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1 Introduction

Forecasting traffic flow is a critical task in transportation and community
transport. It involves predicting traffic speed in a road network using his-
torical data. To do this, sensors measure and record the traffic speed on the
chosen roads. However, this task is challenging because the sensors’ depen-
dencies cannot be explained only by their relative positions in the Euclidean
space. Moreover, traffic speeds highly depend on the day and time. Over the
weekend, there is no clearly identifiable period during the day when traffic
would significantly increase. On weekdays, there are recurring events, such
as rush hours, resulting in lower traffic speeds measured by sensors in the
morning and evening and higher speeds during the night or midday. Figure
1 shows the speeds measured by different sensors in the PEMS-BAY dataset
over a three-week span and highlights the difference between weekend and
weekday traffic flow.

Research on traffic prediction has received significant attention in re-
cent years. To address the abovementioned challenges, most models aim to
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Figure 1: The measurements of different sensors during a 3-week span in the
PEMS-BAY dataset
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capture the interdependencies between sensors and utilize methods to iden-
tify weekly and daily patterns in the data. DCRNN [11], which leverages
diffusion-convolution layers and recurrent layers to capture spatial informa-
tion between sensors, was one of the pioneering models. Since then, many
models have been developed1, like MegaCRN [8], mostly based on graph
neural networks (GNN).

In our experiments, we employed attributed and structural graph em-
beddings to capture node relationships. One of the advantages of using this
form of graph representation is that the embedding can be trained in an
unsupervised manner, even when node attributes are assigned.

1.1 The traffic flow prediction task

From the mathematical viewpoint, our task is to forecast a multivariate time
series using measurements from multiple sensors. Let’s denote the number of
sensors by n, the number of features at each sensor by f , and the historical
and prediction window by h and p, respectively. The problem formulation is
as follows:

(G,Xt−h+1, . . . , Xt) → (Xt+1, . . . , Xt+p).

Here, Xt ∈ Rn×f represents the features measured by each sensor at time t. G
denotes the sensor graph. There are more ways to obtain useful information
about the graph. Our main approach is graph embeddings:

G → Z ∈ Rn×d.

Here, each node in the graph corresponds to a d dimensional vector. Con-
catenating the vector representations to the features of the nodes, we get a
new formulation of the problem:

(XZ
t−h+1, . . . , X

Z
t ) → (XZ

t+1, . . . , X
Z
t+p),

where XZ
t ∈ Rn×(f+d). Since the embedding of network nodes, that are, in

our case, the sensors, is stational in time, most of the features in XZ
t stay

the same for a given node.
We will use different types of neural networks, like a feedforward neural

network, like Figure 2 to predict the traffic flow. In Section 3 we describe
some of the embeddings we use to extract network information and we present
our results in Section 5.

1https://paperswithcode.com/sota/traffic-prediction-on-metr-la
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2 Neural networks

2.1 Multilayer Perceptron model

The multilayer perceptron (MLP) model is a type of neural network that has
an input layer, one or more hidden layers, and an output layer. Each layer
is composed of neurons, which are the basic processing units of the network.
The layers are fully connected or dense, which means that each neuron in a
layer is connected to all neurons in the next layer.

During training, the weights of the connections between neurons are ad-
justed in order to improve the network’s performance. The weight matrix
of the hidden layer i is denoted as Wi, the input of layer i is denoted as
x(i), and the output of layer i is denoted as y(i). The output of layer i is
computed as the application of the non-linear activation function f to the
matrix multiplication of the weight matrix and the input vector of layer i.
The output of layer i is then used as the input of layer i+ 1:

y(i) = f(Wi × x(i) + bi), and x(i+1) = y(i).

Figure 2: An MLP model with two hidden layers [21]

2.2 Activation functions

The non-linear activation function f allows the network to learn non-linear
patterns in the data. Different activation functions are commonly used in
different layers of the network. For example, in classification tasks, the acti-
vation function in the output layer is usually a softmax or log-softmax, while
in regression tasks, the identity function is commonly used.

Below, we display some of the most frequently used activation functions.
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Sigmoid

f(x) =
1

1 + e−x

Rectified linear unit (ReLU)

f(x) =

{
x, if x ≥ 0

0, else

ReLU has other variants, like Leaky-ReLU,

f(x) =

{
x, if x ≥ 0

0.01x, else

or SiLU [5]:

f(x) =
x

1 + e−x

The tanh function is also widely used in regression tasks:

f(x) =
1− e−2x

1 + e−2x

2.3 Backpropagation and loss functions

To measure the correctness of the predictions made by the neural network, a
loss function must be defined. We denote the output of the neural network
by y(t) and the target values by y. Given a loss function f , the loss of the
prediction can be computed as

L = f(y, y(t)).

In a multiclass classification problem, the output of the neural network are
probabilities predicted for each class, and the target is a one-hot encoded
vector representing the true class label. The most widely used loss function
for classification is the cross entropy loss, where y

(t)
i and yi denote the i-th.

coordinate of the output and the target vector, respectively:

L = −
n∑

i=1

y
(t)
i log(yi).

For regression tasks, one can use mean square error (MSE)

L =
1

n

n∑
i=1

(yi − y
(t)
i )2,
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or mean absolute error (MAE):

L =
1

n

n∑
i=1

∣∣∣yi − y
(t)
i

∣∣∣ .
The training of a neural network consists of two phases and it aims to

reduce the loss. In the forward pass, the network calculates the loss value
using the current weights. In the backward pass, the loss is propagated back
through the network to update the weight matrices [19]. For a neural network
with N layers, using the previous notations the gradients of the final layer
can be calculated as follows:

∂L

∂x(N−1)
=

∂L

∂x(N)

∂x(N)

∂x(N−1)
.

