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0 Abstract

Just as disease propagation in the real world, compartmental epidemiological models show great

diversity in their dynamics. Through the construction of epidemiological models, we can better

understand - and possibly predict - the dynamics and qualitative properties of different infectious

diseases. In general, one builds an ODE system based on different assumptions from the biological

and propagation properties of the disease and studies the qualitative properties of the constructed

system. In all of the above cases, the equations cannot be solved analytically (although in some

cases special solutions can be found), therefore numerical methods are used when one seeks their

approximate solutions (e.g. for forecasting). It is then of interest whether the discretised sys-

tem possesses the same qualitative behaviour as the continuous model. Since all compartmental

systems model the rate of change of different subpopulations or the density of the disease in the

environment, a good model should have the property that the solution remains non-negative for all

non-negative initial values. Such systems are called positive. It is therefore of interest whether a

numerical scheme preserves this property and, if so, for which step sizes. The number of equilibria

(and periodic orbits) and their stability properties, the positive invariance of a set, etc. are some

other properties that should be preserved by the discretisation.

Considering the classical linear methods, namely the Runge-Kutta and linear multistep meth-

ods, it is known that there is no second or higher order method which preserves the positivity for

all step-sizes and for all positive ODE systems. Thus, it is of interest to know the largest such

step-size for which positivity is preserved for a given method. We introduce the general theory of

the above, which is based on the so-called strong stability preservation, namely if we know that

the explicit Euler method preserves positivity for step-sizes 0 < ∆t ≤ ∆tFE then the positivity is

also preserved for other linear methods under step-sizes 0 < ∆t ≤ C∆tFE where C depends only

on the scheme considered and not on the considered system, and possibly C = 0. We introduce the

different representations of the Runge-Kutta methods which can be used to find the C coefficients

and summarise the known results considering the order barriers, the conditions on the Butcher

tableau and possible extensions. We also do this for the linear multistep methods.

To study the sharpness of the C coefficients considering epidemiological compartmental ODE mod-

els, we introduce a simple vertical transmission model, which is conservative in the sense that

the total population is constant, and a more complex model which is considered to model the

COVID-19 disease. For the latter, the environment is also considered as a possible transmission

route (i.e. a susceptible individual may acquire the disease through the environment and not

directly from susceptible-infectious contacts) and includes a vaccinated subpopulation with im-

perfect vaccination, which means that vaccinated individuals can also become infected but with

different transmission rate. We first study the qualitative properties of these continuous models

and show that the second model exhibits backward bifurcation, i.e. for some parameter values a

stable disease-free equilibrium coexists with a stable and unstable endemic equilibria. From the

conditions, under whitch this occurs, it can be deduced that the existence of such backward bifur-

cation is independent of the parameters which determine the dynamics of the environment and its

disease propagation. For both models, we show that there is a positively invariant region, called the

biologically feasible region in the positive quadrant which also implies the positivity of the systems.

Having studied the behaviour of the continuous models, we are ready to investigate how some of its

basic qualitative properties change under different discretisations. Since the strong stability pre-

serving methods are based on the qualitative behaviour of the explicit Euler discretisation, we give

sufficient conditions for the preservation of the positively invariant region for the non-conservative
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model. Considering the conservative model, we give sufficient and necessary conditions considering

its positivity and the linear stability of the different equilibria.

We construct numerical simulations to study the sharpness of the C coefficients considering the

maximal step-size for which different discretisations preserve positivity (and boundedness for the

non-conservative model). We find that the numerical results differ significantly from the theoreti-

cal results based on the strong stability preserving theory. Most notably, while the classical RK4

method has C = 0, for our specific models, the maximal step-sizes were 1.5− 2.5 times larger than

for the explicit Euler method. Fortunately, for the conservative system it is also possible in some

cases to determine the initial values that lead to the smallest such step sizes for which positivity is

lost. These results can be partially explained by letting the internal stages to be negative, which

allows the step sizes to be larger due to the special structure of the vector field of the phase-space

outside but near to the positive quadrant.

We also introduce a family of (nonlinear) unconditionally positive and conservative schemes, called

modified-Patankar-Runge-Kutta schemes and summarise some of the recent developments consid-

ering these schemes. While we do not prove global stability under the discretisation for arbitrary

step-sizes, the bifurcation diagrams imply it.

In section 1 we introduce the basics of epidemiological modelling and in section 2 we introduce the

general theory of autonomous ordinary differential equations and some of the qualitative proper-

ties of the solutions, that we will consider later. In section 3, we introduce the Runge-Kutta and

linear multistep schemes and theory of their positivity preservation and also some other properties

that have been studied in the literature. We also introduce the modified-Patankar-Runge-Kutta

schemes, which are unconditionally positive for a class of systems. In section 4 we analyse two

continuous epidemiological models and in 5 we study how the systems under different schemes

preserve the various properties introduced in 3 and studied for the continuous models in section 4

through partly numerical experiments.

