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Introduction

Throughout the many years I spent studying mathematics (from grammar

school to MSc), graph theory has always held a special place in my heart.

When I first encountered the field of network science, I was captivated by

its foundation in my favorite topic, as well as its practical applications in

real-world scenarios. Artificial Intelligence (AI) became more and more famous

in “pop science”, while I could get a glimpse of deep learning and data science

at university. This new world introduced a way of thinking and an advanced

set of tools that felt liberating.

Graph embedding is a strong tool in data science, especially useful when

dealing with datasets composed of networks. Understanding the theoretical

background of these methods requires sound knowledge of graph theory. I feel

exceptionally fortunate to have had the opportunity to choose a topic for my

university project and thesis combining my favorite fields in mathematics.

My thesis is organized as follows. Chapter 1 is an overview of node

and graph embedding, concentrating on the theoretical background of these

algorithms. In Chapter 2, two datasets are presented for graph classification.

In Chapter 3, my measurements and experimental results are discussed with

respect to the collections of synthetic and real-world graphs of Chapter 2.

Finally, I conclude my results in the Summary.
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Chapter 1

Graph Embedding Methods

1.1 Motivation

Networks are around us everywhere. They appear in various different fields

since they provide a suitable way to represent data in many applications,

ranging from social to life sciences. Having data represented as a graph or

even datasets of graphs is more and more common.

Graph representation in computer science can vary depending on the

task or the applied algorithms. The most common structures are adjacency

matrices, incidence matrices, edge lists, and adjacency lists (illustrated in

Figure 1.1). Matrix representations have a size of O(n2), where n is the number

of nodes. On the other hand, lists have a size of O(m), where m is the number

of edges. Therefore, for sparse networks, list representations can save a lot of

space compared to matrix representations.

Network datasets often consist of enormous graphs with numerous nodes.

However, in many applications, networks are sparse (containing much fewer

edges than possible), making the matrix representations filled with zeros

providing not much valuable information. A preprocessing step is often

required to compress the structural properties of a graph. Additionally, it

is crucial to transform networks into a data type compatible with machine

learning algorithms, such as vectors.
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1. Graph Embedding Methods

(a) A graph with 6 nodes and 7 edges (b) Adjacency matrix

(c) Incidence matrix (d) Edge list (e) Adjacency list

Figure 1.1: Standard Representations of Graphs

1.1.1 Downstream Tasks with Networks

Graphs are ubiquitous data structures in various real-world scenarios, such

as social media networks, user interest graphs, citation graphs in research

areas, and knowledge graphs. Analyzing these graphs provides valuable insights

and has a wide range of applications, including node classification, clustering,

recommendation, and link prediction.

With the analysis of graphs based on user interactions in social networks,

we can classify users [1], identify communities, recommend friends, or

predict whether two users will interact. Examining the transaction graphs of

cryptocurrencies, it is possible to profile or deanonymize users raising privacy

concerns [2]. The right representation of chemical compounds can be used

to predict their properties, such as solubility and anti-cancer activity, or
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1. Graph Embedding Methods

predict their reactions [3, 4]. By analyzing call graphs of programs, malware

can be detected [5]. Neuroscientific or gene-based network data prediction or

regression can be important to better understand biomarkers of diseases or

certain health conditions [3, 6, 4].

1.1.2 Analogous ideas from NLP

In the field of Natural Language Processing (NLP), a fundamental concept

is that the meaning and “behavior” of a word are strongly connected with its

surrounding context. Hence it can be learned by a computer providing enough

appearances of the word in real texts. Additionally, embedding words as tokens

into Euclidean spaces simplifies the handling of string-like input in machine

learning tasks and allows mathematical operations on words. These ideas led

to the famous Word2Vec [7] algorithm based on the Skip-gram model that is

illustrated in Figure 1.2.

Figure 1.2: Skip-gram model for Word2Vec

First, a One-Hot Encoding of the words in the corpus text is made. Then the

“context” of the target word is made by choosing a window size and gathering

all the words within that word distance in the text. The objective is to build

a shallow neural network that would enable it to predict the context of the
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1. Graph Embedding Methods

target word when provided with its One-Hot encoded version. By context, we

mean the summation of the corresponding One-Hot vectors, and this should

be reflected in the output of the network. While learning the context and the

semantic meaning of words, their embedding appears in the hidden layer.

The Skip-gram model, illustrated in Figure 1.2, can be used just the other

way around to predict a word given the context by switching up the input and

the output – this approach is called the CBOW (Continuous Bag-of-Words)

model.

Analogous to the previous ideas, one could wonder whether a node’s

properties, function, or role can be learned by looking at its “context”,

its neighborhood. Several highly effective node embedding algorithms have

demonstrated the validity of this parallel concept. Moreover, whole graph

embeddings can also benefit from NLP techniques such as Doc2Vec [8], which

is the generalization of Word2Vec for documents.

Figure 1.3: Doc2Vec architecture

As illustrated in Figure 1.3, Doc2Vec learns the representation of the

document meanwhile solving the task of predicting a word given the other

words in its context using Distributed Memory version of Paragraph Vector

(PV-DM). It is performed just like in Word2Vec with another feature added

to the input, the document ID, which acts as a memory that remembers the

document’s topic that is missing from the local context. For the training, not
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1. Graph Embedding Methods

just a corpus text but a set of documents is required. A word vector is generated

for each word representing its semantic meaning, and a document vector is

generated for each document representing its concept.

Just like Doc2Vec used pieces of text (we could say contexts of some

words) to embed documents, whole graph embedding can also be done by

incorporating information about subgraphs. However, subgraph sampling is a

crucial part of this process. Different approaches lead to algorithms suitable

for different tasks.

1.2 Node Embedding

As illustrated in Figure 1.4, node embedding algorithms aim to represent

network nodes as low-dimensional Euclidean vectors that are the desired input

for most Machine Learning (ML) algorithms. This way, one can easily feed

network data to ML models trained for various downstream tasks such as link

prediction, community detection, or node classification.

Figure 1.4: Embedding the nodes of the Karate club graph with DeepWalk [9]

1.2.1 Examples

DeepWalk [9]

This algorithm is analogous to Word2Vec. It learns the representation of a

given node by feeding its “context”, or nodes close by, to the Skip-gram model.

Here, multiple random walks with restricted lengths are sampled to extract
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1. Graph Embedding Methods

context nodes to a given target node. Basically, random walks are analogous

to sentences in the original NLP setting.

node2vec [10]

The next algorithm works similarly to DeepWalk, but node2vec uses a

more sophisticated way to control whether we want to capture local or global

descriptors of network nodes.

As illustrated in Figure 1.5(a), two extreme strategies for discovering the

graph around a node are Breath First Search (BFS), where the neighborhood

is restricted to nodes that are immediate neighbors of the source, and Depth

First Search (DFS), where the neighborhood consists of nodes sequentially

sampled at increasing distances from the source node. While in DeepWalk,

random walk sampling is an uncontrolled process, node2vec has parameters

that define whether neighborhood discovery follows a BFS or DFS style or

some blend of the two strategies.

(a) Extreme strategies (b) Parameters

Figure 1.5: Sampling random walks with node2vec [10]

Consider a random walk that has arrived at node v from node t as shown

in Figure 1.5(b). The algorithm has two parameters that alter the weight of

probabilities regarding the choice of the next node:

• Return parameter p: the weight of returning to node t is 1/p; setting it

to a high value ensures sampling of an already visited node is less likely,

while if p is low, it leads to a backtrack step.
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1. Graph Embedding Methods

• In-out parameter q: the weight of distancing away from t is 1/q; if q > 1,

the random walk is biased towards nodes close to t, hence a BFS manner

is achieved while setting q < 1, the walk is more inclined to visit further

nodes to gain a DFS-like behavior.

