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Chapter 1

Introduction

1.1 General introduction

1.1.1 Motivation: the electrical impedance tomography

The motivation of our study is an important real-life measurement procedure,
the electrical impedance tomography. In this section, we introduce this method
and the corresponding mathematical model.

In general, in many non-invasive measurement procedures in the medicine,
we collect information at the surface of an organ. At the same time, our aim
is to infer to the entire structure of this organ. In concrete terms, in such a
procedure, electrodes are placed around the surface of the organ investigated.
Then some currents are applied to these and the resulting potential is mea-
sured between the electrodes. This is repeated by generating different current
impulses and getting potentials.

In real life situations, the result, which we are looking for, is the impedance
(or even the permittivity) of the organ. The result has usually to be visualized,
which contains information on the structure of the investigated organ.

Figure 1.1: The domain Ω used for simulation of the EIT data corresponding
to the small lateral pneumothorax, with 32 electrode centers plotted on the
boundary.
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1.1.2 The aim of the present work

The objective of the present thesis is the detailed study of the Dirichlet-to-
Neumann problem from more points of view. Regarding the classical approach,
we first have to collect tools of the classical analysis. Citing the literature, and
pointing out the limitations of that approach, we propose something new. We
intend to propose an alternative approach using the modern computing tool,
the neural networks. In practice, we want to make use the most powerful pack-
ages of Python such as Keras, Tensorflow and Pytorch. For this, we also want
to develop appropriate learning data and construct a feasible neural network,
and tune its parameters for an efficient computation. In concrete terms, vari-
ous setups (e.g., multiple layers) and parameters will be tested to have better
performance with less time complexity and less parameters.
After performing numerical experiments, we want to evaluate the correspond-
ing results.

1.1.3 The outline of the thesis

The structure of this thesis is as follows:

■ Chapter 1 - This chapter covers all relevant physical background to the
mathematical formulation of the problem.

■ Chapter 2 - The scope of this chapter is to define the spaces on which
the DtN map is defined. We define a fractional Sobolev space with s = 1

2

and its dual space, which are the departure and arrival spaces of the DtN
map respectively, as well as some of its important properties.

■ Chapter 3 - This chapter presents the forward problem for finding the DtN
map using directly the Dirichlet boundary condition, where we introduce
the mathematical form using Green’s function and then find the kernel
for the DtN map. Then we discussed briefly the inverse problem which
presented by Calderon problem, as well as the formula of the fundamental
solution that will be used to train the machine learning algorithm.

■ Chapter 4 -In this chapter, we introduce the basics of machine learning
and some optimization techniques for training our model, then we test
multiple models to determine which is the most accurate. As a final step,
we keep three critical models to train our data, we denote approach 1
and approach 2 for the first two models where we give the Dirichlet data
to the input of the NN and the Neumann data to the output. The third
model we used different method, we try to predict the points inside the
domain then use the directional derivative formula to approximate the
DtN map.
At the end of the chapter we make some comparisons between the three
models.

■ Chapter 5 - This chapter concludes the best model in terms of good
estimation, fewer parameters and shorter time complexity.
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1.2 Mathematical introduction

1.2.1 The equations in the model

In the basic problem, we investigate, u is the solution of the following conduc-
tivity equation

Lγu = div (γ∇u) = 0 in Ω.

If this is equipped with Dirichlet boundary condition, i.e. we prescribe electric
potential on the boundary using the function f , we get the problem

{

Lγu = 0 in Ω
u|∂Ω = f.

(1.1)

Using the Dirichlet boundary condition again, we also mention a similar prob-
lem called the Schrödinger equation. To find the conductivity, we will use the
Schrödinger equation. Our goal is to prove that these two problems are related.
The Schrödinger equation is given by

{

Lηu = 0

u|∂Ω = f,
(1.2)

where the differential operator is defined with

Lηu := ∆u− ηu,

where η is constant and f describes again the potential on the boundary. Now
we want to investigate the relationship between these two problems, Λγ and
Λη are correlated in the following way

ω = γ−
1

2u

if u is the solution of the conductivity equation then ω is the solution of the
Schrödinger equation with η =

∆
√
γ√
γ
, the next lemma will show how the two

problems close (related) to each other.

Lemma 1. Let γ ∈ C
(

Ω̄
)

be a positive conductivity function then we have

γ−
1

2Lγ

(

γ−
1

2

)

= ∆− η,

with

η =
∆
(

γ
1

2

)

γ
1

2

. (1.3)

Proof since
Lγu = γ∆u+∇γ · ∇u

we obtain

γ−
1

2Lγu = γ
1

2∆u+
∇γ · ∇u

γ
1

2

.
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taking w = γ
1

2u use then 1.3, rewriting the differential operator three times we
get

∆w − ηw = ∆
(

γ
1

2u
)

−
(

∆γ
1

2

)

u

= ∇ ·
(

∇
(

γ
1

2u
))

−
(

∆γ
1

2

)

u

= ∇ ·
((

∇γ
1

2u
)

+ γ
1

2 (∇u)
)

−
(

∆γ
1

2

)

u

=
(

∆γ
1

2

)

u+ 2∇γ
1

2 · ∇u+ γ
1

2∆u−
(

∆γ
1

2

)

u.

using the chain rule we also have

∇γ
1

2 = ∇γ ·
1

2
· γ−

1

2 ,

such that we get

∇w − ηw = γ
1

2∆u+
∇γ · ∇u

γ
1

2

= γ
1

2Lγu

see [3] on the page [3, p. 17].

1.2.2 The Dirichlet to Neumann map

The DtN map associate the current density on the boundary ∂Ω to the given
(or prescribed) voltage on the boundary. In practice, even the inverse of this
mapping can be measured at some certain points by applying some currents
on the boundary and measuring the voltages as a response.

Definition 1.2.1. The Dirichlet to Neumann map is given by

Λγ : H
1

2 (∂Ω) → H− 1

2 (∂Ω) with Λγ(f) = γ∂νu.

Here ν denotes the unit outward normal vector on ∂Ω. In a similar way,
Dirichlet to Neumann map Λη associated to the Schrödinger equation (1.2) is
defined as

∧η(f) = ∂νu.

Example 1.2.1. This example was derived from [8]
- Let u : Rn → R.
- Extend it harmonically to R

n+1
+

−∆U = 0, in R
n+1
+ ,U(·, 0) = u.

- The Dirichlet to Neumann map is

DtN : u 7→ −∂yU(·, 0).
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the DtN has the following properties:
- DtN2 = −∆ : Indeed, since −∆x′,yU = −∆x′U − ∂2yU = 0,

DtNu = −∂yU(·, 0)

DtN2 u = −∂y (−∂yU(·, 0)) = −∆x′U(·, 0) = −∆x′u.

- DtN is positive: Since U is harmonic

0 = −

∫

R
n+1

+

∆UUdx dy =

∫

R
n+1

+

|∇U|2 dx dy +

∫

Rn

∂yUUdx.

then
∫

R
n+1

+

|∇U|2 dx dy = −

∫

Rn

∂yUUdx.

we know that
∫

Rn

uDtNu dx = −

∫

Rn

∂yUUdx > 0

Thus, we define

DtN = (−∆x)
1

2 , (−∆x)
1

2 u = ∂νU .
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Chapter 2

Functional analysis for the DtN map

In the entire section, Ω ⊂ R
n denotes a bounded open set with piecewise

Lipschitz boundary, also, ∂j denotes the generalized derivatives with respect to
the j th variable.

2.1 Hilbert space

Definition 2.1.1. Let H be a normed vector space on the field K = (R or C).
We say that a map ⟨·, ·⟩ is an inner product in H if it is bilinear (sesquilinear),
symmetric, and positive definite.
this means that

⟨·, ·⟩ : H ×H → K

(x, y) → ⟨x, y⟩

satisfies the following: Linearity: for x, y, z ∈ H and a, b ∈ K

⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩.

Conjugate symmetry: for x, y ∈ H

⟨x, y⟩ = ⟨y, x⟩.

Positive definiteness: for x ∈ H

⟨x, x⟩ ≥ 0 and we have also ⟨x, x⟩ = 0 =⇒ x = 0.

From now on we will use the inner product in L2 which is given by

(u, v) =

∫

Ω

uv̄,

for all u, v in L2(Ω).

Definition 2.1.2 (Hilbert space). We call H a Hilbert space if it is formed by
an inner product (in this case it is called pre-Hilbert space), and it is complete.
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2.2 Sobolev Spaces

Definition 2.2.1. (Sobolev space) The Sobolev space H1(Ω) is the following
real Hilbert space:

H1(Ω) :=
{

u ∈ L2(Ω) : ∂iu ∈ L2(Ω)
}

.

