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1 Introduction

The goal of combinatorial optimization is to find an optimal configuration in discrete

spaces, where exhaustive search is unmanageable. It is applied to a large scale of prob-

lems such as logistics, retail, biology, and even data science [36]. Furthermore, many of

the NP-hard computer science problems can be tackled with combinatorial optimiza-

tion. Consequently, the majority of exact algorithms which find the optimal solution

with certainty, have an exponential running time in the worst case [41]. But they pro-

gressively approach the optimal solution, thus if they are interrupted before termina-

tion, they can provide a feasible solution, and an optimality bound, that tells us how far

is the current solution from the optimal. This is an extremely powerful property, that

enables effective usage in practice and makes them the core of modern solvers.

Most combinatorial optimization problems can be formulated as mixed integer linear

programs. In practice, they are usually solved with the branch-and-bound algorithm

[27] that builds a search tree by recursively partitioning the solution space. There are two

important decisions to be made during the performance of algorithm, which affect the

solving time. Namely, node selection: selecting the next node to evaluate, and variable

selection: selecting the variable by which we partition the solution space [32]. There

are a handful of different methods that determine how to tackle these selection prob-

lems, usually in the form of hard-coded heuristics [20]. In most cases, they minimize

the overall solving time, but there are some rules that result in smaller trees in exchange

for longer running times at the decisions, strong branching is such an approach. Gasse

et al. [18] presented a solution that roughly makes the same decisions [23], but runs sig-

nificantly faster. More precisely, they trained a neural network to imitate the heuristic

decisions. This line of work raises several challenges. For example, finding a way to en-

code the linear programs and the state of the branch-and-bound tree [7], or finding an

architecture that is capable of learning the problem, and generalizing for different prob-

lem sizes and for slightly altered versions.

They solved these challenges in [18] with a graph neural network [13, 21, 37, 39] that

exploits a natural bipartite graph representation of mixed integer linear programs and

handles inputs of different sizes well. They treat it as a classification problem, thus they

only focus on the decision made by the strong branching rule.

There were other earlier approaches to clone the behavior of the strong branching
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rule. Alvarez et al. [7] treat the task as a regression problem and train their network

to estimate the strong branching scores for every variable. While Khalil et al. [25] and

Hansknecht et al. [22] formulate a ranking problem and learn the ordering of the candi-

dates given by strong branching. All of the previously listed approaches are much harder

problems than classification, because of it, they have bigger potential with the right ar-

chitecture. On the other hand, they rely on massive feature engineering, and they are

not generalizing well.

In this thesis, our goal is to provide a comprehensive description of the approach pre-

sented in [18], addressing the technical details and their effect on the method. In Section

2, we introduce the basics of mixed integer linear programs and the branch-and-bound

algorithm, covering the decision problems as well. In Section 3, we present the deep

learning concepts needed throughout the process, focusing on graph convolution. In

Section 4, we guide through the procedure as a whole, from the data generation to the

output of the neural network. In Section 5, we present the results of our experiments

with our conclusions. Finally in Section 6, we list our concluding remarks and our plans

for the future.
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2 Operation research tools

This section is written based on the corresponding sections of the dissertation of Ger-

ald Gamrath [16].

2.1 Mixed integer linear programs

We can define mixed integer linear programs (MIP) as follows:

xM I P = min{cT x : Ax ≤ b, l ≤ x ≤ u, x ∈Rn , xi ∈Z for i ∈ I}.

Where c ∈ Rn denotes the coefficient vector of the objective function, A ∈ Rm×n the

constraint matrix and b ∈ Rm the right hand side of the constraints. The variables xi

from the subset I ⊆ {1,2, . . . ,n} are restricted to take on integer values, all the others

are real-valued. Optionally, variables can have upper and lower bounds denoted by

u ∈ (R∪ {+∞})n and l ∈ (R∪ {−∞})n . We minimize the linear objective function and

denote the optimal solution by zM I P . Note that a MIP defined in other forms e.g. using

both ≥ and ≤-inequalities or maximizing the objective function can be transformed into

the aforementioned general form. We encode MIPs with the formula P(c, A,b, l ,u,N,I)

inherited from the original notation.

The LP relaxation of the MIP is the original linear program without the integrality con-

ditions, i.e. with I set to ;:

xLP = min{cT x : Ax ≤ b, l ≤ x ≤ u, x ∈Rn}.

Solving mixed integer linear programs is NP-hard, but one can solve the LP relaxation in

polynomial time [25, 24]. The most important algorithms used in practice are different

variants of the dual simplex algorithm [28, 10], which has exponential runtime in the

worst case, but runs fast for most problems. The relaxation is less restrictive compared to

the MIP so its feasible area contains the feasible solutions of the original problem, thus

its optimal solution provides a lower bound to the original problem and is called the dual

bound of the problem. Figure 1 illustrates the solution set of a two-dimensional integer
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Figure 1: The set of feasible solutions of a MIP’s LP relaxation.

linear program together with its LP relaxation. The red arrow shows the minimization

direction, the red point is the optimal LP solution, and the blue area is the set of feasible

solutions to the LP. Every black dot within this area is a feasible solution of the original

MIP, the optimal integer solution is colored green.

2.2 Branch and bound algorithm

The most used algorithm for solving a MIP is the branch-and-bound method, which

we will briefly introduce in the following. Let P0 = P(c, A,b, l ,u,N,I) be the original prob-

lem. First we solve its LP relaxation. Let x̂ denote its optimal solution, if it satisfies the

integrality conditions given in the original problem, then we found the optimal solution

of the MIP. Otherwise, there is a variable xi that does not satisfy the integrality condi-

tions. In this case, we execute a branching step along this variable. There are several

variations but we only present the most basic one. We create two sub-problems by split-

ting the domain of the chosen variable. We achieve this by adding xi ≥ ⌈x̂i ⌉ and xi ≤ ⌊x̂i ⌋
separately as a new constraint to the original problem, thus creating the up and down

child respectively. After that we continue solving the sub-problems recursively until we

meet any stopping criteria.