• (The weight of moving to a common neighbor of v and t stays 1.)

Role2Vec [11]

Role2Vec differs mainly from the previous techniques, it is not an

embedding of the nodes, but of the subsets of nodes having supposedly the

same role in the graph – thus the name.

Figure 1.6: Graphlet-based vertex types in Role2Vec [12]

The Role2Vec framework starts by learning a function F that maps the n

vertices to a set of m vertex types (where the vertices of one type are similar

in terms of attributes and/or structural features) with m << n usually. This

function could be learned automatically or defined manually. For example,

in Figure 1.6, vertex types defined by graphlets with at most five nodes are
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1. Graph Embedding Methods

shown: there are 29 graphlets and 72 vertex types based on their position in

these graphlets. These types are identified for the mapping function F .

Attributed random walks are generated which are sequences of adjacent

vertex types: F (v0), F (v1), ...F (vl) where v0, v1, ...vl would be a random walk

of length l. Role2Vec uses these attributed walks as contexts for learning the

embedding of vertex types (thus the vertices in the same typeset will share an

embedding).

This elegant idea grants an approach that is efficient in terms of memory

and time achieved by reducing the size of the corpus.

1.3 Whole Graph Embedding

The concept of embedding nodes or whole graphs is rather similar, except

that the targets are different. Graph embedding algorithms aim to assign

low-dimensional Euclidean vectors to graphs such that the representation of

structurally similar graphs would also be close to each other in the embedding

space.

There are some challenges that these algorithms have to face:

• The properties of the graphs should be well represented.

• Non-isomorphic graphs should have distinguishable representations

• Permutation-invariance: the embedding should be invariant to the

permutation of nodes.

• Scale-adaptivity: it should represent local and global structures enabling

the embedded vector for graph comparisons on different levels.

• Size-invariance: being able to represent structural similarity regardless of

graph magnitude.

• Preferably, the size of the network should not decrease the speed of the

embedding process too much.
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1. Graph Embedding Methods

• The dimension of the embedded vector should be chosen carefully: large

enough to capture structural properties well, but it may cause an increase

in runtime at machine learning tasks.

There are numerous different techniques to calculate whole graph

representations, but the most prominent approaches are based on graph

measures (Section 1.3.2), statistical analysis of some properties (Section 1.3.2),

spectral properties (Sections 1.3.4, 1.3.4, 1.3.4, and 1.3.5), or walk-based

calculations (Sections 1.3.3, 1.3.3, 1.3.5, and 1.3.5). The following sections

of this chapter will provide an overview of graph embedding techniques

categorized based on their primary approach to the problem.

In my work, I used the implementations of embedding algorithms from

Karate Club [12], an open-source Python framework for unsupervised learning

on graphs. This package contains a variety of state-of-the-art graph-mining

algorithms for community detection, node embedding, and whole graph

embedding. For the algorithms described in this chapter, not every parameter

setting was implemented in Karate Club. Thus, in Sections 1.3.2–1.3.5,

I highlighted the parameters with italics that I could tune during my

experiments through the Karate Club Python API1.

1.3.1 Notations

Let G = (V,E) be an undirected graph, where |V | = n and |E| = m. The

binary adjacency matrix, A ∈ {0, 1}n×n has a nonzero value at the intersection

of a row and column whose respective nodes are connected with an edge. The

weighted adjacency matrix denoted by W contains the weights of the edges

instead of just ones. Ak
ij denote the element in the ith row and jth column of

the kth power of A. Ak
ij is also the number of k-length walks of G starting from

node i and ending in node j.

Let D = diag(A · 1) denote the diagonal matrix of size n × n containing

the degrees of nodes (d(v)) or the sum of edges ending in the corresponding

node in the weighted case (dW (v) =
∑n

u=1Wuv).
1https://karateclub.readthedocs.io/en/latest/
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1. Graph Embedding Methods

The Laplacian matrix of a graph is defined as L = D−A for the unweighted

or L = D − W for the weighted case. L could also be written in the form

L = ΦΛΦT where Λ = diag(λk) is the diagonal matrix with the eigenvalues of

L and Φ = [ϕ1, ϕ2, ...ϕn] is the orthogonal matrix formed by the corresponding

eigenvectors. L is positive semi-definite with eigenvalues denoted by 0 = λ1 ≤

λ2 ≤ λ3 ≤ ... ≤ λn. The algebraic multiplicity of the eigenvalue zero equals

the number of connected components [13].

The normalized Laplacian matrix of G is defined as L = I −D−1/2AD−1/2

for the unweighted, or L = I −D−1/2WD−1/2 for the weighted case. It is also

positive semi-definite with eigenvalues denoted by µ1 ≤ µ2 ≤ ... ≤ µn and

respective ortogonal eigenvectors φ1, φ2, ...φn. A good property of L is that

µi ∈ [0, 2] ∀i. Moreover, the algebraic multiplicity of the eigenvalue zero equals

the number of connected components, while the algebraic multiplicity of the

eigenvalue 2 is the number of bipartite components [13].

P = D−1A is the transition matrix for the random walk on the graph where

Puv (the element in the row and column corresponding to nodes u and v) is

the probability of choosing v in a random walk after u (hence the name). It

is indeed a probability distribution since
∑

v∈V Puv =
∑

v∈V (D
−1A)uv = 1 by

definition. The powers of P characterize the random walks on the graph: P k
uv

is the probability of a random walk starting from source node u, hitting the

target node v in the kth step.

1.3.2 Intuitive and Explainable Methods

Arbitrary Subset of Graph Measures

Calculating multiple graph measures and arranging them in a vector would

yield an embedding. Possible features include global descriptors like graph

diameter, radius, transitivity, clustering coefficient, number of components,

eigenvectors or eigenvalues of the adjacency, or the Laplacian matrix of the

given network. Some types of pooling (min, max, mean) for node-level measures

like degree can also be considered.
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1. Graph Embedding Methods

Some measures might not represent the graph well in the given dataset or

task, and we have to take into consideration the computational complexity,

which could be too high for a dataset of big graphs.

However, relatively small embedded vectors could achieve an explainable

method and high accuracy by choosing the measures carefully concerning the

task.

Molontay and Nagy [14, 15] have chosen 17 graph metrics that describe

various characteristics of networks of four kinds:

• Degree distribution related e.g. interval degree probabilities, average

degree, maximum degree (normalized by the size)

• Shortest paths related e.g. diameter and average path length (normalized

by the log of the size)

• Centrality related e.g. maximum eigenvector and betweenness centrality

• Clustering related e.g. Global clustering coefficient, average local

clustering coefficient

Metrics strongly correlating with the number of nodes and edges were excluded.

From the remaining set of graph measures, a selection based on Spearman’s

rank correlation resulted in an embedding of 8 dimensions.

The previously described embedding was tested for a domain classification

task on 482 networks from 6 domains, and more than 90% accuracy was

achieved. More details about their result are discussed in Chapter 2.2.

LDP (Local Degree Profile) [16]

Let G(V,E) be a graph, and for each node v ∈ V , let DN(v) =

{degree(u)|(u, v) ∈ E}. We take five node features:

(degree(v), min(DN(v)), max(DN(v)), mean(DN(v)), std(DN(v)));

they summarize the degree information of node v and its 1-neighborhood.

The aggregation of features over different nodes in the same graph is done by

12



1. Graph Embedding Methods

performing either a histogram or an empirical distribution function operation.

This procedure is repeated for all five node features, and to get the embedded

vector of the graph, all the feature vectors are concatenated.

Computational complexity: This approach only requires the calculation

of degree for each node and saves the statistics of the 1-size neighborhood for

each node; this can be done in O(E) time. Then, to map V numbers into B

bins takes O(V ) time, making the total complexity O(E).

