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Chapter 1

Introduction

Long-range dependence or long memory has critical importance in the scientific modeling
of natural or industrial phenomena. On one hand, in natural sciences, it finds applications
in climate change (see e.g. [11]), hydrology (see e.g. [22]), DNA sequencing (see e.g.
[34]) and networks (see e.g. [39]). On the other hand, research on long memory implies
achievements in financial mathematics, see for example [33, 10] or [3] for the application
of long memory in volatility modeling. Nevertheless, the presence of long memory in
time series data is a common tenet, turning a great deal of attention to models that are
capable of capturing this phenomenon. In most stochastic models the impact of past
events on future events has a fast decay, and this way, the effect of observations from the
distant past, in terms of forecasting ability, is negligible. When long-range dependence is
present in a Gaussian system, predictions concerning the future require information from
the complete history of the process - in contrast to Markovian environments, when the
most recent events already contain all the information that is necessary for an optimal
forecast. When one models data with long memory, it is a crucial task to estimate model
parameters, and classical inference methods are often not applicable in the case of long
memory processes. We focus our attention on two stochastic processes that are frequently
utilized in modern applied mathematics: fractional Brownian motion, and the fractional
Ornstein-Uhlenbeck process. The parameter called the Hurst exponent controls the
roughness, self-similarity, and the long-range dependence of fractional Brownian motion
paths, and this way also influences the characteristics of descendant processes such as the
fractional Ornstein-Uhlenbeck process. With the spread of the use of the Hurst exponent,
we can highlight such new areas of application as EEG signal processing, detection of
epilepsy [1] or in cybersecurity detecting anomalies [25]. Therefore, numerical inference
targeting this quantity and other parameters of fractional models is essential.

In this thesis, we examine the estimation of parameters belonging to two processes. In
the case of fBm, we mainly focus on the estimation of the Hurst parameter, and in the
case of fOU, we mainly concentrate on the estimation of the Hurst and drift parameters.
As a side note, we also investigate the estimation of the scale and shift parameters in both
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cases.
The neural network estimation of the Hurst parameter of the fBm overtakes con-

ventional numerical-statistical estimation mechanisms (see Chap. 3 for baselines). In
general, the proposed neural network estimators have higher accuracy and this advantage
is uniform on the whole range of the Hurst exponent. Even when Whittle’s method
produces an accuracy that is in close proximity to the results the neural network yields,
the network estimator still has a significant advantage in terms of estimation speed. We
measured a kind of consistency of the neural network estimation method, i.e. when trained
on longer sequences, the method becomes more accurate, even when inferred on sequences
of not necessarily the length used in training.

In the case of the fOU process, there is a severe lack of estimators for all of the
parameters. For one thing, conventional estimators produce large errors when estimating
the Hurst parameter. We gain advantage over these methods by obtaining neural network
estimators that produce significantly higher accuracy. Furthermore, we surpass the single
existing baseline for the drift parameter as well. The superiority of the neural network-
based estimators is twofold in this case. First, the conventional drift parameter estimator
assumes the Hurst, the scale and the shift parameters to be known, which is not a viable
assumption in practice. The neural network estimators do not have such prerequisites.
Secondly, even when giving the baseline the advantage of knowing its required parameters,
the neural network estimation achieves higher accuracy.

In both cases, the estimation of the shift and scale parameters is given lower priority.
However, there are some interesting ideas resulting from the estimation of these two
parameters. Namely, for the scale parameter, a homogeneous neural network is proposed
and the idea of training with constant label is explained. Similarly, in the case of the shift
parameter, an unbiased linear neural network is proposed, which only needs to be trained
with constant labels as well.

The success of the utilized networks (Sec. 4.3) utmostly stems from a large volume
of high-quality training data, manifested with the software that was built around the
framework of the so-called isonormal processes (see [31] for the mathematical background,
and Sec. 4.2 about the implementation). The underlying path-generating methodology
includes the circulant embedding of a covariance matrix and fast Fourier transform. In
particular, the system produces fractional Brownian motion paths with great efficiency.

Finally, we conduct stress test with various stochastic processes. These test were
designed to gain a better understanding of the inner workings of the neural networks. In
some of these tests, the models exhibits behaviour that gives us reason to assume that it
learns some general characteristics pertaining to long memory and self-similarity.

This thesis is a result of 2 years of continuous research conducted in the ELTE AI
Research Group. As such, parts of it are constituted by the contents of a pending
publication. Therefore, for certain elements of it, credit must be given to the coauthors.
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What I can claim most credit for is for example, serving as a link between the theoretical
and practical parts of the project. To name a , putting theoretical results into a more
practice-oriented context, designing a training system that properly utilizes unlimited
data and constructing neural network architectures that conform to certain properties.

8



Chapter 2

Background

In this chapter, we present the processes for which we are looking to construct parameter
estimators. We only present the properties of the processes in question that are crucial to
know to estimate their parameters.

2.1 The fractional Brownian motion

Here, we briefly introduce the fractional Brownian motion (fBm). For a more in-depth
analysis, one may consult [27].

Definition 2.1.1. Let H ∈ (0, 1], σ > 0, µ ∈ R. The fractional Brownian motion (BH
t )t≥0 is

a continuous centered Gaussian process with covariance function

cov(BH
t ,BH

s ) =
1

2
(∣t∣2H + ∣s∣2H − ∣t − s∣2H) .

Definition 2.1.2. It is customary to consider the scaled and drifted process (σBH
t +µt)t≥0.

Let fBm(H,µ,σ) denote the distribution of this process, which is a distirbution on the
Borel σ-algebra of the continuous functions.

Proposition 2.1.1. ∀c > 0∶ if X ∼ fBm(H,µ,σ), then (Xct)t≥0 ∼ fBm(H, cµ, cHσ)

Proof. Let Zt =
Xct − cµ ⋅ t

cHσ
. We will show that Z ∼ fBm(H, 0, 1). To see that, note that it

is a centered Gaussian process, so we only have to check its covariance function.

cov(Zs, Zt) = cov(c−HBH
cs , c

−HBH
ct ) = c−2Hcov(BH

cs ,B
H
ct )

= c−2H 1

2
(∣ct∣2H + ∣cs∣2H − ∣ct − cs∣2H)

= 1

2
(∣t∣2H + ∣s∣2H − ∣t − s∣2H) = cov(BH

s ,BH
t ),
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Remark 2.1.1. The above property is called self-similarity when µ = 0. This is in
reference to the fact that after a change of time-scale, the resulting process is stochastically
similar to the original, i.e., it has the same distribution apart from a scaling parameter.

