
Compact Representation of
Labeled Trees

Máté Simon
Thesis

Applied Mathematics MSc

Supervisor:
Péter Madarasi

Eötvös Loránd University,
Department of Operations Research

Eötvös Loránd University
Faculty of Science

Budapest, 2023

Acknowledgements

I am deeply grateful to my supervisor, Péter Madarasi, who has been guiding me on
my path in the world of operations research since my BSc studies. I would like to
express my heartfelt thanks for the tremendous amount of time, consultations, and
ideas he dedicated to helping me create my thesis. Furthermore, I would like to
express my gratitude to my family for their unconditional support.

Contents

1 Introduction 1
1.1 Motivation . 2

2 Representations Using Subtree Repeats 4
2.1 The DAG Representation . 4

2.2 Binary Decision Diagrams (BDDs) 7

2.2.1 A Brief History . 13

2.2.2 The Effect of Variable Orderings on the Size of a BDD . . . 15

2.2.3 Multi-valued and Algebraic Decision Diagrams (MDDs and
ADDs) . 17

2.2.4 Zero-suppressed Decision Diagrams (ZDDs) 18

2.3 Variable Ordering . 21

2.3.1 Hardness Results . 22
2.3.2 Exact Algorithms . 24

2.3.3 Ordering Heuristics . 27

2.4 Scheduling the Swaps . 31

2.5 C-tuples . 33

3 Representations Exploiting Internal Structures 36
3.1 Motivation of Walk Representations 36

3.2 Compression with Top Trees . 39

3.2.1 Introduction of Top Trees 40

3.2.2 Construction of Top Trees 41

3.2.3 Efficiency of Top Tree Compression 44

3.3 Tree Grammars and Succinct Data Structures 45

4 Efficient Implementation of the Ordering Heuristics 46
4.1 Compact Representation of the Solutions of a Sudoku 46

4.2 Implementation details . 51

4.2.1 Construction . 52
4.2.2 Swap of Adjacent Levels 52

4.2.3 Experimental Results . 54

4.3 Future Plans for the Data Structure 60

1 Introduction

Mass customization aims to create products tailored to individual requirements while
upholding the economic efficiency typically associated with large-scale manufactur-
ing. Mass customization has recently received great attention with the introduction
of personalization into large-scale manufacturing. One way to conceptualize mass
customization is by considering a foundational product with a fixed set of properties
which together define a unique, customized product. Each property is thought of as
a set of options, exactly one of which is to be selected for each property. However,
the challenge arises from our inability or unwillingness to produce every possible
combination. Take car manufacturing as an example. Suppose the retailer sells our
dream car in two different type; convertible and cabriolet. The cabriolet one is not
sold with air conditioning, while in the convertible one we have the freedom to buy
it with air conditioning with is. So, it is easy to imagine that for larger products such
as cars or motorcycles, where there are many more sets of properties, there are even
more such restrictions to consider. The problem addressed in this thesis revolves
around finding the most concise way to store all of the allowed product variants.

The structure of this thesis is as follows. In the rest of this section, we present the
motivation of our work and define the central problem that is investigated in this
thesis.

Throughout this study, several representations are considered to represent the allowed
product variants. Section 2 presents the most natural representation that arises intu-
itively — which is called the DAG representation, where exactly the paths of length
𝑛 correspond to valid combinations. Then we turn our attention to investigating a
way more widespread data structure, the so-called binary decision diagrams. We
present a variety of decision diagram types, demonstrate how they can be used to
represent our problem, and compare them to the DAG representation. After this, the
most important issue will be investigated regarding all of the representations: based
on what variable (property set) order should we construct these representations? We
investigate the complexity of this problem, and present several exact and heuristic
algorithms for finding good orderings.

Section 3 investigates fundamentally different representations. While in Section 2,
representations exploiting subtree repeats are presented, in Section 3 representa-
tions that exploit the internal structure are presented. First, we investigate walk

1

representations, where exactly the root 𝑛-walks — the walks of length 𝑛 rooted in a
given node — correspond to the valid combinations as opposed to the 𝑛-paths in the
DAG representation. Then we proceed to discuss a compression scheme that uses
so-called top trees.

Section 4.2 presents our main contribution, which is a data structure for the com-
pression problem. This section presents an algorithm for swapping two consecutive
levels in our data structure, which algorithm is the basis of every reordering al-
gorithm. It also contains a brief presentation of the state-of-the-art package called
CUDD used for the manipulation of decision diagrams, and an extensive comparison
between our results and the results obtained by CUDD. Lastly, we show how our
program could be improved in the future.

1.1 Motivation

This section describes the everyday problem that served as the inspiration for the
research in this thesis. Mass customization is the combination of product customiza-
tion and mass production. Back in the day, when Henry Ford originally started mass
producing his renowned Ford Model-T, it was only available in color black [30]. If
customers wanted the car in red, then the factory should have constructed another
assembly line for those cars, provided that the car makers were able to manufacture
cars in that color as well. In contrast, nowadays customization and mass production
is ubiquitous. Today, car factories produce a lot of different variations of a base car
model, most of the time according to the customer’s wishes. Therefore, to meet the
customer’s expectations, assembly lines should have great flexibility regarding the
number of different variations they can produce of a base model. In order to produce
a car, one must specify a lot of properties along which these cars can differ and make
the assembly line handle these cases. For example, properties along which we can
distinguish the cars are:

• size of the engine (how many horsepower the engine should have),

• the size of the wheels,

• whether it is the cabriolet variant or not,

• the color of the car or

2

• whether it should have air conditioning or not.

In addition, there are restrictions on the possible customizations, for example a
cabriolet car with air conditioning in it cannot be produced. We only investigate
products that are characterized by a fixed number of properties. If only such products
are considered, then choosing one property from each property set characterizes
the product. Since we are only interested in these type of products, the possible
combinations, for which the corresponding product might be produced, can be
stored in so-called variant tables. In a variant table the columns correspond to the
properties such as the color, the size of the engine, etc., while the rows correspond
to the feasible combinations.

Regarding this real-life problem, many interesting questions arise. For example,
how can one store these tables in such a way that the representing data structure has
the following properties:

• It stores the feasible combinations that are listed in a given variant table as
compactly as possible.

• This data structure can be used to decide whether a given combination is
feasible or not, and it supports queries — such as, how many different product
can be produced, if we already fixed 𝑘 properties — quickly.

Now that we have seen the motivational background, a formal problem statement
follows.

Let 𝑛 be the number of properties. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be the property sets, i.e.,
where each set corresponds to a property. Then, we get a combination by selecting
an element from each set. These combinations can be either valid or not which are
determined by some kind of rules. We suppose, that these rules are already given for
us, in the form of a table, listing all of the valid combinations. In the example above,
it would be determined if it is valid whether or not the combination can be produced
as a car. So these valid combinations form a subset of the Cartesian product of the
sets 𝐴1, 𝐴2, . . . , 𝐴𝑛. Therefore, our objective is to encode these valid combinations
as succinctly as possible.

In order to ease the subsequent references, let us formulate the above defined concepts
in the form of a problem:

3

Problem 1.1. Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be sets of few elements. Consider a subset 𝐶 ⊆
𝐴1 × 𝐴2 × . . . × 𝐴𝑛. Encode the combinations listed in 𝐶 in a data structure as
efficiently as possible so that the devised data structure supports certain operations
efficiently amongst the combinations, such as modifying or searching.

2 Representations Using Subtree Repeats

This section deals with the most obvious representation that intuitively comes to
mind when one tries to represent the above defined problem. This representation
is the DAG representation, where exactly the 𝑛-paths in a directed acyclic graph
correspond to the valid combinations. After getting familiar with the concept of
the DAG representation, we turn our attention toward investigating a ubiquitous
data structure, the so-called binary decision diagrams, which can be used as a
representation for our problem as well. We present a variety of decision diagram
types, demonstrate how they can be used to describe our problem, and highlight
their similarities and differences compared to the DAG representation. After this,
the most important problem is investigated regarding these representations: based
on what variable (property) order should we construct these representations? As we
will see, the size of the representations greatly depends on this variable order, and
since our goal is to encode these representations as compactly as possible, finding
a good order is essential for us. We investigate the hardness of this problem and
present several exact and heuristic algorithms for finding good orderings.

2.1 The DAG Representation

Perhaps the most natural way to represent Problem 1.1 is via a decision tree. We
might get a decision tree 𝑇 that encodes the valid combinations in the following way.

Let 𝐶𝑘 be the set of the valid combinations over the property sets 𝐴1, . . . , 𝐴𝑘 (so
we forget about the 𝐴𝑘+1, . . . , 𝐴𝑛 property sets). We fix in advance which level of
our decision tree 𝑇 corresponds to which property set. For simplicity, suppose that
the property set corresponding to level 𝑖 is 𝐴𝑖. Furthermore, suppose that we have
already produced the representing decision tree up to the 𝑖th level. Let us denote
the vertices of the decision tree on level 𝑗 with 𝑉 𝑗 . Then, the following holds: all
the vertices in 𝑉𝑖 represent sub combinations of 𝐶, where exactly the first (𝑖 − 1)

4

properties have been fixed and every such sub combination is represented; in other
words, every vertex corresponds to exactly one element of 𝐶𝑖, and vice versa.

We now construct the representing decision tree up to the (𝑖 + 1)th level. Add |𝐴𝑖 |
new edges to all of the vertices in 𝑉𝑖. Then iterate through 𝑉𝑖: let 𝑣 𝑗 ∈ 𝑉𝑖 be the
actual node. This node 𝑣 𝑗 corresponds to a sub combination 𝑐𝑖

𝑗
∈ 𝐶𝑖. Then for

every value 𝑎𝑖𝑙 ∈ 𝐴𝑖, check whether 𝑐𝑖
𝑗
+ 𝑎𝑖𝑙 ∈ 𝐶𝑘+1 holds. If not, then delete the

edge corresponding to value 𝑎𝑖 𝑗 incident to 𝑣 𝑗 .

By performing this method 𝑛 times, starting from the empty combination set 𝐶0, we
obtain a tree, which is, of course, a good representation of the valid combinations.
Figure 1 shows an example decision tree that represents the variant table shown in
Table 1.

1 2 3 4

𝑎 𝑏 𝑏 𝑐 𝑎 𝑏 𝑎 𝑐

𝛼 𝛽 𝛾 𝛽 𝛼 𝛽 𝛼 𝛽 𝛾 𝛽 𝛼

Figure 1: The decision tree representing the variant table shown in Table 1 in the
(𝑥1, 𝑥2, 𝑥3) variable order.

Additionally, it is very important to note that the size of the representing decision
tree 𝑇 heavily depends on the order in which we build it up.

However, recall that our objective is to give a representation as compact as possible.
Therefore the following two questions arise:

1. What ordering of the property sets should we choose, since the size depends
on it so heavily?

5

𝑥1 𝑥2 𝑥3

1 𝑎 𝛼

1 𝑎 𝛽

1 𝑏 𝛾

2 𝑏 𝛽

2 𝑐 𝛼

2 𝑐 𝛽

3 𝑎 𝛼

3 𝑎 𝛽

3 𝑏 𝛾

4 𝑎 𝛽

4 𝑐 𝛼

Table 1: A variant table, where the first property set 𝐴1 = {1, 2, 3, 4}, the second
property set 𝐴2 = {𝑎, 𝑏, 𝑐} and the third property set 𝐴3 = {𝛼, 𝛽, 𝛾}.

2. How can one compress such a labeled tree such that the compressed repre-
sentation is equivalent to the original tree in the sense that it support basic
navigational queries, such as returning the parent of a node 𝑣, the depth of 𝑣,
the size of the subtree rooted in 𝑣 etc?

We deal with the first question later. Regarding the second one, a natural idea is
to construct a directed acyclic graph (DAG) from the decision tree by identifying
and combining identical subtrees using a hashing algorithm. More precisely, an
edge incident to a node 𝑣 ∈ 𝑉1 pointing to the subtree 𝑇 ′, can instead point to any
other subtree 𝑇 ′ isomorphic to 𝑇 , thus achieving that every subtree appears only
once. This way, it is possible to represent 𝑇 as a Directed Acyclic Graph (DAG).
Over all possible DAGs that can represent 𝑇 , the smallest one is unique and can be
computed in O(𝑛) time [21]. We call this unique DAG the DAG representation for
the combination set 𝐶 for the given order of the property sets. The operations of
this hashing algorithm that computes this unique DAG will be demonstrated through
an example in Section 4.1 in more detail. In Figure 2 we present what the DAG
representation looks like for the variant table shown in Table 1, and variable order
(𝑥1, 𝑥2, 𝑥3). As we can see the size of the decision tree is greatly reduced, by merging
the identical subgraphs.

In the algorithm described above, it was predetermined which property set is at each
level in advance. In this manner, a so-called static representation was obtained.
However, it is a restriction to say that each level should correspond to one and only

6

4 2
1

3

𝑐 𝑎 𝑏 𝑐 𝑎 𝑏

𝛼 𝛽 𝛼
𝛽 𝛾

Figure 2: The DAG representation obtained from the decision tree in Figure 1 by
merging identical subtrees.

one property set in the decision tree. We could have the freedom to at every node
to set any variable corresponding to any property set, without the restriction that
at each level every vertex should set the same variable. The only restriction is that
every variable should be included exactly once in each root-sink path. The non-static
representation is a generalization of the static representation, since in a non-static
construction we could get back a static case, simply by choosing from the same set
on each level.

2.2 Binary Decision Diagrams (BDDs)

A decision diagram is a graphical data structure that was first used to represent
Boolean functions [2, 40] and has found widespread use in formal verification and
circuit design [15, 31]. This section presents a variety of decision diagram types,
demonstrates how they can be used to describe Problem 1.1, and highlights their
similarities and differences compared to the DAG representation.

A binary decision diagram (BDD) is a type of data structure that represents a Boolean
function 𝑓 [39, 58]. A Boolean function can be represented as a rooted, directed

7

acyclic graph (rooted DAG) that consists of multiple decision nodes and two terminal
nodes. The two terminal nodes are denoted by the labels 0 (FALSE) and 1 (TRUE).
Each (decision) node 𝑢 is labeled by a Boolean variable 𝑥𝑖 and has two child nodes
called low child and high child. The edge from node 𝑢 to a low (or high) child
represents an assignment of the value FALSE (or TRUE, respectively) to variable
𝑥𝑖. A BDD is said to be ’ordered’ if different variables appear in the same order on
all paths from the root. A BDD is also considered "reduced" if it does not take up
unnecessary space. To be more specific, the following prerequisites must be met:

1. There cannot be a node 𝑢 whose low and high children are the same.

2. There cannot be two isomorphic rooted subtrees in the representing DAG.

From an ordered BDD, we can get a reduced one by eliminating every node where 1.
is met and by merging the isomorphic subgraphs. If we do this until none of 1.
and 2. holds, we obtain a DAG, which is our BDD representation for 𝑓 .

In general, in the literature, when BDDs are mentioned, they are almost always
referred to as ordered, reduced binary decision diagrams (ROBDD). The benefit of
an ROBDD is that it is canonical for a specific function and variable order. Variable
ordering in BDDs is just as important as the order of the property sets in the DAG
representation, as we have mentioned in Section 2. Furthermore, to back up this
claim, an example is shown in Section 2.2.2, and the variable ordering itself is
covered in Section 2.3 in more depth. From now on, if we say BDD, we mean
ROBDD.