1 Epidemiological modelling

Epidemiological models can be categorized by their mathematical structures: deterministic or

stochastic. In deterministic models, one of the most used are the compartmental models, where

the dynamics of different compartments are modelled by ordinary differential equations. Different

compartments make it possible to ’heterogenise’ the population by its relationship to the disease,

age, space, vaccination or lack of it, etc. One of the first such model was constructed by A.

G. McKendrick and W. O. Kermack in 1927[1]. We will summarise the model in its time-since-

infection independent case, to show how one can build different compartmental models - based on

different assumptions. In the Kermack-Mckendrick epidemic model, the population is subdivided

into subpopulations/classes, namely, the susceptible, infected and recovered classes. Where a

person is considered to be in the susceptible class if he or she is not infected but can get infected

by contact with an infectious person. In the following model, the infected subpopulation consists

of the infected and infectious people, while the recovered subpopulation consists of people who

are neither infectious nor susceptible, i.e. can’t get infected. The number (or density) of each

subpopulation at time t ≥ 0 are denoted by S(t), I(t), R(t), respectively.
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The dynamics evolve in time based on the following equations:

dS

dt
= −βIS

dI

dt
= βIS − αI

dR

dt
= αI

(1.1)

with non-negative initial conditions S(0), I(0), R(0) and positive real parameters α and β. One

can see that the model has the assumption that the total population N(t) := S(t) + I(t) + R(t)

remains constant (since
dN(t)

dt
= 0). The rate of the change in the susceptible population is

given by the number of susceptible individuals infected in a unit of time. If we assume that the

contact rate c is proportional to the total population (i.e. cN), then an infected individual makes

cN S
N contacts with the susceptible subpopulation per unit of time, of which only a fraction, say

p ∈ (0, 1) result in disease transmission. Thus, from the entire infected subpopulation pcSI num-

ber of individuals become infected in a unit of time. So in the model (1.1) β = pc with the unit
1

number of people·unit of time and it is called the transmission rate constant. The number of people

in the infected subpopulation changes by the newly infected and by people who recover from the

virus by a constant recovery rate α which has the unit 1
unit of time The infected individuals, who

recover leave the infected class and move to the recovered class without any time delay.

In general, most compartmental models are similar to the above model, and one can look at

it as its specific modification for the given infection. The most common modifications are

1. Other compartments are added to the model (e.g. exposed subpopulation, vaccinated sub-

population, vector population etc.) with their own dynamics and assumptions.

2. The population is not constant; changes in demographics (births, deaths from disease or other

causes, etc.) are embedded in the model. For some viruses, it’s also advantageous to subdivide

the population by age since the chance of recovery or transmission etc. can depend on age.

When age is considered as a continuous variable, the model ’changes’ into a partial differential

equation (PDE). These models are called age-structured epidemic models[2, Ch. 5].

3. The force of infection λ(t) is different. The two most commonly used ones are mass action

λ(t) = βS (as in the model above) and standard λ(t) = βS
N , which is used when it is assumed

that the number of contacts cannot increase indefinitely (for example for sexually transmitted

diseases)[3]. Note that these two only differ when the population is not constant and there

are also other, possibly highly non-linear forces of infections [4, Ch. 3]

4. One can also consider the spatiality of the disease and the population. If the space is con-

sidered to be continuous, then one models it with PDEs. In the simplest case, the spatial

spread is modelled as diffusion and the PDE is of the reaction-diffusion type[3, Ch. 15].

5. For some diseases, the infectivity changes by the time-since-infection. In these cases, the

system is usually modelled as an integro-differential equation. But in general, not only the

infectious class, but other classes can be structured by the duration of residence in that class.

These models are called class-age structured epidemic models[3, Ch. 13].

For all cases, one can define stationary solutions, which does not depend on time. These are

called the equilibrium points of the system. The two most common equilibria are the disease-free

equilibrium (DFE) and the endemic equilibrium. The first is characterised by that the disease is

not present while, for the second, the disease is persistent.
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An important question is when - w.r.t the parameters - are these equilibria are (asymptotically)

stable in the sense that other, time-dependent solutions whether approach the equilibria or not.

In the next subsection, we will introduce a well known method which can be used to analyse the

stability of the DFE.

1.1 The Basic reproduction number

In epidemiological modelling, one of the most important measure of a disease model is the basic

reproduction number, usually denoted by R0. It denotes the number of secondary infections pro-

duced by an infected individual in a completely susceptible population. Therefore, it is a threshold

parameter for the invasion of a disease organism into the population and in general coincides with

the threshold condition for the stability of the disease-free equilibrium[3][5].

One can compute R0 for a compartmental ODE system by the next generation approach[5]. First,

the system is rewritten as

ẋi = Fi(x, y)− Vi(x, y) i = 1, . . . , k (1.2)

ẏj = gj(x, y) j = 1, . . . , d− k (1.3)

where ẋi is the derivative with respect to time t of the function xi(t), and (x1, . . . , xk) are the

disease compartments, while yj , j = 1, d−k are the non-disease compartments. Fi(x, y) represents

the rate of new infection in compartment i, while Vi(x, y) incorporates the remaining transitional

terms. There are some epidemiologically meaningful (and not strict) assumptions on the functions

F = {Fi}ki=1,V = {Vi}ki=1, g = {gi}d−k
i=1 , which we won’t all state, but can be found in [5, pg. 161].