Figure 2 shows how the sub-problems are created from the example illustrated on

Figure 1 by splitting the domain of x1 and x2 into two parts. The remaining blue area

denotes the feasible set of the LP relaxations of the two child problems. During the al-
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Figure 2: Example of a cut along x1 and x2.

gorithm, if we find a feasible solution according to the original problem, then its value

serves as an upper bound to the optimal value of the original problem and is called a

primal bound, that is denoted by z∗. When processing a sub-problem P ′ with optimal

value z ′ = cT x̂ there are three possible scenarios:

• P ′ is infeasible or z ′ ≥ z∗. So P ′ does not contain a solution with objective value

better than the primal bound, therefore P ′ can be disregarded.

• The optimal solution of P ′ is feasible to the original problem and z ′ < z∗. It means

we found a new best-known solution called the incumbent. We store this value

and update the primal bound, and discard P ′ since we solved it to optimality.

• The optimal solution of P ′ is not feasible to the original problem and z ′ < z∗. Then

we apply the branching step described above.

This procedure can be represented as a tree. The root node corresponds to the original

MIP, and every time we split a problem P ′ into sub-problems P ′
1,P ′

2, nodes correspond-

ing to those become the children of the node corresponding to P ′. So one can regard

branch-and-bound as a search tree.

There are two major difficulties that are interesting from our point of view. The first

one is the node selection which determines the order in which the tree is traversed and

it aims at the primal bound side of the algorithm for finding an optimal solution. The

other one is the variable selection at a given node and it focuses on the alteration of the
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dual bound of a given problem. It was shown that in practice the latter one has a bigger

impact on the size of the tree at the end of the algorithm [5] and consequently on the

time spent solving a MIP. The method that determines how branching is performed, in

our case variable selection is called branching rule. The set of variables we may branch

on, i.e. fractional variables are called branching candidates. Choosing the optimal

variable is NP-hard as well, even for satisfiability problems [30]. Most of the classical

branching rules try to maximize the change in the child nodes, thus increasing the dual

bounds.

2.3 Strong branching rule

We will focus on strong branching rule, which usually results in very small branch-

and-bound trees but in practice, it is prohibitively computation heavy. The first variant

was proposed by Gauthier and Ribière [19] as a method to use the difference of dual

bounds to compute pseudocosts of branching candidates. But to use it as a branching

rule independent of pseudocosts was only initiated later [31, 8]. This method computes

the so-called strong branching score for every branching candidate at every node dur-

ing the algorithm. In detail we solve the LP relaxations of the up and down child and

then we combine the dual bounds into a score. After we have this score for every can-

didate, we simply choose the one with the highest score. There are several techniques

to compute this score. Let ∆−
i and ∆+

i be the dual bound improvement of the down and

up child, respectively. One of the most straightforward methods is to simply add the two

improvements together, this is called sum score

si :=∆−
i +∆+

i .

Another natural solution is to take the smallest of the two to get the minimum score for

si := min{∆−
i ,∆−

i }.
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A more sophisticated approach is the weighted (convex) sum score proposed by Eckstein

[15]

si :=αmin{∆−
i ,∆−

i }+ (1−α)max{∆−
i ,∆−

i }.

After several iterations [15, 31] it was shown [4] that α= 5
6 performed the best in a state-

of-the-art MIP solver. In general, a best practice is to choose an α that is larger than 0.5

to lay greater emphasis on the smaller gain.

But the exact method used by many state-of-the-art solvers to compute branching score

is called product score [3]

si := max{∆−
i ,ε} ·max{∆+

i ,ε},

where ε is a small positive constant. The goal of ε is to allow the comparison of candi-

dates with zero improvements in one direction. It is shown empirically that the product

score outperforms all of the previously mentioned scoring methods with ε= 10−6 [3].

2.4 Node selection rules

For the sake of completeness, we present the basics of node selection [33] by showing

three commonly used rules. The first one is depth-first search, a heuristic rule, which

always selects a child node of the previously processed node, if possible. The advantage

of this method is that it enables reusability and easy updating of most of the data struc-

tures used in the algorithm. Since it has few open nodes it requires less memory. On the

other hand, it may create large subtrees that can be pruned later after a new incumbent

is found and the global dual bound is only increased at later phases. The second is best-

first search, which concentrates on dual bounds, thus it always selects the node with the

smallest dual bound. Empirically, it results in small number of evaluated nodes [3], but

it requires relatively large processing time per node. Eventually, we have best-estimate

search that focuses on primal bounds. It computes a value from pesudocosts and the

LP solution to estimate the best integer solution that can be reached from that node,

then it selects the smallest. In state-of-the-art solvers, hybrid methods are often pre-

ferred, which combine some of the above-introduced rules. For example, we can start
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with depth-first search and follow it until we reach a node without a child that can be

processed. Then we select the node with the best-estimate value and continue depth-

first search from there. There are plenty of sophisticated hybrid methods [19, 3, 40, 34].

The rule used by SCIP starts with best-estimate search, and every tenth time it selects

the node with best-first search. This enables that the dual bound also increases during

the whole process not just at the end.

3 Deep learning tools

This section follows the paper of Peter Valiĉkoviĉ [39] and an example provided by

Nikolas Adaloglou on aisummer [6].

Before diving into graph convolutional neural networks, we briefly look into con-

volutional layers through an example of image recognition. When working with

high-resolution pictures in real-life scenarios, using fully connected layers only has

several disadvantages. To start with, it produces a large number of learnable parameters

that would take too much time to teach the network. Moreover, due to the fact that

our world is well structured, there are building blocks that define images no matter

where they are located (the shape of ears, eyes, nose, and the arrangement of the face

categorizes an animal regardless it is rear or front view). Convolutional layers are just

meant to solve this. There is a smaller kernel matrix that is slid across the image matrix

and captures local patterns while reducing the size of the original matrix. Formally, in

every position of the kernel matrix, we compute the dot product with the underlying

part of the image, thus compressing the information stored in the batch of adjacent

pixels, and recognizing different shapes depending on the kernel.