Here as well, the root-terminal paths correspond to variable assignments. A root-(1-
terminal) path in the representing DAG corresponds to a (possibly partial) variable
assignment for which the represented Boolean function is true. On the other hand,
the root-(0-terminal) paths correspond to the false assignments. From a path, one
can get the corresponding variable assignment in the following way: When the
path descends to a node’s low (or high) child, the variable of that node is set to 0
(respectively 1).

Above, the possibly partial variable assignment shall be understood as the value of
the other variables that are not included in the paths does not matter since the value
of the variables that are already included decides the value for the corresponding
Boolean function.

8

An example For a better understanding of these concepts, let us look at an example
for the Boolean function 𝑓 = (𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3) ∨
(𝑥1 ∧ 𝑥2 ∧ 𝑥3). The truth table for 𝑓 is the following:

𝑥1 𝑥2 𝑥3 Output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2: Truth table for 𝑓 = (𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3) ∨
(𝑥1 ∧ 𝑥2 ∧ 𝑥3).

The decision tree corresponding to 𝑓 is the following tree:

1 0 1 1 1 0 0 1

1 0

1 0 1 0

1 0 1 0 1 0 1 0

Figure 3: The decision tree representing corresponding to the Boolean function
𝑓 = (𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3) ∨ (𝑥1 ∧ 𝑥2 ∧ 𝑥3).

At last, we can get the BDD by executing the elimination and merging rules to this
decision tree. The final BDD looks like the one shown in Figure 4 for the variable
ordering (𝑥1, 𝑥2, 𝑥3). If a figure in this study shows a BDD, then we generated that
figure using the CUDD C++ package [56], which we describe in more detail in
Section 4.2.

9

Figure 4: The BDD for the Boolean function 𝑓 .

Usage of complemented arcs Using complemented edges, one might represent
BDDs even more compactly. Every low edge can be complemented or not. If
they are not, then they behave exactly as previously described. However, if they are
complemented, then it refers to the negation of the Boolean function that corresponds
to the node that the edge points to. Let us explain what this means: Suppose at a
decision node 𝑣, the low edge of 𝑣 points to the rooted subtree 𝑇1. However, there
is another rooted subtree, 𝑇2, which is the complement of 𝑇1; that is, a variable
assignment in 𝑇1 yields an output 1 of the represented Boolean function if and only
if 𝑇2 yields an output 0. Then we can complement the low edge of 𝑣, and instead
of pointing to 𝑇1, we point it to 𝑇2. If this was the only occurrence of 𝑇1, then that
whole subgraph can be deleted. If we use complemented edges, then the root node
of a BDD is not the first decision node, as we have seen in Figure 5, but another
newly added so-called reference node. This reference node has outdegree 1, the only
incident edge is a low one, and it points to the first decision node.

Figure 5 shows the previous example, but with the usage of complemented edges.
The dashed lines correspond to normal low edges, while the dotted lines correspond
to the complemented low edges.

Some properties of this complemented edges representation:

1. There is only one leaf.

10

Figure 5: The BDD for 𝑓 = (𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3) ∨
(𝑥1 ∧ 𝑥2 ∧ 𝑥3) when using complemented edges. The dashed lines are the normal
low edges, while the dotted ones are the complemented low edges.

2. Since we are not complementing high edges, a canonical representation can
be obtained in this case as well.

How can we find the value of the Boolean function 𝑓 in this representation for a
given variable assignment? Let us take the path 𝑃 corresponding to this variable
assignment. Then the output — which is 1, since there is only one leaf — has to
be negated as many times as there are complemented edges in this path 𝑃. So if
there are an even number of complemented edges in the path 𝑃, then the value of 𝑓

is 1 for this variable assignment, and if there are an odd number of complemented
edges, then the value of 𝑓 is 0.

Some of the advantages of using complemented edges are:

1. The size of the BDD is reduced.

2. Computing the negation of a BDD takes constant time (all we have to do is
complement the edge incident to the reference node).

But there are also drawbacks to using this representation. For example, if we
want to visualize our BDD, then visually it is much more difficult to read out
feasible solutions looking at the graphical representation using complemented edges.
Furthermore, implementing BDD manipulating algorithms becomes slightly more

11

complicated.

Application to our problem In Section 2.1 we have seen how we can represent
Problem 1.1 using DAG representation. Now, we show how the DAG representation
can be transformed into a BDD representation. This transformation will be handy
especially when, in Section 4.2 we investigate what results our methods can obtain
on the DAG representation compared to what state-of-the-art solvers can obtain on
the corresponding BDD.

So, let us see how one can construct the BDD from our DAG representation, which
represents a given variant table. The BDD is constructed with the help of the gadgets
presented in Figure 6.

Figure 6 can be understood as follows: Let 𝑣 be a node, and 𝑢1, 𝑢2, . . . , 𝑢𝑘 be the
children of 𝑣. Then the gadget 𝐻𝑣 corresponding to 𝑣 is a path of length 𝑘 , with an
extra edge added to each of the 𝑘 vertices except the last one.

𝑤

𝑧1 𝑧2 𝑧𝑘

𝑘

𝑣

𝑢1 𝑢2 𝑢𝑘

Figure 6: Gadget for the construction of the BDD from the DAG representation.

Now we can construct the BDD with the help of these gadgets. Replace every node
𝑣 in our DAG representation with the corresponding gadget 𝐻𝑣 as if every node 𝑧𝑖

in the gadget 𝐻𝑣 would be 𝑢𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑘}.

This way we get a binary DAG, but it is not a BDD yet, because the elimination rule
does not necessarily hold. After applying the elimination rule as many times as we
could, we obtain the desired BDD.

Notice, that this BDD was constructed based on the exact variable order found in the
DAG representation as well. In order to construct this BDD in a different variable
order other means must be used. But for more details regarding this transformation
we refer the reader to Section 4.2.

12

Furthermore, we would like to note, that usually there is way more node in this BDD
representation compared to the DAG representation, since the elimination rule does
not decrease the node number by nearly as much as the gadgets increased.

2.2.1 A Brief History

The basic idea behind decision diagrams was introduced by Lee [40]. In his work,
he investigated so-called binary-decision programs, which are a type of computer
program that represents switching circuits. Shannon demonstrated that switching
circuits can be described using Boolean algebra [53]. Lee’s goal was to create
an alternative representation that is more conducive to the actual computation of
switching circuit outputs.

Figure 7, was taken from [10], and it presents a simple switching circuit. In this
circuit, the binary variables 𝑥, 𝑦, 𝑧 correspond to the switches. The gate 𝑥 is open if
the assigned value of 𝑥 is 1, otherwise closed, and 𝑥′ is open. This holds similarly
for all the variables. The output of the circuit is 1 for a given variable assignment if
there is a continuous path from left to right. For example, (𝑥, 𝑦, 𝑧) = (1, 0, 1) leads
to an output 1, while (𝑥, 𝑦) = (0, 0) leads to an output 0, regardless of the value of 𝑧.

Figure 7: The example switching circuit [10].

In binary-decision programs, there is a single type of command, which Lee calls 𝑇 .
The command looks like the following:

𝑇 : 𝑥; 𝐴, 𝐵,

and it means that if 𝑥 = 0 then go to the instruction at address 𝐴, otherwise to

13

the instruction at address 𝐵. For the switching circuit represented in Figure 7, the
program looks like the following:

𝑇 : 𝑥; 2, 4

𝑇 : 𝑦; 𝜃, 3

𝑇 : 𝑧; 𝜃, 𝐼

𝑇 : 𝑦; 3, 5

𝑇 : 𝑧; 𝐼, 𝜃

where we used Lee’s denotations: 𝜃 is corresponding to the output zero, and 𝐼 to
the output one. Now if we are thinking in decision diagrams these five instructions
correspond conceptually to the nodes of the BDD, the first value is the case when
we go to the low child, and the second case is when we go to the high child.
However we do not get back the binary decision diagrams exactly, because the nodes
corresponding to one variable are not required to be on the same level. Akers is
credited with developing both the graphical structure known as a binary decision
diagram and the term itself [2]. Akers utilized BDDs for the analysis of specific
Boolean functions and as a means of test generation; that is, for finding a set of
inputs that can be used to confirm that a given implementation performs correctly.

The advance that led to the widespread application of BDDs was due to Bryant [15].
He said that only that case should be investigated when the order of the variables
is fixed. This way, he introduced the concept of ordered binary decisions. And
after this, it was natural to introduce the reduced (ROBDD) variant (in line with
the definitions in the previous section) to these OBDDs as well. These ideas led to
the fundamental result that ROBDDs provide a canonical representation of Boolean
functions. That is, for any given variable ordering, every Boolean function has a
unique representation as an ROBDD. This enables one to determine whether a logic
circuit implements a desired Boolean function, for example, by building a ROBDD
for both and determining whether they are the same.

Another benefit of using ROBDDs, i.e., a graphical representation over an abstract
program, is that operations on Boolean functions, such as conjunction or disjunction,
can be performed directly on the representational diagrams using properly adjusted
operations. The time complexity of an operation is obviously bounded by the product

14

of the sizes of the BDDs. Unfortunately, even when reduced, the size of BDDs for
some widely used circuits can be exponentially large. For instance, the ROBDD
grows exponentially for a multiplier circuit but linearly for an adder circuit.

Furthermore, the variable ordering can have a significant impact on the reduced
BDD’s size. Bollig and Wegener showed that it is NP-complete to determine the
ordering that produces the minimal BDD [14]. Finding compact BDDs for real-
world applications may consequently require the usage of ordering heuristics. We
go into more detail about the hardness of the problem and ordering heuristics in
Section 2.3.

Bryant’s idea made BDDs into the useful tools they are today. Thanks to him, several
researchers started investigating these decision diagrams. For various theoretical
and practical reasons, several versions of the basic BDD data structure have been
proposed. In the latter Sections, 2.2.3 and 2.2.4, we present some of these variants.

Donald Knuth refers to BDDs as “one of the only really fundamental data structures
that came out in the last twenty-five years” in his video presentation “Fun With
Binary Decision Diagrams (BDDs)” [38], and mentions that Bryant’s article from
1986 was once the most-cited publication in computer science.

2.2.2 The Effect of Variable Orderings on the Size of a BDD

For a given Boolean function 𝑓 , the size of its BDD depends only on the ordering
of its variables, since BDDs yield a canonical representation. Furthermore, the size
is heavily dependent on it. In this section, an example is presented where, in one
variable order, the size of the corresponding BDD is exponentially bigger than in
another one.

So, let us take a look at the following example: On 2𝑛 variables, define the following
Boolean function: 𝑓 (𝑥1, 𝑥2, . . . , 𝑥2𝑛) = (𝑥1 ∧ 𝑥2) ∨ (𝑥3 ∧ 𝑥4) ∨ . . . ∨ (𝑥2𝑛−1 ∧ 𝑥2𝑛).

Let 𝜋1 be the variable ordering (𝑥1, 𝑥2, . . . , 𝑥2𝑛−1, 𝑥2𝑛), and 𝜋2 be the variable or-
dering (𝑥1, 𝑥3, . . . , 𝑥2𝑛−1, 𝑥2, 𝑥4, . . . , 𝑥2𝑛). In the first case, there is exactly one node
at every level in the corresponding BDD since the variables are arranged in a nice
sequential way. Figure 8 illustrates the case 𝑛 = 4 for 𝜋1.

However, in the second case, using the variable ordering 𝜋2, the size of the BDD is
at least 2𝑛. This is due to the fact that in order to have at least one clause we can

15

Figure 8: The BDD of 𝑓 with variable ordering 𝜋1.

evaluate, we have to get down to the (𝑛 + 1)th level. Figure 9 illustrates the case
𝑛 = 4 for 𝜋2.

This proves that there are cases when we can obtain an exponentially smaller repre-
sentation in one variable ordering than another.

This example motivates us to find the best variable ordering for a given BDD.
Unfortunately, finding the optimal ordering is NP-hard [28]. Furthermore, for any
constant 𝑐 > 1 it is even NP-hard to compute a variable ordering resulting in an
BDD with a size that is at most 𝑐 times larger than an optimal one [54]. However,
there exist efficient heuristics to tackle the problem [51]. Section 2.3 discusses the
complexity of variable ordering in more depth.

16

Figure 9: The BDD of 𝑓 under the variable ordering 𝜋2.

2.2.3 Multi-valued and Algebraic Decision Diagrams (MDDs and ADDs)

A number of variants of BDDs have been introduced in the literature. In the following
two sections, we present some of these new variations.

Algebraic decision diagrams (ADDs) Bahar et al. [8] introduced the concept of
Algebraic decision diagrams (ADDs). ADDs differ from BDDs in that the terminal
nodes of an ADD may take any value from a fixed, finite set 𝑆. These ADDs
also have the fundamental property of BDDs: they have a canonical representation
for a particular ordering of the variables. Nonetheless, it is not clear how edge
complementation could be imported to this algebraic case as well.

Bahar et al. [8] showed that matrices can be represented with ADDs and implemented
sparse matrix multiplication algorithms and shortest path finding algorithms using
this representation. Their devised data structure could not beat sparse matrix data
structures in terms of worst-case space complexity. However, according to them
"recombination of isomorphic subgraphs may give a considerable practical advan-
tage to ADDs over other data structures", and based on their computations, merging
(recombination of isomorphic subgraphs) that is present in every decision diagram
indeed gave them an advantage over other data structures usually used when deal-

17

ing with sparse matrix multiplication and shortest path finding. Furthermore, they
started investigating possible applications of ADDs to logic synthesis, verification,
and testing of digital circuits and systems.

Multi-valued decision diagrams (MDDs) Now let us take a look at the Multi-
valued decision diagrams (MDDs). In MDDs, we replace the binary variables with
integer variables. That is, every variable 𝑥𝑖 may take values from a predefined set of
integers 𝑆𝑖 for that 𝑥𝑖. MDDs are usually defined in two separate ways, depending on
the actual application. One might define them analogously to BDDs (considering
the ordered case): Every level corresponds to one variable. At the corresponding
levels, every node has an outdegree of |𝑆𝑖 |, and it has two terminal nodes, one
corresponding to the TRUE, one to the FALSE value. However, in the other kind
of definition only those variable assignments are represented that correspond to the
TRUE output. Thus, it does not necessarily hold that every node on the same level
has the same outdegree. In this second definition, using MDDs as the representation
for Problem 1.1, we obtain a very similar representation to the DAG representation
presented in Section 2. These MDDs also have the elimination rule, compared to
our DAG representation.

Unfortunately, MDDs did not get nearly as much attention as BDDs, so the main
solvers used for manipulating and working with decision diagrams — such as CUDD,
which is presented in Section 4.2.3 — have no implementation for MDDs.

Despite this, there has been research using MDDs. For example, Andre et al. pro-
posed a novel approach to solving generic sequencing by using MDDs [20]. Or
Andersen et al. [7] investigated the usage of MDDs in constraint programming.
Based on experiments, their “MDD-based constraint store can substantially accel-
erate solution of multiple-alldiff problems”. So as we can see, MDDs can also be
used in a variety of problems to obtain better results than the existing approaches.

2.2.4 Zero-suppressed Decision Diagrams (ZDDs)

A zero-suppressed decision diagram (ZDD) is a special variation of a BDD that is
particularly suitable for solving combinatorial problems.

Both BDDs and ZDDs can be viewed as decision trees that have been simplified
using two reduction procedures that ensure the canonicity of the representation [48].

18

The second reduction rule, the merging of isomorphic subgraphs, applies to both
BDDs and ZDDs; however, the first reduction rules are different. In a BDD, a node
is eliminated if the children of this node are the same. Compared to this, in a ZDD,
a node is eliminated if its high child is the FALSE terminal. Figure 10 shows that
this rule is not always beneficial.

