
GRAPHICAL-DURATION
HIDDEN MARKOV MODEL

MSC THESIS IN APPLIED MATHEMATICS

LÁSZLÓ KERESZTES

SUPERVISOR: BALÁZS CSANÁD CSÁJI, PHD

DEPARTMENT OF PROBABILITY THEORY AND STATISTICS,

EÖTVÖS LORÁND UNIVERSITY (ELTE); AND

INSTITUTE FOR COMPUTER SCIENCE AND CONTROL (SZTAKI)

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF SCIENCE

2023

Contents

1 Introduction 1

2 Hidden Markov Models 3
2.1 Structure . 3

2.2 Algorithms . 5

3 EM learning 12
3.1 EM learning in general . 12

3.2 EM learning for HMMs - Baum-Welch algorithm 14

3.3 Complexity of the Baum-Welch algorithm 18

4 Graph representation of distributions 19
4.1 Representation graphs . 19

4.2 Representation of distribution families 24

5 Graphical-Duration Hidden Markov Model 31
5.1 Hidden Semi-Markov Models 31

5.2 The GD-HMM . 31

6 Learning the parameters of the GD-HMM 36
6.1 M-step for transition parameters in categorical case 39

6.2 Time complexity of M-step . 42

7 Efficiency of representation in GD-HMM 44

8 Numerical experiments 50
8.1 Monotonically increasing log-likelihood of GD-HMM 51

8.2 Log-likelihood and AIC evaluation of GD-HMM 51

8.3 Simulated manufacturing use case for GD-HMM 53

9 Conclusion 58

2

Acknowledgement

I would like to thank Balázs Csáji for his help, great ideas, guidance, and

encouragement.

1 Introduction

In my thesis, I examine a well-applicable statistical model called Hidden Markov

Model (HMM) [1,3,4]. Most applications of HMMs involve time series or signals;

i.e. data that have time dimension. In the most common case, HMMs are used

to infer an underlying hidden process that generates the observable data. The

model assumes that the (hidden) process is in a (hidden) state for some discrete

time units, generates data (that is specific to the state), then the process moves to

another state. Therefore the amount of time spent in a hidden state is crucial both

from theoretical and practical viewpoints. General HMM handles the duration

with a geometric distribution with a state-specific parameter. This makes the

model handy; the underlying process is a plain Markov chain.

A more advanced HMM would use a different family for modeling duration.

Different variants of HMMs emerged to solve this issue, these models fall

under the category of Hidden Semi-Markov Models [2, 5, 6]. HSMMs mostly

use categorical distribution on {1, . . . , D}, where D is the maximum duration

hyperparameter. HSMMs are applied in the following areas: protein structure

prediction, internet traffic modeling, speech synthesis, change-point/end-point

detection for semiconductor manufacturing, etc.

Categorical distribution is way more flexible, and even infinite-support

discrete distributions can be approximated well with categorical distributions

using a large D.

However, it seems like there is a gap between the simple geometric and

the very flexible categorical with hyperparameter D. What if one knows that

the duration distribution is negative binomial with known, fixed order N and

unknown parameter p? The geometric distribution is simply not flexible enough,

and the categorical distribution is not efficient at all: e.g. with N = 10 and

p = 0.1, choosing a D that is capable of representing the duration 95% of the

time results in D = 144. So, we learn D − 1 = 143 parameters instead of 1 and

1

the resulting distribution is neither negative binomial, nor (necessarily) truncated

negative binomial. Also, there is still a possibility that the truncation results in

significant errors either in learning or in inference.

In my thesis, I establish a new framework, Graphical-Duration Hidden Markov

Model (GD-HMM) that can be used with many distribution families. In the case of

infinite-support distributions, there is no need to represent them as fixed-support

categorical distributions. The motivation is to make the transition model part of

HMM as flexible as the observation model part while maintaining computational

efficiency.

In this framework, I model duration distributions with the distribution of the

first passage time (to the absorption state) on a Markov chain. Representing a

duration distribution with a graph (a Markov chain) is broad enough to include

geometric, negative binomial, categorical, and several other distributions.

I show how these graphs can be merged to form an HSMM with the desired

duration distributions and provide the appropriate Expectation-Maximization

(EM) learning variant.

Using the framework for the categorical distribution results in a model for

which the new EM gives back the state-of-the-art forward-backward computation

efficiency [6]. It can be also shown that this efficiency is optimal in some sense.

Finally, I present results from numerical experiments on the implemented

Graphical-Duration Hidden Markov Model. The results prove that the

implementation was successful, and observation accuracy can be increased by

using a GD-HMM instead of an HMM.

2

2 Hidden Markov Models

A Hidden Markov Model (HMM) can be viewed as a noisy observation

of a Markov chain. This model emerged in the 1960s, and now it has

important applications in signal processing, control theory, speech recognition,

and sequential bioinformatics. In the HMM framework, there is a hidden Markov

process that influences the observations, but we cannot observe it directly. Usually,

the inference for this hidden process is the task to solve, where the hidden process

is our real process of interest, such as a sequence of words in speech recognition

or specific DNA regions in the DNA sequence. An HMM has a transition model

and an observation model. The transition model controls the hidden process, at

each time step, we stochastically move to the next hidden state. The observation

model tells us how the observations are generated from a hidden state. Each

hidden state has a data-generating distribution, these distributions came from a

parametric family, such as Gaussians or Categorical distributions. The parametric

family should be selected in advance, based on prior knowledge or empirical data

distribution.

The transition model is a Markov chain, which can be viewed as a directed

graph. The structure of the graph can be chosen according to domain expert

knowledge. Building these expert thoughts correctly into the model makes it more

reasonable and robust.

The next step would be to choose a parametric family for duration distributions

by the experts and build this information into the model.

2.1 Structure

In my thesis, I deal with discrete-time, finite-state, categorical Hidden Markov

Models, but I refer to them as HMMs. The theorems and proofs are designed for

the categorical observation model, but the ideas apply to any other observation

model.

3

Definition 1. (Discrete-time, finite-state, categorical Hidden Markov Model)

Let (Zt) and (Xt) be discrete-time stochastic processes with t ≥ 1.

Let Zt : Ω → {1, . . . ,M}, where {1, . . . ,M} is the state space.

Let Xt : Ω → {1, . . . , L}, where {1, . . . , L} is the observation space.

The pair (Zt, Xt) is a Hidden Markov Model if:

1. (Zt) is a Markov process (that cannot be observed directly),

2. ∀t ∀xt ∈ {1, . . . , L} :

P (Xt = xt|Zs = zs ∀s ≥ 1, Xs = xs ∀s ̸= t) = P (Xt = xt|Zt = zt).

We assume that the HMM is time-homogeneous (p(zt = j|zt−1 = i) and

p(xt|zt = i) are independent of t).

An HMM is a pair of a hidden process, a discrete zt ∈ {1, . . . ,M} Markov

chain in discrete time (t ∈ {1, . . . , T}), and an observation model p(xt|zt). The

joint distribution has the form

p(z1:T , x1:T) = p(z1)
T∏
t=2

p(zt|zt−1)
T∏
t=1

p(xt|zt).

The initial distribution πi = p(z1 = i) is a probability distribution on

{1, . . . ,M}.

The transition model Aij = p(zt = j|zt−1 = i) is independent of the time t

(time-homogeneous). A is an M ×M matrix, also called the transition matrix.

The observation model represents discrete distributions, it is a matrix B, where

Bil = p(xt = l|zt = i) for the l = 1, . . . , L categories and for the i = 1, . . . ,M

hidden states.

In the next chapters, we will consider HMMs as in Definition 1 (z1, . . . , zT ∈
{1, . . . ,M} and x1, . . . , xT ∈ {1, . . . , L}). The HMM has parameters θ =

(π,A,B).

4

2.2 Algorithms

Given a predefined HMM with parameters θ = (π,A,B) and the sequence

of observed data x1:T , the most basic inference tasks are filtering (with the

forward algorithm), smoothing (with the forward-backward algorithm), and

Viterbi decoding.

In filtering, we want to compute (online) the αt(i) = p(zt = i|x1:t) belief

state. The next forward dynamic programming algorithm shows the computation.
Algorithm 1: Forward algorithm

Input : Observation sequence x1:T ,

HMM parameters θ = (π,A,B)

Output: α values, log p(x1:T |θ) log-likelihood

a1(i) = Bi,x1πi for i = 1, . . . ,M

Z1 =
∑M

i=1 ai

α1(i) = a1(i)/Z1 for i = 1, . . . ,M

for t = 2, . . . , T do
at(i) = Bi,xt

∑M
j=1Ajiαt−1(j) for i = 1, . . . ,M

Zt =
∑T

i=1 at(i)

αt(i) = at(i)/Zt for i = 1, . . . ,M

end
p(x1:T |θ) =

∑T
t=1 logZt

Statement 1. (Forward algorithm)

The Forward algorithm returns the correct α values and log p(x1:T |θ)
log-likelihood.

Proof. We prove this by induction. For t = 1:

α1(i) = p(z1 = i|x1) =
p(x1|z1 = i)p(z1 = i)

p(x1)
=

Bi,xtπi

p(x1)
=

a1(i)

p(x1)

=
a1(i)∑

i p(x1|z1 = i)p(z1 = i)
= a1(i)/Z1.

5

Now assume we know for t− 1. Then:

αt(i) = p(zt = i|x1:t) = p(zt = i|xt, x1:t−1)

=
p(zt = i, xt, x1:t−1)

p(xt, x1:t−1)
=

p(xt, zt = i, x1:t−1)

p(zt = i, x1:t−1)

p(zt = i, x1:t−1)

p(x1:t−1)

p(x1:t−1)

p(xt, x1:t−1)

= p(xt|zt = i, x1:t−1)p(zt = i|x1:t−1)
1

p(xt|x1:t−1)
.

For the term p(xt|zt = i, x1:t−1):

p(xt|zt = i, x1:t−1) = p(xt|zt = i) = Bi,xt .

For the term p(zt = i|x1:t−1):

p(zt = i|x1:t−1) =
M∑
j=1

p(zt = i|zt−1 = j, x1:t−1)p(zt−1 = j|x1:t−1)

=
M∑
j=1

Ajiαt−1(j).

For the term p(xt|x1:t−1):

p(xt|x1:t−1) =
M∑
i=1

p(xt|zt = i, x1:t−1)p(zt = i|x1:t−1)

=
M∑
i=1

at(i) = Zt.