Remark 2.1.2. Proposition 2.1.1 has important practical implications. In practice, we
only have discretized observations from a process X ∼ FBM(H,µ,σ). In this thesis, we
assume that these observations are equidistant. In other words, we can observe (Xjδ)n−1j=0 ,
where δ > 0 is the time step and n is the number of observations. However, this is the
same as saying we can observe (Zj)n−1j=0 with Zt ∶= Xδt (t ≥ 0). By Proposition 2.1.1,
Z ∼ fBm(H,δµ, δHσ). In other words, we can assume that we have observations from
a "canonical" fBm process, with time step 1. To put it into another perspective, by
discretizing an fBm process, µ and σ cease to be well-defined parameters. Only H, δµ
and δHσ are well-defined.

Proposition 2.1.2. Let X ∼ fBm(H,µ,σ). X has strongly stationary increments. As a
consequence, for the marginal distributions of the increments, Xt −Xs

d=Xt−s holds.

Proof. As X is Gaussian, all we have to prove is that cov(Xt+h − Xs+h,Xt − Xs) only
depends on t − s and h. To check this, we can write

cov(Xt+h −Xs+h,Xt −Xs) =

cov(Xt+h,Xt) − cov(Xt+h,Xs) − cov(Xs+h,Xt) + cov(Xs+h,Xs) =
1

2
(∣t − s + h∣ + ∣t − s − h∣ − 2∣h∣).

Remark 2.1.3. As a consequence, in this work, we will always pre-process discretized fBm
observations by differencing them, i.e., apply the transformation (Zj)n−1j=0 ↦ (Zj −Zj−1)n−1j=1 .
This is advantageous because this way we obtain a stacionary sequence. Also, differencing
detrends the observations thus transforms the drift parameter µ into a simple shift
parameter.

2.2 The fractional Ornstein-Uhlenbeck process

After the fBm, it is a natural next step to consider the more complicated fractional
Ornstein-Uhlenbeck (fOU) process. Beyond the scope of this brief section, a more detailed
discussion can be found in [7].

Definition 2.2.1. Let H ∈ (0,1), α, σ > 0, η, µ ∈ R. The fractional Ornstein-Uhlenbeck
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process (Yt)t≥0 is the solution of the following stochastic differential equation (SDE):

dYt = −α(Yt − µ)dt + σ dBH
t

Y0 = η.

Let fOU(η,H,α,µ, σ) denote the distribution of this process, which is a distribution on
the Borel σ-algebra of the continuous functions.

Proposition 2.2.1. In the above distribution, µ and σ are simply scale and shift param-
eters. Namely, if Y ∼ fOU(η − µ)/σ,H,α,0,1), then σY + µ ∼ fOU(η,H,α,µ, σ).

Proof. We will show that Z = σY + µ satisfies the SDE of the fOU(η,H,α,µ, σ).
First, we can write

dZt = d(σYt + µ) = σ dYt = σ(αYt dt + dBH
t )

= α ⋅ σYt dt + σ dBH
t = α(Zt − µ)dt + σ dBH

t .

Secondly, Z0 = σY0 + µ = η.

Proposition 2.2.2. ∀c > 0∶ If Y ∼ fOU(η,H,α,µ, σ) then
(Yct)t≥0 ∼ FOU(η,H, cα,µ, cHσ).

Proof. Let Zt = Yct. Let BH be the fractional Brownian motion that propels Y . We will
show that Z satisfies the fOU(η,H, cα,µ, cHσ) SDE with W = c−HBH

ct ∼ FBM(H, 0, 1) as
the propelling noise. To see that, we can write

dZt = c ⋅ (dY )ct = c ⋅ (−α(Yct − µ)dt + σ dBH
ct )

= −cα ⋅ (Zt − µ) + σcH dWt

Moreover, trivially, Z0 = Y0 = η.

Remark 2.2.1. Note that the above statement does not mean that the fOU is self-similar.
After a change of time-scale the resulting process is not stochastically similar to the
original process, because it has a different drift parameter.

Remark 2.2.2. The practical implications of Proposition 2.2.2 are similar to that of
Proposition 2.1.1. Namely, we can assume the time step to be 1 when discretizing fOU
processes. Or again from a different point of view, α, σ and µ cease to be well-defined
parameters upon discretization, only H, δα, δµ and δHσ are well-defined.
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Chapter 3

Baselines

Before we can establish new, DL-based methods to obtain parameter estimators for the
processes in question, we need to consider the statistical methods that are available. We
will refer to these methods as baselines and surpassing them will be the focal point of this
work.

3.1 Baselines for the fBm

3.1.1 Rescaled range analysis

The rescaled range analysis (R/S) is a historically important estimator for the Hurst
parameter (see [15, 22]). For a stationary sequence X, let Yk = ∑k

j=0Xj.

R/S(n) =
max1≤k≤n {Xk − k

nXn} −min1≤k≤n {Xk − k
nXn}√

1
n ∑

n
k=1 (Yk − 1

nXn)
2

,

If Y ∼ FBM(H,µ,σ), then E(R/S(n)) ∼ cnH holds. Thus, the slope coefficient of the
linear regression log(R/S(n)) ∼ log(m) yields an estimate for H.

3.1.2 Higuchi’s method

Higuchi’s method [19] relies on the computation of the fractal dimension by a one-
dimensional box counting. For a sliding box size b ∈ N and a starting point i ∈ N, i ≤

b, consider Lb(i) =
1

[n−i
b
]

[n−i
b
]

∑
k=1
∣Xi+kb −Xi+(k−1)m∣ . Then let Lb ∶= 1

b ∑
b
i=1Lb(i). If X ∼

fBm(H,0, σ) then E(Lb) = cbH holds. Thus, the slope coefficient of the linear regression
log(Lb) ∼ log(b) yields an estimate for H.
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3.1.3 Whittle’s method

Whittle’s method [28] maximizes the likelihood function

L(X) = (2π)−n/2 ∣ΓH ∣−1/2 e−
1
2
XTΓ−1H X ,

where ∣ΓH ∣, Γ−1H denotes the determinant and the inverse of the matrix ΓH respectively,
and XT denotes the transpose of the vector X. In practice, however, minimizing the
above likelihood proves to be too computationally intensive. Therefore one instead uses a
Fourier-analysis-based approximation, see e.g. [4].