Figure 10: The BDD (left) and ZDD (right) representing the Boolean function
𝑓 = (𝑎 ∧ 𝑏) ∨ (𝑐 ∧ 𝑑) [48] in the same variable order.

Then the question arises: why are we investigating ZDDs? ZDDs were introduced
by Minato [47], and his variant of the BDDs aims to represent and manipulate sparse
sets of bit vectors. The variation in the first rule, thus, aims to improve the efficiency
of ZDDs when handling sparse sets.

One might construct decision diagrams from combination sets as well. A combi-
nation set is basically a family of subsets (actually, in the variant tables, we store
combination sets, for which every combination is of a fixed size 𝑘). In order to
represent such families, we can put a set in a one-to-one correspondence with its
characteristic function, which we can get in the following way. Let us be given a set
of subsets 𝐹. Then in its characteristic Boolean formula, there are as many variables
as there are distinct elements in the subsets. Let the union of the elements of the
subsets be 𝑆. There is a clause 𝐶𝑖 for each subset 𝑆𝑖. Let 𝐶𝑖 consist of all variables
and negate exactly those variables that do not appear in 𝑆𝑖.

For example, if the combination set 𝐹 = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑐}} is given, then the
corresponding Boolean formula is 𝑓 = (𝑎∧ 𝑏∧¬𝑐) ∨ (𝑎∧¬𝑏∧ 𝑐) ∨ (¬𝑎∧¬𝑏∧ 𝑐).
Now if we consider Figure 11, we can see both the ZDD and the BDD representing
𝐹, and that in this case the ZDD provides a better representation than the BDD.

19

Figure 11: The BDD (left) and ZDD (right) representation of the combination set
𝐹 = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑐}} in the same variable order [48].

Application To see that ZDDs are indeed a useful tool in practice, let us investigate
an application from [39]. We can use ZDDs to represent simple paths in an undirected
graph. Let us be given the graph shown in Figure 12, which is a so-called 3× 3 grid
graph, and we would like to list all the paths going from the corner labeled with 1 to
the corner labeled with 9.

Figure 12: The 3x3 grid graph [39].

Figure 13 shows all the 12 possible paths. But how can we get these paths? A
possible approach is to use ZDDs.

These paths can be represented by the ZDD shown in Figure 14 in the following way:
A node labeled with 𝑖 𝑗 represents the decision about whether our path includes the
edge 𝑖 𝑗 . The low edge means no, while the high edge means yes. So for example,

Figure 13: All 12 possible paths going from the top left vertex to the bottom right
vertex [39].

20

traversing this ZDD only using the high edges, starting from the node labeled with
13, we get the following path out of the 12: 1 − 3 − 5 − 2 − 4 − 7 − 9.

Figure 14: Illustration of the ZDD representing the possible paths in our exam-
ple [39].

Although the ZDD shown in Figure 14 may not seem that useful, since only 12
paths are needed to be represented here, the advantages of a ZDD representation
becomes obvious as the grid gets larger. For example, for an eight by eight grid, the
number of simple paths from corner to corner proves to be 789,360,053,252 [39].
In contrast, we can define a ZDD for that problem as well, similar to the one shown
in Figure 14, and after constructing and reordering it, it turns out [39], that the ZDD
has only 33,580 nodes! So instead of listing all of the 789,360,053,252 paths, we
can have a concise representation of these paths in form of a ZDD.

2.3 Variable Ordering

As we have seen in Section 2.2, for a given Boolean function 𝑓 , the size of its
corresponding BDD depends only on the ordering of its variables. Furthermore, as
shown using Figures 8 and 9, we have also seen that the size can depend on it greatly,
even exponentially. So a natural problem is whether or not we can find an optimal

21

ordering of the variables in polynomial-time, that is, the ordering for which the
corresponding BDD has a minimal size (the MinBDD problem). In Section 2.3.1,
we present that it is not possible unless P=NP, amongst other hardness results. Since
the problem is hard, one might wonder, what can we say about the approximability
of the problem? Section 2.3.1 also provides an insight into this issue.

Though the problem turns out to be NP-hard, we can do better than trying out all
possible permutations. Section 2.3.2 presents an exact algorithm that solves the
MinBDD problem exactly with an exponential running time — instead of a factorial
running time.

Based on the results that are presented in Sections 2.3.1 and 2.3.2, the usage of
heuristic algorithms is verified, also from a theoretical viewpoint. Thus, Sec-
tion 2.3.3presents heuristic algorithms — most of which we ourselves also imple-
mented for our data structure, which is presented in Section 4.2.

2.3.1 Hardness Results

In this section, we investigate the problem of finding the best variable order for a
given Boolean function 𝑓 from a hardness and approximability viewpoint.

NP-completeness First, let us investigate the hardness of the problem.

Instance: A BDD representing the Boolean function 𝑓 under the variable order-
ing 𝜋0.

Problem (MinBDD): Determine a variable ordering 𝜋, that minimizes the size of
the BDD representation of 𝑓 under the variable ordering 𝜋.

We would like to remind the reader that in this work, BDDs mean ordered binary
decision diagrams, unless stated otherwise. Let BDD(𝑓 , 𝜋) be the BDD for the
Boolean function 𝑓 , corresponding to the variable ordering 𝜋. The size of a BDD
is the number of nodes the BDD has, and it is denoted with |BDD(𝑓 , 𝜋) |.

In order to discuss hardness results, a decision variant of the problem has to be
defined. The decision variant of the problem, let us call it 𝑠 − BDD, is therefore the
following:

Input: A Boolean function 𝑓 and an integer 𝑠.

22

Output: Yes, if there exists a variable ordering 𝜋, such that |𝐵𝐷𝐷 (𝑓 , 𝜋) | ≤ 𝑠, no
otherwise.

Bollig and Wegener [14] proved that the 𝑠−BDD problem is NP-complete. It can be
decided in polynomial-time whether two given BDDs represent the same Boolean
function or not [25], thus the problem is in NP. Now, to prove that the problem is
hard, they give a reduction from the optimal linear arrangement problem. In the
optimal linear arrangement problem, we are given a graph 𝐺 = (𝑉, 𝐸), and a bound
𝑏. Let us denote the nodes with the {1, 2, . . . , 𝑛} numbers. Furthermore, define a
cost 𝑐𝜋 for every permutation 𝜋 on the nodes as follows:

𝑐𝜋 :=
∑︁
𝑢𝑣∈𝐸
|𝜋(𝑢) − 𝜋(𝑣) |.

Then we want to decide whether there is a permutation 𝜋′ of the nodes such that
the corresponding cost function 𝑐𝜋′ ≤ 𝑏. The output for the given instance is yes if
there is such a permutation, and no otherwise.

Approximation The NP-completeness result we have seen so far do not provide
any information regarding the degree of difficulty involved in approximating the
MinBDD problem. For the MinBDD problem, we say that an algorithm is an
approximation algorithm with an approximation ratio 𝑟 if, for all instances, it gives
a variable ordering 𝜋, such that |𝐵𝐷𝐷 (𝑓 , 𝜋) | < 𝑟 |𝐵𝐷𝐷 (𝑓 , 𝜋∗) |, where 𝜋∗ is the
optimal ordering.

Regarding approximation algorithms, Sieling [54] proved a very strong result in
a remarkable 30-plus page proof. He proved that, for any 𝑐 > 1 there is no
polynomial-time approximation algorithm with an approximation ratio 𝑟 for the
MinBDD problem unless P=NP.

So far, the results presented suggest that we cannot hope to give an approximation al-
gorithm with a constant approximation ratio. However, to the best of our knowledge,
there is still an interesting family of open questions in this field. More precisely,
approximation algorithms with a non-constant approximation ratio. We think that
even constructing a polynomial-time approximation algorithm with a approximation
ratio of 𝑛1−𝜖 , for any 𝜖 is not possible unless P=NP. For example, if this were true,
then there could not be an approximation algorithm with a approximation ratio of
√
𝑛. Similar results are known for the following two problems:

23

1. For every real number 𝜖 > 0, there can be no polynomial-time algorithm
that approximates the maximum clique to within a factor better than O(𝑛1−𝜖),
unless 𝑃 = 𝑁𝑃 [60].

2. For every real number 𝜖 > 0, there can be no polynomial-time algorithm that
approximates the chromatic number to within a factor better than O(𝑛1−𝜖),
unless 𝑃 = 𝑁𝑃 [60].

For example, a possible way to prove this conjecture would be by giving a reduction
from one of the two problems we have just mentioned.

2.3.2 Exact Algorithms

To identify the best variable order, the most straightforward method is to try out all
possible orders. For 𝑛 variables, there are 𝑛! different orderings. Building up a BDD
from the ground up can take exponentially long in the worst case. Thus determining
the optimum in this case takes O(𝑛!2𝑛) time. So the question arises: is there an
algorithm that finds the exact optimum in exponential time? The answer is yes, and
the algorithm is based on the fact — which is proved later in this section — that if
two permutations of the variables share a common suffix, then their corresponding
BDD’s lower part are identical too (the part that corresponds to the suffix) [57]. In
this section, we present an algorithm that solves the MinBDD problem optimally in
O(𝑛3𝑛) time, thus getting rid of the factorial factor. Friedman et al. [26] originally
presented an O(𝑛23𝑛) time algorithm, but by a result of Sieling and Wegener [55],
the running time can be reduced to O(𝑛3𝑛) time.

Let us start by introducing some notations. Let 𝑁 = {1, 2, . . . , 𝑛} be the set of the
indices of the variables. If 𝐵 is a subset of 𝑁 , then let

∏(𝐵) be the set of the variable
orderings in which the last |𝐵 | members are exactly the members of 𝐵, formally∏

(𝐵) = {𝜋 |𝜋(𝑛 − 𝑖) ∈ 𝐵, 𝑖 = 0, 1, . . . , |𝐵 | − 1}.

For a given index set 𝐵 we refer to the last |𝐵 | variables of
∏(𝐵) as the bottom

variables and to the remaining variables as the top variables. Besides, for an order
𝜋 and variable 𝑥𝑖, let 𝑁𝑖 (𝑓 , 𝜋) denote the number of nodes corresponding to the
decision variable 𝑥𝑖 in the BDD ordered according to 𝜋. The subsequent lemma [26]
states that when a horizontal cut is made in a BDD representing the function 𝑓 ,

24

separating the top variables from the bottom variables, the ordering of the top
variables has no impact on the part of the BDD below the cut if the order of the
bottom variables are fixed.

Lemma 2.1. Let 𝐵 ⊆ 𝑁, 𝑘 = 𝑛 − |𝐵 | + 1 and 𝑥𝑖 be a variable such that 𝑖 ∈ 𝐵.
Then there is a constant 𝑐 such that for each 𝜋 ∈ ∏(𝐵) satisfying 𝜋(𝑘) = 𝑖 we have
𝑁𝑖 (𝑓 , 𝜋) = 𝑐.

The original proof can be seen in [57], but we give a much simpler proof.

Proof. Let 𝜋1, 𝜋2 ∈
∏(𝐵) be two permutations of the variables. Since they are both

in
∏(𝐵), they share a suffix of length |𝐵 |. If we take the corresponding decision

trees and apply the two reduction rules (merging and elimination) bottom up, then
since the bottom |𝐵 | levels are the same, the rules are applied the same way in both
cases. Thus, the lower part — corresponding to the last |𝐵 | variables — of the BDDs
must be identical. □

Lemma 2.1 is quite useful in a variety of areas related to the investigation of the
sizes of the BDDs. Using this lemma, we now present a dynamic programming
algorithm that solves the MinBDD problem in O(𝑛23𝑛) time [26, 57].

The algorithm calculates the best ordering, regarding the bottom |𝐵 | variable, for
every 𝐵 ⊆ {1, 2, . . . , 𝑛}. In a usual dynamic programming fashion, if we know the
optimal size of the lower part of our BDD and the corresponding variable order for
all of the subsets of size 𝑡 − 1, then we can derive the optimal size of the lower part
of the BDD for all subsets of size 𝑡 in the following way.

Suppose that for all subsets 𝐵′ of size 𝑡 − 1, we know the optimal size and the
corresponding ordering of our BDD’s lower part, where the variables of 𝐵′ are the
bottom variables of our BDD, and let us be given a subset 𝐵 of size 𝑡. For every
variable 𝑥𝑖 whose index 𝑖 is in 𝐵, we would like to determine the optimal size of
the bottom part of the BDD, such that 𝑥𝑖 is on top of the bottom variables. This
number is the number of nodes corresponding to the variable 𝑥𝑖, plus the optimal
size of the lower part of the BDD, where the bottom |𝐵 | − 1 variables are the ones
whose indices are in 𝐵 \ {𝑖}, but luckily we already know the optimal bottom size
for all index sets of size |𝐵 | − 1. According to Lemma 2.1, the number of nodes
corresponding to the variable 𝑥𝑖 does not depend on the ordering of the other bottom
variables, so it is indeed sufficient to save the size of the best order for every 𝐵 \ {𝑖},

25

and the corresponding order, since by knowing them we can simply determine the
optimal size for each 𝑥𝑖 on top. To determine the number of nodes corresponding
to the variable 𝑥𝑖 simply construct any BDD where the variables whose indices are
in 𝐵 are the bottom variables and 𝑥𝑖 is at the top of the others, and read out the
number of nodes corresponding to 𝑥𝑖. After computing the optimal bottom size for
each 𝑥𝑖 on top, we can obtain the optimal size for 𝐵 by saving the best one with the
corresponding order.

The next step of the algorithm involves gradually raising the value of 𝑡. It is known
that the size of the lower part of the BDD for 𝑡 = 0 is 1 (the constant node). The
algorithm continues upwards until it has determined the overall order that produces
the optimal size of the BDD. As we have seen, Lemma 2.1 provides that the number
of nodes of the variable 𝑥𝑖 does not depend on the ordering of the variables of 𝐵\{𝑖},
but it says nothing about how to compute it. As shown above, one possibility is to
compute the BDD from the ground up for any order that is optimal for 𝐵 \ {𝑖} and
that has 𝑥𝑖 on top of the bottom variables. Then we can simply determine the number
of nodes corresponding to 𝑥𝑖 (which are at level 𝑛 − |𝐵 | + 1) by inspecting the BDD.
However, building up the BDD every time would be wasteful. Instead, we can store
the actual BDD and obtain all the desired orders by permuting the variables in that
BDD. Section 4.2.2 presents how the swap of two adjacent levels can be done in our
data structure, but it is very easy to modify the procedure for BDDs as well. Since
any permutation can be obtained by a series of adjacent swaps, it suffices to show
how these swaps are done.

What remains is how we should schedule the solving of the subproblems. The main
point we have to notice is that in this algorithm, it always suffices to swap two
variables at a time — which can always be achieved by at most 𝑛 swaps of adjacent
levels — since from any subset of size 𝑡, we can list all of the other subsets of
size 𝑡 such that every subsequent set differs in exactly one element. We do not get
into more details in this work. For more details regarding these swaps, the reader
is referred to [26]. The running time described in this form of this algorithm is
O(𝑛23𝑛), however, we would like to mention that using the two-phase bucket sort
technique introduced by Sieling and Wegener [55] the running time can be reduced
to O(𝑛3𝑛). To the best of our knowledge, this is the best exact algorithm to this day.

Note that the algorithm presented in this section, can be sped up in practice, some-
times dramatically. For example we might know of some variables that they are

26

symmetric. In this case, the swap of these variables can be omitted, in order to save
running time, since this swap would not change the size of our BDD [34].