Combining the terms:

αt(i) = Bi,xt

M∑
j=1

Ajiαt−1(j)/Zt = at(i)/Zt.

For the log-likelihood:

log p(x1:T |θ) = log p(x1:T) =
T∑
t=1

log p(xt|x1:t−1) =
T∑
t=1

logZt.

6

In smoothing, we want to compute (offline) the γt(i) = p(zt = i|x1:T) given

all the data and this can be done by the forward algorithm and the backward

algorithm. In the backward algorithm, we compute βt(j) = p(xt+1:T |zt = j).

The backward algorithm is a backward DP, and then γt(j) ∝ αt(j)βt(j) can be

get.

In learning, besides filtering and smoothing, computing the two-slice

marginals ξt,t+1(i, j) = p(zt = i, zt+1 = j|x1:T) is also essential. This can be done

as ξt,t+1(i, j) ∝ αt(i)Aijβt+1(j)p(xt+1|zt+1 = j) from the already computed α, β

values.
Algorithm 2: Backward algorithm

Input : Observation sequence x1:T ,

HMM parameters θ = (π,A,B)

Output: β values

βT (i) = 1 for i = 1, . . . ,M

for t = T − 1, . . . , 1 do
βt(i) =

∑M
j=1 βt+1(j)Bj,xt+1Aij for i = 1, . . . ,M

end

Statement 2. (Backward algorithm) The backward algorithm returns the correct

β values.

Proof. We prove the recursive formula. βT is defined only for convenience.

7

If t < T − 1:

βt(i) = p(xt+1:T |zt = i) =
M∑
j=1

p(zt+1 = j, xt+1, xt+2:T |zt = i)

=
M∑
j=1

p(xt+2:T |zt+1 = j, xt+1, zt = i)p(zt+1 = j, xt+1|zt = i)

=
M∑
j=1

p(xt+2:T |zt+1 = j)p(xt+1|zt+1 = j)p(zt+1 = j|zt = i)

=
M∑
j=1

βt+1(j)Bj,xt+1Aij.

If t = T − 1:

βT−1(i) = p(xT :T |zT−1 = i) =
M∑
j=1

p(zT = j, xT |zT−1 = i)

=
M∑
j=1

1 · p(xT |zT = j)p(zT = j|zT−1 = i)

=
M∑
j=1

βT (j)Bj,xT
Aij.

8

Algorithm 3: γ and ξ computation
Input : α values, β values

Output: γ values, ξ values

for t = 1, . . . , T do
ct =

∑M
i=1 αt(i)βt(i)

γt(i) = αt(i)βt(i)/ct for i = 1, . . . ,M

end
for t = 2, . . . , T do

et−1,t =
∑M

i=1

∑M
j=1 αt−1(i)Bj,xtβt(j)Aij

ξt−1,t(i, j) = αt−1(i)Bj,xtβt(j)Aij/et−1,t for i, j = 1, . . . ,M

end

Statement 3. (γ and ξ computation)

The previous algorithm returns the correct γ and ξ values.

Proof. We start with γ.

For t = T :

γT (i) = p(zT = i|x1:T) = αT (i) = αT (i)βT (i).

For t < T :

γt(i) = p(zt = i|x1:T) =
1

p(xt+1:T |x1:t)
p(zt = i, xt+1:T |x1:t)

=
1

p(xt+1:T |x1:t)
p(xt+1:T |zt = i)p(zt = i|x1:t)

=
1

p(xt+1:T |x1:t)
βt(i)αt(i).

For the constant p(xt+1:T |x1:t):

p(xt+1:T |x1:t) =
M∑
i=1

p(zt = i, xt+1:T |x1:t) =
M∑
i=1

βt(i)αt(i).

9

We proceed with the ξ values. We use that ct−1 = p(xt:T |x1:t−1). Then we have

ξt−1,t(i, j) = p(zt−1 = i, zt = j|x1:T)

=
1

p(xt:T |x1:t−1)
p(zt−1 = i, zt = j, xt:T |x1:t−1)

=
1

ct−1

p(zt−1 = i|x1:t−1)p(zt = j, xt:T |zt−1 = i, x1:t−1)

=
1

ct−1

αt−1(i)p(zt = j, xt:T |zt−1 = i)

=
1

ct−1

αt−1(i)p(zt = j|zt−1 = i)p(xt:T |zt = j, zt−1 = i)

=
1

ct−1

αt−1(i)Aijp(xt, xt+1:T |zt = j)

=
1

ct−1

αt−1(i)Aijp(xt|zt = j)p(xt+1:T |xt, zt = j)

=
1

ct−1

αt−1(i)AijBj,xtβt(j).

For the constant p(xt:T |x1:t−1) we have:

ct−1 = p(xt:T |x1:t−1) =
M∑
i=1

M∑
j=1

p(zt−1 = i, zt = j, xt:T |x1:t−1)

=
M∑
i=1

M∑
j=1

αt−1(i)AijBj,xtβt(j) = et−1,t.

The time complexities of the previous algorithms are the following: both the

forward and backward algorithms take O(TM2) time, further computation of

γ requires O(TM) time and further computation of ξ requires O(TM2) time.

Therefore the complete computation of γ and ξ values takes O(TM2) time.

The time complexity can be substantially reduced if the graph of the (Zt)

Markov chain is sparse.

Definition 2. Let θ = (π,A,B) an HMM. The number of edges in the HMM:

E = |{(i, j) : Aij > 0}|.

10

For the E edge number, we have:

E =
M∑
i=1

degout(i) =
M∑
i=1

degin(i).

Now assume that we have a sparse HMM with E ≪ M2 and for each i ∈
{1, . . . ,M} we have Out(i) = {j : Aij > 0} and In(i) = {j : Aji > 0}.

Then, in the forward algorithm we can iterate over j ∈ In(i) instead of j ∈
{1, . . . ,M}. This leads to a time complexity of O(T

∑M
i=1 |In(i)|) = O(TE). In

the backward algorithm we can iterate over j ∈ Out(i) and this leads to O(TE)

time. The further computation of γ remains O(TM), but the further computation

of ξ can be reduced, because for Aij = 0, ξt−1,t(i, j) = 0. Therefore we should

iterate over the set {(i, j) : Aij > 0}, and the computation takes O(TE) time.

In summary, the complete computation of γ and ξ can be done in O(TE) time,

and this is significantly less than O(TM2), if the HMM is sparse.

Another important computation is the search for the maximum probability

hidden state sequence that explains the data:

argmax
z1:T

p(x1:T |z1:T).

This can be done with an offline dynamic programming algorithm also known

as Viterbi decoding. The Viterbi decoding is not presented here, it can be found

in [3, 4].

11

3 EM learning

Learning in HMM means we want to learn the initial distribution p(z1), the

transition probabilities p(zt|zt−1), and the parameters of the observation model.

Because of the usually unobserved hidden process, we cannot maximize

directly the likelihood function, therefore an iterative approach called

Expectation-Maximization is applied.

3.1 EM learning in general

The idea of EM is the following. We usually want to maximize the log-likelihood

of the observed data:

l(θ) = log p(x1:T |θ) = log
[∑
z1:T

p(x1:T , z1:T |θ)
]
.

This is hard to optimize, therefore instead we maximize the complete data

log-likelihood:

lc(θ) = log p(x1:T , z1:T |θ).

This cannot be computed, since zt are unknown. Define the expected complete

data log-likelihood as the following:

Q(θ; θn−1) = E
[
lc(θ)|x1:T , θ

n−1
]
= Ez1:t|x1:t,θn−1

[
lc(θ)

]
= Ez1:T∼p(z1:T |x1:T ,θn−1)

[
lc(θ)

]
.

Here, the zt are replaced with their expected value conditioned on the data and the

previous parameter set.

The idea of the EM is that since we do not know the actual values of zt,

starting from an initial guess of parameters, we can iteratively estimate zt with

probabilities from the parameters (and data), then estimate the parameters using

the zt estimates.

The condition is usually on the amount of gain in the Q function or the number

of iterations.

12

Algorithm 4: Expectation-Maximization (EM) algorithm
Input : Observation sequence x1:T ,

initial parameters θ0

Output: Parameters θN

Until condition:

• E step: Compute Q(θ; θn−1) or the expected sufficient statistics (for

parameter update)

• M step:

θn = argmax
θ

Q(θ; θn−1)

The EM algorithm in general finds a local optimum (with certain assumptions)

by increasing the observed data log-likelihood at every EM step. [1, 3]

Statement 4. (EM increases the observed data log-likelihood)

For the (θn) parameter series from the EM algorithm:

l(θn+1) ≥ l(θn).

Proof. Denote X = x1:T , Z = z1:T . Denote the distribution qn(Z) = p(Z|X, θn).

Let D denote the information divergence, and H the entropy function.

l(θ) = log p(X|θ) = log p(X,Z|θ)− log p(Z|X, θ)

=
∑
Z

qn(Z) log p(X,Z|θ)−
∑
Z

qn(Z) log p(Z|X, θ)

= Q(θ; θn)−
∑
Z

qn(Z) log
[p(Z|X, θ)

qn(Z)
qn(Z)

]
= Q(θ; θn) +D(qn(Z)||p(Z|X, θ)) +H(qn(Z)).

This is true for every θ. Now setting θ = θn:

l(θn) = Q(θn; θn) +D(qn(Z)||p(Z|X, θn)) +H(qn(Z))

= Q(θn; θn) +H(qn(Z)).

13

By differentiating the two equations, we have:

l(θ)− l(θn) = Q(θ; θn)−Q(θn; θn) +D(qn(Z)||p(Z|X, θ))

≥ Q(θ; θn)−Q(θn; θn).

Selecting

θn+1 = argmax
θ

Q(θ, θn)

shows that l(θn+1) ≥ l(θn).

One of the best practices is to use multiple randomized initializations for the

EM algorithm and select the best parameters.

In some cases (e.g. with HMM) both the E-step and M-step have an analytical

solution. This can be also true with different parameter constraints: e.g. with

parameter tying, and re-parameterization.

3.2 EM learning for HMMs - Baum-Welch algorithm

Applying the EM algorithm for learning HMM parameters, the complete data

log-likelihood is simply the log of the joint:

lc(θ) = log p(z1|θ) +
T∑
t=2

log p(zt|zt−1, θ) +
T∑
t=1

log p(xt|zt, θ).