3.2 Baselines for the fOU

Parameter estimation for the fOU differs significantly from that of the fBm. Contrary to
the fBm, there is a severe lack of estimators for the parameters of the fOU.

3.2.1 Variation Estimators

A generalization of the variogram estimator based on the variogram of order p for a
stochastic process with stationary increments is utilized in [14]. The variogram of order
p is defined as γp(t) = 1

2E∣Xi −Xi+t∣p. Notably, when p = 2, the variogram is obtained,
while for p = 1, the madogram is obtained. The case of p = 1

2 corresponds to the rodogram.
In this study, we specifically focus on the case of p = 1, where the fractal dimension
can be estimated. The fractal dimension is determined using the following formula:
D̂V ;p = 2 − 1

p

log V̂p( 2n )−log V̂p( 2n )
log 2 . By applying the derived fractal dimension, we can calculate

the Hurst exponent (H) as H = 2 − D (see [13]). Moreover, an important estimator
belonging to this family is the generalized variation (QGV) estimator, as described in [5].

3.2.2 The Hu-Nualart baselines

For the estimation of fOU parameters σ and α, important results are achieved in [21]. In
the paper, a method is described to infer σ with known H. Moreover, another method
is described to infer α with known H and σ. We will focus on this later estimator, we
will investigate how well it infers α with known H and σ. This way we can gauge its
performance without dependence on the H and σ estimators.
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Chapter 4

Methods

In this chapter, we describe the framework for attaining the desired parameter estimators.

4.1 Training with unlimited data

In this subsection, we propose a general procedure to attempt to obtain parameter
estimators by utilizing generators. Let Θ be the set of the possible parameters and let P
be the prior distribution on Θ. Then, ∀a ∈ Θ∶ let G(a) generate discretized trajectories from
the process distribution Qa. Now, with ϑ ∼ P , consider the compound generator G ∶= G(ϑ).
Suppose we have G as input and we would like to estimate ϑ. Formally, an optimal M
estimator would minimize the MSE E(M(G)−ϑ)2. Now, by having independent copies of
(G,ϑ), we can consider the training set (G1, ϑ1), (G2, ϑ2), (G3, ϑ3), . . . . Training a neural
network M on this set with the squared loss function would be a heuristic attempt to
obtain the above M estimator.

Training on this set can be done iteratively. Let B be the batch size. Then, in the kth

step of the training process we sample the [kB, (k + 1)B − 1] slice of the training set and
aggregate it into a batch. We perform the iteration step on this batch, then we go on
with the next batch and we never reuse any parts of this batch. Stopping this process is
at our discretion, as we never run out of data. During the training process, we are using
completely unique, independent training data. This means overfitting is not possible,
hence training losses can be treated as validation losses. In practice we can organize our
batches into virtual epochs, to monitor the models performance metrics epoch to epoch
as the model trains.

We may assume that Q is only parametrized by the target parameter a. This can be
done without loss of generality, because if Q is parametrized by other parameters beside
a, then we can just randomize those parameters and have Qa be redefined as the resulting
compound distribution.
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4.2 Generating processes

To carry out the training process described in the last section, it is indispensable to have
fast and accurate generators. In the following, we briefly describe the main ideas behind
the generator system we used.

The fBm increment process can be characterized as a zero-mean stationary Gaussian
noise. As such, it can be generated using a circular matrix embedding method belonging to
the Davies-Harte procedure family. However, the original Davies-Harte method is lacking
in speed. Therefore, to obtain a faster generator, Kroese’s method [24] was implemented
in Python. The resulting Python implementation is approximately an order of magnitude
faster than the Python package fbm [8].

Using the generator for the fBm increments, the fOU generator can be implemented
by adequately discretizing the stochastic integral it is defined by.

4.3 Neural network architecture

4.3.1 Architecture for estimating H and α

An estimator for H and α should be scale and shift invariant. We can obtain such
an M by setting the first layer of M to be a standardizing layer. This layer applies
the transformation x ↦ (x − x)/σ̂(x) to each sequence x in the batch separately, where
σ̂(x) = ( 1n ∑

n−1
j=0 (xj − x)2)

1/2
. The next part ofM is a sequential regressor. We constructed

the regressor by first transforming the input sequence into a higher dimensional sequence,
after which we average out each dimension of the output sequence and thus obtain a
vector, and finally we apply an MLP [17] to attain a scalar output. We considered two
options for the sequence transformation. In Mconv, it is achieved by a multilayer 1D
convolution [23], and inMLSTM, by an LSTM [20].

4.3.2 Architecture for estimating σ

We want the estimator for σ to be homogeneous, i.e., M(λx) = λM(x) should hold for
every input x and every scalar λ > 0. One way to achieve homogeneity is considering the
previously definedMconv and turning off the bias everywhere, and setting every activation
to PReLU. Moreover, the fist layer should not standardize completely, only center. That
is, the transformation x ↦ x − x should constitute the first layer. Denote the resulting
neural network byM∗

conv.
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4.3.3 Architecture for estimating µ

We want the estimator for µ to be linear. One way to achieve linearity is considering the
previously definedM∗

conv and removing the centering layer and turning off the activation
functions. Denote the resulting neural network byM+,∗

conv. However, when estimating µ,
on top of the linearity, it is customary to require the estimator to be unbiased. For a
linear sequential estimator M , being unbiased is equivalent to the property M(1) = 1,
where 1 is the constant 1 sequence. This property can be easily enforced by redefining

M+,∗
conv(x) as

M+,∗
conv(x)

M+,∗
conv(1)

. In the remainder of this thesis, the notationM∗
conv will refer to

the unbiased version.

4.3.4 Hyperparameters

We found that unless M is severely underparametrized, the specific hyperparameter
configuration does not have a significant effect on its performance. Slight differences can
arise in the speed of convergence, but these are not relevant due to the unlimited data and
fast generators. The following are the hyperparameters that we used in our experiments.

