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Introduction

The theory of semigroups, originating in the mid-20th century, has been instrumen-

tal in developing various approaches for studying evolutionary systems. Our focus

lies primarily in the application of semigroup theory to the analysis and modeling of

evolutionary systems on metric graphs. Semigroups provide a robust mathematical

framework for capturing the dynamic behavior of networks over time, encompassing

changes in topology, node behavior, and edge dynamics.

The study of evolutionary equations on metric graphs has been a subject of research

since the early 20th century, gaining increased interest in recent years due to its

practical applications in theoretical physics, biology, and engineering. For instance,

when studying the separation process in multi-component alloy systems or solidifi-

cation and fracture dynamics, metric graphs naturally arise as a means to represent

the underlying network structure. This field of study is known by various names,

such as dynamics on networks, one-dimensional ramified spaces, or quantum graphs

within certain theoretical physics communities. Exploring this area requires inter-

disciplinary tools from graph theory, partial differential equations (PDEs), mathe-

matical physics, and other relevant disciplines, depending on the specific problem

at hand.

An important example in this context is the Allen-Cahn equation, a reaction-

diffusion equation, which serves as a useful model for processes such as the sep-

aration process. Considering the stochastic version of the Allen-Cahn equation,

which incorporates thermal fluctuations, becomes crucial for capturing the inherent

randomness in these phenomena. Thus, it is both justifiable and of great interest to

contribute to mathematical research in this specific area by developing results for

more general cases. In a previous work by Sikolya Eszter and Mihály Kovács [9],

the stochastic Allen-Cahn equation on a metric graph with non-local type Kirchhoff

boundary conditions was studied. The present thesis builds upon their work by

investigating whether their results also hold in the case of non-compact graphs.

The structure of this thesis unfolds in a coherent manner, beginning with Chap-

ter 1, which serves as a gateway to the theory of semigroups. By delving into

the fundamental definitions and concepts of semigroup theory, such as generators,
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strongly continuous and analytic semigroups, and key generation theorems like the

Hille-Yosida and Lumer-Philips theorems, we lay the groundwork for establishing

well-posedness results and exploring the dynamics of PDEs, this part is mainly

based on the first and second chapter of [6]. Furthermore, this chapter introduces

the methods of bilinear forms and their associated operators, highlighting their rele-

vance as tools for proving well-posedness within the framework of semigroup theory,

and we refer to the first chapter of [15] for these tools.

Chapter 2 introduces the fascinating realm of metric graphs, which provide a geo-

metric framework for studying PDEs on graph structures with parameterized edges.

This chapter embarks on a journey through the captivating world of metric graphs,

elucidating the concept of parametrization and distinguishing between compact and

non-compact graphs. Non-compact graphs, with their edges extending infinitely

in one direction, open up exciting possibilities for modeling real-world phenomena.

We investigate the differential operators defined on metric graphs, particularly the

Laplacian, and the accompanying vertex conditions, such as continuity conditions

and the Kirchhoff law. By incorporating the theory of metric graphs into our study,

we establish a framework that allows for the application of semigroup theory. For

this chapter, we refer to the first chapter of [3] and the second chapter of [20].

Chapter 3 delves into the intriguing field of stochastic PDEs on Banach spaces.

This chapter offers a comprehensive survey of this technical and intricate theory,

aiming to provide a solid foundation without delving into intricate details. Cen-

tral to this theory is the stochastic integral with respect to Cylindrical Brownian

motion, specifically for operator-valued functions defined on Hilbert spaces with

their image spaces in Banach spaces. The construction of the stochastic integral

for step operator-valued functions, employing gamma-radonifying operators and

gamma-summing norms, forms a key component of this chapter. Furthermore, we

explore the extension of the stochastic integral to operator-valued processes, despite

the generalized Itô isometry only holding up to an isomorphism. Well-posedness

results for linear and semilinear stochastic PDEs, including those with additive and

multiplicative noise, are presented. These results lay the foundation for our analysis

of the stochastic Allen-Cahn equations on non-compact metric graphs in the fourth

chapter. The third chapter is mainly based on the lecture notes [19, Chapter 6 and

13 ], while the results on the semilinear stochastic pde, is based on the papers [18]

and [11] by J.M.A.M. van Neerven.

The fourth chapter which is the core of the thesis, focuses on investigating the

well-posedness of the Stochastic Allen-Cahn equations on a non-compact metric

graph. The chapter begins by establishing the well-posedness of the determinis-

tic part of this evolutionary problem in the L2-space framework. The framework

and settings introduced in the second chapter, which involves metric graphs, are
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employed to convert the problem into the framework of semigroup theory. The

methods and theories established in the first chapter are then utilized to prove the

well-posedness of the deterministic case. The reason for proving the deterministic

case first is to extend the well-posedness to all Lp spaces, not just p=2. This ex-

tension is accomplished through the well-posedness for p=2 and the application of

extension techniques that will be further elaborated in the fourth chapter.

The aim of establishing the well-posedness for the deterministic problem in all Lp

spaces, rather than just L2, is directly related to the objective of proving the well-

posedness of the stochastic Allen-Cahn equations on Banach spaces, specifically Lp

spaces. This expansion is crucial, as the results would otherwise fall within the

realm of Hilbert spaces, where they are already well-established. However, our in-

vestigation ends after extending the well-posedness to all Lp spaces, that is because,

our tools won’t be enough to prove a necessary result in the case of Lp, p ̸= 2 for

non-compact graphs.

The second part of the fourth chapter addresses the well-posedness of the stochastic

evolutionary problem on compact graphs, which was already successfully investi-

gated in [9, Section 3], where they leveraged the well-posedness of the deterministic

case. However, before they focused on the specific stochastic Allen-Cahn equations,

a more general problem was examined: semilinear stochastic PDEs on metric graphs.

The well-posedness of this general problem was proved by utilizing the theory pre-

sented in the third chapter, which incorporates the well-posedness of semilinear

stochastic PDEs. The well-posedness of the deterministic case also played a role in

establishing certain assumptions necessary for the application of the last theorem

3.20, presented in the third chapter.

After addressing the general semilinear stochastic PDE with multiplicative noise on

the compact graph, the chapter transitions to the original problem of the stochastic

Allen-Cahn equations. It is demonstrated that the well-posedness of the original

problem can be deduced as a special case of the well-posedness of the general prob-

lem throughout some manipulations. In this chapter, we will refer to results when

needed, but notable papers from which the investigation for the non-compact case

is inspired are [9] which handles the same problem but on a compact graph, [13]

and [14] which treat a deterministic evolutionary equation on a compact graph and

also utilizes the methods of forms, and one paper that should also be mentioned

is [7], which proves well-posedness results for general first and second order PDE’s

on compact and non-compact graphs with general vertex boundary conditions, the

results of this paper proceeds the results established in the first part of the fourth

chapter, the difference is that in that paper they use other methods than forms to

prove those results.
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By harmonizing the theories of semigroups, stochastic PDEs on Banach spaces,

and metric graphs, we embark on a remarkable journey that combines their unique

strengths and insights. This integration not only enhances our understanding of

PDEs but also allows us to explore new avenues of research and applications. The

amalgamation of these theories enables us to analyze the dynamics of PDEs in di-

verse settings, bridging the gap between abstract mathematical concepts and their

tangible manifestations in the real world. Through the interplay of semigroup theory,

stochastic PDEs, and the framework of metric graphs, we unveil the hidden beauty

and versatility of PDEs, paving the way for further advancements and applications

in various scientific and engineering domains.
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Chapter 1

Semigroups and bilinear forms

In this chapter, we will collect the basic results of the theory of semigroup theory,

along with a brief introduction to bilinear form concepts and notations. We will

also explore semigroup-form characterizing results, which will be utilized as tools

to prove our results in the fourth chapter. The first section is based on [6], and

for the second section, we refer to [15]. Throughout this chapter, we set X to be

a Banach space and H a real Hilbert space, and we denote the non-negative real

half-line [0,∞) by R+.

1.1 Some semigroup theory

Consider the following Abstract Cauchy Problem (ACP),

ACP

{
u̇(t) = Au(t), for t ≥ 0;

u(0) = x.

Where A : D(A) ⊂ X → X is a linear operator, x ∈ X is the initial value, and

u : R+ → X.

Solving differential equations analytically can often be challenging or even impos-

sible. In order to understand the behavior of a system, an alternative approach is

to use the theory of dynamical systems or solve the problem numerically. However,

before applying these approaches, it is important to determine whether the system

has a solution and if that solution is unique. Additionally, we may want to study the

regularity of the solutions. The theory of semigroups provides a useful framework

for addressing these questions.

Definition 1.1 (One-parameter semigroup)

A family (T (t))t≥0, T : R+ → L(X) of bounded linear operators on X is called a
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semigroup on X if it satisfies the following functional equation :

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0;

T (0) = I where I is the identity operator of X.
(1.1)

The exponential function is a valuable tool in solving certain types of finite-

dimensional dynamical systems. The notion of a semigroup is its generalization

for infinite-dimensional systems on Banach spaces. For this generalization to make

sense, the semigroups must be able to describe the time evolution of the dynamical

system throughout the functional equation (FE) as in the finite-dimensional case.

This functional equation is, in fact, identical to the algebraic semigroup property,

which gives rise to the name ”semigroup.” By understanding the relationship be-

tween the exponential function and the semigroup, we can better appreciate the

power and flexibility of these mathematical concepts in solving abstract systems.

In some linear finite cases, e.g u(t)′ = Mu(t) where for simplicity say that M is some

diagonal constant matrix, then the following exponential function u(t) = etMu0,

where u0 ∈ R is the initial condition, fully captures the dynamics of the evolution-

ary systems, this is thanks to the fact that (etMu0) is a solution to the differential

equation describing the system, and this is because t 7→ etM is differentiable. To

generalize this, it is desirable for the semigroups to be differentiable as well. While

the (uniform) continuity of the mappings: t ∈ R+ 7→ T (t) ∈ L(X), is a sufficient

condition for differentiability [6, Theorem 1.3.7], there exist many natural semi-

groups that do not satisfy uniform continuity, but instead, satisfy a weaker form of

continuity known as strong continuity. This type of semigroup is known as strongly

continuous semigroup (C0-semigroup) and constitute a large class of semigroups that

can provide solutions to abstract systems under certain additional conditions. By

studying the properties of C0-semigroup, we can gain a deeper understanding of the

behavior of dynamical systems and develop more effective tools for analyzing and

solving these systems, such as stability and control analysis.

Definition 1.2 (Strongly continuous semigroup)

(T (t))t≥0 is a C0-semigroup, if (T (t))t≥0 is a semigroup and it is strongly continuous,

i.e.

∀x ∈ X the orbit mappings t 7→ T (t)x ∈ X are continuous on R+.

Proposition 1.3

Let (T (t))t≥0 be a semigroup on X. Then (T (t))t≥0 is a C0-semigroup iff there exist
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K, δ > 0 and a dense subset D of X such that :

i) ∥T (t)∥ ≤ K, ∀t ∈ [0, δ],

ii) lim
t→0

T (t)x = x, ∀x ∈ D.

Usually, many semigroups satisfy property i) of Proposition 1.3, therefore by this

proposition it is enough to prove strong continuity on a dense subset rather than on

the whole Banach space X.

Proposition 1.4

If (T (t))t≥0 is a C0-semigroup, then (T (t))t≥0 is exponentially bounded, i.e there

exist, ω ∈ R and M ≥ 1 such that

∥T (t)∥ ≤ Meωt, ∀t ≥ 0. (1.2)

Remark 1.5

If M = 1 and ω = 0, i.e ∥T (t)∥ ≤ 1, we say (T (t))t≥0 is a contraction C0-semigroup.