3.1 Fundamental functions

Based on the previous example, we can introduce some basic principles that ensure

similar properties when applying convolution to graphs. By a graph, we always mean a

simple undirected graph that has no loops or parallel edges. If loops and parallel edges

are allowed we use the term multigraph. The adjacency matrix A of a graph G = (V ,E)
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is an n ×n square matrix, where n = |V |. For an undirected graph G , Ai , j = 1 if and

only if there is an edge between xi ∈ V and x j ∈ V , 0 else. One can easily see that A

is symmetric. In the directed case Ai , j = 1 if and only if an edge goes from xi ∈ V to

x j ∈V , 0 else. Additional information attached to the edges and vertices is called feature

vectors. Now let us temporarily focus only on the nodes. We can stack the feature vectors

of nodes into an X ∈Rn×k matrix where n is the number of nodes and k is the number of

node features. We want to find such functions that the order of the nodes does not affect

the outcome, i.e. for every permutation of nodes we get the same result. This property is

called permutation invariance. Formally, we say a function f is permutation invariant if

f (P X ) = f (X )

holds for every permutation matrix P . We can easily add edges to this formula. To de-

fine permutation invariance for functions on the adjacency matrix, we have to apply the

same permutation both for rows and columns, that is, we require that

f (PAP T) = f (A),

holds for every permutation matrix P . It is easily achievable if we take an independent

function and apply it to every row separately, and after we use a permutation invariant

aggregation function. For example, we can take

f (X ) = max
( ∑

i∈V (G)
a ×xi

)

for some a ∈ Rk , and xi being the feature vector of the node i . But that is not exactly

what we are trying to achieve, so to take this idea a step forward, we even want to iden-

tify which part of the input belongs to what slice of the output. This property is permu-

tation equivariance, and it gives us slightly more information at the end. We say that f

is permutation equivariant if

f (P X ) = P f (X )

f (PAP T) = P f (A)
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for every permutation matrix P . In a basic scenario, we compute a so-called h latent

vector independently for every node feature vector x. For a more complex approach, we

can combine more of these functions. For example

hi =ψ(xi ) → h′
i =φ(hi ) → f (X ) =


− h′

1 −
...

− h′
n −

 .

Now we can shift our attention to grasp locality. One can define locality very naturally

on graphs. A path between two distinct nodes of a graph is a sequence of edges that joins

a sequence of nodes, and all nodes and edges are distinct. The distance d between two

vertices is the number of edges in the shortest path going between them. For a node xi ,

its l -hop neighborhood contains vertices which are no further than l

N l
i := {x j : d(xi , x j ) ≤ l }.

For l = 1 we get the vertices that are directly connected to xi and we denote it with Ni , we

note that usually this version is used in practice. Now our goal is to find a permutation

invariant local function g that combines the feature vectors of vertices in N l
i and from

that build a permutation equivariant f :

hi = g (xi , N l
i ) → f (X ) =


− h1 −

...

− hn −

 .

For a real-life example and implementation see Section 3.3.

3.2 Graph neural networks

One can observe that finding a suitable g is crucial. We briefly introduce how these

functions can be classified into three categories: convolutional, attentional, and mes-

sage passing. The main difference is what kind of information they attach along the

edges. They become more and more complex, consequently, they are able to learn more
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compound patterns but require significantly more computation capacity. We will com-

pare them with the help of a general formula, that computes latent vectors. Let φ and ψ

be permutation equivariant functions and
⊕

a permutation invariant aggregation func-

tion.

For convolutional graph neural networks it is

hi =φ
(
xi ,

⊕
x j∈Ni

ci jψ(x j )
)
.

We attach a weight to every neighbor of xi , which shows how much xi values the fea-

Figure 3: Representation of a convolutional step

tures of x j , we can think of them as coefficients in a weighted combination, usually, we

obtain them directly from the adjacency matrix.

In the case of attentional GNNs we get

hi =φ
(
xi ,

⊕
x j∈Ni

a(xi , x j )ψ(x j )
)
.

Where a : Rk ×Rk → R is an arbitrary function that takes two feature vectors as input

and gives us a coefficient. With this function, we replaced our fixed coefficients with

learnable weights. This approach is able to learn more complex weighted combinations

with a relatively small amount of information.
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Figure 4: Representation of an attentional step

Ultimately we have message passing GNNs with

hi =φ
(
xi ,

⊕
x j∈Ni

ψ(xi , x j )
)
.

For every pair of xi , x j an arbitrary message vector is computed that is calculated from

their feature vectors.

Figure 5: Representation of a message passing step
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3.3 A simple version of a graph convolutional layer

During this project we decided to stick with convolutional neural networks, so now we

provide a mathematical insight into how they work in practice. We introduce the degree

matrix D of a graph G that contains the degree of every vertex in the main diagonal, i.e.

Di j = 0, ∀i ̸= j and Di i = d(xi ), ∀xi ∈V (G). The Laplacian matrix of G is defined as

L = D − A.

If G is undirected and it has no self-loops and parallel edges then

Li i = d(xi ) and if i ̸= j then Li j =
−1, iff (xi , x j ) ∈ E(G)

0, otherwise
.

The Laplacian matrix contains several useful pieces of information about the underlying

graph, but vertices can have varying connectivity to a large extent, therefore a big differ-

ence can emerge between the value of elements in L. We want to avoid this because

it creates instabilities during the learning phase because of the use of gradient-based

methods. To get around this problem, we simply apply normalization to the Laplacian

L′
nor m = D− 1

2 LD− 1
2 = I −D− 1

2 AD− 1
2 .

Observe that now every diagonal element will become one (if it has at least one neigh-

bour), and the non-diagonal elements will have the value Lnor mi j = 1(
d(xi )·d(x j )

) 1
2

. An-

other modification we usually utilize is that we add self-loops to every vertex. By that,

we make sure that at every node we take into account its own features, and its neigh-

bours as well. So our final matrix is

Lnor m = I −D− 1
2 (A+ I )D− 1

2 .