InMconv, we used a 1D convolution with 6 layers. The input has 1 channels, and the
convolution layers have output channels sizes of 64, 64, 128, 128, 128, and 128. Every layer
has stride 1, kernel size 4 and no padding. The activation function is PReLU after every
layer. In MLSTM, we used an unidirectional LSTM with two layers, its input dimension is
1, the dimension of its inner representation is 128. In both models, we use an MLP with 2
layers with input dimension of 128 and output dimensions of 64 and 1. The activation
function is PReLU between the two layers. Moreover,M∗

conv andM+,∗
conv have the same

structure asMconv except for the properties already discussed in the previous subsection.
For training the models, we used AdamW optimization for the MSE loss function with

default parameters as described in [26]. We used a train (and validation) batch size of 32.

4.4 Technical details

The process generators were implemented in Python [37], using Numpy [16] and SciPy [38].
We imported Higuchi’s method from the package AntroPy [36]. The R/S method was
imported from the package hurst [29]. The framework responsible for the training process
was implemented in Pytorch [32]. Every neural module we used was readily available in
Pytorch. We managed our experiments using the experiment tracker neptune.ai [30].

The neural models were trained on Nvidia RTX 2080 Ti graphics cards. Training
took approximately one GPU hour to one GPU day per model, depending on the type
of process, the applied architecture, and on the length of sequences used for training. A
shorter training time can mostly be expected from the acceleration (parallelization) of the
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sequence generation.
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Chapter 5

Experiments

With the necessary foundation being made, we can now present the training and experi-
ments we conducted to obtain and evaluate neural network-based parameter estimators.

5.1 Metrics

First, we briefly describe the metrics used throughout this chapter. Notation from Section
4.1 will be used. Moreover, let F be the cumulative distribution function and F −1 be the
quantile function of P . Let N be the number of realizations.

Definition 5.1.1. Let the empirical mean squared error (MSE) be defined as∑N−1
j=0 (M(Gj)−

ϑj)2.

Definition 5.1.2. Let mϵ(t) =
∑N

j=1Gj1[t−ϵ,t+ϵ](F (ϑj))
∑N

j=1 1[t−ϵ,t+ϵ]](F (ϑj))
. Then, let the empirical bias

function b̂ϵ ∶ [0,1] → R be defined as b̂ϵ(t) =mϵ(t) − F −1(t).

In other words, we average out M(Gj) − ϑj for F (ϑj) ∈ [t − ϵ, t + ϵ], where ϵ > 0 is the
sliding window radius.

Definition 5.1.3. Let the empirical standard deviation function ŝϵ ∶ [0, 1] → R be defined

as ŝϵ(t) =
⎛
⎝
∑N

j=1 (Gj −mϵ(t))
2
1[t−ϵ,t+ϵ](F (ϑj))

∑N
j=1 1[t−ϵ,t+ϵ]](F (ϑj))

⎞
⎠

1/2

.

Remark 5.1.1. The above use of F is convenient because we can plot the metrics in
question as functions of the quantiles. This is especially useful when P is not uniform.
However, when P is uniform, we will usually just plot as functions of the parameter values
itself.

Let K be a suitably large number. We may assume K = ⌈1/ϵ⌉, unless otherwise
specified.
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Definition 5.1.4. Let the absolute area under the empirical bias curve be defined as
∣̂bϵ(0)∣ + ∣̂bϵ(1)∣ + 2∑K

j=0 ∣̂bϵ(j/K)∣
2K

.

Definition 5.1.5. Let the absolute area under the empirical standard deviation curve be

defined as
∣ŝϵ(0)∣ + ∣ŝϵ(1)∣ + 2∑K

j=0 ∣ŝϵ(j/K)∣
2K

.

5.2 Results for the fBm

5.2.1 Results for fBM H

In the following, one epoch will simply refer to a block of 105 unique training input. We
trainedMconv andMLSTM on different sequence lengths then compared their performance
to that of the baselines. In every case, the training and evaluation was done on fBm(H, 0, 1)
increments with H ∼ U(0,1). Which means we fixed µ = 0 and σ = 1. The reason for this
isMconv andMLSTM are shift and scale invariant, as such they are indifferent to µ and σ.

The first training phase lasted for 200 epochs on sequences of length n = 100. At
this point, the models were evaluated on this later sequence length. Then fine-tuning
ensued on sequence lengths of n = 200, 400, . . . , 12800 for 10 epochs each. The models were
evaluated on each one of the sequence lengths right after being trained on the same length.
The comparison between these fine-tuned best-case neural networks and the baselines are
seen in Tables 5.1, 5.2, 5.3. However, as these tables only contain aggregate metrics, they
do not contain information on Hurst parameter specific performance. For this reason the
results for n = 12800 are visualized in Figures 5.2, 5.1. These show that the models are
uniformly superior to the baselines on the entire Hurst parameter set (0,1).

However, some may find using different models for different sequence lengths inconve-
nient. Therefore, it might be important to construct an estimator that can be used on
every length. A candidate for such an estimator could be the neural network that was
fine-tuned on the longest sequences, i.e., on n = 12800. The evaluation of this model can
be seen in Table 5.4. Moreover, after the fine-tuning experiments, we continued to train
MLSTM on random n ∼ U({100, 101, . . . , 12800}) sequence length for 50 epochs. This was
another attempt to obtain a single neural network that could be used for every sequence
length. The evaluation of this model can be seen in 5.5. As one would expect, in both
cases, the MSE is slightly worse for every length than the length specific best-case scenario.
However, what is interesting is that this slightly inferior precision is mainly caused by
the bias rather than the variance. All in all, the model that was fine-tuned for n = 12800
performs better than the one trained on random length due to it having smaller absolute
bias. We conducted furher experiments to gain a better understanding on the relation
between the training and evaluation sequence length. The results of these experiments
can be seen in Table 5.6 and they are visualized in Figures 5.3, 5.4.
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Table 5.1: MSE losses of different fBm Hurst-estimators by sequence length.