If X is finite-dimensional, the behavior of a dynamical system {eAt}t≥0 can be

fully characterized by its corresponding matrix A, where matrices with different

spectral properties generate different dynamical systems. Additionally, the matrix

A can be obtained by taking the derivative of eAt at t = 0. This analogy motivates

the introduction of the notion of a generator for infinite-dimensional systems, which

is a key tool for characterizing and analyzing the behavior of semigroups.

Definition 1.6 (Generator)

Let (T (t))t≥0 be a C0-semigroup.We call the operator (A,D(A)) on X the generator

of (T (t))t≥0 if,{
Ax := limh→0+

1
h
(T (h)x− x);

D(A) := {x ∈ X : t 7→ T (t)x ∈ X is differentiable at t=0}

Being familiar with some notions of semigroup theory, we will now formulate

how semigroups provide solutions to abstract Cauchy problems.

Definition 1.7

We say that the ACP is well-posed if,

1. ∀x ∈ D(A), there exists a unique solution u(., x) of the ACP,

2. D(A) is dense in X,

3. ∀(xn)n∈N ⊂ D(A), if limn→∞ xn = 0, then limn→∞ u(t, xn) = 0 uniformly in

compact intervals [0, t0].
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Theorem 1.8 (C0-semigroup and well-posedness)

If the operator A from the ACP is closed, then the ACP is well-posed iff A is the

generator of a C0-semigroup.

Now we will present two famous theorems that provide sufficient conditions for

the operator to generate a C0-semigroup, but first, we need to introduce the notion

of the resolvent of an operator.

Definition 1.9 (Resolvent)

Let (A,D(A)) be a linear closed operator on X, where D(A) ⊂ X and X is Banach

space. We call the following set :

ρ(A) =: {λ ∈ C : (λ− A) : D(A) → X is bijective }

the resolvent set of A, and for λ ∈ ρ(A) we introduce the so-called resolvent operator

of A defined as :

R(λ,A) := (λ− A)−1,

which is bounded on X by the closed graph theorem.

Theorem 1.10 (Contraction case,Hille-Yosida,1948)

For a linear operator (A,D(A)) on a Banach space X, the following properties are

all equivalent :

1. (A,D(A)) generates a strongly continuous contraction semigroup,

2. (A,D(A)) is closed, densely defined, and for every λ ∈ C with Reλ > 0 one

has λ ∈ ρ(A) and ∥R(λ,A)∥ ≤ 1
Reλ

.

It turns out that if the operator A is dissipative then there is a simpler generation

theorem in the sense that we do not have to deal with the resolvent estimates.

Definition 1.11 (Dissipative operators)

A linear operator (A,D(A)) on X is called dissipative if

∥(λ− A)x∥ ≥ λ∥x∥

for all λ > 0 and x ∈ D(A).

Theorem 1.12 (Lumer-Philips,1961)

Let (A,D(A)) be a closed, densely defined, dissipative operator on X, then the fol-

lowings are equivalent :

1. A generates a contraction C0-semigroup;
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2. range(λ− A) is dense in X for all λ > 0.

Now, we will present another type of semigroup characterized by a property of

its generator. We will use the terminology given by [6].

Definition 1.13 (Sectorial operators)

Let (A,D(A)) be a closed linear operator with a dense domain in X. We say that A

is sectorial if there exist 0 ≤ δ ≤ π
2
such that :

1. Σπ
2
+δ =: {λ ∈ C : |argλ| < π

2
+ δ}\{0} ⊂ ρ(A)

2. ∀ϵ ∈ (0, δ), there exists Mϵ ≥ 1 such that

∥R(λ,A)∥ ≤ Mϵ

|λ|
, for all 0 ̸= λ ∈ Σπ

2
+δ−ϵ

Definition 1.14 (Analytic semigroups)

A family (T (z))z∈Σδ∪{0} is called an analytic semigroup on X if

1. (T (z))z∈Σδ∪{0} is a semigroup on Σδ, satisfying the functional equation (1.1),

2. The map z → T (z) is analytic on Σδ,

3. limΣδ′∋z→0 T (z)x = x for all x ∈ X and 0 < δ′ < δ.

Theorem 1.15 (Characterization of analytic semigroups)

(A,D(A)) generates an analytic semigroup (T (z))z∈Σδ∪{0} on X ⇐⇒ A is sectorial.

1.2 Brief introduction to bilinear forms and asso-

ciated operators

Our future investigations will focus on studying the properties of the Laplace op-

erator subjected to some boundary conditions. One of the key objectives of our

analysis is to establish that this operator is a generator of a semigroup. To achieve

this goal, while referring to [15], we introduce the tools of bilinear forms and their

associated operators in this section, as they offer useful techniques for conducting

such analyses.

Definition 1.16

We call a mapping a : D(a) ×D(a) → R a bilinear form on the Hilbert space H if

it satisfies

a(αu+ v, h) = αa(u, h) + a(v, h) and a(u, αv + h) = αa(u, v) + a(u, h)

for u, v, h ∈ D(a), where D(a) is a linear subspace of H.
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A bilinear form can have many properties, but for our purposes, we will focus

on the ones that are most useful. Specifically, we will see that certain properties

of a bilinear form can give us sufficient conditions for the associated operator (

see Definition 1.19 below) to be the generator of a C0-semigroup. This is why it

is important to study the properties of bilinear forms and how they relate to the

operators they are associated to.

Definition 1.17

We say that a is,

1. densely defined if D(a) is dense in H,

2. accretive if a(u, u) ≥ 0 for all u ∈ D(a),

3. continuous if there exists M ≥ 0 such that : |a(u, u)| ≤ M∥u∥a∥v∥a, for all

u, v ∈ D(a), where ∥u∥a =
√

a(u, u) + ∥u∥2, and ∥.∥ is the induced norm from

the inner product of H,

4. closed if (D(a), ∥.∥a) is a complete space,

5. symmetric if a(u, v) = a(v, u) for all u, v ∈ D(a).

Proposition 1.18

Let a be a densely defined, accretive, continuous,closed (DACC) form. Then ∥.∥a is

a norm on D(a), we call it the norm associated with a. Moreover ∥.∥ and ∥.∥a are

equivalent on H.

Proof. Let I : (H, ∥.∥a) → (H, ∥.∥), be the identity operator. We have:

∥u∥a =
√
a(u, u) + ∥u∥2 =⇒ ∥u∥ ≤ ∥u∥a =⇒ I is continuous

I is bijective, hence by the closed graph theorem, I−1 = I is also continuous,therefore

there exist C ≥ 0 such that : ∥u∥a ≤ C∥.∥ for all u ∈ H

Using the Riesz representation theorem, these forms above induce a unique op-

erator, which we call the operator associated with the form. The usefulness of the

method of forms, as will be seen later, stems from the fact that if a form enjoys

nice properties then the negative of its associated operator will be the generator of a

C0-semigroup. However, because we would like later to work directly with the asso-

ciated operator rather than its negative, we therefore define the associated operator

in an equivalent but different way than what can be usually found in the litterature.
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Definition 1.19 (Associated operator)

Let a be a DACC form on H. The operator B defined as{
D(B) := {u ∈ D(a) : ∃w ∈ H such that , a(u, ϕ) = ⟨w, ϕ⟩H ∀ϕ ∈ D(a)}
Bu := −w

is called the operator associated with the form a.

In the sequel, we will apply the Lumer-Philips generation theorem 1.12, to prove

a C0-semigroup characterization result using forms. The next proposition serves the

purpose of preparing the assumption stated in Theorem 1.12.

Proposition 1.20

Let B be the operator associated with a DACC form. Then

1. B is densely defined,

2. ∀λ > 0, (λ−B) : D(B) → H is invertible,

3. (λ−B)−1 is bounded,

4. ∥λ(λ−B)−1f∥ ≤ ∥f∥, ∀λ > 0, f ∈ H.

Proof. We refer to [15, Proposition 1.22].

Proposition1.20, says that the operator associated with a DACC form, is densely

defined and dissipative.

Proposition 1.21

If a is symmetric, then the associated operator B is self-adjoint.

Theorem 1.22

Let a be a DACC on H, and B its associated operator. Then B is the generator of a

contraction C0-semigroup on H ⇐⇒ B is closed, moreover, this semigroup is also

analytic.

Proof. Using Proposition 1.20, we get that B is densely defined and dissipative.

range(λ−B) is dense inH follows from [15, Theorem 1.49]. Then we apply Theorem

1.12. Concerning the analyticity of the semigroup, for this part of the proof we refer

to [15, Theorem 1.50].

Remark 1.23

In the previous theorem, B had to be closed so that it generates a C0-semigroup. If

the form a happens to be symmetric, then we can use Proposition 1.21 and the fact

that B is densely defined to satisfy the closedness property.
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Chapter 2

Metric graphs

This chapter provides an overview of metric graphs, which are directed graphs having

parametrized edges on intervals. In the first section, we introduce the concept and

framework of metric graphs. The second section discusses differential operators on

metric graphs, boundary conditions, and their interpretations. We rely on [3] and

[20] as our main references for this chapter.

2.1 Introduction to the framework and settings of

metric graphs

Definition 2.1 (Undirected graph)

An undirected graph is a triple G = (V,E,Φ), where V is the set of vertices, E the

set of edges and Φ : E → V × V maps every edge e ∈ E to an unordered set of

vertices, that is Ψ(e) = {u, v}.

Definition 2.2 (Directed graph)

G = (V,E,Φ) is said to be a directed graph if Φ maps each edge to an ordered pair

of vertices, i.e for e ∈ E we have Φ(e) = (u, v). We say that e is a directed edge,

and u and v are the origin and terminal of e.

Definition 2.3 (Edge parametrization)

Let G = (V,E,Φ) be a directed graph, we say that e ∈ E with Φ(e) = (u, v) is a

parameterized edge, if we assign to e a positive length le ∈ (0,∞) and parameterize

e on (0, le).

Parametrizing the edge e on [0, le], means that for s ∈ [0, le] we have a parameter

xe(s) ∈ e, then we can set the endpoints by setting, xe(0) = u and xe(le) = v.

To abbreviate these endpoints settings we use directly the notation e(0) = u and

e(le) = v.
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To avoid the notation technicalities of edge parametrization, we will in the sequel

only state the following : Let e ∈ E where Φ(e) = (u, v), be a parametrized edge on

[0, le].

Here is an example of parametrizing and edge e on [0,1]

v1 v2
e

v1

e(0)=v1

v2

e(1)=v2

e

The concept of edge parametrizing is basically a way of moving from the discrete

settings of graphs to a continuous one. The reason for moving to the continuous

setting is that later, we would like to define the Laplacian on a graphG and to be able

to do that, we will also need to consider the topological functional space L2(G) which

consists of square-integrable functions on G. Which is defined as the direct sum of

all the L2 spaces on the intervals assigned to the edges through the parametrization.

Meanwhile, the common vertices shared by the adjacent parametrized edges will be

identified through some vertex boundary conditions.

Definition 2.4 (Metric graph)

Let G = (V,E,Φ) be a directed graph without any isolated vertex. By parametrizing

all the edges in E, we call G a metric graph and we say that G is

1. finite, if there are finite numbers of edges and vertices,

2. non-compact if G has leads which are infinitely long edges, i.e edges parame-

terized on [0,∞).

The mapping Φ describes the incidence relation between the vertices and the

edges, one way to present this relation at once is to use the incoming and outgoing

incidence matrices.

Definition 2.5 (Incidence matrix for a non-compact metric graph)

Let G=(V,E,Φ) be a non-compact and finite metric graph such that V={v1, v2, ..., vn}
and E={e˜1, ..., e˜k, ẽk+1, ..., ẽm} where e˜j denotes a directed edge for j ∈ {1, ..., k}, ẽj
denotes a lead for j ∈ {k + 1, ...,m} and n,m ∈ N, set s := m− k,. Φ induces the

outgoing and incoming incidence matrices for the directed edges.