Differentiating the loss with respect to the weights tells us how to change the
weights in order to reduce the loss

∂L

∂WN

=
∂L

∂x(N)

∂x(N)

∂WN

.

These formulas are applicable for every layer, so we can go back from the
last layer, compute the gradients, and update the weights.

2.4 Convolutional neural networks

Convolutional neural networks (CNN) are primarily used for processing im-
age data for tasks such as image classification and object detection [20, 2].
They were first introduced in the 1990s [10], but gained popularity with the
emergence of AlexNet [9] and other modern network architectures. In this
context, we will introduce two-dimensional convolutional layers.

A convolutional layer consists of feature maps, each with the same height
and width. Each feature map corresponds to a particular feature of the input
data. For example, in RGB image data, each pixel has three values, one for
the red, one for the blue, and one for the green color channels. Such an image
will have three feature maps, each containing the values of its corresponding
color channel.

The convolution operation

For each input channel, we define a kernel. A kernel k is (usually) a small
matrix with height h and width w. It moves on its respective input feature
map x, and for each position, it computes the value
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Figure 3: A CNN model [21]

r =
h∑

i=1

w∑
j=1

xijkij.

A collection of kernels over the feature maps is referred to as a filter. Applying
a filter to the data produces one feature map regardless of the number of
feature maps the input data had. Therefore, the output is:

ykl =
F∑

f=1

h∑
i=1

w∑
j=1

xk+i,l+jk
f
ij.

If x was a H ×W matrix, the resulting y is a H ′ ×W ′ matrix, where

H ′ = H − h+ 1 and W ′ = W − w + 1.

In practice, sometimes it is necessary to maintain the size of the input data,
or on the contrary, we want to reduce its dimensionality. In the first case,
padding can be used, and in the second case, we can apply pooling layers. A
pooling layer has a kernel of size u by v and works almost the same way as
the kernels in the convolutional layers. One main difference is that we apply
pooling to each feature map of the input data and the number of feature
maps remains the same after the operation. The output is:

ykl =
i=u,j=v

pooling
i=1,j=1

(xku+i,lv+j),

where pooling is either the average or the max function.
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2.5 Convolutional neural networks for time series

In a previous section, we discussed two-dimensional convolution layers, which
are a great option for image data as they can capture the input’s structure.
However, time series are one-dimensional, though we may have multiple fea-
tures at each time point. To handle this type of data, we can use one-
dimensional convolutional layers, where the filters consist of 1 × w kernels.
Here, the parameter w represents how many time steps the network can
simultaneously see.

Detecting patterns in the input data is crucial for the network, but it’s
possible to have shorter and long-term patterns simultaneously. A fixed ker-
nel size may not be sufficient to handle this issue. To address this problem,
one option is that we use multiple convolutional layers with different kernel
sizes on the input data and then concatenate the extracted features. This
approach enables the network to learn both short-term and long-term behav-
iors. After concatenation, applying a fully connected layer allows the network
to learn the correlations between the outputs of the convolutions adaptively.

2.6 Recurrent neural networks

Recurrent neural networks (RNN) are a type of neural network architecture
that is designed to process sequential data and detect patterns within it. This
neural network architecture has revolutionized the field of speech recognition
and machine translation [3]. Unlike feedforward neural networks, which only
process inputs in one direction, recurrent neural networks feed the output of
a hidden layer back to itself so that they can use the previously seen inputs
to better process the current input. At time step t, the output of the hidden
layer is the hidden state. This feedback loop allows the network to have
a form of memory and learn from the previous inputs to better handle the
current input, making it well-suited for sequential data.

An RNN has one hidden layer between the input and output layers. It
can process data of any length. Here we denote the input of time step t as
xt, the hidden state as Ht, and the weight matrix of the hidden layer as W .
Ht represents the memory of the network and we need a matrix Wh that
regulates what information is relevant from the previous inputs. With these
notations, we can compute Ht by

Ht = f(Wxt +WhHt−1)

where f is the activation function. Worth noting that W and Wh are inde-
pendent of the current time step. RNNs can give output at every time step
or with a given periodicity. In both cases, the computation of the output
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is similar to that of a feedforward network. Given U , the weight matrix of
the final layer, and the activation function g, the output can be computed as
follows:

ot = g(UHt).

RNNs are typically trained using backpropagation through time [22]. How-
ever, these recurrent networks often suffer from the vanishing gradient prob-
lem [6]. This means that the network can’t handle long sequences. To address
this issue, a new architecture, the LSTM [7] was proposed.

2.6.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network that
was developed in 1997 [7]. In LSTM, each node is replaced by a complex
node called a memory cell. In the memory cell, the input data of the current
time step is combined with the information learned from the previous input,
which is the hidden state, and the knowledge from all the preceding inputs,
called the cell state. The memory cell takes these two states as input along
with the data, updates the cell state, and produces the next hidden state.
To achieve this, the memory cell has three gates:

• forget gate: Given the previous hidden state and the input data, it
decides which part of the cell state is important

• input gate: Given the previous hidden state and the input data it
decides which part of the input is important to the long-term memory
of the network and should be added to the cell state

• output gate: Given the same inputs as above it filters the cell state
and outputs the new hidden state. This gate decides which information
is relevant and should be returned

Here we use the following notations: ft for the forget gate, it for the input
gate, and ot for the output gate. Additionally, ct and ht represent the cell
state and hidden state, respectively at time step t. The sigmoid function
is denoted by σ. Now we can describe the operations in a memory cell as
follows:

8



Figure 4: Illustration of an LSTM cell2

ft = σ(Wfxt +Whfht−1)

it = σ(Wixt +Whiht−1)

ot = σ(Woxt +Whoht−1)

ct = ftct−1 + it · tanh(Wcxt + Ucht−1)

ht = ot · tanh(ct).

