkx

ε−ky

 .

Notice that the action on a monomial is just multiplication by a scalar. In par-
ticular, if f is invariant, then every monomial of f is invariant. It is easy to check
that xn, yn, and xy are invariants and we show that every invariant is generated by
these. Let xiyj be an invariant monomial. Thenε−1 0

0 ε


acts on xiyj as (εx)i(ε−1y)j. Since xiyj is invariant εiε−j must be 1 i.e. i ≡ j modulo
n. Thus xiyj is in the subring generated by xn, yn and xy.

We have a surjective homomorphism

φ : C[r, s, t] ↠ C[xn, yn, xy]

r 7→ xn

s 7→ yn

t 7→ xy.

To find the corresponding algebraic set, we have to understand kerφ i.e. we need
relations between xn, yn and xy. Certainly xnyn−(xy)n is a relation. Therefore rs−tn

must be in kerφ. We accept it without proof that rs − tn generates kerφ and the
corresponding algebraic set is V (rs− tn).

The generators of the invariant rings and relations between them can be com-
puted by using so-called Grundformen, for details see Dolgachev [1]. The following
table is from Lindh [6].
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2.4 Resolution of simple surface singularities

The resolution of simple surfaces now can be computated by blowups.
First, we consider the surface corresponding to the cyclic group of order 2 given

by the equation xy − z2 = 0. Blowing up at the origin, we obtain

xy − z2 = 0

xb = ya

yc = zb

za = xc.

On the chart a = 1, we get

xy − z2 = 0

xb = y

yc = zb

z = xc.

Thus x(xb)−(xc)2 = 0. Equivalently, x2(b−c2) = 0. Thus the blowup is given by
the equation (b − c2) = 0 hence it is smooth on this chart. The exceptional divisor
is the intersection of x = 0 and (b− c2) = 0, so it is a complex projective line after
compactification. As the equation is symmetric in the variables x and y, the blowup
is also smooth on the chart b = 1.

On the remaining chart c = 1, we have the equations

xy − z2 = 0

xb = ya

y = zb

za = x.

Thus z2(ab− 1) = 0. So the blowup is smooth on this chart as well and we get the
same complex projective line after compactification. Therefore the resolution graph
is just one vertex without any edges. Note that this is surface is isomorphic to the
Double Cone.

Now we calculate the resolution graph of the simple surface singularity corre-
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sponding to the cyclic group of order 3. After blowing up at the origin, we get

xy − z3 = 0

xb = ya

yc = zb

za = xc.

Similarly to the case of cyclic group of order 2, the blowup will be smooth on the
charts a = 1 and b = 1 since there will be a linear term in their equations.

On the chart c = 1, we have the equations

xy − z3 = 0

xb = ya

y = zb

za = x.

Thus we obtain z2(ab− z) = 0. The equation of the blowup is ab− z = 0 which is a
smooth surface. Furthermore, the exceptional divisor is the intersection of ab−z = 0
and z = 0. So it has the equation ab = 0 i.e. it is the union of the two coordinate axes
a = 0 and b = 0. Therefore the exceptional divisor has two components intersecting
at the origin, hence the resolution graph is two vertices connected by an edge.

The resolution graph of the simple surface singularity corresponding to the cyclic
group of order n can be computed inductively. Similarly to the previous cases, the
blowup will be smooth on the first two charts. While on the chart c = 1, we get
z2(ab − zn−2) = 0. Thus the equation of the blowup will be (ab − zn−2) = 0, the
surface corresponding to the cyclic group of order n− 2. Moreover, the exceptional
divisor will be the intersection of (ab − zn−2) = 0 and z = 0, hence it is the union
of the two coordinate axes a = 0 and b = 0. Since the surface is still singular on
this chart we need to perform more blowups. It can be shown that the resolution
graph will be a path graph on n − 1 vertices. The two coordinate axes a = 0 and
b = 0 after the first blowup correspond to the two endpoints of the path graph. The
two components produced by the second blowup will be the vertices adjacent to the
endpoints and so on.

The resolution graphs of the remaining simple surface singularities can be found
in the following table, which is from Miles Reid’s notes [12].



Resolution of simple surface singularities 26



Chapter 3

The McKay graph

In this chapter, we reconstruct the resolution trees of simple surface singularities
using ideas from representation theory. We mainly use the notes of Ed Segal [13]
and the book of Serre [14] for the first three sections.