MSE loss (×10−3)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM

100 27.6 9.30 10.6 4.33 4.27 4.07
200 18.9 5.05 4.21 2.00 1.99 1.91
400 13.9 2.92 1.99 1.00 0.959 0.917
800 10.8 1.75 1.05 0.540 0.476 0.453
1600 8.62 1.09 0.593 0.324 0.240 0.224
3200 6.74 0.724 0.360 0.225 0.122 0.114
6400 5.57 0.502 0.229 0.179 0.0628 0.0579
12800 4.70 0.365 0.155 0.157 0.0333 0.0297

Table 5.2: Absolute area under Hurst-bias curve of different fBm Hurst-estimators by
sequence length.

b̂0.025 (×10−3)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM

100 116 34.9 58.1 10.7 12.2 11.3

200 98.0 26.5 27.7 6.84 5.54 5.24
400 87.1 20.7 14.5 5.79 2.63 2.58
800 79.1 17.0 7.82 5.03 1.40 1.32
1600 71.4 13.9 4.63 4.90 0.765 0.656
3200 62.6 11.8 2.89 4.88 0.411 0.403
6400 58.0 9.79 1.74 5.03 0.241 0.211
12800 53.7 8.34 1.23 5.04 0.140 0.131
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Table 5.3: Absolute area under Hurst - empirical standard deviation curve of different
fBm Hurst-estimators by sequence length.

ŝ0.025 (×10−2)

seq. len. R/S variogram Higuchi Whittle Mconv MLSTM

100 9.62 8.67 8.25 6.25 6.16 6.01
200 7.35 6.33 5.65 4.30 4.27 4.15
400 5.69 4.78 4.04 3.01 3.00 2.91
800 4.58 3.61 2.97 2.11 2.12 2.05
1600 3.71 2.74 2.22 1.50 1.51 1.46
3200 3.34 2.14 1.67 1.09 1.08 1.04
6400 2.76 1.67 1.28 0.791 0.775 0.743
12800 2.34 1.34 0.998 0.590 0.564 0.534

Table 5.4: Metrics ofMLSTM on sequences of different length after being fine-tuned on
length n = 12800.

Metrics of MLSTM (×10−3)

seq. len. MSE b̂0.025 ŝ0.025

100 4.4 17 62

200 2.0 7.3 43

400 0.94 3.1 30

800 0.46 3.9 21

1600 0.22 1.4 15

3200 0.11 1.1 10

6400 0.059 1.4 7.3

12800 0.030 1.6 5.2

21



Table 5.5: Metrics of MLSTM on sequences of different length after being trained on
random length.

Metrics of MLSTM (×10−3)

seq. len. MSE b̂0.025 ŝ0.025

100 4.4 16 62

200 2.0 8.1 42

400 0.96 5.1 30

800 0.47 3.9 21

1600 0.24 3.7 15

3200 0.13 3.6 10

6400 0.069 3.3 7.2

12800 0.039 3.1 5.2

Table 5.6: MSE losses of LSTM-based models trained on different sequence lengths.

MSE loss by validation seq. len. (×10−3)

train
seq. len. 100 200 400 800 1600 3200 6400

100 4.14 2.17 1.41 1.09 0.962 0.918 0.915

200 4.21 1.88 0.947 0.528 0.344 0.264 0.231

400 4.78 2.02 0.940 0.477 0.281 0.196 0.161

800 4.80 2.00 0.913 0.443 0.230 0.134 0.0888

1600 5.01 2.11 0.952 0.447 0.220 0.113 0.0617

3200 5.44 2.23 0.972 0.454 0.221 0.111 0.0608

6400 5.59 2.30 1.01 0.471 0.229 0.121 0.0692

22



Figure 5.1: Empirical bias b0.025 of the fBm estimators by Hurst value. Measured on
sequences of length 12800. The estimator R/S has a bias from 0.125 to -0.075 roughly
linearly when the Hurst exponent changes from 0 to 1.

Figure 5.2: Empirical standard deviation ŝ0.025 of the fBm estimators by Hurst value.
Measured on sequences of length 12800.
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Figure 5.3: Empirical consistency of the baseline estimators and the fine-tuned neural
models.

Figure 5.4: The empirical consistency of the different dedicated LSTM models.

5.2.2 Results for fBM σ

We briefly present the results achieved for the estimation of the scale parameter of the fBm.
We used the incremental fine-tuning approach described in the previous subsection to train
M∗

conv for the estimation of σ. It should be noted that just as in the previous subsection,
the inputs are fBm(H,0,1) increments with H ∼ U(0,1) being random. This means that
during the training process every label is σ = 1. However,M∗

conv cannot abuse this fact,
i.e., it cannot "cheat" and just learn the constant 1 function, because it is homogeneous.
Therefore, by also taking in account the shift invariance ofM∗

conv, when it learns to infer 1
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on fBm(H, 0, 1) inputs, it actually learns to infer σ on fBm(H,µ,σ), (σ > 0, µ > 0) inputs.
As another consequence of the the homogeneity ofM∗

conv, there is no need for the metrics
described in Subsection 5.1. The MSE, bias and standard deviation for σ = 1 determine
these metrics for every σ > 0. Therefore, in Table 5.7, we only present the regular bias b̂

and standard deviation ŝ for σ = 1. The MSE can be calculated from these. As a baseline,
we use the simple σ̂(x) = ( 1n ∑

n−1
j=0 (xj − x)2)

1/2
. As we can see, the model significantly

outperforms σ̂. Finding more sophisticated baseline methods for σ might be subject of
further research.

Table 5.7: Performance metrics of M∗
conv and σ̂ by sequence length for σ = 1.

b̂ (×10−3) ŝ (×10−2)

seq. len. σ̂ M∗
conv σ̂ M∗

conv

100 70 24 16 15.4

200 59 15.8 15 12.5

400 54 11.8 14 12.7

800 45 8.8 12.2 9.3

1600 43 6.1 11.8 7.8

3200 37 4.7 11.6 7.7

6400 35 3.5 10.8 5.9

12800 33 3.1 10.6 5.6

5.2.3 Results for fBM µ

We also briefly present the results achieved for the estimation of the shape parameter of
the fBm. Again, we used the previous incremental fine-tuning approach. The input is still
fBm(H, 0, 1) with H ∼ U(0, 1) being random. This means that during the training process
every label is µ = 0. However,M+,∗

conv cannot just learn the constant 0 function, because it
is enforced to be unbiased. This, and the linearity together make it so that learning to
infer 0 on fBm(H, 0, 1) is equivalent to learning to infer µ on fBm(H,µ,σ), (µ > 0, σ > 0).
Keeping all this in mind, the only performance metric needed to evaluateM+,∗

conv is the MSE
for µ = 0 and σ = 1. This is also true for the baseline µ̂(x) = x. The comparison between
the baseline and the neural network can be seen in Table 5.8. As we can see, the model
does not have a clear edge over x. Therefore x might be preferable in this case, because
it is simple and well-understood. Further inquiry could be carried out into relaxing the
linearity and unbiasedness restrictions ofM+,∗

conv and finding more sophisticated baselines.
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Table 5.8: MSE losses of different fBm µ estimators by sequence length.

