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Introduction

“It was as though applied mathematics was my spouse,
and pure mathematics was my secret lover.”

– Edward Frenkel

Solving partial differential equations (PDEs) is a central field in modern applied sciences. Some
prominent applications of PDEs in science appear in physics, chemistry, epidemiology, and
engineering. However, finding exact solutions of PDEs that emerge in real-life applications is
often impossible, and therefore, we must resort to numerical methods. The two most traditional
approaches to solving PDEs are finite difference methods (FDM) and finite element methods
(FEM). In this thesis, we are going to discuss two numerical methods that do not belong to
either of these categories: the method of fundamental solutions and another one of its variants.

A new approach that got some attention in recent years is solving PDEs with the applica-
tion of neural networks (NN or neural nets), as they may function as universal approximators.
Hornik, Stinchcombe, and White (1989) [16] established “multilayer feedforward [neural] net-
works as a class of universal approximators [...] provided sufficiently many hidden units are
available” in the sense that “feedforward networks are capable of arbitrarily accurate approx-
imation to any real-valued continuous function over a compact set.” This positive theoretical
result gives us confidence in the capability of multilayer feedforward neural networks of suf-
ficient complexity to approximate PDE’s classical (and thus continuous) solutions. Moreover,
since the space of continuous functions is dense in the Sobolev spaces in some sense that weak
solutions are usually sought in (see Meyers–Serrin theorem), we can conclude that the same
result holds for the approximation of weak solutions as well. Therefore, the use of multilayer
feedforward neural networks is established as a valid approach to finding the weak solution of
well-posed PDEs.

Applying neural networks to solve various PDE problems has shown promising results in
recent literature. Prominent approaches to solving PDEs using neural networks include the
so-called Physics-Informed Neural Networks (PINN models), Deep Galerkin Method (DMG),
Finite Element Neural Networks (FENN), Residual Networks (RN), the Method of Fundamental
Solutions (MFS), and even some adaptations of Convolutional Neural Networks (CNNs). In this
thesis, we examine the MFS applied to boundary value problems and implemented via rather
primitive neural networks and discuss applicability to more general cases of PDEs.

The method of fundamental solutions (MFS) approximates the solution of a boundary value
problem as a linear combination of the operator’s fundamental solutions. The collocation points
where the singularities are placed may either be predetermined by the user or may be also a
part of the problem, see [6].

One advantage of the MFS approach implemented via neural networks compared to FDM
and FEM models is that an already trained NN serves as a solver for the PDE, and provides
new solutions as a matter of function evaluation when changing the auxiliary conditions, such
as boundary conditions, force terms, etc. In other words, it is akin to inverting the coefficient
matrix of a system of linear equations rather than solving it over and over again when new
right-hand side vectors are given.
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The goals of this thesis are as follows.

1. Lay a firm foundation of the theoretical elements and basic tools used in PDE theory and
functional analysis that are used in these methods, including many examples.

2. Introduce the method of fundamental solutions and its proposed modification through
concrete examples, and then examine their relationship to primitive neural networks.

3. Conduct numerical experiments that serve as proof of concept for the viability of the
methods discussed.

4. Discuss directions of further generalization and fine-tuning of the methods introduced.

Each chapter corresponds to one of these goals. Throughout the thesis, we assume a reader
that is familiar with bachelor-level mathematics but perhaps has little or no specific training
in numerical analysis per se. In other words, we attempt to be more educational than technical
in our approach and will devote time to give concrete examples of the theoretical elements
discussed throughout the thesis.
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Chapter 1

Theoretical background

“A house built on granite and strong foundations, not even the onslaught of pouring rain,
gushing torrents, and strong winds will be able to pull down.”

– Haile Selassie

Before diving into the nitty-gritty of applying neural networks to solve partial differential
equations numerically, we believe it is worth spending some time to lay out a firm theoretical
foundation for both partial differential equations and neural networks.

We shall only work out examples, constructions, and proofs where we believe it provides
insight, and we will generally prioritize clarity over technicality. We will omit technical details,
such as most proofs, to avoid turning this chapter into a textbook. We refer the reader to
sources such as [5], [17], and [2] for more detailed explanations and proofs.

1.1 Prerequisites from analysis
We begin with some definitions and basic examples related to measure theory, which are essen-
tial for understanding the concepts of the weak derivative, Lebesgue spaces, and, ultimately,
Sobolev spaces. The letter Ω shall denote a non-empty, open subset of Rn.

Definition 1.1.1. (Support of a function)
Let f : Ω → R. Let Z be the broadest open subset of Ω for which f restricted to Z is zero, that
is

Z :=
⋃

{U ⊂ Ω open, such that f |U ≡ 0} (1.1)

Then, the support of the function f is the set supp(f) := Ω \ Z.

Remark 1.1.2. If x ∈
(
Ω\ supp(f)

)
, then f(x) = 0. Hence, if S ⊂

(
Ω\ supp(f)

)
, then

´
S
f = 0.

Remark 1.1.3. If f−1
[
{0}

]
has no interior points, then Z = ∅, so supp(f) = Ω. For example,

for the function sin : R → R, Z is the largest open subset of sin−1
[
{0}

]
= {kπ | k ∈ Z}. Since

this is a set of isolated points, and Z is open, and therefore supp(sin) = R \∅ = R, even though
the sine function has infinitely many zeroes.

The importance of the following concept lies in the fact that (Lebesgue) integrals are in
some sense “blind” to changes of the function on certain sets. This is expected, as the Riemann
integral also does not change if we change the function at finitely many points. Since we solve
differential equations by “integration” – or methods that mimic integration – it is expected that
in the general theory of differential equations, uniqueness theorems can only apply on sets that
(Lebesgue) integrals “can see.”
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Definition 1.1.4. (Null sets in Rn)
We say that N is a null set if, for every ε > 0, there exists a countable collection of balls
B = {Bi(xi, ri)}i∈I , (I ⊂ N) such that

N ⊂
⋃
Bi∈B

Bi and
∑
i∈I

rni ⩽ ε.

Remark 1.1.5. The second condition of this definition is equivalent to the sum of the n-
dimensional “volumes” (measure) of the balls being at most a constant multiple of ε. (This
constant is the volume of the n-dimensional unit ball.)

Remark 1.1.6. If the set S contains an open ball B(x, r) – for instance, if S is an open set –
then for ε = rn

2
, there can be no sufficient covering, and thus S is not a null set. Therefore, the

domain Ω is never a null set.

Example 1.1.7. If S is a countable set, i.e., S ⊂ {xi}i∈N+ , then S is a null set. Indeed,

B =

{
Bi := B

(
xi,

n
√
ε

2
i
n

)}
i∈N+

(1.2)

satisfies the definition, as

S ⊂
+∞⋃
i=1

{xi} ⊂
⋃
Bi∈B

Bi︸ ︷︷ ︸
xi∈Bi

and
+∞∑
i=1

(
n
√
ε

2
i
n

)n

=
+∞∑
i=1

ε

2i
= ε ⩽ ε. (1.3)

Remark 1.1.8. The countable union of null sets is also countable.

Remark 1.1.9. Since S = Q is countable, it is a null set in R.

Remark 1.1.10. There exist sets of measure zero in R that are uncountable. An important
example of this phenomenon is the Cantor set C :=

⋂+∞
n=1Cn, where C0 = [0, 1], and we obtain

Cn+1 from Cn by removing the middle third of every line segment. Hence, 2n line segments of
length 1/3n units can cover C, implying that C is a null set in R.

Remark 1.1.11. If S ⊂ Rn−1, and φ : S → R is a continuous function, then the graph of φ is a
null set in Rn. Hence the boundary of “sufficiently nice” subsets of Rn are null sets in Rn.

Definition 1.1.12. (Almost everywhere)
A proposition P (x) that depends on the point x is true almost everywhere if the set where it
is not true is a null set. We often denote this property by the abbreviation “a.e.”.

The following three examples should illustrate the meaning of the null set property more
concretely – at least in R.

Example 1.1.13. The so-called Dirichlet function D : [0, 1] → R,

D(x) :=

{
1, if x ∈ [0, 1] ∩Q
0, if x ∈ [0, 1] \Q

(1.4)

is equal to zero almost everywhere, because {x ∈ R |D(x) ̸= 0} = Q is a null set in R. The
plot of D would appear to be the line segment [0, 1]× {0}, the same as the plot of f := 0.
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Figure 1.1: Thomae function on [0, 1].

Example 1.1.14. Consider the function

T (x) :=


1

q
, if x =

p

q
, where p, q ∈ Z, gcd(p, q) = 1 and q > 0,

0, if x ∈ R \Q

named after German mathematician Karl Johannes Thomae and plotted below. One can show
that this function is continuous at x if and only if x is irrational, and thus by Remark 1.1.9,
this function is continuous almost everywhere.

Example 1.1.15. The Cantor ternary function c plotted below – also known as “the Devil’s
staircase” – is continuous on [0, 1], has a derivative c′(x) = 0 almost everywhere, and yet c is
not constant. The sum of the lengths of the constant segments is

∑+∞
k=0

2k

3k+1 = 1. The derivative
c′(x) does not exist if and only if x ∈ C.

Figure 1.2: Cantor function c on [0, 1].

Remark 1.1.16. The functions D, T , and c′ are equal to each other almost everywhere, even
though they seem to be very different objects.

The following class of functions will prove to be helpful when we define weak derivatives
and generalized functions.
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Definition 1.1.17. (Smooth functions of compact support)
Let k ∈ N+. Then Ck(Ω) denotes the set of real-valued functions that are at least k times
continuously differentiable everywhere, and C∞(Ω) :=

⋂+∞
k=1C

k(Ω). Furthermore,

Ck
0 (Ω) := {φ ∈ Ck(Ω) | supp(φ) is a compact set}, (1.5)

and
C∞

0 (Ω) := {φ ∈ C∞(Ω) | supp(φ) is a compact set}. (1.6)

Remark 1.1.18. We define the spaces Ck(Ω) and Ck
0 (Ω) such that all the partial derivatives

of at most order k must continuously extend to the boundary of Ω. Accordingly, we always
consider the extended functions. In Ck

0 (Ω), we also require that supp(φ) is a compact subset of
the open set Ω, which implies that φ|∂Ω ≡ 0, and all partial derivatives also vanish on ∂Ω.

Remark 1.1.19. These sets form vector spaces under the usual operations defined on functions.

The following formulas are quintessential in the study of PDEs and Sobolev spaces. They
may be understood as multivariable generalizations of the integration by parts formula.

Theorem 1.1.20. (Green–Gauß formulas)
Let Ω ⊂ Rn be a bounded set with piecewise smooth boundary, f ∈ C1(Ω) and g ∈ C2(Ω). Then

ˆ
Ω

f(x)∆g(x) dx =

ˆ
∂Ω

f(x)∂ng(x) dS−
ˆ
Ω

∇f(x) · ∇g(x) dx, (1.7)

or simply, without variables
ˆ
Ω

f∆g =

ˆ
∂Ω

f∂ng −
ˆ
Ω

∇f · ∇g.

Furthermore, if f, g ∈ C2(Ω), and p ∈ C1(Ω), then
ˆ
Ω

(
f(x) div

(
p(x)∇g(x)

)
− g(x) div

(
p(x)∇f(x)

))
dx =

ˆ
∂Ω

(
f(x)∂ng(x)− g(x)∂nf(x)

)
dS,

(1.8)
or simply ˆ

Ω

(
f div

(
p∇g

)
− g div

(
p∇f

))
=

ˆ
∂Ω

(
f∂ng − g∂nf

)
,

which reduces to the following formula if p ≡ 1
ˆ
Ω

(
f∆g − g∆f

)
=

ˆ
∂Ω

(
f∂ng − g∂nf

)
. (1.9)

For the proof, we refer to [5].

1.1.1 Lebesgue integral and Lebesgue spaces

We take it for granted that the reader is familiar with Lebesgue integrals. An elegant and
brief construction – based on Riesz Frigyes’ approach – by Komornik Vilmos can be found in
[12]. Otherwise, it is an appropriate conceptual approximation to think of Lebesgue integrable
functions as the completion of the space of Riemann integrable functions and the Lebesgue
integral as a continuous extension of the Riemann integral functional to the space of Lebesgue
integrable functions. See [3] for the details of this approach.

One remark on the Lebesgue integral that is worth making explicit immediately is that if
f = g a.e., then

´
Ω
f =
´
Ω
g. This fact limits the sense in which we can even expect uniqueness

theorems and is thus built into the very foundation of the whole theory.
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Example 1.1.21. Dirichlet’s function D : [0, 1] → R defined in Example 1.1.13 is equal to
f ≡ 0 a.e, and therefore

´
[0,1]

D =
´
[0,1]

0 = 0 in the Lebesgue integral sense.

Definition 1.1.22. (L1(Ω) and L1(Ω))
Let L1(Ω) be the set of functions f : Ω → R for which the Lebesgue integral

´
Ω
|f | exists and

is finite
L1(Ω) :=

{
f : Ω → R

∣∣∣∣ ˆ
Ω

|f | < +∞
}
. (1.10)

Let us take the equivalence relation f ∼ g ⇐⇒ f = g almost everywhere. Now, we define the
Lebesgue space L1(Ω) as

L1(Ω) := L1(Ω)
/
∼, (1.11)

i.e, L1(Ω) consists of equivalence classes of L1(Ω) with respect to the equivalence relation ∼.
Finally, this set is equipped with a vector space structure and the norm

∥f∥L1(Ω) :=

ˆ
Ω

|f |. (1.12)

Henceforth, we always use these equivalence classes instead of the individual functions.
Remark 1.1.23. Considering equivalence classes of individual functions instead of functions is
necessary so that the property ∥f∥L1(Ω) = 0 =⇒ f = 0 holds, which is a requirement for
∥ · ∥L1(Ω) to be a norm. However, this raises several problems that need resolution, such as
verifying that vector operations are well-defined. Sorting out these technicalities is beyond the
scope of this thesis.
Remark 1.1.24. The function f(x) = sin(x)

x
does not belong to the space L1(R), because´ +∞

−∞ |f(x)| dx = +∞, even though
´ +∞
−∞ f(x) dx = π < +∞ in the (Riemann) improper in-

tegral sense.