We should point out one additional really important property of the Laplacian matrix. If

we take A to the power of k, then the element Ak
i j gives us the number of walks of length

k going from i to j . If we take L to the power of k, we get the same matrix as we would get

from teh normalization process starting with Ak , thus we got a way to introduce locality



3.3 A simple version of a graph convolutional layer 16

through the matrix formulation.

Now we can construct the basic formula of a graph convolutional layer

Y = (Lnor m X )W,

where W is the matrix of trainable weights, and it can be considered as a fully connected

layer. As the picture illustrates, there are two layers of nodes where every node from the

Figure 6: A two-layer perceptron (fully connected layer) without activation function and
bias.

first layer is connected to each in the second, thus forming a fully connected layer. The

value of a single perceptron in the second layer is computed by summing the weighted

values of perceptrons in the first layer. The initial values are derived from an input vec-

tor. Therefore the output for a single vector is calculated by yi = xi W , and if we want to

process several vectors at a time, we can easily do it by Y = X W . Now our only job is to

show that this formula fits the general blueprint shown in Section 3.2. Taking one row li

from Lnor m , we obtain li j weights for the corresponding vertex xi and its neighborhood

Ni . By multiplying it with X , we obtain the weighted sum of the feature vectors of xi and

Ni . The multiplication with W grants a learnable permutation equivariant function.

Formally, we get

hi =φ
(
xi ,

⊕
x j∈Ni

ci jψ(x j )
)
=

[ ∑
x j∈{xi }∪Ni

li j i d(x j )
]

W.

As we will see, more compound architecture is needed to tackle complex problems. It

is achievable by stacking more permutation equivariant functions and using node em-
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bedding techniques.
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4 Imitation learning for strong branching

The aim of this project was to perform better than the academic state-of-the-art solver

SCIP [17]. The method we choose was imitation learning [23] with graph convolutional

neural networks [39] based on the work of Gasse et al. [18]. Imitation learning is a sub-

type of supervised learning. We generate instances of MIPs, compute the branching

scores with the solver and observe the best candidate. Then we teach a neural network

to pick the variable the solver would have. Of course, we can not mimic SCIP with cer-

tainty but a good enough estimation could lead to lower solving time because the net-

work’s forward pass takes significantly less time than solving two LPs for every fractional

variable.

4.1 Benchmark problems

We need data to teach our neural network. The first step is to generate mixed integer

linear programs. We have chosen three NP-hard combinatorial optimization problems.

The first one is the set cover [9], where a set of n elements U = {1,2, . . . ,n} and a set

of m subsets S ⊂ U is given such that
⋃

s∈S
s = U . The problem is to find the smallest

sub-collection of S whose union is equal to U . We can formulate the linear program as

follows:

xs ∈ {0,1} for all s ∈ S

min
∑
s∈S

xs

subject to:
∑

s:e∈s
xs ≥ 1, ∀e ∈U

The second is the maximum independent set problem [12]. The aim is to find the

largest set of pairwise non-adjacent vertices in a graph.

xi ∈ {0,1} for all i ∈V (G),

max
∑

i∈V (G)
xi

subject to: xi +x j ≤ 1, ∀{i , j } ∈ E(G).
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The third problem is combinatorial auctions [29]. This is a type of smart market, where

participants bid on heterogeneous batches of items and the goal is to sell these packages

of items for a maximal profit. We can think of the items as the vertices of a hypergraph

and the bids as edges. Now our job is to find a maximal weight, independent edge set.

With H = (V ,E), c : E →R

xi ∈ {0,1} for all i ∈ E(H),

max
∑

i
cxi

subject to: xi +x j ≤ 1, if i ∩ j ̸= ;

There are three parameters that have a major impact on the solving time. Namely the

number of rows and columns, and the density that determines how many variables are

present in a constraint on average. We distinguished three different problem sizes based

on the average solving time, with parameter tuning. The small dataset consisted of in-

stances that took 30 seconds for SCIP to solve. Normal size required one minute, and

large needed 180 seconds. It is important to note that in many cases these results were

acquired with large variance in running times. In the case of set cover [9], we gener-

ated the instances by setting the number of rows, and the number of columns. For the

independent set [12], we changed the number of nodes and the affinity. In the case of

combinatorial auctions [29], we take into account the number of items, and the number

of bids. There are other parameters as well, but we only changed these when we were

testing the running times. The values of the parameters for every benchmark problem

can be seen in Table 1.

Set cover Independent set Combinatorial auctions
Small (∼30s) (500/1000) (420/5) (100/500)

Normal (∼60s) (700/1370) (1000/8) (220/800)
Large (∼180) (800/1670) (1700/12) (280/1340)

Table 1: Value of parameters in different benchmark problems.
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4.2 Features

To create the data, we had to define feature variables and a target variable. The

target variable is clearly the best branching candidate chosen by the solver. To obtain

feature variables in the first place, we somehow have to encode a mixed integer linear

program into a graph that we can feed to our network. A natural approach is to build a

bipartite graph G with one node class being the constraints with C ∈ Rm×c being their

feature matrix, the other is the set of variables with feature matrix V ∈ Rn×v . An edge

goes between two nodes if the variable corresponding to one end is involved in the

constraint corresponding to the other end, the edges have feature matrix E ∈ Rm× n×e .

The question is now that what information should we attach to nodes and edges, that

are meaningful enough to describe the target variable.

Figure 7: Graph encoding of a MIP.

When defining the features, we decided to follow the paper [18]. For constraints,

we computed their cosine similarity with the objective, their normalized bias value,

their tightness indicator in the LP solution, their normalized dual solution value, and

the normalized age of the LP. Edges only had the normalized constraint coefficient as

the only feature. Variables carry the longest feature vectors consisting of their type

(i.e. binary, integer, impl. integer, or continuous), their normalized coefficient in the

objective, whether they have a lower or upper bound, whether their solution is at these

bounds, the integral and fractional part of their solution value, their simplex basis status

(i.e. lower, basic, upper, zero) as a one-hot encoding, their normalized reduced cost,

the normalized age of the LP, their value in the incumbent, and their average value in all

incumbents. Khalil et al. [26] introduced 72 atomic features that are based on the node
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LP and the candidate variables. They are mainly statistics about the structural role of

a variable within the node LP, additionally some historical data on the variable. They

can be divided into the following two classes. The first one is called static, it includes all

features that are computed at the root node and do not depend on the current LP. Every

other feature falls into the dynamic category.