One important assumption on g is that the disease-free system

ẏ = g(0, y) (1.4)

has a unique equilibrium E0 = (0, y0) such that the solutions of this disease-free system approach

it as t → ∞. Another assumption is that

Fi(0, y) = Vi(0, y) = 0 ∀i = 1, . . . , k, ∀y ≥ 0 (1.5)

which means that there is no change in the infectious classes when the infection is not present

i.e. all infections are secondary. The Jacobi matrices of the subsystems F and V at the disease

free equilibrium E0 are denoted as F and V . Linearizing the system (1.2)-(1.3) at the DFE gives

ẋ = (F − V )x, since the infected compartments x are decoupled from the remaining equations,

because for every pair (i, j) by (1.5):

∂Fi(0, y0)

∂yj
=

∂Vi(0, y0)

∂yj
= 0.

Then the next generation matrix is K := FV −1 and its spectral radius denotes the basic repro-

duction number: ρ(K) = R0.

The question is how R0 related to the stability of the DFE? In [5], it was proved that the matrix

F − V has all eigenvalues with negative real part (which implies local stability) if and only if

ρ(FV −1) < 1 and has an eigenvalue with positive real part if and only if ρ(FV −1) > 1. This gives

the correspondence between the local stability of the system (1.2)-(1.3) and R0 by the assumptions

on (1.4).
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Later, we will use the above approach to interpret and calculate the basic reproduction number

for a non-conservative model. For another model, we will calculate R0 by the ’Jacobi approach’,

i.e. directly from the stability of the linearized system, which will be reduced to a single condition,

but it can be easily checked that the above approach would give the same results.

2 General theory of ODEs, considered qualitative proper-

ties

We first introduce the general theory of ordinary differential equations and some of their properties,

namely the stability, positive invariance, positivity and mass-preservation. The following is mostly

based on [4],[6] and [7].

For this, consider the following dynamical system defined by the general autonomous ODE:

u̇ = f(u) (2.1)

where U is a region (i.e. open and connected subset) of Rd and f : U → Rd a continuous function.

When an initial value u(t0) = u0 is also given, we call the above an initial value problem (IVP).

We call u(t), where u : I → U a solution of the above IVP if

1. I ⊂ R is non-empty open interval containing t = t0

2. u is differentiable with continuous derivative in I

3. u̇(t) = f(u(t)) (∀t ∈ I)

4. u(0) = u0

Note that if u(t) is a solution with initial value u(t0) = u0, then u(t − t0) is a solution with

initial value t0 = 0, thus the solutions of (2.1) with initial values u(0) = u0 completely defines the

solutions of (2.1) with more general initial values u(t0) = u0. It is clear that if the above system

models a biological process, then it is a basic requirement, that the solution with some initial value

u(0) = u0 exists and unique. This holds if f is locally Lipschitz continuous for all u0 ∈ D, which

means that for all u0 ∈ D there exist L, δ > 0 constants such that

∥f(u1)− f(u2)∥ ≤ L∥u1 − u2∥, (∀u1, u2 ∈ {u ∈ U | ∥u− u0∥ ≤ δ})

The above conditions from an epidemiological modelling viewpoint is not strict and it can be

proved with the fundamental theorem of calculus that if f ∈ C1(D), then f is Locally Lipschitz in

every point of D. From now on, we will always assume that f ∈ C1(D) for (2.1).

Until now, we only considered solutions which are locally defined on some I, but in general,

we want to extend - or show that it can be extended - for all t ∈ R or for at least R+. This is not

always possible, but it can be shown that the only way it can be violated is if the solution ’blows

up’ in finite time, i.e. there exists some T+ < ∞ such that limt↑T+ ∥u(t)∥ = ∞ or ∃T− < ∞
such that limt↓T− ∥u(t)∥ = ∞. This gives us a way to guarantee the global existence of a solution,

namely if there exists some region Ω ⊂ D such that every solution that start in Ω stays in Ω for

both backward and forward in time, then the solution cannot blow up, therefore exist ∀ t ∈ R.
Such regions are called invariant (w.r.t. f in (2.1)). The same logic can be used to guarantee a

solution ’only’ for all t ∈ (−a,∞), or in t ∈ (∞, a), (a > 0) when Ω is respectively positively or

negatively invariant.
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We now turn our interest to the qualitative properties of different solutions of (2.1). We will

only talk about such properties which are general interest for epidemiological models. We start

with the simplest solutions which does not change in time, therefore they are called stationary

points or equilibria (with the plural form equilibrium). The equilibrium points of the system can

be found by solving f(u∗) = 0, then u(t) ≡ u∗ is clearly a solution for (2.1) and it is globally defined

since it stays bounded. To study the solutions near the equilibrium, the concept of stability is of

great importance.