2.3.3 Ordering Heuristics

In practice, the nature of the problem usually offers a natural order of the vari-
ables [39]. However, there are situations when no obvious order exists, leaving
us to only hope we can calculate some better orders with the aid of the computer.
Moreover, even if we do know a good approach to start a computation, the ordering
of the variables that works best in the beginning may become unacceptable in later
phases. So, if we don not insist on a strict a priori order, we could become way
more flexible in the handling of our BDDs. Instead, whenever a our current BDD
becomes complicated, we might attempt to use ordering heuristics to decrease the
size of our BDD.

For instance, we might repeatedly swap 𝑥 𝑗−1 and 𝑥 𝑗 in the sequence, for1 ≤ 𝑗 ≤ 𝑛,
redoing the swap if it increases the size of the BDD but keeping it otherwise [39].
Although simple to adopt, this strategy offers too little improvements in the size of
the BDD. Rudell [52] proposed a new, superior reordering method. His strategy,
which he calls "sifting," has been very effective and is one of the most widely used
dynamic reordering algorithms to this day. The basic idea is to start with one variable
of the ordering, say let it be at level 𝑖, and try swapping it up or down to all other
levels, that is removing 𝑥𝑖 from the ordering and then inserting it again at every other
possible level, picking the level that minimizes the size of the BDD. The algorithm
can be done by doing only swaps between adjacent levels.

Sifting Algorithm This algorithm puts every variable 𝑥𝑖 to its optimal position
with respect to the current ordering of the variables {𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛}.
It works by repeatedly swapping two adjacent levels. First swapping it to the bottom
of the BDD, then swapping it the top, keeping the best one. Section 4.2.2 describes
how this swap procedure of adjacent levels can be done. Let 𝐺 be the current BDD
during the run, and 𝑆 be the size of 𝐺. Then the pseudocode for the algorithm:

27

Algorithm 1 Sifting algorithm
1: for 𝑖 ← 1 to 𝑛 do
2: 𝑗 ← the index of variable 𝑥𝑖 in the current order
3: 𝑠← 𝑆 ⊲ Initialization
4: 𝐺0 ← 𝐺

5: 𝐺𝐵 ← 𝐺0
6: while 𝑗 > 1 do
7: Swap 𝑥 𝑗−1 ↔ 𝑥 𝑗 , and 𝑗 ← 𝑗 − 1 ⊲ Upward swaps
8: if 𝑆 < 𝑠 then
9: 𝑠← 𝑆 and 𝐺𝐵 ← 𝐺

10: end if
11: end while
12: 𝐺 ← 𝐺0
13: while 𝑗 < 𝑛 do
14: Swap 𝑥 𝑗+1 ↔ 𝑥 𝑗 , and 𝑗 ← 𝑗 + 1. ⊲ Downward swaps
15: if 𝑆 < 𝑠 then
16: 𝑠← 𝑆 and 𝐺𝐵 ← 𝐺

17: end if
18: end while
19: 𝐺 ← 𝐺𝐵.
20: end for

Let us investigate this algorithm in more detail. In the second row, we cannot say
𝑗 ← 𝑖 after the first iteration since it might not be true that variable 𝑥𝑖 is at the 𝑖th

place. So in order to run this algorithm, one must maintain an auxiliary array, which
tells us exactly which variable is at which position at any given point.

This algorithm is not the one Rudell originally described. The original algorithm
only operated with swaps. We simplified it by storing two additional BDDs, 𝐺𝐵

and 𝐺0. Although this version greatly reduces running time, space complexity is
slightly increased.

Algorithm 1 can be further improved regarding running time on several fronts
without seriously influencing the outcome. For example, if 𝑆 gets too big, say
greater than 1.2, 1.1 or even 1.05 times the size of𝐺0 at any point in any iteration, we
can terminate the corresponding — upwards or downwards — swapping procedure.
Additional swaps in the same direction are not expected to reduce our BDD size
under these circumstances [39], which we also tested.

The sifting algorithm can be rerun multiple times until there are no changes, which
means a local optimum has been found. This local optimum is 2-optimal, swapping

28

any two variable cannot result in a smaller BDD, by the definition of our algorithm.
According to Knuth [39], the additional gain the multiple iterations would provide
is usually not worth the extra effort. We will see in Section 4.2, that, in practice,
the improvement in the first iteration is way more significant than in the second and
onward.

Simulated Annealing Simulated annealing is a probabilistic, heuristic, combina-
torial optimization algorithm that can be used to solve a variety of combinatorial
problems [45, 59]. Next, we briefly present the basic idea on which this metaheuris-
tic is based and then describe a simulated annealing algorithm for the MinBDD
problem.

A simulated annealing algorithm tries to find a solution close to the global optimum
for a given function 𝑓 . Let us suppose that we have a system, where we can move
between so-called states of the system by changing it locally. Furthermore, every
state can be evaluated by a cost function 𝑐, and in this framework we look for the
cheapest state. Now that we have defined the framework, the simulated annealing
algorithm works in the following way: First of all, we give our system a quite high
temperature 𝑇 , then choose a random state of our system 𝑆0, and evaluate 𝑓 at
this random state. During the algorithm, the temperature 𝑇 gradually decreases.
Second, we choose another random state 𝑆1, evaluate it, and accept this new state
with a probability 𝑃𝑇,Δ, where this acceptance probability is determined by the
temperature of our system and the difference Δ := 𝑐(𝑆2) − 𝑐(𝑆1) of the cost of the
two states 𝑆0 and 𝑆1. Then, we typically repeat this procedure until our system
has substantially cooled down. The acceptance probability must fulfill the following
aspects. The probability𝑃𝑇,Δ must be greater than zero, even whenΔ is positive. This
feature is for the sake of preventing the method from getting stuck at local minima.
When the temperature tends to zero, so should 𝑃𝑇,Δ, and when the temperature
tends to some positive number, then 𝑃𝑇,Δ should too tend to some positive number.
Furthermore, as 𝑇 gets smaller, the system should more likely prioritize "downhill"
(cost decreasing) moves and penalize "uphill" moves. The algorithm gives back the
greedy algorithm when 𝑇 = 0, which only performs downhill transitions. There are
many variants of these kinds of simulated annealing algorithms. For example, in
the original definition, 𝑃𝑇,Δ was defined such that if Δ < 0 then 𝑃𝑇,Δ = 1. However,
this requirement is not essential for the method to work.

29

Next, we present the pseudocode of a simulated annealing algorithm for the MinBDD
problem. Throughout the algorithm, let 𝑆 denote the current size of our BDD.

Algorithm 2 Simulated annealing for solving MinBDD
1: 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 ← 0
2: 𝑇𝑒𝑚𝑝 ← 𝑘1
3: while 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 < 𝑘2 do
4: for 𝑖 ← 1 to 𝑘3 do
5: 𝑆′← 𝑆

6: Swap two randomly selected levels
7: Δ← 𝑆 − 𝑆′
8: if 𝑃𝑇,Δ ≤random(0,1) then
9: Swap back the two levels

10: end if
11: end for
12: 𝑇𝑒𝑚𝑝 ← 𝑔(𝑇𝑒𝑚𝑝)
13: if 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 > 𝑆 then
14: 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 ← 0
15: else
16: 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 ← 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 + 1
17: end if
18: end while

As we can see, there are a lot of parameters in an algorithm like this, and the effi-
ciency of the algorithm greatly depends on whether or not we can find the appropriate
parameters. In this case, we have to define the starting temperature (𝑘1), stopping
criteria (𝑘2), and how long each iteration should take (𝑘3); moreover, the probability
function (𝑃𝑇,Δ) has to be defined in line with the properties described above. Need-
less to say, one might construct infinitely many such probability functions, but some
of them are used more frequently than others. Lastly, the system needs to be cooled
down over time, and that is what the function 𝑔 describes — what the cooling rate
should be. Implementing a simulated annealing algorithm involves the fine-tuning
of these parameters. Section 4.2 shows, for a concrete, real-life example, how we
set the parameters.

We have presented two algorithms that are widely used in practical applications and
that we ourselves have implemented for our data structure as well (see Section 4.2).
But there are many other variable ordering heuristics that have been investigated,
including metaheuristics and more. Metaheuristics like genetic algorithms [1, 41]
and particle swarm techniques [49] have been devised, but these are just two examples
of the many. Plenty of other heuristic — not necessarily metaheuristics — could

30

be devised, perhaps more applicable for our compression problem. For example, an
idea that could be implemented is the following: Fix a small number 𝑘 , and find the
best order for each consecutive 𝑘 levels. Note that 𝑘 shall be pretty small, since in
each "window" there are 𝑛2𝑛 cases we have to try out. This idea could be refined
in many ways, but we do not go into details since we were just trying to show an
example.

In this section, we investigated so-called dynamic reordering algorithms, that is,
reorderings that manipulate the BDD itself with a series of swaps. But there is
another kind of reordering, the so-called static reordering, that attempts to establish
the variable ordering a priori, that is, prior to constructing the actual decision dia-
gram. Since static heuristics generate the final variable ordering before the decision
diagram is constructed, there is no assurance that the resultant order produces a high-
quality BDD. Alternatively, dynamic variable ordering is generally more effective in
providing efficient orderings since it allows for the adjustment of the variable order
during the actual construction of the decision diagram or after it is built. However,
in practice, dynamic reordering is typically much more time-consuming than the
more straightforward, static heuristics. There has been several studies regarding
static variable ordering as well, for example in [3, 22, 27], and there is a survey
about static variable ordering heuristics by Rice et al. [51].

2.4 Scheduling the Swaps

As we have seen in Section 2.3 every dynamic variable ordering algorithm is based
on one thing: the swapping of adjacent levels. The first question that arises is how
to do these swaps. Section 4.2.2 describes how to do swaps and investigate their
implementation. The second question arises after noticing that the algorithms are
composed of a sequence of swaps; therefore, there are many ways to schedule the
swaps. Jiang et al. [35] investigated these schedules first. In this section, we present
heuristics to schedule these swaps and compare their performances to one another.

Inversion between two orders

First, some basic notations. Let 𝜋𝑡 be the desired, target order of variables in our
BDD, and 𝜋𝑎 be the actual order. If the relative order of two variables 𝑥𝑖 and 𝑥 𝑗

is different in 𝜋𝑎 and 𝜋𝑡 , that is, if either 𝑥𝑖 ≺𝜋𝑎 𝑥 𝑗 and 𝑥 𝑗 ≺𝜋𝑡 𝑥𝑖 or 𝑥 𝑗 ≺𝜋𝑎 𝑥𝑖

and 𝑥𝑖 ≺𝜋𝑡 𝑥 𝑗 , then we say that these variables form an inversion. We say that an

31

inversion is swappable if 𝑥𝑖 and 𝑥 𝑗 are adjacent in our current order. Let 𝐼 (𝜋𝑎, 𝜋𝑡)
denote the total number of inversions between 𝜋𝑎 and 𝜋𝑡 :

𝐼 (𝜋𝑎, 𝜋𝑡) =
∑︁

1≤𝑖, 𝑗≤𝑛,𝑥𝑖⪯𝜋𝑎𝑥 𝑗
𝐼𝑖, 𝑗 (𝜋𝑎, 𝜋𝑡),

where 𝐼𝑖, 𝑗 (𝜋𝑎, 𝜋𝑡) is 1 if 𝑥𝑖 and 𝑥 𝑗 form an inversion, and zero otherwise. In the
literature, 𝐼 (𝜋𝑎, 𝜋𝑡) is called the Kendall tau distance [37].

Notice that it is always possible to transform 𝜋𝑎 to 𝜋𝑡 using exactly 𝐼 (𝜋𝑎, 𝜋𝑡) swaps.
Suppose, that we do not use more swaps than that, so our task is to schedule these
𝐼 (𝜋𝑎, 𝜋𝑡) swaps in such a way that it is the fastest or uses the least memory.

Heuristics

We begin by outlining four intuitive scheduling heuristics:

• Bring Up (BU): Choose the swappable inversion with the highest variable in
𝜋𝑡 not yet in its final position.

• Sink Down (SD): Choose the swappable inversion with the lowest variable in
𝜋𝑡 not yet in its final position.

• Lowest Inversion (LI): Choose the lowest swappable inversion.

• Highest Inversion (HI): Choose the highest swappable inversion.

Notice that the cost of a specific swap, which is proportional to the number of nodes
corresponding to the top variable being swapped (see Section 4.2.2), is ignored by
all of these heuristics. Thus, the following heuristic is convenient since it always
chooses the locally optimal one:

• Lowest Cost (LC): Choose the swappable inversion where the variable on top
has the fewest associated nodes.

This heuristic tries to minimize computing time, but another aspect we could try to
minimize is total memory usage.

• Lowest Memory (LM): Choose the swappable inversion that results in the
smallest BDD next.

32

To the best of our knowledge, there is no way to inexpensively and accurately
predict the size of our BDD after a swap. Therefore, in order to determine which
swappable inversion should be the next at a given point, we have to calculate each
possible swap. At first glance, this would lead to a tremendously long running
time, especially compared to the other heuristics. But notice that after a swap,
only those cases have to be recalculated in which the two variables we swapped
participate (at most two new ones), since a swap only changes the representation at
the corresponding two levels (see Section 4.2.2).

Jiang et al. [35] investigated how these heuristics compare to one another, and now
we present their computational results. What is not surprising is that in almost all
cases, LM was the slowest (not by that large of a margin), but used the least memory
out of the six heuristics. We are not surprised by this because that is the way this
heuristic was devised. However, there are two interesting observations.

First, in most of the cases, LC was the second slowest after LM. This is very
interesting since the way the heuristic LC was devised is to choose the swap that
locally takes the least time. This also shows the fact, that taking locally optimal
steps does not guarantee a globally optimal run in the end. In fact, in most of
the runs, it was quite far from the globally optimal running time since all of the
four basic heuristics resulted in a faster running time. This is how we arrive at the
second interesting observation. Which is that in general, the four basic heuristics
outperformed both LC and LM time-wise and were closer to LM than to LC memory-
wise, though these four heuristics were not really specifically defined for our BDD
reordering problem, while LC and LM were.

2.5 C-tuples

As we have seen in Section 1.1 mass customization aims to offer personalized
variants of products that share a basic structure but possess distinct properties.
This is achieved by assigning a value to specific product features that define their
customized characteristics.

One might wonder how big companies handle these product configurations. Let us
take, for example, a particular configurator, the SAP variant configurator [13]. Each
configurator has its own way of modeling a product, i.e., how to represent the valid
combinations of product variants. Product models often include tables as their basic

33

representation since they are intuitive, easy to implement, and easily understood by
everyone [30]. Tables are a common modeling technique, but they do not scale with
a lot of options, which limits their usefulness. To overcome this problem, the idea
might arise to compress the table itself into a more concise table, such that it retains
the functionality of a regular table. One such compression scheme is to compress
regular tables into a table of so-called c-tuples [36]. A c-tuple is a row in a table
whose cells might contain multiple values.

In the concept of SAP variant configurator modeling [13], the term variant table is
the same as we defined it, i.e., it is used to refer to a table listing valid (or excluded)
combinations of product features. Each column in the variant table represents a
different aspect of the product (such as the imprint, size, or color of a T-shirt). Table
cells with values like "Color = Red" indicate that the corresponding property in that
column has been assigned that value.

Let us see an example of a variant table. In this variant table, Table 3 we encoded
possible combinations for a T-shirt.