4.3 Training data

For each benchmark, we generated 100000 random instances then we started to solve

them with SCIP with random sampling. During the branch and bound algorithm we

stop at random nodes and construct the bipartite graph representation of the current

MIP. We save the graph, the branching candidates, and the best variable with some

additional data like the index of the instance, the seed of the random generator, or the

depth of the current node. We continue this sampling with repetition, every time with

a new seed, until we reach the desired number of data files, which amounts to 100000

training and 20000-20000 validation and test files in our case. With this method, we do

not necessarily use all of the instances, i.e. we may use several nodes from one instance

and none from another. As we can see in Table 2 this phenomenon really emerges,

ignoring almost half of the generated samples. This ratio can be reproduced using only

2000 instances to make 10000 data files.

Set cover Ind. set Comb. auctions
Training Test Training Test Training Test

Total 100000 20000 100000 20000 100000 20000
Unique 57392 11621 63450 10923 59464 11376

Table 2: Value of parameters in different benchmarks

4.4 Architecture of our GCNN

At this point, we can feed this data to our graph convolutional neural network. The

input of our model is the bipartite graph representation (G ,E ,V ,C ) described in Sec-
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tion 4.2, and it performs a graph convolution. As a first step, it embeds our feature vec-

tors into higher dimension with trainable two-layer perceptrons ψ. Then we exploit the

structure of bipartite graphs to break down the convolution into two half steps. Since a

node only has neighbors from the other vertex class, we can make two successive passes.

One from variables to constraints and one from constraints to variables. Formally

c ′i = γc

(
vi ,φc

( ∑
v j∈Ni

ai jψc (v j )
)) → v ′

i = γv

(
ci ,φv

( ∑
c j∈Ni

ai jψv (c j )
))

,

where vi and ci denotes the original feature vectors, v ′
i and c ′i is the feature vector of

variables and constraint after the half convolution. Functions φ and γ are 3-layer per-

Figure 8: Network architecture

ceptrons of the same size at a given half step with relu activation functions and dropout

at the middle layer, coefficients ai j are directly derived from the adjacency matrix. After

the two half convolutions, we acquire a graph with the same topology as the input but

with different node features. Intuitively, for every constraint we assign the combination

of its feature vector with the feature vector of the variables that are involved in it. After

that, we switch the role of variables and constraints and repeat this step with the new

constraint features. This way each variable receives information about all constraints it

is included in, and about the variables that are involved in any of these constraints. At

the end of the process, we implement a regressional module that computes a probabil-

ity distribution over all variables. Then we compute cross-entropy loss and improve our

network by minimizing it.
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5 Results

The original implementation [2] used TensorFlow as a deep learning framework, later

it was transcribed to Pytorch [1]. In both cases, they achieved a faster running time com-

pared to SCIP with default settings, their model could solve instances around 40% faster.

These results were achieved on relatively small instances. For the set cover, they con-

sidered a 500×500 training data size with density 0.05, and the largest size they tested

on had 2000 columns with the same number of rows and density as the smaller one.

As a starting point, we implemented our own Pytorch version of the graph neural net-

work with slight changes in the model. We could reproduce approximately the same

results, thus we started to experiment with other modifications both in the data and in

the model. Our new datasets are described in Section 4.1.

5.1 Initial tests

We established a new baseline model that was used mostly for testing. The major

changes we applied to the original were the following: we changed the layer norm to

dropout, simplified the message passing module by using a convolutional one instead,

and reduced the sizes of the 2-layer perceptrons. Furthermore, in an epoch during

training, we iterate through every training sample in random order instead of random

sampling, and for consistency, we applied some adjustments which ensure that given a

random seed, the program is deterministic. Our first tests were promising because we

reached the same results as before on our smaller datasets. Table 3 shows the solving

times and the number of created B&B nodes, the number of LPs solved of the two mod-

els produced on 20 test instances. The last row contains the number of instances solved

within the one-hour time limit. These results were obtained in a set cover version of size

Original New baseline SCIP
Solving time (s) 22871 25402 31541

Number of nodes 2265 1030 1482
Number of LPs solved 1792 2832 2397

Solved instances 19 16 16

Table 3: Results of the two initial models in 20 instances
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500×1000 with density 0.05, and the coefficients in the objective function were all one.

As we can see, the new model had similar solving times but used almost two times more

nodes on average to solve the instances. During the training phase, we save the value

of the loss function, and in every fifth epoch, we compute the accuracy of the model,

e.g. for a given k, we inspect if the chosen variable by our network is among the best k

variables according to SCIP. The value of k was chosen from the set {1,3,5,10}.

5.2 Hyperparameter optimization

As the next step, we tried to get the best performance out of the baseline model by

hyperparameter optimization. We turned our attention to four specific parameters: the

batch size, the learning rate decay, the random seed, and the batch size together with

the learning rate.

We started with the random seed because we experienced earlier that by using differ-

ent seeds we get significantly different results. This seed is responsible for initializing

every parameter that requires some randomness, for example, the starting weights of

the model, or the order of training samples in an epoch. The random seed is an in-

teger between 0 and 232 − 1. We picked random integers i uniformly from [0,32] and

set the seed to 2i (or 2i − 1 if i = 32). These experiments resulted in roughly the same

curves, they learned at the same rate and reached the same accuracies. Table 4 shows

the best and worst accuracies and loss values. While Figure 9 illustrates the curves of

accuracies for k = 1, i.e. for the best variable according to strong branching score. The

best-performing model was initiated with seed 28 and the worst is the one with 225. We

can see minor differences and we can observe that the higher model quality is visible at

tighter accuracies.