Definition 1.1.25. (Lp(Ω) spaces for 1 < p < +∞)
Let the sets Lp(Ω) contain all functions f for which |f |p ∈ L1(Ω). Defining the norm on this
vector space

∥f∥Lp :=

( ˆ
Ω

|f |p
) 1

p

(1.13)

results in a normed vector space Lp(Ω).

Definition 1.1.26. (L∞(Ω) space and essential supremum)
Let

∥f∥L∞(Ω) := ess sup{|f |} := inf{M ∈ R | |f(x)| ⩽M a.e.}.
Then L∞(Ω) denotes the vector space of functions for which ess sup{|f |} < +∞ equipped with
the norm ∥f∥L∞(Ω).

Remark 1.1.27. Even though Lp(Ω) contain classes of functions, we say that “f ∈ Lp(Ω)” or
“f = g”, by which we mean that “f belongs to one of the equivalence classes of Lp(Ω)” or “f
and g belong to the same equivalence class of Lp(Ω)” respectively.

Theorem 1.1.28. (Riesz–Fischer theorem)
The spaces Lp(Ω) defined above are complete normed vector spaces – also known as Banach
spaces – for 1 ⩽ p ⩽ +∞. That is, if (fn) ⊂ Lp(Ω) is a Cauchy sequence with respect to
∥ · ∥Lp(Ω), then there exists f ∈ Lp(Ω) such that ∥f − fn∥Lp(Ω) → 0. See [17].

Theorem 1.1.29. (Relationship of Lp(Ω) spaces)
For any 1 ⩽ p < q ⩽ +∞, Lq(Ω) ⊂ Lp(Ω) in the sense that the identity map from Lq(Ω) to
Lp(Ω) is bounded. In particular, L∞(Ω) ⊂ Lp(Ω) ⊂ L1(Ω) (p ⩾ 1). See [17].

11



A key result in the theory of Lebesgue integrals is a sufficient condition for the exchange of
integration and taking the limit. See [17] for details.

Theorem 1.1.30. (Lebesgue’s dominated convergence theorem)
Let gn ∈ L1(Ω), and suppose that gn(x) → g(x) for almost every x ∈ Ω. Suppose that there
exists m ∈ L1(Ω) – a so-called integrable majorant – such that for every n ∈ N+ |gn| ⩽ m a.e.
Then it follows that g ∈ L1(Ω), and gn → g in L1(Ω), and consequently

lim
n→+∞

ˆ
Ω

gn =

ˆ
Ω

g. (1.14)

The following two classes of functions will play an important role in distribution theory.

Definition 1.1.31. (Locally integrable functions)
The function f : Ω → R belongs to Lp

loc(Ω), if for every compact set C ⊂ Ω, f ∈ Lp(C). That
is,

Lp
loc(Ω) :=

{
f : Ω → R

∣∣∣∣ ∀C ⊂ Ω compact set, f ∈ Lp(C)

}
. (1.15)

Finally, we state the following important relationship between the C∞(Ω) and Lp spaces.

Theorem 1.1.32. For every 1 ⩽ p ⩽ +∞, the space C∞(Ω) is a dense subspace of Lp(Ω) in
∥ · ∥Lp norm in the following sense. For every f ∈ Lp(Ω) and ε > 0, there exists g ∈ C∞(Ω)
such that ∥f − g∥Lp(Ω) < ε.

Remark 1.1.33. Consequently, for every 1 ⩽ p ⩽ +∞ and k ∈ N+, Ck(Ω) is dense in Lp(Ω) and
C(Ω) is dense in Lp(Ω). See [5] for details on both claims.

1.1.2 Generalized derivatives and distribution theory

In this subsection, we introduce weak derivatives and generalized functions called distributions.
Much of what we present here relies on Besenyei Ádám’s introductory PDE course and the
course’s official (Hungarian) lecture notes [2]. A similar and considerably longer introduction
in English is by Lawrence C. Evans [5]. To define general partial derivatives, we first define the
weak derivative of single variable functions. A well-known fact from single-variable calculus is
the so-called integration by parts formula. Weak versions of further differential operators (such
as the gradient, divergence, curl, etc.) are defined in the same spirit.

Theorem 1.1.34. (Integration by parts in single variable)
Let f , φ ∈ C1

(
[a, b]

)
. Then
ˆ b

a

f ′(x)φ(x) dx = f(b)φ(b)− f(a)φ(a)−
ˆ b

a

f(x)φ′(x) dx (1.16)

Corollary 1.1.35. Let f ∈ C1
(
[a, b]

)
, φ ∈ C1

0

(
[a, b]

)
. Then

ˆ b

a

f ′(x)φ(x) dx = −
ˆ b

a

f(x)φ′(x) dx (1.17)

This opens a door to defining the weak derivative of integrable functions via the principle
of permanence.

Definition 1.1.36. (Weak derivatives of integrable functions)
Let f ∈ L1

loc

(
(a, b)

)
, with a < b ∈ R. We say that f ′ = g in the weak sense, if
ˆ b

a

g(x)φ(x) dx = −
ˆ b

a

f(x)φ′(x) dx
(
∀φ ∈ C1

0

(
(a, b)

))
. (1.18)
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Example 1.1.37. Let f : R → R, f(x) := max{0, x}, which we know to be non-differentiable

at x = 0. Then g(x) :=

{
1, if x ⩾ 0,

0, if x < 0.
is a suitable weak derivative of f . Indeed, for any

φ ∈ C1
0(R), we have that

ˆ +∞

−∞
g(x)φ(x) dx =

ˆ +∞

0

φ(x) dx := I, (1.19)

and

ˆ +∞

−∞
f(x)φ′(x) dx =

ˆ +∞

0

xφ′(x) dx =
[
xφ(x)

]x→+∞
x=0

−
ˆ +∞

0

φ(x) dx = (1.20)

= lim
x→+∞

(
xφ(x)

)
−

(
0 · φ(0)

)
−
ˆ +∞

0

φ(x) dx = −
ˆ +∞

0

φ(x) dx = −I, (1.21)

because φ(x) = 0 for sufficiently large values of x.

Remark 1.1.38. Notice that we did not use the specific value g(0). Indeed, the weak derivative
is unique up to a difference on a null set only.

Of course, if f ′ = g in the classical sense, then f ′ = g in the weak sense, also. Notice that
we have not specified yet what set g belongs to. The following example demonstrates that some
locally integrable functions have weak derivatives that are not even locally integrable functions.

Example 1.1.39. Consider f(x) :=

{
1, if x ⩾ 0,

0, if x < 0
. This function is of course integrable on

every bounded interval. Let us see what criteria its weak derivative g = f ′ would have to satisfy.
Let δ > 0. Then, we need that for every φ ∈ C1

0

(
[−δ, δ]

)
,

ˆ δ

−δ

g(x)φ(x) dx = −
ˆ δ

−δ

f(x)φ′(x) dx = −
ˆ δ

0

φ′(x) dx = −
(
φ(δ)︸︷︷︸
=0

−φ(0)
)
= φ(0). (1.22)

However, there is no locally integrable function g with this property.
To verify this statement, let us take the sequence δn := 1

n
and functions φn ∈ C1

0

(
[−δn, δn]

)
such that φn(0) ≡ 1 as

φn(x) :=

{
exp

(
1 + 1

(nx)2−1

)
, if |x| < δn,

0, if |x| = δn.
(1.23)

It is easy to see that φn satisfies all the conditions, hence
ˆ δn

−δn

g(x)φn(x) dx = φn(0) ≡ 1 (∀n ∈ N+). (1.24)

Taking the limit (n→ +∞) will lead to the contradiction 0 = 1, and thus g cannot have been a
member of L1

loc

(
[−1, 1]

)
. If g ∈ L1

loc

(
[−1, 1]

)
, then |g| is an integrable majorant of the sequence

of functions gn = |g| ·χ[−δn,δn], and thus Lebesgue’s dominated convergence theorem and |φ| ⩽ 1
implies

∣∣∣∣ lim
n→+∞

ˆ δn

−δn

g(x)φn(x) dx

∣∣∣∣ ⩽ lim
n→+∞

ˆ δn

−δn

|g| = lim
n→+∞

ˆ 1

−1

gn =

ˆ 1

−1

lim
n→+∞

gn =

ˆ 1

−1

0 = 0. (1.25)
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Remark 1.1.40. The function f from the previous example is often called the Heaviside function
after the English mathematician and physicist Oliver Heaviside. The supposed g is called the
Dirac delta “function” and plays a central role in PDE theory.

Including objects such as the Dirac delta lead to the development of distribution theory,
which defines generalized functions among which differentiation can be done without restriction.
Furthermore, distributions contain as a subset a sufficiently large class of “ordinary” functions,
namely, the locally integrable functions.

Next, we give the main concepts and results of distribution theory necessary for our discus-
sion of PDE theory.

Definition 1.1.41. (Multi-indices)
Let n ∈ N+. Vectors of the form α := (α1, . . . , αn) ∈ (N0)

n are called multi-indices. Given
a multi-index α = (α1, . . . , αn) ∈ (N0)

n, the partial derivative ∂αu shall denote the partial
derivative ∂α1

x1
. . . ∂αn

xn
u. Furthermore the order of α is defined as |α | := α1 + α2 + . . .+ αn.

Definition 1.1.42. (D(Ω) space of test functions)
Let n ∈ N+, Ω be a non-empty, open subset of Rn. Let us equip the vector space C∞

0 (Ω) with
the following notion of convergence. We say that φn

D−→φ, if

• there exists a C ⊂ Ω compact set such that for every n ∈ N+ suppφ, suppφn ⊂ C,

• for every multi-index α, we have that ∂αφn ⇒ ∂αφ (uniformly).

D(Ω) denotes C∞
0 (Ω) equipped with the above notion of convergence. Elements of D(Ω) are

called test functions.

Definition 1.1.43. (Distributions)
A linear functional u : D(Ω) → R is called a distribution if it is continuous in the sense that
φn

D−→φ implies that u(φn)
R−→ u(φ). The set of all distributions on D(Ω) is denoted by D′(Ω).

Theorem 1.1.44. The space D′(Ω) is a vector space with the operations

• (u+ v)(φ) := u(φ) + v(φ), and

• (λu)(φ) := u(λφ). See [2] and [5].

Every locally integrable function f ∈ L1
loc(Ω) can be associated with a distribution Tf .

Definition 1.1.45. (Regular distributions)
Let f ∈ L1

loc(Ω), and consider the linear map Tf : D(Ω) → R defined as

Tf (φ) :=

ˆ
Ω

fφ. (1.26)

The map Tf is indeed a distribution [2], and is called the regular distribution associated with
the locally integrable function f .

This association between locally integrable functions and regular distributions is one-to-one.

Theorem 1.1.46. Let f, g ∈ L1
loc(Ω) and suppose that the associated regular distributions

satisfy Tf = Tg. Then f = g in L1(Ω). See [2] for the proof.

Therefore, L1
loc(Ω) ⊂ D′(Ω) in embedding sense. Furthermore, Remark 1.1.33 implies that

for every p ⩾ 1, Lp
loc(Ω) ⊂ D′(Ω) in embedding sense.
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Definition 1.1.47. (Dirac delta distribution)
Let a ∈ Rn. Then the distribution δa : D(Rn) → R defined by δa(φ) := φ(a) is called the Dirac
delta distribution centered at a.

It is true that if φn
D−→φ then δa(φn)

R−→ δa(φn), i.e., δa ∈ D′(Rn). Furthermore, Example
1.1.37 shows that the Dirac delta distribution is not a regular distribution.

To define PDEs among distributions, one must first define the partial derivatives of distri-
butions. Furthermore, to define the fundamental solution of differential operators – which is
a requirement to talk about the MFS – it is necessary to define distributions’ direct product
and convolution. The working hypothesis of these definitions is that one looks at the analogous
results among regular distributions and invokes the principle of permanence to define analogous
concepts among all distributions.

The following is the generalization to distributions of the iterated application of (1.18).

Definition 1.1.48. (Partial derivatives of distributions)
Let u ∈ D′(Ω). Then, for every multi-index α, we define the partial derivative ∂αu as(

∂αu
)
(φ) := (−1)|α |u(∂αφ)

(
φ ∈ D(Ω)

)
. (1.27)

Definition 1.1.49. (Direct product of distributions)
Let u ∈ D′(Rn), v ∈ D′(Rm). Then, we say that the direct product of u and v is the distribution

(
u× v

)
(φ) := u

( ∈D(Rn)︷ ︸︸ ︷
x 7→ v

(
y 7→ φ(x,y)︸ ︷︷ ︸

∈D(Rm)

) ) (
φ ∈ D(Rn×Rm)

)
. (1.28)

Again, verifying that the above relationship holds for regular distributions is easy. Therefore,
it is sensible to define the direct product in the general case. Of course, one must check that
this is indeed a distribution on D(Rn ×Rm). See [2] for details.