Definition 2.1. An equilibrium point u∗ ∈ U of (2.1) is said to be (locally) stable if for any ε > 0

there exists δ > 0 such that for any initial values u0 with ∥u0 − u∗∥ < δ the solutions exist for all

t > 0 and ∥u(t)− u∗∥ < ε ∀t > 0. The equilibrium points are called unstable if it is not stable and

(locally) asymptotically stable if it is stable and in addition there exist some γ > 0 such that for all

∥u0 − u∗∥ < γ, holds that lim
t→∞

∥u(t)− u∗∥ = 0.

To study the stability of the equilibria, one considers the solutions which are sufficiently close to

it (so they can be viewed as a perturbation of the stationary solution). For this, suppose that u(t)

is a solution with initial value u0, then y(t) = u(t)− u∗ is a solution and for sufficiently smooth f :

ẏ(t) = u̇(t) = f(u(t)) = f(u∗) + f ′(u∗)y(t) + r(y(t)) = f ′(u∗)y(t) + r(y(t)) (2.2)

by Taylor expansion, where f ′(p) is the Jacobian of f at p ∈ Rd and r is the residue. For small

enough y, the linear part dominates, so we obtain the approximate linear system:

ẏ(t) = f ′(u∗)y(t) (2.3)

The following theorem tells us what can we infer from the linearized system (3.32) considering the

stability of the equilibrium of the nonlinear system (2.1):

Theorem 2.1. Suppose that f ′(u∗) is hyperbolic i.e. it does not have any eigenvalues in the

imaginary axis, then

1. If all the eigenvalues of f ′(u∗) has negative real parts, then u∗ is locally asymptotically stable

equilibrium of (2.1).

2. If f ′(u∗) has an eigenvalue with positive real part, then u∗ is an unstable equilibrium of (2.1).

Note that we have excluded the cases where f ′(u∗) have one or more eigenvalues in the imaginary

axis, because in this case additional analysis is required with the higher order terms of the Taylor

expansion. We also point out that the above theorem only gives us local results, i.e. asymptotic

stability in some region Ũ ⊂ U . Since we use these for biological models, where the solutions on

the negative orthants and some other, generally unbounded solutions are not of interest; we call an

equilibria globally asymptotically stable (GAS), when Ũ = Ω, where Ω is the so-called biologically

feasible region.

The above theorem can be proved by constructing a so-called Lyapunov function, which can also be

used for specific models, where one can also find the asymptotic stability region of the equilibrium.

For simplicity, we only define Lyapunov functions for equilibria u∗ = (0, . . . , 0)⊺.

Definition 2.2. Let Ũ ⊂ Rd a region such that 0 ∈ Ũ , V ∈ C1(Ũ ,R). Then V , is said to be a

Lyapunov function for the equilibria u∗ = 0 of (2.1), if

1. Ũ ⊂ U

2. V (0) = 0
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3. (positive definiteness) V (z) > 0, (∀z ∈ Ũ − {0})

4. V̇ (u) := ∇V (u) · f(u) ≤ 0, (∀u ∈ Ũ − {0})

It can be proved, that if a Lyapunov function can be found for (2.1), which is translated such that

the equilibrium u∗ is at 0, then u∗ is stable. Moreover, if in (4.), we have strict inequality (’<’),

then 0 is asymptotically stable, while if ’> 0’, then unstable. We don’t give formal proof, but

geometrically (4.) for the solutions u(t) of (2.1) is:

V̇ (u(t)) = ∇V (u(t)) · f(u(t)) = ∥f(u(t))∥ ∥∇V (u(t))∥ cos(θ) < 0

where θ is the angle between ∇V (u(t)) and f(u(t)) at given t. So the orbit of u(t) at a given t is

crossing the level curve of V from the outside to the inside, since the angle is obtuse. Similarly, it

is tangential or cross from the inside to the outside if we have relations = 0 and > 0, respectively.

It is clear if Ũ is ’large enough’, then one can possibly use the Lyapunov function to show GAS of

the single equilibrium in Ω.

In some cases, one can show asymptotic stability even when the relation for (4.) is not strict

by the LaSalle Invariance Principle

Theorem 2.2 (LaSalle Invariance Principle[8]). Let V be a Lyapunov function of (2.1) in Ũ ⊂ U

which is continuous on the closure of Ũ , denoted by Ū . Let E be the set where the solutions are

tangential to the level curves of V, i.e.

E := {z ∈ Ū | V̇ (z) = 0}

and let M denote the largest invariant subset of the solutions in E. Suppose that any solutions with

initial point u0 ∈ Ũ are bounded and remain for all future time in Ũ . Then every solution starting

in Ũ approaches M as t → ∞.

It is clear, that if M consist of a single point u∗, then under the above theorem u∗ is GAS (in Ũ).