Parameters:

• histogram or empirical distribution

• number of bins of histogram or empirical distribution

• linear or logarithmical scale for the histogram or empirical distribution –

the latter is suitable for e.g. networks whose degree distribution follows

the power law

1.3.3 Walk-based Methods

graph2vec (Graph to Vector) [17]

The graph2vec embedding method is inspired by Doc2Vec, where each

document is considered as a set of words. Similarly, in graph2vec, a graph

is represented as a collection of rooted subgraphs. Then, the embeddings of

the graphs are obtained by the skip-gram language model with the rooted

subgraphs as its vocabulary.

The first part of this algorithm is to create the vocabulary. In each graph,

the Weisfeiler-Leman algorithm (a BFS-like recursive algorithm) can extract

a rooted subgraph in depth d around each node.

The second part uses the first, target graph – subgraph context (and

additionally features) pairs are trained with Stochastic Gradient Descent

(SGD) optimizer. A negative sampling strategy is used due to the large size of

the vocabulary. The negative samples are sets of k subgraphs, each of which

is not present in the target graph, but in the vocabulary of subgraphs. Only

13



1. Graph Embedding Methods

the embeddings of the negative samples are updated instead of going over the

whole vocabulary.

Computational complexity: For all the graphs, it takes O(e · g ·N · d2),

where g is the number of graphs and N is the dominant graph size in the

training dataset. Hence, we can say that the average runtime is O(e · n · d2)

per graph.

Parameters:

• “degree” or depth of rooted subgraphs (d)

• dimension of the embedding (δ)

• learning epochs (e)

• learning rate (α)

• whether to erase the graph features if any present

• frequency of down sampling

GL2vec (Graph and Line Graph to Vector) [18]

A major shortcoming of graph2vec is that it cannot incorporate edge

features during the learning process. GL2vec overcomes this limitation by

using both G and L(G), the line graph (edge-to-vertex dual graph) of G.

This algorithm makes the embedding of G and L(G) with graph2vec, so the

edge features can simply be used while learning the representation of L(G)

as its node features. Then, it concatenates the two vectors to get the final

embedding.

Computational complexity: Since graph2vec has complexity O(e ·n ·d2)

per graph, the second part of GL2vec has a complexity of O(e · (n+m) · d2).

The creation of the line graph has complexity O(n2), hence the first part is

dominant.

Parameters: Same as in graph2vec (1.3.3)

14



1. Graph Embedding Methods

1.3.4 Spectral property Methods

SF (Spectral Features) [19]

As introduced in Section 1.3.1, L is the normalized Laplacian matrix of

a connected, undirected graph G. The k smallest positive eigenvalues of L in

ascending order are chosen to represent the graph as a vector. If the graph has

less than k nodes, right zero padding is used to get appropriate dimensions:

X = (µ1, ..., µ|V |, 0, ..., 0).

Computational complexity: It is an eigenvalue-problem

(eigendecomposition), which has practical and widely used implemetation

based on the Lanczos algorithm [20].

Parameters: number of eigenvalues desired (k)

The eigenvalues of the normalized Laplacian matrix lie between 0 and 2

which makes it convenient for the downstream use of a standard classifier.

The multiplicity of the eigenvalue 0 corresponds to the number of connected

components in the graph, hence the omission of µ0 since it is always equal to 0.

Other eigenvalues are also known to denote the presence of specific structures,

e.g. 2 denotes a bipartite graph.

This embedding also has a physical interpretation. Each eigenvalue

corresponds to the energy level of a stable configuration of the nodes (the lower

the energy, the stabler the configuration) [21] or corresponds to frequencies

associated with a Fourier decomposition of any signal living on the vertices of

the graph [22].

IGE (Invariant Graph Embedding) [23]

In this method, the embedded vector is a concatenation of three different

approaches chosen to have invariance and also a great discriminative power for

a large family of graphs. Let G be an attributed, connected graph.

1) Consider the Laplacian matrix L of G with eigenvalues 0 = λ1 < λ2 ≤

λ3 ≤ ... ≤ λn. Define a k1-dimensional vector F1(G) = (λ2, ..., λk1+1) if

15



1. Graph Embedding Methods

n ≥ k1+1 and if n ≤ k1, then left zero padding is used to get appropriate

dimensions: F1(G) = (0, ..., 0, λ2, ..., λn).

2) Let P be the transition matrix for the random walk on the graph. If

there are features on the nodes, it can be viewed as a feature vector

F ; if not, the degrees are used: F = (d1, d2, ...dn). P kF = (xk
1, x

k
2, ...x

k
n)

can be considered as the aggregation of the features of its k-distance

neighbors for each node. For each k ∈ {1, 2, ...k2}, a histogram of t2 bins

is performed on the elements of P kF . The second embedding F2(G) is

the concatenation of k2 vectors of length t2 each.

3) Let Λ denote the diagonal matrix with the eigenvalues of L. X =
√
Λ+UT

is the pseudo-inverse of Λ. The rows of X define an embedding of the

nodes of size n. The matrices x(i)Tx(j) (for 1 ≤ i, j ≤ n) are “flattened”

to obtain vectors of size n2. These vectors are then passed through a

histogram of t3 bins to gain the third representation F3(G).

The final graph embedding is the concatenation of the above-defined three

representations for fixed parameters k1, k2 and t2, t3:

FIGE(G) = (F1(G), F2(G), F3(G)),

which is a vector of size k1 + t2k2 + t3, independent of the size of the graph.

All three representations are permutation-invariant, so as their concatenation.

Computational complexity: The complexity of this method is

dominated by searching for the eigenvalues of L (see 1.3.4).

Parameters:

• number of eigenvalues (dimensions) desired for the first representation

(k1)

• size of the neighborhood in consideration for the features in the second

representation (k2)

• number of bins used in the second representation (t2)

• number of bins used in the third representation (t3)
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1. Graph Embedding Methods

FGSD (Family of Graph Spectral Distances) [24]

Consider the weighted, undirected graph G(V,E,W ) with its weighted

Laplacian matrix L = ΦΛΦT , where Λ = diag(λk) is the diagonal matrix

with the eigenvalues of L (0 ≤ λ1 ≤ λ2... ≤ λn) and Φ = [ϕ1, ϕ2, ...ϕn] is the

orthogonal matrix formed by the corresponding eigenvectors.

Let f be an arbitrary nonnegative (real-analytical) function on R+ with

f(0) = 0 and let f(L) denote f(L) := Φ · diag(f(λk))Φ
T . Here ϕk(x) denotes

the x-entry value of ϕk, also, f(L)xy represent xy-entry value in matrix f(L).

The f -spectral distance between x, y ∈ V is defined as:

Sf (x, y) =
N−1∑
k=0

f(λk)(ϕk(x)− ϕk(y))
2.

The function {Sf (x, y)|f} is referred to as the family of graph spectral

distances, hence the name of the embedding. The representation of G is

R = {Sf (x, y)|∀(x, y) ∈ V }, from which the embedding vector is made by

a histogram.

If f(x) = xp, where p ≥ 1, Sf captures the neighbourhood information

in distance at most p. On the other hand, for a decreasing function, Sf (x, y)

captures global information. For example, Sf (x, y) is called harmonic distance

in the case of f(x) = 1/x; it is the default function for this embedding method.

Computational complexity: To avoid direct eigenvalue decomposition,

an approximation could be performed. However, it is better to use structural

properties and sparsity of f(L) for efficient exact computation of Sf . After

some alternations not changing the set of solutions, a sparse linear system is

achieved, which can be solved by Cholesky factorization and back-substitution,

resulting in overall O(n2) [25].

Parameters:

• the function f

• number of bins of the histogram forming F and also its range considered
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1. Graph Embedding Methods

1.3.5 More Complex Methods

NetLSD [26]

Let G be a graph and L its normalized Laplacian matrix with spectrum

{µ1, µ2, ...µn} and eigenvectors {φ1, φ2, ...φn}, respectively.