Seed 0 1 2 28 212 224 225 232 −1

Loss 2.622 2.589 2.572 2.571 2.578 2.575 2.637 2.631
Top 1 accuracy 62.7% 64.4% 64.4% 64.5% 64.1% 64.3% 62.5% 62.7%
Top 3 accuracy 83.1% 84.4% 84.5% 84.6% 84.3% 84.3% 83% 83%
Top 5 accuracy 90.8% 91.7% 91.8% 91.8% 91.8% 91.7% 90.7% 90.6%

Top 10 accuracy 97.5% 97.8% 97.9% 98% 97.9% 97.9% 97.4% 97.5%

Table 4: Best reached values during seed testing.
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Figure 9: Loss and accuracy learning curves from seed testing.

The second step was to inspect learning rate decay. We decided to investigate this

parameter because the learning curves flatten out really quickly after just a few epochs,

see Figure 10. Furthermore, we use the optimizer Adam and it has a learning rate decay

heuristic as a built-in functionality. We suspected that the optimizer in conjunction with

our manual reduction causes the aforementioned problem. Figure 10 shows the loss

function and the accuracies during the learning phase. In this case, we encountered

even less contrast between the models, even in the top 1 accuracy they had less than one

percent difference. We note that the model with the longest training time had the best

accuracy and loss function value, while the one with the shortest training time had the

worst. Another phenomenon can be seen in this example. All the models were started

with the same settings, so they produced the same values until the point where they

were modified by the different learning rate decays.

Learning rate decay 0.1 0.3 0.5 0.8 1 1.5

Loss 2.575 2.571 2.565 2.553 2.594 2.588
Top 1 accuracy 64.1% 64.1% 64.2% 64.7% 63.8% 64.1%
Top 3 accuracy 84.3% 84.3% 84.4% 84.7% 84% 84.2%
Top 5 accuracy 91.7% 91.7% 91.8% 92.1% 91.4% 91.6%

Top 10 accuracy 97.9% 97.9% 97.9% 98% 97.8% 97.8%

Table 5: Best reached values during learning rate decay testing.
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Figure 10: Loss and accuracy learning curves from learning rate decay testing.

With batch size we wanted to see if we can increase the speed of training. Usually, a

larger batch size is preferable because it enables faster training times because of paral-

lel computations run on the GPUs. On the other hand, too big of a batch leads to poor

generalization. We tested the powers of two as common batch sizes from 32 to 1024.

With a batch size of 1024, we nearly used the total memory of a GPU. As we lowered the

size, the training phase required more and more computation capacity, e.g. with batch

size of 32, we could only run one experiment at a time, thus at later experiments we

discarded both. We got the best accuracies from the model with the lowest batch size,

which picked the best branching candidate according to SCIP around 66.5% of the time.

Figure 11 shows the usual learning curves of all models, with different batch sizes. The

model with batch size of 1024 produced the worst results, lagging behind the best model

by 4% in the top 1 accuracy. The learning rate controls the pace at which we update

Batch size 32 64 128 256 1024

Loss 2.461 2.525 2.55 2.592 2.622
Top 1 accuracy 66.5% 65.5% 64.7% 63.5% 62.7%
Top 3 accuracy 86.6% 85.4% 84.8% 83.8% 83.1%
Top 5 accuracy 93.4% 92.6% 92.1% 91.4% 90.8%

Top 10 accuracy 98.5% 98.2% 98.1% 97.8% 97.5%

Table 6: Best reached values during batch size testing.
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Figure 11: Loss and accuracy learning curves from batch size testing.

the model’s weights in response to the estimated error from the loss function. Choos-

ing too small learning rate causes long training times, which may stuck at some point,

whereas a value too big could result in unstable learning or in a sub-optimal weight set

at the end. Taking the batch size into account, we wanted to find a near-optimal set-

ting, where the model learns the fastest. During these tests, we experimented with some

set-ups which in practice should be avoided, and we switched to our newly generated

bigger dataset described in Section 4.1. In Figure 12, we present the common graph of

learning curves, the first part of the label is the learning rate as decimals, and the second

part is the batch size. As expected, models with impractically high learning rates show

early instabilities resulting in early stopping, because of poor performance. It is inter-

esting that besides these functions, the best and worst results were produced by models

sharing the same learning rate of 0.0016, and with extreme batch sizes, causing a two

percent difference between them in the top 1 accuracy.

Learning rate 0.0009 0.0009 0.0016 0.0016 0.00072 00072 0.0023 0.0023
Batch size 512 64 512 64 512 64 512 64

Loss 3.458 3.413 3.473 3.384 3.465 3.385 3.405 3.435
Top 1 15.4% 16.1% 14.8% 16.8% 15.4% 16.8% 16.5% 15.5%
Top 3 31.8% 32.6% 31% 33.6% 31.6% 33.6% 33.2% 32%
Top 5 41.8% 42.5% 40.9% 43.5% 41.6% 43.5% 43.1% 42.1%

Top 10 56.5% 57.1% 56% 57.7% 56.3% 57.8% 57.5% 56.6%

Table 7: Best reached values during the joint tests of batch size and learning rate.
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Figure 12: Loss and accuracy learning curves from the joint tests of batch size and learn-
ing rate.

5.3 Dataset sizes

One can observe that the values in these graphs are significantly lower than in the

previous examples shown in Section 5.2. Considering that every hyperparameter was

similar to the ones used in the previous experiments, these results could only be caused

by the new dataset. So we shifted our attention to datasets generated from MIPs with

different sizes. Compared to the previous samples, the new one had around one and a

half times more columns and rows as well. We used a network of the same size as be-

fore, so we expected some kind of fall-off, but not at this scale. On the smaller problems,

our network picked the best variable more than half the time, now it is reduced to just

around every sixth choice. Even in the case of the top ten variables, it only picks one of

them in half of all cases, while earlier almost every time selected one of them. To get a

comprehensive picture of this phenomenon, we trained models on both sizes of prob-

lems, then cross-evaluated them on both test sets. We note that the solving time of an

instance and the number of nodes used in the branch-and-bound tree are highly corre-

lated, so we refrained from showing both of them for a given training example because

they are very similar to each other.