In epidemiological modelling, when the ODE represents the rate of change of the different sub-

populations, the solution represents the number of a given subpopulation or the density evolving

in time. In this case, it is clear that the solutions with initial conditions in the positive quadrant

should remain there (since negative population or density is biologically incomprehensible):

Definition 2.3 (Positivity of ODE/IVP). We say that the ODE/IVP (2.1) is positive if whenever

U ∋ u0 ≥ 0, then U ∋ u(t) ≥ 0, ∀t ≥ 0 (where the relation is considered coordinate-wise). We

denote the set of positive functions by P.

Note that altough it is called positivity, we require non-negativity of the solutions and this is a

special case of positive invariance. To prove whether f ∈ P, one has to check whether the solutions

are reflected back at the boundary.

Theorem 2.3. [[9] Thm.7.1.] Suppose that f in (2.1) is continuous and locally Lipschitz. Then

f ∈ P if and only if ∀ v ∈ Rd, ∀i ∈ {i, . . . ,m}: v ≥ 0, vi = 0 implies that fi(v) ≥ 0.

Proof. The necessity of the condition follows by considering the solution u(t) with initial value

vi = 0, then u̇i(0) < 0, so for the solution ui(t) < 0 for t ∈ (0, t1) for some ti ∈ R+.

For the sufficiency, not that the conditions imply that for the solutions u(t) ≥ 0 with ui(t) = 0 it

holds that u̇i(t) ≥ 0. We need that u̇i(t) ≥ ε > 0, then the solution gets reflected back from the

boundary of the positive orthant. Consider the perturbed system

f̃(u) = f(u) + Iε

7



which is positive i.e. f̃ ∈ P by the above argument. By the Lipschitz condition, it holds that

the unperturbed solution will be arbitrary-well approximated by the perturbed solution if we let

ε → 0.

In some epidemiological models we can assume that the population does not change over time.

This is usually the case for diseases where the dynamics happen fast. Models with this property

are called conservative or mass-preserving.

Definition 2.4. We call an autonomous system (2.1) conservative if for arbitrary initial value

u(0) ∈ U ⊂ Rd, e⊺u(t) = e⊺u(0) ∀t ≥ 0, where e := (1, . . . , 1) ∈ Rd.

Remark 2.1. Conservativity is equivalent with e⊺f(u) = 0, ∀u ∈ Rd, since it implies that for the

solutions we have e⊺u̇(t) = 0, then integrating both sides we get the condition of conservativity.

The other way follows from differentiation.

3 Considered numerical methods and some of their proper-

ties

The discretisation of the different continuous epidemiological models are inevitable if we want to

solve them numerically. Then it is of interest whether the discretised model posses the same qual-

itative behaviour as the continuous model.

In general, numerical k-step methods with fixed step size for autonomous ODEs generate a discrete

map

Φf,∆t : (un, . . . , un−k+1) 7→ un+1 (3.1)

where u0, u1, . . . , uk initial values are given and un approximates u(tn) = u(∆tn), where ∆t is the

fixed step-size. (3.1) is sometimes called the numerical flow. There exist a number of different

numerical methods, from which two are the well-known Runge-Kutta (RK) schemes and the linear

multistep methods.

Since we are interested in the preservation of different qualitative behaviour under the discreti-

sations, we first define these properties for maps. The positivity of a numerical method can be

defined in the logical way

Definition 3.1. Let there be given a numerical method (3.1), a set of functions F ⊂ P and a

real number 0 < H ≤ ∞. We call the method positive on F with threshold H if the numerical

approximation (3.1) are non-negative whenever f ∈ F , u0 ∈ Rd
+ with step size 0 < ∆t ≤ H. If

H = ∞, then we call the method unconditionally positive, otherwise conditionally positive.

Note that for multistep methods, one can talk about a multistep method being positive with suit-

able starting procedure or with any starting procedure.

Considering the conservativity preservation of a numerical method, the definition is

Definition 3.2. We call a numerical method (3.1) conservative if for arbitrary conservative system

f (see 2.4) it holds that for (un+1,1, . . . , un+1,d) := Φf,∆t(un, . . . , un−k+1):
∑d

i=1

(
un+1,i−un,i

)
= 0

for arbitrary un = u(tn), . . . , un−k+1 = u(tn−k+1), where tn := ∆tn.

It is clear that under the condition e⊺f(u) = 0, ∀u ∈ Rd LMM preserves conservativity using the

consistency condition, while RK methods preserves conservativity for the numerical solution and

for the stage values also.
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The question considering the equilibria and its stability under discretisation by a numerical scheme

will be considered in subsection 3.5.

3.1 Runge-Kutta methods

Runge-Kutta methods are special - usually higher order - one-step methods. The general form of

a m-stage Runge-Kutta method for an autonomous ODE is:

ki = f
(
un +∆t

m∑
j=1

aijkj
)
, (i = 1, . . . ,m) (3.2a)

un+1 = un +∆t

m∑
i=1

biki (3.2b)

where from the consistency conditions we have b⊺e = 1, where e := (1, . . . , 1)⊺ ∈ Rs. We define

b⊺ := {bi}mi=1, A := {aij}mi,j=1. ki-s are the approximation of the derivatives at the stages tn+∆tci,

where {ci}mi=1 = c := Ae. If A is a lower triangular matrix with zero diagonal values, we call the

method explicit, because the i-th stage can be explicitly calculated from the stages 1, . . . , i − 1.