It is equipped with the following inner product and induced norm, respectively:

⟨u, v⟩H1 :=

∫

Ω

(∇u · ∇v + uv), ∥u∥2H1 :=

∫

Ω

(

|∇u|2 + u2
)

.

Definition 2.2.2. We denote by H1
0 (Ω) the closure of D(Ω) = C∞

0 (Ω) in H1(Ω).
By extension, we note Hm

0 (Ω) the closure of D(Ω) in Hm(Ω) .

Theorem 2.2.1. Consider Ω an open set of class C1. Then there is the con-
tinuous linear operator, called trace operator, which is denoted by γ0 and maps
H1(Ω) into L2(∂Ω), that is consistent with continuous function restriction oper-
ators

(

tr u = u|∂Ω for all u ∈ C(Ω) ∩H1(Ω)
)

. Its kernel is Ker (γ0) = H1
0 (Ω).

Theorem 2.2.2. (Trace) The trace operator refers to a continuous linear map
that can be represented in the following way:

γ0 : H
1(Ω) → H1/2(∂Ω),

By extending the restriction mapping of continuous functions, a trace mapping
is created. This mapping is surjective and its kernel is Ker (γ0) = H1

0

(

R
d
+

)

.

Definition 2.2.3. Let us consider the Cm(Ω),m ∈ N
∗ and γ0 the trace operator

in the previous theorem. We define the space:

Hm−1/2(∂Ω) = γ0 (H
m(Ω)) ,

endowed with the norm:

∥u∥Hm−1/2(∂Ω) = inf
v∈γ−1

O ({u})
∥v∥Hm(Ω).

Definition 2.2.4. The Sobolev space H1/2 is just a special case for the previous
definition 2.2.3 when m = 1. See [18],[14] for more detail about this space.
The H−1/2 is defined as the dual space of H1/2 [13], with the norm

∥u∥H−s(∂Ω) ∼ sup
0 ̸=v∈Hs(∂Ω)

|⟨u, v⟩∂Ω|

∥v∥Hs(∂Ω)

= sup
0 ̸=v∈Hs(∂Ω)

|(u, v)∂Ω|

∥v∥Hs(∂Ω)

for |s| ≤ 1,

where

⟨u, v⟩∂Ω =

∫

∂Ω

u(x)v(x) dσ(x) and (u, v)∂Ω =

∫

∂Ω

u(x)v(x) dσ(x),

for s = 1
2
.
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2.3 Weak derivatives

In this section, we will define the normal derivative for certain functions in H.
First, we recall the weak derivative of the Laplace operator. We also need the
following simple version of Gauss’s theorem.

Theorem 2.3.1. Assume that Ω ⊆ R
n is open and bounded and has C1-boundary.

There exists a unique Borel measure σ on ∂Ω, the surface measure on ∂Ω, such
that

∫

Ω

∂ju(x) dx =

∫

∂Ω

u(z)νj(z) dσ(z),

for each j ∈ {1, . . . , n} and all u ∈ C1(Ω̄). Here ν ∈ C (∂Ω;Rn) is the outer
normal with coordinates ν(z) = (ν1(z), . . . , νn(z)).
For more details and applications about this theorem refer to [5].

Corollary 2.3.1.1 (Green’s formulas). Let u ∈ C2(Ω̄). Then

∫

Ω

(∆u)v dx+

∫

Ω

∇u · ∇v dx =

∫

∂Ω

(∂νu) v dσ
(

v ∈ C1(Ω̄)
)

. (2.1)

∫

Ω

(v∆u− u∆v)dx =

∫

∂Ω

(v∂νu− u∂νv) dσ
(

v ∈ C2(Ω̄)
)

. (2.2)

Proof. Using the above theorem 2.3.1, we will get

∫

Ω

∂ju∂jv = −

∫

Ω

(

∂2ju
)

v +

∫

Ω

∂j ((∂ju) v) = −

∫

Ω

(

∂2ju
)

v +

∫

∂Ω

(∂ju) vνj dσ.

We sum up over j to get 2.1. Flipping u and v in 2.1 and taking their
difference gives simply 2.2.

Let Ω ⊆ R
n be open. Let u, f ∈ L2(Ω). Then ∆u = f if

∫

Ω

u∆φ =

∫

Ω

fφ (φ ∈ C∞
c (Ω)) .

For u ∈ L2(Ω) we say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that
∆u = f . Using Green’s formula 2.3.1.1, we can define a normal derivative in a
weak sense.

Let Ω be bounded, with C1-boundary (the solution u is in C1 on the bound-
ary), and let u ∈ H1(Ω) such that ∆u ∈ L2(Ω). We say that ∂νu ∈ L2(∂Ω) if
there exists h ∈ L2(∂Ω) such that

∫

Ω

(∆u)v +

∫

Ω

∇u · ∇v =

∫

∂Ω

hv
(

v ∈ H1(Ω)
)

.

In that case ∂νu := h. The trace sign was omitted from the integral over ∂Ω.
It is always the Lebesgue measure that governs the integral over Ω, and the
surface measure governs the integral over ∂Ω.
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2.4 The adjoint operator of the DtN map

The DtN was applying to many problems and its properties can be changed
from problem to another, in this part here we prove that DtN map is self-
adjoint for the Laplacian and for the Schrödinger operator ∆ + η as well (this
section is more detailed in [5]).

Definition 2.4.1. A function u is called harmonic if it is a twice continuously
differentiable function and its Laplacian is equal to zero. The Laplacian opera-
tor is a second-order differential operator in the n-dimensional Euclidean space
and it is given by

∆f =
n

∑

i=1

∂2f

∂x2i
.

Definition 2.4.2. Let a : V × V → C be a bounded bilinear form and let j :
V → H linear with a dense range. We say a is a quasi-coercive with respect to
j, if there exist ω ∈ R, α > 0 such that

Re a(v) + ω∥j(v)∥2H ⩾ α∥v∥2V (v ∈ V ).

2.4.1 The Dirichlet-to-Neumann operator for the Laplacian

We consider classical Dirichlet form

a : H1(Ω)×H1(Ω) → R

a(u, v) =

∫

Ω

∇u · ∇v
(

u, v ∈ H1(Ω)
)

. (2.3)

Definition 2.4.3. Let us consider j is the trace operator from H1(Ω) to L2(∂Ω),
by taking a is quasi-coercive, as a result we will get an associated operator
in L2(∂Ω) is therefore self-adjoint. This operator turns out to be Dirichlet-
to-Neumann operator Λ which maps f ∈ L2(∂Ω) to ∂νu ∈ L2(∂Ω). Where
u ∈ H1(Ω) is the harmonic function with u|∂Ω = f .

Theorem 2.4.1. (Rellich-Kondrachov) Let Ω ⊆ R
n be open, bounded, with

j Lipshitz boundary. Then the embedding j : H1(Ω) → L2(Ω) is compact.

Theorem 2.4.2. Take j to be the trace operator, and a to be the classical Dirich-
let form. Then the operator Λ in L2(∂Ω) associated with (a, j) is described by

Λ =
{

(f, h) ∈ L2(∂Ω)× L2(∂Ω); ∃u ∈ H1(Ω) : ∆u = 0, u|∂Ω = f, ∂νu = h
}

.
(2.4)

The operator associated Λ is self-adjoint and positive and has compact resol-
vent. Λ is called the Dirichlet to Neumann operator with respect to ∆.

Proof. This theorem will be proved by considering it as an equivalent of two
statements.
We will first prove that for all (g, h) associated with (a, j) and for a set Λ im-
plies that the operator Λ is a Dirichlet to Neumann operator, and it is defined
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in (2.4).
In the second implication, we assume that we have the Dirichlet to Neumann
map given in (2.4), then we try to conclude that the DTN operator was asso-
ciated with (a, j) and we will just find the form (a, j) and the trace operator
j.

1. ( =⇒ ) Let (g, h) ∈ Λ is associated with (a, j) the classical Dirichlet
form. Then there exists u ∈ H1(Ω) such that u|∂Ω = g (due to j is a trace
operator) and we have the following formula by applying the divergence
theorem

∫

Ω

∇u · ∇v = a(u, v) =

∫

∂Ω

hv̄,

As this formula is equivalent to −∆u = 0 for v ∈ Cc(Ω) this is valid also
for v ∈ H−1(Ω). Then we will add ∆u = 0 to this form and using Green’s
formula in (2.3.1.1), we will have

∫

Ω

(∆u)v̄ +

∫

Ω

∇u · ∇v =

∫

∂Ω

hv̄.