2https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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3 Graph embeddings

3.1 Introduction

When training neural networks, a lot of real-world data comes in the form
of graphs. For example, in the traffic prediction problem, we may have a
graph where the sensors are represented as nodes and the edges indicate that
two sensors are close to each other. However, it is often easier if we do not
have to store the entire graph but rather only a representation of it. To
create such a representation, we can represent each node as a vector with
d dimensions. In the past ten years, various node embedding algorithms
have been developed, among others for knowledge graphs. Some algorithms
explore the neighborhood of a node using random walks, like DeepWalk [13],
while others use the factorization of the adjacency matrix like NetMF [15].
In this chapter, I will describe some of these node embedding algorithms
and evaluate their performance on the METR-LA and PEMS-BAY traffic
prediction datasets. My related results are discussed in Chapter 5.

3.2 Random walk-based algorithms and Word2Vec

Although most of the node embedding algorithms discussed in this section
can be described as matrix factorization algorithms, we have included them
here for completeness. The idea behind random walk-based embeddings is
that we can view the graph as a vocabulary of nodes, where an edge between
nodes u and v indicates that in a sentence, we can put u after v or v after
u. Using this, a walk from a node is just a sentence, and generating several
random walks from each node allows us to use Word2Vec [12] to embed the
nodes into a vector space.

Word2Vec is a word embedding model that can be used to detect similar-
ities between words. It has two approaches: In the Continuous Bag-Of-
Words (CBOW) architecture, we predict the word based on its context.
The order of the surrounding words does not matter, and it considers both
preceding and following words within a fixed window size. The other ap-
proach is the Skip-Gram model, where the model takes a word as input
and predicts its context. For both settings, Word2Vec has one hidden layer
between the input and output layers. To train the model, we encode the
words in the vocabulary as one-hot vectors and feed them into the network.
The dimensionality of the hidden layer is the same as the dimensionality of
the embedding, and after training, each word corresponds to a column in the
weight matrix of the hidden layer.
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(a) Continuous Bag-Of-Words (b) Skip-Gram

Figure 5: The two architectures of the Word2Vec model [12]

3.2.1 DeepWalk

Historically, DeepWalk [13] was one of the first graph embeddings. Origi-
nally developed to classify nodes and detect similarities in social networks,
it outperformed many baseline models in these tasks at that time. Deep-
Walk consists of two main procedures. First, we generate several random
walks from each node and then use these to train the Skip-Gram model. The
difference between the bag-of-words and Skip-Gram models is that in the
former, we have to compute the probability

P (w0|(w1, . . . wk)),

and in the latter, we are interested in

P ((w0, . . . wk−1)|wk).

When the walk length is large, it’s computationally easier to use Skip-Gram
than bag-of-words. So the objective function is

J = − logP ((w0, . . . wk−1)|wk).

3.2.2 Node2Vec

While exploring a graph with random walks, it’s often necessary to use more
complex strategies than simply choosing the next node at random. Node2Vec

11



[4] allows us to detect the local or far-away neighborhood of a node with
the appropriate setup of the parameters, capturing latent representations of
different scales. Given parameters p and q, Node2Vec computes edge weights
πuv, resulting in a biased random walk. Consider that we traversed the
edge (t, u). Since ∀w ∈ N(u), d(t, w) ≤ 2, we set the weight of the edge
(u, v), v ∈ N(u) as follows:

πuv =


1
p

if d(t, v) = 0 or simply v = t

1 if d(t, v) = 1
1
q

if d(t, v) = 2.

With parameter p, we can influence the likelihood of going back to the
previous node, and parameter q influences the likelihood of discovering nodes
further away. If we compute these edge weights for every (t, u, v) tuple, we
can efficiently set the weights at every node of the walk.

3.2.3 Walklets

Walklets [14] is an improvement over DeepWalk [13] in the sense that Walk-
lets is capable of capturing representations of different scales. In our case,
the measurements of a sensor on a highway may influence other sensors on
the same route better than sensors from another street, even if they are closer
to the chosen sensor. However, on smaller streets, only the sensors that are
close to each other will influence each other. A fixed walk length cannot
always capture these connections. But if we fix the length and skip some of
the nodes, we can generate walks with different lengths, and these walks are
able to explore both the closer neighborhood of a node and its connections
far away.

Walklets generates random walks of different lengths and creates corpora
C1, C2, . . . , Ck. Given a corpus Ci and a walk W ∈ Ci, if u and v ∈ W , it
means that u is reachable from v on a path of length at most i. Walklets
uses the following objective function:

J =
∑

u,v∈Ci

logP (u|v),

where P (u|v) denotes the probability of node u co-occuring with node v in
a walk in Ci.

3.2.4 Role2Vec

Role2Vec [1] introduces the concept of attributed random walks. The al-
gorithm first defines a function that maps each vertex to a type. Then, it
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generates walks where consecutive vertices are adjacent and belong to the
same type. Finally, Role2Vec uses Skip-Gram [12], similar to the previously
mentioned embedding methods, to create embeddings based on the generated
walks.
To create the vertex-to-type function Φ, we denote the vertices of the graph
as V = {v1, . . . , vn} and the different types as W = {w1, . . . , wm}. For every
vertex v ∈ V we denote its features as xv. Thus the type of v is determined
by

w(v) = Φ(xv).