MSE loss (×10−2)

seq. len. x M+,∗
conv

100 11.4 11.1

200 9.44 9.45

400 8.25 8.28

800 7.54 7.41

1600 6.76 6.93

3200 6.15 6.16

6400 5.93 5.60

12800 5.53 5.34

5.3 Results for the fOU

5.3.1 Results for fOU H

We trained MLSTM with the incremental training technique on fOU(η,H,α,0,1) inputs
with H ∼ U(0,1), α ∼ Exp(100), η ∼ N(0,1). The reason for fixing µ = 0 and σ = 1 is the
same as in the case of the fBm. However, additional consideration is needed for η. By
setting η ∼ N(0,1) in the standard µ = 0, σ = 1 case we assume that η ∼ N(µ,σ) holds in
the scaled and shifted case. Heuristically, this is equivalent to assuming that the sequnce
starts at a "typical value". If one finds this assumption impractical, then η can be sampled
from a heavy-tailed distribution.

With parameters yielded by these same distributions, we compared the performance
of the model and the QGV baseline. As specified above, an exponential distribution with
high rate is yielding the parameter α. The reason for such a high rate (thus small scale) is
that the QGV method is only consistent for small values of α and we wanted to compare
the model to the baseline on equal grounds. This comparison can be seen in Table 5.9.
As we can see, MLSTM has a very siginificant advantage over the QGV method.
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Table 5.9: Performance metrics of different fOU Hurst estimators by sequence length.

MSE loss (×10−3) b̂0.025 (×10−3) ŝ0.025 (×10−2)

seq. len. QGV MLSTM QGV MLSTM QGV MLSTM

100 41.0 3.38 106 9.26 9.86 5.53

200 34.2 1.74 97.1 4.84 8.07 4.00

400 29.4 0.919 86.4 2.59 6.92 2.92

800 25.0 0.494 76.2 1.52 5.88 2.15

1600 20.6 0.269 65.1 0.827 5.09 1.59

3200 16.3 0.149 53.8 0.575 4.37 1.18

6400 12.6 0.0810 43.7 1.95 3.68 0.842

5.3.2 Results for fOU α

Estimating parameter α is the most challenging part of this work. The biggest challenge
lies in designing an experiment that can compare MLSTM to the Hu-Nualart baseline on
equal grounds. One has to adequately choose a distribution of α for the training process
of the model and another distribution for the comparison of the model and the baseline.
For the sake of simplicity, restrict ourselves to uniform distributions U(0, a) and U(0, b)
for the training and evaluation respectively. Naturally, a ≥ b > 0 should hold. However, if
a >> b then the model has to learn to estimate large α values, which are much harder to
learn than smaller values, thus it might be forced to learn the average a/2 and it would
only slightly deviate from that to avoid large errors. In this case, the model would be
at a severe disadvantage if we were to evaluate it with α ∼ U(0, b). On the other hand,
if a = b, then the model has an advantage. As a middle ground, we chose a = 0.2 and
b = 0.1. All in all, the model was trained and evaluated on fOU(η,H,α,0,1) inputs with
η ∼ N(0,1),H ∼ U(0,1), α ∼ (0,0.2) during the training and η ∼ N(0,1),H ∼ U(0.1,1),
α ∼ (0,0.1) during the evaluation. The change in the Hurst interval was done because
smaller values of H caused numerical instability in the baseline.

Moreover, it is important to note that the baseline had the additional advantage of
knowing H, σ and µ. With these in mind, the comparison between the model and the
baseline can be seen in Table 5.10. The baseline seems to have smaller bias and the model
smaller standard deviation. However, in this case, the standard deviation is the metric
that dominates, therefore the model performs better.
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Table 5.10: Performance metrics of different fOU α estimators by sequence length. The
model was trained with α ∼ U(0,0.2), the evaluation was done with α ∼ U(0,0.1).

MSE loss (×10−4) b̂0.025 (×10−4) ŝ0.025 (×10−4)

seq. len. Hu-Nualart MLSTM Hu-Nualart MLSTM Hu-Nualart MLSTM

100 43.9 18.8 26.5 28.35 58.9 29.62

200 16.8 13.5 12.7 20.4 37.25 30.07

400 9.43 8.10 5.40 14.0 27.0 24.1

800 5.90 4.23 2.61 7.31 21.6 18.19

1600 3.56 2.17 2.00 4.10 16.8 12.9

3200 3.34 1.03 1.98 3.35 15.8 8.89

6400 2.36 0.440 2.16 0.722 13.4 6.24

We also plotted the MSE curve of the estimators for sequence length n = 1600. This
can be seen in Figures 5.5, which shows us that the model produces a smaller MSE for
the vast majority of values of α.

Figure 5.5: Empirical MSE curve of fOU α estimators. Measured on sequences of length
1600.

There are several experiments that could be subject of further research. Most impor-
tantly, a better understanding is needed in determining the effect of α on the performance
of the estimators.
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5.3.3 Results for fOU σ

We can obtain an estimator for fOU σ analogously to the case of fBm σ. Namely, we
can train neural network M∗

conv to attain a homogeneous estimator. The evaluation
and training is done on fOU(η,H,α,0,1) processes, with η ∼ N(0,1), H ∼ U(0,1) and
α ∼ U(0,1). By setting this distribution of α, we have chosen to allow larger values of
α compared to the previous sections. Here, we do not compare the model to a baseline,
although a potential candidate could be the Hu-Nualart baseline for σ. However, due to
time restraints, we did not have enough time to properly implement and test the baseline
in question.