14

The auxiliary Q(θ; θn) function has the following form:

Q(θ; θn) = Ez∼p(z|x,θn)[lc(θ)]

= Ez1∼p(z1|x,θn)[log p(z1|θ)]+

+
T∑
t=2

E(zt−1,zt)∼p((zt−1,zt)|x,θn)[log p(zt|zt−1, θ)]+

+
T∑
t=1

Ezt∼p(zt|x,θn)[log p(xt|zt, θ)]

=
M∑
i=1

log πi · p(z1 = i|x, θn)+

+
T∑
t=2

M∑
i=1

M∑
j=1

logAij · p(zt−1 = i, zt = j|x, θn)+

+
T∑
t=1

M∑
i=1

L∑
l=1

logBilI(xt = l) · p(zt = i|x, θn)

=
M∑
i=1

log πiγ
n
1 (i) +

T∑
t=2

M∑
i=1

M∑
j=1

logAijξ
n
t−1,t(i, j)+

+
T∑
t=1

M∑
i=1

L∑
l=1

logBilI(xt = l)γn
t (i).

The E step involves the computation of the expected sufficient statistics:

• γn
t (i) = p(zt = i|x1:T , θ

n),

• ξnt−1,t(i, j) = p(zt−1 = i, zt = j|x1:T , θ
n).

Conditioning on θn means computing the γ and ξ values on the HMM with

parameters θn. As we have already seen, the γ and ξ values can be computed

with dynamic programming algorithms.

The M step involves constrained optimization: we want to optimize in π, A,

B, but we must ensure that:

• π is a probability distribution on {1, . . . ,M},

• ∀i Ai,: is a probability distribution on {1, . . . ,M},

15

• ∀i Bi,: is a probability distribution on {1, . . . , L}.

We can optimize separately in π, Ai: for i = 1, . . . ,M , and Bi,: for i =

1, . . . ,M .

Statement 5. (M step optimization as divergence minimization)

Let ai ≥ 0 for i = 1, . . . ,M . The probability distribution p on {1, . . . ,M}
that maximizes

M∑
i=1

log pi · ai

is pi = ai/a, if a =
∑M

i=1 ai > 0.

Proof. If ai = 0 ∀i, then any p maximizes the term. Note that the following proof

returns correctly that ai = 0 =⇒ pi = 0.

Define the probability distribution â with âi =
ai
a

. Then

argmax
p

M∑
i=1

log pi · ai = argmax
p

M∑
i=1

log pi · âi

= argmax
p

M∑
i=1

âi log pi −
M∑
i=1

âi log âi

= argmax
p

−D(â||p).

We have −D(â||p) ≤ 0 and equality holds if and only if p = â.

16

For the θn+1 updated parameters:

πn+1 = argmax
π

M∑
i=1

log πiγ
n
1 (k) = γn

1

An+1
i,: = argmax

Ai,:

T∑
t=2

M∑
j=1

logAijξ
n
t−1,t(i, j)

= argmax
Ai,:

M∑
j=1

logAij

(T∑
t=2

ξnt−1,t(i, j)
)

∝
(T∑

t=2

ξnt−1,t(i, j)
)
j=1,...,M

Bn+1
i,: = argmax

Bi,:

T∑
t=1

L∑
l=1

logBilI(xt = l)γn
t (i)

= argmax
Bi,:

L∑
l=1

logBil

(T∑
t=1

I(xt = l)γn
t (i)

)
∝

(T∑
t=1

I(xt = l)γn
t (i)

)
l=1,...,L

The results are quite intuitive:

• πn+1
i = γn

1 (i),

• An+1
ij ∝

∑T
t=2 ξ

n
t−1,t(i, j),

• Bn+1
il ∝

∑T
t=1 γ

n
t (i)I(xt = l).

These are all expected counts on the corresponding events. The EM learning

in the HMM framework is called the Baum-Welch algorithm.

Statement 6. (Zero persistency in EM - transition probability)

If we initialize the EM algorithm with such θ0 that has A0
ij = 0, then:

∀n : An
ij = 0.

Proof. It is enough to show that A1
ij = 0.

17

From the computation of ξ, we know that if A0
ij = 0, then ξ0t−1,t(i, j) = 0 for

t = 2, . . . , T .

But A1
ij ∝

∑T
t=2 ξ

0
t−1,t(i, j) = 0, which shows that A1

ij = 0.

Statement 7. (Zero persistency in EM - initial distribution)

If we initialize the EM algorithm with such θ0 that has π0
i = 0, then:

∀n : πn
i = 0.

Proof. It is enough to show that π1
i = 0. From the computation of γ, we know

that if π0
i = 0, then α0

1(i) = 0 and γ0
1(i) = 0. But π1

i = γ0
1(i) = 0.

3.3 Complexity of the Baum-Welch algorithm

One iteration of the Baum-Welch algorithm involves an E-step and an M-step

computation for the HMM. Now assume that E is the edge number of the θ0

initialized HMM (E ≥ M − 1).

As we already know, the E-step is the computation of γ and ξ values and that

takes O(TM2) time or O(TE) time in a sparse graph.

On the time complexity of the M-step: for the update of π we need O(M)

time. For the update of A, we need to update at M2 or E places, and each takes

O(T) time.

For the matrix B, we have M ×L parameters, for each of them, it takes O(T)

time to update. But for each l ∈ {1, . . . , L} we only need to sum over Tl = {t :
xt = l}: Bil ∝

∑
t∈Tl

γt(i). Thus for each i ∈ {1, . . . ,M}, the complexity is∑L
l=1 |Tl| = T , since Tl is a partition of the {1, . . . , T} indices.

Hence the full time complexity of an M-step is O(M + TM2 + TM) =

O(TM2) or O(M + TE + TM) = O(TE).

Therefore one iteration of the Baum-Welch takes O(TM2) time or O(TE)

time. As we have already seen, E does not increase with the Baum-Welch

algorithm. We conclude that the initial number of edges E strongly affects the

time complexity of the Baum-Welch.

18

4 Graph representation of distributions

Let the notation p(v|u) for u, v (hidden) states denote the short form of the

time-independent p(zt = v|zt−1 = u).

In general, one main setback of HMMs is that each hidden state i has a

duration Ti ∼ Geo(pi). The geometric distribution corresponds to the most simple

graph (Figure 1): vertices are {r, v1, s}, edges are {(r, v1), (v1, v1), (v1, s)} with

p(v1|r) = 1, p(v1|v1) = 1− p and also p(s|v1) = p. The first arrival to the vertex

s (starting from r at index 0) signs the transition to another state. One can extend

the graph with p(s|s) = 1 to ensure a stochastic transition matrix and therefore

a Markov chain (but this does not alter the computation). Given this graph, the

probability that the first arrival to s is at step d+ 1 is

P (inf{k : xk = s} = d+ 1) = (1− p)d−1p = Geo(p)(d)

for the (x)k Markov chain starting from x0 = r. The duration d ≥ 1 refers to the

same logic as in graphical models, if we step into a state, we must spend at least 1

time-unit there (in discrete time).

r v1 s
1 p

1− p

Figure 1: Representation graph of Geo(p) distribution.

The generalization of the previous idea (representing duration distributions

with graphs) is possible.

4.1 Representation graphs

Formalizing the occurred concepts:

19

Definition 3. (Duration distribution)

Let X : Ω → N+ be a random variable. Then T = pX , the distribution of X

is a duration distribution.

Duration distributions are for example geometric distribution, categorical

distribution on {1, . . . , D}, and negative binomial distribution. A mixture of

duration distributions is also a duration distribution. The Poisson distribution is

not a duration distribution, but if we truncate it to [1,∞) and normalize it (to

integrate to 1), we get a duration distribution (we will call it Poisson duration

distribution).

Definition 4. (Parametric family of duration distributions)

Let Θ be a parameter space. If for every θ ∈ Θ: X(θ) : Ω → N+, then {T (θ) :
θ ∈ Θ} = {pX(θ) : θ ∈ Θ} is a parametric family of duration distributions.

Parametric families of duration distributions are for example geometric

distributions with parameter p, categorical distributions on {1, . . . , D} with

parameters p1, . . . , pD, negative binomial distributions with parameters N, p,

negative binomial distributions of fixed order N with parameter p, Poisson

duration distributions with parameter λ.

One can think of learning a self-transition probability in the HMM framework

as learning p from the family of geometric distributions. That is, similarly to the

observation model, a family is given. So, if the duration comes from a geometric

family, it is easy to solve. But what if we know that the duration comes from

another family? Such as Cat({1, . . . , D})?
It will be shown that some duration distribution families can be represented

as graphs, and in the next chapter, it would be introduced that one can "merge"

these graphs to form a "two-layer" HMM with state durations from the desired

family. There may be many possible representations for a given family, therefore

we might measure the "efficiency" of those representations.

20

Definition 5. (Representation graph)

A G(η) Markov chain is a representation graph if we have r, s nodes that:

1. r is the starting node with probability 1,

2. G(η) stays in r only at index 0,

3. s is the ending node with probability 1,

4. p(s|r) = 0.

For a representation graph the following properties hold:

1. r, v1, . . . , vn, s are the nodes,

2. r is the starting node with probability 1,

3. G(η) stays in r only at index 0,

4. s is the ending node with probability 1 (P (inf{k : xk = s} < ∞) = 1),

5. p(r|r) = 0, p(s|r) = 0, p(s|s) = 1,

6. ∀i : p(r|vi) = 0,

7. ∃i : p(s|vi) > 0,

8. E(G) = Efix(G)∪̇Eprob(G), where the probabilites in Efix are fixed 0s or

1s, and the probabilities in Eprob are fully controlled by η.

The indexing starts from 0 for a G(η) sample and the number of steps taken in

G(η) (or the duration) for a sample is d, if the first arrival to s is at d+ 1.

We denote the distribution of duration from G(η) generated samples with

T [G(η)].

If we denote two representation graphs with G(η1) and G(η2) it means that

they have the same structure, only the probabilities on the non-fixed edges can

differ.

Formally, if X0, X1, . . . is the Markov chain G(η) with X0 = r, then:

21

T [G(η)](d) = P (inf{k : Xk = s} = d+ 1)

= P (Xd+1 = s,Xd ̸= s)

= P (Xd+1 = s first time)

= P (Xd+1 = s ft) = PG(η)(Xd+1 = s ft).