Φ˜+ :=
(
Φ˜+

ij

)
n×m

[ (
ϕ˜+ij
)
n×k

[0]n×s

]
n×m

Φ˜− :=
(
Φ˜−

ij

)
n×m

=

[ (
ϕ˜−ij
)
n×k

[0]n×s

]
n×m

and an additional outgoing incidence matrix corresponding to the incidence between

the vertices and the leads, denoted by

Φ̃+ :=

[
[0]n×k

(
ϕ̃+
ij

)
n×s

]
n×m
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These matrices are defined by,

ϕ˜+ij :=
 1, if e˜j(0) = vi,

0, otherwise,
; ϕ˜−ij :=

1, if e˜j(1) = vi,

0, otherwise,

ϕ̃+
ij :=

{
1, if ẽj(0) = vi,

0, otherwise.

The reason for the block notation of these previous matrices is to be able to define

the incidence matrix Φ := Φ˜− + Φ˜+ + Φ̃+.

2.2 Differential operators on metric graphs

Let G(V,E,Φ) be a non-compact, finite metric graph, with |V | = n and |E| = m

such that E contains k directed edges parametrized on [0, 1] and s := m− k leads.

We mean by a differential operator on the graph G an operator acting on functions

defined on the parametrized edges, for more details we refer to [20]. We will define

a function u on G as the |E|-tuple of functions u˜j and ũj on the intervals [0.1] and

[0,∞) respectively, i.e :

u : (u˜1, ..., u˜k, ũk+1, ..., ũm) where u˜j : [0, 1] → R and ũj : [0,∞) → R

However, it is important to note that G includes a set of vertices that represent the

boundary relationships between edges. For example, to ensure that the functions

on G are continuous, the coordinate functions must not only be continuous on their

respective intervals but also maintain continuity at the boundaries between adjacent

edges.

We now introduce some sets and notations.

1. For vi ∈ V let Γ(vi)
+ := {j ∈ {1, ...,m} : e˜j(1) = vi}, denote the set of all

incoming edges to vi.

2. Γ(vi)
− := {j ∈ {1, ...,m} : e˜j(0) = vi or ẽj(0) = vi}, denote the set of all

outgoing edges to vi.

3. Γ(vi) := Γ(vi)
+ ∪ Γ(vi)

− = {j ∈ {1, ...,m} : e˜j(1) = vi or e˜j(0) = vi or ẽj(0) =

vi}

4. Let uj denote either u˜j or ũj.
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Definition 2.6 (Continuity condition)

We denote by C(G) the set of continuous functions on G. We say that u is contin-

uous on G or u ∈ C(G) if :

1. u ∈ C([0, 1])k × C([0,∞))s

2. ∀j ∈ Γ(vi), uj(vi) := qi ∀i ∈ {1, ..., n}, where qi ∈ R

Remark 2.7

If u ∈ C(G),we denote the values of u˜j and ũj for all j ∈ {1, ...,m} at the boundary

0 and 1 by :

u˜j(vi) :=
 u˜j(0), if e˜j(0) = vi,

0, otherwise
; u˜j(vi) :=

u˜j(1), if e˜j(1) = vi,

0, otherwise

; ũj(vi) :=

ũj(0), if ẽj(0) = vi,

0, otherwise

The second condition ensures that the values of u at the vertices vi ∈ V are

uniquely defined and that all adjacent edges share the same value qi at vi.

The continuity condition happens to be imposed on many problems, for instance, the

metric graph we will work within our investigation in Chapter 4 will be equipped

with a Laplacian, therefore we will consider functions defined on Sobolev spaces,

u ∈ (H2(0, 1))k × (H2(0,∞))s, consequently u must be continuous. This example

serves as a justification for exploring this continuity condition, and now we will

mention another type of vertex boundary condition, the Kirchhoff law.

Definition 2.8 (Kirchhoff law)

Let u ∈ C(G), then we set q =: (q1, ..., qn)
T to be the set of all uniquely determined

values of the vertices by u, i.e qi := uj(vi), for some j ∈ Γ(vi). We say that :

1. qi is the incoming flow at vi if qi :=
∑

j∈Γ+(vi)
uj(1).

2. qi is the outgoing flow at vi if qi :=
∑

j∈Γ−(vi)
uj(0).

3. u satisfy the Kirchhoff law on G if ∀ i = 1, ..., n, qi is both the incoming and

outgoing flow at vi, i.e

m∑
j=1

ϕijuj(vi) = 0, ∀ vi ∈ V (2.1)

Remark 2.9 1. If the right-hand side of 2.1, is non-zero and instead depends on

the common values of some non-adjacent vertices to vi, then we call such vertex
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condition a non-local Kirchhoff law. e.g we can have have at vi :

m∑
j=1

ϕijuj(vi) =
n∑

l=1

qlbl (2.2)

Where the bl are some real coefficients.

2. To ensure the existence of the vector of common values in the left-hand side

of the flow equations, it is necessary for u ∈ C(G) to be continuous. On

the other hand, the functions uj’s in the right-hand side can be replaced by

their derivatives, provided that these derivatives exist. The choice of using the

functions uj’s or their derivatives depends on the interpretation of the given

flow relative to the problem being considered.
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Chapter 3

Stochastic PDE’s

The fourth chapter focuses on the semilinear stochastic equation with multiplicative

noise. To present an existence and uniqueness result at the end of the chapter, we

first provide a survey on the existence and uniqueness of a stochastic linear equation

with additive and multiplicative noise, without delving too deep into the technical

details to avoid detracting from the main results of the thesis. In the first section,

we discuss the construction of stochastic integrals for operator-valued functions and

processes. In the second section, we address the existence and uniqueness of the

results for the three types of stochastic equations. Definitions and brief explanations

will be provided when necessary and the proofs will be omitted. Our discussion is

primarily based on Chapters 6 and 13 of J.M.A.M. van Neerven’s lecture notes ([19]),

and we also refer to the survey and paper by J.M.A.M. van Neerven [18] and [11] for

the theoretical background leading to the well-posedness of the semilinear stochastic

equation. Throughout this chapter, unless specified otherwise, X and H refer to a

Banach space and a Hilbert space respectively, and [0, T ] is an interval of R+ where

0 < T , while for any space Banach Y , we denote its dual by Y ∗, and if Y is Hilbert

then we denote the inner product associated to Y , by ⟨., .⟩Y .

3.1 Stochastic intgeration

In this section, we will look at how to define stochastic integrals with respect to

a cylindrical Brownian motion on a Banach space. First, we will construct the

stochastic integral for L(H,X) operator-valued functions and then we will consider

the more delicate problem of constructing stochastic integrals for L(H,X) operator

valued stochastic processes.

L(H,X) operator-valued function

The construction follows similarly to how it’s done in Hilbert spaces, by constructing

the integral first for step functions and extending the integral to a larger class using
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isometry. The analogy in Banach spaces is that the γ-radonifying operators will

play the role of by Hilbert-Schmidt operators in Hilbert spaces. First, we present

some preliminary definitions and notations.

For h ∈ H and x ∈ X,we denote by h⊗ x the operator in L(H,X) defined as:

(h⊗ x)h′ := ⟨h, h′⟩Hx, h′ ∈ H.

The H-cylindrical Brownian motion is considered instead of a simple Brownian

motion because the stochastic PDE considered in the fourth chapter has a random

term that involves space-time noise. This means that the equation takes into account

spatial and temporal fluctuations, and depending on H, the cylindrical Brownian

motion is the appropriate mathematical model for this stochastic part.

Definition 3.1 (Cylindrical Brownian motion)

Let (Ω,F ,P) be a probability space and H a Hilbert space, consider the following

mapping :

W : H → L2(Ω)

If the following properties hold:

1. ∀h ∈ H, the random variables Wh are Gaussian,

2. ∀h1, h2 ∈ H, E(Wh1 · Wh2) = ⟨h1, h2⟩H,

3. H := L2(0, T ;H), where H is a Hilbert space. Then we call the mapping W
an H-Cylindrical Brownian motion. We denote it by WH and it’s output is

given by

WH(t)h := W(1(0,t) ⊗ h), t ∈ [0, T ], and h ∈ H.

When dealing with Hilbert spaces, the L2-norm is a crucial tool for estimating

stochastic integrals through the Ito isometry. Additionally, Hilbert-Schmidt op-

erators aid in constructing integrals with respect to cylindrical Brownian motion.

However, these concepts no longer apply in the more general setting of Banach

spaces. To extend stochastic integrability beyond the Hilbert space framework, it is

necessary to introduce the γ-summing norm and the γ-radonifying operators. These

tools provide a way to carry out stochastic integrability in Banach spaces, where

the traditional Hilbert space techniques cannot be employed.

Definition 3.2 (γ-summing operators)

Let X be a Banach space, a linear operator S ∈ L(H,X) is said to be γ-summing if
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the following norm is finite,

∥S∥γ∞
p (H,X) := sup

(
E∥

N∑
j=1

γjShj∥p
) 1

p

< ∞,

for some 1 ≤ p < ∞ and equivalently for all p, where :

1. γj are real-valued Gaussian variables for j ∈ {1, ..., N},

2. {h1, ..., hN} is a finite orthonormal system of H,

3. the supremum is taken over all finite orthonormal systems of H.

The space of all γ-summing operators in L(H,X) is denoted by γ∞
p (H,X).

Definition 3.3

An operator S ∈ L(H,X) is said to be a finite rank operator if it can be written as :

S =
N∑

n=1

hn ⊗ xn,

where :

1. {h1, ..., hN} is a finite orthonormal system of H,

2. x1, ..., xN , are arbitrary in X.

Proposition 3.4

If S ∈ L(H,X) is a finite rank operator, then S ∈ γ∞
p (H,X).

Definition 3.5 (γ-radonifying operators)

The space of γ-radonifying operators in L(H,X), denoted by γ(H,E) is defined as

the closure of all finite rank operators in L(H,X) with respect to γ∞
p (H,E)-norm.

While for R ∈ γ(H,E), the γ-radonifying-norm is defined as :

∥R∥γ(H,E) := ∥R∥γ∞
p (H,E).

Having introduced these necessary notions, we can start the process of construct-

ing the stochastic integral in a Banach space X.

Definition 3.6

A function f : [0, T ] → L(H,X) is said to be a step function if :

f = 1(a,b) ⊗ (h⊗ x), where 0 ≤ a < b ≤ T, h ∈ H, and x ∈ X
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The stochastic integral for a step function f with respect to WH is defined as :∫ T

0

fdWH := WH(1(a,b) ⊗ h)⊗ x = (WH(b)h−WH(a)h)⊗ x ∈ L2(Ω;X).

Remark 3.7 1. By linearity we can extend the integral to finite rank step func-

tions.

2. Any step function f : [0, T ] 7→ L(H,X) uniquely defines a bounded operator

Rf ∈ L(L2(0, T ;H), E), [19, 6.2] by :

Rfg :=

∫ T

0

f(t)g(t)dt, g ∈ L2(0, T ;H).

The purpose of the first remark is to simplify the proofs when extending in-

tegrability to a larger class of L(H,X) operator-valued functions by working with

finite rank step functions. The second remark is important because, as we will see

later, defining the stochastic integral for a representative Rf of a function f is a

useful approach for extending the stochastic integral. The next theorem general-

izes the Ito-isometry for L(H,X) operator-valued finite rank functions and enables

us to extend the stochastic integral to a broader class of L(H,X) operator-valued

functions.

Theorem 3.8 (Ito-isometry)

For all finite rank step functions f : [0, T ] → L(H,X) we have :

1. Rf ∈ γ(L2(0, T ;H), X),

2.
∫ T

0
fdWH is Gaussian,

3. E∥
∫ T

0
fdWH∥2 = ∥Rf∥2γ(L2(0,T ;H),X).

Using Remark 3.7.2. and Theorem 3.8.3. we can define a linear mapping

JWH
T : Rf 7→

∫ T

0

fdWH

which uniquely extends to an isometric embedding

JWH
T : γ(L2(0, T ;H), X) → L2(Ω;X).