Finally we use the first equation from corollary 2.3.1.1. we get then
∂νu = h so the first implication is true.

2. ( ⇐= ) Let u ∈ H−1(Ω) assuming that u|∂Ω = g and h = ∂νu. Then we
have the following Green’s formula

∫

Ω

∇u · ∇v =

∫

Ω

∇u · ∇v +

∫

Ω

(∆u)v̄ =

∫

∂Ω

hv̄
(

v ∈ H1(Ω)
)

.

Here we can take j(v) = v (which is the trace operator) such that
a(u, v) = (h, j(v))L2(Ω), . Therefore (g, h) ∈ Λ by definition.

Remark 1. Using the symmetry of the classical Dirichlet form implies that Λ
is self-adjoint, and dragging out the trace operator on the defined operator j in
theorem 2.4.1 then we get that the tr operator is compact, therefore, Λ has a
compact resolvent.

2.4.2 The Dirichlet -to-Neumann operator for the Schrödinger

operator

We again assume that Ω ⊆ R
n has C1-boundary and consider a function η ∈

L∞(Ω), we proceed similarly as we did in section 2.4.1. In this section, we will
show that if zero is not an eigenvalue of ∆ + η then the Schrödinger operator
∆+ η is self-adjoint and it is bounded furthermore, it has a compact resolvent.
Let us define the form a : H1(Ω)×H1(Ω) → C with

a(u, v) =

∫

Ω

∇u · ∇v −

∫

Ω

ηuv̄
(

u, v ∈ H1(Ω)
)

.
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Theorem 2.4.3. Let V,H be Hilbert spaces, and let a : V × V → K be a con-
tinuous sesquilinear form. Let j ∈ L(V,H) has dense range. We assume that

u ∈ ker(j). Then

a(u, v) = 0 for all v ∈ ker(j) implies u = 0. (2.5)

Let

A := {(x, y) ∈ H ×H; ∃u ∈ V : j(u) = x, a(u, v) = ⟨y, j(v)⟩(v ∈ V )}

Definition 2.4.4. Let H be a Hilbert space over K. An operator A in H is called
accretive (or definite positive) if

Re(Ax | x) ⩾ 0 (x ∈ dom(A)).

An accretive operator A satisfying ran(I + A) = H is called m-accretive.

Theorem 2.4.4. Let a : V × V → K be a bounded form, and let j ∈ L(V,H)
have dense range. Consider the case where (2.5) holds and a is compactly
elliptic.

Let A be the operator associated with (a, j). Then A is m-accretive. If a
is symmetric, then A is self-adjoint and bounded from below. If j is compact,
then A has compact resolvent.

For the proof, see[5]. Theorem 8.11.

Theorem 2.4.5. If the Schrödinger operator does not have an eigenvalue equal
to zero then the operator associated to

Λη := {(f, h) ∈ L2(∂Ω)×L2(∂Ω); ∃u ∈ H1(Ω) : ∆u+ηu = 0, u|∂Ω = f, ∂νu = h},

has a compact resolvent, it is self-adjoint and positive. Furthermore Λη is
bounded from below.

Proof. We will use the same idea as in theorem 2.4.2. First, we will prove that
the statement in (2.5) is satisfied.
Let u ∈ ker(j) such that

a(u, v) =

∫

Ω

∇u · ∇v −

∫

Ω

muv̄ = 0for allv ∈ ker(j) = H1
0 (Ω).

By assuming that zero is not an eigenvalue for (∆ + η) ∆m + ηm=0. Then
u = 0.
For (g, h) ∈ L2(Ω) we have (g, h) ∈ Λν if and only if u ∈ H1 with u|∂Ω = g and

∫

Ω

∇u · ∇v −

∫

Ω

ηuv̄ =

∫

∂Ω

hv. (2.6)

Using the fact that this formula is equivalent to −ηu−∆u = 0 for v ∈ Cc(Ω).
Then putting ηu = −∆u in (2.6), and using Green’s formula we get at the end
∂νu = h, thus (g, h) ∈ Λη.
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Now we are going to prove the other implication of the theorem as we did
in theorem 2.4.2, if (g, h) ∈ Λη then we have (∆ + η) = 0 and u|∂Ω = g and
∂νu = h using Green’s formula

∫

∂Ω

hv̄ =

∫

Ω

∇u·∇v+

∫

Ω

(∆u)v̄ =

∫

Ω

∇u·∇v−

∫

Ω

ηuv̄ = a(u, v)
(

v ∈ H1(Ω)
)

.

In this way (g, h) ∈ Λη. Using theorem 2.4.4 we conclude that Λη is a positive
and Selfa-adjoint operator moreover it is bounded from below.
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Chapter 3

The analytical solution for the DtN
map

The DtN operator has a kernel distribution which we will denote by K and is
defined as adistribution on K : ∂Ω × ∂Ω → R. Using this, the DtN operator
can be given by the formula

DtN(f)(x) =

∫

∂Ω

K(x, y)f(y) dy.

The next challenge for us is how to get the kernel. Also, it is not clear whether
we should take the forward problem for the DtN map to find K(x, y) starting
from a given η(x) presents the charge in the Schroüdinger equation).
However the main goal of the EIT problem is to find the conductivity distribu-
tion γ(x). The Schrödinger equation at zero energy held the same information
as it was illustrated in 1.2.1, considering the Schrödinger equation, then it is
enough to find the kernel for solving DtN problem and find Λ(f).

The Green’s function can be used for solving the inhomogeneous linear
ODEs and PDEs with initial or boundary conditions. Green’s function is a
calculated operator acts with the right hand side of a PDE equation to find its
solution u. To make it more clearly, let L be a linear differential operator.

Definition 3.0.1. The function G : Rn × R
n → R is called a Green’s function

if it is a solution of

LG(x, y) = δ(x− y) x ∈ Ω, (3.1)

where δ denotes the Dirac distribution and for a fixed y ∈ Ω (for more details
refer to [19]).

Remark: The Dirac distribution δ is often called delta function. Whenever,
it is not a function in the classical sense, the following formal properties are
frequently used:

∫ ∞

−∞
δ(x)dx = 1. (3.2)

∫ ∞

−∞
f(x)δ (x− y) dx = f (y) . (3.3)
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For more details about its properties refer to [16].
Now we need to know how can we implement the Green’s function in our

problem. We know that the DtN map is linear also in the Schrödinger problem.
Then using this fact and the definition of the Dirac distribution, we will get
the solution u based on the Green’s function. Let us consider the following
PDE problem:

Lu(x) = f(x) (3.4)

By multiplying both sides in the equation (3.1) by f(y) and integrate them we
will get

∫

LG(x, y)f(y)ds =

∫

δ(x− y)f(y)dy.

Using the property in (3.3), we obtain f(y) in the RHS and for the reason that
L is linear corresponds to x and not depends on y we can put L out of the
integral in the left side, this can be reformulated to

Lu(x) = L

∫

G(x, y)f(y)dy.

With this, the solution u of (3.4) can be given as

u(x) =

∫

G(x, y)f(y)dy. (3.5)

Overall we use the following statement.

Theorem 3.0.1 (Divergence theorem). If S is the boundary of a region E in

R
d and F⃗ : Rd → R

d is a differentiable vector field, then

∫∫∫

B

div(F⃗ ) dS =

∫∫

S

F⃗ · η d.

Using the above tools, we present an approach to construct the DtN ana-
lytically.
Let’s consider the Schrödinger equation and the operator L = ∆ + η. The
operator which would be constructed by Green’s function is G = L−1 which by
(3.5) can be written as

Gf(x) = u(x) =

∫

Ω

G(x, y)f(y)dy.

Where G is the Green’s function of L applied to the Dirichlet boundary con-
dition.

To have a good intuition about the solution we first observe that

∫

∂Ω

∂u

∂n(y)
(y)G(x, y)dS(y) = 0, (3.6)
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for x ∈ ∂Ω since the Green’s function G is zero on the boundary.

Applying the divergence theorem to the vector field
−→
F (y) = (∇u(y) ·G(x, y))

we get

0 =

∫

Ω

divy (∇yu(y) ·G(x, y)) dy.

Expanding the divergence operator we get

0 =

∫

Ω

(∆yu(x, y) ·G(x, y) +∇yG(x, y)∇yu(x, y)) dy.