The definition of convolution raises the following issue. For f, g ∈ L1
loc(R

n),

Tf∗g(φ) =

ˆ
Rn

(f ∗ g)(x)φ(x) dx =

ˆ
Rn

( ˆ
Rn

f(y)g(x−y) dy
)
φ(x) dx = (1.29)

=

ˆ
Rn

f(y)
ˆ
Rn

g(x−y)φ(x) dx︸ ︷︷ ︸
x⇝x+y

dy =

ˆ
R2n

f(x)g(y)φ(x+y) d(x,y), (1.30)

however, it is not true that if φ is compactly supported in Rn, then ψ : (x,y) 7→ φ(x+y) is
also compactly supported in R2n. For instance, if supp(φ) = B(0, 1), then the support of ψ
is an unbounded subset (infinite cylinder) in R2n: supp(ψ) = {(x,y) ∈ R2n

∣∣ ∥x+y ∥ ⩽ 1}.
Nonetheless, this partial result shows us why we define the direct product in the first place, and
that thinking about (u ∗ v)(φ) as (u× v)(ψ) with ψ as defined above gets us into the ballpark
of understanding the more technical definition of convolutions. The rigorous resolution to this
problem is to multiply ψ by a sequence of compactly supported functions (hk) that tend to the
function 1 in some very strong convergence sense – enough to ensure that the convolution is
also a distribution – and then to take the limit as k → +∞. See [2] for the technical details.

Definition 1.1.50. (Convolution of distributions)
Let (hk) be a sequence of functions in C∞

0 (R2n) such that for every (2n long) multi-index α

• ∂α
(
1− hk(x,y)

)
⇒ 0 uniformly on every compact subset of R2n,

• there exists a constant Cα such that supk∈N0
supR2n |∂αhk| ⩽ Cα.
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Suppose that u, v ∈ D′(Rn) are such that the following limit exists, is finite and continuous for
every φ ∈ D(Rn)

lim
k→+∞

(u× v)(hkψ), (1.31)

where ψ(x,y) := φ(x+y). Then we define this value to be (u ∗ v)(φ).

Theorem 1.1.51. Let u, v, w ∈ D(Rn) distributions, α, β ∈ R scalars, α ∈ Rn a multi-index
and δ0 be the Dirac delta concentrated to 0. Then the following properties hold (see [2] for
details)

• (Commutativity:) u ∗ v = v ∗ u,

• (Identity:) δ0 ∗ u = u ∗ δ0 = u,

• (Linearity:) (αu+ βv) ∗ w = αu ∗ w + βv ∗ w.

• (Relationship with partial derivatives:) ∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv). Indeed, for any
linear partial differential operator of finite order L : D′(Rn) → D′(Rn), we have that

L(u ∗ v) = (Lu) ∗ v = u ∗ (Lv) (1.32)

However, the convolution of distributions is non-associative.

Example 1.1.52. (Convolution of distributions is non-associative)
Let u = TH , the regular distribution belonging to the single-variable Heaviside function, v = δ′0,
the derivative of the Dirac delta concentrated at x = 0, and w = T1, the regular distribution
belonging to the constant function 1 (u, v, w ∈ D(R)). Then both (u ∗ v) ∗ w and u ∗ (v ∗ w)
exist, but they are not equal to each other as

(TH ∗ δ′0) ∗ T1 = (T ′
H ∗ δ0) ∗ T1 = (δ0 ∗ δ0) ∗ T1 = T1, but (1.33)

TH ∗ (δ′0 ∗ T1) = TH ∗ (δ0 ∗ T ′
1) = TH ∗ (δ0 ∗ T0) = T0. (1.34)

Furthermore, it is important to emphasize that it is possible for a convolution not to exist.

Example 1.1.53. (Convolution of distributions does not always exist)
The convolution T1 ∗ T1 does not exist, because

(T1 ∗ T1)(φ) =
ˆ
R2n

φ(x+y) d(x,y) ⩾
ˆ

x−y∈S
p = p · Vol2n

(
{(x,y) | x−y ∈ S}︸ ︷︷ ︸

infinite strip in R2n

)
= +∞

(1.35)

for any φ ⩾ 0 that takes a strictly positive value at least p on an open set S.

1.2 Prerequisites from PDE theory
In this section, we introduce fundamental solutions of linear partial differential operators and
illustrate their use to obtain general solutions of PDEs.
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1.2.1 Fundamental solutions and PDEs

The following theorem is invoked in the method of fundamental solutions.

Theorem 1.2.1. Let L : D′(Rn) → D′(Rn) be a linear differential operator of finite order and
suppose that LE = δ0 for some E ∈ D′(Rn). Furthermore, let F be a fixed distribution, and
suppose that the convolution E ∗F exists. Then u = E ∗F is the unique solution of the equation
Lu = F .

Proof. The distribution u = E ∗ F solves the PDE

Lu = L(E ∗ F ) = (LE) ∗ F = δ0 ∗ F = F. (1.36)

For the uniqueness claim, suppose that Lu1 = Lu2 = F and let h := u1 − u2. By the linearity
of L, we have that Lh = 0, and we want to show that h = 0. Indeed, by 1.32,

h = δ0 ∗ h = (LE) ∗ h = E ∗ (Lh) = E ∗ 0 = 0. (1.37)

Definition 1.2.2. (Fundamental solutions)
Let L : D′(Rn) → D′(Rn) be a linear differential operator. Solutions of the equation Lu = δ0
are called the fundamental solutions of the differential operator L.

Example 1.2.3. (Fundamental solution of the one dimensional wave operator by [2])
Consider the function

E(t, x) :=
1

2
H(t− |x|), (1.38)

where H is the Heaviside function, and the corresponding regular distribution TE. Then the
distribution TE is the fundamental solution of the wave-equation Lu := ∂2t u − ∂2xu = δ0 in
one-dimension.
To verify this, we use the fact that all partial derivatives of φ are sufficiently smooth, and that
supp(φ) is bounded,

(LTE)(φ) = (∂2t TE)(φ)− (∂2xTE)(φ) = TE(∂
2
t φ)− TE(∂

2
xφ) =

=
1

2

ˆ
R2

(
H(t− |x|)

(
∂2t φ(t, x)− ∂2xφ(t, x)

))
d(t, x) =

=
1

2

ˆ +∞

−∞

ˆ +∞

|x|

(
∂2t φ(t, x)− ∂2xφ(t, x)

)
dt dx =

=
1

2

( ˆ +∞

−∞

ˆ +∞

|x|
∂2t φ(t, x) dt dx−

ˆ +∞

0

ˆ t

−t

∂2xφ(t, x) dx dt

)
=

=
1

2

( ˆ +∞

−∞

[
∂tφ(t, x)

]t→+∞

t=|x|
dx−

ˆ +∞

0

[
∂xφ(t, x)

]x=t

x=−t
dt

)
=

= −1

2

( ˆ +∞

−∞
∂tφ(|x|, x) dx+

ˆ +∞

0

(
∂xφ(t, t)− ∂xφ(t,−t)

)
dt

)
=

= −1

2

( ˆ +∞

0

(
∂tφ(x, x) + ∂tφ(x,−x)

)
dx+

ˆ +∞

0

(
∂xφ(t, t)− ∂xφ(t,−t)

)
dt

)
=

= −1

2

( ˆ +∞

0

(
∂tφ(t, t) + ∂tφ(t,−t)

)
dt+

ˆ +∞

0

(
∂xφ(x, x)− ∂xφ(x,−x)

)
dx

)
=

= −1

2

([
φ(t, t) + φ(t,−t)

]t→+∞

t=0
+
[
φ(x, x)− φ(x,−x)

]x→+∞

x=0

)
=

= −1

2

((
0− φ(0, 0)

)
+
(
0− φ(0, 0)

)
+
(
0− φ(0, 0)

)
−
(
0− φ(0, 0)

))
= φ(0, 0) = δ(0,0)(φ),
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which is what we need. Similarly, H(ct − |x|) is the fundamental solution of the operator
L = ∂2t − c2∂2x.

The “physical” content of the solution – as much as one may call a discontinuous wave
physical – is that given an infinite string at rest with no outer forces, except an instantaneous
hit of unit momentum at t = x = 0, will result in a “wave” propagation in both the positive and
negative directions, resulting in a growing domain [−ct,+ct] where the displacement is now 1,
instead of the initial 0, where c > 0 is the speed of the wave propagation.

The concrete formula that Example 1.2.3 and Theorem 1.2.1 imply is as follows.

Corollary 1.2.4. Suppose that f ∈ L1
loc(R

2) and consider the PDE

∂2t u(t, x)− c2∂2xu(t, x) = f(t, x)
(
(t, x) ∈ R2

)
. (1.39)

Then the solution u(t, x) is of the form

u(t, x) =

ˆ
R2

E(t− τ, x− ξ)f(τ, ξ) d(τ, ξ) + ψ1(ct+ x) + ψ2(ct− x) =

=
1

2

ˆ +∞

−∞

ˆ +∞

−∞
H
(
c(t− τ)− |ξ − x|

)
f(τ, ξ) dξ dτ + ψ1(ct+ x) + ψ2(ct− x) =

=
1

2

ˆ t

−∞

ˆ x+c(t−τ)

x−c(t−τ)

f(τ, ξ) dξ dτ + ψ1(ct+ x) + ψ2(ct− x)

for some ψ1, ψ2 ∈ C2(R).

1.2.2 Laplace’s equation and Poisson’s equation

Suppose that Ω ⊂ Rn is a non-empty, open set. Let u : Ω → R denote the concentration
or density of some material or physical quantity (such as heat) and describe the equilibrium
distribution of the material in the presence of a source term f : Ω → R. If we assume that

• the flux of this material F is proportional to the gradient of u, and points in the opposite
direction, i.e., F(x) = −p(x)∇u(x) (Fick’s first law for diffusion, Fourier’s law of heat
conduction or Ohm’s law of electrical conduction),

• in equilibrium, for every smooth, small domain V ⊂ Ω, the overall flux through the
boundary of V is equal to the integral of some source function f : Ω → R, and that

• Gauß’s law holds,

thenˆ
V

f(x) dx =

ˆ
∂V

F(x) · n(x) dS =

ˆ
∂V

−p(x)∇u(x) · n(x) dS =

ˆ
V

− div
(
p(x)∇u(x)

)
dx .

Since this holds for every “sufficiently nice” V ⊂ Ω, we may conclude that the functions
must be equal, thus obtaining a general elliptic PDE

− div
(
p(x)∇u(x)

)
= f(x) (x ∈ Ω) (1.40)

The first condition in all three cases captures the idea that the material tends to diffuse from
higher concentration domains towards lower concentration domains, and this proportionality is
linear with respect to the concentration gradient. The dependence of p on x captures that the
proportionality constant may vary across the domain Ω. This law may not be assumed when
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there is a non-negligible fluid motion or the material is porous. The other two assumptions
require the smoothness of u. See [5].

If p is constant, we may assume p ≡ 1. Then

−div
(
∇u(x)

)
= −

n∑
i=1

∂xi

(
∂x1u(x), ∂x2u(x), . . . , ∂xnu(x)

)
= −

n∑
i=1

∂2xi
u(x) := −∆u(x). (1.41)

Laplace’s equation on the domain Ω is the second order homogeneous linear PDE

∆u(x) = 0 (x ∈ Ω), (1.42)

and Poisson’s equation on the domain Ω is the second order inhomogeneous linear PDE

−∆u(x) = f(x) (x ∈ Ω), (1.43)

where f : Ω → R is given. If ∂Ω is not empty – i.e., Ω ̸= Rn and Ω ̸= ∅ – then there are usually
extra boundary conditions imposed as well.

Remark 1.2.5. Both Laplace’s equation and Poisson’s equation are the ∂tu = 0 (stationary)
special cases of the more general forced heat (diffusion) equation in homogenous material

∂tu(t,x)− α∆xu(t,x) = F (t,x), (1.44)

where F : R×Ω → R is a given source, α is the (constant) diffusivity of the material, and ∆x
means the Laplacian is taken only in the spatial variables. In other words, Poisson’s equation
describes the equilibrium heat distribution in a material given some sources of heat, F , (which
may be negative), and Laplace’s equation is a special case when there are no sources in this
interpretation.

The following example is another application of Laplace’s equation and Poisson’s that we
shall see later.

Example 1.2.6. In electrostatics (when there are no moving charges), we assume that the curl
of the electric field E is zero. It is assumed that E is the gradient of some scalar field ϕ (electric
potential field) since (by Young’s theorem) curl(∇ϕ) = 0 for sufficiently a smooth scalar field
ϕ. Then substituting E = ∇ϕ into the electrostatic Gauß’s law div(E) = −ϱ

ε
yields Poisson’s

equation for electrostatics, which is

−∆ϕ(x) =
ϱ(x)
ε(x)

. (1.45)

If the total volume charge density ϱ = 0 – which may be assumed for instance, in metals –,
then we get Laplace’s equation for electrostatics.

Example 1.2.7. (Fundamental solution of the two-dimensional Laplace operator)
Consider the two-dimensional PDE below

∆u(x, y) = 0
(
(x, y) ∈ R2 \{(0, 0)}) (1.46)

where ∆ := ∂2x + ∂2y . It will become clear why we exclude the origin soon. Let us find solutions
of this PDE. The first thing to notice is that if u is a solution, and R is an orthogonal matrix
(rotation), i.e., RT = R−1, then v(x) = u(Rx) is also a solution. Indeed, setting y = Rx, we
have that ∇y = ∇xR

−1, and therefore, using a bit of operator algebra, we have

∆y = ∇y · ∇T
y = (∇xR

−1) · (∇xR
−1)T = (∇xR

−1) · (R∇T
x ) = ∇x(R

−1R) · ∇T
x = ∇x · ∇T

x = ∆x.
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Therefore, it makes sense to look for radially symmetric solutions. Set r :=
√
x2 + y2 and

let us calculate ∆v(r)

∆v
(√

x2 + y2
)
= ∂2x

(
v
(√

x2 + y2
))

+ ∂2y

(
v
(√

x2 + y2
))

=

= ∂x

(
xv′

(√
x2 + y2

)√
x2 + y2

)
+ ∂y

(
yv′

(√
x2 + y2

)√
x2 + y2

)
=

=
x2v′′(r)

r2
+
y2v′(r)

r3
+
y2v′′(r)

r2
+
x2v′(r)

r3
= v′′(r) +

1

r
v′(r).