Definition 3.0.1. A representation of a finite group G on a finite dimensional
complex vector space V is a homomorphism ρ : G → GL(V ) of G to the group of
automorphisms of G. Sometimes we call V itself the representation of G.

Note that a representation of a group is the same as a group action on V with
ρ(g) = η(g, ·).

• The representation that maps every element of G to the identity is called the
trivial representation.

• One of the most important representations is the regular representation. Let V
be a vector space of dimension |G|. Pick a basis and label it with the elements
of G. Then every g ∈ G will act on the basis by left multiplication, that is,

ρreg(h)bg = bhg.

We defined ρreg(h) on every basis element, thus we can linearly extend it to get
a linear map from V to V . It is easy to check that this linear map is invertible.
For more details on regular representations, see Theorem 3.3.2.
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3.1 Maschke’s theorem

Definition 3.1.1. A subrepresentation of a representation (V, ρ) is a vector subspace
W of V which is invariant under G. That is, for every g ∈ G, x ∈ W implies
ρ(g)x ∈ W . Equivalently, ρ(g) restricted to W is an isomorphism of W . Thus we
get a ρW : G → GL(W ) representation by restriction.

Definition 3.1.2. If (V, ρ) and (W,ψ) are representations, then we define the direct
sum of these representations as

ρ⊕ ψ : G → GL(V ⊕W ) (3.1.1)

(ρ⊕ ψ)(g)(v, w) := (ρ(g)v, ψ(g)w). (3.1.2)

Theorem 3.1.3 (Maschke). Let ρ : G → GL(V ) be a representation and let W be
a subrepresentation. Then there exists a (complementary) subrepresentation U with
U ⊕W = V .

Proof. By definition, a complementary subrepresentation U is a complementary sub-
space of W . As complementary subspaces are exactly the kernels of projections onto
W , our task is to find the correct projection.

Let W ′ an arbitrary complement of W , and let p be the corresponding projection
onto W . We claim that the following projection will be sufficient:

π := 1
|G|

∑
g∈G

ρ(g) · p · ρ(g)−1. (3.1.3)

We have to check that π is a projection onto W . Firstly, π maps V onto W since p
maps V onto W and ρ(g) maps W to W . Secondly, π|W is the identity as

(ρ(g) · p · ρ(g)−1)|W = ρ(g)|W · p|W · ρ(g)−1|W = ρ(g)|W · I · ρ(g)−1|W = I. (3.1.4)

To finish the proof we show that the kernel of π is invariant under G. The main
observation is that π commutes with ρ(h) for every h ∈ G. Indeed

ρ(h) ·π ·ρ(h)−1 = 1
|G|

∑
g∈G

ρ(h) ·ρ(g) ·p ·ρ(g)−1ρ(h)−1 = 1
|G|

∑
g∈G

ρ(hg) ·p ·ρ(hg)−1 = π.

(3.1.5)
Therefore if x ∈ kerπ then ρ(g)x ∈ kerπ as

πρ(g)x = ρ(g)πx = ρ(g)0 = 0. (3.1.6)

Thus U = kerπ is a subrepresentation.
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Definition 3.1.4. A representation V of G is irreducible if is has no subrepresen-
tations other than V and 0.

Example 3.1.5. Every 1 dimensional representation is irreducible.

Analogously to the Fundamental Theorem of Number theory, every representa-
tion can be decomposed into irreducible representations.

Theorem 3.1.6. Every representation is a direct sum of irreducible representations.

Proof. Let V be a representation of G. If V is irreducible, then we are done. Other-
wise, V has a proper subrepresentation W with complementary subrepresentation
U by Maschke’s theorem. We continue this process for W and U . As V is finite
dimensional, the process will terminate in finitely many steps, giving the desired
decomposition of V into irreducible representations.
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3.2 Schur’s lemma and abelian groups

Definition 3.2.1. Let ρ : G → GL(V ) and ψ : G → GL(W ) be representations.
A morphism from (V, ρ) to (W,ψ), also called a G-linear map, is a linear map
T : V → W with the additional property

T ◦ ρ(g) = ψ(g) ◦ T ∀g ∈ G. (3.2.1)

Equivalently, the following diagram commutes for every g ∈ G

V V

W W.