Otherwise the method is called implicit and one has to use some other numerical method to solve the

equation at each step. All Runge-Kutta methods are mass-preserving/conservative, which follows

directly from remark 2.1. One can write the RK methods in an equivalent but different formulation,

when the stage values approximate the solution - not the derivative - at tn +∆tci, i = 1 . . . ,m:

u(i) = un +∆t

s∑
j=1

aijf
(
u(j)

)
, (i = 1, . . . ,m) (3.3a)

un+1 = un +∆t

m∑
i=1

bif(u
(i)) (3.3b)

where u(i), i = 1, . . . ,m are the stage values. The simplest RK method is the one stage, first order

explicit Euler method

un+1 = un +∆tf(un)

which has the Butcher tableau

c A
bt

=
0

1
.

One generally used fourth order, explicit four stage method is the classical RK4 method, which

has the Butcher tableau

c A
bt

=

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

It can be seen, that the above scheme is explicit. The RK4 method in the second formulation is:

u(1) = un

u(2) = un +∆t
1

2
f(u(1))

u(3) = un +∆t
1

2
f(u(2))

u(4) = un +∆tf(u(3))

un+1 = un +∆t
[1
6
f(u(1)) +

1

3
f(u(2)) +

1

3
f(u(3)) +

1

6
f(u(4))

]
(3.4)
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3.2 Strong stability preserving (SSP) Runge-Kutta Methods

In this subsection, we introduce the strong stability preserving Runge-Kutta methods (SSP RK

methods) and their special property. Later, the connection with the classical RK methods and the

general questions considering consistency, convergence etc. will be investigated.

To introduce the idea of the SSP RK methods, we define an (explicit) m stage method in the

following form:

u(0) = un

u(i) =

i−1∑
j=0

(
αiju

(j) +∆tβijf(u
(j))

)
, (i = 1, . . . ,m)

un+1 = u(m)

(3.5)

where u(i), i = 1, . . . ,m are the stage values and αij , βij ; i, j = 1, . . . ,m are given constants.

For example, a three-stage method is

u(0) = un

u(1) = u(0) +∆tf(u(0))

u(2) =
3

4
u(0) +

1

4
u(1) +

1

4
∆tf(u(1))

un+1 = u(3) =
1

3
u(0) +

2

3
u(2) +

2

3
∆tf(u(2)).

Now, suppose that we require from our numerical solution that

∥un+1∥ ≤ ∥un∥, (∀n = 0, 1, 2, . . . ) (3.6)

where ∥.∥ is some not yet specified norm. One can guarantee this, by assuming that we have this

property for the explicit Euler method under some step-size condition:

∥u+∆tf(u)∥ ≤ ∥u∥, (∀u ∈ Rd, ∀∆t ≤ ∆tFE). (3.7)

Note that (3.7) states that the property (3.6) holds for the explicit Euler method under small

enough step-sizes, where ∆tFE ∈ R+ is the largest such step-size for which it holds. Then we

can guarantee (3.6) for (3.5) if αij , βij are non-negative and
∑i−1

j=0 αij = 1 under the step-size

restriction ∆t max
ij

βij

αij
≤ ∆tFE , i.e. ∆t ≤ C(α,β)∆tFE , where C(α,β) = min

ij

αij

βij
, because

∥u(i)∥ =

∥∥∥∥ i−1∑
j=0

αij

(
u(j) +∆t

βij

αij
f(u(j))

)∥∥∥∥
≤

i−1∑
j=0

αij

∥∥∥∥u(j) +∆t
βij

αij
f(u(j))

∥∥∥∥
≤

i−1∑
j=0

αij∥un∥ = ∥un∥

(3.8)

Specifically, (3.8) for i = m we have ∥un+1∥ ≤ ∥un∥, which is the desired property (3.6).

These methods are called strong stability preserving Runge-Kutta methods and their coefficients

C(α,β) are called the apparent SSP coefficients. The strong stability adjective comes from the

property (3.6), which implies the absolute stability for linear (stable) problems. The strength of

these methods comes from the fact that we have not fixed the norm ∥.∥, so this preservation holds

for arbitrary norms and since we have only used it for (3.8), it is easy to see that it also holds
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for arbitrary seminorms and convex functionals. A popular application of these methods is for

the semidiscretisation of nonlinear convection PDEs with discontinuous initial values. In this case,

the discontinuous initial data can give rise to unwanted oscillations for the numerical solutions; in

this case the used seminorm is the total variation, which is defined as for a vector v := {vi}ni=1 as

||v|| := TV (v) :=
∑n

j=2 |vj − vj−1|. One can avoid spatial oscillations by considering this norm

in (3.6) and (3.7)[10][11]. Such methods with the above property are sometimes also called Total