Imprint Size Color
Batman Small (S) Black
Batman Medium (M) Black
Batman Large (L) Black

Star Wars Medium (M) Black
Star Wars Medium (M) Blue
Star Wars Medium (M) Red
Star Wars Medium (M) White
Star Wars Large (L) Black
Star Wars Large (L) Blue
Star Wars Large (L) Red
Star Wars Large (L) White

Table 3: A variant table, representing possible product variants for a T-shirt.

In Table 3, each row equals a tuple of values, which we refer to as an r-tuple, short
for relational tuple. In line with our definitions, an r-tuple is a combination. In
contrast to an r-tuple, which can only store a single value for all properties, a c-tuple
can store several values from the same column’s property in a single table cell. The
term c-tuple is short for Cartesian tuple.

Using c-tuples, a variant table may be compressed simply by reorganizing and
partitioning it into unconstrained groups of combinations and then replacing each

34

such set by a c-tuple. Table 4 shows how Table 3 can be rewritten using just two
c-tuples.

Imprint Size Color
Batman S,M,L Black

Star Wars M,L Black, Blue, Red, White

Table 4: A possible representation using c-tuples for the variant table shown in
Table 3.

But here comes the difficulty: how should we reorganize the combinations to get the
most concise representation using c-tuples when using c-tuples for compression?
Clearly, the decomposition of a variant table into c-tuples is not unique; different
decompositions may have different sizes. Heuristics here as well are key to finding
good decompositions [36].

Another way to obtain a c-tuple representation was given by Haag [29]. He was
inspired by the idea that even the c-tuple representation could be compressed. In
order to compress this representation, he defined a special decision diagram, which
he named Variant decomposition diagram (VDD). This type of decision diagram also
has the same fundamental properties as other decision diagrams, such as the VDD
itself is determined uniquely by specifying the order of the variables corresponding
to the products. Furthermore, VDDs entail a decomposition into c-tuples; thus, they
are particularly useful in determining a good c-tuple decomposition. By iterating
over all possible paths in the VDD, the c-tuple compression stored in the VDD
can be extracted. However, this decomposition into a VDD is even more powerful
than decomposition into c-tuples. So summed up, Haag, instead of investigating
the problem of finding the best c-tuple decomposition directly, defined a special
decision diagram, which yields a more concise representation than the c-tuple itself,
and investigated the problem of finding the minimal size of these VDDs. VDDs
were further improved in [30].

The interesting point of Haag’s results is that by starting to investigate an alternative
storing method for our product variant storing problem, he ended up defining a
new type of decision diagram. This also shows how, in a variety of areas, decision
diagrams can be used and why they are so popular.

One might wonder how a representation using c-tuples compares to a DAG repre-
sentation. First, if we are given a table representation using c-tuples, we can define a

35

decision tree where the paths correspond to rows of the table, that is to the c-tuples.
This shows that the DAG representation is a stronger representation because in the
DAG representation we then merge identical subgraphs, so if there are any, we obtain
a smaller representation. However, defining c-tuples was not in order to get the most
concise representation but to reduce the input’s size, and that can definitely be done
using c-tuples.

3 Representations Exploiting Internal Structures

In the previous section, we saw that the most natural way to represent a variant table
is via a decision tree. Then, in the rest of the section, we investigated compressions
of that decision tree that utilized subtree repeats. However, this is not the only way
a tree can be compressed.

Previous work on tree compression can be divided into three major categories:

• Subtree repetitions,

• Tree pattern repeats,

• Succinct data structures.

Representations using subtree repetitions were presented in Section 2. This section
investigates the two other major categories. First, compression schemes exploiting
so-called tree pattern. Second, we briefly present succinct data structures.

3.1 Motivation of Walk Representations

In Section 2, we saw that for a variant table 𝑇 or combination set 𝐶, it is possible
to create a decision tree in which there is a one-to-one correspondence between
the valid combinations and the root-leaf paths. By merging the identical subtrees,
we obtained the so-called DAG representation of 𝐶. After having learned about
this representation, we asked ourselves what results could be obtained if we made a
representation where instead of the 𝑛-paths, exactly the root 𝑛-walks corresponded
to the valid combinations. To the best of our knowledge no representation that is

36

exactly like this have been investigated in the literature. This section, therefore, aims
to motivate further investigation of this “walk” representation.

Notice that the DAG representation itself is also a walk representation since 𝑛-
paths are root 𝑛-walks as well. Regarding this representation, we do not define
an algorithm that defines a unique walk representation for the combination set 𝐶,
like we did with the DAG representation. We will just take graphs that meet the
conditions above (like a DAG representation as mentioned above) and show that, if
defined correctly, this representation can vastly outperform the DAG representation.

So, let us define the following quantity for a given combination set 𝐶, and a repre-
senting walk representation 𝑊 :

𝑀 (𝐶,𝑊) = size of the corresponding DAG representation
size of the representing walk representation 𝑊

.

Since the DAG representation is uniquely defined for 𝐶 the definition is correct.
Regarding this representation, we show that there exists a series of combination sets
𝐶𝑘 and representing walk representations𝑊𝑘 such that 𝑀 (𝐶𝑘 ,𝑊𝑘) is arbitrarily large.
More precisely, we give a combination set series 𝐶𝑘 whose DAG representation’s
size is 𝑘 times the size of 𝑊 , i.e., if 𝑘 goes to infinity, then we obtain a combination
set series for which 𝑀 can be arbitrarily large. We prove this with the help of
Figure 15.

Consider Figure 15. In Figure 𝑎), we illustrate the initial graph 𝐷𝑘 that represents our
combination set 𝐶𝑘 . From now on, we consider this graph class, 𝐷𝑘 . The triangles
represent copies of a given graph 𝐻. Let 𝐷𝑘 consist of 1+ 2+ 4+ . . .+ 2𝑘 = 2𝑘+1 − 1
copies of 𝐻 connected as shown in the Figure. Now let us define this graph, 𝐻. Let
𝐻 be any graph that has the following properties:

1. Let it be a rooted graph with only one edge incident to the root.

2. Let it be already compressed with the hashing algorithm mentioned in Sec-
tion 2.

Now that we have defined 𝐻, let us turn our attention towards showing the size of the
different representations for the graph class 𝐷𝑘 . How does the DAG representation
look like? The schematic illustration of the DAG representation of 𝐷𝑘 is illustrated
in Figure 𝑏). Let us denote the representing DAG with 𝐷𝐷𝐴𝐺

𝑘
.

37

𝑎) 𝑏)

𝑐)

Figure 15: Figure a) shows the schematic representation of the graph𝐷𝑛; figure b) the
schematic representation of the corresponding DAG; and figure c) a corresponding
walk representation. Each triangle represents a schematic copy of the graph 𝐻.

However, we can define a walk representation 𝑊 that looks exactly like the graph
shown in Figure 𝑐) for any 𝑘 .

Now we can see that |𝑉 (𝐷𝐷𝐴𝐺
𝑘
) | ∼ |𝑉 (𝐻) |𝑘 , while |𝑉 (𝑊) | ∼ |𝑉 (𝐻) | for every 𝑘 .

It is easy to see that we can obtain a similar result for the number of edges. As
|𝑉 (𝐷𝐷𝐴𝐺

𝑘
) | is linearly proportional to 𝑘 , while |𝑉 (𝑊) | is constant, we obtained a

graph class 𝐷𝑘 , such that for every 𝐶𝑘 , which can be represented with 𝐷𝑘 , we can
also define a representing walk representation 𝑊 such that 𝑀 (𝐶𝑘 ,𝑊) is arbitrarily
large, thus we have proved our objective.

We began our study of this representation with a literature search. While DAG
representation uses subtree repeats, this walk representation can exploit tree patterns
as well. Specifically, this walk representation has not yet been addressed in the
literature, but articles have been published that reinforced their compression with
also exploiting the inner structure of the original graph [11, 12, 32]. They did this
using so-called top trees. Top trees are rooted, labeled, binary trees whose vertices

38

represent so-called clusters. These clusters correspond to subtrees of the original
tree. We discuss this method in more depth in Section 3.2. Having looked at these
works, we conclude that the method studied in these articles is similar in principle
since both exploit tree patterns, but still, investigation in more detail of the walk
representation could provide some interesting results.

As we have seen, the construction only depends on the graph 𝐻, therefore one can
create infinitely many graphs that have the two properties listed in 3.1, and infinitely
many combination sets, which can be represented with 𝐷𝑘 , thus𝑊 is an appropriate
walk representation, there are also infinitely many cases for which 𝑀 (𝐶,𝑊) is
arbitrarily large.

3.2 Compression with Top Trees

Although walk representations have not yet been addressed in the literature to the
best of our knowledge, other compression schemes that exploit tree patterns have.
One such compression scheme is the work of Bille et al. [12], which they call “tree
compression with top trees”.

In this section, we would like to briefly present the work of Bille, Gørtza, Landau,
and Weimann [12]. In their work, they introduced a new tree compression scheme
called top tree compression, where they not only use subtree repeats but also exploit
tree pattern repeats of a graph. A tree pattern of 𝑇 is any connected subgraph of
𝑇 . a tree pattern repeat is an identical occurrence (both in structure and labels) of
a tree pattern of 𝑇 . Figure 16 illustrates the difference between subtree repeats and
tree pattern repeats.

Figure 16: Illustration of the difference between subtree repeats (left) and tree
patterns (right) of a tree 𝑇 [12].

39

3.2.1 Introduction of Top Trees

Let us start by introducing the basic definitions. Let 𝑣 be a node in 𝑇 with children
𝑣1, 𝑣2, . . . , 𝑣𝑘 in left-to-right order. Then let us define 𝑇 (𝑣), as the rooted subtree
rooted in 𝑣 (a rooted subtree with root 𝑣 is the subtree that contains 𝑣 and all of its
descendants). Define 𝐹 (𝑣) as 𝑇 (𝑣) − {𝑣}, that is, 𝐹 (𝑣) is a forest. Let 𝑇 (𝑣, 𝑣𝑠, 𝑣𝑟) be
the tree pattern induced by the nodes of {𝑣}∪𝑇 (𝑣𝑠) ∪ . . .∪𝑇 (𝑣𝑟), for 1 ≤ 𝑠 ≤ 𝑟 ≤ 𝑘 ,
where 𝑣𝑠, . . . , 𝑣𝑟 are the children of 𝑣.

We define two kinds of clusters. The first one, the cluster with top boundary node 𝑣,
is a tree pattern of the form 𝑇 (𝑣, 𝑣𝑠, 𝑣𝑟), 1 ≤ 𝑠 ≤ 𝑟 ≤ 𝑘 . The second one, the cluster
with top boundary node 𝑣 and bottom boundary node 𝑢, is a tree pattern of the form
𝑇 (𝑣, 𝑣𝑠, 𝑣𝑟) −𝐹 (𝑢), 1 ≤ 𝑠 ≤ 𝑟 ≤ 𝑘 , where 𝑢 is a node from 𝑇 (𝑣𝑠) ∪ . . .∪𝑇 (𝑣𝑟). The
nodes of a cluster that are not boundary nodes are called internal nodes. Every edge
takes the form (𝑝(𝑣), 𝑣) for some 𝑣, where 𝑝(𝑣) is the parent of 𝑣. So, for example,
every edge (𝑝(𝑣), 𝑣) is a cluster with top boundary node 𝑝(𝑣) and bottom boundary
node 𝑣, unless (𝑝(𝑣), 𝑣) is a leaf edge, because then this edge is a cluster with only
a top boundary node 𝑝(𝑣).

Two edge disjoint clusters 𝐴 and 𝐵 whose vertices overlap on a single boundary node
can be merged if their union 𝐶 = 𝐴 ∪ 𝐵 is also a cluster. Clusters can be merged
in five different ways, as shown in Figure 17. Notice that the first two types of the
merges can only be done if there are no other clusters whose either boundary node
is the same as the common boundary node of 𝐴 and 𝐵. Furthermore, the last three
types can only be done if at least one of the clusters has no bottom boundary node,
since we do not define clusters with two or more boundary nodes.

The main idea of this compression is to create another tree T from 𝑇 , called a top
tree, such that the tree pattern repeats become subtree repeats in the transformed tree.
After this transformation, by applying the classic DAG compression to T a so-called
top DAG, TD, is obtained. This top DAG forms the basis of this compression.

Top Trees A top tree T of 𝑇 is a cluster-based hierarchical decomposition of 𝑇 .
It is an ordered, binary, rooted, labeled tree defined as follows:

1. The nodes of T correspond to clusters of 𝑇 .

2. The root of T correspond to the cluster 𝑇 itself.

40

Figure 17: Five possible ways of merging the clusters. The filled nodes are the
boundary nodes that remain boundary nodes in the merged cluster, while the empty
ones that become internal ones. [12]

3. The leaf nodes of T exactly correspond to the edges of 𝑇 . The label of each
leaf node is composed of the labels of the ends of the associated edges (𝑢, 𝑣)
in 𝑇 , ordered.

4. Each internal node of T corresponds to the merged cluster of its two children.
The label of each internal node is the type of the five merging choices the node
represents. The children are ordered so that the left child is the child cluster
visited first in a preorder traversal of 𝑇 .

Top trees were initially introduced by Alstrup et al. [4, 6, 5] for maintaining an uncom-
pressed, unordered, and unlabeled tree under link and cut operations. Bille et al. [12]
extended top trees for ordered and labeled trees as well. Their construction is based
on the work of Alstrup et al. but has been modified in several ways. Since the
objective of this representation is to obtain a superb compression, the construction
needs to be carefully organized. Furthermore, some combinations in the merging
of clusters have been disallowed in order to remain consistent with the definition of
clusters as tree patterns.

3.2.2 Construction of Top Trees

Now, a greedy algorithm is described to construct a top tree T from the tree 𝑇 of
height O(log 𝑛). The algorithm constructs the top tree in a bottom-up fashion. It
starts with the edges of 𝑇 as the leaf nodes of T . During the algorithm, T will be
a forest, and we maintain an auxiliary rooted ordered tree 𝑇 ′, initialized as 𝑇 ′ := 𝑇 .

41

We will be working on this auxiliary tree, 𝑇 ′, and based on the operations in this
tree, we will be updating T . The edges of 𝑇 ′ will correspond to the nodes of T ,
that is, to the clusters of 𝑇 . The algorithm consist of O(log 𝑛) iterations, and in
each iteration, some edges of 𝑇 ′ are merged, which corresponds to the merging of
clusters, in our original tree, and thus adding new nodes to T , representing these
merges. Furthermore, it is shown that a single iteration shrinks the size of 𝑇 ′ by a
constant factor, thus achieving the O(log 𝑛) runtime.

So the merging happens amongst the overlapping edges of 𝑇 ′ with one of the five
options presented in Figure 17. Suppose we want to merge the edge 𝑢𝑣 with the
edge 𝑣𝑤. Then there are two cases. 1. 𝑢 is the parent of 𝑣, and 𝑣 is the parent of 𝑤.
2. 𝑣 is the parent of both 𝑢 and 𝑤. In the first case, either type a) or b) of the merges
can be applied, depending on whether 𝑤 is a leaf node or not. The merge contracts
the two edges; that is, they are replaced with a single 𝑢𝑤 edge. In the second case,
either type c), d), or e) can be applied, but only if at least one of the clusters has no
bottom boundary. This merge replaces the two edges with either the 𝑢𝑣 or the 𝑣𝑤

edge.

Let us now present how each iteration is performed.