Hence the stochastic integral for operators R ∈ γ(L2(0, T ;H), X) is well defined

by JWH
T (R).However, we are aiming to define the stochastic integral for a class of

functions taking values in L(H,X).

Drawing from Remark 3.7.1., we can construct a broader collection of functions
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by considering those L(H,X)-valued functions f that correspond to an operator

Rf ∈ γ(L2(0, T ;H), X). Yet, the means of selecting such a set of functions remains

unclear. The subsequent definition characterizes stochastic integrability through the

limit of finite rank step functions, while the ensuing theorem provides a resolution

to the aforementioned inquiry.

Definition 3.9

A function f : (0, T ) → L(H,X) is said to be stochastically integrable with respect

to WH if there exists a sequence of finite rank step functions fn : (0, T ) → L(H,X)

such that :

1. ∀ h ∈ H, limn→∞ fnh = fh in measure;

2. ∃ an X-valued random variable I such that : I = limn→∞
∫ T

0
fndWH in prob-

ability.

Let X∗ denote the dual of X, for x∗ ∈ X∗,let (f ∗x∗)(t) := f ∗(t)x∗.

Theorem 3.10

A strongly measurable function f : (0, T ) → L(H,X) is stochastically integrable with

respect to WH if,

1. f ∗x∗ ∈ L2(0, T ;H) for all x∗ ∈ X∗,

2. There exists an operator R ∈ γ(L2(0, T ;H), X) such that for all g ∈ L2(0, T ;H)

and x∗ ∈ E∗ we have

⟨Rg, x∗⟩ =
∫ T

0

⟨f(t)g(t), x∗⟩ dt.

As a consequence of the generalized Ito-Isometry Theorem 3.8, the ”if” statement

in the previous theorem can be replaced with and ”iff” statement.

L(H,X) operator-valued processes

We now address the challenging task of defining the stochastic integral for operator-

valued processes in L(H,X). However, this generalization cannot be applied to

any Banach space and requires a specific geometric property known as the UMD

property. While we won’t delve into the technicalities of this property in this chapter,

we refer the interested reader to Chapter 12 of [19] for more information. Lp spaces

on any domain, satisfy this property [19, Theorem 12.4.,Definition 12.14]. Therefore,

the results in this thesis will be stated for such spaces, but they can be generalized to

Banach spaces that satisfy the UMD property. Similar to the previous construction,

we begin with step processes, but instead of using an isometric mapping, we use an
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isomorphic one that can handle the integration of these processes. We then provide

a generalized version of Theorem 3.10, which gives a sufficient condition for the

integrability of such processes.

Definition 3.11

A function f : (0, T )×Ω → L(H,X) is said to be a finite rank adapted step process

with respect to the filtration F = (F)t∈[0,T ] if,

f(t, ω) =
M∑

m=1

N∑
n=1

1(tn−1,tn)(t)1Amn(ω)
k∑

j=1

hj ⊗ xjmn,

where :

1. 0 ≤ t0 < ... < tN ≤ T ,

2. For n = 1, ..., N , the sets A1n, ..., AMn ⊂ Ftn−1 are disjoint,

3. h1, ..., hk ∈ H and ∀j,m, n the vectors xjmn belong to X.

The stochastic integral for a finite rank adapted step process function f with

respect to WH is defined as

∫ T

0

f(t)dWH :=
M∑

m=1

N∑
n=1

1Amn

k∑
j=1

(WH(tn)hj −WH(tn−1)hj)xjmn.

As in the previous case for L(H,X) operator-valued functions, we would like to

construct a larger class of stochastically integrable processes.

Theorem 3.12 (Ito Isomorphism)

Let X be an Lq space and fix 1 < p < ∞. For all finite rank adapted processes

f : (0, T )× Ω → L(H,X) we have :

E∥
∫ T

0

f(t)dWH∥p ≈p,X ∥Rf∥pγ(L2(0,T ;H),X)

Where ” ≈p,E ” means that the estimation is up to some constant depending only on

p and X.

Definition 3.13

A process f : (0, T ) × Ω → L(H,X) is said to be Lp-stochastically integrable with

respect to WH , if there exists a sequence of finite rank adapted processes

fn : (0, T )× Ω → L(H,X) such that :

1. ∀ h ∈ H : limn→∞ fnh = fh in measure;
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2. ∃ a random variable I ∈ Lp(Ω;X) such that :

I = lim
n→∞

∫ T

0

fndWH in Lp(Ω;X).

Definition 3.14 (H-strongly measurable process)

A process f : (0, T )× Ω → L(H,X) is said to be H-strongly measurable if ∀h ∈ H,

the process fh : (0, T )× Ω → X is strongly measurable.

Theorem 3.15

Let X be an Lq space and fix 1 < p < ∞. An H-strongly measurable adapted process

f : (0, T )× Ω → L(H,X), is Lp stochastically integrable with respect to WH if

1. f ∗x∗ ∈ Lp(Ω;L2(0, T ;H)) for all x∗ ∈ X∗,

2. There exists an operator R ∈ Lp(Ω; γ(L2(0, T ;H), X)) such that :

∀g ∈ L2(0, T ;H) and x∗ ∈ X∗,

⟨Rg, x∗⟩ =
∫ T

0

⟨f(t)g(t), x∗⟩ dt, in Lp(Ω).

3.2 Linear and semilinear stochastic PDE

Linear stochastic equation with additive noise

Consider the following stochastic equation on the Banach state space X:{
dU(t) = AU(t)dt+BdWH(t), t ∈ [0, T ],

U(0) = x.
(3.1)

Where :

1. WH is a cylindrical Brownian motion on (Ω,F ,P),

2. B ∈ γ(H,X) is bounded,

3. (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0 on X.

Definition 3.16

A weak solution of (3.1) is an X-valued process {U(t)}t∈[0,T ] which has a strongly

measurable version with the following properties:

1. Almost surely, the paths t 7→ U(t) are integrable,
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2. ∀t ∈ [0, T ] and x∗ ∈ D (A∗) we have almost surely,

⟨U(t), x∗⟩ = ⟨x, x∗⟩+
∫ t

0

⟨U(s), A∗x∗⟩ ds+WH(t)B
∗x∗.

Theorem 3.17 (Existence and uniqueness,[19] )

Let X be an Lp space with p ∈ [2,∞), B ∈ L(H,X), and t 7→ T (t)B is stochastically

integrable.Then the stochastic equation 3.1 has a unique weak solution given by the

stochastic convolution formula :

U(t) = T (t)x+

∫ T

0

T (t− s)BdWH(s).

Proof. The proof follows from [19, Corollary 8.11], Theorem 8.6) and the fact that

Lp satisfies the UMD-property.

The uniqueness of the solution to the stochastic differential equation is a con-

sequence of the geometric properties of the Lp space with p ∈ [2,∞). While the

stochastic integrability of t 7→ T (t)B ensures the well-definedness of the stochastic

convolution and hence the existence of a solution. Moreover, if B ∈ γ(H,E), a

strong solution can be obtained.

Linear stochastic equation with multiplicative noise

Consider the following stochastic equation on the state space X := Lp(D), where

(D,D, µ) is a σ-finite measure space and p ∈ (1,∞) :{
dU(t) = AU(t)dt+B(U(t))dWH(t), t ∈ [0, T ],

U(0) = u0.
(3.2)

Where :

1. WH is a cylindrical Brownian motion on (Ω,F ,P),

2. (A,D(A)) is the generator of a C0-semigroup (T (t))t≥0 on X,

3. B : Ω → H,X ).

For θ ≥ 0, consider the following space :

V p
θ (Ω; γ(L

2(0, t), X)) := closure{ all finite rank adapted step processes

f : (0, T )× Ω → L(H,X) such that : s 7→ (t− s)−θf(s) ∈ Lp(Ω; γ(L2(0, t), X))}

The existence and uniqueness of 3.2 are established in V p
θ (Ω; γ(L

2(0, t), E)), because
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in this space, under the assumption that A generates an analytic C0-semigroup, and

θ < 1
2
, then thanks to the geometry ( Pisier’s [19, 14.2], and UMD properties) of X,

the stochastic integral would be well defined [19, Lemma 14.8].

Definition 3.18

A strongly measurable process U : [0, T ] × Ω :→ X is called a mild V p
θ -solution of

3.2, if U ∈ V p
θ (Ω; γ(L

2(0, t), X)) and for all t ∈ [0.T ]

U(t) = T (t)uo +

∫ t

0

T (t− s)B(U(s))dWH almost surely .

Theorem 3.19

For θ < 1
2
. If

1. A is the generator of an analytic C0-semigroup,

2. B : X → γ(H,X) is Lipschitz continuous,

3. u0 ∈ Lp(Ω,F0;X).

Then there exists a unique mild V p
θ -solution U of 3.2.

Semilinear stochastic equation with multiplicative noise

Consider the following stochastic equation on the state space X := Lp(D), where

(D,D, µ) is a σ-finite measure space.{
dU(t) = (AU(t) + F (t, U(t)))dt+G(t, U(t))dWH(t), t ∈ [0, T0] ,

U(0) = u0,
(3.3)

Before stating the existence and uniqueness result of this equation, we first introduce

some terminology:

1. fix X0 := X, and let B be a Banach space with norm ∥.∥,

2. from [6, II,5], we know that if (A,D(A)) generates an analytic C0-semigroup of

contractions (T (t))t≥0 on the Banach space X. Then ∀ α ∈ (0, 1) the following

fractional domains spaces are Banach spaces :

Xα := D((−A)α), ∥v∥α := ∥(−A)αv∥, v ∈ D((−A)α),

3. for u ∈ B we define the subdifferential of the norm at u as the set

∂∥u∥ := {u∗ ∈ B∗ : ∥u∗∥ = 1 and ⟨u, u∗⟩ = 1}.

Theorem 3.20 (Existance and uniqueness theorem,[18])

Suppose that the following assumptions hold:
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1. (A,D(A)) is densely defined, closed and sectorial on X

2. For θ ∈
[
0, 1

2

)
we have continuous dense embedding : Xθ ↪→ B ↪→ X

3. Let (T (t))t≥0 be an analytic C0-semigroup generated by (A,D(A)). Assume

that (T (t))t≥0 restricted to B i.e T|B is a contraction semigroup with dissipative

generator A|B

4. The map F : [0, T ] × Ω × B → B is locally Lipschitz continuous in the sense

that for all r > 0, there exists a constant L
(r)
F such that

∥F (t, ω, u)− F (t, ω, v)∥ ≤ L
(r)
F ∥u− v∥

for all ∥u∥, ∥v∥ ≤ r and (t, ω) ∈ [0, T ]×Ω and there exists a constant CF,0 ≥ 0

such that

∥F (t, ω, 0)∥ ≤ CF,0, t ∈ [0, T ], ω ∈ Ω.

Moreover, for all u ∈ B the map (t, ω) 7→ F (t, ω, u) is strongly measurable and

adapted. Finally, for suitable constants a, b ≥ 0 and N ≥ 1 we have

⟨Au+ F (t, u+ v), u∗⟩ ≤ a(1 + ∥v∥)N + b∥u∥

for all u ∈ D (A|B) , v ∈ B and u∗ ∈ ∂∥u∥.