The first example of the geometric distribution is a G(p) representation graph

with Efix = {(r, v1)} and Eprob = {(v1, v1), (v1, s)}. As we already observed,

T [G(p)] = Geo(p).

Definition 6. (Properties of a representation graph)

Let G(η) be a representation graph. Then:

• ein
.
= |{i : p(vi|r) ̸≡ 0}| the number of incoming edges,

• eout
.
= |{i : p(s|vi) ̸≡ 0}| the number of outgoing edges,

• e
.
= |{i, j : p(vj|vi) ̸≡ 0}| the number of inner edges,

• n
.
= |V (G)| − 2 the number of nodes,

• Vinn
.
= {v1, . . . , vn} the set of inner nodes.

An edge (u, v) is p(v|u) ̸≡ 0 in this definition, if (u, v) ∈ Efix(G) with probability

1 or if (u, v) ∈ Eprob(G).

The geometric distribution representation graph G(p) has the following edge

numbers: ein = 1, eout = 1, e = 1. The number of nodes is n = 1.

Definition 7. (Graph representation of duration distribution)

Let T be a duration distribution. Let G(η) be a representation graph. G(η)

represents T if T = T [G(η)].

Definition 8. (Graph representation of duration distribution families)

Let T (θ) be a parametric family of duration distributions. Let {G(η) : η ∈ H}
be a family of representation graphs based on the same structure.

22

G represents T (θ) (the family) if there is a bijection between the parameters

∀θ ∃η T (θ) = T [G(η)],

∀η ∃θ T [G(η)] = T (θ).

In our cases, the same θ can be used for parameterization, leading to ∀θ T (θ) =
T [G(θ)].

For example, the family of geometric distributions with parameter p can be

represented with the same graph structure as at the beginning of the chapter with

the η = p parameter.

The main question is how other distribution families can be represented with

graphs.

For example consider the representation graph G(p) (Figure 2) with nodes

r, v1, v2, v3, s and with the following non-zero probabilities:

• p(v1|r) = 1,

• p(v1|v1) = p(v2|v2) = p(v3|v3) = 1− p,

• p(v2|v1) = p(v3|v2) = p(s|v3) = p.

r v1 v2 v3 s
1 p p p

1− p 1− p 1− p

Figure 2: Representation graph of NB3(p) negative binomial distribution.

It is not hard to see that G represents the family of negative binomial

distributions of fixed order 3. [3]

Statement 8. (Walk-based description)

Let X0, X1, . . . be the Markov chain of the G(η) representation graph. Let

Wd+1 = {x0, x1, . . . , xd+1 : x0 = r, xd+1 = s, xi ̸= s ∀i ≤ d} denote the set of

r → s walks with length d+ 1 (and without s as an inner point). Then:

23

P (Xd+1 = s ft) =
∑

w∈Wd+1

∏
e∈w

p(e).

Proof. The form of the Markov chain indicates that {Xd ̸= s} = {Xi ̸= s∀i ≤
d}.

P (Xd+1 = s ft) =
∑

x0,...,xd+1
x0=r,xd+1=s

xd ̸=s

P (X0 = x0, . . . , Xd+1 = xd+1)

=
∑

x0,...,xd+1
x0=r,xd+1=s

xd ̸=s

d+1∏
j=1

p(xj|xj−1)

=
∑

w∈Wd+1

∏
e∈w

p(e)

4.2 Representation of distribution families

The following duration distribution families have a graph representation:

geometric family with parameter p, negative binomial distributions of fixed order

N with parameter p, categorical distributions on {1, . . . , D} with parameters

p1, . . . , pD.

Statement 9. (Representation of geometric family)

The Geo(p) geometric family can be represented by a G(p) graph (Figure 1)

with nodes r, v1, s and with the following non-zero probabilities:

• p(v1|r) = 1,

• p(v1|v1) = 1− p,

• p(s|v1) = p.

Proof. We know that Geo(p)(d) = (1− p)d−1p for d ≥ 1. Using the definition of

T [G(p)]:

24

T [G(p)](d) = P (inf{k : xk = s} = d+ 1)

= P (X0 = r,X1 = v1, . . . , Xd = v1, Xd+1 = s)

= P (X0 = r) · P (X1 = v1|X0 = r) ·
d∏

i=2

P (Xi = v1|Xi−1 = v1)·

· P (Xd+1 = s|Xd = v1)

= 1 · p(v1|r) ·
d∏

i=2

p(v1|v1) · p(s|v1)

= 1 · 1 · (1− p)d−1 · p = (1− p)d−1p.

There is a clear bijection between Geo(p) instances and G(p) instances; using

the same p.

Statement 10. (Representation of negative binomial family of fixed order N)

The NBN(p) negative binomial family can be represented by a G(p) graph

with nodes r, v1, . . . , vN , s and with the following non-zero probabilities:

• p(v1|r) = 1,

• p(vi|vi) = 1− p for i = 1, . . . , N ,

• p(vi|vi−1) = p for i = 2, . . . , N ,

• p(s|vN) = p.

Proof. (The representation graph of NBN(p) is the same graph as in Figure 2

with N inner nodes.)

We know that NBN(p)(d) =
(
d−1
N−1

)
(1− p)d−NpN for d ≥ N .

We prove the statement by induction.

For N = 1, this is the geometric distribution and the previous statement.

For N > 1, assume we know the statement for N − 1. By separating on the

first arrival to vN , and using the induction step:

25

T [G(p)](d) = P (Xd+1 = s ft)

=
d∑

i=N

P (Xd+1 = s ft, Xi = vN ft)

=
d∑

i=N

P (Xi = vN ft)P (Xd+1 = s ft | Xi = vN ft)

=
d∑

i=N

NBN−1(p)(i− 1)Geo(p)(d− i+ 1)

=
d∑

i=N

(
i− 2

N − 2

)
(1− p)i−NpN−1(1− p)d−ip

= (1− p)d−NpN
d∑

i=N

(
i− 2

N − 2

)

= (1− p)d−NpN
[(N − 2

N − 2

)
+

d∑
i=N+1

(
i− 1

N − 1

)
−
(

i− 2

N − 1

)]
= (1− p)d−NpN

(
d− 1

N − 1

)
.

There is a clear bijection between NBN(p) instances and G(p) instances;

using the same p.

Statement 11. (Representation of categorical distributions on {1, . . . , D})

The Cat({1, . . . , D}) categorical family with parameters p1, . . . , pD can be

represented by a G(p1, . . . , pD) graph (Figure 3) with nodes r, v1, . . . , vD, s and

with the following non-zero probabilities:

• p(v1|r) = 1,

• p(vd|v1) = pD+2−d for d = 2, . . . , D,

• p(vd|vd−1) = 1 for d = 3, . . . , D,

• p(s|vD) = 1,

26

• p(s|v1) = p1.

r

v2 v3 vD−1 vD s

v1

. . .1 1 1 1 1

1

pD pD−1 p3 p2 p1

Figure 3: Representation graph of Cat({1, . . . , D}) distribution.

Proof. We know that the Cat({1, . . . , D}) distribution has p1, . . . , pD parameters

with
∑D

d=1 pd = 1, pd ≥ 0 and Cat({1, . . . , D})(d) = pd.

We will use the walk-based description:

P (Xd+1 = s ft) =
∑

w∈Wd+1

∏
e∈w

p(e).

.

For d = 1: W2 = {(r, v1, s)}, therefore P (X2 = s ft) = p(v1|r)p(s|v1) = p1.

For 2 ≤ d ≤ D: Wd+1 = {(r, v1, vD+2−d, . . . , vD, s)}, therefore

P (Xd+1 = s ft) = p(v1|r) · p(vD+2−d|v1) ·
D−1∏

j=D+2−d

p(vj+1|vj) · p(s|vD)

= pD+2−(D+2−d) = pd.

For d > D: Wd+1 = ∅, therefore P (Xd+1 = s ft) = 0.

In the next chapter, we will see two more graph representations for

Cat{1, . . . , D}.

It is not hard to see that the mixture distributions can be represented if all the

individuals can be represented.

27

Statement 12. (Representation of mixture distributions)

Let the family {Ti(θi) : θi ∈ Θi} be represented by a graph Gi(ηi) for i = 1, 2.

Then the family {ρT1(θ1) + (1 − ρ)T2(θ2) : ρ ∈ [0, 1], θ1 ∈ Θ1, θ2 ∈ Θ2} can be

represented by a graph G(ρ, η1, η2) with nodes r, Vinn(G1), Vinn(G2), s and with

the following non-zero probabilities:

• p(v1i |r) = ρ · pG1(θ1)(v
1
i |r) for v1i ∈ Vinn(G1),

• p(v2i |r) = (1− ρ) · pG2(θ2)(v
2
i |r) for v2i ∈ Vinn(G2),

• p(v1j |v1i), p(s|v1i) as in G1(θ1),

• p(v2j |v2i), p(s|v2i) as in G2(θ2).

Proof. It is enough to prove that

T [G(ρ, η1, η2)] = ρT [G1(η1)] + (1− ρ)T [G2(η2)].

We denote PG(ρ,η1,η2) with P for brevity.

T [G(ρ, η1, η2)] = P (Xd+1 = s ft)

= P (Xd+1 = s ft|X1 ∈ Vinn(G1))P (X1 ∈ Vinn(G1))+

+ P (Xd+1 = s ft|X1 ∈ Vinn(G2))P (X1 ∈ Vinn(G2))

= ρPG1(η1)(Xd+1 = s ft) + (1− ρ)PG2(η1)(Xd+1 = s ft)

= ρT [G1(η1)] + (1− ρ)T [G2(η2)]

However, not every distribution family and not every distribution can be

represented.

Statement 13. (Non-representation of light-tailed distributions)

Let T be a duration distribution with infinite support and with the following

property:

lim sup
d→∞

T (d)

αd
= 0 ∀α > 0.

Then there is no finite graph that can represent the distribution T .

28

Proof. Assume that G(η) represents T .

If G(η) has no positive circle, then it can only represent a finite-support

distribution. (Because in this case, the nodes form a DAG, therefore a topological

order exists, and the maximum length of an rs walk is n(G(η)) + 1.)

Let d0 be large enough (d0 > n(G(η)) + 1), and consider the walk-based

description:

T (d0) = P (Xd0+1 = s ft) =
∑

w∈Wd0+1

∏
e∈w

p(e).