Step 1 (Horizontal merge): For each vertex 𝑣 in 𝑇 ′ that has at least 2 children, for
𝑖 ∈ {1, . . . , ⌊ 𝑘2 ⌋} merge the edges (𝑣, 𝑣2𝑖−1), (𝑣, 𝑣2𝑖) if 𝑣2𝑖−1 or 𝑣2𝑖 is a leaf node.
Furthermore, if 𝑘 is odd, 𝑣𝑘 is a leaf node, and none of 𝑣𝑘−2 and 𝑣𝑘−1 were leaves,
then merge the edges (𝑣, 𝑣𝑘−1), (𝑣, 𝑣𝑘).

A maximal induced path 𝑣1, 𝑣2, . . . , 𝑣𝑝 in a rooted tree is a maximal path such that
𝑣𝑖+1 is the parent of 𝑣𝑖 for all 𝑖 ∈ {1, . . . , 𝑝 − 1}, and all of the 𝑣2, . . . , 𝑣𝑝−1 vertices
have exactly one child.

Step 2 (Vertical merge): For every maximal induced path 𝑣1, 𝑣2, . . . , 𝑣𝑝 in 𝑇 ′, if 𝑝
is even, then merge the following pairs of edges:

{(𝑣1, 𝑣2), (𝑣2, 𝑣3)}, {(𝑣3, 𝑣4), (𝑣4, 𝑣5)}, . . . , {(𝑣𝑝−3, 𝑣𝑝−2), (𝑣𝑝−2, 𝑣𝑝−1)}.

If 𝑝 is odd, then merge the following pairs of edges:

{(𝑣1, 𝑣2), (𝑣2, 𝑣3)}, {(𝑣3, 𝑣4), (𝑣4, 𝑣5)}, . . . , {(𝑣𝑝−4, 𝑣𝑝−3), (𝑣𝑝−3, 𝑣𝑝−2)},

and if the edge (𝑣𝑝−1, 𝑣𝑝) was not merged in Step 1, then also merge the pair

42

{(𝑣𝑝−2, 𝑣𝑝−1), (𝑣𝑝−1, 𝑣𝑝)}.

Lemma 3.1. Each iteration shrinks 𝑇 ′ by a factor of 𝑐 ≥ 8
7 .

Proof. Assume that at the start of an iteration, our tree 𝑇 ′ has 𝑛′ nodes. It is easy
to see that any rooted tree on 𝑛′ nodes has at least 𝑛′−1

2 nodes that have one or zero
children. Consider the edges (𝑝(𝑣𝑖), 𝑣𝑖) of 𝑇 ′, where 𝑣𝑖 has less than two children.
Let𝑊 be the set of these edges. We show that at least half of these edges are merged
during an iteration. Since the number of these edges is at least 𝑛/2, 𝑛/4 edges are
merged, and since merging replaces two edges with one, there are at least 𝑛/8 times
less edges after every iteration. This is proved by assigning each non-merged edge
𝑢𝑣 ∈ 𝑊 to a unique, merged edge 𝑓 (𝑢𝑣). If we show such an 𝑓 , then that means that
there are at least as many merged edges as there are non-merged edges. And now
define 𝑓 :

Case 1: Suppose that 𝑣𝑖 is a leaf and has at least one sibling (i.e. 𝑝(𝑣𝑖) has more
than one child). Assume that (𝑝(𝑣𝑖), 𝑣𝑖) is not merged after the iteration. This
can only happen if it has no right sibling, and the previous — left — sibling, 𝑤 is
already merged, that is, (𝑝(𝑣), 𝑢) and (𝑝(𝑣𝑖), 𝑤) have been merged, where 𝑢 is the
left sibling of 𝑤. They could be merged only if one of them was a leaf. If 𝑢 is a leaf,
then let 𝑓 ((𝑝(𝑣𝑖), 𝑣𝑖)) be (𝑝(𝑣𝑖), 𝑢). Otherwise, if 𝑤 is a leaf, then let 𝑓 ((𝑝(𝑣𝑖), 𝑣𝑖))
be (𝑝(𝑣𝑖), 𝑤).

Case 2: Suppose that 𝑣𝑖 is a leaf with no siblings. Then, the only reason for not
merging 𝑝(𝑣𝑖), 𝑣𝑖 with (𝑝(𝑝(𝑣𝑖)), 𝑝(𝑣𝑖)) in Step 2 is because (𝑝(𝑝(𝑣𝑖)), 𝑝(𝑣𝑖)) has
been merged in Step 1. Therefore, if (𝑝(𝑣), 𝑣) is not merged, then let 𝑓 ((𝑝(𝑣𝑖), 𝑣𝑖))
be (𝑝(𝑝(𝑣𝑖)), 𝑝(𝑣𝑖)). Notice that we have not assigned any not-merged edge to
(𝑝(𝑝(𝑣𝑖)), 𝑝(𝑣𝑖)) in Case 1, because 𝑝(𝑣𝑖) is not a leaf.

Case 3: Suppose that 𝑣𝑖 has exactly one child 𝑤 and that (𝑝(𝑣𝑖), 𝑣𝑖) was not merged
in Step 1, otherwise we are done. Then the only reason for not merging (𝑝(𝑣𝑖), 𝑣𝑖)
with (𝑣𝑖, 𝑤) in Step 2 is because, based on the length of our path, we already merged
(𝑣𝑖, 𝑤) with (𝑤, 𝑢), where 𝑢 is the only child of 𝑤. Thus, we can assign (𝑝(𝑣𝑖), 𝑣𝑖)
to (𝑣𝑖, 𝑤). Notice that we have not assigned any not-merged edge to (𝑣𝑖, 𝑤) in Case
1, because 𝑤 is not a leaf, nor in Case 2, since 𝑣𝑖 has only one child, while in the
previous case it had to have at least 2 children. □

Due to the fact that each iteration can be calculated in linear time and reduces the

43

size of 𝑇 ′ by a factor greater than one, we obtain the following result:

Corollary Given a tree 𝑇 , the greedy top tree construction described above creates
a top tree of size O(𝑛) and height of O(log 𝑛) in O(𝑛) time.

For the final part of this compression scheme, let us define the top DAG of a tree.
The top DAG of 𝑇 , denoted TD, is the minimal DAG representation of the top tree
T . Recall that the minimal DAG representation can be computed in O(𝑛) time 2.1,
thus the entire top DAG construction can be done in O(𝑛) time.

3.2.3 Efficiency of Top Tree Compression

In the remainder of this section, we briefly present the results regarding this com-
pression scheme without any calculations or proofs.

First, the compression ratio of the top tree compression is always at least log0.19
𝜎 𝑛.

More precisely, for a given ordered rooted tree 𝑇 , whose labels are from the alphabet
𝜎, let the corresponding top DAG be TD. Then 𝑛TD = O(𝑛𝑇

log0.19
𝜎 𝑛
) [12]. This

result is particularly interesting if we take the information-theoretic lower bound
into account, which is Ω(𝑛𝑇

log𝜎 𝑛𝑇
). This lower bound is obtained by simply noting

that there are Ω(𝜎𝑛𝑇) string of length 𝑛𝑇 over an alphabet of size 𝜎, implying a
lower bound of Ω(𝑛𝑇 log𝜎) bits or Ω(𝑛𝑇

log𝜎 𝑛𝑇
) words. Comparing this to the stan-

dard DAG compression, we get a much better result since, in the standard DAG
compression, the worst-case bound is Θ(𝑛𝑇), given that a single route cannot be
compressed by using subtree repeats. Since then, Hübschle-Schneider et al. [32]
improved the above-presented tree compression scheme and managed to prove that
𝑛TD = O(𝑛𝑇

log𝜎 𝑛
· log log𝜎 𝑛𝑇). Furthermore, regarding this latest result, Dudek and

Gawrychowski [23] showed that unfortunately no smaller bound is possible for this
compression scheme, exploiting a weakness of this scheme. They proved this by con-
structing a family of trees for which the size of the top DAG is Ω(𝑛

logΣ 𝑛
log logΣ 𝑛𝑇),

where Σ = max{2, |𝜎 |}.

Second, one might wonder how the top tree compression compares with ordinary
DAG compression. Bille et al. [12] managed to prove that their devised top tree
compression can compress exponentially better than standard DAG compression and
is never worse than the DAG compression by more than a log 𝑛 factor, though in the
original paper it remained open whether this bound is strict. Later in [11] Bille et al.
showed that there exists a family of trees such that the DAG compression is always

44

smaller by a factor Ω(log 𝑛𝑇) than the top DAG. Furthermore, this bound can be
achieved even for an alphabet of size 1.

To the best of our knowledge, there has not yet been a comprehensive study compar-
ing computationally the original top tree comparison introduced by Bille et al.[12],
the improved version introduced by Hübschle-Schneider et al. [32], and other kinds
of methods used for compression in the literature, for example, DAG compression.
It might be worthwhile comparing all these different compression schemes.

3.3 Tree Grammars and Succinct Data Structures

In this section, we present two other approaches for tree compression. First tree
grammars: These compression schemes exploit tree pattern repetitions, just like top
tree compression. Second succinct data structures that are found to be significantly
different compression schemes compared to the ones presented in this study so far.

Tree grammars.
Tree grammars can take advantage of tree pattern repeats. Tree grammars, which
were examined in [16, 17, 43, 44, 46] generalize grammars from deriving strings to
deriving trees. A tree grammar can be exponentially smaller than the minimal DAG
in comparison to DAG compression [43]. Unfortunately, it is NP-Hard to compute a
minimal tree grammar [18], and all currently used tree grammar-based compression
schemes can only support navigational queries in time proportional to the grammar’s
height, which can be Ω(𝑛).

Succinct data structures.
A different approach to tree compression is via succinct data structures that com-
pactly encode trees. Jacobson was the first to notice that the simple pointer-based
tree representation using Θ(𝑛 log 𝑛) bits is inefficient. Since the number of unla-
beled binary trees on 𝑛 node is 1

𝑛+1
(2𝑛
𝑛

)
, the number of bits needed to differentiate

these trees is the logarithm of this quantity, which is 2𝑛 + 𝑜(𝑛), so this quantity is an
obvious lower bound to the storage complexity of binary trees. Jacobson presented
a data structure [33], which used 2𝑛 + 𝑜(𝑛) bits for all trees, not just binaries, and
which supports various queries by inspection of Θ(log 𝑛) bits. This space bound
is asymptotically optimal with the information-theoretic lower bound. Munro and
Raman [50] demonstrated how to obtain the same bound using only constant time for
queries in the RAM model. Such representations are called succinct data structures

45

and have been generalized to include a richer set of queries such as subtree-size
queries [9, 50].

Regarding the labeled case, Ferragina et al. [24] gave a representation using
2𝑛 log |Σ | + 𝑂 (𝑛) bits (where the labels are from Σ), that supports basic navigational
operations among the immediate neighbors of a node 𝑣, such as finding the parent
of node 𝑣, the 𝑖th child of 𝑣, or any child of 𝑣 with a label 𝑙.

Ferragina et al. also developed the concept of 𝑘 th order tree entropy 𝐻𝑘 in a restricted
model. In this model, used by popular XML compressors [19, 42], the label of a
node is a function of the labels of all its ancestors. Ferragina et al. provided a
representation that required no more than 𝑛𝐻𝑘 (𝑇) + 2.01𝑛 + 𝑜(𝑛) bits for such a
tree 𝑇 . It should be noted that the aforementioned space constraints do not ensure
a compact representation when the input contains numerous tree pattern repeats or
subtree repeats, unlike in other representations. In particular, the total space is never
𝑜(𝑛) bits.

4 Efficient Implementation of the Ordering Heuris-
tics

So far we considered Problem 1.1 mainly from theoretical perspective. This section
presents the approaches from a practical point of view. We implemented a data
structure to handle Problem 1.1. This section presents the basic functionalities of
our data structure and provide a comprehensive comparison of the results obtained
by our data structure versus a state-of-the-art solver.

4.1 Compact Representation of the Solutions of a Sudoku

The first example we investigated — which we later extended, see Section 4.2 —
was the following problem: for a given Sudoku board, encode all of its solutions as
compactly as possible. At first glance, this might not seem like an attractive problem,
since usually for a given Sudoku board there is only one solution. However, if some
of the predefined values are deleted from the cells, the number of solutions increases,
thus resulting in an interesting problem. We chose this task in the hopes that the
results obtained in this problem could be used in the future to compress real-life

46

variant tables.

In the classic Sudoku problem, our objective is to fill a 9 × 9 grid with digits so that
each column, each row, and each of the nine 3 × 3 subgrids that compose the grid
contain all of the digits from 1 to 9. One might define other games by changing the
size of the grid. For now, let us consider the classic game. As a first step, we needed
a Sudoku solver that could list all possible solutions of a Sudoku table (which could
even be empty). This can be solved with a backtracking algorithm. We present
this algorithm, because it will be modified later to not only list all of the possible
solutions of our given table, but to construct the DAG representation of the solutions
straight away. Let us be given the processing order of the cells; 𝑇 , based on which
we fix the values in the cells. At a node 𝑣 in the backtracking tree at level 𝑖, process
the cell 𝑇 [𝑖]: for each of the possible values 𝑘 ∈ 1, . . . , 9 that causes no collision,
test whether the Sudoku can be solved by setting the value of the cell 𝑇 [𝑖] to 𝑘 , i.e.,
add 𝑇 [𝑖] = 𝑘 to our table and descend to the next level. If we get down to the last
level and there is a value we can write into 𝑇 [89] (that is, into the last cell to be
processed) such that it does not cause any collision, then it means that we obtained a
feasible solution for our Sudoku. Save this solution, and the backtracking can return
and continue the traversal of the backtracking tree. At a general step, after trying
out every value in 𝑇 [𝑖] at our node 𝑣, let the recursion return true to the parent of 𝑣,
𝑝(𝑣), if the Sudoku was solvable with any of the values, and let it return false if the
Sudoku was not solvable with any of the values.

At the end of this backtracking algorithm, we have all of the solutions to the given
input Sudoku table listed. But our objective is to store these solutions concisely.
Next, we show how the algorithm can be modified not only to enumerate all solutions
but to build a representing DAG during the execution, which can be read out at the
end of the run.

One way to obtain the DAG representation encoding all of the solutions of a given
Sudoku table would be by using the algorithm described in Section 2.1. Create a
decision tree from the solutions, then merge the identical subtrees. But this method
would require the construction of a decision tree, which we would like to avoid. Now
we show how to construct the same DAG representation 𝐷 during the run without
constructing the decision tree.

A dictionary is a data structure that has a set of keys, and each key an associated
value. For example hash tables are dictionaries. Let 𝑆 be a new dictionary whose

47

keys are sets of tuples and whose values are integers. During the construction of
our DAG 𝐷, as 𝐷 grows, so will the number of different rooted subdags too. Each
rooted subdag of 𝐷 receives a label, which tells us what was the first time a subdag
like that was encountered. This dictionary 𝑆 will contain every piece of information
required about these rooted subdags. Next, we present the structure of 𝑆 in order to
understand the usage of 𝑆 during the algorithm more easily.

• Each entry in the dictionary corresponds to a vertex 𝑣 of the DAG representa-
tion.

• The values are the labels of the subdag rooted at 𝑣.

• The key corresponding to the entry of 𝑣 is an ordered tuple of pairs. Each pair
(𝑥, 𝑦) represents a child 𝑐 of 𝑣, where 𝑥 is the label of the subdag rooted in 𝑐

and 𝑦 is the value of the edge 𝑣𝑐.

We now show how to construct the DAG representation during the run of the
backtracking algorithm.