5. There exist constants a′′, b′′,m′ > 0 such that the function F : [0, T ]×Ω×B →
B satisfies

⟨F (t, ω, u+ v)− F (t, ω, v), u∗⟩ ≤ a′′(1 + ∥v∥)m′ − b′′∥u∥m′

for all t ∈ [0, T ], ω ∈ Ω, u, v ∈ B and u∗ ∈ ∂∥u∥, and

∥F (t, v)∥ ≤ a′′(1 + ∥v∥)m′

for all v ∈ B

6. Let γ (H,X−κG) denote the space of γ-radonifying operators from H to X−κG

for some 0 ≤ κG < 1
2
. Then the map G : [0, T ] × Ω × B → γ (H,X−κG)

is locally Lipschitz continuous in the sense that for all r > 0, there exists a

constant L
(r)
G such that

∥G(t, ω, u)−G(t, ω, v)∥γ(H,X−κG ). ≤ L
(r)
G ∥u− v∥

for all ∥u∥, ∥v∥ ≤ r and (t, ω) ∈ [0, T ]×Ω. Moreover, for all u ∈ B and h ∈ H

the map (t, ω) 7→ G(t, ω, u)h is strongly measurable and adapted. Finally, G
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is of linear growth, that is, for suitable constant c′,

∥G(t, ω, u)∥γ(H,X−κG ). ≤ c′(1 + ∥u∥)

for all (t, ω, u) ∈ [0, T ]× Ω×B.

7. 2 < q < ∞, 0 ≤ θ < 1
2
, and 0 ≤ kG < 1

2
with θ + kG < 1

2
− 1

q

Then for all u0 ∈ Lq(Ω,F0,P ;B), there exists a unique global mild solution U ∈
Lq(Ω, C([0, T ];B)) of 3.3.
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Chapter 4

Application

Let G = (V,E,Φ) be a connected, non-compact, and finite metric graph, with

|V | = n and |E| = m such that E contains k directed edges parameterized on [0, 1]

and s := m−k leads, we consider below (4.1), stochastic Allen-Cahn equations with

multiplicative noise on each edge of the graph G, subject to continuity (b) and non-

local Kirchhoff (c) boundary vertex conditions. As discussed in the introduction,

the objective of this thesis is to investigate the existence and uniqueness of solutions

to this evolutionary problem on the non-compact graph G. While the regularity

of solutions could be analyzed, our primary focus in this thesis is on whether this

stochastic problem is also well-posed as in the case of a compact graph [9]. It is

important to note that the vertex conditions chosen are not arbitrary but have a

direct impact on the well-posedness of the system. Specifically, the self-adjointness

of the underlying differential operator, which in our case is the Laplacian, is closely

related to the choice of vertex conditions. [3, Chapter 1, Theorem 1.4.4], provides

three equivalent necessary and sufficient conditions that the vertex conditions must

satisfy for the operator to be self-adjoint.
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u̇j(t, x) = u′′
j (t, x)− pj(x)uj(t, x)

+β2
juj(t, x)− uj(t, x)

+gj (t, x, uj(t, x))
∂wj

∂t
(t, x), t ∈ (0,∞),

{
x ∈ (0, 1) if j ∈ {1, . . . , k}
x ∈ (0,∞) if j ∈ {k + 1, . . . ,m}

(a)

uj (t, vi) = uℓ (t, vi) =: qi(t), t ∈ (0, T ],∀j, ℓ ∈ Γ (vi) , i = 1, . . . , n, (b)

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi) , t ∈ (0, T ], i = 1, . . . , n, (c)

uj(0, x) = uj(x),

{
x ∈ [0, 1] if j ∈ {1, . . . , k}
x ∈ [0,∞) if j ∈ {k + 1, . . . ,m}

(d)

(4.1)

The main objective of this chapter is to place the problem (4.1) within the framework

of Theorem 3.20. However, we will see in the fourth section that with the methods

we used this won’t be possible, therefore starting from the end of the fourth section,

we will only present the results for the compact part of G, by forsaking the leads,

these results are already established in [9, Section 3]. The approach they used to the

problem was by considering the well-posedness of a more general version of (4.1).

Specifically, they focused on studying semilinear stochastic equations with multi-

plicative noise on a compact graph, while maintaining the same vertex conditions

as in (4.1). By analyzing the well-posedness of this general version, they directly

obtained the corresponding well-posedness results for (4.1) as a special case. Their

methodology offers the advantage of providing greater control in satisfying the as-

sumptions imposed by Theorem 3.20. Some of these assumptions pertain to the

well-posedness of the deterministic counterpart of the problem, which is essentially

a heat equation with a reaction term. Therefore, the first three sections of this

chapter are dedicated to addressing the existence and uniqueness of solutions for

the deterministic system on the non-compact graph G. By establishing the well-

posedness of the deterministic problem, we lay the groundwork for subsequently

applying Theorem 3.20 to the more general semilinear stochastic equations on the

compact part of G.

4.1 Heat equation on a metric graph

Consider the following deterministic version of (4.1) which are heat equations on

each edge of G with boundary of the same vertex conditions :
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u̇j(t, x) = u′′
j (t, x)− pj(x)uj(t, x) t ∈ (0,∞),

{
x ∈ (0, 1) if j ∈ {1, . . . , k},
x ∈ (0,∞) if j ∈ {k + 1, . . . ,m},

(a)

uj (t, vi) = uℓ (t, vi) =: qi(t), t ∈ (0,∞),∀j, ℓ ∈ Γ (vi) , i = 1, . . . , n, (b)

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi) , t ∈ (0,∞), i = 1, . . . , n, (c)

uj(0, x) = uj(x),

{
x ∈ [0, 1] if j ∈ {1, . . . , k},
x ∈ [0,∞) if j ∈ {k + 1, . . . ,m}.

(d)

(4.2)

Explanation of the equations in (HE)

1. (a) The heat equation with a reaction term posed on edges and leads, where

u̇j(t, x) =
∂uj

∂t
(., x) ,

(
u′′
j

)
(t, x) =

∂2uj

∂2x
(t, .)

and p = [p1, ..., pm]
T is a non-negative continuous function on the edges of G.

2. (b) Is the vertex continuity condition mentioned in Definition 2.6, and we use

the same notation q = [q1, ..., qn]
T to denote the common values of u at all the

vertices.

3. (c) Is the non-local Kirchhoff condition at each vertex vi similar to 2.2, the

difference here is that we consider the derivatives of the flow, and the coef-

ficients are given by M = (bij)n×n which is a real, symmetric, and negative

semidefinite matrix.

4. (d) The initial conditions of each equation on the edges.

4.2 Boundary spaces, operators, and the ACP

In this section, our goal is to reframe the deterministic problem (4.2) as an abstract

Cauchy problem (ACP) with an operator (A,D(A)). We will approach the solution

of this problem in the setting of Hilbert spaces. Due to the presence of the differential

operator in (4.2), it is appropriate to work with weak derivatives and consider L2

functions on the graph G. Consequently, we define the state space for the evolution

system as follows:

E2 = E˜2 × Ẽ2 := (L2(0, 1))k × (L2(0,∞))s.
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Proposition 4.1

E2 is a Hilbert space with the natural inner product:

⟨u,w⟩E2 :=
k∑

j=1

∫ 1

0

uj(x)wj(x)dx+
m∑

j=k+1

∫ ∞

0

uj(x)wj(x)dx, u, w ∈ E2.

Proof. L2(0, 1) and L2(0,∞) are Hilbert spaces with their natural inner product,

using ([4], Chapter 1, Definition 6.1) the proof follows.

The way we will convert the (4.2) into an ACP, is to first consider a maximal

operator Amax, then we will write the vertex condition into a feedback operator, and

incorporate this feedback into Amax by domain perturbation of D(Amax).

Maximal operator

Definition 4.2

Consider the space of continuous functions vanishing at infinity denoted by C0([0,∞)),

defined as the restriction of the set of continuous functions with compact support

Cc(R) to [0,∞) i.e :

C0([0,∞)) := Cc(R)|[0,∞)

Let’s first introduce the continuity boundary operator L defined by:D(L) :=
{

u ∈ (C[0, 1])k × (C0 ([0,∞)))s : uj (vi) = ul (vi) ∀j, l ∈ Γ (vi) , i = 1, ..., n,
}

Lu := (q1, · · · , qn)⊤ = q ∈ Rn; qi = uj (vi) for some j ∈ Γ (vi) , i = 1, ..., n.

Let’s define now the maximal operator Amax on E2 as :
D (Amax) := (H2(0, 1))

k × (H2 (0,∞))
s ∩D(L),

Amax :=


∂2

∂x2 − p1 · · · 0
...

. . .
...

0 · · · ∂2

∂x2 − pm


(m×m)

.

Abstract Cauchy problem(ACP)

Consider the feedback operator, defined in the following way :{
D(C) := D (Amax) ,

Cu := −Φ̃+u′(0)− Φ˜+u′(0) + Φ˜−u′(1), see Definition 2.5.

By perturbing D(Amax) with the feedback operator we can reformulate the (HE)

into an ACP in the following way :
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(ACP )

{
u̇(t) = Au(t) t > 0;

u(0) = u0 = (u0
1, . . . , u

0
m)

⊤
,

where : {
A := Amax ,

D(A) := {u ∈ D(Amax) : MLu = Cu} .
(4.3)

4.3 Well-posedness of the abstract Cauchy prob-

lem

The conversion of (4.2) to the (ACP), is in fact a conversion from the metric graphs

setting to the framework of semigroup theory. For the (ACP) , we are now able to

use the theory from Chapter 1 to treat the well-posedness of the (4.2). There are

many approaches to studying the properties of the operator (A,D(A)) from (ACP).

In our case, we will use forms methods. We will first define a bilinear form a and

its associated operator B, and prove that a is symmetric and satisfies the DACC

properties ( see Definition 1.17), Showing that in fact B is nothing but the operator

A from the (ACP), and using Theorem 1.22, we can prove the well-posedness. The

results proven in the sequel are generalizations to results found in [9, Section 2] while

the technical and detailed parts can be found in [13]and [14].

Consider the bilinear form a defined on E2 by:
a(u,w) =

∑k
j=1

∫ 1

0
(u′

jw
′
j + pjujwj)dx+

∑m
j=k+1

∫∞
0
(u′

jw
′
j + pjujwj)dx

−
∑n

i,h=1 bihqhri,

D(a) := V := (H1(0, 1))
k × (H1(0,∞))

s ∩D(L),

where Lu = q and Lw = r.

(4.4)

From a we define its associated operator (B,D(B)) by :{
D(B) := {u ∈ V : ∃w ∈ E2 such that : a(u, ϕ) = ⟨w, ϕ⟩E2 ∀ϕ ∈ V }
Bu := −w, see Definition 1.19.

(4.5)

Proposition 4.3

The associated operator (B,D(B)) of a is (A,D(A)) in the (ACP).

Proof. Let u ∈ D(A) then ∀ w ∈ V we have :

a(u,w) =
k∑

j=1

∫ 1

0

u′
jw

′
jdx+

m∑
j=k+1

∫ ∞

0

u′
jw

′
jdx+

k∑
j=1

∫ 1

0

pjujwjdx
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+
m∑

j=k+1

∫ ∞

0

pjujwjdx−
n∑

i,h=1

bihqhri.

Consider these individual parts:

(a) :=
k∑

j=1

∫ 1

0

u′
jw

′
jdx, (b) =

m∑
j=k+1

∫ ∞

0

u′
jw

′
jdx, (c) =

n∑
i,h=1

bihqhri,

(d) =
k∑

j=1

∫ 1

0

pjujwjdx+
m∑

j=k+1

∫ ∞

0

pjujwjdx,

then integrating by parts we have :

(a) =
k∑

j=1

[
u′
jwj

]1
0
−

k∑
j=1

∫ 1

0

u′′
jwjdx, (b) =

m∑
j=k+1

[
u′
jwj

]∞
0
−

m∑
j=k+1

∫ ∞

0

u′′
jwjdx,

(c) = ⟨Mq, r⟩Rn .