Now we apply the same theorem but in this time, the vector field is
−→
F = (∇yG · u(y)), with the Dirichlet boundary conditions u(x) = f(x) for
x ∈ ∂Ω. One application of the divergence theorem we get

∫

∂Ω

∂G

∂n(y)
(x, y)f(y)dS(y) =

∫

Ω

divy (∇yG(x, y) · u(y)) dy. (3.7)

By expanding the divergence we obtain
∫

∂Ω

∂G

∂n(y)
(x, y)f(y)dS(y) =

∫

Ω

(∆yG(x, y) · u(y) +∇yG(x, y)∇yu(y)) dy

Using equality in (3.6) by substitute the second term in the integral
∫

∂Ω

∂G

∂n(y)
(x, y)f(y)dS(y) =

∫

Ω

(∆yG(x, y) · u(y)−∆yu(y) ·G(x, y)) dy

subtract a term in the integral then we are getting,
∫

∂Ω

∂G

∂n(y)
(x, y)f(y)dS(y)

=

∫

Ω

(− (−∆y + η(y))G(x, y) · u(y) + (−∆y + η(y)) u(y) ·G(x, y)) dy

.

Since G is the Green function of L = −∆+ η. Using the property in (3.2) and
Lu = 0 then

∫

∂Ω

∂G

∂n(y)
(x, y)f(y)dS(y) = −u(x). (3.8)

By taking the derivative with respect to the outward normal for x ∈ ∂Ω in
(3.7) and (3.8), we get the formula

∂u

∂n
(x) = −

∫

∂Ω

∂2G

∂n(x)n(y)
(x, y)f(y)dS(y), x ∈ ∂Ω,

since the Λη is a linear operator, the DtN map will be given by the formula

Λf(x) =
∂u

∂n(x)
=

∫

∂Ω

K(x, y)f(y)dy,

where

K(x, y) = −
∂2G

∂n(x)n(y)
(x, y) x, y ∈ ∂Ω.

As denoted earlier, the function K displays the kernel function.
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3.1 Fundamental solutions

This section is based on the results which were given by the lecture notes in [20].
The Dirichlet to Neumann operator can be found by applying Green’s function
to a PDE problem with Dirichlet boundary conditions, but the challenge is to
find G(x,y) in the general case R

n. It is not easy to get G(x,y) in R
n, so we

will take special domains in R
2, using the same idea and extend it to a domain

in R
n for n ≥ 1.
Now let us consider the Laplace equation

∆u = 0. (3.9)

Since the Laplacian is symmetric, we are looking for the radial solution to
reduce our problem from PDE to an ODE which is easier to handle.
The fundamental solution for 3.9 in R

2 will be given by:

∆Γ(x) = δ(x),

where Γ(x) is equal to G(x,y) for fixed y at the origin. For the derivation, we
will extend Section 2.2.1 in [10].
Due to the rotational invariance of the Laplacian, Γ(x) will be radially sym-
metric, that is:

Γ(x) = Γ(r), r =
√

x2 + y2.

Theorem 3.1.1. Let x = r cos θ and y = r sin θ, where r ≥ 0 and θ ∈ [0, 2π].
Then the Laplace operator ∆ can be transformed to polar coordinates by the
following formula:

∆u(x, y) =
1

r

∂u(r, θ)

∂r
+

1

r2
∂2u(r, θ)

∂θ2
+
∂2u(r, θ)

∂r2
.

Proof. Using the chain rule we get

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r

=
∂u

∂x
cos θ +

∂u

∂y
sin θ

= cos θ
∂u

∂x
+ sin θ

∂u

∂y
.

∂u

∂θ
=
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ

=
∂u

∂x
(−r sin θ) +

∂u

∂y
(r cos θ)

= −r sin θ
∂u

∂x
+ r cos θ

∂u

∂y
.
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By calculating the second derivatives we get

∂2u

∂r2
= cos θ

∂

∂r

∂u

∂x
+ sin θ

∂

∂r

∂u

∂y

= cos θ

(

∂

∂x

∂u

∂x

∂x

∂r
+

∂

∂y

∂u

∂x

∂y

∂r

)

+ sin θ

(

∂

∂x

∂u

∂y

∂x

∂r
+

∂

∂y

∂u

∂y

∂y

∂r

)

= cos2 θ
∂2u

∂x2
+ 2 cos θ sin θ

∂2u

∂x∂y
+ sin2 θ

∂2u

∂y2
.

∂2u

∂θ2
=− r cos θ

∂u

∂x
− r sin θ

∂

∂θ

∂u

∂x
− r sin θ

∂u

∂y
+ r cos θ

∂

∂θ

∂u

∂y

=− r cos θ
∂u

∂x
− r sin θ

(

∂

∂x

∂u

∂x

∂x

∂θ
+

∂

∂y

∂u

∂x

∂y

∂θ

)

− r sin θ
∂u

∂y

+ r cos θ

(

∂

∂x

∂u

∂y

∂x

∂θ
+

∂

∂y

∂u

∂y

∂y

∂θ

)

=− r cos θ
∂u

∂x
− r sin θ

(

∂2u

∂x2
(−r sin θ) +

∂2u

∂x∂y
r cos θ

)

− r sin θ
∂u

∂y
+ r cos θ

(

∂2u

∂x∂y
(−r sin θ) +

∂2u

∂y2
r cos θ

)

=− r

(

cos θ
∂u

∂x
+ sin θ

∂u

∂y

)

+ r2
(

sin2 θ
∂2u

∂x2
− 2 cos θ sin θ

∂2u

∂x∂y
+ cos2 θ

∂2u

∂y2

)

.

Divide ∂2u
∂θ2

by r2 we get

1

r2
∂2u

∂θ2
= −

1

r

∂u

∂r
+ sin2 θ

∂2u

∂x2
− 2 cos θ sin θ

∂2u

∂x∂y
+ cos2 θ

∂2u

∂y2
.

Adding the ∂2u
∂r2

to it and using the obvious identity cos2(θ) + sin2(θ) = 1 we
get

∂2u

∂r2
+

1

r2
∂2u

∂θ2
= −

1

r

∂u

∂r
+
∂2u

∂x2
+
∂2u

∂y2
.

Then the Laplacian of u will be given by:

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

So the Laplacian of Γ gives

∆Γ(r) = Γ′′(r) +
1

r
Γ′(r).

Then we get the following equation by using the properties of δ.

Γ′′(r) +
1

r
Γ′(r) = 0 for r > 0, (3.10)

such that we have
Γ′′(r)

Γ′(r)
=

−1

r
.
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By integrating both sides
ln Γ′ = ln r + c1,

then
Γ′(r) =

c1
r
.

Consequently the solution of 3.10 will be given as:

Γ(r) = c1 ln r + c2,

where c1, c2 are constants, taking c2 = 0.
Using the divergence theorem with F (x, y) = ∇Γ(x, y), with the first property
of delta distribution we get the following equality:

1 =

∫∫

δ(x)dx =

∫∫

∆Γ(x)dx =

∫∫

B(0,R)

∆Γ(x)dx =

∫

∂B(0,R)

n · ∇Γ(x) dS.

As Γ is a radial symmetric function, the directional derivative of it is the
same as at |x| = R

n · ∇Γ = Γ′(R) for |x| = R.

We know that Γ′(R) is constant along the sphere then

∫

∂B(0,R)

n · ∇Γ(x)dS =

∫

∂B(0,R)

Γ′(R)dS = 2πRΓ′(R)

consequently we get
1 = 2πRΓ′(R)

by solving this equality we get

Γ(R) =
1

2π
ln(R).

Finally the function Γ will be given by:

Γ(x) =
1

2π
ln r, where r = |x| =

√

x2 + y2.

The function Γ(x) is called the fundamental solution in 2D for the Laplacian.

The fundamental solution of the Laplace operator in R
n is given by

Ψ : Rn → R, Ψ(x) =

{

− 1
2π

ln |x|, n = 2

− 1
(n−2)αn|x|n−2 for n ≥ 3,

(3.11)

where αn denotes the volume of the unit ball in R
n.
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3.2 Green’s function for bounded domains

Let us consider Ω bounded domain in R
2 and the Poisson problem with Dirich-

let boundary condition, and using the fundamental solution of the Laplacian.
The Green’s function with with Dirichlet boundary condition on ∂Ω is given
by:

{

∆G = δ (x− x0) x ∈ D
G (x,x0) = 0 for x ∈ ∂D.

(3.12)

We can construct the function G as follows:

G (x,x0) = Γ (x− x0) + v (x,x0) ,

for fixed x0 ∈ Ω in order to satisfy this formula the problem in 3.12, so we have
to find v in the following Laplacian problem:

{

∆v (x,x0) = 0 x ∈ D
v (x,x0) = −Γ (x− x0) , for x ∈ ∂D.