Variation Diminishing. Two other property preservations we will use and can be considered in

the context of strong stability preservation are the positivity and boundedness preservation. For

the positivity, instead of (3.6) one considers the largest time-step ∆tFE for which positivity is

preserved for the explicit Euler method:

u+∆tf(u) ≥ 0 (∀u ∈ Rd
+,∀∆t ≤ ∆tFE) (3.9)

and for the preservation of the boundedness property in ∥.∥1 norm:

∥u+∆tf(u)∥1 ≤ M (∀u ∈ Ω ⊂ Rd,∀∆t ≤ ∆tFE) (3.10)

where Ω is some region in Rd. Note that in both cases, we reduce the initial values to a region of

vectors. It can be easily seen that the above ’proof’ (3.8) works for these too (with different ∆tFEs,

which we suppress in the notation). It is clear, that one can also consider both (3.9) and (3.10) with

the smaller time-step restriction for the explicit Euler method and one can also consider (3.6) and

(3.10) for only one coordinate (i.e. if we denote u = {ui}i=1,...,d, then |ui
n| ≤ |ui

n+1| and |ui
n| ≤ M).

The adjective ’Runge-Kutta’ is used because - as we will see in the next subsection - the above-

mentioned methods are Runge-Kutta methods but in a different form, where
∑i−1

j=1 αij = 1, i =

1, . . . s is used for the consistency condition. The SSP coefficient C(α,β) has the adjective ’appar-

ent’, because the representation (3.5) is not unique. For example, one can rewrite

α21u
(1) = (α21 − c)u(1) + cu(1) = (α21 − c)u(1) + c(α10u

(0) +∆tβ10f(u
(0)),

where c ∈ R arbitrary, so

u(2) = (α20 + cα10)u
(0) +∆t(β20 + cβ10)f(u

(0)) + (α21 − c)u(1) +∆tβ21f(u
(1)).

It is clear that in this case C(α,β) possibly changes, and/or the new α21 could become negative.

For these reasons, the important task is to find the largest such coefficient between the different

representations which we will denote as

C := max
(α,β)

C(α,β)

where the maximum is over the different possible representations. C is called the SSP coefficient.

To find, the SSP coefficients, we introduce other formulations for the SSP RK methods.

3.2.1 Different representations of SSP RK methods and the SSP coefficient

The general SSP method, which incorporates both explicit and implicit methods written in its

modified Shu-Osher form is:

u(i) = viun +

m∑
j=1

(
αij +∆tβijf(u

(j))

)
, (i = 1, . . . ,m+ 1) (3.11a)

un+1 = u(m+1) (3.11b)
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with the assumption

vi +

m∑
j=1

αij = 1, (i = 1, 2, . . . ,m+ 1). (3.12)

The difference between (3.5) and the above is that the summation goes from 1 to m, so the method

can be implicit. Also, the un terms are explicitly there and the stages are indexed from one. One

can prove (similarly as for the explicit case), that if the property (3.6) is preserved for the explicit

Euler method under the step-size restriction ∆t ≤ ∆tFE , then it is preserved by the above method

when the step-size satisfies

0 ≤ ∆t ≤ C(α,β)∆tFE (3.13)

where

C(α,β) =

min
i,j

αij

βij
if all αij , βij , vi are non-negative

0 otherwise

and if βij = 0, for some i, j then
αij

βij
= +∞. To show that these methods are Runge-Kutta methods

in different representations, first we have to rewrite (3.11a) in vector notations. For this we define

the matrices α̂, β̂ ∈ Rm+1×m+1 as {α̂}m+1,m
i,j=1 = αij and similarly {β̂}m+1,m

i,j=1 = βij where the yet

undefined last columns has zero entries. Because the considered ODE systems are not necessarily

one dimensional, we define:

y =
(
u
(1)
1 , u

(2)
1 , . . . , u

(m+1)
1 , u

(1)
2 , . . . , u

(m+1)
d

)⊺
ym+1 =

(
u
(m+1)
1 , u

(m+1)
2 , . . . , u

(m+1)
d )⊺

v = I ⊗ v

α = I ⊗ α̂

β = I ⊗ β̂

where I is the d dimensional identity matrix and the symbol ⊗ denotes the Kronecker product:

A⊗B :=


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

an1B an2B · · · annB


where A ∈ Rn×n and the size of B is arbitrary but fixed. Note that y depends on n, but we omit

this from the notation. Using the above defined notations, we can rewrite (3.11a)-(3.11b) as

y = vun +αy +∆tβf(y) (3.14)

un+1 = ym+1.

If I −α is invertible, then we can rewrite (3.14) as

y = (I −α)−1vun +∆t(I −α)−1βf(y)

= eun +∆t(I −α)−1βf(y)

where we have used that (I −α)−1v = e (i.e. (3.12)). We will denote

β0 := (I −α)−1β. (3.15)

A Runga-Kutta methods in vector notation with

A =

(
I ⊗A 0

I ⊗ b⊺ 0

)
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is

y = eun +∆tAf(y)

so, in the case if I − α is invertible, then the SSP method is equivalent with the Runge Kutta

method A = β0. To exclude the cases when I −α is singular, we define

Definition 3.3. A method is said to be zero-well defined if for the IVP u̇ = 0 with initial value

u(0) = u0 the method has a unique solution.