Solving the ordinary differential equation (ODE) v′′(r) + 1
r
v′(r) = 0 is fairly easy. Introducing

the new variable w = v′, we get the first order linear ODE w′(r) + 1
r
w(r) = 0, and hence

w′(r) +
1

r
w(r) = 0

w′(r)

w(r)
= −1

r

ln |w(r)| = − ln(r) + c0

w(r) =
c1
r

v(r) = C ln(r) +D

All the radially symmetric solutions of Laplace’s equation in two dimensions are of the form
C ln

√
x2 + y2+D for some C,D ∈ R. These are not the only solutions, however. For example,

the polynomials ℜ
(
(x+ y · i)n

)
and ℑ

(
(x+ y · i)n

)
– the so-called harmonic polynomials – also

satisfy (1.46).
The fundamental solution of the Laplace operator is the regular distribution belonging to

one of the radially symmetric solutions. To simplify the already quite complicated calculation,
we will only consider E2(x, y) =

1
2π

ln
(√

x2 + y2
)

the pair of parameters that yields the fun-
damental solution. Of course, one could carry out a similar but more complicated calculation
with these parameters and find that ∆TE2 = 2Cπδ0 + z for some z ∈ D′(R2).

(∆TE2)(φ) = ∂2xTE2(φ) + ∂2yTE2(φ) = (−1)2TE2

(
∂2xφ

)
+ (−1)2TE2

(
∂2yφ

)
= TE2(∆φ) =

=
1

2π

ˆ
R2

ln(
√
x2 + y2)∆φ(x, y) d(x, y)

We calculate this integral as a limit of integrals defined on compact sets. Consider the sequence
of domains Ωn :=

{
(x, y) ∈ R2

∣∣ 1
n
⩽

√
x2 + y2 ⩽ n

}
and the sequence of integral values

In :=

ˆ
Ωn

ln(
√
x2 + y2)∆φ(x, y) d(x, y).

By the symmetric Green’s formula (1.9) and the fact that ∆ ln
√
x2 + y2 = 0 on Ωn,

In =

ˆ
Ωn

(
ln(

√
x2 + y2)∆φ(x, y)− φ(x, y)∆ ln(

√
x2 + y2)︸ ︷︷ ︸

≡0 on Ωn

)
d(x, y) =

=

ˆ
S(0,n)∪S(0, 1

n
)

(
ln(

√
x2 + y2)∂nφ(x, y)− φ(x, y)∂n ln(

√
x2 + y2)

)
ds
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Suppose that N is large enough, such that for every n > N we have supp(φ) ⊊ B(0, n). Such
an N exists because φ is compactly supported. Then for every n > N

In =

ˆ
S(0, 1

n
)

(
ln(

√
x2 + y2)∂nφ(x, y)− φ(x, y)∂n ln(

√
x2 + y2)

)
ds =

=

ˆ
S(0, 1

n
)

(
ln(

√
x2 + y2)∇φ(x, y) · n(x, y)− φ(x, y)∇

(
ln(

√
x2 + y2)

)
· n(x, y)

)
ds.

A suitable choice for n is n(x, y) = − (x,y)
|(x,y)| =

(−x
r
, −y

r

)
= (−nx,−ny). Using the fact that if

(x, y) ∈ S(0, 1
n
), then

√
x2 + y2 = r = 1

n
and ∇

(
ln(

√
x2 + y2)

)
=

(
x
r2
, y
r2

)
= (n2x, n2y), we

have

In =

ˆ
S(0, 1

n
)

(
ln
( 1
n

)
∇φ(x, y) · (−nx,−ny)− φ(x, y)(n2x, n2y) · (−nx,−ny)

)
ds =

=

ˆ
S(0, 1

n
)

(
ln(n)∇φ(x, y) · (nx, ny) + φ(x, y) (n2x, n2y) · (nx, ny)︸ ︷︷ ︸

=n

)
ds =

= ln(n)

ˆ
S(0, 1

n
)

∇φ(x, y) · (nx, ny) ds+
ˆ
S(0, 1

n
)

nφ(x, y) ds.

Here, the first term tends to 0 as n→ +∞∣∣∣∣ ln(n)ˆ
S(0, 1

n
)

∇φ(x, y) · (nx, ny) ds
∣∣∣∣ ⩽ ln(n)

ˆ
S(0, 1

n
)

∣∣∣∇φ(x, y) · (nx, ny)∣∣∣ ds ⩽
⩽ ln(n)

ˆ
S(0, 1

n
)

|∇φ(x, y)| ds ⩽ ln(n)∥∇φ∥max

ˆ
S(0, 1

n
)

1 ds = 2π∥∇φ∥max
ln(n)

n
→ 0

and we can deal with the second integral using polar substitution

ˆ
S(0, 1

n
)

nφ(x, y) ds =

ˆ 2π

0

nφ

(
1

n
cos θ,

1

n
sin θ

)
1

n
dθ =

ˆ 2π

0

φ

(
1

n
cos θ,

1

n
sin θ

)
dθ.

The function φ is continuous, and therefore, it is a suitable integrable majorant in Lebesgue’s
dominated convergence theorem

lim
n→+∞

ˆ 2π

0

φ

(
1

n
cos θ,

1

n
sin θ

)
dθ =

ˆ 2π

0

lim
n→+∞

φ

(
1

n
cos θ,

1

n
sin θ

)
dθ =

=

ˆ 2π

0

φ(0, 0) dθ = 2πφ(0, 0),

which finally yields

(∆TE2)(φ) =
1

2π

ˆ
R2

ln
(√

x2 + y2
)
∆φ(x, y) d(x, y) =

1

2π
lim

n→+∞
In =

1

2π
2πφ(0, 0) = φ(0, 0).

Corollary 1.2.8. Let f ∈ L1
loc(R

2) and consider Poisson’s equation

−∆u(x, y) = f(x, y)
(
(x, y) ∈ R2 \{(0, 0)}

)
(1.47)

Then by Theorem 1.2.1, the solution u(x, y) is of the form

u(x, y) = −
ˆ
R2

E2(x− ξ, y − η)f(ξ, η) d(ξ, η) + u0(x, y) =

= − 1

2π

ˆ
R2

ln
(√

(x− ξ))2 + (y − η)2
)
f(ξ, η) d(ξ, η) + u0(x, y),

where u0 is an arbitrary harmonic function.
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Remark 1.2.9. Likewise, one can show with similar calculations that the fundamental solution
of the Laplace operator in one dimension (second derivative operator) is the regular distribution
that belongs to the locally integrable function

E1(x) =
1

2
|x|.

In three dimensions, it is the regular distribution that belongs to

E3(x, y, z) =
−1

4π
√
x2 + y2 + z2

, (1.48)

and in general, the regular distribution that belongs to

En(x) =
−1

(n− 2)Sn−1∥x ∥n−2
(n ⩾ 3), (1.49)

where Sn−1 is the (n− 1)-dimensional surface measure of the n-dimensional unit ball.

Possible physical interpretations of the fundamental solution of Laplace’s equation in n
dimensions include the electric potential generated by a point charge if the field obeys Gauß’s
law or the gravitational potential generated by a point particle of unit mass in n-dimensional
space.

Notice these potentials En are bounded from above if and only if n ⩾ 3. This suggests that a
finite amount of energy can overcome the electric potential of a unit charge or the gravitational
potential of a unit mass if and only if n ⩾ 3, meaning that ionization of atoms or space travel
would not be possible if we lived in a less than three-dimensional space.

1.3 Prerequisites from functional analysis

1.3.1 Single variable Sobolev spaces

Here we give a brief description of single-variable Sobolev spaces. The reason for taking this
excursion is that single-variable Sobolev spaces may be described in a more constructive fashion
than their multi-variable counterparts, which are usually defined as certain special subsets of
D′(Ω) and D′(∂Ω).

Definition 1.3.1. (W 1,p
(
[a, b]

)
Sobolev space)

Let 1 ⩽ p ⩽ +∞. We say that f ∈ Lp
(
[a, b]

)
belongs to the W 1,p

(
[a, b]

)
Sobolev space if the

following conditions hold:

• f is differentiable almost everywhere,

• f ′ ∈ Lp
(
[a, b]

)
, and

•
´ y
x
f ′(t) dt = f(y) − f(x) for almost every x, y ∈ [a, b], i.e., the fundamental theorem of

calculus holds.

Furthermore, we define ∥f∥W 1,p(Ω) as

∥f∥W 1,p :=


(
∥f∥pLp + ∥f ′∥pLp

) 1
p =

( ´
Ω
(|f |p + |f ′|p)

) 1
p if p < +∞,

max
{
∥f∥L∞ , ∥f ′∥L∞

}
= max

{
ess sup

Ω
|f |, ess sup

Ω
|f ′|

}
if p = +∞.
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Remark 1.3.2. The idea behind the definition for p = +∞ is that limp→+∞
(
xp + yp

) 1
p =

max{x, y}.
Remark 1.3.3. In the special case p = 1, we get that f ∈ W 1,1

(
[a, b]

)
is equivalent to f being

absolutely continuous. Therefore, all Lipschitz-continuous functions are also elements of W 1,1.

Theorem 1.3.4. The above-defined spaces W 1,p
(
[a, b]

)
are Banach spaces (complete normed

vector spaces) with respect to ∥ · ∥W 1,p for every 1 ⩽ p ⩽ +∞. See [5] for details.

Remark 1.3.5. We define higher order single variable Sobolev spaces W k,p
(
[a, b]

)
analogously.

There, f ∈ Ck−1
(
[a, b]

)
, k times differentiable almost everywhere, f (k) ∈ Lp

(
[a, b]

)
, and the

fundamental theorem of calculus
´ y
x
f (k)(t) dt = f (k−1)(y) − f (k−1)(x) must hold for almost

every x, y ∈ [a, b]. The norm is either the sum of the Lp norms of the derivatives (p < +∞), or
the maximum of the L∞ norms (p = +∞).

Remark 1.3.6. A simpler notation in the case of p = 2 is Hk := W k,2, where the letter H is
suggestive of the fact that Hk are Hilbert spaces. [5]

The significance of these spaces is that we may state that a function satisfies a boundary
value problem or a Cauchy problem with fewer restrictions.

Example 1.3.7. The function u(x) = x + H(x)x is an element of H1
(
[−1, 1]

)
, where H is

the Heaviside step function. Indeed, u is differentiable everywhere, except at x = 0, and its
derivative is 1 + H(x), which is an element of L2

(
[−1, 1]

)
. Therefore, u is a solution of the

one-dimensional boundary value problem

u′(x) = 1 +H(x), if x ∈ (−1, 1),

u(−1) = −1,

u(1) = 2.


Example 1.3.8. Consider the following non-linear ODE with initial conditions

−mẍ(t) = kx(t) + |Fs| sgn
(
ẋ(t)

)
(0 < t < T ),

x(0) = x0,

ẋ(0) = v0,


which describes the displacement x of a body of mass m from its equilibrium point, suspended
on a spring with spring constant k, while the motion is damped by slipping friction Fs. Solutions
of this initial value problem are not twice continuously differentiable at points where ẋ changes
sign. That is, the solution x ∈ H2

(
[0, T ]

)
\ C2

(
[0, T ]

)
.

1.3.2 Multivariable Sobolev spaces

Assume that Ω ⊂ Rn is a non-empty bounded open set with a piecewise smooth boundary. The
following definitions include distributions, and when we mention concrete functions, we mean
the associated regular distributions.

Definition 1.3.9. (W k,p(Ω) Sobolev space)
Let 1 ⩽ p ⩽ +∞, k ∈ N+. The Sobolev space W k,p(Ω) consists of all distributions u ∈ D′(Ω) for
which every partial derivative ∂αu of at most order k exists in distribution sense and belongs
to Lp(Ω). The norms defined on these spaces are as follows. For p < +∞

∥u∥Wk,p(Ω) :=
∑
|α |⩽k

∥∂αu∥Lp(Ω) =
∑
|α |⩽k

( ˆ
Ω

|∂αu|p
) 1

p
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and for p = +∞

∥u∥Wk,∞(Ω) := max
|α |⩽k

{
∥∂αu∥L∞(Ω)

}
= max

|α |⩽k

{
ess sup

Ω
|∂αu|

}
Theorem 1.3.10. For every 1 ⩽ p ⩽ +∞, k ∈ N+, W k,p(Ω) is a Banach space. See [5].

Remark 1.3.11. Similarly to the single-variable case, Hk(Ω) := W k,2(Ω).

Defining a boundary value problem among elements of Lp spaces is problematic for the
following reason. Remark 1.1.11 shows that the boundary ∂Ω is a null set with respect to the
n-dimensional Lebesgue measure. Therefore, we may arbitrarily redefine any element u ∈ Lp

on ∂Ω. Hence, we need to introduce a generalization of the restriction operator such that it
makes sense to talk about the “restriction” of an element of Lp(Ω) to ∂Ω.

The idea of this approach is that we approximate an element u ∈ W 1,p(Ω) by a sequence of
smooth functions un

W 1,p

−→ u from W 1,p(Ω)∩C(Ω), which have a sensible notion of a restriction.
This is possible because C(Ω) is a dense subspace of Lp

loc(Ω), and W 1,p(Ω) ⊂ Lp
loc(Ω). Then

we look at the limit of the functions un|∂Ω in Lp(∂Ω), which exists and thus may serve as a
definition of the restriction. The following theorem formalizes this process. See [5] for details.

Theorem 1.3.12. (Trace theorem)
There exists a unique bounded linear operator

tr : W 1,p(Ω) → Lp(∂Ω),

such that for every u ∈ W 1,p(Ω) ∩ C(Ω)

tr(u) = u|∂Ω .

Here, boundedness is understood in the sense that there exists a constant Cp,Ω such that for
every u ∈ W 1,p(Ω), we have that ∥ tr(u)∥Lp(∂Ω) ⩽ Cp,Ω∥u∥W 1,p(Ω). See [5].