3.3 The Caldéron problem

The main goal of Caldéron inverse problem is to determine γ by knowing ∧γ.
Formally, we have to determine the inverse ϕ−1 of the mapping

ϕ : C1(Ω) → L(H
1

2 (Ω), H− 1

2 (Ω)), ϕ : γ −→ ∧γ.

In the following derivation, we follow [12]. Using the notation Qγ for the
quadratic form associated to (3.4)

Qγ(f) =

∫

Ω

γ|∇u|2dx. (3.13)

Polarizing this quadratic form Qγ we obtain the following bilinear form:

Qγ(f, g) =

∫

Ω

γ∇u · ∇v.

Here u is the solution with the Dirichlet data f and v is the solution with the
Dirichlet boundary condition equal to g.
The divergence theorem gives:

Qγ(f, g) =

∫

∂Ω

gΛγf

Then the Dirichlet integral form given in (3.13) will have the form:

Qγ(f) =

∫

∂Ω

fΛγf.

Therefore,
Λγ : H

1

2 (∂Ω) → H− 1

2 (∂Ω)
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is the unique self-adjoint operator associated with Qγ with domain H
1

2 (Ω).
Hence, we can rewrite the inverse conductivity problem as a mapping study

ϕ−1 : γ −→ Qγ.

Caldéron gave the following special solution for the conductivity equation:

u(x) = exζ , ζ ∈ C
n,

where ζ is fixed. Then
∂u

∂xj
= ζje

xζ ,

and similarly,
∂2u

∂xj2
= ζj · ζje

xζ .

In this way,

∆u = 0 =⇒
n

∑

j=1

ζ2j = 0,

with
ζ = ζr + iζi ζr, ζi ∈ R.

The Caldéron’s problem is to invert DtN map γ 7→ Nγ, and this map is not
linear because of the variability of γ. Therefore, Caldéron studied a linearized
problem near constant conductivities. Taking γ = 1, he focused on the map
γ 7→ ϕγ instead of γ 7→ Nγ

ϕγ(f) =

∫

Ω

γ|∇u|2dx

3.4 Uniqueness of the DtN map

The uniqueness of the DtN map for the conductivity and for the Schrödinger
problems were given for dimension n ≥ 3 in the paper [17]. We fellow this work
in the following presentation.

Theorem 3.4.1 (Sylvester and Uhlmann). Let Ω ∈ R
n be a bounded open do-

main with smooth boundary, where n ≥ 3, and let γ1 and γ2 be two positive
functions in C(Ω̄).
If ∧γ1 = ∧γ2 then γ1 = γ2 ∈ Ω.
If q1, q2 ∈ L∞(ω) and γq1 = γq2 then q1 = q2.

Proof. First we prove that ∧q1 = ∧q2 implies q1 = q2 in Ω for the Schrödinger
equation. Using the Green’s theorem we get

∫

Ω

(q1 − q2)u1u2 dx =

∫

∂Ω

f2 ∧q1 f1 − f1 ∧q2 f2 dS.

Since ∧q1 is a self adjoint operator, we also have
∫

Ω

(q1 − q2)u1u2 dx =

∫

∂Ω

f1(∧q1 − ∧q2)f2 dS.
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Terefore, ∧q1 = ∧q2 implies

∫

Ω

(q1 − q2)u1u2 dx = 0.

Let now ui(x) = exζi , i = 1, 2 be special solutions to Lqui = 0 with

ζ1 =
η

2
+ i

k

2

ζ2 = −
η

2
+ i

k

2
,

where η, k ∈ R
n with η · k = 0. Substituting u1, u2 into (2.1) gives

∫

Ω

ex.ki(q1 − q2) dx = 0,

then q1 = q2. We know that if ∧γ1 = ∧γ2 then ∧q1 = ∧q2 with qi =
∆
√
γi√
γi

. Now

it is easy to prove that q1 = q2 implies γ1 = γ2.
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Chapter 4

Approximation of the DtN map
using neural networks

An artificial neural network (or shortly neural network) is a structured di-
rected graph representing a connection between its vertices. The motivation
of the construction is the complex structure of the brain or a real-life neural
system. The vertices are grouped into consecutive layers including a specific
input and output one. Setting an appropriate structure and weights on the
edges, a set of algorithms can be obtained that attempt to recognize the un-
derlying relationships among data. In this way, neural networks became very
powerful computational tools. They have revolutionized fields such as image,
text, speech recognition, computer vision and more. Beyond the linear effect
of the above weights, nonlinear functions are also included in the construction.
Also, high-dimensional inputs in these fields requires statistical approaches.

Indeed, the computational algorithm is a kind of optimization, which is also
called learning or machine learning. Basically, it has two main types:

1. Supervised learning involves training the machine on data that is al-
ready given with the correct answer. A supervised learning algorithm
learns from labeled training data, so that it can predict outcomes for
unexpected data. The model problem of supervised learning can be for-
mulated mathematically as follows: given a set

S = {(xi,yi = f ∗ (xi)) , i ∈ {1, 2, 3, ...., n}}

we should try to approximate f ∗ as accurately as possible. Taking con-
tinuous values of f ∗ is called a regression problem, where taking discrete
values is called a classification problem.

(a) Classification model use an algorithm to categorize test data accu-
rately into specific categories.

(b) Regression model is an algorithm used to discover the relationships
between dependent and independent variables. A regression model
can be used to predict numerical values based on different data
points. For a visualisation for this problems, see figure 4.1
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. Considering a PDE or an ODE and taking into consideration Dirichlet
boundary conditions or other type of conditions can be recognized as the
given data. Taking a large set of them with the corresponding solutions
can be used to train the model. Based on this, we try to predict the
solution at ”mesh” or random points from a domain Ω in R

n.

Figure 4.1: Types of supervised machine learning [11]

2. Unsupervised learning method uses machine learning algorithms to an-
alyze unlabeled data sets and cluster them accordingly. Algorithms like
these are capable of discovering hidden patterns without the need for
humans to be involved. There are three main tasks that unsupervised
learning models can perform: clustering, association and dimension re-
duction.

(a) Clustering The idea behind clustering is to group unlabeled data
according to what they have in common, or what they differ from
each other.

(b) The association method is another type of unsupervised learning
method that employs a variety of rules to determine the relation-
ship between variables within a dataset.

(c) Dimension reduction when there is an excessive number of dimen-
sions in a dataset, dimension reduction is used to reduce the number
of dimensions. As a result, the number of data inputs is reduced to
a manageable size while maintaining the integrity of the data. For
more details see these articles [11] and [9].

4.1 Model architecture of neural networks

In this thesis, we are using neural networks based on supervised learning. We
will give a neural network by the following mathematical map: NN : Rnx 7→
R

ny where the first layer is presented as a vector in R
nx , and the last layer is

a vector in R
ny . The dimensions nx and ny present the number of neurons in

the input and the output layer, respectively.
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Layers consist of containers (neurons) which receive a weighted input, trans-
form it with a set of mostly non-linear functions, and then pass these values
as output to the next layer. From hereafter layers are described as vectors
where the first layer is a vector of dimension nx and the last layer is a vector
of dimension ny.
The first layer of a NN is called the input layer, followed by some hidden layers,
and the last one is called the output layer. Each two consecutive layers are
connected to each other by the so called the weights and biases.

Dense layer can be defined as a layer that is deeply connected to its pre-
ceding layer, meaning each neuron of that layer is connected to every neuron
of that layer. It can be understood mathematically as vectors denoted by
h1, h2, ..., hn−1 such that

hi = f(W ∗ hi−1 + b) hi ∈ R
ni , i ∈ {1, 2, ...n}

ho and hn are the input and output layers respectively. The function f is
defined as the activation function and W is the weight, and b presents the bias
term.

Convolutional layer convolution is the simple process of applying a filter to
an input to activate it. When a filter is applied repeatedly to an input, it
generates a map of activation called a feature map, indicating the locations
and strengths of detected features this layer is often used in image recognition.
However, this layer may be helpful for us if we use the one dimensional case.
As we know, a convolutional layer contains several hyperparameters, such as
how many filters we have, how large the filters are, and the stride. Filters are
used to learn patterns, and each filter learns a different pattern.

A filter (Kernel) consists of a matrix of weights that is multiplied by the input
parts. A map of activation is result of the multiplications of these results.

Remark 2. Using more than one filter might be helpful sometimes if we want
to get different patterns on one layer.

Kernel size refers to the size of each kernel, which is composed of weights
that are tuned for better detection of certain features. In other words it can
defined as how much the input data is processed during each convolution.

Stride is the amount by which the kernel shifts or moves each time it is
computed.

Padding is a way to control the shape of our output, when using convolutional
layer. These open sources use three types of padding, which we can be briefly
described as follows:
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1. Same by adding some zeros to the input, we make the output the same
length as the input by going through all input and producing the same
length in the output.