With the usual incremental training and evaluation, the performance metrics of M∗
conv

can be seen in Table 5.11. Note that just as in the case of the fBm σ, the evaluation and
training only need to be done for σ = 1.

Table 5.11: Performance metrics of fOU σ estimator M∗
conv by sequence length.

seq. len. b̂ (× − 10−2) ŝ (×10−1)

100 3.26 1.78

200 2.89 1.66

400 2.43 1.52

800 2.25 1.46

1600 1.97 1.36

3200 1.76 1.30

Due to time restrictions, we did not have enough time to fully train the model. For
the initial length n = 100, it was trained on 1.2 ∗ 106 input sequences. Then, it was
incrementally fine-tuned on 105 sequences for each of the lengths displayed in the table.
Still, the results are promising. Also, it should be kept in mind that here the neural
network was further burdened with large α values that would cause numerical instability
for conventional estimators.

5.3.4 Results for fOU µ

For the sake of completeness, we also include results for the parameter µ of the fOU.
Note that this is the easiest parameter estimation problem discussed in this work. The
reason for this is that the fOU process is mean-reverting, and the mean of the process is µ.
Therefore even simply averaging the input sequence constitutes a very viable estimation
for µ.

We can obtain a neural network-based estimator for this parameter analogusly to
the case of fBm µ. Namely, we can train neural network M+,∗

conv to attain an unbiased
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linear estimator. The evaluation and training is done on fOU(η,H,α,0,1) processes,
with η ∼ N(0,1), H ∼ U(0,1) and α ∼ U(0,1). With the usual incremental training and
evaluation, the performance metrics of M+,∗

conv can be seen in Table 5.12. Note that just as
in the case of the fBm µ, the evaluation and trainin only needs to be done for µ = 0.

Table 5.12: MSE losses of different fOU µ estimators by sequence length.

MSE loss (×10−4)

seq. len. x M+,∗
conv

100 21.1 18.5

200 8.61 7.54

400 3.01 3.41

800 1.72 1.45

1600 0.377 0.412

3200 0.0751 0.289

It seems that for larger sequence lengths, x becomes superior, whereas for smaller
sequence lengths, M+,∗

conv has a slight edge.
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Chapter 6

Stress-testing the neural estimators

Suppose we have a neural network M that was trained to estimate the Hurst exponent
of the fBm. With ϑ ∼ U(0,1) being the random Hurst parameter and G ∶= G(ϑ) being
the corresponding compound generator, our heuristic idea is that M(x) = E(ϑ∣G = x)
holds. However, this conditional expectation is difficult to analyze. What happens when
the input x is yielded by a process distribution other than the fBm? There are at least
three different characteristics of the input distribution that M could approximate: the
box dimension of the paths, properties associated with memory, or it could potentially
quantify self-similarity. Answering this question will be the focal point of our stress-testing
experiments.

6.1 Sum of two fBM: box dimension versus memory

To differentiate between fractal properties of paths (box dimension) and the decay of
auto-covariance (memory), let H1 <H2 be two real numbers in the set (0,1/2) ∪ (1/2,1),
and let X ∼ fBm(H1, 0, 1) and Y ∼ fBm(H2, 0, 1) be two independent processes. Consider
the process defined by Z = X + Y . On one hand, if M captures the asymptotic decay
of the autocovariance of the given input, then we have M(Z) ≈H2. On the other hand,
contrary to the above case, if M captures the box dimension of the given input, then
M(Z) ≈H1. This way the above heuristic reasoning gives a possible method, with which
one can test the otherwise unknown behavior of the estimator M , regarding its hidden
estimation procedure.

Driven by these motivations, after training MLSTM for the parameter estimation of the
fBm, we tested it on the above fBm sums. We considered cases where H1 was fixed and
H2 ∼ U(0, 1) was random. The resulting scatter plot can be seen in Figure 6.1. Apparently,
MLSTM tends to infer values Ĥ ∈ (H1,H2). Therefore, it does not seem to learn the box
dimension nor the memory but an "in-between" quantity.
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Figure 6.1: Scatterplot of MLSTM on fBm sum inputs and different fixed H1 values.
n = 6400. x∶H2, y∶ H value estimated by MLSTM

6.2 Lévy processes: box dimension versus self-similarity

On one hand, it is a well-known fact that symmetric α-stable Levy processes, for α ∈ (0, 2],
are self-similar with self-similarity exponent 1/α, and according to [35] the box dimension
of such processes, for α > 1/2, can be given by the formula 2 − 1/α. On the other hand,
they do not have memory in the sense that increments are independent. This way one can
assess if the estimator M , in case of an α-stable Lévy process as input, denoted by Dα,
produces inferred values according to the law M(Dα) ≈ 1

α corresponding to self-similarity
of the underlying, or contrary to this, it rather follows a logic that supports evidence that
it infers according to the law M(Dα) ≈ 2 − 1

α corresponding to box dimension.
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We tested several models, calibrated to fractional Brownian motion, on α-stable Levy
processes. The results can be seen in Figure 6.2. In the particular case, when α = 2,
the law of an α-stable Levy process coincides with that of a standard Brownian motion,
and also with the law of a fractional Brownian motion with Hurst parameter H = 1/2.
This way the inferred value at α = 2, that is 1/2, is not at all unforeseen. However, when
moving away from α = 2, the model first displays heavy variance, and when moving close
to α = 0, we see the concentration of inferred values around some levels — that is, as we
anticipate, specific to the unique learning phase of the model used.

Figure 6.2: Scatterplot of MLSTM models finetuned up to different lengths of fBm sequences
inferring on Lévy processes of length 6400 and stability parameter α.

6.3 ARFIMA(0,d,0): an alternative with similar mem-

ory

For d > −1 we define the fractional difference operator ∇d = ∑∞k=0 (
d
k
)(−B)−k, where B is

the backward shift operator, that is BXj =Xj−1, and (dk) =
d!

k!(d−k)! . For d ∈ (−1/2, 1/2) the
ARFIMA(0, d,0) process is defined as the solution of the difference equation ∇dXj = ζj,
where ζj, j ∈ Z is a white-noise sequence. It is known that when ζj, j ∈ Z is ergodic, and
d ≠ 0, there is a unique stationary solution to this differential equation (see Theorem 7.2.2
in [12]). Moreover, according to Theorem 7.2.1 in [12], for the autocovariance function
R, we have R(k) ≈ cdk2d−1. Thus, in terms of the decay of autocovariance, and memory
properties (see Definition 3.1.2 in [12]), the ARFIMA(0, d,0) process corresponds to a
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fractional noise with Hurst parameter H = d + 1/2, offering a potential way for testing
estimators calibrated to fractional Brownian motion or its first order difference.