After the types have been determined, we can calculate the transition
probabilities in a very similar way to Node2Vec [4]. Specifically, we have

πuv =

{
0 if w(v) ̸= w(u)
l(uv)

Zdw(u)
if w(v) = w(u),

where l denotes the edge weights in the graph, dw(u) denotes the number of
neighbors of u with the same type as u and Z is the normalizing constant.
In the unweighted case, l ≡ 1 and Z = 1.

3.2.5 Diff2Vec

Diff2Vec [18] is a random walk-based algorithm that generates a subgraph
for every node and samples it for a sequence of vertices. Given a graph
G, vertex v, and integer l, Diff2Vec generates Gv, a subgraph of G where∣∣V (Gv)

∣∣ = l. Starting with V (Gv) = v and E(Gv) = ∅, Diff2Vec chooses a
random vertex u ∈ V (Gv), selects w from its neighbors in G at random then
adds w to V (Gv), and the edge (u,w) to E(Gv). This process repeats until∣∣V (Gv)

∣∣ = l.
After generating Gv, each edge in Gv is duplicated to ensure that every

node in the graph has an even degree. This results in a graph that has an
Euler walk, and the node sequence corresponding to v is given by this walk.
With this process, we generate a number of random walks W . Given W and
a window w, we generate feature vectors for each vertex. The feature vectors
corresponding to v are

f−1
v = (bui

, bu2 , . . . , bun)

f 1
v = (aui

, au2 , . . . , aun).

Here, bui
and aui

represent the number of times the vertex ui appeared in the
walks before and after the vertex v, respectively, within a window of size w.

13



The MLP neural network used to generate the embedding follows the same
approach as Word2Vec by setting the number of neurons in the hidden layer
equal to the desired number of dimensions in the embedding. Specifically,
we train the one-hot encoded vertices against their feature vectors using this
MLP model and generate the embedding through the weight matrix of the
hidden layer.

3.3 Graph embeddings based on matrix factorization

It has been shown that some of the random walk-based algorithms listed in
the previous section are technically based on matrix factorization [15], that is,
the embedding is produced by approximating a matrix using random walks
and then performing factorization on that matrix. For example, DeepWalk
[13] approximates the following matrix [15] as the walk length goes to infinity:

log
(
|E|

( 1
T

T∑
r=1

(D−1A)r
)
D−1

)
− log(b),

where A is the adjacency matrix and D is a diagonal matrix containing
the degrees of each vertex. The embeddings generated by DeepWalk [13]
approximate the top-d singular values of this matrix.

There are embedding algorithms that factor either the adjacency matrix
or the Laplacian of a given graph, but here we will only describe NetMF [15].

3.3.1 NetMF

The NetMF [15] algorithm has two variants, here we will describe a universal
algorithm that works for all window sizes. Although for larger window sizes
some computations become infeasible and an approximation is needed, while
for small window sizes, we can compute the exact values. Given a graph G
and its adjacency matrix A, the first step is to compute the Laplacian of A:

L = D−1/2AD−1/2,

where D is diagonal and D(i, i) = deg(ui). We can write this matrix as
L = UΛUT using eigenvalue decomposition, where Λ is a diagonal matrix
containing the eigenvalues. With Λ, we compute matrix M ′ as follows:

M =
|E|
b
D−1/2U

( 1

T

T∑
r=1

Λr
)
UTD−1/2

M ′ = max(M, 1).
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If T is sufficiently large, the calculation of M becomes hard. To avoid this,
we can approximate L as L = UhΛhU

T
h and use this approximation in the

calculation of M . Furthermore, we use SVD to express M ′ as

M ′ = RΣST .

For an embedding with d dimensions, we are only interested in the first d
singular values. Therefore, the embedding vectors are calculated as

E = Rd

√
Σd.

3.4 Attributed graph embeddings

The graph embeddings described earlier only capture the structure of the
graph, which means that nodes that are close to each other in the graph
are mapped to nearby vectors. However, in many applications, nodes have
additional features, and it is desirable that nodes with similar features are
mapped close to each other in the embedding. In such cases, attributed graph
embeddings are used.

3.4.1 Scalable Incomplete Network Embedding

One approach to attributed graph embeddings is SINE (Scalable Incomplete
Network Embedding) [24]. SINE is a scalable graph embedding algorithm
that can incorporate node attributes into the embedding. There are k differ-
ent node attributes a1, . . . , ak and the input of the algorithm is the adjacency
matrix and an attribute matrixX ∈ Rn×k. To generate the embedding, SINE
first generates a set of random walks from each node in the graph. It then
applies a Skip-Gram style neural network to the random walks to learn the
embedding.

The neural network used in SINE has one hidden layer, and the weight
matrix of this layer gives the embedding. The network has two output layers:
Ov and Oa, each with a different weight matrix. To learn the embedding,
in every iteration SINE samples node pairs (vi, vj) with probability 1

2
from

the random walks and node-attribute pairs (vi, aj) with probability 1
2
. In the

first case, SINE uses the output layer Ov to learn the context of the node,
and in the second case, it uses Oa to learn the attributes of the node. The
two objectives are:

J1 = − logP (vj|vi)
J2 = − logP (aj|vi).
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Figure 6: The model architecture of SINE [24]

3.4.2 FeatherNode

FeatherNode aims to compute each feature’s distribution in the neighborhood
of each node. The characteristic function of X for node u at point θ is

E[eiθX |G, u] =
∑
w∈V

P (w|u)·eiθxw =
∑
w∈V

P (w|u) cos(θxw)+i·
∑
w∈V

P (w|u) sin(θxw).