ρ(g)

T T

ψ(g)

Lemma 3.2.2. If T is a morphism of representations from (V, ρ) to (W,ψ), then
kerT is a subrepresentation of V and ImT is a subrepresentation of W .

Proof. We show that kerT is a subrepresentation. That is, if v ∈ kerT then ρ(g)v ∈
kerT for all g ∈ G. This is straightforward:

Tρ(g)v = ψ(g)Tv = ψ(g)0 = 0. (3.2.2)

ImT is a subrepresentation as well. Since if w ∈ ImT i.e. w = Tv for some
v ∈ V , so

ψ(g)w = ψ(g)Tv = Tρ(g)v ∈ ImT ∀g ∈ G. (3.2.3)

Theorem 3.2.3 (Schur’s Lemma). Let ρ : G → GL(V ) and ψ : G → GL(W ) be
irreducible representations of G.

1. Every morphism T : V → W is either an isomorphism or the zero map.

2. Let T : V → V be a morphism. Then T = λId for some λ ∈ C.

Proof. 1. By the previous lemma kerT is a subrepresentation of V and ImT

is a subrepresentation of W . On the other hand, V and W are irreducible
representations. Therefore kerT = V or 0 and similarly ImT = W or 0. If
kerT = V or ImT = 0 then T is the zero map. Otherwise, kerT = 0 i.e T is
injective and ImT = W so T is surjective. Thus T is an isomorphism.
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2. Since we are working over C, every linear map has an eigenvalue. Let λ be
an eigenvalue of T . We claim that T − λId is also a morphism from V to V .
Indeed

(T − λId)ρ(g)v = Tρ(g)v − λIdρ(g)v = ρ(g)Tv − ρ(g)(λv) = ρ(g)(T − λId)v.
(3.2.4)

But T −λId has a nontrivial kernel, therefore T −λId is the zero map by part
1. Consequently, T = λId.

Schur’s lemma almost completely solves the representation theory of abelian
groups.

Theorem 3.2.4. Every irreducible representation of an abelian group is 1-
dimensional.

Proof. Let (V, ρ) be an irreducible representation of an abelian group G. Then ρ(h) is
a morphism from V to V for every h ∈ G as the following diagram clearly commutes.

V V

W W

ρ(g)

ρ(h) ρ(h)
ρ(g)

Thus, by the second part of Schur’s lemma, every element of G is mapped to a
scalar multiple of the identity. Consequently, every subspace of V is G-invariant i.e.
a subrepresentation. Therefore V is irreducible only if it has dimension 1.

Corollary 3.2.5. Let ρ : G → GL(V ) be a representation of an abelian group G.
Then the elements of ρ(G) are simultaneously diagonalizable.

Proof. We can decompose V as the direct sum

V = U1 ⊕ U2 ⊕ ...⊕ Un (3.2.5)

of irreducible representations. By the previous theorem each Ui has dimension 1.
Picking a vector ui from each Ui, we get a desired basis where ρ(g) is diagonal for
all g ∈ G.

Example 3.2.6 (The representations of cyclic groups). Let Zn be the cyclic group
of order n and g a generator.



Schur’s lemma and abelian groups 32

Since Zn is abelian, we first classify the ρ : Zn → GL(C) 1-dimensional repre-
sentations. As g is a generator of Zn, we have gn = 1 and ρ is a homomorphism,
therefore ρ(g)n = 1 also holds. On the other hand, if ε is an arbitrary nth root of
unity, then we obtain a 1-dimensional representation of Zn by setting ρ(gk) = εk.
Thus these are all the 1-dimensional representations of Zn.

Let ρ : Zn → GL(v) be an arbitrary representation of Zn. Then it is a direct
sum of irreducible representations thus ρ(g) is a diagonal matrix with eigenvalues
that are nth roots of unity and ρ(gk) = ρ(g)k.
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3.3 More on decompositions into irreducible rep-
resentations

In 3.1 we proved that every representation can be decomposed as a direct sum
of irreducible representations. A good analogue for irreducible representations are
the prime numbers. Therefore, in this chapter, we establish the equivalent of the
fundamental theorem of arithmetic, the decomposition is unique up to permutations
of the irreducible elements. However, at the end of the chapter we will see that the
representation theory of finite groups is in some sense simpler than arithmetic as
there are only finitely many irreducible representations.