Suppose that we are at a node 𝑣 of the backtracking tree, and the algorithm has just
finished traversing the subtrees of the backtracking tree rooted in the children of 𝑣,
i.e., it has just stepped back from the last child. Then, by induction, we know which
subdags are rooted in the children, since below 𝑣 we have already compressed the
subtrees of the children into DAGs. Let the children be 𝑣1, . . . , 𝑣𝑘 , the values of
the edges, by which we entered the children, be 𝑒1, . . . , 𝑒𝑘 — that is the value we
wrote into the corresponding cell — and the label of the subtrees rooted underneath
be 𝑙1, . . . , 𝑙𝑘 . Let 𝑤 := [(𝑙1, 𝑒1), (𝑙2, 𝑒2), . . . , (𝑙𝑘 , 𝑒𝑘)], where this list is sorted
lexicographically. Then there are two possibilities: Either𝑤 ∈ 𝑆 or 𝑤 ∉ 𝑆.

In the first case, read the corresponding value of 𝑤 from 𝑆 and return it. In the
second case, add a new entry: (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) to our dictionary 𝑆. Let the key be 𝑤,
and the corresponding value be the index of the subdag that has been defined most
recently plus one (this will be the label of the subdag rooted in 𝑣). After expanding
the dictionary, return the value.

This backtracking algorithm builds the dictionary 𝑆 while running, from which
the DAG representation can be constructed at the very end. Since parent-child
relations are stored in the keys, it is possible to build the DAG in a nice sequential
way. However, due to the structure of the dictionary, we do not get the explicit

48

representation, so in addition, an explicit representation must be built during the
algorithm if we want to meet the conditions to have a representation on which various
queries can be done quickly. The most important thing to keep in mind when devising
this explicit representation was that after the swapping of two adjacent levels, the
new representation should be easily calculable since we would like to implement
ordering algorithms for our data structure as well, and these algorithms are based
on the swaps of adjacent levels. Section 4.2.2 presents how this swap operation can
be performed in our data structure.

Once we have the representation and a swapping algorithm, we can focus on figur-
ing out how the variables should be ordered. So to recall, our task is to determine
the solutions to a given Sudoku table and represent them in the most compact way
possible. In our case, we considered and encoded the solutions to an empty 4 × 4
Sudoku table. As a first step, we implemented a similar procedure to the sifting
algorithm [52], which was discussed in Section 2.3. We then implemented our
own heuristic algorithm based on simulated annealing, see Algorithm 2. Simulated
annealing algorithms were also investigated in Section 2.3 in more depth. A com-
parison between these two algorithms can be seen in Figure 18. In this example,
we have taken the solutions of an empty Sudoku and examined the sizes of their
DAG representations for different variable orderings before and after reordering.
The horizontal axis shows the original size of the representation for different initial
variable orderings before reordering, while the vertical axis shows the size of the
representation after reordering. The blue dots correspond to the simulated annealing
algorithm, while the red ones correspond to the sifting-based algorithm.

As we can see, our algorithm based on simulated annealing found a representation
of size 501 in all cases — which is supposedly the optimal size in our representation
to encode all of the solutions of a 4 × 4 Sudoku — while the heuristic based on the
sifting algorithm found the best representation only in a few instances.

In order to compare our algorithm with the state-of-the-art reordering algorithms
in the Python library DD, we had to switch from our MDD-like representation to
a BDD-like representation. To do this, we also modeled the problem using logical
formulas and then modified the algorithms accordingly. The running results are
shown in the tables in Figure 19. Each row corresponds to a concrete run. The first
column includes the size of the representation before reordering, the second the DD
achieves, while the third our algorithm achieves after reordering.

49

1,000 1,500 2,000

600

800

1,000

1,200

Original size

Si
ze

af
te

rr
eo

rd
er

in
g

sifting
SA

Figure 18: Comparison between the two approaches for the Sudoku problem; sifting
and simulated annealing based.

Observe that, for smaller BDDs, there is not much difference between the reorder-
ings, but as we increase the size of the BDD, in general, our simulated annealing
heuristic performs better and better compared to the best algorithm implemented in
the DD library.

We do not discuss running times regarding this Sudoku problem because, at the
time we investigated it, the implementation of our representation still lacked the
implementation of the efficient level swapping algorithm described in Section 4.2.2.
The fact that we had to repeat the backtracking constructing process for each swap
in order to calculate the size of the representation for the new order slowed down the
execution of our heuristics remarkably, making it much more time-consuming than
the techniques from the DD library.

Although we examined this task in Python, we have implemented the more general
representation in C++. In the following sections, we switch to analyzing this more
general program.

50

Original DD SA

105 79 81
336 196 198
336 196 219
336 196 198
336 196 186
336 196 225
336 196 192

1,336 843 879
1,336 843 880
1,336 843 876
1,336 843 873
1,336 843 935
1,515 933 889
1,515 936 901
2,496 1,241 1,148

Original DD SA

2,496 1,225 1,222
2,496 1,260 1,183
2,496 1,330 1,103
2,496 1,284 1,368
2,496 1,196 1,270
4,340 2,325 2,274
4,340 2,220 2,252
5,991 4,017 4,112
5,991 3,958 2,765
5,991 3,978 3,290
5,991 3,911 4,112
5,991 3,938 3,904
5,991 4,032 3,069
5,991 3,973 4,007
5,991 4,094 2,923

Figure 19: The heuristic based on simulated annealing compared to the reordering
algorithm found in the DD Python library.

4.2 Implementation details

In this section, we present our data structure that we devised to handle Problem 1.1.

To begin, let us review the specific real-life problem we aim to address. We are
given a variant table that were defined in Section 1.1. A variant table is used to
store combinations. A fragment of a concrete real-life variant table we were given
to compress is shown in Table 5.

CUCO_OBJE GEN_S_MODEL GEN_S_VAR GEN_S_VERSION
MF7S.145D6 Q7I 6 Q7IST2

MF7S.145DVT Q7I 1 Q7IST2
MF7S.145D6 Q7J 7 Q7IST2
MF7S.145D6 Q7A 2 Q7IST2

Table 5: A fragment of a real-life variant table.

Our goal is to encode the combinations in this variant table as efficiently as possible
so that in the resultant representation certain operations can be performed efficiently,
such as searching among or modifying the represented combinations. We imple-
mented a data structure that is based on the DAG representation (see Section 2.1)
to tackle this problem. In the next section, we present the construction of our data

51

structure, then we demonstrate how the swap operation may be carried out in our data
structure. After that, we briefly present a state-of-the-art solver, the CUDD package,
and then compare our reordering algorithms to the algorithms implemented in the
CUDD package. Finally, we outline the plans for the future of this data structure.

4.2.1 Construction

Let us be given a variant table. We construct our representation exactly the way
presented in Section 2. First, we construct the decision tree corresponding to the
variant table, then we compress this tree into a DAG using the hashing algorithm,
i.e., merging identical subtrees, see Section 2.1. In addition, we create and store a
dictionary that we described in the backtracking algorithm in Section 4.1.

After obtaining the DAG representation for the given order, we can turn our attention
toward the reordering algorithms. Even at this point, we could implement reordering
algorithms, reconstructing the DAG representation from scratch each time we were
interested in the size of a different variable order, but this approach would be way
too wasteful. Instead, by implementing the swap process for our data structure, the
running time for the reordering algorithms can be significantly decreased. In the
next section, we investigate how one might execute the swap process.

4.2.2 Swap of Adjacent Levels

As we saw in Section 2.3, the foundation of any algorithm for ordering variables is the
swap of adjacent levels. This begs the question of how to carry out these exchanges.
This section discusses the process of making these exchanges and investigate their
implementation.

Suppose we want to swap the first row with the second one; since it is easier to talk
about the first and second levels instead of the 𝑖th and the (𝑖 + 1)th. The process is
the same for the general case with a few exceptions, which are discussed at the end
of this section.

Let us take a concrete example. At the upper part of Figure 20, we can see the two
levels before the swap, and at the bottom part, after the swap. A swap only changes
the number of nodes on the second level. The nodes of every other levels are kept
intact, including the first and third levels as well. However, the edge number might

52

change between both the first and second and also second and third levels. As we
can see in the figure, we have one more node after the swap, so ultimately, this swap
increases the total number of nodes in our representation.

Before the swap

𝐴 𝐵

𝑢0 𝑢1 𝑢2 𝑢3

𝐶 𝐷 𝐸

1 2 2 1 3

𝑎 𝑏 𝑎 𝑏 𝑐

After the swap

𝐴 𝐵

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

𝐶 𝐷 𝐸

𝑎 𝑏 𝑎 𝑏

1 2 1 2 13

𝑐

Figure 20: Example for the swap process.

Let us now describe the swap process precisely in our DAG representation. Let the
current DAG representation be 𝐷. We start the procedure by deleting every entry
from our dictionary corresponding to the nodes on the second level. Let 𝑄0 be the
set of vertices at the second level at the beginning, and 𝑄 be the set of the new
vertices on the second level. At the start, 𝑄 is empty. We do the following for each
vertex 𝑣 at the first level: Let 𝑃𝑣 be the set of the paths of length two rooted in

53

𝑣 whose second vertex is in 𝑄0, and let 𝑅𝑣 be an auxiliary vertex set — to which
vertices are added later. Then iterate through 𝑃𝑣, let (𝑒1, 𝑒2, 𝑤) be a triple, where 𝑒1

is the value of the first edge, 𝑒2 is the value of the second edge, and 𝑤 is the label of
the third node of the current path. Then there are two cases:

1. There is a node 𝑢 ∈ 𝑅𝑣 such that the value of the edge 𝑣𝑢 is 𝑒1.

2. There is no such 𝑢.

In the first case, add the arc 𝑢𝑤 with value 𝑒2 to 𝐷. In the second case, add the
node 𝑢 to 𝑅𝑣, the arc 𝑣𝑢 with a value 𝑒1 and the arc 𝑢𝑤 with a value of 𝑒2 to 𝐷.
After iterating through 𝑃𝑣, consider 𝑅𝑣. For each node 𝑢 in 𝑅𝑣 check whether there
is another node 𝑤 in 𝑄 such that 𝑤 spans the same rooted subtree as 𝑢. If there is,
then merge the nodes 𝑢 and 𝑤. Otherwise, delete 𝑢 from 𝑅𝑣 and add it to 𝑄.

After iterating through the nodes on the first level, delete all vertices in 𝑄0 and all
incident arcs. Thus, we obtained the DAG representation where the first and second
variables are swapped. In addition, we need to keep the dictionary updated during
the run (in practice, that is how we check if there is another identical subtree). We
do this by adding a new entry each time a node is placed into 𝑄. Moreover, at the
end, all of the dictionary entries have to be updated on the first level accordingly.

In the general case, the swap of the 𝑖th and the (𝑖 +1)th levels can be done identically,
with the exception that the nodes in the 𝑖th level have incoming arcs, and those ones
have to be kept intact.

4.2.3 Experimental Results

In this section, we present experimental results using our data structure.

Let us begin by presenting results regarding the sifting algorithm. We implemented
Algorithm 1 with a few modifications. As we have mentioned in Section 2.3.3,
Algorithm 1 might be rerun until we obtain a 2-optimal solution.

Figure 21 illustrates how successive iterations managed to improve the size of our
representation. Each bar shows the percentage of reduction in size of the current
BDD compared to its size at the start of the corresponding iteration. As we can see,
the first iteration reduced the size of our DAG by over 80% in general, the second by
around 10%, and the other iterations only marginally. We iterated Algorithm 1 until

54

Figure 21: The column denoted by the label 5+ is the sum of all of the gain obtained
after the fourth iteration.

a 2-optimal solution was found, so there were runs which took up to 12 iterations,
but usually it ended in 6 − 8 iterations. Observe that in general, we were about 3%
off from the 2-optimal solution after the 4th run. The results are based on multiple
variant tables taken from real-life examples.

Figure22 illustrates the running times for each iteration. Here, the last column
should be understood as from the fifth iteration onwards (basically from the second),
all iterations running times are the same in general. As we can see, the first iteration,
where the big improvement is, usually takes around six times longer than any other
iteration. According to Knuth [39], additional iterations are usually not worth the
extra effort, but based on our measurements, it is usually worth running two iterations
since it only increases the running time by 15% and reduces the number of nodes in
the representation by almost 10%.

Another interesting aspect is how the size of the representation changes over time
during reordering. Figure 23 illustrates this for a concrete real-life variant table
and for some random-shuffled initial variable orders. The curves illustrate how this
algorithm reduces the size of our representation in the course of its execution.

We also implemented Algorithm 2. As we have mentioned in Section 2.3.3, im-
plementing an algorithm like this involves a lot of fine-tuning of the parameters.

55

Figure 22: Running time for each iteration in Algorithm 1.

Figure 24 illustrates the same as Figure23, just for this second algorithm. As we
can see, both Algorithms 1 and 2 obtain similar results despite their fundamentally
different approaches.

We also wanted to compare our reordering algorithms with state-of-the-art reorder-
ing methods. We chose the CUDD package for the sake of comparison. CUDD is
an abbreviation for Colorado University Decision Diagram and was developed by
Fabio Somenzi [56]. As the name suggests, the CUDD package can be used for the
manipulation of multiple types of decision diagrams, including BDDs, ADDs and
ZDDs. In order to be able to compare our results to the results of CUDD, we had to
apply some tricks since CUDD deals with binary decision diagrams.

In Section 2.2, we have already seen how a BDD 𝐵 representing our DAG repre-
sentation 𝐷 can be constructed with the help of the gadget illustrated in Figure 6.
However, we cannot apply reorderings to this BDD just yet because we would like
to keep the levels corresponding to the same gadgets adjacent in our BDD 𝐵 during
reordering, since at the end, only this way could we obtain a BDD that corresponds
to a real order on the original variables — which we need in order to compare the
results. Fortunately, there is a feature in CUDD that lets us “group” variables.If
we group variables, then CUDD handles the reordering as if the grouped variables
would be glued together.

56

Figure 23: Running time for each iteration in Algorithm 1.

Figure 24: Running time for each iteration in Algorithm 2.

57

Notice that during the comparisons, we give CUDD a small advantage since, in
theory, we could reinforce our DAG representation with a generalized form of the
elimination rule, but after testing it in practice, this rule would improve the size
of the representation by less than 1%. Since adding this rule would also mean we
lose the property that exactly the 𝑛-paths correspond to the valid combinations, we
chose not to continue with that rule. Tables 6 and 7 present how our algorithms
implemented using our data structure compare to the ones in the CUDD package.
Table 6 compares the sizes of the representations our Algorithms (𝐴1, 𝐴2, 𝐴3) obtain
to the sizes of the representations the algorithms in the CUDD package (𝐶1, . . . , 𝐶5)
obtain on different inputs. In the tables the row correspond to the sam input,
and the column to the specific algorithms. Our algorithm 𝐴1 corresponds to the
implementation of Algorithm 1, 𝐴2 to Algorithm 2 while 𝐴3 to a combination of
these two algorithms, i.e., after a variant of the 𝐴2 algorithm, we run a variant of the
𝐴1 algorithm to find a 2-optimal solution.