To describe the distribution of X on the nodes that are reachable from u
by a random walk with r steps, the following equations were defined:

Re(E[eiθX |G, u, r]) =
∑
w∈V

P (vj+r = w|vj = u) cos(θxw) (1)

Im(E[eiθX |G, u, r]) =
∑
w∈V

P (vj+r = w|vj = u) sin(θxw). (2)

If we denote the normalized adjacency matrix by Â, then the r-step prob-
abilities can be described by Âr.

For a featureX and scales {1, 2, . . . , r} we evaluate the real and imaginary
part of the characteristic function at evaluation points {θ1, θ2, . . . , θr} then
concatenate the results, getting ZRe and ZIm. If there are more attributes,
we repeat this process and concatenate the resulting ZRe and ZIm matrices,
respectively. The final embedding will be the concatenation of ZRe and ZIm.

3.4.3 Attributed Embedding

Attributed Embedding (AE) [16] is a Skip-Gram-based embedding. Each
node has an attribute set which will be denoted by Fv. The algorithm has
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three phases. In the first phase, we choose a starting node v1 with probability
proportional to node degree and sample a node sequence (v1, v2, . . . , vl) with
a random walk starting from v1. We split this sequence into two parts, the
first l−t nodes are the source nodes and the last t nodes are the target nodes.
For each (source node, target node) pair (vj, vr) we add all the (vr, f) and
(vj, f

′) pairs to the corpus Cr where f ∈ Fvj and f ′ ∈ Fvr . We repeat this
process s times.

In the second phase, we create the corpus C = ∪Cr.
In the third phase, we train a Skip-Gram model on the corpus C to obtain

a node embedding g and a feature embedding h.

3.4.4 Multi-Scale Attributed Embedding

Multi-Scale Attributed Embedding (MUSAE) [16] is a variant of AE [16]
modified to learn multi-scale dependencies. First, a window size t is chosen
so that t divides d. MUSAE runs the first phase of AE to generate corpora
Cr, r ∈ {1, . . . , t}.

In the second phase, the algorithm runs Skip-Gram on each corpus Cr to
obtain t dimensional node embeddings gr and feature embeddings hr. Let g
and h denote the concatenation of the embeddings gr and hr, respectively.
The output of the algorithm is the pair (g, h).
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Figure 7: In Figure 7a we learn a node embedding with the AE algorithm.
In Figure 7b we learn the embedding with the MUSAE algorithm [16]
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4 Datasets

There are two primary real-world datasets available for the task of traffic
forecasting: METR-LA and PEMS-BAY[11]. The METR-LA dataset con-
tains speed readings collected from 207 sensors located on highways in Los
Angeles County between March 1st, 2012, and June 30th, 2012. In contrast,
the PEMS-BAY dataset comprises data from 325 sensors in the Bay Area,
covering a five-month period. Both datasets provide average speeds every
five minutes. The data is divided into training, validation, and testing sets,
with a fixed split of 70%, 10%, and 20%, respectively. In both cases, we can
incorporate the time of day or the day of the week as additional information
in the dataset. As shown in Figure 8, the standard deviation of the speeds
measured by the sensors can be quite high, particularly in the case of the
METR-LA dataset. Figure 10 highlights that the majority of the sensors
detect rush hour traffic once a day, either in the morning or afternoon. The
sensors are usually in pairs, which means they monitor opposite directions
of the highway. This can lead to high differences in measurements despite
the Euclidean distance between the two sensors being low, because in one
direction the rush hours occur in the morning and in the other direction the
rush hours occur in the evening.

Since the coordinates of the sensors are available in both datasets, it
is possible to calculate pairwise distances between them. By treating each
sensor as a node, a weighted graph of the road network can be constructed.
The weight of the edge e between node vi and vj is determined as follows:

we =

e
d(vivj)

2

σ2 , if this is < κ

0 otherwise,

where d(vi, vj) represents the distance between the nodes vi and vj, σ is the
standard deviation of the distances and κ is a threshold value. Filtering out
the small weights is required to keep the graph sparse.

Figure 10 compares the traffic speeds of a few sensors in two datasets.
Besides periodicity, we observe that some sensors are uncorrelated. For ex-
ample, in the PEMS-BAY dataset on weekdays, sensor 400017 measured
lower speeds in the afternoon, while sensor 402362 measured lower speeds in
the morning.

Figure 11 shows the measurements in a 3-week span. Especially in the
PEMS-BAY dataset, we can easily detect the weekends and weekdays. On
weekends, the rush hours rather shift to the middle of the day, and their
magnitude is smaller.