Theorem 3.3.1. Let ρ : G → GL(V ) be a representation. The decomposition of V
into irreducible representations

V = U1 ⊕ U2 ⊕ ...⊕ Uk (3.3.1)

is unique up to a permutation of the irreducible representations U1, U2, ..., Uk.

Proof. Our main task is to determine the order of an irreducible representation W

in a decomposition. By Schur’s lemma, it is natural to consider the morphisms from
V to W . Let us denote the morphisms from V to W by HomG(V,W ). Then

HomG(V,W ) = HomG(
k⊕
i=1

Ui,W ) =
k⊕
i=1

HomG(Ui,W ). (3.3.2)

Consequently,

dim HomG(V,W ) = dim HomG(
k⊕
i=1

Ui,W ) =
k∑
i=1

dim HomG(Ui,W ). (3.3.3)

By Schur’s lemma, dim HomG(Ui,W ) = 1 if Ui and W are ismorphic. Otherwise,
dim HomG(Ui,W ) = 0. Therefore the order of W in a decomposition is exactly
dim HomG(V,W ) which depends only on V , not on the decomposition.

The next theorem sheds light on why regular representations are so important.

Theorem 3.3.2. Every irreducible representation W of G appears in the decompo-
sition of the regular represetation of G. Moreover, the number of factors isomorphic
to W in the decomposition is exactly dimW .
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Proof. Since the number of factors isomorphic to W is dim HomG(Vreg,W ) we have
to construct an isomorphism between W and HomG(Vreg,W ). Recall that be ∈ Vreg

is the basis element corresponding to the identity in G. Define a function

T : HomG(Vreg,W ) → W (3.3.4)

by the evaluation at be, that is

T (f) := f(be). (3.3.5)

We claim that T is an isomorphism. First we check that T is linear. Indeed

T (f + g) = (f + g)(be) = f(be) + g(be) = T (f) + T (g) (3.3.6)

and
T (λf) = (λf)(be) = λf(be) = λT (f). (3.3.7)

T is injective since if T (f) = f(be) = 0 then

f(bg) = f(ρreg(g)be) = ρW (g)f(be) = ρW (g)0 = 0. (3.3.8)

Thus such an f vanishes on every basis element of Vreg therefore f = 0.
To finish the proof we have to show that T is surjective i.e. for every w ∈ W

there exists a morphism f such that f(be) = w. If f ∈ HomG(Vreg,W ), then f is
completely determined by f(be) since

f(bg) = f(ρreg(g)be) = ρW (g)f(be). (3.3.9)

Therefore the only possible morphism f with f(be) = w is the linear extension
of f(bg) := ρW (g)w. We have to check that this is a morphism. By definition it is
linear. Moreover, for every bg basis vector in Vreg

f(ρreg(h)bg) = f(bhg) = ρW (hg)f(be) = ρW (h)ρW (g)f(be) = ρW (h)f(bg). (3.3.10)

Thus f is a morphism between Vreg and W indeed.

Corollary 3.3.3. Every finite group G has only finitely many irreducible represen-
tations.

Proof. Let
Vreg = U1

d1 ⊕ U2
d2 ⊕ ...⊕ Uk

dk
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be the decomposition of the regular representation into irreducible factors. Then by
the previous theorem, di = dimWi and every irreducible representation of G appers
in the decomposition. Consequently,

dim Vreg =
k∑
i=1

d2
i . (3.3.11)

But dim Vreg is just |G|. Therefore, we obtain

|G| =
k∑
i=1

d2
i (3.3.12)

where k is the number of all irreducible representations of G.
Since d2

i ≥ 1 for every i, we have

|G| ≥ #{irreducible representations of G}. (3.3.13)

Corollary 3.3.4. The number of irreducible representations = |G| if and only if G
is abelian.

Proof. If G is abelian, this is a direct consequence of Equation (3.3.12) since every
irreducible representation of an abelian group is 1-dimensional.

On the other hand, if the number of irreducible representations is exactly the or-
der of G, then by Equation 3.3.12, every irreducible representation is 1-dimensional.
Thus the regular representation is the direct sum of 1-dimensional representations.
In other words, it is simultaneously diagonalizable. Since the regular representation
is injective i.e. it is an isomorphism onto its image, G must be abelian.
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3.4 McKay’s construction

First we need to define a new operation of representations, the tensor product.