We tested MLSTM on ARFIMA(0, d,0) trajectories generated by the Python package
arfima [2], and as Figure 6.3 shows, the model performs remarkably — with minor
asymmetric bias with respect to the parameter range. This phenomenon attracts a logic
that the model either captures the decay rate of autocovariance of fractional noise or some
fractal property of sample paths. One might also fine-tune MLSTM on ARFIMA inputs
and see how this scatter plot changes. As it can be seen in Figure 6.4, even fine-tuning on
104 sequences drastically improves the accuracy of the model.

Figure 6.3: Scatterplot of MLSTM model fine-tuned up to 12800 length fBm sequences,
inferring on ARFIMA processes of d ∈ (0,1) and length 12800.
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Figure 6.4: ARFIMA H = d+ 1/2 scatterplot of MLSTM fine-tuned up to 12800 length fBm
sequences, then fine-tuned on 104 ARFIMA sequences.

6.4 Autoregressive processes

We tested MLSTM on autoregressive dynamics of order 1, results are shown in Figure 6.5.
There are two parameter values that can be explained with high confidence. On one hand,
when the speed of mean reversion vanishes, inferred values do so too: this corresponds
to the fact that, in some sense, as we approach zero with the Hurst parameter H, that
is when H → 0, increments of fractional Brownian motion display a behavior that is
comparable to that of white-noise. On the other hand, when the speed of mean reversion
is close to 1, then the autoregressive process coincides with a random walk driven by
the underlying noise, and as such corresponds to standard Brownian motion, that is a
fractional Brownian motion with Hurst parameter H = 1/2, which explains the inferred
value. The regularity of the inference curve can probably be explained by the continuous
nature of neural networks.
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Figure 6.5: Scatterplot of MLSTM model fine-tuned up to 12800 length fBm sequences,
inferring on autoregressive processes of order 1 and length 12800.

6.4.1 Ornstein–Uhlenbeck processes

We tested MLSTM, which was trained on fBm inputs, on standard Ornstein-Uhlenbeck
processes. The resulting scatter plot can be seen in Figure 6.6. The inferred value at α = 0
is 1/2 as expected — since the model receives an input that it already encountered in the
learning phase. When the parameter of the input deviates from zero, we see a decreasing
convex curve. A possible explanation is that when α ≠ 0, then the autocovariance shows
exponential decay - contrary to the power decay associated with the data the model
perceived when it was calibrated.
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Figure 6.6: Scatterplot of MLSTM model finetuned up to 12800 length fBm sequences,
inferring on Ornstein–Uhlenbeck processes of length 12800.

6.5 Tests on sequences generated by the YUIMA R

package

On a final note, we evaluated some of our models on sequences generated by the R package
YUIMA [6]. This was also an indirect way of validating the process generators we used.
In all of the cases, the evaluated models were fine-tuned for the longest sequence length
in the respective tables, as such they do not yield the best possible metrics for other
sequence lengths. In every case, 105 realizations were generated. In the case of the fOU
and fBm, the prior distribution on the parameters was exactly as specified in Chapter 5.
The experiments we conducted with these processes are also similar to those of Chapter 5.
The results of these experiments can be seen in Tables 6.1 and 6.2.
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Table 6.1: Performance metrics of fBm Hurst estimators MLSTM and Mconv by sequence
length on sequences generated by the YUIMA package.

MSE loss (×10−3) b̂0.025 (×10−3) ŝ0.025 (×10−2)

seq. len. MLSTM Mconv MLSTM Mconv MLSTM Mconv

100 4.78 5.16 25.7 19.3 6.12 6.61

200 2.07 2.19 12.9 9.73 4.21 4.41

400 0.947 1.00 6.10 4.79 2.92 3.03

800 0.449 0.470 3.33 2.47 2.03 2.10

1600 0.222 0.236 2.04 1.84 1.43 1.49

3200 0.111 0.121 1.46 1.88 1.011 1.06

6400 0.0565 0.0668 1.35 2.68 0.715 0.748

12800 0.0300 0.0412 1.40 3.07 0.511 0.535

Table 6.2: Performance metrics of fOU Hurst estimator MLSTM by sequence length on
sequences generated by the YUIMA package.

seq. len. MSE (×10−3) b̂0.025 (×10−3) ŝ0.025 (×10−2)

100 8.19 16.0 8.37

200 2.85 7.23 5.08

400 1.22 4.13 3.35

800 0.577 2.79 2.32

1600 0.293 2.19 1.65

3200 0.151 1.94 1.17

6400 0.0815 2.25 0.839
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Chapter 7

Conclusion and future work

In this work, we have demonstrated the utility of sequence-processing neural networks as
an effective estimation method for estimating parameters of several stochastic processes.
In the context of the fractional Brownian motion, we constructed an estimator for the
important Hurst exponent. Additionally, we employed special neural network architecture
to estimate the shift parameter µ and scale parameter σ. In the case of the fractional
Ornstein-Uhlenbeck process, in addition to parameters H, µ and σ, we also obtained an
estimator for the drift parameter α.

In most cases, we compared the performance and consistency of these neural network-
based methods with commonly used baseline methods. These comparisons overwhelmingly
favored our neural network-based approach. We believe that the proposed parameter
estimators of stochastic processes, based on neural networks, form a good basis for the
estimation methods that can be used for more intricate processes.

Obtaining neural network-based estimators for other processes, such as the CIR process
[9] might be the subject of further research. The parameter estimation of the CIR process
is important when modeling stochastic volatility (see Heston model [18]). Therefore, we
could apply the resulting parameter estimators in option pricing, or we could even try to
train neural networks directly for option pricing, thus bypassing the parameter estimation.

Moreover, the ARFIMA(p, d, q) process could be studied, which imposes an order
selection problem as well, something we did not have to consider when discussing the
ARFIMA(0, d,0) case.
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