This is an extension of the restriction operator, so we keep writing u|∂Ω instead of tr(u).
Finally, we define two more spaces of fractional index and their dual spaces that play a role

in weak boundary value problems and thus in the upcoming existence and uniqueness theorems.
These are definitions of fractional index Sobolev spaces that are specific to their application in
boundary value problems. See [4] for details.

Definition 1.3.13. W k,p
0 (Ω) denotes the subspace of W k,p(Ω), where the trace of all the at

most (k − 1)st order partial derivatives of the elements vanish, that is

W k,p
0 (Ω) :=

{
u ∈ W k,p(Ω)

∣∣ ∀α : |α | ⩽ k − 1, ∂αu|∂Ω = 0 a.e
}
.

Remark 1.3.14. One may obtain another equivalent norm on this space by only including
|α | = k order partial derivatives. See [17].

Definition 1.3.15. (H−1(Ω) Sobolev space)
Let H−1(Ω) be the dual space of H1

0 (Ω), i.e.,

H−1(Ω) :=
{
ϕ : H1

0 (Ω) → R
∣∣ϕ is a bounded linear functional

}
,

where boundedness is understood in the sense that there exists a bound B > 0 such that for
every u ∈ H1

0 (Ω), |ϕu| := |⟨ϕ, u⟩| ⩽ B∥u∥H1
0 (Ω). The associated norm is

∥ϕ∥H−1(Ω) := sup
{
⟨ϕ, u⟩

∣∣u ∈ H1
0 (Ω), ∥u∥H1

0 (Ω) = 1
}
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Definition 1.3.16. (H
1
2 (∂Ω) Sobolev space)

We say that H
1
2 (∂Ω) is the trace space of H1(Ω), that is

H
1
2 (∂Ω) := {g ∈ L2(∂Ω) | for which ∃u ∈ H1(Ω) such that u|∂Ω = g}.

The norm defined on this space is

∥g∥
H

1
2 (∂Ω)

:= inf
{
∥u∥H1(Ω)

∣∣u ∈ H1(Ω), u|∂Ω = g
}
.

Definition 1.3.17. (H
3
2 (∂Ω) Sobolev space)

We say that H
3
2 (∂Ω) is the trace space of H2(Ω), that is

H
3
2 (∂Ω) := {g ∈ L2(∂Ω) | for which ∃u ∈ H2(Ω) such that u|∂Ω = g}.

The norm defined on this space is

∥g∥
H

3
2 (∂Ω)

:= inf
{
∥u∥H2(Ω)

∣∣u ∈ H1(Ω), u|∂Ω = g
}
.

Definition 1.3.18. (H− 1
2 (∂Ω) and H− 3

2 (∂Ω) Sobolev spaces)
Analogously to the H−1(Ω) case, the H− 1

2 (∂Ω) and H− 3
2 (∂Ω) Sobolev spaces may be defined

as the dual spaces of H
1
2 (∂Ω) and H

3
2 (∂Ω) respectively. The associated norms are

∥ϕ∥H−k(Ω) := sup
{
⟨ϕ, u⟩

∣∣u ∈ Hk
0 (Ω), ∥u∥Hk

0 (Ω) = 1
} (

k ∈
{
1

2
,
3

2

})
Remark 1.3.19. Elements of H−k(Ω) spaces (k ∈ N+) may also be understood as distributions
who are kth order partial derivatives of some function in L2(Ω) in the distribution sense.

Remark 1.3.20. In general, W−k,p(Ω) is defined as the dual space of W k,q
0 (Ω), where q is the

conjugate index of p, that is 1
p
+ 1

q
= 1 or one of them is 1 and the other is ∞. See [4] for details.

Example 1.3.21. Some of the most important elements in W 1,p(Ω) – and in particular,
H1(Ω) = W 1,2(Ω) – are piecewise linear functions. Let Ω be a polytope (polygon in n = 2,
polyhedron in n = 3 dimensions), and Tj be simplexes (triangles in n = 2, tetrahedra in n = 3)
such that Tj are almost disjoint (they may meet in vertices, edges, faces, etc.), and

⋃N
j=1 Tj = Ω.

Then, if u|Tj
is linear for every index j, and u ∈ C(Ω), then h ∈ H1(Ω). Indeed, all the partial

derivatives of u are (perhaps different) constants on all the simplexes Tj, and piecewise constant
functions are elements of Lp(Ω) for every 1 ⩽ p ⩽ +∞. These functions play a key role in the
theory of finite element methods [4]. See two examples in Figure 1.3 below, where D12 denotes
the regular 12-gon of unit radius centered at the origin.

These functions, however, are not elements of H2(Ω) because their second partial derivatives
along the edges usually do not belong to L2(Ω).

Example 1.3.22. Analogously to the previous example, some of the most important elements
in H2(Ω) = W 2,2(Ω) are functions that are piecewise quadratic polynomials that continuously
differentiably join across component domains. The simplest case of this example is quadratic
splines in one dimension.

Remark 1.3.23. The domain Ω need not be a polytope in either case, only the triangulation is
easier if Ω is a polytope.

The space H−1(Ω) may be fully characterized in line with Remark 1.3.19. That is, for every
ϕ ∈ H−1(Ω) we may find a function in L2(Ω) that we can think of as the “antiderivative” of ϕ.
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Figure 1.3: A function from H1
(
(−1, 1)

)
and another from H1

0 (D12).

Theorem 1.3.24. (Characterization of the space H−1(Ω))
Suppose that ϕ ∈ H−1(Ω). Then there exists a finite set of functions {ϕj}Jj=0 ⊂ L2(Ω) such that
the following two properties hold:

1. for every u ∈ H1
0 (Ω), the value of ⟨ϕ, u⟩ is

⟨ϕ, u⟩ =
ˆ
Ω

(
ϕ0u+

J∑
j=1

ϕj∂xj
u

)
,

2. the norm of ϕ is

∥ϕ∥H−1(Ω) = inf

{( J∑
j=0

∥ϕj∥2L2(Ω)

) 1
2 ∣∣∣ {ϕj}Jj=0 ⊂ L2(Ω), and 1. holds

}
.

Then, we write ϕ = ϕ0 −
∑J

j=1 ∂xj
ϕj, see [5].

Example 1.3.25. Let Ω = (−1, 1) ⊂ R. The Dirac delta concentrated to x = 0 is in H−1(Ω).
To verify this, we use the triangle inequality, Hölder’s inequality, and Remark 1.3.14∣∣⟨δ0, u⟩∣∣ = ∣∣∣∣ ˆ 0

−1

u′
∣∣∣∣ ⩽ ˆ 0

−1

|u′| ⩽
ˆ 1

−1

|u′| = ∥1 · u′∥L1 ⩽ ∥1∥L2∥u′∥L2 ⩽
√
2∥u∥H1

0

(
u ∈ H1

0 (Ω)
)
.

Here, ϕ0 = 0 and ϕ1 = 1−H, where H ∈ L2
(
(−1, 1)

)
is the Heaviside step function, because

⟨δ0, u⟩ =
ˆ 1

−1

(
0 · u+ (1−H)u′

)
=

ˆ 0

−1

u′.

Therefore, we might write that

δ0 = ϕ0 − ϕ′
1 = 0− (1−H)′ = H ′.

We conclude this subsection with two boundary value problems formulated using Sobolev
spaces and are satisfied in the weak sense.

Example 1.3.26. (Picture hanging on the wall)
Let Ω = (−2, 2) ⊂ R, F = −1

2
(δ−1 + δ1) ∈ H−1(Ω), and consider the boundary value problem

u′′ = F

u|∂Ω = 0,

}
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which describes the shape of a string that supports a unit weight in two pieces, each attached
to the string at x = −1 and x = 1. It is easy to verify based on 1

2
|x− a|′′ = H ′(x− a) = δa that

the solution of this BVP is the function

u(x) =
|x+ 1|+ |x− 1|

2
− 2,

(
x ∈ [−2, 2]

)
,

(u ∈ H1
0 ) whose plot, of course, is the shape that one expects in this setup.

Example 1.3.27. (Unit charge in a unit ball with Dirichlet boundary condition)
Let Ω = B(0, 1) ⊂ R3, F = δ0 ∈ H−2(Ω), and g ≡ 0 ∈ H

3
2 (Ω). Consider the boundary value

problem
∆ϕ = F

ϕ|∂Ω = g,

}
which describes a unit charge placed in the middle of a spherical cavity of radius one, where the
boundary of the cavity has fixed zero electric potential (earthing/grounding), and the unknown
function ϕ corresponds to the electric potential.

One might guess that the solution is a linear function of the fundamental solution E3 defined
in Remark 1.2.9. In fact, ϕ is of the form E3+ b, where b is determined such that u satisfies the
boundary condition.

Remark 1.3.28. It is also true that if we impose the Neumann-type homogeneous boundary
condition ∂nφ|∂Ω = 0, we do not have a solution.

1.3.3 Existence and uniqueness theorems

In this subsection, we state the existence and uniqueness theorems that apply to the handful
of PDEs that we are going to study later. First, we state a stronger version of the Green–Gauß
formulas that we are going to apply.

Theorem 1.3.29. (General Green–Gauß formula)
Let p ∈ L∞(Ω), u ∈ W 1,p(Ω) such that div

(
p∇u

)
∈ Lp(Ω). Then p∂nu ∈ W− 1

p
,p(∂Ω) and

ˆ
Ω

− div
(
p∇u

)
φ =

ˆ
Ω

p∇u · ∇φ−
ˆ
∂Ω

φ(p∂nu)︸ ︷︷ ︸
⟨φ,p∂nu⟩

(
∀φ ∈ W 1,p′(Ω)

)
, (1.50)

in particular, if φ|∂Ω, then the boundary term vanishes, and
ˆ
Ω

− div
(
p∇u

)
φ =

ˆ
Ω

p∇u · ∇φ
(
∀φ ∈ W 1,p′

0 (Ω)
)
. (1.51)

Outline of the proof. Ern and Guermond [4] suggest the following proof. Let us apply divergence
theorem

´
Ω
divF =

´
∂Ω

F · n (F ∈ C1(Ω,Rn)) to F = (p∇u)φ when it is a smooth function
ˆ
Ω

div
(
(p∇u)φ

)
=

ˆ
∂Ω

(
(p∇u)φ

)
· n (p, u, φ ∈ C2(Ω)). (1.52)

Here, the right-hand side is the desired boundary term, while the left-hand side may be rewritten
using the identity

div
(
(p∇u)φ

)
= p∇u · ∇φ+ div(p∇u)φ,

which enables us to rearrange (1.52) into (1.51). A density argument concludes the proof.
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Now, let us examine the general elliptic boundary value problem with inhomogenous Dirichlet-
type boundary conditions. Let Ω ⊂ Rn be a non-empty, bounded open domain and consider
the following elliptic partial differential equation with Dirichlet-type boundary condition

Lu := − div
(
p∇u

)
= f

u|∂Ω = g,

}
(1.53)

where p ∈ L∞(Ω), p(x) ⩾ m > 0 a.e., and f ∈ L2(Ω) are given, and we seek u in the most
general space possible. Since both L and the trace operator are linear, it is reasonable to look
for u in the form of u1 + u2, where

Lu1 = f

u1|∂Ω = 0,

}
and

Lu2 = 0

u2|∂Ω = g,

}
(1.54)

Multiplying both sides of the left equation by an arbitrary test function from φ ∈ C1
0(Ω)

and then integrating over the domain Ω yields the integral equation
ˆ
Ω

− div
(
p∇u1

)
φ =

ˆ
Ω

fφ
(
∀φ ∈ C1

0(Ω)
)
.

By applying the general Green’s formula (1.51) to the left-hand side, we may rewrite the above
equation as ˆ

Ω

p∇u · ∇φ =

ˆ
Ω

fφ
(
∀φ ∈ C1

0(Ω)
)
, (1.55)

which is called the weak form of the left BVP. Ern and Guermond [4] give the following existence
theorem to these problems.

Theorem 1.3.30. (Convex polytope)
Let Ω ⊂ Rn be a convex polytope, and suppose that p ∈ C1(Ω), f ∈ Lp(Ω). Then

1. The unique solution u1 of (1.54) is in W 2,p
0 (Ω), and

2. if Ω ⊂ R2, f ∈ L2(Ω) and g ∈ H
3
2 (∂Ω) then the unique solution u2 of the right-hand side

BVP (1.54) is in H2(Ω).

Remark 1.3.31. If Ω is a concave polytope, then it has a concave interior angle, then we cannot
have second-order regularity of u. See [4] for details.

1.4 Basics of artificial neural networks
Artificial neural networks are parametrized functions whose structure is motivated by the human
brain. They have a wide and rapidly broadening range of applications, such as image recognition,
natural language processing, speech recognition, health care, operations research, and numerical
analysis.

1.4.1 Structure of neural networks

A neural network consists of a large number of interconnected processing units that hold ac-
tivation values. These units represent neurons of the artificial neural network. Neurons are
organized into layers, with each layer performing a specific function. The input layer receives
the input data, which is then processed through a series of hidden layers before producing the
final output.
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Figure 1.4: The structure of a neural network.