𝐴1 𝐴2 𝐴3 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝑉𝑇11 444 456 450 418 836 366 514 619
𝑉𝑇12 448 460 400 411 419 390 440 532
𝑉𝑇13 451 436 390 391 973 382 385 514
𝐴𝑉𝐺 447.7 450.7 413.3 406.7 742.7 379.3 446.3 555
𝑉𝑇21 2706 3064 2501 2587 3050 2510 3050 4162
𝑉𝑇22 2705 2988 2426 2914 3337 2541 3337 3199
𝑉𝑇23 2878 3339 2490 2786 3366 2414 2689 3340
𝐴𝑉𝐺 2763 3130.3 2472.3 2762.3 3251 2488.3 3025.3 3567
𝑃11 9252 9307 9197 9258 9272 9224 9207 9185
𝑃12 9223 9300 9162 9241 9232 9196 9213 9252
𝐴𝑉𝐺 9237.5 9303.5 9179.5 9249.5 9252 9210 9210 9218.5

𝐴1 𝐴2 𝐴3
𝑃21 14558 14517 14508
𝑃22 14516 14510 14496
𝐴𝑉𝐺 14537 14513.5 14502

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5
𝑃21 14534 14546 14526 14499 14535
𝑃22 14501 14569 14547 14496 14576
𝐴𝑉𝐺 14517.5 14557.5 14536.5 14497.5 14555.5

Table 6: Comparison of the representation sizes obtained by several algorithms.

58

The first column contains the names of the input data sets. The subscript means
that we are given the same variant table, but we constructed our representation in
a different variable order and applied our algorithms to the representation obtained
this way. On the one hand, we compared our results based on variant tables taken
from real-life applications (𝑉𝑇1, 𝑉𝑇2). On the other hand, recall the path encoding
problem investigated in Section 2.2.4. In that problem, we were given a grid graph,
and we wanted to encode all of the paths going from one corner to the opposite
corner. Motivated by that problem, we investigated the encoding of monotone paths
in a grid graph, i.e., the paths, only including edges that go from left to right, or from
top to bottom if we want to encode the paths from the top left corner to the bottom
right corner. The problem defined exactly this way is not that interesting since the
grid graph itself would be the most compact way one might represent all of the paths
using the DAG representation, which solution is found by all of the algorithms. So
we investigated the problem where we only wanted to encode a certain subset of the
possible monotone paths. The data sets 𝑃1 and 𝑃2 correspond to these cases.

𝐴1 𝐴2 𝐴3 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5
𝑉𝑇11 1.18 8.43 12.77 0.02 0.01 4.5 2.72 0.02
𝑉𝑇12 1.13 8.2 10.23 0.03 0.01 3.94 4.19 0.02
𝑉𝑇13 1.17 12.49 11.38 0.03 0.01 2.7 3.35 0.03
𝐴𝑉𝐺 1.16 9.71 11.46 0.03 0.01 3.71 3.42 0.02
𝑉𝑇21 24.2 106.5 156.6 0.5 1 74.8 58.3 0.7
𝑉𝑇22 24.8 145.5 160 0.4 0.9 79.3 66 0.8
𝑉𝑇23 26.2 140.8 180 0.5 0.8 85.2 54.8 0.3
𝐴𝑉𝐺 25.1 130.9 165.5 0.5 0.9 79.8 0.5 0.4
𝑃11 35.9 72.8 154.7 10.6 10.4 17.3 16.4 10.2
𝑃12 36.4 85.6 159.8 9.5 11.3 20.9 17.7 11.3
𝐴𝑉𝐺 36.2 157.3 79.2 10.1 10.9 19.1 17.1 10.8
𝑃21 58.9 238.9 282.5 9.9 11.6 32 24.6 10.3
𝑃22 56.9 273.6 457.1 10.9 11.4 35.8 26.2 8.8
AVG 57.9 256.3 369.8 10.4 11.5 33.9 25.4 9.6

Table 7: The running times of the considered algorithms. All data are in seconds.

Based on Tables 6 and 7 algorithms 𝐶3 and 𝐶4 from the CUDD package Let us now
examine the results obtained by our data structure. Based on Tables 6 and 7 from
the CUDD package algorithms 𝐶3 and 𝐶4 obtain the best results, although they are
the slowest. Surprisingly, on different inputs, different algorithms performed better.
On the variant tables taken from real-life applications 𝐶3 performed better while on

59

the path encoding problem 𝐶4 performed better. Now considering our algorithms,
𝐴3 outperformed both 𝐴1 and 𝐴3 in almost all cases, although it achieved the better
orderings over a longer period of time. Comparing 𝐴3 to 𝐶3 and 𝐶4, we can see that
usually — except in the smallest case — it outperformed both.

Regarding the running times, our future is to beat the baseline 𝐶𝑖 algorithms as
well; therefore, in the next section, we give potential approaches for speeding up our
implementation.

4.3 Future Plans for the Data Structure

As we saw in the previous section, our data structure can handle Problem 1.1 quite
well as far as the quality of the output is concerned; nevertheless, this section presents
several areas where our data structure could be enhanced.

Algorithms 𝐴1, 𝐴2 and 𝐴3 are usually slower than the ones in the CUDD package.
There are several ways we could speed up our reordering algorithms. For example,
one way would be to accelerate the swap procedure. The algorithm now imple-
mented an order of magnitude slower than the one presented in Section 4.2.2, so
implementing the presented one would likely decrease the running times in practice
as well. The algorithms themselves could also be sped up by experimenting with
stronger stop conditions than the ones implemented now.

Our data structure currently uses a balanced binary search tree as the dictionary
introduced in Section 4.1. A way to enhance our data structure would be to replace
this data structure with a hash table. This would probably speed up the search for
identical subtrees significantly. Since this search for identical subtrees would be
interesting in the construction of our representation, this observation brings us to
the most interesting possible extension of our data structure. Our future goal is to
extend the DAG representation in such a way that it is capable of generating all
the valid combinations based on a set of rules and building up the representation
simultaneously.

60

References

[1] B. Abdalhaq, A. Awad, and A. Hawash. A fast binary decision diagram (BDD)-
based reversible logic optimization engine driven by recent meta-heuristic
reordering algorithms. Microelectronics Reliability, 123:114–168, 2021.

[2] S. B. Akers. Binary decision diagrams. IEEE Transactions on computers,
27(06):509–516, 1978.

[3] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Mince: A static global variable-
ordering heuristic for SAT search and BDD manipulation. J. Univers. Comput.
Sci., 10(12):1562–1596, 2004.

[4] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters
of dynamic trees. In Automata, Languages and Programming: 24th Interna-
tional Colloquium, ICALP’97 Bologna, Italy, July 7–11, 1997 Proceedings 24,
pages 270–280, 1997.

[5] S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining infor-
mation in fully dynamic trees with top trees. Acm Transactions on Algorithms
(talg), 1(2):243–264, 2005.

[6] S. Alstrup, J. Holm, and M. Thorup. Maintaining center and median in dy-
namic trees. In Algorithm Theory-SWAT 2000: 7th Scandinavian Workshop
on Algorithm Theory Bergen, Norway, July 5–7, 2000 Proceedings 7, pages
46–56. Springer, 2000.

[7] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint
store based on multivalued decision diagrams. In Principles and Practice of
Constraint Programming–CP 2007: 13th International Conference, CP 2007,
Providence, RI, USA, September 23-27, 2007. Proceedings 13, pages 118–132.
Springer, 2007.

[8] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi.
Algebraic decision diagrams and their applications. In Proceedings of 1993
International Conference on Computer Aided Design (ICCAD), pages 188–
191, 1993.

[9] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao.
Representing trees of higher degree. Algorithmica, 43:275–292, 2005.

61

[10] D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams
for optimization, volume 1. Springer, 2016.

[11] P. Bille, F. Fernstrøm, and I. L. Gørtz. Tight bounds for top tree compression. In
String Processing and Information Retrieval: 24th International Symposium,
SPIRE 2017, Palermo, Italy, September 26–29, 2017, Proceedings 24, pages
97–102. Springer, 2017.

[12] P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with
top trees. Information and Computation, 243:166–177, 2015.

[13] U. Blumöhr, M. Münch, and M. Ukalovic. Variant configuration with SAP.
Galileo Press, 2012.

[14] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on computers, 45(9):993–1002, 1996.

[15] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691, 1986.

[16] G. Busatto, M. Lohrey, and S. Maneth. Grammar-based tree compression.
Technical report, 2004.

[17] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of
XML document trees. Information Systems, 33(4):456–474, 2008. Selected
Papers from the Tenth International Symposium on Database Programming
Languages (DBPL 2005).

[18] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

[19] J. Cheney. Compressing XML with multiplexed hierarchical PPM models.
In Proceedings DCC 2001. Data Compression Conference, pages 163–172.
IEEE, 2001.

[20] A. A. Cire and W.-J. Van Hoeve. Multivalued decision diagrams for sequencing
problems. Operations Research, 61(6):1411–1428, 2013.

[21] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subex-
pression problem. Journal of the ACM (JACM), 27(4):758–771, 1980.

62

[22] R. Drechsler. Evaluation of static variable ordering heuristics for MDD con-
struction [multi-valued decision diagrams]. In Proceedings 32nd IEEE Inter-
national Symposium on Multiple-valued Logic, pages 254–260. IEEE, 2002.

[23] B. Dudek and P. Gawrychowski. Slowing down top trees for better worst-case
compression. In Annual Symposium on Combinatorial Pattern Matching (CPM
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[24] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. Journal of the ACM (JACM),
57(1):1–33, 2009.

[25] S. Fortune, J. Hopcroft, and E. M. Schmidt. The complexity of equivalence and
containment for free single variable program schemes. In Automata, Languages
and Programming: Fifth Colloquium, Udine, Italy, July 17–21, 1978 5, pages
227–240. Springer, 1978.

[26] S. J. Friedman and K. J. Supowit. Finding the optimal variable ordering
for binary decision diagrams. In Proceedings of the 24th ACM/IEEE Design
Automation Conference, pages 348–356, 1987.

[27] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods
for ordered binary decision diagrams. In Proceedings of 1993 International
Conference on Computer Aided Design (ICCAD), pages 38–41. IEEE, 1993.

[28] M. R. Gary and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness, 1979.

[29] A. Haag. Managing variants of a personalized product: Practical compression
and fast evaluation of variant tables. Journal of Intelligent Information Systems,
49:59–86, 2017.

[30] A. Haag and L. Haag. Further empowering variant tables for mass cus-
tomization. International Journal of Industrial Engineering and Management,
10(2):155–170, 2019.

[31] A. J. Hu. Techniques for efficient formal verification using binary decision
diagrams. Stanford University, 1996.

63

[32] L. Hübschle-Schneider and R. Raman. Tree compression with top trees revis-
ited. In International Symposium on Experimental Algorithms, pages 15–27.
Springer, 2015.

[33] G. Jacobson. Space-efficient static trees and graphs. In 30th annual symposium
on foundations of computer science, pages 549–554. IEEE Computer Society,
1989.

[34] S. W. Jeong, T. S. Kim, et al. An efficient method for optimal BDD ordering
computation. In ICVC: International Conference on VLSI and CAD, volume 3,
pages 252–256, 1993.

[35] C. Jiang, J. Babar, G. Ciardo, A. S. Miner, and B. Smith. Variable reordering
in binary decision diagrams. In 26th International Workshop on Logic &
Synthesis, 2017.

[36] G. Katsirelos and T. Walsh. A compression algorithm for large arity extensional
constraints. In Principles and Practice of Constraint Programming–CP 2007:
13th International Conference, CP 2007, Providence, RI, USA, September
23-27, 2007. Proceedings 13, pages 379–393. Springer, 2007.

[37] M. G. Kendall. Rank correlation methods. 1948.

[38] D. Knuth. Fun with binary decision diagrams (BDDs).

[39] D. E. Knuth et al. The art of computer programming, volume 3. Addison-
Wesley Reading, MA, 1973.

[40] C.-Y. Lee. Representation of switching circuits by binary-decision programs.
The Bell System Technical Journal, 38(4):985–999, 1959.

[41] W. Lenders and C. Baier. Genetic algorithms for the variable ordering problem
of binary decision diagrams. In Foundations of Genetic Algorithms: 8th
International Workshop, FOGA 2005, Aizu-Wakamatsu City, Japan, January
5-9, 2005, Revised Selected Papers 8, pages 1–20. Springer, 2005.

[42] H. Liefke and D. Suciu. Xmill: an efficient compressor for XML data. In Pro-
ceedings of the 2000 ACM SIGMOD international conference on Management
of data, pages 153–164, 2000.

64

[43] M. Lohrey and S. Maneth. The complexity of tree automata and xpath on
grammar-compressed trees. Theoretical Computer Science, 363(2):196–210,
2006. Implementation and Application of Automata.

[44] M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression
using repair. Information Systems, 38(8):1150–1167, 2013.

[45] C. Luck. Simulated annealing explained by solving sudoku - artificial intelli-
gence.

[46] S. Maneth and G. Busatto. Tree transducers and tree compressions. In
I. Walukiewicz, editor, Foundations of Software Science and Computation
Structures, pages 363–377, Berlin, Heidelberg, 2004. Springer Berlin Heidel-
berg.

[47] S.-i. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of the 30th International Design Automation Con-
ference, pages 272–277, 1993.

[48] A. Mishchenko. An introduction to zero-suppressed binary decision diagrams.
In Proceedings of the 12th Symposium on the Integration of Symbolic Compu-
tation and Mechanized Reasoning, volume 8, pages 1–15, 2001.

[49] A. Mitra and S. Chattopadhyay. Variable ordering for shared binary decision
diagrams targeting node count and path length optimisation using particle
swarm technique. IET Computers & Digital Techniques, 6(6):353–361, 2012.

[50] J. I. Munro and V. Raman. Succinct representation of balanced parentheses
and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[51] M. Rice and S. Kulhari. A survey of static variable ordering heuristics for
efficient BDD/MDD construction. University of California, Tech. Rep, page
130, 2008.

[52] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pages 42–47. IEEE, 1993.

[53] C. E. Shannon. A symbolic analysis of relay and switching circuits. Electrical
Engineering, 57(12):713–723, 1938.

65

[54] D. Sieling. The nonapproximability of OBDD minimization. Information and
Computation, 172(2):103–138, 2002.

[55] D. Sieling and I. Wegener. Reduction of OBDDs in linear time. Information
Processing Letters, 48(3):139–144, 1993.

[56] F. Somenzi. CUDD: Cu decision diagram package release 2.3. 0. University
of Colorado at Boulder, 621, 1998.

[57] F. Somenzi. Binary decision diagrams. NATO ASI SERIES F COMPUTER
AND SYSTEMS SCIENCES, 173:303–368, 1999.

[58] Wikipedia. Binary decision diagram — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Binary%

20decision%20diagram&oldid=1142348989, 2023. [Online; accessed 07-
June-2023].

[59] Wikipedia. Simulated annealing — Wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=Simulated%

20annealing&oldid=1154654876, 2023. [Online; accessed 06-June-2023].

[60] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 681–690, 2006.

66

http://en.wikipedia.org/w/index.php?title=Binary%20decision%20diagram&oldid=1142348989
http://en.wikipedia.org/w/index.php?title=Binary%20decision%20diagram&oldid=1142348989
http://en.wikipedia.org/w/index.php?title=Simulated%20annealing&oldid=1154654876
http://en.wikipedia.org/w/index.php?title=Simulated%20annealing&oldid=1154654876

Név: Simon Máté

ELTE Természettudományi Kar, szak: Alkalmazott matematikus

NYILATKOZAT

NEPTUN azonosító: GHLKWP

Diplomamunka címe:
Compact Representation of Labeled Trees

A diplomamunka szerzQjeként fegyelmi felelQsségem tudatában kijelentem, hogy a

dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard

szabályait következetesen alkalmaztam, mások által irt részeket a megfelelQ idézés n�lkül

nem használtam fel.

Budapest, 2023. június 7.
a hallgató aláirása

{ "type": "Document", "isBackSide": false }