Select a w ∈ Wd0+1 positive walk; there must be at least one circle in this

walk (otherwise it would not have length d0). Select a circle C from the walk. We

denote the walk before C with w0 and the walk after C with w1.

So w = w0Cw1, and let c = |C| be the length of C (i.e. the number of edges).

Use the notation pw =
∏

e∈w p(e) for any walk w, then we have:

T (d0) ≥
∏
e∈w

p(e)

=
∏
e∈w0

p(e)
∏
e∈C

p(e)
∏
e∈w1

p(e)

= pw0pCpw1 > 0.

Define the following series:

dj = d0 + cj, j = 0, 1, . . .

Then for j ≥ 0; the walk wj = w0C
j+1w1 is a positive, dj-length walk, so:

T (dj) ≥ pw0p
j+1
C pw1 > 0.

Let α < p
1/c
C , then:

29

lim sup
d→∞

T (d)

αd
≥ lim sup

j→∞

T (dj)

αdj

= lim sup
j→∞

T (dj)

αd0+cj

≥ lim
j→∞

pw0p
j+1
C pw1

αd0αcj

=
pw0pCpw1

αd0
lim
j→∞

(pC
αc

)j

= ∞.

So the light-tailed property is violated, therefore no such G(η) representation

graph exists.

Statement 14. (Non-representation of Poisson duration distributions)

Let T be one member of the Poisson duration distribution family.

Then there is no finite graph that can represent the distribution T .

Proof. We have T (d) = C λd

d!
, so T has infinite-support and T is light-tailed,

therefore the previous statement applies.

30

5 Graphical-Duration Hidden Markov Model

5.1 Hidden Semi-Markov Models

One can construct HMM-like models that are aware of time, different options

can be found in the review of Yu [5]. The variants are usually called Hidden

Semi-Markov Model, Variable Duration Hidden Markov Model, or Explicit

Duration Hidden Markov Model.

Each solution in the review of Yu introduces new graphical models with

"counter states", and does not try to capture duration times inside the HMM

framework.

One solution from the review of Yu is the residential time HMM which

assumes that a state transition is either (i, 1) → (j, τ) for j ̸= i or (i, τ) →
(i, τ − 1) where τ is the residential time of state i. [5, 6]

Yu and Kobayashi provided the forward-backward algorithm for the model,

a modification of the HMM forward-backward algorithm. The algorithm takes

O((M2 + MD)T) steps, where T is the length of the observation sequence, M

is the number of hidden states, D is the maximum residential time (or maximum

duration, the maximum steps allowed to be in one state without transition).

Using the idea of representation graphs, a new aspect of the previous result

can be given, with a similar model and with a similar learning algorithm which

has the same computational complexity as in Yu & Kobayashi [6].

Firstly a new, general definition of the Graphical-Duration Hidden Markov

Model (GD-HMM) should be established with the usage of representation graphs.

5.2 The GD-HMM

The GD-HMM is a simple HMM with parameter tyings and reparameterization.

The model builds up from a simple HMM structure and replaces the initial states

with the desired graphs, which represent the duration families.

31

Consider the (π,A, θo) HMM model with M hidden states, where π is the

initial distribution, A is the transition matrix and θo is the observation parameter

matrix. For simplicity, we assume that Aii = 0 for all i.

Let {Ti(θi)} be a parametric family of duration distributions, represented with

the family {Gi(ηi)}.

For the graph Gi, we use the following notations:

• Di = n(Gi) the number of (inner) nodes,

• ri = r(Gi) starting node,

• si = s(Gi) ending node,

• {i1, . . . , iDi
} = Vinn(Gi),

• eiin = ein(Gi) the number of incoming edges,

• eiout = eout(Gi) the number of outgoing edges,

• ei = e(Gi) the number of inner edges.

The Gi(ηi) graph is still a Markov chain on nodes ri, i1, . . . , iDi
, si with

transition probabilities pGi(ηi)(v|u) for u, v (hidden) states.

Definition 9. (GD-HMM)

Let (π,A, θo) be an HMM model with M hidden states, and let Ti be a duration

distribution, represented with Gi(ηi) ∀i = 1, . . . ,M .

The GD-HMM is a (π̃, Ã, θ̃o) HMM model.

For i = 1, . . . ,M :

• hidden states: id ∈ Vinn(Gi) for d = 1, . . . , Di,

• transition probabilities

– Ã(ik, il)
.
= pGi(ηi)(il|ik) for k, l = 1, . . . , Di,

– Ã(ik, jl)
.
= pGi(ηi)(si|ik)AijpGj(ηj)(jl|rj) for k = 1, . . . , Di for l =

1, . . . , Dj for j ̸= i,

• initial distribution π̃(i1) = π(i), π̃(ik) = 0 for k = 2, . . . , Di,

• observation model parameters θ̃o(ik) = θo(i) for k = 1, . . . , Di.

The parameters of the GD-HMM are (π,A, θo, (η1, . . . , ηM)).

32

Example (Figure 4): hidden states and transition probabilities of a GD-HMM

with 3 initial states (i, j and k) and categorical distributions with maximum

durations of Di = 3, Dj = 3 and Dk = 2. We use the representation graph of

the categorical distribution from Statement 11. The probabilities from the i states

are marked on the solid edges, while the other probabilities on the dashed edges

are not shown.

i2 i3

i1

1

pGi(ηi)(i2|i1) pGi(ηi)(i3|i1)

j2 j3

j1

k2

k1

pGi(ηi)(si|i1)Aij

Aij

pGi(ηi)(si|i1)Aik

Aik

Figure 4: Hidden states and transition probabilities of a GD-HMM.

If we want to build a GD-HMM from an HMM with Aii > 0, then in the

computation of Ã(ik, jl), we should work with Aij

1−Aii
instead of Aij .

33

Statement 15. (Ã is a transition matrix)∑
v

Ã(ik, v) = 1

Proof.

∑
v

Ã(ik, v) =

Di∑
l=1

Ã(ik, il) +
M∑
j=1
j ̸=i

Dj∑
l=1

Ã(ik, jl)

=

Di∑
l=1

pGi(ηi)(il|ik) +
M∑
j=1
j ̸=i

Dj∑
l=1

pGi(ηi)(si|ik)
Aij

1− Aii

pGj(ηj)(jl|rj)

= 1− pGi(ηi)(si|ik) + pGi(ηi)(si|ik)
M∑
j=1
j ̸=i

Aij

1− Aii

Dj∑
l=1

pGj(ηj)(jl|rj)

= 1

The GD-HMM has two layers of representation: a lower-level representation

with id states, which form a Markov chain, and a higher-level representation with

i ↔ {i1, . . . , iDi
} super states, which correspond to the original hidden states.

The number of (non-zero) edges in a GD-HMM is:

E =
M∑
i=1

ei +
M∑
i=1

M∑
j=1
j ̸=i

eioute
j
inI(Aij > 0).

The number of (non-zero) edges in a dense GD-HMM (when the original

HMM is complete) is:

E =
M∑
i=1

ei +
M∑
i=1

M∑
j=1
j ̸=i

eioute
j
in.

34

The number of nodes is V =
∑M

i=1Di. The number of parameters in a

GD-HMM can be upper-bounded by V (initial distribution) + E (real transitions)

+ V L (observation parameters).

If we assume that all Di = D are equal, and ei = O(D), eiin = O(1) and

eiout = O(1), then the number of nodes is MD and the number of edges is

O(MD +M2), which results in a sparse graph if D ≫ M .

Example 1. (HMM is a subclass of the GD-HMM)

Let (π,A, θo) be an HMM with M hidden states. Let Ti = Geo(1 − pi), and

∀i = 1, . . . ,M consider the representation graph Gi(pi) with nodes ri, i1, si and

the following non-zero probabilities:

• p(i1|ri) = 1,

• p(i1|i1) = pi,

• p(si|i1) = 1− pi.

The resulting GD-HMM is a (π, Ã, θo) HMM model on the {1, . . . ,M} nodes

with:

Ãij =

(1− pi)Aij/(1− Aii) if j ̸= i

pi if j = i

This gives back the original HMM if pi = Aii ∀i.

35

6 Learning the parameters of the GD-HMM

In the previous section, a new HMM variant was presented, but because of its

special properties, we must go through the Baum-Welch algorithm to see what

steps need to be modified. As the general GD-HMM model has η1, . . . , ηM

parameters, we have to specify the graph structures and the trainable parameters

before we examine a learning algorithm for the parameters.

We consider the representation for categorical distributions as in 11. Each

graph can have a different Di maximum duration. The following reasoning is

designed for the categorical emission distributions, but it can be easily extended

to other observation distributions.

Assume that the initialization is correct, i.e. we construct the θ0 GD-HMM

from a (π0, A0, B0) HMM with A0
ii = 0 and from the Gi(η

0
i) categorical

representation graphs as in the definition. For the categorical family with

maximum duration D we have (p1, . . . , pD) parameters between the appropriate

states (as in the statement), so let η0i = (p0i (i2|i1), . . . , p0i (iDi
|i1), p0i (si|i1)) with

the usage of the simple pi(il|ik) notation, which refers to the appropriate pi,d

parameter.

The initialized GD-HMM has E =
∑M

i=1 e
i +

∑M
i=1

∑M
j=1
j ̸=i

eioute
j
inI(A0

ij > 0)

edges. We have already seen that E does not increase during the EM.

As the model is still an HMM, the E-step (forward-backward algorithm)

including every related computation can be done as before: α, β, γ, ξ. The time

complexity is O(TE) as we have already seen. The Viterbi decoding also can be

done as before.

However, the M-step must be changed, because of the parameter tyings for B̃

and parameter relation for Ã. Here, the reformulation of the M-step is presented,

firstly to general (η1, . . . , ηM) parameters, then to the categorical case.

The auxiliary function Q(θ; θn) for a simple HMM on {1, . . . ,M} nodes has

36

the following form:

Q(θ; θn) =
M∑
i=1

log πiγ
n
1 (i) +

T∑
t=2

M∑
i=1

M∑
j=1

logAijξ
n
t−1,t(i, j)+

+
T∑
t=1

M∑
i=1

L∑
l=1

logBilI(xt = l)γn
t (i).