From [20, Definition 2.2.2] we have :

wj(0) =
n∑

i=1

ϕ˜+ijri, and wj(1) =
n∑

i=1

ϕ˜−ijri,
then

[
u′
jwj

]1
0
= u′

j(1)wj(1)− u′
j(0)wj(0) = u′

j(1)
n∑

i=1

ϕ−
ij
ri − u′

j(0)
n∑

i=1

ϕ˜+ijri
=

n∑
i=1

ϕ˜−iju′
j(1)ri −

n∑
i=1

ϕ˜+iju′
j(0)ri,

the edge ej can only have one terminal vertex, this means that the coefficients ϕ−
ij
for

fixed j are all zeros expect at one vertex, that is why inside the sum,
∑n

i=1 ϕ˜−iju′
j(1)ri

we can replace u′
j(1) by u′

j(v1), and this is the same for
∑n

i=1 ϕ˜+iju′
j(0)ri, hence :

[
u′
jwj

]1
0
=

n∑
i=1

(ϕ˜−ij − ϕ˜+ij)riu′
j(vi).

Suppose tha w ∈ (C0([0,∞]))s this implies that

[
u′
jwj

]∞
0

= −u′
j(0)wj(0) = −

n∑
i=1

ϕ̃+
ijriu

′
j(vi).
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Hence we have :{ ∑k
j=1

[
u′
jwj

]1
0
=
∑n

i=1 ri
∑k

j=1(ϕ˜−ij − ϕ˜+ij)u′
j(vi),∑s

j=k+1

[
u′
jwj

]∞
0

= −
∑n

i=1 ri
∑m

j=k+1 ϕ̃
+
iju

′
j(vi),

=⇒
k∑

j=1

[
u′
jwj

]1
0
+

m∑
j=k+1

[
u′
jwj

]∞
0

=
n∑

i=1

ri

m∑
j=1

(ϕ˜−ij − ϕ˜+ij − ϕ̃+
ij)u

′
j(vi),

from the Kirchhoff condition in matrix form we have:

m∑
j=1

(ϕ˜−ij − ϕ˜+ij − ϕ̃+
ij)u

′
j(vi) =

n∑
h=1

bihqh,

i.e it is equal to i-th coordinate of the vector [Mq],

=⇒
k∑

j=1

[
u′
jwj

]1
0
+

m∑
j=k+1

[
u′
jwj

]∞
0

=
n∑

i=1

n∑
h=1

bihqhri which is equal to (c)

=⇒ (a) + (b) + (c) + (d) = −
[ k∑

j=1

∫ 1

0

u′′
jwjdx+

m∑
j=k+1

∫ ∞

0

u′′
jwjdx

]

+
[ k∑

j=1

∫ 1

0

pjujwjdx+
m∑

j=k+1

∫ ∞

0

pjujwjdx
]
,

= −
[ k∑

j=1

∫ 1

0

(u′′
j − pjuj)wjdx+

m∑
j=k+1

∫ ∞

0

(u′′
j − pjuj)wjdx

]
,

=⇒ a(u,w) = −⟨Au,w⟩E2

It is now sufficient to have that (C0([0,∞)))s is dense in (H1(0,∞))s in the H1-

norm, then the previous equality holds for every w ∈ V . This density is true [1,

Theorem 3.22].

For the converse statement, we refer to [13, Lemma 3.4], because the arguments

used are the same for non-compact graphs.

Now, that we proved that (A,D(A)) from (ACP) is actually the associated op-

erator (B,D(B)) to the form a . This means that instead of studying the properties

of (A,D(A)) we can instead show that a is DACC and then possibly use the theory

developed in the first chapter.

Proposition 4.4

a is densely defined, continuous, accretive, closed, and symmetric.

Proof. Densely defined: We have V := (H1(0, 1))k × (H1(0,∞))s ∩D(L).
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The density for V1 := (H1(0, 1))k∩D(L) in L2((0, 1))k was established in [13, Lemma

3.1], but it also holds for V2 := (H1(0,∞))s∩D(L) in L2((0,∞))s, since (C∞
c (0,∞))

contains functions having compact support in (0,∞) which is a segment domain [1,

Theorem 3.22], then we have the density inclusion (C∞
c (0,∞))s ⊂ V2 ⊂ (L2(0,∞))s.

Therefore the cartesian product of V = V1 × V2 will be dense in E2.

Accretive: By assumption of M we have :
∑n

i,h=1 bihqiqh ≤ 0

=⇒ −
n∑

i,h=1

bihqiqh ≥ 0

=⇒ a(u, u) ≥ 0 =⇒ a is accretive.

Symmetric: a is real-valued =⇒ a is symmetric.

Closed: we have V := (H1(0, 1))k × (H1(0,∞))s ∩D(L), denote by

H := (H1(0, 1))k × (H1(0,∞))s,

notice that V is a Hilbert space with the natural inner product :

⟨u,w⟩H := ⟨u,w⟩(H1(0,1))k + ⟨u,w⟩(H1(0,∞))s ,

where {
⟨u,w⟩(H1(0,1))k :=

∑k
j=1

∫ 1

0
(u′

jw
′
j + ujwj)dx,

⟨u,w⟩(H1(0,∞))s :=
∑m

j=k+1

∫∞
0
(u′

jw
′
j + ujwj)dx,

from [13, Lemma 3.1] we have that ⟨u,w⟩(H1(0,1))k is equivalent to the following inner

product:

⟨u,w⟩V1 :=
k∑

j=1

∫ 1

0

u′
jw

′
jdx for u,w ∈ V1.

Proof for this can be found in [13, Lemma 3.1] where they used the Poincare inequal-

ity to prove it, but this inequality also holds for domains bounded in one direction, i.e

it holds for (0,∞), [12, Theorem 12.17]. Therefore we also have that ⟨u,w⟩(H1(0,∞))s

is equivalent to the inner product:

⟨u,w⟩V2 :=
m∑

j=k+1

∫ ∞

0

u′
jw

′
jdx for u,w ∈ V2.

Therefore ⟨u,w⟩H is equivalent to ⟨u,w⟩V := ⟨u,w⟩V1 + ⟨u,w⟩V2 .
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Now recall that the form a is defined on E2 by:{
a(u,w) =

∑k
j=1

∫ 1

0
(u′

jw
′
j + pjujwj)dx+

∑m
j=k+1

∫∞
0
(u′

jw
′
j + pjujwj)dx−

∑n
i,h=1 bihqhri

D(a) := V

=⇒ a(u,w) = ⟨u,w⟩V +
k∑

j=1

∫ 1

0

pjujwjdx+
m∑

j=k+1

∫ ∞

0

pjujwjdx−
n∑

i,h=1

bihqhri

We need now to show that V is complete with the norm ∥.∥a. It is sufficient to show

that ∥.∥a is equivalent to ∥.∥V because we know that (V = D(a), ∥.∥V ) is complete.

By definition, we have : ∥u∥2a := a(u, u) + ∥u∥2E2

=⇒ ∥u∥2a =
k∑

j=1

∫ 1

0

u′2
j dx+

m∑
j=k+1

∫ ∞

0

u′2
j dx+

k∑
j=1

∫ 1

0

u2
jdx+

m∑
j=k+1

∫ ∞

0

u2
jdx

−
n∑

i,h=1

bihqhqi +
k∑

j=1

∫ 1

0

pju
2
jdx+

m∑
j=k+1

∫ ∞

0

pju
2
jdx,

=
k∑

j=1

∫ 1

0

(u′2
j + u2

j)dx+
m∑

j=k+1

∫ ∞

0

(u′2
j + u2

j)dx+
k∑

j=1

∫ 1

0

pju
2
jdx

+
m∑

j=k+1

∫ ∞

0

pju
2
jdx−

n∑
i,h=1

bihqhqi,

= ⟨u, u⟩H −
n∑

i,h=1

bihqhqi +
k∑

j=1

∫ 1

0

pju
2
jdx+

m∑
j=k+1

∫ ∞

0

pju
2
jdx.

Because H1(0, 1) and H1(0,∞) are continuously embedded in C[0, 1] and C0([0,∞))

respectively [1, Theorem 4.2], we have :

|qi| ≤ max(max
1⩽j⩽k

max
x∈[0,1]

|uj(x)|; max
k+1⩽j⩽m

max
x∈[0,∞)

|uj(x)|),

=⇒ |qi| ≤ max
1⩽j⩽k

max
x∈[0,1]

|uj(x)|+ max
k+1⩽j⩽m

max
x∈[0,∞)

|uj(x)|),

=⇒ |qi| ≤ c1(max
1⩽j⩽k

∥uj∥H1(0,1)) + c2( max
k+1⩽j⩽m

∥uj∥H1(0,∞)),

where c1 and c2 are two constant in R. Now, take c3 := max(c1, c2), then we have

|qi| ≤ c3

(
k∑

j=1

∥uj∥H1(0,1) +
m∑

j=k+1

∥uj∥H1(0,∞)

)
,

By definition we have:
k∑

j=1

∥uj∥H1(0,1) =: ∥u∥(H1(0,1))k and
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m∑
j=k+1

∥uj∥H1(0,∞) =: ∥u∥(H1(0,∞))s ,

=⇒ |qi| ≤ c3∥u∥H ,

but since ∥u∥H is equivalent to ∥u∥V , this implies that ∃N ∈ R such that |qi| ≤ N∥u∥V .

We have: ∥u∥2a = ⟨u, u⟩H −
n∑

i,h=1

bihqhqi +
k∑

j=1

∫ 1

0

pju
2
jdx+

m∑
j=k+1

∫ ∞

0

pju
2
jdx.

Then we have :

1. ∃M ∈ R : ⟨u, u⟩H ≤ M2∥u∥2V

2. Set P := maxj=1,...,m{pj} =⇒
∑k

j=1

∫ 1

0
pju

2
jdx+

∑m
j=k+1

∫∞
0

pju
2
jdx ≤ P∥u∥2E2

.

H2(0, 1) and H2(0,∞) are continuously embedded respectively in L2(0, 1) and

L2(0,∞), therefore it follows that ∃C ∈ R such that:

k∑
j=1

∫ 1

0

pju
2
jdx+

m∑
j=k+1

∫ ∞

0

pju
2
jdx ≤ C∥u∥2V .

3. ∃N ∈ R : −
∑n

i,h=1 bihqhqi ≤
∑n

i,h=1|bih||qh||qi| ≤
∑n

i,h=1|bih|N2∥u∥2V .

Set B :=
n∑

i,h=1

|bih|N2 =⇒ −
n∑

i,h=1

bihqhqi ≤ B∥u∥2V .

All the parts are estimated from above by ∥u∥2V , i.e

∃Q ∈ R : ∥u∥2a ≤ Q∥u∥2V

Since −
∑n

i,h=1 bihqhri and all pj are non-negative,

=⇒ ∥u∥2a − ⟨u, u⟩H ≥ 0 =⇒ ∥u∥2a ≥ M2∥u∥2V

=⇒ ∥u∥a is equivalent to ∥u∥V =⇒ a is closed in E2.

Continuity: Let u,w ∈ V we have:

|a(u,w)| ≤ |
k∑

j=1

∫ 1

0

u′
jw

′
jdx+

m∑
j=k+1

∫ ∞

0

u′
jw

′
jdx|+

n∑
i,h=1

|bin||qh||ri|

+|
k∑

j=1

∫ 1

0

pjujwjdx+
m∑

j=k+1

∫ ∞

0

pjujwjdx|

≤ |⟨u,w⟩V |+B∥u∥V ∥w∥V +C∥u∥V ∥w∥V ≤ ∥u∥V ∥w∥V +B∥u∥V ∥w∥V +C∥u∥V ∥w∥V
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= R∥u∥V ∥w∥V

Where R = (1+B+C) and we used the Cauchy-Schwarz inequality in the last step.

Therefore the form is continuous.

Proposition 4.5

(A,D(A)) is densely defined, dissipative, self-adjoint, and generates an analytic con-

tractions C0-semigroup (T (t))t≥0 on E2.