Comparing the train and test sets of PEMS-BAY and METR-LA, we can
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see in Figure 8, that while in PEMS-BAY the mean and standard devia-
tion of the sensors remains the same, in METR-LA, there’s a minor shift
in terms of the mean and a bigger shift in terms of the standard deviation.
Although [11] does not elaborate on how the train/validation/test split was
chosen, probably the test set contains the last 20% of the data. In this case,
the measurements of the test set occur in June and the holidays and trips
could explain this. The measurements of PEMS-BAY are less affected by the
holiday season because it covers the period from Jan 1st, 2017 to May 31,
2017.
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(a) PEMS-BAY

(b) METR-LA

Figure 10: The measurements of different sensors during a week.
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(a) PEMS-BAY

(b) METR-LA

Figure 11: The measurements of different sensors during a 3-week span.
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5 Results

We performed experiments on the two datasets introduced in Section 4 with
various regression models and with more than ten node embeddings that
extract features from the sensor proximity network. We used two different
metrics to compare the embeddings and to compare our results to other
GNN-based models:

• Mean Absolute Error (MAE)

• Rooted Mean Squared Error (RMSE)

5.1 Models

We did the experiments with two different neural networks:

• Multilayer Perceptron (MLP)

• Convolutional Neural Network (CNN)

As we formulated the traffic forecasting problem in Section 1, we have
not only a time series for each sensor but a graph where each node represents
a sensor and an edge between two nodes indicates that the respective sensors
are close to each other.

In the MLP model, we used fully connected layers to extract the features
from the embedding vectors, then a final dense layer to get the predictions
for each node.

In the CNN model, we treated each node as a different univariate time
series, where the additional features were the embedding vectors. To do this,
we used 1×w dimensional kernels in the convolutional layers to extract the
features given by the embedding vectors. Finally, we applied a linear layer
to the results of the previous layers to learn the dependencies between the
time series.

5.1.1 Feature extraction for the attributed node embeddings

We experimented with attributed node embeddings, such as SINE [24], Feath-
erNode [17], MUSAE [16] or AE [16]. This type of embedding requires a
feature matrix containing the features for each node. In the traffic predic-
tion task, the nodes don’t have predefined attributes, so we tried to generate
features from the time series.
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One way to create features is to use all the speed readings from the
training dataset as attributes for each node. However, this would result in
too many features, making it difficult for the embeddings to learn effectively.

We considered two different approaches and experimented with their com-
bination too. Our first attempt was to use the mean and standard deviation
of the speed readings at each node in the training data as features. We de-
note this feature matrix as M1. As shown in Figure 8, clustering the nodes
by these two features is difficult, and we can’t obtain meaningful clusters.
Furthermore, there’s a major difference between the training and test set
mean and standard deviation of traffic speed for the METR-LA dataset.

In the second attempt, we assigned two binary attributes to the nodes
based on the training dataset. We noticed that when a sensor measures
low speeds, most of the measurements occur in either the morning or the
afternoon. An example of this is Figure 10. Clustering the sensors by this
fact allows us to separate sensor pairs monitoring the opposite directions of
a road. As a result, we defined the two attributes as follows:

• A1: ”morning”

• A2: ”afternoon”

We applied Z-score normalization to the time series at each node and counted
the very low values. If this number is smaller than a threshold value, we set
both attributes to zero, representing that this sensor doesn’t experience a
rush hour. In the other case, we grouped them by the time of day and set
the respective attribute to one. This feature matrix will be denoted by M2.

To demonstrate the difference between the two approaches, we trained the
SINE [24] embedding with both feature matrices and applied PCA to reduce
the dimensionality of the embedding. As illustrated in Figure 12, SINE is
capable of capturing some form of relationship between the nodes using both
the adjacency matrix and the assigned attributes with both feature matrices.
The effect of the chosen features is more visible in the case of M2, where the
two significant clusters correspond to the two attributes.

For the third approach, we combined the first two feature matrices, de-
noted as M3.

5.2 Experiments on the PEMS-BAY dataset

5.2.1 Structural embeddings

We experimented with many structural embeddings, and the results are
shown in Figure 14, where we displayed some attributed embeddings for
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Figure 12: The difference between the two feature matrices. We embedded
the vectors into a higher dimensional vector space and used PCA on the
embedding vectors.

comparison. Amongst the structural embeddings, Node2Vec and DeepWalk
performed poorly with both the MLP and the CNN models. We experienced
the highest variance in the test result at these two embeddings too. The pos-
sible causes of this are that DeepWalk explores the neighborhood of a node
with a first-order random walk and Node2Vec uses biased second-order ran-
dom walks. These are the simplest approaches among the tested embeddings
and the difference between the chosen random walks in the experiments is
high.

NetMF and Role2Vec had the same performance as the model without
network information and the other embeddings had a slightly worse perfor-
mance in terms of both MAE and RMSE with the MLP model.

Using the CNN model, the performance of Node2Vec increased signifi-
cantly but was still below the model without network information. NetMF
outperformed the model without network information and even the attributed
embeddings.

5.2.2 Attributed embeddings

The attributed embeddings performed well overall, but compared to the
structural embeddings in Figure 14, we experienced that NetMF outper-
formed every attributed embedding we tried. One of the reasons is, that
the performance of the attributed embeddings heavily depends on the model
and the feature matrix used. Using the MLP model, FeatherNode performed
the same as the model without embeddings with each feature matrix. SINE,
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AE, and MUSAE performed poorly and their performance highly depended
on the feature matrix used. In the case of SINE, there are huge differences
between the feature matrices.

Using the more powerful CNN model, every embedding had a significantly
improved performance and the performance difference of the feature matrices
was reduced. Figure 13 illustrates the performance of SINE, FeatherNode,
AE, and MUSAE with the three feature matrices using the CNNmodel on the
PEMS-BAY test set. We can see, that in most cases, M2 has a slightly better
performance than the other attribute sets, especially in terms of RMSE,
and each embedding outperformed the model without network information,
except MUSAE. M2 had the smallest variance among the feature matrices.
Probably its cause is that the embeddings learn binary features easier. In
the case of SINE, the worst-performing feature matrix with the MLP model,
M2, has the best performance with CNN.