The GD-HMM has nodes {ik : k ∈ {1, . . . , Di}, i ∈ {1, . . . ,M}}:

Q(θ; θn) =
M∑
i=1

Di∑
k=1

log π̃ikγ
n
1 (ik) +

T∑
t=2

M∑
i=1

Di∑
k=1

M∑
j=1

Dj∑
l=1

log Ãik,jlξ
n
t−1,t(ik, jl)+

+
T∑
t=1

M∑
i=1

Di∑
k=1

L∑
l=1

log B̃ik,lI(xt = l)γn
t (ik).

We need to rewrite the auxiliary function to a function of

(π,A,B, (η1, . . . , ηM)). Using the short notations pi = pGi(ηi), ξ(ik, jl) =∑T
t=2 ξ

n
t−1,t(ik, jl), Tl = {t : xt = l}, we rewrite the function term by term.

Initial distribution:

M∑
i=1

Di∑
k=1

log π̃ikγ
n
1 (ik) =

M∑
i=1

log πiγ
n
1 (i1)

37

Transition probabilities:

T∑
t=2

M∑
i=1

Di∑
k=1

M∑
j=1

Dj∑
l=1

log Ãik,jlξ
n
t−1,t(ik, jl) =

M∑
i=1

Di∑
k=1

Di∑
l=1

log pi(il|ik)ξ(ik, il)+

M∑
i=1

Di∑
k=1

M∑
j=1
j ̸=i

Dj∑
l=1

log(pi(si|ik)Aijpj(jl|rj))ξ(ik, jl) =

M∑
i=1

Di∑
k=1

[
Di∑
l=1

log pi(il|ik)ξ(ik, il) + log pi(si|ik)
(M∑

j=1
j ̸=i

Dj∑
l=1

ξ(ik, jl)

)]
+ (1)

M∑
i=1

[
M∑
j=1
j ̸=i

logAij

(Di∑
k=1

Dj∑
l=1

ξ(ik, jl)

)]
+ (2)

M∑
j=1

[
Dj∑
l=1

log pj(jl|rj)
(M∑

i=1
i ̸=j

Di∑
k=1

ξ(ik, jl)

)]
(3)

Emission probabilities:

T∑
t=1

M∑
i=1

Di∑
k=1

L∑
l=1

log B̃ik,lI(xt = l)γn
t (ik) =

M∑
i=1

[
L∑
l=1

logBil

(T∑
t=1

Di∑
k=1

I(xt = l)γn
t (ik)

)]
=

M∑
i=1

[
L∑
l=1

logBil

(∑
t∈Tl

Di∑
k=1

γn
t (ik)

)]
=

M∑
i=1

[
L∑
l=1

logBil

(Di∑
k=1

T∑
t=1

I(xt = l)γn
t (ik)

)]

We see that an analytical update is possible in the M-step because the Q

38

function can be written as a sum of separately parameterized
∑

i∈I ai log pi terms,

where (pi : i ∈ I) is a probability distribution and ai ≥ 0 ∀i ∈ I are known and

fixed.

The update of π initial distribution: πn+1
i = γn

1 (i1).

The update of B observation parameters is also simple. Use the following

notation for the statistics:

b(i) =
(T∑

t=1

I(xt = l)γn
t (i)

)
l=1,...,L

Then:

Bn+1
i,: = argmax

Bi,:

L∑
l=1

logBil

(Di∑
k=1

T∑
t=1

I(xt = l)γn
t (ik)

)

∝
(Di∑

k=1

T∑
t=1

I(xt = l)γn
t (ik)

)
l=1,...,L

∝
Di∑
k=1

b(ik),

which is simply the sum of the statistics from the corresponding lower-level

states.

6.1 M-step for transition parameters in categorical case

Finally, the update of A and (η1, . . . , ηM) is not always simple, it depends on the

representation graphs. For the categorical case, we need to examine each of the

(1), (2), and (3) terms from the transition probability part of the Q(θ; θn) function.

The possible transitions in the categorical GD-HMM:

∀i ̸= j : i1 → j1, iDi
→ j1

∀i : i1 → i2, . . . , i1 → iDi

∀i : i2 → i3, . . . , iDi−1 → iDi
(with fix probability of 1)

39

So every other type of ik → jl is not possible because of the initialization and

therefore ξ(ik, jl) = 0 for them. Thus we can rewrite the terms eliminating the

ξ(ik, jl) = 0 terms wherever possible.

Term (1):

M∑
i=1

Di∑
k=1

[
Di∑
l=1

log pi(il|ik)ξ(ik, il) + log pi(si|ik)
(M∑

j=1
j ̸=i

Dj∑
l=1

ξ(ik, jl)

)]
=

M∑
i=1

Di∑
k=1

[
Di∑
l=1

log pi(il|ik)ξ(ik, il) + log pi(si|ik)
(M∑

j=1
j ̸=i

ξ(ik, j1)

)]
=

M∑
i=1

[
Di∑
l=2

log pi(il|i1)ξ(i1, il) + log pi(si|i1)
(M∑

j=1
j ̸=i

ξ(i1, j1)

)]
+

M∑
i=1

Di−1∑
k=2

[
log pi(ik+1|ik)ξ(ik, ik+1) + 0

]
+

M∑
i=1

[
0 + log pi(si|iDi

)

(M∑
j=1
j ̸=i

ξ(iDi
, j1)

)]

Term (2):

M∑
i=1

[
M∑
j=1
j ̸=i

logAij

(Di∑
k=1

Dj∑
l=1

ξ(ik, jl)

)]
=

M∑
i=1

[
M∑
j=1
j ̸=i

logAij

(
ξ(i1, j1) + ξ(iDi

, j1)

)]

40

Term (3):
M∑
j=1

[
Dj∑
l=1

log pj(jl|rj)
(M∑

i=1
i ̸=j

Di∑
k=1

ξ(ik, jl)

)]
=

M∑
j=1

[
Dj∑
l=1

log pj(jl|rj)
(M∑

i=1
i ̸=j

ξ(i1, jl) + ξ(iDi
, jl)

)]
=

M∑
j=1

[
log pj(j1|rj)

(M∑
i=1
i ̸=j

ξ(i1, j1) + ξ(iDi
, j1)

)]

Lastly, the M-step is the argmax computation for the parameter vectors.

For the pn+1
i (·|ik) (2 ≤ k ≤ Di − 1), the pn+1

i (·|iDi
) and the pn+1

j (·|rj)
parameter vectors the optimization is trivial, since only one element has positive

statistics in each case, which leads to pn+1
i (ik+1|ik) = 1, pn+1

i (si|iDi
) = 1 and

pn+1
j (j1|rj) = 1. These are the initial fixed 1s in the representation graph.

From Term (1), pi(·|i1):

pn+1
i (·|i1) = argmax

pi(·|i1)

Di∑
l=2

log pi(il|i1)ξ(i1, il) + log pi(si|i1)
M∑
j=1
j ̸=i

ξ(i1, j1)

∝
(
ξ(i1, i2), . . . , ξ(i1, iDi

),
M∑
j=1
j ̸=i

ξ(i1, j1)
)

From Term (2), Ai::

An+1
i: ∝

(
ξ(i1, j1) + ξ(iDi

, j1)
)
j=1,...,M

Denote the normalizing constants with Ni and Mi respectively:

Ni = ξ(i1, i2) + . . .+ ξ(i1, iDi
) +

M∑
j=1
j ̸=i

ξ(i1, j1),

Mi =
M∑
j=1
j ̸=i

ξ(i1, j1) + ξ(iDi
, j1).

41

To finalize the M-step we can assign the new Ãn+1
ik,jl

values to every non-fixed

(ik, jl) edge:

Ãn+1
i1,il

= pn+1
i (il|i1) =

ξ(i1, il)

Ni

,

Ãn+1
i1,j1

= pn+1
i (si|i1)An+1

ij =

∑M
j=1
j ̸=i

ξ(i1, j1)

Ni

· ξ(i1, j1) + ξ(iDi
, j1)

Mi

,

Ãn+1
iDi

,j1
= An+1

ij =
ξ(i1, j1) + ξ(iDi

, j1)

Mi

.

6.2 Time complexity of M-step

It is true in general (not just for categorical) that the time-complexity of the M-step

is O(TE):

• O(M +
∑M

i=1 Di) for the initial distribution

• O(TE) for the transition probabilities (Aij , (η1, . . . , ηM)):

1. O(TE) for computing ξ(ik, jl) =
∑T

t=2 ξ
n
t−1,t(ik, jl) values for

{(ik, jl) : Ã0
ik,jl

> 0}, the others are zeroes

2. O(E) for computing
∑M

j=1
j ̸=i

∑Dj

l=1 ξ(ik, jl) coefficients for all (ik, si)

exit edges:
∑M

i=1 e
i
out

∑
j=1 e

j
inI(A0

ij > 0) ≤ E, because ξ(ik, jl) > 0

implies that (ik, si) exit edge, A0
ij > 0 and (rj, jl) entry edge

3. O(E) for computing
∑Di

k=1

∑Dj

l=1 ξ(ik, jl) coefficients for all {(i, j) :

Aij > 0}): similarly as previous

4. O(E) for computing
∑M

i=1
i ̸=j

∑Di

k=1 ξ(ik, jl) coefficients for all (rj, jl)

entry edges: similarly as previous

5. O(E) for updating pi(il|ik) and pi(si|ik) parameters for all ik: for each

i, we have ei + eiout non-zero edges in Gi,
∑M

i=1 e
i + eiout ≤ E

6. O(E) for updating Aij parameters for all i, j:
∑M

i=1

∑M
j=1
j ̸=i

I(Aij >

0) ≤ E

7. O(E) for updating pj(jl|rj) parameters for all jl:
∑M

j=1 e
j
in ≤ E

8. O(E) for assigning every non-zero (ik, jl) edge their new Ãik,jl =

42

pi(si|ik)Aijpj(jl|rj) probability and every (ik, il) edge their new

Ãik,il = pi(il|ik) probability

• O(T (M +
∑M

i=1Di)) for the emission probabilities (Bil):

1. O(T
∑M

i=1 Di) for summing up γ values: γt(i)
.
=

∑Di

k=1 γ
n
t (ik)

2. O(TM) for updating Bil parameters:
∑M

i=1

∑L
l=1 logBil

∑
t∈Tl

γt(i)

as in simple HMM (for all i: Bil needs |Tl| additions)

3. O(T
∑M

i=1Di) for assigning the corresponding emission probabilities:

B̃ik,l = Bil

In summary, we have that the M-step can be done in O(TE) time, such as in

the simple Baum-Welch algorithm, and therefore one EM iteration for GD-HMM

takes O(TE) time.