Consider an associated heat diffusion process on the graph, the initial heat

u0 on one of the vertices with a fixed value. We want to calculate the heat of

each vertex at time t denoted by ut. The heat equation associated with the

Laplacian is:
δut

δt
= −Lut.

Its closed-form solution is given by the n× n heat kernel matrix:

Ht = e−tL =
n∑

j=1

e−tµjφjφ
T
j .

where (Ht)ij represents the amount of heat transferred from vertex vi to vertex

vj at time t. To aggregate this information, the heat trace at a time t is defined:

ht =
n∑

j=1

e−tµj .

The NetLSD representation consists of a heat trace signature, i.e., a

collection of heat traces at different time scales: h(G) = {ht}t>0.

The wave trace could be used instead or as a complement to the heat trace.

The wave equation is:
δ2ut

δt2
= −Lut

with a complex solution matrix:

Wt = e−itL =
n∑

j=1

e−itµjφjφ
T
j .

from which the wave trace can be defined as:

wt =
n∑

j=1

e−itµj .

Computational complexity: The full eigendecomposition of the

normalized Laplacian would take O(n3) time. Thus, an approximation
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1. Graph Embedding Methods

of the heat trace signatures is used. The second order Taylor-expansion

is computationally inexpensive, requiring only O(m) time, and the error

stays small until time scale 1. Truncated spectrum approximation for large

eigenvalues and linear interpolation for the interloping eigenvalues is used.

Parameters:

• whether to use the heat trace and/or the wave trace

• number and value of timesteps for evaluating the heat trace

• number of eigenvalue approximations

The heat trace, hence the embedding, is permutation-invariant because

isomorphic graphs are isospectral as well. It is also scale-adaptive. For small

t, the heat trace depicts local connectivity, while for large t it encodes global

connectivity.

GeoScattering [27]

Consider the weighted, undirected graph G(V,E,W ) and an n × 1

signal-vector x : V 7→ R. Three different summation operators will be defined

on this vector to gain a permutation invariant embedding.

The simplest summation operator computes the sum of the responses of

the signal x (the unnormalized moments). It can also be thought of as the zero

order geometric scattering moments:

Sx(q) =
∑
v∈V

x(v)q for 1 ≤ q ≤ Q.

Let P = 1
2
(I + AD−1) be a lazy random walk matrix since P t governs the

probability distribution of a lazy random walk after t steps (lazy noting that

vi = vi+1, staying at the same vertex is allowed). The n× n wavelet matrix at

the scale 2j is defined as:

Ψj = P 2j−1

= P 2j = P 2j−1

(I − P 2j−1

).

The value Ψjx(v) aggregates the signal information from vertices within 2j

steps of v, but does not average the information like the operator P 2j .
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1. Graph Embedding Methods

The second summation operators will be the first-order geometric scattering

moments:

Sx(j, q) =
∑
v∈V

|Ψjx(v)|q for 1 ≤ j ≤ J, 1 ≤ q ≤ Q.

Augmentation can be achieved by incorporating second-order geometric

scattering moments, obtained by the graph wavelet and absolute value

transforms:

Sx(j, j′, q) =
∑
v∈V

|Ψj′ |Ψjx(v)||q for 1 ≤ j ≤ j′ ≤ J, 1 ≤ q ≤ Q.

The transformation can be iterated additional times, leading to higher order

features, and thus has the general structure of a graph convolutional network.

The collection of graph scattering moments

Sx = {Sx(q), Sx(j, q), Sx(j, j′, q)}

provides a rich set of multiscale invariants of the graph G.

Computational complexity: The matrix powers of P have a crutial

part in the complexity of this embedding. With the right implementation,

calculating these can be done in around O(n3 + nj) via diagonalization.

Parameters:

• graph features to be use as signals x

• wavelet matrix scales (J will result in maximal scale 2J)

• unnormalized, or normalized moments considered (Q)

• order of geometric scattering moments incorporate in the representation

This embedding method is stable in a sense that there is an upper bound

on distances between similar graphs that only differ by modifications that can

be treated as noise.
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1. Graph Embedding Methods

FeatherGraph [28]

The core idea of this embedding method is to capture node feature

distributions in a neighborhood with characteristic functions.

Let G = (V,E) be an attributed and undirected graph. In the case of

unattributed graph input, the logarithm of degrees and clustering coefficients

of the nodes can be used as features. A feature of the nodes can be described

by a random variable X or as the feature vector x ∈ R|V |, where xv denotes

the feature value for node v ∈ V .

The characteristic function of X for source node u ∈ V at evaluation point

θ ∈ R is:

φX(θ) = E[eiθX |G, u] =
∑
v∈V

Puv · eiθxv

where P is the transition matrix of a random walk on G. Using Euler’s identity,

the real and imaginary parts of the characteristic function can be obtained:

Re(φX(θ)) =
∑
v∈V

Puv · cos(θxv), Im(φX(θ)) =
∑
v∈V

Puv · sin(θxv).

It can be assumed that the neighborhood of u at scale r consists of nodes

that can be reached by a random walk with at most r steps from the source

node. The distribution of a feature in the neighborhood of u at scale r can be

described using the real and imaginary parts of its characteristic function. The

probability of arriving at node v from source node u with a random walk in

exactly r steps is P r
uv. Hence, the r-scale random walk weighted characteristic

function of feature X can be defined as:

φX(θ, r) = E[eiθX |G, u, r] =
∑
v∈V

P r
uv · eiθxv .

Its real and imaginary parts can be expressed as:

Re(φX(θ, r)) =
∑
v∈V

P r
uv · cos(θxv), Im(φX(θ, r)) =

∑
v∈V

P r
uv · sin(θxv).

The evaluation of each node’s characteristic function on the whole domain

would not be necessary. Only d points will be sampled from the domain,
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1. Graph Embedding Methods

those are described by the evaluation point vector Θ ∈ Rd. The characteristic

function of a node will be evaluated at these points, and the real and

imaginary parts of these complex values will be used for its 2d-dimensional

representation per scale and feature. These vectors are concatenated for each

scale in {1, 2, ...r} and feature. The final representation has dimension 2·d·r ·k,

where k is the number of features in consideration.

Figure 1.7: Example of the real and imaginary parts of the r-scale random

walk weighted characteristic function [28]

Until now, this method can be used as a node embedding. These

representation vectors can be pooled by permutation invariant functions to

output the whole graph embedding.

In the parametric model variant, the evaluation points are learned in a

semi-supervised fashion to make them the most discriminative concerning a

downstream classification task.
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1. Graph Embedding Methods

In the implementation of KarateClub, the maximal evaluation point value

(θmax) and the number of evaluation points (d) can be set. The evaluation

points will be evenly distributed in the [0.01, θmax] interval. Since it uses the

logarithm of degrees and clustering coefficients of the nodes as features, the

outputs are (4 · d · r)-dimensional embedded vectors.

Computational complexity: The r-scale random walk weighted

characteristic functions for the whole graph and one feature can be written

as a C|V |×d matrix. Evaluating on Θ will become a matrix multiplication.

Calculating the complex matrix and evaluation has a time complexity of

O(|E| · d · r). If it needs to be done for all scales up to r and k features,

the time complexity becomes O(|E| · d · r2 · k).

Parameters:

• size of neighborhood in consideration (the number of scales, r)

• the number of evaluation points for the k-scale random walk weighted

characteristic functions (d)

• whether to use the parametric variant; how to learn the evaluation points

• whether to choose the evaluation points and how

• pooling function for node embeddings

This embedding of the graph is not only permutation-invariant but also

robust to noise in the data. If the feature vector changes on one node, the

absolute changes of the r-scale random walk weighted characteristic functions

stay low.