MUSAE had the worst performance among the attributed embeddings.
The reason for this is that MUSAE fits multiple low-dimensional embed-
dings and concatenates them. We used relatively small, 32-dimensional em-
beddings, and the embeddings of the different scales couldn’t capture the
relationships between the nodes. Although MUSAE is an improvement over
AE, it falls short of AE for the same reason. FeatherNode also suffered from
the reduction of the embedding dimension and the small number of features.
FeatherNode has to evaluate the characteristic function on multiple points
to have solid performance but this would increase the training time of both
the embedding and the neural network. SINE had the best performance
and it shows that even handcrafted features can be powerful enough to im-
prove the worst embedding. SINE explores the neighborhood of a node like
DeepWalk, but the nodes get embedded based on the graph structure and
their attributes. This ensures that two sensors monitoring the opposite di-
rections on the same road don’t get embedded close to each other although
the distance between them is low and they occur in a lot of random walks
together.

5.3 Experiments on the METR-LA dataset

5.3.1 Structural embeddings

We compared the embeddings in Figure 15. As in the PEMS-BAY dataset,
NetMF has the best performance, but surprisingly, Walklets and DeepWalk
performed well compared to other structural embeddings. Every structural
embedding except Grarep, Diff2Vec, and GLEE had a bit better performance
than the model without the network information. But we have to note, that
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unlike on PEMS-BAY, where we were able to outperform methods such as
GraphWaveNet [23], the performances on METR-LA were far from the graph
neural network-based methods.

5.3.2 Attributed embeddings

We used the same feature matrices as with PEMS-BAY, and we found that
using the time of day when the rush hours occur is again the best feature
matrix, although it’s harder to detect rush hours. It’s best seen in Figure 10
and 18 as the measurements of the sensors in the Bay area are much cleaner
than in Los Angeles. In Figure 18 we can’t really talk about rush hours
since the period where the speed of the traffic drops covers more than half
of the day and this period also has some peaks. The average speed even
drops to zero at a certain point. Using the mean and standard deviation of
the measured speeds as features leads to poor performance. Taking a look
at Figure 8, the range of the mean and standard deviation of the sensors in
the METR-LA dataset is greater than in the PEMS-BAY dataset, and in
METR-LA, there’s a big difference between the train and test dataset.

Like on PEMS-BAY, SINE has the best performance among the at-
tributed embeddings but in METR-LA, the difference between DeepWalk
and SINE is smaller than in the case of PEMS-BAY, because the used fea-
ture matrices don’t contain as much useful information as in PEMS-BAY.
The performance of FeatherNode and MUSAE falls short of SINE for the
same reasons as in the case of PEMS-BAY.

5.4 The effect of the embedding dimension

We compared the two best-performing embeddings, NetMF and SINE (with
M2) with a higher embedding dimension on PEMS-BAY. In Figure 16 we
chose one specific run from each type and displayed how the MAE and
RMSE on the validation set changed during the training on the PEMS-BAY
and Figure 17 highlights the difference on the PEMS-BAY test set. With
the embedding dimension set from 32 to 128, we achieved a little increase
in performance in the case of both embeddings although the difference is
more visible with NetMF. With other embeddings, like Role2Vec the high
dimensions did not affect the performance. With the increased embedding
dimensions we could compare the results to other methods, such as Graph
WaveNet [23] and MegaCRN [8]. The best run of NetMF has the same MAE
value as MegaCRN and a lower RMSE value as shown in Figure 17.
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5.5 Node-level performances

We examined the results of the best-performing embedding, NetMF, for every
node and displayed the results on the map in Figure 19. Due to the nature
of the datasets, we used the 1-step prediction results here, which means that
based on the last hour we predicted the average speed only for the next 5
minutes.

With the PEMS-BAY dataset, there was only one node with a MAE
value higher than 4 and the majority of the nodes had a MAE value between
0.6 and 1.3.

On the METR-LA dataset the number of nodes with very small or very
high MAE values was small, just like with PEMS-BAY.

With both datasets our model was able to capture the periodicity of the
traffic and detect the beginning and the end of rush hours but especially
with METR-LA, it couldn’t detect the small peaks in the data. As Figure 19
highlights, plotting the mean absolute error of the prediction and the target
values for each node, we get higher values mostly at bigger road crossings
where the speeds highly depend on the other road and in the case of sensors
which are isolated from the others so they can’t get relevant information from
their neighbors.

5.6 Runtime

We compared the embeddings based on the runtime of calculating the em-
bedding vectors and the average time for an epoch too in Figures 20 and 21.
In the experiments, we used 32 and 128-dimensional embeddings and the dif-
ference in the calculation times was minimal so we only show the results for
the lower embedding dimension. The attributed embeddings were very slow
compared to the structured embeddings, except FeatherNode. This is related
to that we had to reduce the evaluation points of the characteristic function
to get a low-dimensional embedding. The choice of the feature matrix also
plays a minor role in the speed of the embedding. Our observation is that
the embeddings learn easier the binary attributes, usually the feature matrix
M2 was the fastest. In Figure 20 we show the feature matrix M3 because
this matrix combines the other two and contains the most features.