43

7 Efficiency of representation in GD-HMM

As we have already seen, the number of (non-zero) edges is the key measure of

the time complexity of the forward-backward algorithm (and EM algorithm) in

any HMM.

We advance the usefulness of the number of edges and define the efficiency of

representation.

Definition 10. (Representation efficiency of GD-HMM)

Let θ = (π,A, θo) be an HMM and let Ti be duration distributions represented

with graphs Gi. The full efficiency of the representation is the number of edges in

the resulting GD-HMM:

E({Gi}, {Ti}, θ) =
M∑
i=1

ei +
M∑
i=1

M∑
j=1
j ̸=i

eioute
j
inI(Aij > 0).

We would like to measure how efficient the representation of Ti is with Gi,

therefore we should create a simpler definition of efficiency that does not depend

on the θ HMM. We can examine only the GD-HMMs from complete HMMs (∀i ̸=
j : Aij > 0).

Definition 11. (Representation efficiency function)

Let θ be a complete HMM. Let Ti be duration distributions represented with

graphs Gi. The efficiency-function of representation is E : N+ → N+ defined by

the following:

E({Gi}, {Ti})(M) =
M∑
i=1

ei +
M∑
i=1

M∑
j=1
j ̸=i

eioute
j
in.

Now we can measure the goodness of representations together. Next, we want

to measure the efficiency of individual representations. The motivation is that

44

each Ti may come from the same family. To succeed, we assume that every Ti

is represented with G(ηi) (the representation graphs have the same structure).

Definition 12. (Representation efficiency function of graphs)

Let {T (θ) : θ ∈ Θ} be a parametric family of duration distributions. Let G be

the representation graph of {T (θ)}. The efficiency function of the representation

is the following:

E(G, {T (θ)})(M) = Me(G) +M(M − 1)eout(G)ein(G).

which is simply the previous definition for the case of G representing all Ti.

Remember that the geometric distribution representation graph G(p) has the

following edge numbers: ein = 1, eout = 1, e = 1. Therefore the efficiency

function is E(G(p), Geo(p))(M) = M +M(M − 1) = M2 which is the number

of edges in a complete HMM.

From the previous definition, it is clear that we want more efficient

representations for duration distribution families; i.e. representations with fewer

edges.

For example consider the family of categorical distributions on {1, . . . , D}
with parameters p1, . . . , pD. Here I present the construction of three different

graphs G1, G2, G3, each of them represents the family, but with different

efficiency.

Graph G1 has D + 2 nodes and has the following non-zero probability

transitions:

• p(vd|r) = pD+1−d for d = 1, . . . , D,

• p(vd|vd−1) = 1 for d = 2, . . . , D,

• p(s|vD) = 1.

45

r

v2 v3 vD−1 vD sv1 . . .1 1 1 1 1 1

pD pD−1 pD−2 p2 p1

Figure 5: G1 representation graph for Cat({1, . . . , D}) distribution.

The efficiency is M(D − 1) +M(M − 1)D. This representation comes from

Yu & Kobayashi [6].

Graph G2 has D + 2 nodes and has the following non-zero probability

transitions:

• p(v1|r) = 1,

• p(vd|v1) = pD+2−d for d = 2, . . . , D,

• p(vd|vd−1) = 1 for d = 3, . . . , D,

• p(s|vD) = 1,

• p(s|v1) = p1.

46

r

v2 v3 vD−1 vD s

v1

. . .1 1 1 1 1

1

pD pD−1 p3 p2 p1

Figure 6: G2 representation graph for Cat({1, . . . , D}) distribution.

The efficiency is M(2D− 3)+M(M − 1)2. This is more efficient than G1 as

long as M ≥ 2 and D ≥ 2. This representation was presented in the statement of

categorical representation 11.

Graph G3 has 2 + 1 + 2 + . . .+D = D(D − 1)/2 + 2 nodes (endowed with

double index) and has the following non-zero probability transitions:

• p(vd,1|r) = pd for d = 1, . . . , D,

• p(vd,k|vd,k−1) = 1 for k = 2, . . . d for d = 1, . . . , D,

• p(s|vd,d) = 1 for d = 1, . . . , D.

r v1,1

v2,1 v2,2

vD,1 vD,2 vD,D

...

. . .

s
p1

p2

pD

1

1

1

1 1 1

1

Figure 7: G3 representation graph for Cat({1, . . . , D}) distribution.

47

The efficiency is M(D − 1)(D − 2)/2 +M(M − 1)D2. This is the worst of

the three representations.

The following statements tell us that the second representation is optimal.

Statement 16. (Optimal representation of categorical distributions)

Let {T (θ) : θ ∈ Θ} be the family of categorical distributions on {1, . . . , D},

with θ = (p1, . . . , pD). The G graph represents this family. Then

E(G, {T (θ)})(M) ≥ M(D − 1) +M(M − 1).

Proof. Remember the walk-based description:

P (Xd+1 = s ft) =
∑

w∈Wd+1

∏
e∈w

p(e).

Let pD > 0 and let G(η) represent T (p1, . . . , pD). Then:

0 < pD = PG(η)(XD+1 = s ft) =
∑

w∈WD+1

∏
e∈w

pη(e).

Notice that p(e) only depends on η, because G is fixed. So we have at least

one D + 1-length w = (r, x1, . . . , xD, s) r → s walk with positive probability.

The x1, . . . , xD nodes are all inner nodes.

I claim they are all different. Assume that ∃i < j : xi = xj . In this case,

C = xi · · ·xj is a positive circle. Denote the walk before C with w0, and the walk

after C with w1. Let c = |C| ≥ 1 be the length of the circle. Then ∀j ≥ 1: wj =

w0C
j+1w1 is a positive walk with length D+1+jc. Thus T [G(η)](D+jc) > 0 ∀j,

but T (p1, . . . , pD)(D + jc) = 0. Because G(η) represents T , all nodes have to be

different.

We have D different inner nodes: x1, . . . , xD. Using the positive walk w =

(r, x1, . . . , xD, s): ein ≥ 1, eout ≥ 1 and e ≥ D − 1. We have:

E(G, {T (θ)})(M) = Me(G)+M(M−1)eout(G)ein(G) ≥ M(D−1)+M(M−1).

48

Thus, the second representation has efficiency O(MD+M2) and the optimal

efficiency is also O(MD + M2). The time complexity of the forward-backward

algorithm (and one iteration of EM) is O(TE) in a sparse graph. Now E =

MD + M2 ≪ (MD)2. This leads to an O(T (MD + M2)) complexity using

the efficient representation for the categorical family. No better time complexity

can be achieved with a different representation and this complexity is the same as

in [6].

49

8 Numerical experiments

In this section, I use the deduction of the M-step for the categorical GD-HMM

(Section 6) to implement the model. In the Python ecosystem, the hmmlearn

(https://github.com/hmmlearn/hmmlearn) package gives a fine,

modular implementation for different observation models; the version I used

(0.2.6) supports Gaussian, Gaussian Mixture Model and, Multinomial (more

precisely Categorical) distributions. It also has a BaseHMM class, enabling

the developers to implement their own HMM models for other observation

distribution families.

For all the next occurrences of Multinomial distribution, I refer to the

Categorical distribution, i.e. we are given a set of symbols: {1, . . . , L}, and at

each step, we are emitting only one symbol. Actually, the MultinomialHMM class

(from hmmlearn) is designed for the categorical observation model, but in some

fields (e.g. natural language processing) the name multinomial distribution is used

for the categorical distribution. (In version 0.2.8. a CategoricalHMM class is used

for categorical observations and the MultinomialHMM has a parameter n_trials

to support multinomial distributions.)

As it turned out, the GD-HMM model is an HMM with special properties.

The calculations and algorithms for HMMs can be used in the building of the

GD-HMM model. More precisely, only the initialization and M-step procedures

should be changed (see Section 6).

For the experiments, I implemented a MultinomialCatGDHMM class by

subclassing the MultinomialHMM class and overwriting the _init and _do_mstep

methods. The class handles the Categorical Graphical-Duration Hidden Markov

Model for Multinomial (Categorical) observations (discussed throughout the

thesis) with the graph architecture discussed in Statement 11 and Section 5.

For simplicity, the maximum duration parameter is the same for all super states

∀i : D = Di.

50

https://github.com/hmmlearn/hmmlearn

8.1 Monotonically increasing log-likelihood of GD-HMM

As it was discussed in Section 3, the EM algorithm increases the observed data

log-likelihood l(θn) = log p(x1:T |θn). In Section 2, we have seen that with the

Forward algorithm we can compute the log-likelihood for a given parameter vector

(besides the α values). In the hmmlearn implementation, the fit method follows the

Baum-Welch algorithm, and the log-likelihood is computed as part of the Forward

algorithm.

I tested the implemented MultinomialCatGDHMM class with different model

initializations and training data. In each case, the log-likelihood of the model

increased monotonically, which proves that the M-step is developed correctly and

the model actually (statistically) fits the data.

8.2 Log-likelihood and AIC evaluation of GD-HMM

Definition 13. (Akaike Information Criterion - AIC)

For a statistical model with k parameters and l̂ maximized log-likelihood, the

AIC score is the following:

AIC = 2k − 2l̂.

The AIC score measures the goodness of fit for a statistical model (it contains

the log-likelihood) but penalizes the number of parameters. If the model has

too many parameters, it means that the model overfits, just as in other fields of

machine learning. A lower score of AIC means a better model.

In this experiment series, the log-likelihood (LL) and AIC scores of the

GD-HMM and a plain HMM were compared when both models were trained on

data generated from a GD-HMM.

The Markov models had only n_super_states = 2 (super states are 0 and

1) and n_symbols = 2 (symbols/observations are 0 and 1). In each experiment,

the following hyperparameters were chosen: max_duration (between 2 and 11),

51

sample_size (between 1000 and 16000), and n_iter (between 100 and 800) for the

number of EM learning iterations.

An experiment had the following structure:

1. Initialize a data generator GD-HMM with n_super_states, max_duration,

and random weights,

2. Generate X observation sequence with length of sample_size using the data

generator GD-HMM,

3. Initialize 10 different GD-HMMs with n_super_states, max_duration, and

random weights. Train all 10 models for n_iter iterations, select the best

GD-HMM based on log-likelihood,

4. Initialize 10 different HMMs with n_super_states number of states and

random weights. Train all 10 models for n_iter iterations, select the best

HMM based on log-likelihood,

5. Calculate the number of parameters, log-likelihood, and AIC score of both

the GD-HMM and HMM.