Mathematically, we have vectors v(j) ∈ Rnj that contain the activation values of each layer
(j = 0, . . . , L + 1), where L is the number of hidden layers, x = v0 is the input vector (data),
y = v(L+1) is the output. The jth layer contains nj ∈ N+ neurons. Then, we define functions
fj : v(j) 7→ v(j+1) (j = 0, . . . , L) between the layers as

fj(x) := σj(Aj x+b) (1.56)

with Aj ∈ Rnj+1×nj weight matrix, b ∈ Rnj+1 bias vector and σj : Rnj+1 → Rnj+1 activation
function. Typically, σ is the same real function coordinate-wise for any given j. Finally, the
neural network is the function

fθ := fL ◦ fL−1 ◦ . . . ◦ f0. (1.57)

Here θ stands for all the parameters that are the elements of all the weight matrices and bias
vectors. This means, that θ may have up to

∑L
j=0(nj + 1)nj+1 = O(L · N2) free parameters,

where N = maxj{nj}.
To train the network, one needs to define a loss function that measures how well the network

performs on a given task. For example, when solving a PDE numerically, it makes sense to pick
a loss function that measures some norm (perhaps, the discrete ∥ · ∥H1-norm) of the residual
error of the numerical estimation. During training, the weights and biases in the neural network
– i.e., elements of the matrices Aj and the bias vectors bj – are fine-tuned to minimize this
loss function. This may be done using several optimization algorithms, such as variations of the
gradient descent algorithm, etc. [1]

The patterns of connections between layers – i.e., the patterns of indices for which the
elements of the weight matrices and bias vectors may be non-zero – may vary depending on the
task the network is built to accomplish. In a dense (or fully connected) neural network, each
neuron in one layer is connected to every neuron in the neighboring layers. In a convolutional
neural network, the connections are more localized, with each neuron in one layer only connected
to a subset of neurons in the next layer. This feature attempts to resemble neural pathways and
assumes some form of a locality to the input data, thus trading a great deal of generality for
reducing the number of parameters that must be fine-tuned. Each connection between neurons
is associated with a weight, representing the connection’s strength. See [1] for many more details
on artificial neural networks.
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Chapter 2

The method of fundamental solutions and
artificial neural networks

“The heart of mathematics consists of concrete examples and concrete problems. Big general
theories are usually afterthoughts based on small but profound insights; the insights themselves

come from concrete special cases.”
– Halmos Pál

The method of fundamental solutions was first proposed by V. D. Kupradze and M. A.
Aleksidze in 1963, see [15]. A general proof of convergence is currently not available. Cheng
and Hong [7] claim that “if the boundary is sufficiently smooth, and the solution has analytic

continuation outside the domain, the [MFS] approximation has the form” ε ∼
(

diam(Ω)
diam(Σ)

)N/n

,
where Σ is the fictitious boundary (to be discussed later), N is the number of collocation points,
and n ∈ {1, 2, 3} depending on different proofs. Furthermore, an abundance of publications
discussed in [6] and [7] greatly support the numerical effectiveness of the MFS for second-order
elliptic problems. In this chapter, we introduce the MFS through a concrete example and discuss
how one might apply neural networks that are inspired by this method as Izsák and Haffner
have already done [8]. Finally, we propose modifications to this approach that are numerically
tested in Chapter 3.

2.1 Introducing the MFS scheme through an example
Consider Laplace’s equation with inhomogeneous Dirichlet-type boundary condition

∆u = 0 (in Ω)

u = g (on ∂Ω),

}
(2.1)

where Ω = (0, 2)× (0, 1) and g : ∂Ω → R is defined as

g(x, y) =


x2 if (x, y) ∈ [0, 2]× {0}
1− y2 if (x, y) ∈ {1} × [0, 2]

x2 − 1 if (x, y) ∈ [0, 2]× {1}
−y2 if (x, y) ∈ {1} × [0, 2].

Theorem 1.3.30 ensures that there exists a unique solution u ∈ H2(Ω). Indeed, notice that
g(x, y) = x2 − y2 on ∂Ω, which is the restriction of the harmonic polynomial function x2 − y2

to ∂Ω. Hence, the exact solution of this BVP is u : Ω → R, u(x, y) = x2 − y2. We are going
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to demonstrate the method of fundamental solutions (MFS) by approximating this solution as
if it were unknown. Then, we are going to compare the resulting ũ with the exact solution to
draw conclusions.

The basic idea of the MFS is to take copies of the fundamental solution of the operator and
place them on the boundary of a fictitious domain Σ that encompasses Ω. Let us define the
following auxiliary sets:

Y = {yj}J−1
j=0 ⊂ extΩ and Z = {zk}K−1

k=0 ⊂ ∂Ω, as

Y =
{
(−1,−1), (1,−1), (3,−1),

(
3,

1

2

)
, (3, 2), (1, 2), (−1, 2),

(
−1,

1

2

)}
, and

Z =
{
(0, 0), (1, 0), (2, 0),

(
2,

1

2

)
, (2, 1), (1, 1), (0, 1),

(
0,

1

2

)}
.

Figure 2.1: Ω, Y , and Z as defined above

Note that the external points are further away from the domain, as the error approximation
discussed in the introduction of this chapter suggests that it is beneficial for the diameter of
the fictitious domain to be large compared to the diameter of Ω.

According to Example 1.2.7, the fundamental solution of the two-dimensional Laplace op-
erator is the function E2(x) = 1

2π
ln ∥x ∥2. Let

Ψj(x) := E2(x−yj) =
1

2π
ln ∥x−yj ∥2 (j = 0, . . . , J − 1). (2.2)

Then, we seek the numerical approximation ũ as a linear combination of these functions

ũ :=
J−1∑
j=0

αjΨj (2.3)

such that the error vector e :=
(
ũ(zk)− g(zk)

)K−1

k=0
∈ RK is minimal in some norm (ideally 0).

Remark 2.1.1. The intuition for this approach comes from the fact that according to the bound-
ary integral equations discussed in [14], for every boundary function g ∈ H

1
2 (∂Ω), there exists

a unique Green function G ∈ H− 1
2 (∂Ω) such that the unique solution of the boundary value

problem 2.1 is of the form of the surface integral

u(x) =
ˆ
∂Ω

G(y)E2(x−y) dS(y) (x ∈ Ω), (2.4)
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and the sum in (2.3) can be thought of as the discrete approximation of the integral in (2.4),
where values of G(y) correspond to the coefficients in the sum.

Substituting ũ from (2.3) into the boundary condition of (2.1) shows that finding the ap-
propriate coefficients αj comes down to solving the following linear system of equations

J−1∑
j=0

αjΨj(zk) = g(zk) (k = 0, . . . , K − 1)

for αj, which is equivalent to the matrix equation
Ψ0(z0) Ψ1(z0) . . . ΨJ−1(z0)
Ψ0(z1) Ψ1(z1) . . . ΨJ−1(z1)

...
... . . . ...

Ψ0(zK−1) Ψ(zK−1) . . . ΨJ−1(zK−1)

 ·


α0

α1
...

αJ−1

 =


g(z0)
g(z1)

...
g(zK−1)

 . (2.5)

After solving the above equation for the coefficient vector α, it becomes possible to evaluate
the numerical solution ũ through Equation (2.3) for any x ∈ Ω. In our example,

α = (6.62, 7.53,−8.17,−13.21,−0.528, 11.41, 14.26,−7.05)T ∈ R8,

which gives us the numerical solution

ũ(x, y) = 1.05 ln
√

(x+ 1)2 + (y + 1)2 + 1.2 ln
√

(x− 1)2 + (y + 1)2− (2.6)

− 1.3 ln
√

(x− 3)2 + (y + 1)2 − 2.1 ln
√

(x− 3)2 + (y − 0.5)2− (2.7)

− 0.084 ln
√

(x− 3)2 + (y − 2)2 + 1.82 ln
√
(x− 1)2 + (y − 2)2+ (2.8)

+ 2.27 ln
√
(x+ 1)2 + (y − 2)2 − 1.12 ln

√
(x+ 1)2 + (y − 0.5)2. (2.9)

Notice that the coefficients in (2.6)-(2.9) are αj

2π
due to (2.2).

The accuracy of this estimation in the maximum norm is ∥ũ − u∥max ≈ 0.0514, and in
L2-norm it is ∥ũ− u∥L2(Ω) ≈ 0.0178 with only 8 collocation points. Adding 8 more collocation
points results in an accuracy of ∥ũ − u∥max ≈ 0.003, and ∥ũ − u∥L2(Ω) ≈ 0.0005, which is an
excellent approximation for a method as cheap as the solution of a 16 × 16 system of linear
equations.

Adding further collocation points and looking at the graphs of the errors does indeed suggest
convergence. Cheng and Hong [7] claim that “traditional error analysis for the MFS shows
that when the boundary condition is prescribed by a harmonic function, the convergence is
exponential either by increasing the number of terms in the approximation, or by increasing the
radius of the fictitious boundary.” See the plot of ũ− u below for all our experiments.
Remark 2.1.2. Note that in the 60 collocations point case, we have achieved that the error is
mere random noise coming from computational inaccuracy.
Remark 2.1.3. The uneven nature of the error on the boundary is particularly visible in the
16 and 36 collocation points cases. This suggests that we could perhaps get better estimates
in various norms if we also let the collocation points vary around the domain. Allowing this
results in a non-linear system of equations instead of (2.5), see [6] for details.
Remark 2.1.4. Applying the MFS algorithm in practice – in particular, solving (2.5) – has
several numerical difficulties.

1. The resulting system of equations is typically very poorly conditioned: in our two cases,
the condition numbers of the matrices were 86 and 15, 396 in the 8 and 16 collocation
point cases respectively. This may result in wildly different solutions α given a small
perturbation of the input data g.
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Figure 2.2: Plots of ũ− u over Ω with 8 and 16 collocation points.

Figure 2.3: Plots of ũ− u over Ω with 36 and 60 collocation points.

2. The matrix G has no clear structure that may be typical in other numerical methods.
Furthermore, it is not even guaranteed to be invertible, if we choose setups that are “too
symmetric”. For all intents and purposes, G is a poorly conditioned, full matrix with
random entries. [7]

For these reasons, it is sensible to look for a neural network-based numerical method that
circumvents the solution of (2.5) – especially in the case where it is replaced by a non-linear
system of equations – but still mimics the approach of finding ũ as a linear combination of
shifted copies of fundamental solutions.

2.2 Solving the MFS scheme for Laplace’s equation with
Dirichlet-type boundary condition using a primitive
neural network

The following implementation was proposed by Izsák and Haffner [8]. Suppose that we are only
interested in the values of the function at points X = {xj}I−1

i=0 ⊂ Ω. Let us train a neural
network – whose architecture will be specified later – such that

NN :
(
Ψj(zk)

)K−1

k=0︸ ︷︷ ︸
∈RK

7→
(
Ψj(xi)

)I−1

i=0︸ ︷︷ ︸
∈RI

(j = 0, . . . , J − 1). (2.10)
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Then, we define the numerical approximation as

ũ : RK → RI ,
(
ũ(xi)

)I−1

i=0
:= NN

(
(g(zk))K−1

k=0

)
(2.11)

The NN is trained to return the function values in the inner points for function values on
the boundary. In other words, the NN learns to predict the values inside the domain given the
values on the boundary, which is really the task in (2.1). The results of this and two other MFS
algorithms applied to elliptic boundary value problems shall be discussed in Chapter 3.

Theorem 2.2.1. Suppose that

• the sets of points Y and Z are such that the set of vectors

G =
{(

Ψj(zk)
)K−1

k=0
∈ RK

}J−1

j=0

is a generating set in RK (K ⩽ J), and

• all layers in the neural network are linear, i.e. NN is a linear map from RK to RI .

Then, the algorithm defined by (2.10) and (2.11) is equivalent to the MFS algorithm.

Proof. It is sufficient to show that the algorithm defined by (2.10) and (2.11) also produces the
estimation

ũ(xi) =
J−1∑
j=0

αjΨj(xi) (i = 0, . . . , I − 1) (2.12)

with some coefficients αj. Since G is a generating set in RK , there exist coefficients α0, . . . , αJ−1

such that we can express the vector of boundary values as

(
g(zk)

)K−1

k=0
=

J−1∑
j=0

αj

(
Ψj(zk)

)K−1

k=0
.

Applying the linear map NN to both sides of the equation yields

(
ũ(xi)

)I−1

i=0
= NN

(
(g(zk))K−1

k=0

)
= NN

( J−1∑
j=0

αj

(
Ψj(zk)

)K−1

k=0

)
= (2.13)

=
J−1∑
j=0

αj NN
((

Ψj(zk)
)K−1

k=0

)
=

J−1∑
j=0

αj

(
Ψj(xi)

)I−1

i=0
, (2.14)

that is, ũ =
∑J−1

j=0 αjΨj, the same as the one provided by the algorithm in (2.10) and (2.11).

Remark 2.2.2. Of course, this is only a valid approach if it is guaranteed that there exist such
αj scalars for which (

ũ(xi)
)I−1

i=0
=

J−1∑
j=0

αj

(
Ψj(xi)

)I−1

i=0
.

That is if the vectors
{(

Ψj(xi)
)I−1

i=0
∈ RI

}J−1

j=0
form a generating system of the vector space RI .
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The difference between the applicability of this approach versus the standard MFS algorithm
is akin to the difference between solving a system of linear equations once by Gauß–Jordan
Elimination in O(K ·J) steps, versus finding the inverse of a K×K matrix (J = K) in O(K3)
steps. Furthermore, once this algorithm is implemented, it only finds the numerical estimation
in a finite set of points, and therefore, if we are interested in ũ(x) where x ̸∈ X, we either have
to teach the neural network all over again, or interpolate from the existing estimations. In other
words, this is no longer a mesh-free method.

Another – perhaps more natural – extension of the MFS with neural networks is to let the
network guess the unknown scalars αj that belong to specific boundary conditions. We have
not found a reference that attempts to do exactly this.

2.3 Introducing a generalized version of the MFS algo-
rithm

Just like in the case of the MFS, we present the following modified version of the MFS through a
concrete example that is so elementary that the reader can conceivably follow along and replicate
the experiment with little effort. However, for the sake of briefness, we are not presenting all
the numerical outputs as in Section 2.1, only the qualitatively important ones.