Definition 3.4.1. Let ρ : G → GL(V ) and ψ : G → GL(W ) be representations of
G. Then their tensor product is defined by

ρ⊗ ψ : G → GL(V ⊗W )

ρ⊗ ψ(g) := ρ(g) ⊗ ψ(g)

.

Definition 3.4.2. Let G be a finite subgroup of SU(2) and ρNat : G → GL(C2) be
the so-called natural representation defined by the inclusion of G into GL(C2). The
McKay graph is a directed multi-graph with vertices corresponding to the irreducible
representations of G, denoted by {Vi}. If

Vi ⊗ C2 =
k⊕
j=1

V
mij

j

is the irreducible decomposition of Vi ⊗ C2, then we draw mij (directed) edges from
Vi to Vj.

Example 3.4.3 (G = Zn). The natural representation of Zn is generated by

ρNat(1) =
ε 0

0 εn−1


where ε is the first nth root of unity.

The irreducible representations are 1-dimensional and given by

ρi(1) =
(
εi

)
.

Thus

ρi ⊗ ρNat(1) =
(
εi

)
⊗

ε 0
0 ε−1

 =
εi · ε 0

0 εi · ε−1

 =

εi+1 0
0 εi−1

 = ρi+1(1) ⊕ ρi−1(1).

We conclude that
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Vi ⊗ C2 = Vi+1 ⊕ Vi−1

where the indices are taken modulo n. Therefore the McKay graph is a cycle of n
vertices.

The McKay graph can be computed explicitly for every finite subgroup of SU(2)
using character theory. For a method using Dixon’s restricted character algorithm
see [6].

For a more uniform approach one can prove the following properties of McKay
graphs:

• The McKay graph is connected.

• The McKay graph is undirected, that is, mij = mji.

• The McKay graph has no self-loops, that is, mii = 0.

• The McKay graph is a simple graph i.e. mij ∈ {0, 1}.

Using these properties and some additional constraints on the dimensions of
irreducible representations, a full classification of McKay graphs can be found, for
example, in Sun [18]. The results are summarized in the following table from the
same article.
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Geometric McKay correspondence

Theorem 4.0.1 (McKay correspondence). The McKay graph of G with the trivial
representation deleted is the resolution graph of the simple surface singularity C2/G.

The first proof of McKay’s theorem was given by case-by-case computation. A
direct relation between irreducible representations and the irreducible components
of the exceptional divisor was found by Gonzalez-Sprinberg and Verdier. We present
the basic idea without proofs.

Let G be a finite subgroup of SU(2) and S = C2/G the associated simple surface
singularity. Since G acts freely, the quotient map Ċ2 → Ċ2/G = S\0 is a principial G-
bundle. From an irreducible representation V we can construct a vector bundle Ṽ =
Ċ2 ×GV over S\{0}. If π : S̃ → S is the minimal resolution which is an isomorphism
between S̃\π−1(0) and S\0, then we can pull back the bundle Ṽ by π|S̃\π−1(0). The
pullback bundle π∗V can be extended to a bundle BV on the whole of S̃. Then
the first Chern class c1(BV ) ∈ H2(S̃,Z) is dual to the class of the corresponding
irreducible component of the exceptional divisor EV ∈ H2(S̃,Z). Furthermore, the
correspondence

V 7→ BV

can be extended to an isomorphism between the representation ring and the
Grothendieck ring K(S̃) of vector bundles from K-theory. For more details, see
[16].

A correspondence in the opposite direction would be also very interesting. The
starting point could be that the fundamental group of the link L is isomorphic
to G as the quotient map restricted to the unit sphere S3 in C2 gives a covering
S3 → S3/G = L. By the plumbing construction of Mumford, we get the fundamental
group as generators and relations. However, I don’t have a good way to construct
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a representation from a generator corresponding to an irreducible component of the
exceptional divisor.

The classical McKay correspondence had been reformulated several times. Artin
and Verdier gave an interpretation in terms of reflexive OX modules. More recently,
Ito and Nakamura suggested an approach by Hilbert schemes. Furthermore, higher
dimensional analogues of the McKay correspondence have been studied extensively.
The first hint came from string theorists around 1985. They proved that if G is a
finite subgroup of SL(3,C) and Y → X = C3/G is a crepant resolution of X, then
the Euler number of Y equals the number of irreducible representations of G. Since
then a homological McKay correspondence had been provided for finite subgroups
of SL(n,C). For further details, see Reid [11].
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