Figure 13 shows the relationship between the models and the datasets. The left im-

ages contain the average solving times measured in the smaller and larger dataset, re-

spectively. In one image from left to right we can see the performance of the model

trained on the smaller dataset, the solving time of SCIP, and the performance of the

model trained on the bigger dataset. In this section, we will refer to the model trained on
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the bigger set as the bigger model and the other as the smaller model despite the same

size. The first thing to note is that our network is not capable of properly imitating the

strong branching score, not even in the smaller case. We will cover the possible prob-

lems and inaccuracies in our architecture in Section 6.1. Another interesting thing is that

the bigger model solved instances from both sets faster than the smaller one. Intuitively,

it is not clear why this happened, because, during the training phase, it produced sig-

nificantly worse accuracies, but performed better in both instances. Eventually, we can

observe that the bigger model generalizes well, and even performs better on the smaller

set compared to SCIP, while the smaller model produces ten times worse values when

transferring it to the bigger set.

Figure 13: Solving time of cross-evaluated models on different problem sizes.

5.4 Evaluating on different benchmark problems

At this point, we investigated how the models generalize to different problems with

about the same size. The tests run at different speeds, so we have varying numbers of

instances evaluated for every benchmark problem. The results can be seen in Figure 14.

The left picture contains the average number of B&B nodes used by our models to solve

an instance. The type of the instance is denoted by colors, and the x-axis shows which

problem the models were trained on. The picture on the right contains the baseline

given by the solver. We can observe that the models evaluated on the same set they

were trained on have around ten times more nodes than SCIP. The next thing we note is

that we can determine the hardness of the problems by these results. For the solver, the
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easiest problem seems to be the set cover and the hardest is the independent set. While

for our network, this order is not that obvious. It is not surprising that every model has

the best performance on the same set it was trained on. Furthermore, we can say that

for our network the hardest problem is the combinatorial auctions and the easiest is the

set cover.

Figure 14: Crossevaluated models in different benchmark problems.

5.5 On running times

At the training (and test) data sizes, we could only reach those running times with high

variance as mentioned in Section 4.1. In the case of the normal (60s) dataset, 80% of the

instances can be solved in under one minute, and there are a few instances with ex-

tremely high solving time. Figure 15 contains an example on the left with 4462 samples,

where a bar shows how many instances are solved within the time. On the right, we can

see the distribution of all instances that can be solved faster than one minute. We note

that this uncertainty depends a lot on the specific problem. We were experimenting with

other benchmark problems, for example with strip packing, which aims to place rectan-

gles of different sizes orthogonally without overlapping into a 2-dimensional bounded

rectangular area with minimal height. We tried the same approach to set the parameters

but every attempt eventuated instances with a few seconds of solving time and others

with more than one hour.
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Figure 15: Histograms of running times in the normal dataset.

This phenomenon creates an inaccuracy during the evaluation we have to deal with.

We use a time limit, that is usually set to one hour, which stops the solving process when

we reach that point and saves the current state of the solver or network. Consequently,

some cases emerged where the solver could complete its process on 19 out of 20 in-

stances while the network only on 16 of them. So some results are a bit distorted, es-

pecially on larger problems. In the example shown in Figure 16, the left image shows

the running times of our model, and the points at the top are all at the time limit. This

means they would take much more time to solve in practice and we would get even

worse performance, in respect of solving times, and tree size. We were working on

Figure 16: Running times on 4462 instances.
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another approach to eliminate this problem. We considered several different parameter

settings that roughly produced the same average solving times. Then we started to gen-

erate instances with all of them and we kept those that fell in a predetermined interval,

for example, 45-75 seconds in case of the normal dataset. The effects of this technique

are yet to be tested.
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6 Concluding remarks and future work

All results presented in Section 5 can be reproduced during various test runs. But there

are two major drawbacks we want to point out, namely the instability of the model when

it comes to the evaluation, and the incapacity of learning more complex problems. We

saw examples of the latter issue in the previous section, and we will cover the potential

solutions in Section 6.3. In the next section, we describe the former through an example.

6.1 Model instability

On the left of Figure 17, we can see the loss function values during the training phase.

We saved the model weights at every fifth epoch, then picked a few and evaluated all

of them on the same instances, and their average solving times can be seen in the right

plot, the numbers mean the corresponding epoch, and ’acc’ means the weights with the

best accuracy. While the loss function is decreasing with one or two stagnant parts, the

solving times differ from this pattern significantly. According to our expectations, the

model weights from the 191st epoch should perform one of the best, and yet it is the

worst, and the order of the models from the different epochs seems random. Intuitively

this means that the loss function we use is not sufficient enough to grasp the problem,

i.e. we should not only inspect the best branching candidate, but we have to incorporate

all possible variables and we should look for different methods as well.

Figure 17: Loss function curve and solving times from different epochs.
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6.2 Ordinal classification

There are two important parts in the architecture of our model we aim to investigate

thoroughly. The first one is the loss function. As mentioned in the introduction, a middle

ground would be to learn the order of candidates (between only learning the best vari-

able, and learning all the branching scores themselves). This approach is called ordinal

classification in the literature. Several problems belong to this field, i.e. age prediction,

estimation of the severity of illnesses, or the assessment of products. We did not produce

results yet using this type of classification, but we briefly describe the different methods

used in ordinal classification.

We can formulate the problem as follows [35]: X denotes the input space, in our case

the representation of a branching candidate and Y = {r1,r2 . . .rk } the output space with

ordered ranks rk ≻ rk−1 ≻ ·· · ≻ r1, with ≻ denoting the ordering between them, by the

strong branching score. The training samples are in the form of {x, y}. Our goal is to find

a h : X → Y function that assigns a rank to a given input while minimizing a risk function

R(h), which is derived from the absolute cost matrix C ∈Rk×k , where Cy,r = |y − r | is the

cost of predicting (x, y) as rank r .