We would like to see that the GD-HMM fits the (GD-HMM generated) data

better than the HMM. This means that the log-likelihood is higher, and the AIC

score is smaller.

In the following table, one can see that GD-HMM is similar to HMM in

log-likelihood when random initialization for emission probabilities was used in

the data generator model. Because of the random initialization, the generated data

was possibly close to noise, therefore these results do not give insights into the

performance of GD-HMM.

52

n_super_states max_duration n_symbols sample_size n_iter gdhmm_n_params hmm_n_params gdhmm_ll hmm_ll gdhmm_ll > hmm_ll gdhmm_aic hmm_aic gdhmm_aic < hmm_aic

2 2 2 1000 100 5 5 -537.4 -537.6 True 1084.8 1085.3 True

2 2 2 1000 200 5 5 -651.9 -652.3 True 1313.9 1314.5 True

2 2 2 2000 200 5 5 -1344.5 -1349.6 True 2699.0 2709.2 True

2 2 2 4000 200 5 5 -2533.8 -2533.6 False 5077.6 5077.2 False

2 2 2 4000 400 5 5 -2569.3 -2569.9 True 5148.7 5149.7 True

2 2 2 2000 800 5 5 -1381.3 -1385.6 True 2772.6 2781.3 True

2 3 2 1000 100 7 5 -691.7 -692.6 True 1397.4 1395.1 False

2 3 2 1000 200 7 5 -676.1 -677.4 True 1366.2 1364.8 False

2 3 2 2000 200 7 5 -1217.1 -1221.2 True 2448.2 2452.3 True

2 3 2 2000 400 7 5 -1368.5 -1370.2 True 2751.0 2750.4 False

2 7 2 1000 100 15 5 -688.4 -688.2 False 1406.8 1386.5 False

2 7 2 2000 100 15 5 -1381.0 -1382.2 True 2791.9 2774.5 False

2 7 2 4000 100 15 5 -2753.5 -2753.8 True 5537.0 5517.6 False

2 7 2 8000 100 15 5 -5492.5 -5496.6 True 11014.9 11003.2 False

2 7 2 16000 100 15 5 -11061.3 -11061.3 False 22152.6 22132.6 False

Table 1: Experiment with randomly initialized emission probabilities

However, when the emission probabilities were initialized as the symbols 0

and 1 are highly correlated with the hidden states 0 and 1 (p(xt = 0|zt = 0) =

p(xt = 1|zt = 1) = 0.9), then a significant advantage for GD-HMM emerged.

n_super_states max_duration n_symbols sample_size n_iter gdhmm_n_params hmm_n_params gdhmm_ll hmm_ll gdhmm_ll > hmm_ll gdhmm_aic hmm_aic gdhmm_aic < hmm_aic

2 7 2 1000 100 15 5 -577.8 -633.0 True 1185.5 1275.9 True

2 2 2 1000 100 5 5 -606.4 -618.1 True 1222.8 1246.2 True

2 2 2 1000 100 5 5 -552.6 -685.3 True 1115.1 1380.7 True

2 2 2 1000 100 5 5 -595.1 -655.4 True 1200.1 1320.7 True

2 5 2 1000 100 11 5 -621.1 -665.6 True 1264.2 1341.2 True

2 5 2 1000 100 11 5 -620.4 -666.1 True 1262.8 1342.2 True

2 5 2 1000 100 11 5 -646.6 -679.6 True 1315.2 1369.2 True

2 11 2 1000 100 23 5 -546.8 -599.2 True 1139.6 1208.4 True

2 11 2 1000 100 23 5 -577.2 -608.9 True 1200.4 1227.7 True

2 11 2 1000 100 23 5 -546.7 -594.6 True 1139.5 1199.2 True

2 11 2 1000 200 23 5 -539.4 -581.4 True 1124.9 1172.7 True

2 11 2 1000 200 23 5 -561.6 -602.3 True 1169.1 1214.7 True

2 11 2 1000 200 23 5 -545.8 -581.6 True 1137.5 1173.1 True

2 11 2 2000 200 23 5 -1108.3 -1190.4 True 2262.5 2390.7 True

2 11 2 2000 200 23 5 -1126.7 -1203.1 True 2299.3 2416.1 True

2 11 2 2000 200 23 5 -1100.2 -1178.6 True 2246.5 2367.2 True

Table 2: Experiment with correlated emission probabilities

8.3 Simulated manufacturing use case for GD-HMM

Consider the following simplified scenario of a manufacturing machine. The

machine can be in two (hidden) states DOWN and UP in each second, which

are the states of not producing and producing respectively. The movement of

the machine is measured in each second resulting in either a MOVING or NOT

MOVING observation. The hidden states are highly correlated with the movement

53

measurements: in the DOWN state, with the probability of 95% the machine is

NOT MOVING (so the probability of MOVING is 5% in DOWN), and in the UP

state, with the probability of 80% the machine is MOVING (so the probability of

NOT MOVING is 20% in UP).

Although the measurements do not give us precisely the hidden information

of the states, we know a prior that the machine works in a certain way: the DOWN

state lasts between 9 and 11 seconds and the UP state lasts between 4 and 6

seconds.

With this information in hand, one would prefer using the categorical

distribution for the duration. During the learning, the model can learn that in the

DOWN state the probabilities of staying in 9-11 seconds are positive, while the

others are close to zero (and similarly to the UP state).

The following figure shows the hidden machine states in blue (0-DOWN and

1-UP) and the movement observations in red (0-NOT MOVING and 1-MOVING)

in the first 400 seconds.

Figure 8: Simulated manufacturing states and observations I.

With movement observations of length 1000, a GD-HMM and an HMM were

trained. The GD-HMM has a max_duration = 15, and both models were trained

for 100 iterations. The resulting GD-HMM has 31 parameters, a log-likelihood of

-386, and an AIC score of 834. The HMM has 5 parameters, a log-likelihood of

-531, and an AIC score of 1071. The hidden states were inferred using the Viterbi

54

decoding for both models. The GD-HMM fits the data better, and the following

figure shows this perfectly. The GD-HMM prediction of hidden states is in green,

the HMM prediction is in yellow.

Figure 9: GD-HMM and HMM prediction of hidden states I.

The GD-HMM gives back all the hidden UP/DOWN states only with 1-2

second differences in the starts or ends. At the same time, HMM does some

filtering but fails to recover the hidden states.

A stronger version of the previous experiment is presented next. The entropy in

observation generation was increased (e.g setting MOVING and NOT MOVING

55

probabilities to 50% in the UP state) and the max_duration parameter was also

increased (to 30) for the trained GD-HMM (which is the equivalent of less prior

information or more parameters in model). In exchange, also the length of the

observation sequence has been increased, from 1000 to 4000.

The machine states and observations in this setting:

Figure 10: Simulated manufacturing states and observations II.

In this case, the resulting GD-HMM has 61 parameters, a log-likelihood of

-1710, and an AIC score of 3543. The HMM has 5 parameters, a log-likelihood of

-1995, and an AIC score of 4000. With the increased observation length, both the

log-likelihood and AIC score shows that GD-HMM fits the data better. The figure

clearly shows that GD-HMM reveals the true location and width of UP states, and

HMM fails because it cannot learn the duration time.

56

Figure 11: GD-HMM and HMM prediction of hidden states II.

The GD-HMM reveals all the UP states along the 4000 seconds, even the ones

where no MOVING observations were generated, which is a very powerful result

showing that the usage of duration information can compensate for the lack of

useful observation signals in Hidden Markov Models.

57

9 Conclusion

Throughout the thesis, I established a new HMM framework, the

Graphical-Duration Hidden Markov Model, which is able to represent not

only geometric duration distributions, but many others. I identified a few duration

families that have a graph representation, and also provided a distribution

property that excludes all graph representations. I examined the EM learning of

the GD-HMM and deducted the analytical form of updates for the Categorical

(Duration Distribution) GD-HMM with categorical emissions. The resulting EM

variant has the same time complexity as the Baum-Welch’s: O(TE). I showed

that a distribution can be represented with multiple different graphs, and provided

an optimal representation for the categorical distribution family. Finally, I gave

small proofs that the implemented GD-HMM outperforms the plain HMM if the

data has specific distribution.

The main motivation was to stretch the HMM framework in order to build

duration information into the model. Although other HSMM variants were

implemented in the past, I came up with a partially new, general framework which

is equivalent to the HMM framework, but can use duration information.

As the visual proofs in Section 8.3 show, the GD-HMM has great potential

over HMM, if one has the expert knowledge or information about the times

in the modelled process. The continuation of this work should be the usage of

GD-HMM for modelling a practical process, where the duration distributions are

not geometric.

References

[1] O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models

(Springer Series in Statistics). Springer-Verlag, Berlin, Heidelberg, 2005.

58

[2] C. Mitchell, M. Harper, and L. Jamieson. On the complexity of explicit

duration HMM’s. IEEE Transactions on Speech and Audio Processing,

3(3):213–217, 1995.

[3] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012.

[4] L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications

in speech recognition. pages 257–286, 1989.

[5] S.-Z. Yu. Hidden Semi-Markov Models. Artificial Intelligence,

174(2):215–243, 2010. Special Review Issue.

[6] S.-Z. Yu and H. Kobayashi. An efficient forward-backward algorithm for an

Explicit-Duration Hidden Markov Model. IEEE Signal Processing Letters,

10(1):11–14, 2003.

60

	Introduction
	Hidden Markov Models
	Structure
	Algorithms

	EM learning
	EM learning in general
	EM learning for HMMs - Baum-Welch algorithm
	Complexity of the Baum-Welch algorithm

	Graph representation of distributions
	Representation graphs
	Representation of distribution families

	Graphical-Duration Hidden Markov Model
	Hidden Semi-Markov Models
	The GD-HMM

	Learning the parameters of the GD-HMM
	M-step for transition parameters in categorical case
	Time complexity of M-step

	Efficiency of representation in GD-HMM
	Numerical experiments
	Monotonically increasing log-likelihood of GD-HMM
	Log-likelihood and AIC evaluation of GD-HMM
	Simulated manufacturing use case for GD-HMM

	Conclusion