Using characteristic functions seems to be useful because of a few important

properties (illustrated in Figure 1.7):

• the real part is an even function while the imaginary part is odd;

• the range of both parts is in the [−1, 1] interval;

• nodes with different structural roles have different characteristic

functions.
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Chapter 2

Datasets for Classification Tasks

Classification is an essential concept in the field of supervised machine

learning. At its core, it involves categorizing or grouping data points into

predetermined classes or categories based on their distinguishing attributes.

The ultimate objective is to develop a model that can accurately assign new

data points to the correct classes or categories.

When it comes to the classification of tabular data, where data points are

represented as vectors, it’s important to ensure that the input vectors are of

a manageable size and can be processed in a reasonable amount of time. This

may involve preprocessing the input data to reduce its size and complexity

which sometimes might even improve the performance of the classification.

In this chapter, I demonstrate two datasets prepared for graph

classification. The related measurements and results are detailed in Chapter 3.

2.1 Artificial Dataset

The first classification problem is focused on distinguishing between graphs

generated using different random network generators.

Our motivation for constructing this synthetic dataset was that we could

generate graphs of arbitrary size with random graph generators, while many

real-life graph classification dataset mostly contains networks with at most
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2. Datasets for Classification Tasks

a few hundred nodes. Building models that reproduce the properties of real

networks have great importance. To accurately model a network domain using

random graphs, it’s essential to carefully select the random graph models and

suitably adjust their parameters.

Alternatively, we can view various random graph generators with different

parameters as models for different network domains. By differentiating between

these generators, we aim to predict the performance of a classification pipeline

on real-life networks. However, classifying an artificial dataset might be an

overly simplified version of network domain prediction and, therefore, an

easier task. Still, we might be able to draw some conclusions, like, embedding

algorithms that perform poorly in the synthetic task may not be robust tools

for more complex problems. Hence, they should be excluded first, especially if

they are computationally intensive.

2.1.1 Random Graph Generation

While generating this dataset, I included various random graph models and

degree distributions to better represent the variety of real-life networks.

The first generating algorithm was the Random Regular graph2, which

outputs a d-regular graph of n nodes. It has a degree distribution

asymptotically uniform. These graphs are not likely in real life due to their

high symmetry.

The graphs generated by the Erdős-Rényi model3 have n nodes and all

possible edges are chosen to be present with a fixed probability p. These graphs

have binomial, asymptotically Poisson degree distribution, resulting in most

of the degrees close to average with small deviation. They’re not common in

real life either due to their degree distribution and their lack of hubs but have

small-world property.

2https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.random_regular_graph.html
3https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.erdos_renyi_graph.html
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2. Datasets for Classification Tasks

Figure 2.1: Graphs with Poisson (green) and Scale-free (purple) Degree

Distribution [29]

The final category of random graphs used is scale-free graphs meaning that

their degree distribution follows a power law: pk = k−γ, where pk denotes

the fraction of nodes in the graph having degree k. As a result, most of

the nodes have a small degree and very few nodes are hubs. The difference

from Erdős-Rényi graphs are illustrated in Figure 2.1. These graphs are

characterized by having small-worldness and a clustering coefficient dependent

only on the average degree and not the size. Due to these properties, real-life

networks are commonly modeled with scale-free graphs [29].

Several models based on the concept of preferential attachment exist,

resulting in slightly different values of γ or even modified equations but

significant differences in the graph structure. I used three of these:
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2. Datasets for Classification Tasks

• Barabási-Albert model4: a graph of n nodes is grown by attaching new

nodes one by one, each with m new edges that are preferentially attached

to existing nodes, meaning that the probability of choosing an existing

node as a neighbor is proportional to their degrees. The initial graph is

a star on m+ 1 nodes here.

• Dual Barabási-Albert model5: Barabási-Albert model but a new node

is preferentially attached with either m1 edges with probability p, or m2

edges with probability 1−p. The initial graph is a star on max(m1,m2)+1

nodes here.

• Algorithm of Holme & Kim [30] for Copying model (Power Cluster Graph

model)6: Barabási-Albert model but when a new node is preferentially

attached with m new edges, each random edge is followed by a chance

of making an extra edge to one of the endpoint’s neighbors too with

probability p, thus forming a triangle. This algorithm enables a higher

average clustering.

I employed the random graph models as implemented in NetworkX [31]

in my study. The generated graphs were of size 1000 to 1100 nodes, and they

were connected to ensure that the implementation of the embedding algorithms

could be applicable. The parameters of the models and the number of graphs

generated can be seen in Table 2.1.

4https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.barabasi_albert_graph.html
5https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.dual_barabasi_albert_graph.html
6https://networkx.org/documentation/stable/reference/generated/networkx.

generators.random_graphs.powerlaw_cluster_graph.html
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2. Datasets for Classification Tasks

Graph generating model Parameter(s)
Number of

graphs generated

Random Regular (RR)3 d = 4; 6; 8; 10; 12 87 in total

p = 0.1; 0.2 20 – 20

Erdős-Rényi (ER)??
p = 0.05; 0.075; 0.125;

0.15; 0.25
10 – 10

(90 in total)

m = 1; 2; 3; 18 – 18

Barabási-Albert (BA)4 m = 4; 5; 6 10 – 10

(84 in total)

Dual Barabási-Albert (DB)5

(m1,m2, p) = (1,3,0.25);

(1,3,0.50); (1,3,0.75);

(3,4,0.25); (3,4,0.50);

(3,4,0.75); (4,6,0.25);

(4,6,0.5); (4.6,0.75)

81 in total

Holme & Kim (HK)6

(m, p) = (1, 0.2); (1, 0.4);

(1, 0.6); (2, 0.2); (2, 0.4);

(2, 0.6); (3, 0.2); (3, 0.4);

(3, 0.6)

86 in total

Table 2.1: Generated Graphs for the Artificial Dataset

2.2 Real-life Dataset

Several datasets with network-like data points, such as those found in

chemical, bioinformatic, infrastructural, and social network databases, may

require differentiation within groups (e.g., protein functions) or between

groups. To assess the performance of graph embedding algorithms on a

real-world dataset, I performed a domain classification task on the dataset

of M. Nagy and R. Molontay [14].
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2. Datasets for Classification Tasks

This dataset consists of 500 graphs, gathered one by one from online

databases, whose self-loops were removed and treated as undirected,

unweighted graphs. These networks belong to six domains, as shown in

Table 2.2, and their sizes cover a wide range from small graphs to networks

with thousands of nodes.

Domain Description
Range of

network size

Number of

networks

Brain Human and animal connectomes
50 - 2,995

(avg: 946)
100

Cheminformatics Protein-protein (enzyme) interaction networks
44 - 125

(avg: 55)
100

Food What-eats-what, consumer-resource networks
19 - 1,500

(avg: 118)
100

Infrastructural
Transportation (metro, bus, road, airline) and

distribution networks (power and water)

39 - 40K

(avg: 4,562)
68

Social Facebook, Twitter and collaboration networks
85 - 34K

(avg: 5,183)
118

Web Pieces of the World Wide Web
146 - 16K

(avg: 4,488)
14

Table 2.2: Real-world network dataset for graph classification [14]

In their previous work [32], M. Nagy and R. Molontay managed to perform

0.912 accuracy in a graph domain classification task for this dataset with only

eight carefully selected topological features extracted from degree distribution,

shortest path, centrality, and clustering-related metrics (details in Section

2.3.1). The beauty of this approach is the explainability of these features, but

calculating some of them is computationally costly. For example, the average

path length divided by the logarithm of the size or the maximum eigenvector

centrality is computable in O(n3).
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2. Datasets for Classification Tasks

They used graph2vec (1.3.3) and AttentionWalk ([33]) as baseline methods

and made the classification from different graph representations with kNN,

Random Forest, and Decision Tree. Their results can be seen in Table 2.3:

Approach kNN Decision tree Random Forest

Topological features 78.5% 85.2% 89.3%

Selected features 87.0% 85.5% 91.2%

graph2vec (δ = 8) 52.3 % 51.2% 55.8%

graph2vec (δ = 200) 79.2 % 75.4% 82.1%

graph2vec (δ = 1100) 84.2 % 74.1% 84.5%

AttentionWalk (δ = 128) 27.0% 43.0% 54.0%

AttentionWalk (δ = 256) 28.4% 37.9% 54.7%

Table 2.3: Results of R. Molontay and M. Nagy [14]

The main objective of my research was to try out additional whole

graph embedding methods. My measurements, in Chapter 3 not only show

that graph2vec and AttentionWalk can be outperformed with state-of-the-art

models, but it highlights that there are good performing algorithms with small

embedding dimensions.
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Chapter 3

Measurements

In this chapter, I will present measurements of graph classification on

the two datasets introduced in Chapter 2. The primary focus will be on

the performance of various embedding algorithms combined with classifiers

to evaluate their effectiveness in solving classification tasks. The running time

of the embedding algorithms and the dimension of the embedded vectors are

also discussed with consideration of their parameters.

For the measurements, I used some of the whole graph embedding

algorithms implemented in the Karate Club Python API [12]. If a graph could

not be embedded with a specific algorithm, it was substituted with the zero

vector of respective size. This happens, for instance, whenever the graph is too

small and the embbedding algorithms cannot build the vocabulary.

3.1 Classification on Artificial Dataset

The artificial dataset of this measurement is presented in detail in Section 2.1.

3.1.1 Tasks

The evaluation of the performance of embedding algorithms was conducted

using two distinct types of classification tasks:

• distinguishing between graphs generated by random graph models;
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• differentiating between graphs created by the same random graph model

but with varying parameters.

More precisely, the six defined tasks were:

• Barabási-Albert types: distinguishing between the different

scale-free models of preferential attachment; the three categories

are Barabási-Albert, Dual Barabási-Albert and Holme & Kim.

• Barabási-Albert parameters: determining the parameter of the

Barabási-Albert model (the number of new edges of the new node); the

categories are integers from 1 to 6.

• Dual Barabási-Albert parameters: determining the parameters of

the Dual Barabási-Albert model (the expected value (rounded down) of

the numbers of new edges of the new node); the categories are integers

from 2 to 6.

• Barabási-Albert types’ parameters: determining the expected value

of the number of new edges of the new node in graphs generated by

both Barabási-Albert and Dual Barabási-Albert models; the categories

are integers from 1 to 6.

• Different types of models: distinguishing between the

Barabási-Albert model, Erdős-Rényi random graphs, and random

regular graphs, three models with different degree distribution,

hence significantly different properties; the three categories are the

above-mentioned three models.

• All models: distinguishing between all the five random graph models

used; the five categories are Barabási-Albert, Dual Barabási-Albert,

Holme & Kim, Erdős-Rényi and Random Regular graph models

The number of generated graphs in each category of the above-defined tasks

can be seen in Table 3.1, also presenting the approximate number of graphs in

the train and test dataset.
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Task Name Classes
#graphs in

train set

#graphs in

test set

Barabási-Albert 63 21

Barabási-Albert types Dual Barabási-Albert 61 20

Holme & Kim 64 22

Barabási-Albert

parameters

1 – 6 (the value of

parameter)

14 or 8

per class

4 or 2

per class

Dual Barabási-Albert

parameters

2 – 6 (expected value of

parameter)

7 to 21

per class

3 to 7

per class

Barabási-Albert types’

parameters

1 – 6 (expected value of

parameter)

15 to 35

per class

5 to 10

per class

Barabási-Albert 63 21

Different types of models Erdős-Rényi 67 23

Random Regular 66 21

Barabási-Albert 63 21

Dual Barabási-Albert 61 20

All models Holme & Kim 64 22

Erdős-Rényi 67 22

Random Regular 66 21

Table 3.1: Classification Tasks for the Artificial Dataset

3.1.2 Results

In these classification tasks, I used various whole graph embedding

algorithms from the Karakteclub [12] Python package with their default

parameter settings (detailed in Section 1.3).
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The dataset of the embedded vectors was split into train-test datasets of

proportions 0.75 − 0.25. Logistic Regression Classifier7 (from the scikit-learn

[34] Python package) was used with the default settings except for the solver,

which was Newton CG (Newton conjugate gradient method) optimizer.

After varying the train-test ratio to identify the minimal size of the training

dataset that does not significantly impact performance, it became apparent

that there was no substantial deviation from the original 25% test ratio.

The top-performing embedding algorithm exhibited near-perfect performance

across all ratios. The results of the first and the last classification tasks

regarding the train-test ratio can be seen in Figure 3.1.

(a) Barabási-Albert types (b) All models

Figure 3.1: Performance of graph embedding methods on two classification

tasks with varying test-ratio

The performances of the eight embedding algorithms on the six tasks of

Section 3.1.1 are summarized in Figure 3.2.

As anticipated, “Different types of models” proved to be the easiest

classification task, indicated by five out of seven models with almost perfect

accuracy. The reason behind this is that the different degree distributions are

easier to distinguish from each other. On the other hand, the most challenging

task was distinguishing between the scale-free models, likely because they share

7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
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relatively similar characteristics. This task was also part of the classification

between all the models and might explain why it was the second most difficult.

Figure 3.2: Performance of graph embedding methods on various

classification tasks

In my experiments, four embedding algorithms, FeatherGraph, FGSD,

LDP, and GeoScattering, stand out with almost perfect performance in

multiple tasks. The most surprising of them was LDP since it is a rather

simple and very fast algorithm. Its performance might be due to the strong

connection to the degrees, which is particularly useful in these tasks.

It is important to consider that for larger graphs, the execution times of

the embedding algorithms can become intolerably slow, or, in some cases, the

algorithms may not be completed at all. Figure 3.3 shows the results of a

previous study, where my objective was to analyze the scaling of runtimes of

various embedding algorithms. The input data consisted of randomly generated

Barabási-Albert graphs with magnitudes of orders 10 to 105.
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Figure 3.3: Runtime of embedding algorithms on different scales

FGSD and GeoScattering showed great promise in terms of their

performance on artificial datasets. However, their runtimes can pose significant

challenges when applied to datasets with large networks.

3.2 Classification of real-life networks

To solve the real-life domain classification task, introduced in Section 2.2,

again, I use whole graph embedding algorithms from the Karakteclub [12]

Python package with a wide range of manually selected parameter settings

shown in the Appendix A. Here, by learning embedding vectors of different

sizes, I explore the trade-off between dimensionality and accuracy (See more

details in Section 3.2.3.)

Due to the increased size of real-life networks, I only experimented with

NetLSD, LDP, FeatherGraph, graph2vec, and SF that proved to be the five

algorithms with the lowest runtime for large graphs in Figure3.3. Four out

of five of these algorithms use some randomness (mainly for initialization),

with the exception of LDP. Thus, for the four non-deterministic algorithms, I

used 10 different random seeds, and I present the mean model performance in

Section 3.2.2.
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3.2.1 Classifiers

To classify the embedded vectors, two different methods from the

scikit-learn [34] Python package were used: Logistic Regression and Random

Forest.

For each set of embedded vectors (obtained by applying the same algorithm

and parameters to all networks), 10 train-test splits were made to evaluate the

performance of the classifier on these inputs. The resulting performances were

then averaged to obtain mean performances for each embedding parameter

setup. This approach was repeated for each random seed wherever applicable

(the exception is LDP) and averaged once again.

• Logistic Regression8: The classifier was used with the default settings

except for the solver, which was Newton CG (Newton conjugate gradient

method) optimizer. Four ratios of the test dataset were tried: 0.25, 0.30,

0.35, and 0.40 (see Figure 3.4).