Proof. From Proposition 4.4 we have a is DACC and symmetric, from Proposi-

tion 4.3, (A,D(A)) is the associated operator to a. Using Proposition1.20 we have

(A,D(A)) being densely defined and dissipative. a is symetric, hence (A,D(A)) is

self adjoint from Proposition1.21.Using the fact that a densely defined self-adjoint

operator is closed, it follows then from Theorem1.22 That (A,D(A)) generates an

analytic contraction C0-semigroup (T (t))t≥0 on E2

Corollary 4.6

The (ACP) is well-posed on E2.

Proof. The Proof follows from the previous proposition and Theorem 1.8.

These results proven previously are generalizations of the results found in [9,

Section 2] to the case of a non-compact graph, this is to say that in the case of the

compact part of G, by deleting the leads, the (ACP) and therefore the deterministic

problem (4.2) is well-posed, in this compact case on the state space:

E :=
k∏

j=1

L2(0, 1),

with the natural norm

∥u∥pE :=
k∑

j=1

∥uj∥2L2(0,1).

4.4 Well-posedness on Lp

After establishing the well-posedness of the deterministic version (4.2), we proceed

to the second step of our analysis. In Theorem 3.20, there are additional assump-

tions concerning the well-posedness not only in L2 spaces but also in Lp spaces.

Therefore, in this section, our objective is to prove the existence and uniqueness

of solutions for the cases of Lp. To achieve this, we impose certain restrictions on

the matrix associated with the non-local Kirchhoff law. By carefully selecting these

restrictions, we can utilize established extension results that enable us to extend the

well-posedness results from L2 spaces to Lp spaces. These extension results ensure
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that the solutions obtained in L2 also belong to Lp spaces and satisfy the necessary

properties for well-posedness. Unfortunately, with our methodology for generalizing

the results to the case of the non-compact graph G, a crucial part of the next result

which concerns knowing the domain of the generators of the extended semigroup on

the Lp spaces doesn’t hold in the case of our non-compact graph G. Consider the

following Lp state space :

Ep :=
k∏

j=1

Lp(0, 1)×
m∏

j=k+1

Lp(0,∞) p ∈ [1,∞] (4.6)

With the natural norms

∥u∥pEp
:=

k∑
j=1

∥uj∥pLp(0,1) +
m∑

j=k+1

∥uj∥pLp(0,∞), u ∈ Ep p ∈ [1,∞).

Let’s pose some restrictions on the matrix M by assuming the followings :

• M = (bij)n×n is real, symmetric, and negative semi-definite ,

• M has positive off-diagonal: i ̸= k, bik ≥ 0,

• M is diagonally dominant :
∑

k ̸=i bik ≤ −bii, i = 1, ..., n.

Proposition 4.7

With the above assumptions , (T2(t))t≥0 extends to a family of contraction C0-

semigroup (Tp(t))t≥0 on Ep, for 1 ≤ p < ∞ , and analytic for p ∈ (1,∞).

Proof. With the above assumption on the matrix and a being symmetric and DACC,

the extension follows from [13, Theorem 4.1] and [2, 7.2.2] since the arguments use

were independent of the domain.

With our current methods, we have reached the limit of our analysis concerning

the extended semigroups (Tp(t)t≥0). However, this is insufficient to address the issue

of well-posedness in the stochastic problem. The reason for this lies in the fact that

Theorem 3.20 imposes certain assumptions regarding the domain of the generators

of the semigroups (Tp(t))t≥0. In [13, Proposition 4.6], for the compact part of G, we

do find information regarding the domain of the generators Ap of (Tp(t))t≥0. They

are given by:

D (Ap) :=

{
u ∈ (

k∏
j=1

W 2,p(0, 1)) ∩D(L) : MLu = Cu

}
.

Where W 2,p denotes the Sobolev space which consists of functions with weak deriva-

tives up to order 2 that belong to the Lebesgue space Lp.
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However, the validity of the statement concerning the domainsD(Ap) remains uncer-

tain for the non-compact graph G. This discrepancy arises from the proof presented

in [13, Proposition 4.6], where an embedding inclusion is utilized between Lp spaces

for different values of p. While this embedding holds for finite measure domains,

such as (0, 1), it is not possible for the half-interval (0,∞), as it has an infinite

measure. Thus, in the case of the non-compact graph G, our current understand-

ing is limited, and we can only speculate about the generators Ap of the extended

semigroups, for instance, by conjecturing that the generators Ap of the extended

semigroups in the non-compact case, are given by :

D (Ap) :=

{
u ∈ (

k∏
j=1

W 2,p(0, 1))× (
m∏

j=k+1

W 2,p(0,∞)) ∩D(L) : MLu = Cu

}
.

This conjecture goes beyond mere superficiality and possesses substantial depth.

The substantiveness arises from the investigation of a similar problem in [7], where

the problem was explored on non-compact spaces using a different approach to es-

tablish well-posedness. Nevertheless, moving forward, we will solely now focus on

the compact part of graph G. Although we will continue to refer to it as G for con-

venience, it is important to note that G has now become a compact graph, retaining

the same vertices but with only k directed edges.

From now on, we will work on the state space

E =
k∏

j=1

L2(0, 1)

and,

Ep =
k∏

j=1

Lp(0, 1), (4.7)

with the natural norms

∥u∥pEp :=
k∑

j=1

∥uj∥pLp(0,1).

All subsequent results from this point onward are derived exclusively from [9].

Proposition 4.8

With the above assumptions , (T2(t))t≥0 extends to a family of contraction C0-

semigroup (Tp(t))t≥0 on Ep, for 1 ≤ p < ∞ , and analytic for p ∈ (1,∞). Moreover
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the generator Ap of (Tp(t))t≥0 is given by :

D (Ap) :=

{
u ∈ (

∏k
j=1W

2,p(0, 1)) ∩D(L) : MLu = Cu

}
,

Ap :=


d2

dx2 − p1 · · · 0
...

. . .
...

0 · · · d2

dx2 − pm


(m×m)

.

Corollary 4.9

The (ACP) is well-posed on Ep ∀ p ∈ [1,∞).

4.5 Semilinear stochastic system on a metric graph

In this section is mainly a presentation of already established results [9, Section 3].

As mentioned previously, one aspect of their analysis methodology is to investigate

the well-posedness of a semilinear stochastic PDE with multiplicative noise on the

compact graph G, considering the same vertex conditions as in the main problem

(4.1), this general problem is given by the following equations :

(SS:)



u̇j(t, x) = u′′
j (t, x)− pj(x)uj(t, x)

+fj (t, x, uj(t, x))

+gj (t, x, uj(t, x))
∂wj

∂t (t, x), t ∈ (0,∞), x ∈ (0, 1) if j ∈ {1, . . . , k} (a)

uj (t, vi) = uℓ (t, vi) =: qi(t), t ∈ (0, T ],∀j, ℓ ∈ Γ (vi) , i = 1, . . . , n, (b)

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi) , t ∈ (0, T ], i = 1, . . . , n, (c)

uj(0, x) = uj(x), x ∈ [0, 1] if j ∈ {1, . . . , k} (d)

(4.8)

Where the equations b), c), and d) are the same as explained in the deterministic

system (4.2). While equation a), represents a reaction-diffusion with potentials fj

and multiplicative noise gj.

To address the well-posedness of this general case, they adopted a similar ap-

proach to what we did in the first three sections. Specifically, they reformulate the

semilinear stochastic PDE (4.8) into an abstract semilinear stochastic PDE with

multiplicative noise (3.3) :{
dU(t) = (AU(t) + F (t, U(t)))dt+G(t, U(t))dWH(t), t ∈ [0, T0] ,

U(0) = u0,
(4.9)
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This reformulation requires us to construct the operators F, G, and W. Once these

operators are constructed, their aim is to apply Theorem 3.20 by verifying that

this theorem’s assumptions also hold for the reformulated abstract stochastic prob-

lem. Throughout the construction of the operators F, G, and W, we simultaneously

present their established results concerning the assumptions stated in Theorem 3.20,

while for proofs we either provide a sketch, a brief explanation or refer to [9, Section

3].

Let (Ω,F ,P) be a probability space equipped with a right continuous filtration

F := (F)t∈[0,T ], where T ∈ R+.

We denote by BI the Borel-sigma algebra generated by an interval I ⊂ R, and by Z
the set of integers.

By Theorem 3.20, if the solutions exist, they would belong to a Banach space B. In

our case, the space B will be the space of continuous functions on the graph G :

B := (C(G), ∥.∥B),

where

∥u∥B := max
j=1,...,k

sup
[0,1]

|u|,

and

C(G) :=
{

u ∈ (C[0, 1])k : uj (vi) = ul (vi) ∀j, l ∈ Γ (vi) , i = 1, ..., n
}
.

We now define the functions fj and gj in (4.8) and impose certain assumptions

on these functions. The subsequent technicalities follow a similar approach to [9,

3.3], and they are necessary to ensure that the assumptions of Theorem 3.20 hold

for the operators we will construct.

1. Assumptions on the functions fj :

∀j ∈ {1, ..., k}, the functions fj : [0, T ] × Ω × I × R → R are polynomial

function of the form :

fj(t, ω, x, η) = −aj,2q+1(t, ω, x)η
2q+1 +

2q∑
l=0

aj,l(t, ω, x)η
l, (4.10)

where q ∈ Z is fixed , η ∈ R, I = [0, 1].

2. Assumptions on the coefficients aj,l.

(a) For almost all ω ∈ Ω, ∃c, C ∈ R where 0 < c ≤ C < ∞ such that :

c ≤ aj,2q+1(t, ω, x) ≤ C, |aj,l(t, ω, x)| ≤ C, (4.11)
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∀j ∈ {1, ..., k}, l ∈ {0, 2, ..., 2q}, x ∈ I, t ∈ [0, T ].

(b) ∀j ∈ {1, ..., k}, l ∈ {0, 2, ..., 2q}, t ∈ [0, T ], the functions

aj,l : [0, T ]× Ω× I → R

are jointly measurable and adapted i.e

aj,l(t, .) is Ft ⊗ BI −measurable,

where BI is the Borel sigma algebra generated by I, and Ft ⊗BI denotes

the product of sigma algebras.

(c)

(a1,l(t, ω, .), ..., ak,l(t, ω, .))
T ∈ B, (4.12)

∀l = 1, ..., 2q + 1, t ∈ [0, T ] almost all ω.

3. Assumptions on the functions gj :

(a) ∀j ∈ {1, ..., k}, the functions gj : [0, T ] × Ω × I × R → R, are locally

Lipschitz continuous and of linear growth in the fourth variable, uniformly

with respect to the first three variables.

(b) ∀j ∈ {1, ..., k}, the functions gj are assumed to be jointly measurable

and adapted, i.e ∀j ∈ {1, ..., k},, and t ∈ [0, T ], gj(t, .) is Ft ⊗ BI ⊗ BR −
measurable.

4. ∀j ∈ {1, ..., k}, the following notation
∂wj

∂t
, denotes independent space-time

white noises on I.

Remark 4.10

Unlike the other technical assumptions, assumption 2,(c) (4.12) is related to the

structure of the graph, it is necessary, as will be seen later, this condition will play

a role in showing that the original stochastic Allen-Cahen problem (4.1) is a special

case of (4.8)

Being done with the above technicalities, now we focus on constructing the operators

F,G, and W and simultaneously showing that the six assumptions of Theorem 3.20

hold.

Construction of A and assumptions 1,2 and 3 from Theorem 3.20

Let E := Ep be the state space for p ≥ 2, we set (A,D(A)) := (Ap, D(Ap)), where

(Ap, D(Ap)) and Ep are defined as in Proposition 4.8 and 4.7. Let Eθ denote the

fractional space ( see Section 3.2).
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Proposition 4.11 (Assumption 1. of 3.20)

(A,D(A)) is densely defined, closed and sectorial on E.

Proof. From Proposition 4.8, we see since (A,D(A)) is a generator of an analytic C0-

semigroup, then (A,D(A)) being densely defined and closed follows from Theorem

1.10, while Theorem 1.15 implies that (A,D(A)) is sectorial.