2. Valid no padding.

3. Causal results in causal (dilated) convolutions.

Remark 3. The locally connected layer is quite the same as the Convolution
layer, but there is only one difference is that the locally connected layer applies
different sets of filters to different patches of input, so that weights are not
shared.

Example 4.1.1. We gain a better understanding of how hyperparameters work
through the following example:

Figure 4.2: Example of A 1D convolution with a kernel sized 3 and stride 1
along with valid padding.[15]

Weights in the neural networks are defined as the parameters which transform
the data in a specific layer to the next one.

Taking the data xj ∈ R
dj in layer j, and the data xj+1 ∈ R

dj+1 in layer
j + 1, the set of weights correspond to a matrix R

dj×dj+1 .
Bias is an additional constant term to the output layer of every two consec-

utive connected layers, its role is performing a shift. This helps us to control
and give good estimation to the real output data.

Example 4.1.2. Consider the following Neural network with two layers. One
of the consists of three neurons and the other one consists of two. They are
given by xj = (xj1 , xj2 , xj3) and xj+1 = (xj+1,1, xj+1,2) and the neural network
can be represented as

(

xj+1,1

xj+1,2

)

=

(

w11 w12 w13

w21 w22 w23

)





xj1
xj2
xj3



+

(

b1
b2

)

=

(

w11 ∗ xj1 + w12 ∗ xj2 + w13 ∗ xj1 + b1
w21 ∗ xj1 + w22 ∗ xj2 + w23 ∗ xj1 + b2

)

.

Here the weights are given as parametric matrix W with the entries wjk, and
the parametric bias is given by the vector (b1, b2).
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In this way, we have described feedforward neural networks, where the con-
nections between nodes do not form a cycle. Recurrent neural networks on
the other hand can consist of pathways that recur. The feed forward model
involves processing information only in one direction, making it the simplest
form of neural networks. Despite passing through multiple hidden nodes, the
data always moves forward and never backward. The structure of a neural
network is shown in the following figure.

Figure 4.3: Structure of a neural network with 5 fully-connected layers

4.1.1 Activation function

An activation function determines in real neural networks whether or not the
neuron should be activated. In other words an activation function determines
whether the neuron’s input to the network is significant or not in the prediction
process.
Accordingly, its mathematical model is a function g : R → R such that the
entire mapping between two consecutive layers can be given as
xj+1 = g(Wxj + b). We mention some types of an activation function.

1. Sigmoid function is defined by

σ(x) =
1

1 + e−x

2. Tanh function is given by the formula

tanh(x) =
ex − e−x

ex + e−x
.
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As we are implementing a neural network to obtain the Dirichlet to Neu-
mann data, we must be careful not to lose some negative data. In this
way, the activation function tanh can be helpful for us to adjust the
output data.

3. The ReLU (Rectified Linear Unit) function is defined by the following
formula

f(x) = max(0, x).

The activated neuron in ReLU is the neuron whose output is more than
0.

Figure 4.4: The activation functions (a) Sigmoid, (b) tanh, (c) ReLU.

4.1.2 Training, validating , testing datasets

For more detailed discussion, we refer to [2]. We introduce briefly the train, test
and validation data sets. The purpose of data splitting is to prevent overfitting.
This is an instance in which a machine learning model is able to fit its training
data too well and is unable to fit unseen data reliability.

The training set is used to fit the parameters based on examples that have
been collected throughout the learning process. Supervised learning algorithms
to determine the best combination of variables that will generate a reliable
prediction. Our objective is to produce a trained model that generalizes well
when faced with new, unknown datasets. Mathematically, the training data
can be considered as set of of pairs (x, y) from a data set.

A validation set can be considered again as a set of pairs (x̃, ỹ) taken from
a dataset. It is used to evaluate the fit of a model against a training dataset
while tuning and adjusting the hyperparameters. It is sometimes also called the
development set, an example of a hyperparameter for artificial neural networks
includes the number of hidden units in each layer.

Testing set is a sample of data used to evaluate the accuracy or the error
function of a final model (which was built by training and validation data sets)
fit in light of the training dataset and measure its performance. To do that the
final model is used to predict a test set and compare the result of predictions
with the true data set. The testing data set is distributed in a similar manner
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to the training data set. If we have the trained neural network, we compare
the prediction NN (x) with y.

Properties

1. The test dataset is typically used to evaluate the final model selected
during the validation process, in situations where both validation and
test datasets are used.

2. The test data set may only assess the model once if the original data set
is divided into two subsets (training data and test data)

The below figure shows how the model is processed with splitting the data

Figure 4.5: The Processes which are taken to get a neural network model [7].

4.1.3 Error measurement functions

In the following two paragraphs, we are going to introduce two fundamental
estimators to measure the performance of the model.

The loss function is used to evaluate the performance of a machine learning
algorithm with regards to the featured data set. In other words the loss function
is a measure of how well the model predicts the expected outcome, the loss
function is used commonly for supervised learning.
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Mean square error shortly denoted by MSE, it is calculated as the average of
the squared differences between the predicted and actual values, MSE is really
known for regression model in supervised learning. Its mathematical formula
is given in this way

MSE =
1

n

n
∑

i=1

(

Ŷi − Yi

)2

,

such that Ŷi ∈ R are the predicted values where Ŷ = (Ŷ1, Ŷ2, ....., Ŷn) is the
output of the NN, and Yi ∈ R are the actual values.

The accuracy is used mainly in a classification machine learning algorithm
and it defined as a measure of how often it correctly classifies a data point. In
other words the accuracy measurement is the percentage of correctly predicted
data points out of all the data points. As a more formal definition, it is de-
termined by dividing the number of true positives and true negatives by the
number of true positives, true negatives, false positives, and false negatives, we
say a data point is a true positive or true negative if the algorithm correctly
classified it, by contrast, a false positive or false negative is a data point that
is incorrectly classified by the algorithm. The formula of the accuracy is given
in the following way

Accuracy =
Number of correct predictions

Total number of predictions
.

In the case of binary classification, accuracy can also be expressed in terms of
positives and negatives as follows:

Accuracy =
True positive + True negative

True positive + False positive + True negative + False negative
.

The accuracy can be applied to the classification supervised machine learn-
ing algorithm it presents the percentage of getting the correct classification.
However, it cannot be applied to our model due to the fact that we are at-
tempting to predict input data and measure how close our prediction is to the
actual data. The loss function serves this purpose.

In the neural networks, each attribute has important role, the weight and
bias are approximated to get good estimation. Moreover, the activation func-
tion has to be chosen carefully.

4.1.4 Optimization strategies

The main algorithm step is the approximation of the weights and biases based
on the loss function. We discuss some principles and strategies with consecutive
layers.

Definition 4.1.1 (Gradient descent). Gradient descent is an iterative optimiza-
tion algorithm to find the minimum of a function. In machine learning, the
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objective function needed to minimize is the loss function, so taking the follow-
ing MSE function

L(W ) =
1

n

n
∑

i=1

(

Ŷ
(i)
W − Y (i)

)2

,

the gradient descent approximates the gradient of L(W ) at a single sample, and
it takes the following formula to find the minimum

W = W − α∇L(W ) = W −
α

n

n
∑

i=1

∇Li(W ).

Where Li(W ) is the value of the loss function at i − th sample (example), W
is then weight matrix and α is the learning rate.

Gradient descent processes in deep learning the following steps are taken in
order to get the minimum loss :

1. Forward propagation is the input data which flows from the input layer
forward through the network. Every hidden layer accepts the input data,
processes it based on the activation function, and then feeds the processed
data as the input data to the next hidden layer.

2. Estimate error by calculating the loss function.

3. A backward propagation process propagates errors backward and up-
dates hidden layer weights accordingly.

4. Adjust weights and biases.

Evaluation of the gradients may be costly for calculating the sum gradient
especially if we use large amount of training data then gradient descent will be
very computationally expensive. Types of Gradient Descent:

1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

The important optimization method for us is the second one.