• Random Forest9: There were two different measurements with this

classifier:

– Varying test ratio: Like for Logistic Regression, four ratios of the

test dataset were tried: 0.25, 0.30, 0.35, and 0.40 (see Figure 3.4).

The number of trees (e) was set to 15 with a maximal tree depth

(d) of 7. The other settings of the classifier were the default.

– Parameter optimization: The ratio of the test dataset was set

to 0.3 for these measurements, and the best setting of the number

of trees (e) and the maximal tree depth (d) was optimized with

grid search on the parameter space: (e, d) ∈ {5, 9, 13, 17, 21} ×

{5, 7, 9, 11}.

8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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3.2.2 Results

In Figure 3.4, the accuracy of the five tested embedding algorithms is shown

with respect to the fraction of test data for both classifiers Logistic Regression

and Random Forest (e = 15, d = 7). The best performance here means the

highest accuracy for the given test with some parameter setup of the embedder,

so it might be that the points of a curve correspond to different parameters of

the same embedder.

(a) Logistic Regression Classifier (b) Random Forest Classifier

Figure 3.4: Accuracy of different embedding methods as a function of test

data fraction

Logistic Regression and Random Forest have similar results to the extent

that the modification of the test ratio will not make a significant effect. It

indicates that only 25% of the data (125 graphs) being used as the training

dataset yields the same performance as 40% (200 graphs) for both classifiers.

However, there is a difference between the performance of some algorithms

with the different classifiers.

The ranking of the algorithms is clearly visible in both cases. The most

powerful embedder was Feather Graph for both classifiers with accuracy from

0.95 to 0.98. In general, graph embedding models had better performance

with the Random Forest than with Logistic Regression as the downstream

classifier. SF and NetLSD are notably improved with Random Forest, whereas

the accuracy of LDP and graph2vec are just slightly modified. It is important
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to note that all of these models demonstrate particularly strong performance

with the Random Forest Classifier, achieving accuracies exceeding 0.85.

In Figure 3.5 the accuracy can be seen as a function of dimension on

a log-linear scale for both Logistic Regression and Random Forest. Every

point on the diagram corresponds to a different parameter setup of the

respective algorithm (denoted by its color). For Random Forest, the illustrated

performance was achieved with grid search (see Section 3.2.1).

(a) Logistic Regression Classifier

(b) Random Forest Classifier

Figure 3.5: Dimension – Accuracy trade-off of embedding algorithms with

different classifiers10

10Interactive figures at https://info.ilab.sztaki.hu/~lilikata/msc_thesis/
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Surprisingly, the low dimensional embedding of LDP and SF has

competitive performance when Random Forest is chosen as a downstream

classifier. For higher dimensions, FeatherGraph is the best option for both

classifiers. NetLSD is only competitive in performance with Random Forest.

The different parameters of graph2vec have a relatively wide range of accuracy;

two distinct groups can be seen with Random Forest, and better performance

is achieved by tuning down the learning rate with one order.

In Figure 3.6, the Accuracy as a function of the average running time of

the embedding (per graph) is shown on a log-linear scale, where the bubble

size is proportional to the dimension of the embedded vector.

(a) Logistic Regression Classifier

(b) Random Forest Classifier

Figure 3.6: Average runtime (per graph) – Accuracy trade-off of embedding

algorithms with different classifiers10
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In general, graph2vec is the quickest algorithm. However, it has the worst

performance with these parameters for Random Forest and also outperformed

with Logistic Regression. LDP is the second, and FeatherGraph is the third

algorithm with the least runtime, and the latter has a very promising accuracy

as well in Figure 3.5. The runtime of NetLSD and SF is dependent on their

parameters, but they are slower than the other three algorithms.

SF with a parameter value of 100 (number of eigenvalues) achieved the

best overall performance, with an accuracy of 0.996266. The 100-dimensional

embedded vectors were fed into Random Forest Classifier with a tree number of

9 and maximal depth of 11 for optimal performance. The average computation

time for the embedding was 5.88s per graph, significantly slower than 1.28s,

the average computational time of the slightly less accurate FeatherGraph.

It achieved an accuracy of 0.995367 with the following parameters: 3 as the

highest matrix power or distance, 2.5 as the maximal evaluation point value,

50 as the number of evaluation points, and min function as pooling. This

parameter setup resulted in 600-dimensional embedded vectors, which were

best classified using a Random Forest with a tree number of 9 and maximal

depth of 9.

3.2.3 Effect of Parameters

In this section, some properties are detailed about the embedding

algorithms as the parameters are varied (illustrated in Figures 3.5 and 3.6).

LDP (Local Degree Profile) (Section 1.3.2)

Dimension: 5× the number of the bins of the histogram

LDP has a peak accuracy around dimension 40 and for higher dimensions,

it stays nearly the same. There’s no significant difference in runtime either,

calculating the histogram is a fast process. When considering Logistic

Regression as a classifier, LDP may be a preferable choice for small dimensions

over SF due to its superior performance and faster runtime. However, when

using Random Forest, SF outperforms LDP. Nonetheless, LDP remains a

41



3. Measurements

noteworthy option with significantly faster computation time (around 0.64

seconds/graph) compared to SF or FeatherGraph.

graph2vec (Section 1.3.3)

Dimension: can be set as a parameter

The computation time of graph2vec is surprisingly quick, the fastest

embedding out of the five algorithms that I analyzed in detail (0.2 − 0.4

seconds/graph). Only LDP demonstrated weak competition with graph2vec

in terms of runtime. It slows down with the increasing number of training

epochs and dimensions. In general, higher dimensions tend to result in slightly

better performance. However, increasing the number of training epochs does

not improve the method significantly. The highest accuracy (0.8558621) is

attained with 800 dimensions and only 10 learning epochs. Still, FeatherGraph

is the superior option in the same dimension range.

SF (Spectral Features) (Section 1.3.4)

Dimension: number of eigenvalues

The runtime of SF quickly becomes very slow with the increase of dimension

(or parameter) due to the complexity of the eigenvalue search. However, the

performance just slightly gets better. It has an accuracy of 0.994575 when the

dimension is 56, which is almost as good as the peak performance (0.996266)

achieved by 100-dimensional vectors. Meanwhile, the runtime of the former is

just 1.55 seconds instead of 5.88 – the potential gains may not outweigh the

wait. There is no need to exceed 150 − 160 eigenvalues since FeatherGraph

outperforms SF with faster runtime in that dimension range.

NetLSD (Network Laplacian Spectral Descriptor) (1.3.5)

Dimension: number of timesteps for evaluating the heat trace

NetLSD gets slower for a higher number of eigenvalue approximation steps,

while the performance increases slightly. This proves that the approximation

algorithms used by this method are performing well for this task. The best
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accuracy with 400 approximation steps is 0.985154, while an accuracy of

0.980392 can be achieved with just 200 steps as well. Considering the better

performance and faster runtime of FeatherGraph within the same dimension

range, utilizing NetLSD may not be worthwhile.

FeatherGraph (Section 1.3.5)

Dimension: 2× the number of node features (2 in this case) × the maximal

distance to be considered × number of evaluation points of the characteristic

function

The runtime of FeatherGraph stays almost the same for every tested

parameter setup. The significance of parameters that compose the same

dimensional vectors is uncertain, as it is unclear whether higher matrix powers

or a greater number of evaluation points yield better performance. However, it

can be seen10 that the worst pooling method is mean, it is always worse than

max or min, but the relation of the latter two is also not apparent. Considering

runtime as well as performance for both classifiers, FeatherGraph may be the

optimal choice among these five embedding algorithms.