Consider Poisson’s equation with inhomogeneous Dirichlet-type boundary condition

∆u = f (inside Ω)

u = g (on ∂Ω),

}
(2.15)

where Ω = B(0, 1) ⊂ R2, f(x, y) = 24y and g(cos θ, sin θ) = cos 3θ for θ ∈ [0, 2π). By Theorem
1.3.30, there exists a unique solution u ∈ H2(Ω). Indeed, one can check that the exact solution
of this BVP is u(x, y) = −3x+ 4y3, as

∆u(x, y) = ∆(−3x+ 4y3) = 24y = f(x, y)

u(cos θ, sin θ) = −3 cos θ + 4 sin3 θ = cos 3θ = g(cos θ, sin θ)

}
(2.16)

We find a numerical estimation for this function as if it were unknown with a modified
version of the MFS. Of course, taking (2.15) apart into Laplace’s boundary value problem with
inhomogeneous Dirichlet-type boundary condition and Poisson’s boundary value problem with
homogeneous Dirichlet-type boundary condition is a valid approach. However, this relies on the
boundary value condition and the governing operator being linear, and we wish to develop a
method that can deal with non-linear problems utilizing the power of neural networks as well.

To approximate the effects of the source function f , we need to include data from new
functions ψm, for which ∆ψm ̸= 0. Let us take the following auxiliary sets as plotted below.

Here, the new set W serves as the set of measurement points, where ∆ψm values are mea-
sured, and T is a set of collocation points that are used to define the functions ψm. Note that
|Y1| = |Z1| = 11, |W1| = |T1| = 14, |Y2| = |Z2| = 17, and |W2| = |T2| = 21, as seen in Figure
2.4. The radius of the fictitious domain is 1.5 in both cases. The points of the auxiliary sets
W1,2 and T1,2 lay on circles of radii 1

3
, 2

3
, and 0.9. Let

Ψj(x) := E2(x−yj) =
1

2π
ln ∥x−yj ∥2, (2.17)

as in the MFS scheme. We can pick functions ψm from a wide variety of functions, however,
it is not easy to pick functions that work well for the following approximation. We managed
to pick a class of functions that appears to work relatively well and therefore serves as proof
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Figure 2.4: The sets Ω, Y , Z, W , T as defined above.

of concept. However, further research toward finding a set of functions that work as well as
fundamental solutions work in the case of the MFS is still needed.

The reasoning behind our choice goes as follows.

• We approximate f by a linear combination of ∆ψm. Heuristically, it makes sense to do
that by shifting around the same function ψ for which ∆ψm takes small values everywhere
except on a relatively small patch. This way, we should be able to put f together as a
patchwork of different functions.

• If we look for a radially symmetric function ψ, solving ∆(x,y)ψ(r) = h(r) comes down
to solving a relatively simple ordinary differential equation, similar to what we did in
Example 1.2.7.

• Picking h(r) to be an exponentially decaying bump such as e−r or e−r2 does achieve what
we want in the first point. Setting h(r) = e−r would result in a non-differentiable point
on ψ, so we look for transformed versions of the function e−r2 . Given the parameters of
the domain, we chose h(r) = 8e−4r2 .

• The corresponding possible ψ : R → R functions are solutions of the ODE

ψ′′(r) +
1

r
ψ′(r) = 8e−4r2 , (2.18)

which we can easily solve:

(r · ψ′(r))′ = 1 · ψ′(r) + rψ′′(r) = r
(
ψ′′(r) +

1

r
ψ′(r)

)
= 8re−4r2

r · ψ′(r) =

ˆ
8re−4r2 dr = −e−4r2 + c1

ψ(r) =

ˆ (
−e

−4r2

r
+
c1
r

)
dr = −1

2

ˆ
−8r

e−4r2

−4r2
dr + c1

ˆ
1

r
dr =

= −1

2
Ei(−4r2) + c1 ln(r) + c2.

Here, Ei is the exponential integral function Ei(r) :=
´ r
−∞

eϱ

ϱ
dϱ for (r < 0).

Both the natural logarithm and Ei(−4r2) have a singularity at r = 0. However, the arbitrary
constant c1 can be chosen such that ψ has a removable singularity at 0. Using the asymptotic
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behavior of Ei around 0 – namely that Ei(x) = γ+ln |x|+O(x), where γ is the Euler–Mascheroni
constant, – we can pick c1 by calculating that

lim
r→0+

Ei(−4r2)

ln(r)
= lim

r→0+

γ + ln |−4r2|+O(r2)

ln(r)
= lim

r→0+

γ + ln 4

ln(r)
+ lim

r→0+

2 ln(r)

ln(r)
+ lim

r→0+

O(r2)

ln(r)
= 2,

and therefore, c1 = −2 · −1
2

= 1 is a good choice for ψ to have a removable singularity at r = 0.
Moreover,

lim
r→0+

(
−1

2
Ei(−4r2) + ln(r)

)
= lim

r→0+

(
−1

2

(
γ + ln |−4r2|+O(r2)

)
+ ln(r)

)
=

= −1

2
lim
r→0+

(
γ + ln(4r2)− 2 ln(r)

)
= −γ

2
− 1

2
lim
r→0+

ln
4r2

r2
= −γ

2
− ln 2.

See the lecture notes [13] for the asymptotic behavior of the Ei function. Therefore, we can
finally define the smooth functions ψm : R2 → R as

ψm(x) :=

{
−1

2
Ei

(
−4∥x− tm ∥2

)
+ ln ∥x− tm ∥ − 2, x ̸= tm,

−2− γ
2
− ln 2, x = tm

(2.19)

for which ∆ψm(x, y) = 8e−4∥x− tm ∥2 .
Now, let us seek an approximation ũ ≈ u as some linear combination of Ψj and ψl

ũ =
J−1∑
j=0

αjΨj +
M−1∑
m=0

βmψm.

Substituting (2.3) back into (2.15) yields the system of equations
M−1∑
m=0

∆βmψm(wl) = f(wl) (l = 0, . . . , L− 1) (2.20)

J−1∑
j=0

αjΨj(zk) +
M−1∑
m=0

βmψm(zk) = g(zk) (k = 0, . . . , K − 1), (2.21)

which is equivalent to the matrix equation

0 . . . 0 ∆ψ0(w0) . . . ∆ψM−1(w0)
... . . . ...

... . . . ...
0 . . . 0 ∆ψ0(wL−1) . . . ∆ψM−1(wL−1)

Ψ0(z0) . . . ΨJ−1(z0) ψ1(z0) . . . ψM−1(z0)
... . . . ...

... . . . ...
Ψ0(zK−1) . . . ΨJ−1(zK−1) ψ1(zK−1) . . . ψM−1(zK−1)


︸ ︷︷ ︸

∈R(L+K)×(J+M)

·



α0
...

αJ−1

β0
...

βM−1


︸ ︷︷ ︸
∈R(J+M)×1

=



f(w0)
...

f(wL−1)
g(z0)

...
g(zK−1)


︸ ︷︷ ︸
∈R(L+K)×1

.

After solving the system of equations for the coefficients αj and βm, it is possible to evaluate
the numerical solution ũ through Equation (2.3) for any x ∈ Ω. Like in the MFS case, this is
often a very ill-conditioned system, and one must take great care to ensure that the solution is
accurate enough.

Further tests show that increasing only the number of W and T collocation points in and
of themselves does not necessarily decrease the error in the maximum norm. However, cleverly
increasing the number of all the collocation points can push the error further down. See Figures
2.5 and 2.6.
Remark 2.3.1. Notice that we broke the symmetry of the auxiliary sets in the last case because
otherwise, the resulting matrix would have had identical rows otherwise.
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Figure 2.5: Plots of |ũ− u| over Ω in both cases.

Figure 2.6: The auxiliary sets and the plot of |ũ−u| with |Y | = |Z| = 41 and |W | = |T | = 102.

2.4 Solving the generalized MFS scheme for Poisson’s equa-
tion using a primitive neural network

Now, we turn our attention to implementing the algorithm discussed in the previous section
using a primitive neural network, just as in the case of the MFS scheme. We shall see that a
very similar theorem holds for this approach also.

Let us consider the boundary value problem

∆u = f (in Ω)

u = g (on ∂Ω).

}
(2.22)

Suppose that we are interested in the values {u(xi)}I−1
i=0 , where X = {xi}I−1

i=0 ⊂ Ω.
To approximate these values, let us define the following auxiliary sets:

Y = {yj}J−1
j=0 ⊂ extΩ, Z = {zk}K−1

k=0 ⊂ ∂Ω, and W = {wl}L−1
l=0 ⊂ Ω.

The task of the numerical approximation is to find a map A : RL ×RK → RI , for which

A
((
f(wl)

)L−1

l=0
,
(
g(zk)

)K−1

k=0

)
≈

(
u(xi)

)I−1

i=0
.

Let us train a neural network using training data of the form

NN :
(
0,

(
Ψj(zk)

)K−1

k=0

)
︸ ︷︷ ︸

∈RL ×RK

7→
(
Ψj(xi)

)I
i=1

(j = 0, . . . , J − 1), (2.23)
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as before. However, we cannot only use functions whose Laplacian vanishes everywhere inside
the domain, since a linear combination of such functions also has a Laplacian that vanishes
everywhere inside the domain. We also need to take input-output pairs with some functions ψm

for which ∆ψm ̸= 0 on Ω. Let us include training data of the form

NN:
((

∆ψm(wl)
)L−1

l=0
,
(
ψm(zk)

)K−1

k=0

)
︸ ︷︷ ︸

∈RL ×RK

7→
(
ψm(xi)

)I
i=1

(m = 0, . . . ,M − 1), (2.24)

and define the numerical approximation as(
ũ(xi)

)I−i

i=0
:= NN

((
f(wl)

)L−1

l=0
,
(
g(zk)

)K−1

k=0

)
. (2.25)

Theorem 2.4.1. Suppose that L ⩽M , K ⩽ J . Furthermore, suppose that

(1) the set of vectors
{(

∆ψm(wl)
)L−1

l=0

}M−1

m=0
form a generating set in the vector space RL, and

(2) the set of vectors
{(

Ψj(zk)
)K−1

k=0

}J−1

j=0
form a generating set in the vector space RK.

Then the algorithm defined by (2.23)-(2.25) with a linear neural network finds an approximation
to (2.22) in the form of ũ =

∑
j αjΨj +

∑
m βmψm.

Proof. We omit writing the ranges of indices in the case of the vectors for the sake of simpler
notation. First, let us express the vector containing the input data as((

f(wl)
)
,
(
g(zk)

))
=

((
f(wl)

)
,0K

)
+
(
0L,

(
g(zk)

))
:= f+g .

Due to assumptions (1) and (2), f and g can be expressed as linear combinations

f =
M−1∑
m=0

am

((
∆ψm(wl)

)
,0K

)
, and (2.26)

g =
J−1∑
j=0

bj

(
0L,

(
Ψj(zk)

))
. (2.27)

Here, g is of the form required in (2.23), and so

NN(g) = NN

( J−1∑
j=0

bj

(
0L,

(
Ψj(zk)

)))
=

J−1∑
j=0

bj NN
(
0L,

(
Ψj(zk)

))
=

J−1∑
j=0

bj
(
Ψj(xi)

)
. (2.28)

However, f is not of the form required by (2.24). Adding
(
∆ψm(wl)

)
in the second coordinate,

and subtracting it separately resolves this issue.

NN(f) = NN

(M−1∑
m=0

am

((
∆ψm(wl)

)
, ψm(zk)

)
−

M−1∑
m=0

am

((
0K , ψm(zk)

))
= (2.29)

=
M−1∑
m=0

am NN
((

∆ψm(wl)
)
, ψm(zk)

)
−

M−1∑
m=0

am NN
((

0K , ψm(zk)
)
= (2.30)

=
M−1∑
m=0

am
(
ψm(xi)

)
−

M−1∑
m=0

am NN(hm), (2.31)
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To complete the proof, we need to calculate NN(hm). Again, we may use assumption (2) for
hm to conclude the existence of scalars cmj for which

hm =
J−1∑
j=0

cmj

(
0L,

(
Ψj(zk)

))
, (2.32)

and therefore for every m = 0, . . . ,M − 1, we have that

NN(hm) = NN

( J−1∑
j=0

cmj

(
0L,

(
Ψj(zk)

)))
=

J−1∑
j=0

cmj NN
(
0L,

(
Ψj(zk)

))
=

J−1∑
j=0

cmj

(
Ψj(xi)

)
.

(2.33)
Putting (2.28), (2.29)-(2.31) and (2.33) together, and using the linearity of NN, we finally have(

ũ(xi)
)
= NN

((
f(wl)

)
,
(
g(zk)

))
= NN(f+g) = NN(f) + NN(g) =

=
M−1∑
m=0

am
(
ψm(xi)

)
−

M−1∑
m=0

am

( J−1∑
j=0

cmj

(
Ψj(xi)

))
+

J−1∑
j=0

bj
(
Ψj(xi)

)
=

=
J−1∑
j=0

(
bj +

M−1∑
m=0

amcmj

)
︸ ︷︷ ︸

:=αj

(
Ψj(xi)

)
+

M−1∑
m=0

am︸︷︷︸
:=βm

(
ψm(xi)

)

Therefore, we got that the linear neural network is approximating the exact solution u in the
form of ũ =

∑
j αjΨj +

∑
m βmψm.
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Chapter 3

Experiments

“It doesn’t matter how beautiful your theory is...
If it doesn’t agree with experiment, it’s wrong.”

– Richard Feynman

3.1 Experiment 1: Laplace’s equation with inhomogeneous
Dirichlet-type boundary condition

Let
Ω = (−5, 5)2 \

((
[−3,−1] ∪ [1, 3]

)
× [−5/3, 5]

)
, (3.1)

Figure 3.1: The plot of the domain Ω, credit: Izsák & Haffner [8]

an open concave polygon (see Figure 3.1), and consider Laplace’s equation

∆u = 0 (in Ω)

u(x, y) = (x+ 5)2 − (y − 2)2, (on ∂Ω).