Stochastic gradient descent The word Stochastic refers to random so this
method basically is based on taking a batch of one random sample this batch
is randomly selected for performing an iteration of gradient descent and finding
the of minimum of this sample. So instead of summing all the gradients of the
cost functions of all the samples (examples), SGD finds the gradient of one
example at each iteration. Despite the fact that this method can be noisier
and more chaotic than gradient descent, because we take a random example to
find the minimum every time and more iterations are needed than in a typical
gradient descent method To reach the minima. But this does not matter as
long as we are reaching the minimum in a short period of time and we are
taking computationally much less expensive than gradient descent.
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Adaptive Moment Estimation is denoted shortly by Adam. The Adam opti-
mization algorithm uses repeated cycles of adaptive moment estimation to pro-
vide more efficient neural network weights. Adam extends stochastic gradient
descent to solve nonconvex problems faster and with fewer resources than most
optimization programs. During training, stochastic gradient descent maintains
the same learning rate α for all weight updates where Adam method computes
individual adaptive learning rates for different parameters from estimates of
first and second moments of the gradients. The first and the second moments
of gradients are given in the following equations:

mt = β1 ∗mt + (1− β1) ∗

(

∂L

∂wt

)

,

and

vt = β2 ∗ vt + (1− β2) ∗

(

∂L

∂wt

)2

.

The Adam equations is constructed by combining the momentum equation
with the Root Mean Square Propagation (RMSP) equation. Assuming the
hyperparameters β1 and β2 are close to zero. Then in the following section, we
will introduce the Adam algorithm.

Algorithm 1 Adam algorithm

while w(t) not converged do

mt = β1 ∗mt + (1− β1) ∗
(

∂L
∂wt

)

vt = β2 ∗ vt + (1− β2) ∗
(

∂L
∂wt

)2

m̂t = mt ÷ (1− βt
1)

v̂t = vt ÷ (1− βt
2)

wt = w(t− 1)− α ∗
(

m̂t/
√

(v̂t

)

+ e
)

end while
return w(t)

Weights at time t = wt

αt = learning rate (Hyperparameter)
e = constant
m(t),v(t) are aggregate of gradients at time t and aggregate of gradients of
gradients at time t.

We refer to [1],[4] and [6] for more details about the SGD and Adam meth-
ods.

Learning rate is an important hyperparameter, it is defining as the number
of steps taken to reach the minimum. This number is usually small, and it
is assessed based on how the cost function behaves to achieve the minimum.
The learning rate should be carefully chosen as if we give a very small learning
rate, the optimization method will take a long time to achieve the minimum,
whereas if we give a very large learning rate, we may overshoot the minimum.
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Batch Is a set of samples sent through a neural neetwork in a single pass.
Here a sample means the values of ψy for a fixed y.

Epochs The number of times the entire training set is sent through the neural
network.

Remark 4. 1. An epoch has one or more batches.

2. Epochs sizes can be higher to achieve better loss function.

3. Batch size and epoch size are hyperparameters that can tuned to improve
model accuracy.

The main idea of our investigation is to apply fundamental solutions and
expand our model to find the DtN data for other problems.

The following feed forward neural network structure with two dense layers
summarizes how our first model looks like:

...
...

ψy1

ψy2

ψy3

ψyn

DtN1

DtN2

DtN3

DtNn

Input
layer

Output
layer

Figure 4.6: A feed forward neural network with two layers

4.2 Implementation and numerical results

Let us consider the Laplacian equation. In order to predict the DtN for some
points on a boundary. We will construct a feed forward neural network, and
since DtN is linear for the Laplace problem, we expect the model to learn
from two layers. We will start our NN with two layers and then expand a bit
as needed to compare its performance with the number of layers we use. We
will start our NN with dense layers and then we try to include convectional
and locally connected layers. The main open source libraries which used for the
neural networks are Keras and Pytorch, and we will compare their performance
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and use the one which give us the best result taking into consideration the
running time and the loss function.

4.3 Principles for the implementation

To present the implementation of our problem, we will give structure of our
computer code with full details. Within Python, we make use of the Keras
library to create neural networks easily.
Using the command sequential, we can easily insert more layers into our neural
network. We will use supervised learning techniques specifically regression type
to feed the model some samples for the input and output layers and allow it to
learn by itself. According to the real Dirichlet to Neumann operator, we will
use two different approaches to get the Neumann data.
The first approach is to take the Dirichlet data at certain boundary points as
input in an input layer. Likewise, the Neumann data at the same points will
serve as an output data. We will try to use both a shallow neural network with
a single layer and also more hidden layers. Since the Dirichlet to Neumann
operator is linear, in all cases, we apply a linear activation function. Also, no
bias terms are used between the layers. Then we try to include the bias as well.
The first thing we’re going to do is train the model, then we’ll validate it with
some other data which is what we get by using the same distribution with
training data ψy(x) for fixed points y. Using this training model, we can find
parameters that predict Neumann data on a boundary with points we have
never used in the model before, but first we need to find out how good our
model is doing. The MSE loss function provides us with a way of measuring
how well the model works, by comparing the predicted values to the actual
values. We should have a better model if we get this loss function as close to
zero as possible. The second approach is to take Dirichlet boundary data as
input data and the values of the distribution function at the x + hν for some
negative h close to zero, and for ν is the outer normal vector. The reason
why we take negative values of h because we need to set the points inside the
domain Ω. We will use the same procedure, we used for the first approach of
building the neural network by one dense layer, and then expand the number of
the hidden layers to compare the results we take the same amount of train data
and validate data even the same measure (MSE) to evaluate our model. This
approach is different from the first because in this estimation we are trying to
predict the value of the points inside the domain (the solution u at x + hν),
then using the following formula of the directional derivative to approximate
the Neumann data:

∂νf(x) = lim
h→0

f(x+ hν)− f(x)

h
.

In this way, the neural network will deliver a fast computational tool to
transfer from Dirichlet data to Neumann data. However, the question that
arises is, how can we find parameters that minimize loss?.
As a result, we have to solve an optimization problem in order to make the
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loss function as close to zero as possible. We apply the Adam or Stochastic
gradient descent (SGD) method to solve the problem.

4.4 Details of the implementation

Let us consider the Laplace problem ∆u = 0 with Dirichlet boundary condi-
tions. We use the concept of the fundamental solutions given with

ψyj
: R2\ {yj} → R, ψyj

(x) = −
1

2π
ln |x− yj| .

In the first model, we take a concave domain Ω in R
2. The Dirichlet to Neu-

mann operator will be approximated in N points xi on the boundary. Let us
denote these points by ∂Ωxi

. Using the distribution ψyj
with approximately

M points, such that the points yj ∈ Ωc outside the domain and its directional
derivative responding to the outer normal vector ν, so we need first to com-
pute the values of ψyj

(x) for all points x ∈ ∂Ωxi
, then compute the directional

derivative of ψyj
using the following formula:

∂νψyj = ∇ψyj
· ν (4.1)

We will eventually get two matrices of size M × N , one of which represents
input data, the other representing output data. These matrices are presented
below for input and output data respectively:

Input =







ψy1
(x1) · · · ψy1

(xN)
...

. . .
...

ψyM
(x1) . . . ψyM

(xN)







Output =







∂νψy1
(x1) · · · ∂νψy1

(xN)
...

. . .
...

∂νψyM
(x1) . . . ∂νψyM

(xN)







Within our first model we have we have implemented two approaches.

Approach 01:

• Number of layers: only one input and and output layer.

• Size of the layers: 89 for both.

• Connectivity between the layers: dense.

• Activation function: linear.

• Bias term: no.

• Optimization algorithm: ADAM.

In this approach we had to use 89 × 89 parameters which need at least 9000
training data. We have tried to reduce the computing time by taking less
parameters this led to the second approach.
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Approach 02:

• Number of layers: only one input and and output layer.

• Size of the layers: expand the size of the first layer to be oscillated, we
will have to add three more neurons to the beginning of the layer and
three more to the end, which will make a total of 95 neurons. The output
layer will have 89 neurons.

• Connectivity between the layers: locally connected.

• kernel size: 7.

• The activation function, bias and the optimization method the same as
the first approach.

Second model

This model uses the same structure as the approach 01 from the first model
with only two layers, but the output data we’re trying to predict is f(x+ hν),
we are going to try multiple values for h and we have to make sure that these
points are inside the domain Ω. We are taking the same amount of train
and test data we take the same optimization method and the same activation
function, the only difference is that the output data are fed from the following
matrix:

Output2 =







ψy1
(x1 + hν) · · · ψy1

(xN + hν)
...

. . .
...

ψyM
(x1 + hν) . . . ψyM

(xN + hν)







Then we use the formula (4.1) to approximate the Neumann data, eventually
we use the same solution u for testing the model and predict the solution u
at the points xi + hν then we use the formula of the directional derivative to
estimate the Neumann data.

4.4.1 Low-rank approximation

Our neural network-based approach delivers a full matrix. This corresponds to
a linear function transforming the Dirichlet boundary data into the Neumann
data. Whenever, in practice, this completely describes the conductivity prop-
erties of the domain Ω, it contains a huge number of parameters. In case of
inverse problems, e.g., for the electrical impedance tomography, we need this
parameters as input data. Therefore, to reduce the computational complexity
of those problems, it would be highly desirable to reduce their number.