Let

W0(G) :=
k∏

j=1

W 2,p
0 (0, 1),

where W 2,p
0 denotes the Sobolev space which consists of functions with weak deriva-

tives up to order 2 that belong to the Lebesgue space Lp, such that these functions

and their first weak derivatives vanishes at the boundary.

Let’s define now the maximal operator on E as follows:

D (Ap,max) :=

{
u ∈

(∏k
j=1 W

2,p(0, 1) ∩D(L)
)}

,

Ap,max :=


d2

dx2 − p1 · · · 0
...

. . .
...

0 · · · d2

dx2 − pm


(m×m)

.

(4.13)

Lemma 4.12

D(Ap,max) ∼= W0(G)× Rn. (4.14)

B ∼= (CD[0, 1])
m × Rn, (4.15)

where

CD[0, 1] := {u ∈ C[0, 1] : u(0) = u(1) = 0}.

Proof. The proof of these two lemmas follows from [9, Lemma 3.5, Lemma 3.6], the

argument used for (4.14) is related to the result of [8, Lemma 1.2] which decomposes

the domain of the operator D(Ap,max) as the directed sum of Rn and of D(Ap,max)

restricted to its kernel which in this case will be W0(G), then due to a projection

property, using the result of [16, Theorem 2.5] the direct sum will be equivalent to

the direct product.

Proposition 4.13 (Assumption 2. of 3.20)

For θ ∈
[
0, 1

2

)
we have continuous dense embedding : Eθ ↪→ B ↪→ E.

Proof. Since (A,D(A))) is a generator of a contraction C0-semigroup, then by [2,

Theorem 4.73] (−A) has a bounded H∞-calculus. Because (−A) is sectorial and
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injective, then by [2, 4.53] −A is BIP. Using [2, Proposition 4.4.10], we have :

Eθ = D((−A)θ) ∼= [D(−A), E ]θ.

Here [D(−A), E ]θ denotes the complex interpolation space, for more details con-

cerning interpolation theory we refer to [17]. Concerning the ”BIP” and H∞-

calculus properties we refer to [2, Section 4]. From Proposition 4.8 and 4.13, we

have D(A) ↪→ D(Ap,max). This implies :

Eθ ↪→ [D(−Ap,max), E ]θ. (4.16)

Notice that E ∼= E × {0Rn}, then by [17, Section 4.3.3]we have for 1
2p

< θ :

[W0(G)× Rn, E × {0Rn}]θ ↪→

(
k∏

j=1

W 2θ,p
0 (0, 1)

)
× Rn.

From (4.14), we have D(−Ap,max) ∼= W0(G)× Rn , using (4.16) we get :

Eθ ↪→

(
k∏

j=1

W 2θ,p
0 (0, 1)

)
× Rn. (4.17)

Hence it follows that

Eθ ↪→ C0(G)× Rn. (4.18)

By Lemma 4.15, this means for 1
2p

< θ we have :

Eθ ↪→ B. (4.19)

The embedding B ↪→ E follows as in [9, Corollary 3,7] while the denseness of both

the embeddings follows from [10].

Proposition 4.14 (Assumption 3. of 3.20)

Let S := (Tp(t))t≥0 be the contraction C0-semigroup analytic semigroup generated by

(A,D(A)). Then S restricted to B i.e S|B is a contraction semigroup with dissipative

generator A|B.

Construction of F and assumption 4 and 5 :

Let F be defined as :

F : [0, T ]× Ω×B → B

(t, ω, u) 7→ F (t, ω, u)(s) := (f1(t, ω, u1(s)), ..., fk(t, ω, uk(s)))
T , s ∈ [0, 1],

which is well-defined thanks to assumption 2.(c) 4.12.
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Proposition 4.15

F satisfies assumption 4. and assumption 5. from Theorem 3.20.

Proof. We present a sketch of the proof as explained in [9, Theorem 3.14].

1. F is locally-Lipshitz from B to B because of assumption 4.11,

2. from [11, Example 4,2], throughout some calculations, it is stated that there

exists a positive a ∈ R such that :

fj(t, ω, x, η + ζ) · sgn(η) ≤ a
(
1 + |ζ|2q+1

)
,

for all (t, ω, x) ∈ [0, T ]× Ω× I and any η, ξ ∈ R,

3. Then by [5, Section 4.3], we have :

⟨F (t, ω, u+ v), u∗⟩ ≤ a(1 + ∥v∥)N ,

for all t ∈ [0.T ], w ∈ Ω, u, v ∈ B and u∗ ∈ ∂∥u∥.
Since A|B is dissipative, it then follows that there exist a, b ≥ 0 and N ≥ 1

such that

⟨Au+ F (t, ω, u+ v), u∗⟩ ≤ a(1 + ∥v∥)N + b∥u∥,

for all u ∈ D(A|B), v ∈ B and u∗ ∈ ∂∥u∥,

4. assumption 5. follows from [11, Example 4,5].

Construction of G and assumption 6 :

Let H := E2, the L2 state space , which is a Hilbert space. Define the multiplication

operator Γ : [0, T ]×B → L(H) as :

[Γ(t, u)]h :=


g1(t, s, u1(s)) · · · 0

...
. . .

...

0 · · · gk(t, s, uk(s))

 .


h1(s)
...

hk(s)

 , s ∈ (0, 1),

where u ∈ B and h ∈ H. Using the assumptions on the gj functions we get that Γ

maps into L(H).

We know from Proposition 4.8, (A2, D(A2)) is a generator on H. Take kG ∈ (1
4
, 1
2
).

By Proposition 4.13, we know that there exists two continuous embedding :

I : EkG
2 →

(
k∏

j=1

W 2θ,2
0 (0, 1)

)
× Rn,
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J :

(
k∏

j=1

W 2θ,2
0 (0, 1)×

)
× Rn → E p ≥ 2.

For 0 < V , we define G as :

(V − A)−kGG(t, u)h := J I(V − A2)
kGΓ(t, u)h, u ∈ B, h ∈ H.

Proposition 4.16

For arbitrary p ≥ 2 and kG ∈ (1
4
, 1
2
), we have the operator G defined previously,

maps [0, T ]×B into γ(H, E−kG).

Proof. The proof follows from [9, Proposition 3.12]. However, it is worth mentioning

that the main idea of the proof is to show that J is γ-radonifying for any 1
4
< kG

which is proved in [18, Corollary 2.2] and then use the ideal property [19, Proposition

5.4 ] of γ-radonifying operators.

Proposition 4.17

G satisfies assumption 6. from Theorem 3.20.

Construction of W and U0:

WH(t) :=


W1(t)

...

Wm(t)

 , U0 =


u1(0)
...

um(0)

 , t ∈ [0, T ].

4.6 Well-posedness

Having constructed the operators A,F,G, and W , the semilinear stochastic problem

on the graph G can be reformulated into an abstract stochastic problem (ASP) as

in (4.9). The only things left now, are the well-posedness results for the (ASP), and

for the original stochastic Allen-Cahen problem (4.1).

Theorem 4.18

Let A, F, G, and W be defined as constructed in the previous section. Then for

arbitrary 4 < q, and u0 ∈ Lq(Ω,F0,P ;B), the (ASP) admits a unique global mild

solution U ∈ Lq(Ω, C([0, T ]);B)

Proof. The proof follows from Theorem 3.20 since all the assumptions have been

shown to be satisfied in the previous section.

Now we are ready to handle the original problem (4.1). In (4.1), the functions

fj are of the following form :

fj(t, ω, x, η) = −η3 + β2
j η, j ∈ {1, · · · , k}.
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Unfortunately, these nonlinear terms are not of the form (4.10).To handle this issue,

we will introduce some notations which will take the anomaly in our functions fj

and put them instead in the functions pj by making new functions p̃j, and this

transformation will work since the only condition we will need to be careful about

is the non-negativity of the functions p̃j. Set

β := max
j∈{1,...,k}

βj,

fj(t, ω, x, η) := f(t, ω, x, η) = −η3 + β2η, j ∈ {1, · · · , k}.

Then from the following calculation :

u′′
j (t, x)− pj(x)uj(t, x) + β2

juj(t, x)− uj(t, x)
3

= u′′
j (t, x)−

(
pj(x) + β2 − β2

j

)
uj(t, x) + β2uj(t, x)− uj(t, x)

3

= u′′
j (t, x)− p̃j(x)uj(t, x) + β2uj(t, x)− uj(t, x)

3

= u′′
j (t, x)− p̃j(x)uj(t, x) + fj(t, ω, x, uj),

where we put p̃j(x) :=
(
pj(x) + β2 − β2

j

)
. It is clear that new functions p̃j(x) are

non-negative, and that our functions fj are of the form (4.10), therefore we can

reformulate our problem (4.1) into the equivalent form :

(AC)



u̇j(t, x) = u′′
j (t, x)− pj(x)uj(t, x)

+β2
juj(t, x)− uj(t, x)

+gj (t, x, uj(t, x))
∂wj

∂t (t, x), t ∈ (0,∞),

{
x ∈ (0, 1) if j ∈ {1, . . . , k}
x ∈ (0,∞) if j ∈ {k + 1, . . . ,m}

(a)

uj (t, vi) = uℓ (t, vi) =: qi(t), t ∈ (0, T ],∀j, ℓ ∈ Γ (vi) , i = 1, . . . , n, (b)

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi) , t ∈ (0, T ], i = 1, . . . , n, (c)

uj(0, x) = uj(x),

{
x ∈ [0, 1] if j ∈ {1, . . . , k}
x ∈ [0,∞) if j ∈ {k + 1, . . . ,m}

(d)

(4.20)

This system (4.20) is clearly a special case of (4.8), and by Theorem 4.18, we have

the well-posedness result of the equivalent system (4.20) to the original problem

(4.1). Hence, we can conclude that the stochastic Allen-Cahen equations with mul-

tiplicative noise on the compact graph G (4.1) is well-posed in the sense of Theorem

4.18.
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Chapter 5

Conclusion

The goal of this thesis was to examine the well-posedness of the stochastic Allen-

Cahn equation on a non-compact graph. However, I encountered a challenge in

determining the domains for the extended semigroups. It became evident that find-

ing explicit domains using our method is not a straightforward task and requires

extensive research as is mentioned in [15, Chapter 3].

Regarding the conjecture I proposed regarding the domains, one possible approach

to proving it is true is by utilizing a different method that relies on cosine fam-

ilies, as demonstrated in [7]. As mentioned in the introduction, they successfully

established well-posedness for the heat equation on non-compact graphs. One might

question why we don’t directly refer to their results and proceed to the stochastic

case. However, the results in [7] are not directly applicable to our situation, as

we consider the heat equation with a reaction term. Therefore, it is necessary to

investigate whether we need to employ perhaps perturbation techniques to achieve

similar outcomes. Additionally, we need to ascertain if the non-local vertex condi-

tions mentioned in [7, 3.4] are equivalent to our vertex conditions.

Nonetheless, if we consider the matrix M in our problem to be diagonal, which

would transform our non-local Kirchhoff vertex conditions into local δ-type vertex

conditions, then we would not require further investigation since the handling of

δ-type vertex conditions is already addressed in [7, 3.3]. Hence, we will leave this

investigation for future exploration.

It is worth noting that if the conjecture holds true, the stochastic Allen Cahn equa-

tion would also be well-posed on a non-compact graph. The results from [9] for

the compact case have been verified to apply to the non-compact scenario as well.

However, due to the uncertainty surrounding the statement on the domains, it is

not appropriate to continue presenting the worked results for the non-compact case.

Instead, I have provided the established results for the compact case.
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Acronyms

C0-semigroup strongly continuous semigroup 10–12, 14, 15, 27–30, 42–44, 48, 49

ACP Abstract Cauchy Problem 9, 11, 12, 35

DACC densely defined, accretive, continuous,closed 14, 15, 36, 38, 42, 43
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