The first method [35] creates a binary classifier for each ri ∈ {r1, . . . ,rk−1} that pre-

dicts whether yi is larger than ri . Formally, we transform the training data into the form

{x, y i , w i }k
i=1, where

y i =
1, if (y > ri )

0, otherwise

and w i = |Cy,i −Cy,i+1| = 1. We attach k −1 distinct binary classifiers at the end of our

network that consists of two perceptions with softmax, that store whether yi is bigger

than the corresponding rank. Then the rank is computed with h(x) = 1+∑k−1
j=1 f j (x),

where fi (x) ∈ {0,1} is the result of the i -th classifier. For a given input there are k − 1

outputs. Let λi denote the importance coefficient of the i -th output. The loss function

for N inputs is computed with

E =− 1

N

N∑
j=1

k−1∑
i=1

λi1{ fi (x j ) = y i
j }w i

j log(P ( fi (x j )|x j ,W i )),
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where W i denotes the parameters of the i -th classifier. The drawback of this approach is

that we have to attach k classifiers for each branching candidate that is 10002 classifiers

in total in case of the smallest problems we have constructed. Since these tasks can be

run simultaneously and independently, the outputs will not be consistent, i.e. for k = 4

it is possible that r1 = r4 = 1 and r2 = r3 = 0.

We say that the output probabilities are consistent if P (y,r1) ≥ P (y,r2) ≥ ·· · ≥
P (y,rk−1). The solution is given by the Consistent Rank Logits framework [14]. This

method uses the one-hot encoded version of y , where the i-th entry is 1 if y > ri , 0 oth-

erwise. We have k − 1 binary classifiers like in the previous model, but each classifier

has the same W weights, different bi biases, and we apply a sigmoid function to every

output perceptron. That way all of them will have a value between 0 and 1, so we can

interpret these values as probabilities:

P (y > ri ) = P (y i = 1) =σ(
m∑

l=1
wl al +b) =σ(aW +b),

where a = (a1, . . . am) is the vector representation of the input before classification. This

formula is similar to the one shown in Figure 6, with only one perceptron in the last layer

and an additional bias value. During training, we minimize the weighted cross-entropy

loss of the k −1 classifiers with

E =−
N∑

i=1

k−1∑
j=1

λ j

[
log(σ(ai W +bi ))y j

i + log(1−σ(ai W +bi ))(1− y j
i )

]
.

To get the predictions we have to count the output perceptrons where the computed

probabilities are higher than 0.5, i.e. h(x) = 1+∑k−1
j=1 1{P (y j = 1) > 0.5}. It is proven in

[14] that if W ∗,b∗ are obtained by minimizing the previously defined loss function, then

b1 ≥ b2 ≥ ·· · ≥ bk −1, consequently P (y1 = 1) ≥ P (y2 = 1) ≥ ·· · ≥ P (yk−1 = 1).

One year later, the same authors improved their approach [38] and named the new

version CORN. In the new model, they wanted to keep the consistency, without shared

weights in the classifiers. The main modification is that instead of computing probabili-

ties P (y > ri ), we calculate the conditional probabilities P (y > ri |y > ri−1), i = 1, . . . ,k−1.
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Observe that {y > ri } ⊆ {y > ri −1}. We can obtain the sought probabilities with

P (y > ri ) =
i∏

j=1
P (y > r j |y > r j−1).

We have to distribute the data to be able to effectively learn the conditional probabilities.

• S1 contains every (xi , yi ) pair.

• S2 contains only pairs (xi , yi ), where yi > r1.
...

• Sk consists of pairs (xi , yi ), where yi > rk−1.

We use the set Si to train the classifier responsible for computing P (y > ri |y > ri−1), with

loss function

E =− 1∑k−1
i=1 |Si |

k−1∑
j=1

∑
i∈|S j |

[
log(σ(ai W +bi ))y j

i + log(1−σ(ai W +bi ))(1− y j
i )

]
.

Without diving deep into theory, we describe another significantly different approach:

computing a unimodal distribution on the rank classes, where the mode means the

probability of the given class, and if we take steps in any direction from the mode we

expect the probabilities of other classes to be smaller. In [11] this goal is achieved by

having only one output neuron, that predicts the parameter of a discrete unimodal dis-

tribution. In this paper, two such distributions were examined, the binomial and the

Poisson.

6.3 The graph neural network

The second is the convolutional part. The most obvious direction is to test the re-

maining two modules, e.g. the attentional and the message passing module, introduced

in Section 3.2. The long-term goal is to find a way to create trainable messages for two

given node features along an edge that is capable of learning the essence of bigger and

more complex problems. Additionally, it is an interesting question how far can we get



6.4 Another branching score 37

with the simpler attentional graph neural network? Since in practice, these methods

are achieved with multi-layer perceptrons, a lot depends on their sizes as well. During

the tests on the normal set cover, we trained the same network three times with layer

sizes 32, 64, and 128. We achieved the best results with the middle one. It shows, that

it is worth laying a great emphasis on finding the best combination of placement, the

number, and the size of the multi-layer perceptrons.

6.4 Another branching score

We created a "new" branching score. It takes a branching step for every candidate

and solves the problem in both children, then returns the number of nodes of the two

formed B&B trees. Then combines these two numbers into a score. It is an even stronger

branching score because it always selects the variable that results in the smallest B&B

tree. In exchange, it takes much more time to generate the training data, because we

have to solve the same instance several times to get one training sample, but it can eas-

ily be parallelized. We did not make any experiments on this data, because at first, we

wanted to imitate the strong branching score better, and then improve the given model.

6.5 Closing thoughts

Tackling mixed integer linear programs with machine learning is a hard task, and there

are several valid approaches. In this thesis, we introduced the theoretical foundations

and explored a specific approach. During our experiments, we shed light on several key

aspects that play a crucial role in this technique, thus they require more attention in the

future to reach better performance. As a first step, we will apply the changes mentioned

in the previous sections and investigate them to achieve better results. After that, our

goal is to combine this method, with a machine learning driven cut generation process,

and with that create an effective solver, which makes its decisions based on deep learn-

ing techniques only.
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