In other words, we should try to reduce the dimension of the data without
a significant loss in the accuracy of our approximation of the Dirichlet to Neu-
mann problem. This motivated us to perform also low-rank approximations. In
practice, we can easily implement it in the framework of the neural networks.
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We only have to insert an extra layer of length L between the input and output
layers. Of course, we need a dense layer for minimizing the loss of information.
The neural network in this case corresponds to a product of matrices of size
89×L and L× 89, which altogether results again a matrix of size 89× 89. At
the same time, its rank is only L and is automatically decomposed as a product
of the above matrices.

4.5 Results of the numerical experiments

On a simple laptop, we carried out our experiments using the Keras deep
learning library, which is an open source package in Python. Besides using this
package to build the neural network and fit the problem, we also use Numpy
for vectors and matrices, and Matplotlib for visualization of the domain, loss
function and DtN data. We get the domain Ω in the figure 2 by taking N=89,
M=10000.

Figure 4.7: The computational domain with the boundary points (89 points in
red) and the outer points (10000 points in blue).

The following figures show the mean squared error in all the methods we used
in order to find the Neumann data based on approximating the DtN map. We
modified the number of neurons in the hidden layers to determine which model
is the best to maintain.
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(a) The NN with one dense layer
(Approach 01)

(b) The NN with one locally connected layer
(Approach 02)

Figure 4.8: : Training (orange) and testing (red) loss over 100 epochs in the
first model.

(a) The NN with one dense layer in the second model
(Approach 01)

(b) The NN with two dense layers and (L=20)

Figure 4.9: : Training (orange) and testing (red) loss over 100 epochs in the
second model and in the Low-rank approximation.
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(a) The NN with one dense layer
(Approach 01)

(b) The NN with one locally connected layer
(Approach 02)

Figure 4.10: : Training (orange) and testing (red) loss over 1000 epochs in the
first approach.

(a) The NN with one dense layer
(Second model)

(b) The NN with two dense layers and (L=20)

Figure 4.11: : Training (orange) and testing (red) loss over 1000 epochs in the
second model and in the Low-rank approximation.

We trained the neural network over 100 epochs. Besides Adam, Stochastic
gradient descent (SGD) and other optimization methods were used to optimize
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the parameters, but Adam performed the best, we took the value of the hyper
parameters for all approaches as follows:

1. Learning rate with 0.001.

2. Batch size equal to 32 (Default).

There are 89 neurons in the input and output layers since that is the number
of columns. The neural network was trained by 9000 rows which presents 90%
of the data and validated by 1000 rows(the rest of the data) from the Input
and output matrices.

In our experiment, we found that dense layers are more efficient than other
types of layers. Despite both losses decreasing, we used NN with Convolutional
layers whose loss functions were underfitted, but at some point there was a
constant loss. The result of using locally connected layers, which are a special
case of convolutional layers, can be seen in Figure 4.10 (b). Since this type of
layer only has valid padding, we had to increase the number of neurons in the
input of this model. We added other layers to the NN, the result improved but
only slightly. Convolutional layers were used to reduce parameters.
By using the Low rank approximation method, we added more dense layers to
the model in Figure 4.11 (b). However, the first approach remains the most
accurate.
In the Figure 4.11 (a), we present the loss function in second model with
h = −0.2. We can observe that the model learned well over 1000 epochs with
only one dense layer. We can observe also that the training and testing loss
are decreasing similarly. This is an indicator of a good neural network.
For a better value experiment, we must test our neural network against unseen
solutions to show that it finds the DtN map for every Laplace problem with
Dirichlet boundary condition.
The NN is tested by the solution u(x, y) = (x−1)2− (y+3)2 with its Dirichlet
data on the boundary given as an input data, and ∂νu = ⟨∇f, ν⟩ as Neumann
output data.
New data predictions take no more than two seconds, so we will predict the
DtN data for all models. In the next figure, we are showing how well the
Second model performed when we tried to predict the points inside the domain.
Starting from the top-left, the points are numbered from 1 to 89 on the axis,
going through the boundary to the nearest point to the first one.
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Figure 4.12: The exact and the approximated solution u at the points x + hν
with h = −0.2

The following table shows the number of the trainable parameters in each
model.

Approach 01 Approach 02 Second model Low-rank approximation L=20

7,921 801 7,921 3,560

Table 4.1: The number of parameters for each model

The following table shows MSE for all different models using different num-
ber of epochs.

Epochs Approach 01 Approach 02 Second model Low-rank approximation

50 1.63 337.646 0.706 1.887

100 1.675 334.167 0.60 1.826

500 0.372 337.93 0.2512 1.8

1000 0.086 155.916 0.311 1.44

Table 4.2: The mean squared error for each model
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In the following table, we can see how long each method takes based on the
number of epochs.

Epochs Approach 01 Approach 02 Second model Low-rank approximation

50 39s 38s 37s 41s

100 1m 25s 2m 28s 2m 8s 1m 19s

500 7m 39s 7m 37s 6m 27s 6m 36s

1000 13m 37s 14m 31s 16m 12m 38s

Table 4.3: The timeliness for each model corresponding to the number of epochs

In the table 4.2, every model except the approach 02, has a low MSE,
resulting in a good performance even-though the second approach has less
parameters than the others, moreover it is time consuming. As we need to
approximate a linear DtN map, it is not a useful approach for our problem, so
fully connected layers are better.

To smooth the computational results, we use a digital filter, the so-called
Savitzky–Golay filter. In general, such a filter is applied to a set of data
points for the purpose of smoothing the data, i.e., increasing data precision
without distorting the signal tendency. It uses the following polynomial form:
anx

n + · · ·+ a1x+ a0 to optimize the coefficients with at least n+ 1 points.
We first apply it in case of the second model in the first approach. We show

the smoothed approximation of the Neumann data using polynomial order 3.
Also, the exact Neumann data is displayed in Figure 4.13.

Figure 4.13: The exact and the approximated Neumann data in approach 02.
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As soon as this model is eliminated, it remains to compare the other models.
We can see in the following figures which model performs best based on the
approximation of the DtN map, these results were obtained based on 1000
epochs.

Figure 4.14: The real and the predicted Neumann data using approach 01.

Figure 4.15: The real and predicted Neumann data using the second approach.
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The actual and the estimation Neumann data using low-rank approximation
method are shown in the following figure.

Figure 4.16: The real and predicted Neumann data using low-rank approxi-
mation method.
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Chapter 5

Conclusion

We aim to find Dirichlet-to-Neumann maps and discuss their basic properties
as well as their application through the conductivity equation in the electrical
impedance tomography. We needed a related equation, which is the Shrödinger
equation. Rather than using traditional approximation methods such as finite
difference and finite elements methods, we used the most recent approximation
method, provided by the neural networks. It is primarily based on optimization
methods, learning from a given data and predicting results for unseen inputs.
According to our research, the best model for approximation of Laplacian prob-
lems is the first approach in which the neural network has only one dense layer.
We also used another method and it gave a good result in terms of reducing
the time complexity and parameters in order to use these parameters in the
inverse problem, but it was less accurate compared to the first one.
The best method we chose uses only two layers, the input and output layers,
and it is trained with the fundamental solution of the Laplace equation. This
method worked as expected because of the linearity of the DtN map of the
Laplace equation. The method is easy to implement, gives accurate results,
and is not time-consuming, which is better than the classical methods, which
suffer from high conditions numbers and highly depend on the discretizations.
A deep learning model only needs a sufficiently wide data set to train so that
it does not overfit or underfit and the model is ready for predictions.
A crucial step in using the method is choosing the neural network structure,
such as the number of layers, the activation function, and the optimization
method. As we need to deal with real data output, the DtN map of the Laplace
problem is linear, so only one dense layer is required, and a linear activation
function is the best option. To get the optimal value for the object function
(weights), selecting the best optimization method is critical in terms of per-
formance and time complexity. We tested a number of optimization methods
in our research, but the Adam method performed the best. However, we also
need to be careful when selecting the learning rate, because some problems do
not require small learning steps, so the algorithm can reach the optimal value
with just a few steps.
We can use this research as a study case for finding the DtN map of the Laplace
problem in 2D. The next step is to try similar models to approximate the DtN
map in the 3-dimensional case. This research can also provide insights into
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finding the DtN in homogeneous Laplace equations and applying deep learning
methods to find the DtN map for non-homogeneous elliptic problems. This
would be an important step towards the efficient approximation of inverse
problems such as the electrical impedance tomography.
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