The average epoch times were mostly influenced by the dimensionality of
the embeddings and there’s no significant difference between the embeddings.
Figure 21 shows the results with 32-dimensional embeddings. Increasing the
dimension to 128 would double the epoch times, although this would increase
the performance as Figure 17 shows.
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Figure 19: The two maps show the MAE values by node on the test sets
of PEMS-BAY and METR-LA. The line plots show the distribution of the
MAE values in the case of both datasets.
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Figure 21: The average epoch times on the two datasets.

37



6 Summary

In this thesis, I examined the task of traffic forecasting. The two datasets that
I used, METR-LA and PEMS-BAY [11], are considered benchmark datasets
for this task. After formulating the problem as a multivariate time series
forecasting task, my approach was to embed the underlying sensor adjacency
matrix into a vector space using existing graph embedding algorithms and
train neural networks with this representation of the sensor graph to make
predictions.

Using the nature of the dataset, I defined features for the nodes, and
with this, I was able to train attributed embeddings and compare them with
structural embeddings. I found that this graph embedding-based approach is
very dataset-dependent, this is especially true for the attributed embeddings
because the features are hand-crafted and there’s no guarantee that they are
universal.

On the METR-LA dataset, this approach leads to bad results as the infor-
mation about the sensor graph gives very little improvement. The structural
embeddings can’t capture meaningful relations between the nodes and the
defined features are not enough to enhance the attributed embeddings. The
two best-performing embeddings are SINE [24] and NetMF [15] but the re-
sults with them are far from other, graph neural network-based methods.

On the PEMS-BAY dataset, I achieved better results, the performance
of SINE and NetMF are even comparable to methods like Graph WaveNet
[23], a state-of-the-art algorithm from 2019. With increased embedding di-
mensions the results are even better, in terms of MAE, NetMF has a similar
performance as MegaCRN [8] while the RMSE is lower.

In summary, there are algorithms among the existing embeddings which
are capable of capturing the nature of a road network and are useful to embed
this type of graphs. NetMF has a great performance and the algorithm only
operates with the adjacency matrix while SINE needs additional features but
as shown in Section 5, in some cases these features can be obtained from the
dataset.

38



References

[1] Nesreen K. Ahmed et al. Learning Role-based Graph Embeddings. 2018.
arXiv: 1802.02896 [stat.ML].

[2] Ross Girshick et al. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. 2014. arXiv: 1311.2524 [cs.CV].

[3] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech
Recognition with Deep Recurrent Neural Networks. 2013. arXiv: 1303.
5778 [cs.NE].

[4] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning
for Networks. 2016. arXiv: 1607.00653 [cs.SI].

[5] Dan Hendrycks and Kevin Gimpel.Gaussian Error Linear Units (GELUs).
2016. doi: 10.48550/ARXIV.1606.08415. url: https://arxiv.org/
abs/1606.08415.

[6] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning
Recurrent Neural Nets and Problem Solutions”. In: International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr.
1998), pp. 107–116. doi: 10.1142/S0218488598000094.

[7] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Mem-
ory”. In: Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.
1162/neco.1997.9.8.1735.

[8] Renhe Jiang et al. Spatio-Temporal Meta-Graph Learning for Traffic
Forecasting. 2023. arXiv: 2211.14701 [cs.LG].

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Com-
mun. ACM 60.6 (2017), 84–90. issn: 0001-0782. doi: 10.1145/3065386.
url: https://doi.org/10.1145/3065386.

[10] Yann LeCun et al. “Handwritten Digit Recognition with a Back-Propagation
Network”. In: NIPS. 1989.

[11] Yaguang Li et al. Diffusion Convolutional Recurrent Neural Network:
Data-Driven Traffic Forecasting. 2018. arXiv: 1707.01926 [cs.LG].

[12] Tomas Mikolov et al. Efficient Estimation of Word Representations in
Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

39



[13] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk”. In:
Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014. doi: 10.1145/
2623330.2623732. url: https://doi.org/10.1145%2F2623330.
2623732.

[14] Bryan Perozzi et al. Don’t Walk, Skip! Online Learning of Multi-scale
Network Embeddings. 2017. arXiv: 1605.02115 [cs.SI].

[15] Jiezhong Qiu et al. “Network Embedding as Matrix Factorization”.
In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. ACM, 2018. doi: 10.1145/3159652.3159706.
url: https://doi.org/10.1145%2F3159652.3159706.

[16] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale At-
tributed Node Embedding. 2021. arXiv: 1909.13021 [cs.LG].

[17] Benedek Rozemberczki and Rik Sarkar. Characteristic Functions on
Graphs: Birds of a Feather, from Statistical Descriptors to Parametric
Models. 2020. arXiv: 2005.07959 [cs.LG].

[18] Benedek Rozemberczki and Rik Sarkar. Fast Sequence-Based Embed-
ding with Diffusion Graphs. 2020. arXiv: 2001.07463 [cs.LG].

[19] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning representations by back-propagating errors”. In: Nature 323
(1986), pp. 533–536.

[20] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. 2020. arXiv: 1905.11946 [cs.LG].

[21] Viet Tra et al. “Bearing fault diagnosis under variable speed using
convolutional neural networks and the stochastic diagonal levenberg-
marquardt algorithm”. In: Sensors 17.12 (2017), p. 2834.

[22] P.J. Werbos. “Backpropagation through time: what it does and how to
do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. doi:
10.1109/5.58337.

[23] Zonghan Wu et al. Graph WaveNet for Deep Spatial-Temporal Graph
Modeling. 2019. arXiv: 1906.00121 [cs.LG].

[24] Daokun Zhang et al. SINE: Scalable Incomplete Network Embedding.
2018. arXiv: 1810.06768 [cs.SI].

40