3.2.4 Parameters of Random Forest

In the heatmaps of Figures 3.7–3.9, we present Random Forest performance

(accuracy) for various parameter settings. The test ratio was set to 0.3 and the

parameters, number of trees (e) and maximal depth of trees (d), were explored

for the grid (e, d) ∈ {5, 9, 13, 17, 21} × {5, 7, 9, 11}. Lighter color indicates

better accuracy. Note that the same color does not necessarily denote the

same performance as different heatmaps might be on different color scales.
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Figure 3.7: LDP accuracy of embedding methods with different parameters of

Random Forest Classifier: number of trees (e) on the horizontal, while the

maximal depth of trees (d) on the vertical axis.

LDP does not seem “compatible” with this classifier, having no particular

pattern. Moreover, it is the only one of the five studied embeddings to perform

worse with Random Forest than with Logistic Regression Classifier.
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Figure 3.8: Graph2vec ccuracy of embedding methods with different

parameters of Random Forest Classifier: number of trees (e) on the

horizontal, while the maximal depth of trees (d) on the vertical axis.

An interesting pattern could be noticed with graph2vec: it favored more

trees, but there were no significant differences with the higher depth of them.
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Figure 3.9: SF, NetLSD and FeatherGraph accuracy of embedding methods

with different parameters of Random Forest Classifier: number of trees (e) on

the horizontal, while the maximal depth of trees (d) on the vertical axis.

On the contrary, the other three embedding algorithms (SF, NetLSD, and

FeatherGraph) performed better, with deeper trees almost disregarding their

number.
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Summary

In my thesis, I extensively studied various whole graph embedding methods,

ranging from simple baseline algorithms to state-of-the-art solutions.

To begin with the theoretical background, I read about the methods and

compared their approaches alongside complexity for deeper comprehension (see

Chapter 1).

I employed two different classification measures to compare carefully

selected methods. An important consideration was the runtime efficiency,

especially for handling large graphs as they occur in real-life applications.

The first type of classification was performed on an artificial dataset of

randomly generated graphs (see Section 2.1). The tasks were to tell apart

different random models or their parameters (see Section 3.1). Four embedding

algorithms consistently demonstrated excellent performance: GeoScattering,

FGSD, FeatherGraph, and LDP. Notably, LDP being a rather simple and quick

approach, was a pleasant surprise. However, due to their runtime limitations,

GeoScattering and FGSD were not viable options for subsequent tasks.

The second classification task involved a real-life dataset comprising

networks from six different domains (see Section 2.2 and 3.2). This second

dataset contained graphs of size over 105 nodes. Therefore the consideration

of the scaling of the runtime became essential. The choice of the classifier

proved crucial in this domain classification task, as Random Forest consistently

outperformed Logistic Regression. When evaluating the methods, three main

objectives were taken into account: accuracy, runtime, and the dimension of the

embedded vector. SF is a suitable algorithm for low-dimensional embeddings,
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although its runtime can be a limiting factor. Among the analyzed methods,

FeatherGraph was overall the best method, with a remarkable performance

in a reasonable runtime. This state-of-the-art algorithm excelled in both

classification tasks, establishing itself as the best-performing method of this

study.
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Appendix A

Parameter Setups

The following tables present the hyperparameter setups of embedding

algorithms utilized in the measurements discussed in Section 3.2.

Name of

Embedding
Parameter description Parameter setups

NetLSD

(1.3.5)

• beginning and ending

of timescale interval

• number of timescale

steps

• number of eigenvalue

approximation steps

[-0.2,0.2,250,200], [-0.2,0.2,500,400], [-0.2,0.2,250,400],

[-0.2,0.2,500,200],

[-0.5,0.5,250,200], [-0.5,0.5,500,400], [-0.5,0.5,250,400],

[-0.5,0.5,500,200],

[-0.1,0.1,250,200], [-0.1,0.1,500,400], [-0.1,0.1,250,400],

[-0.1,0.1,500,200],

[-0.5,0.5,100,200], [-0.5,0.5,150,200], [-0.5,0.5,200,200],

[-0.5,0.5,300,200], [-0.5,0.5,400,200], [-0.5,0.5,600,200],

[-0.5,0.5,700,200]

LDP

(1.3.2)

• number of bins of the

histogram

3, 4, 5, 6, 7, 8, 9, 10, 20, 32, 45, 56, 64, 72, 80, 90, 100,

110, 120, 130, 140

Table A.1: Parameter Setups of the Embedding Algorithms for

Measurements (NetLSD, LDP)
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Name of

Embedding
Parameter description Parameter setups

FeatherGraph

(1.3.5)

• maximal distance

to be considered in

the characteristic

function, or highest

adjacency matrix

power

• maximal evaluation

point value

• number of evaluation

points of the

characteristic

functions

• pooling function

[5,2.5,25,"mean"], [5,2.5,25,"min"], [5,2.5,25,"max"],

[5,2.5,40,"mean"], [5,2.5,40,"min"], [5,2.5,40,"max"],

[5,1.5,25,"mean"], [5,1.5,25,"min"], [5,1.5,25,"max"],

[5,1.5,40,"mean"], [5,1.5,40,"min"], [5,1.5,40,"max"],

[6,4.0,40,"mean"], [6,4.0,40,"min"], [6,4.0,40,"max"],

[5,2.5,15,"min"], [5,2.5,15,"max"], [5,2.5,20,"min"],

[5,2.5,20,"max"], [5,2.5,30,"min"], [5,2.5,30,"max"],

[5,2.5,35,"min"], [5,2.5,35,"max"], [5,2.5,40,"min"],

[5,2.5,40,"max"],

[6,3.0,15,"min"], [6,3.0,15,"max"], [6,3.0,20,"min"],

[6,3.0,20,"max"], [6,3.0,25,"min"], [6,3.0,25,"max"],

[6,3.0,30,"min"], [6,3.0,30,"max"], [6,3.0,35,"min"],

[6,3.0,35,"max"],

[4,2.5,25,"min"], [4,2.5,25,"max"], [4,2.5,30,"min"],

[4,2.5,30,"max"], [4,2.5,35,"min"], [4,2.5,35,"max"],

[4,2.5,40,"min"], [4,2.5,40,"max"], [4,2.5,45,"min"],

[4,2.5,45,"max"], [4,2.5,50,"min"], [4,2.5,50,"max"],

[3,2.5,30,"min"], [3,2.5,30,"max"], [3,2.5,35,"min"],

[3,2.5,35,"max"], [3,2.5,40,"min"], [3,2.5,40,"max"],

[3,2.5,45,"min"], [3,2.5,45,"max"], [3,2.5,50,"min"],

[3,2.5,50,"max"]

Table A.2: Parameter Setups of the Embedding Algorithms for

Measurements (FeatherGraph)
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Name of

Embedding
Parameter description Parameter setups

graph2vec

(1.3.3)

• dimension of the

embedded vector

• number of learning

epochs

• learning rate

[128,10,0.25], [128,30,0.2], [128,50,0.15],

[200,10,0.25], [200,30,0.2], [200,50,0.15], [200,10,0.025],

[200,30,0.02], [200,50,0.015],

[400,10,0.25], [400,30,0.2], [400,50,0.15], [400,10,0.025],

[400,30,0.02], [400,50,0.015],

[500,10,0.25], [500,30,0.2], [500,50,0.15],

[600,10,0.25], [600,30,0.2], [600,50,0.15], [600,10,0.025],

[600,30,0.02], [600,50,0.015],

[800,10,0.25], [800,30,0.2], [800,50,0.15], [800,10,0.025],

[800,30,0.02], [800,50,0.015],

[1000,10,0.25], [1000,30,0.2], [1000,50,0.15]

SF

(1.3.4)

• number of

eigenvalues desired
10, 15, 20, 25, 32, 40, 60, 80, 100, 128, 256

Table A.3: Parameter Setups of the Embedding Algorithms for

Measurements (graph2vec, SF)
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