}
(3.2)

Notice that g is the restriction of a harmonic polynomial to the boundary, and therefore the
exact solution of the boundary value problem is

u(x, y) = (x+ 5)2 − (y − 2)2
(
(x, y) ∈ Ω

)
. (3.3)
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Let us apply the scheme with a primitive neural network discussed in Section 2.2. All the tests
were done with I = 3, J = 95, K = 18, train-test split ratio = 0.9, batch size 32 (which is
≈ 15% of the total number of data), and a mean-squared error loss function. Further parameters
of the NN include the optimizer method (and its own specific parameters), learning rate, and
number of epochs. The approach of [8] achieves the following numerical estimation properties
with respect to these three variables. The relative error is calculated as:

ep =
∥
(
u(x0)− ũ(x0), u(x1)− ũ(x1), u(x2)− ũ(x2)

)
∥p

∥
(
u(x0), u(x1), u(x2)

)
∥p

(
p ∈ {1, 2,∞}

)
.

optimizer learning rate epochs e1 e2 e∞
Adam 0.1 1,000 0.7358 0.7345 0.7851
Adam 0.01 1,000 8.4109× 10−2 7.8732× 10−2 7.3069× 10−2

Adam 0.01 5,000 6.9011× 10−2 7.0638× 10−2 7.5214× 10−2

Adam 0.01 10,000 7.9641× 10−2 7.2514× 10−2 7.5266× 10−2

Adam 0.001 5,000 7.005× 10−3 7.285× 10−3 7.6783× 10−3

Adam 0.001 10,000 5.032× 10−3 4.342× 10−3 4.018× 10−3

SGD 0.001 1,000 1.2421 0.9722 0.6726
SGD 0.001 10,000 1.1992× 10−2 1.21523× 10−2 1× 10−2

The table above includes the results of some of the experiments. As we can see, the model
does in fact seem to approach the desired solution, even if this convergence is not optimal yet.
Manuscript [9] shows that the method does indeed approximate the exact solution.

Theorem 3.1.1. Suppose that the points Y = {yj}J−1
j=0 equally-spaced around the domain,

and their distance from the domain is above a particular positive constant. Then, the linear
combination

ũ(x) :=
J−1∑
j=0

ajΨj(x)

provides the approximation rate

min
RJ

{
sup
x∈Ω

|u(x)− ũ(x)|+ sup
x∈Ω

|∇(u(x)− ũ(x))|
}
≲ h. (3.4)

We also have
min
RJ

∥u− ũ∥H1(Ω) ≲ h. (3.5)

3.2 Experiment 2: Poisson’s equation with inhomogeneous
Dirichlet-type boundary condition

In this experiment, we solved Poisson’s equation with inhomogeneous Dirichlet-type boundary
condition on a trapezoidal boundary in two dimensions using the MFS implemented with a
linear neural network.

Let
Ω = (0, 5)2 \ {(x, y) ∈ R2 | 5x+ 2y ⩾ 25} (3.6)

be an open convex polygon as plotted below, and

g(x, y) = (x+ 5)2 − (y − 2)2
(
(x, y) ∈ ∂Ω

)
(3.7)
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a polynomial function restricted to the boundary of Ω. Notice that g is the restriction of
a harmonic polynomial function to the boundary, and therefore, the exact solution of the
boundary value problem is

u(x, y) = (x+ 5)2 − (y − 2)2
(
(x, y) ∈ Ω

)
. (3.8)

Let us apply the scheme with a primitive neural network discussed in section 2.2.

All the tests were done with I = 488, J = 169, K = 1209, train-test split ratio = 0.9. The
batch size was 15% of the total number of data, and a mean-squared error loss function was
applied. Further parameters of the neural network include the optimizer method (and its own
specific parameters), learning rate, and number of epochs.

The approach of [8] achieves the following numerical estimation properties with respect to
these three variables. The relative error is calculated as:

ep =
∥
(
u(xi)

)
−

(
ũ(xi)

)
∥p

∥
(
u(xi)

)
∥p

The following table displays the results of some of the experiments:

optimizer learning rate epochs e1 e2 e∞

Adam 0.001 10,000 0.413 0.2452 0.1644
Adam 0.0001 10,000 0.234 0.142 0.091

Increasing the batch size proved to be beneficial with respect to the accuracy, therefore, we
then increased the batch size to be two thirds of all the training data. We got the following
results at this batch size.

optimizer learning rate epochs e1 e2 e∞

Adam 0.0001 10,000 0.199 0.119 0.090
Adam 0.0001 100,000 0.137 0.077 0.044

As we can see, the model does in fact seem to approach the desired solution, even if this
convergence is not optimal yet.
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3.3 Experiment proposal: Laplace’s equation with non-linear
boundary conditions

The following experiment proposal is inspired by an application from civil engineering, see [10],
Section 3.2.2. As mentioned in Example 1.2.6, the value of the electric potential in a solid
piece of metal can be modeled by Laplace’s equation with certain types of boundary conditions
depending on the situation. Let us consider a rectangular cross-section of a metal beam that is
embedded in concrete. Suppose that three sides of the rectangle are electrically insulated, which
corresponds to a homogeneous Neumann-type boundary condition on Γ0 ⊂ ∂Ω, but the fourth
side is exposed to corrosion. The polarization of the exposed surface results in two nonlinear
boundary conditions, one along the positive polarization site (anodic boundary Γa) and one
along the negative polarization site (cathodic boundary Γc), as explained in [10] and [11].

Consider the boundary value problem

∆ϕ = 0 (in Ω)

∂nϕ = 0 (on Γ0)

ϕ = ϕa (on Γa)

∂nϕ = gc(ϕ) (on Γc),

 (3.9)

where ϕ denotes the electric potential, and

gc(ϕ) =
iL

iL
iOC

exp
(

2.303
βc

(ϕ− ϕO2) + 1
) ,

with iOC = 6.25 ·10−12 A
mm2 , which is the cathodic exchange current density, βc = 160mV, which

is the cathodic Tafel slope, and ϕO2 = 400 mV, which is the non-standard half-cell potential of
O2. For all mathematical purposes, we have

gc(ϕ) =
1

1
6.25·10−12 exp

(
2.303
160

(ϕ− 400) + 1
) = 6.25 · 10−12e4.7575−ϕ = const.︸ ︷︷ ︸

k

e−ϕ. (3.10)

Ge Ji and O. Burkan Isgor [11] suggest that the ratio of the length of the anodic boundary to
the cathodic boundary be around 1 : 9.

We propose the solution of a similar boundary value problem that contains numbers that are
easier to deal with. Let Ω :=

(
−3

2
, 3
2

)
×
(
−1

2
, 1
2

)
, Γa =

[
−3

2
,−6

5

]
× {−1

2
}, Γc =

[
−6

5
, 3
2

]
× {−1

2
},

Γ0 = ∂Ω \
(
Γa ∪ Γb

)
, and gc(ϕ) = k · e−ϕ, as shown below in Figure 3.2.

Setting up the MFS-based solver is not significantly more difficult in this case than in
Experiment 1. In fact, since ∆ϕ = 0, we need not include functions ψm for which ∆ψm ̸= 0.

Let us take a number of external points Y = {yj}J−1
j=0 ⊂ extΩ, internal points X = {xi}I−1

i=0

and a number of boundary points Z = {zk}K−1
k=0 , the latter of which we distinguish by the type

of boundary condition they belong to. Let us define

Ψj(x) :=
1

2π
ln ∥x−yj ∥2 (i = 0, . . . , J − 1),

and take a nnumber of J input-output pairs of the form(((
Ψj(za)

)
,
(
−∂yΨj(zc)− gc(Ψj(zc))

)
,
(
∂xΨj(zr)

)
,
(
∂yΨj(zt)

)
,
(
−∂xΨj(zl)

))
︸ ︷︷ ︸

inputj

,
(
Ψj(xi)

)︸ ︷︷ ︸
outputj

)
,

(3.11)
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Figure 3.2: Ω, and the BVP as defined above

where za ∈ Γa, zc ∈ Γc, zr ∈ Γr, zt ∈ Γt, and zl ∈ Γl. Here, Γr,Γt, and Γl denotes is the right,
top, and left side, respectively.

The structure of the training set defined in 3.11 means that for every function Ψj, we
evaluate the right-hand side of the boundary condition, just like we did in the standard MFS
case. Note that on the nonlinear part of the boundary, we evaluate the difference between the
left-hand side and the right-hand side. This is done so that we are able to evaluate the numerical
approximation by setting those coordinates to zero.

In (3.11), we have

Ψj(za) =
1

2π
ln ∥ za−yj ∥2

−∂yΨj(zc)− gc
(
Ψj(zc)

)
= − 1

2π

(zc−yj)2

∥ zc−yj ∥22
− k · ∥ zc−yj ∥

1
2π
2

∂xΨj(zr) =
1

2π

(zr −yj)1

∥ zr −yj ∥22

∂yΨj(zt) =
1

2π

(zt −yj)2

∥ zt −yj ∥22

−∂xΨj(zl) = − 1

2π

(zl −yj)1

∥ zl −yj ∥22

Let us train a neural network on this training data. Then, the numerical approximation is
defined to be (

ũ(xi)
)
:= NN

((
ϕa(za)

)
,0C ,0R,0T ,0L

)
, (3.12)

where C, R, T , and L are the number of cathodic, right, top, and left boundary collocation
points, respectively. Notice that due to the nonlinearity of the boundary condition, we most
definitely need to use nonlinear activation functions or biases in the neural network. Otherwise,
we would get that given ϕa ≡ 0, the function ϕ ≡ 0 is a solution of the boundary value problem,
which does not satisfy the nonlinear boundary condition.

The verification in this case, is quite challenging because we do not know of any choice ϕa

and k for which an exact analytic solution of (3.9) is known. Instead, we suggest the following
method of verification. See Figure 3.3 for the geometric setup.

Suppose that the exact solution u analytically extends to a small neighborhood of Ω, and
let us include outside points in the set X, as in Figure 3.3. Since the numerical method builds
approximation values in the points of X, we obtain numerical approximations that are useful
for approximating ∂nũ in boundary points of Ω.
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Figure 3.3: The domain and the auxiliary sets in the nonlinear problem

Suppose that x ∈ X and x′ ∈ X are each other’s reflections to the boundary of Ω such that
x′ ̸∈ Ω and dist(x,x′) = 2h. Then, using the boundary point ξ = x+x′

2
,

• if ξ ∈ Γc, we can approximate ϕ(ξ) ≈ ϕ̃(ξ) := ũ(x′)+ũ(x)
2

, and

∂nũ(ξ) = −∂yũ(ξ) ≈
ũ(x′)− ũ(x)

2h
=⇒ ec,ξ ≈

ũ(x′)− ũ(x)
2h

− gc
(
ϕ̃(ξ)

)
• if ξ ∈ Γr, we can approximate

∂nũ(ξ) = ∂xũ(ξ) ≈
ũ(x′)− ũ(x)

2h
=⇒ er,ξ ≈

ũ(x′)− ũ(x)
2h

− 0

• if ξ ∈ Γt, we can approximate

∂nũ(ξ) = ∂yũ(ξ) ≈
ũ(x′)− ũ(x)

2h
=⇒ et,ξ ≈

ũ(x′)− ũ(x)
2h

− 0

• finally, if ξ ∈ Γl, we can approximate

∂nũ(ξ) = −∂xũ(ξ) ≈
ũ(x′)− ũ(x)

2h
=⇒ el,ξ ≈

ũ(x′)− ũ(x)
2h

− 0.

Showing that these error values become negligibly small would constitute evidence that the
scheme indeed converges. However, we have not been able to construct a neural network model
that achieves this in a timely fashion yet.
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Chapter 4

Conclusions

“In science, there are no shortcuts to truth.”
– Carl Sagan

4.1 Summary
In this thesis, we gave a rather detailed introduction to some of the main concepts and re-
sults of analysis, functional analysis, and partial differential equations necessary to understand
boundary value problems, and in particular the method of fundamental solutions, such that we
are confident that even a reader with minimal numerical analysis training should be able to
follow along. The architecture of this theoretical summary focused on the idea of fundamental
solutions of operators, as well as function spaces that the modern theory typically deals with.
We concluded the first chapter with a brief overview of the basic architecture and working
mechanism of artificial neural networks.

In Chapter 2, we turned our attention to the method of fundamental solutions (MFS),
devised an educationally motivated classical setup, and ran some tests to convince the reader
of the effectiveness of the MFS on simple setups. Then, we proposed a modification of the
MFS, found a suitable auxiliary function for its application to Poisson’s equation, and ran
some further tests to show that this variety of the MFS also works relatively efficiently on
simple models. Finally, we proved that these methods are transferable to machine-learning
problems via primitive (linear) neural network structures.

Finally, in Chapter 3, we showed that the transfer proposed in Chapter 2 is feasible. We
recreated the test run by Izsák and Haffner [8], and used it as inspiration to build our own test
for the modified version of the MFS also. Finally, we devised a test for a real-world-application-
inspired Laplace’s equation with nonlinear mixed boundary conditions and ran a few tests that
did not yield satisfactory results.

4.2 Further directions
In light of the successful outcomes and insights gained from the theoretical discussions on the
MFS and the modified version of the MFS, the successful implementations in Experiment 1
and Experiment 2, as well as being in possession of the algorithm that can run Experiment 3,
we wish to see the last experiment through, find the variables that make it work at least as well
as the algorithm in Experiment 2. The success of Experiment 3 should conceivably provide us
with a new frontier to attacking non-linear boundary-value problems. We also believe that an
important direction of generalization could be to implement some variation of these algorithms
to time-dependent problems. We also note that from Theorem 2.2.1 and Theorem 2.4.1, it
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is clear that proofs on the classical MFS will be immediately applicable via artificial neural
networks, and therefore the classical analysis of the MFS method remains relevant in this
sense.
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