Now, if we assume that the method is zero-well defined, then (3.14) for the IVP u̇ = 0; u(0) = u0 is

(I−α)y = vun. Since (I−α)−1v = e (i.e. (3.12)), then I−α is invertible under the assumption of

zero-well definiteness by contradiction. Note that Runge-Kutta methods are all zero-well-defined

since for the IVP in the definition we have y = eun. It should be noted here that in the liter-

ature, assumption (3.12) is generally called ’consistency assumption’, but despite its name, it is

not sufficient for the consistency of its RK representation. This can be easily seen from the Taylor

expansion.

It is clear that the Butcher-form of the method can be considered as a unique representation

of the method but the SSP coefficient is not apparent. To find the SSP coefficient, one uses a third

representation, called Canonical Shu-Osher form. For this, consider a particular representation of

the method in its modified Shu-Osher for which it holds that

αij

βij
= const = r (∀i, j) (3.16)

i.e. αr = rβr, where we use the indices .r to show that it depends on r. In this case, (3.14) is

y = vrun +αr

(
y +

∆t

r
f(y)

)
. (3.17)

This is the so-called Canonical Shu-Osher form. To see which Runge-Kutta methods can be

represented in this form with a given r we have to write down the relationship between β0 and

(αr,βr):

(I − rβr)βr = β0 =⇒ βr = β0(I + rβ0)
−1

=⇒ αr = rβ0(I + rβ0)
−1

vr = (I −αr)e =⇒ vr = (I + rβ0)
−1e

(3.18)

if (I + rβ0) is non-singular. We have used (3.15), (3.16) and that the method is consistent. It is

clear that in this case we have

C(αr,βr) = r.

In summary, to calculate the SSP coefficient for a given RK method, we have to check whether for

a given r > 0 it holds that

αr,vr ≥ 0 and (I + rβ0) is nonsingular (3.19)

where βr ≥ 0 is omitted because of (3.16) and αr,βr,vr are defined as in (3.18). The ≥ relations

meant elementwise. It turned out that such r-s for which (3.19) hold are closed sets in the form

[0, rmax] and the largest such r (rmax) is the SSP coefficient for the given RK method[12, Thm. 3.2.].

The importance of the former is that one can use bisection to approximate the value rmax = C for

a given RK method.
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It should be noted that the conditions (3.19) are written in numerous but equivalent forms in the

literature. One of the reason is that instead of using the Shu-Osher form, one can give conditions for

the contractivity preservation of different test equations by the positivity of the coefficients in their

Taylor expansions at given points (the test problems are the scalar problems u̇ = λu, u̇ = λ(t)u, and

the vectorial linear problems u̇ = L(t)u, where L(t) is a square matrix). This theory was developed

by Kraaijevanger where he defined the radius of absolute monotonicity of an RK method[13]. For

detailed comparison of the two theories see [14]. We point out that the SSP methods not only

preserve the positivity of the steps, but also of the internal stages (3.3a) of the RK method[14].

3.2.2 Necessity, bounds, sharpness of the SSP coefficient

It is of clear importance whether there exists a p-th order, s stage RK method with positive SSP

coefficient. Clearly, for both explicit and implicit methods, one has an upper bound based on

the general Runge-Kutta theory. To get an idea what the conditions (3.19) imply on the Butcher

coefficients, the following can be stated and proved:

Proposition 3.1 ([12]). Any Runge-Kutta method with positive SSP coefficient C > 0 has A ≥ 0,

b ≥ 0.

Proof. Given an RK method (A, b) we can rewrite it in its Canonical Shu-Osher form (3.17) for

all r ∈ [0, C], i.e. the conditions (3.19) holds, from which βr ≥ 0 is

β0(I + rβ0)
−1 ≥ 0,

using this for r = 0, we get the above conditions since β0 = A.

For DJ-irreducible methods1 b > 0 [12, Pg. 65]. Using this and additional relationship between

stage orders and order, one can show that for explicit methods with C > 0 we have p ≤ 4. It

was also shown that for implicit methods, one has the order condition p ≤ 6 from A ≥ 0. The

proofs can be found in [13] (Thm. 8.5., 8.6., 8.7.). Note that we did not give any conditions on the

number of stages, so the fourth order 4 stage methods have special interest. It can be shown, that

the classical RK4 method is the only (DJ irreducible) method with A ≥ 0, b ≥ 0[13, Thm. 9.6.].

Unfortunately, this method has C = 0. To see this, note that if C > 0, then one can choose small

enough r > 0 such that r < C and the Neumann series of (I+rβ0)
−1 exists (since for the existence

of the Neumann series for a matrix, one ’only’ needs that its spectral radius is strictly smaller than

one and taking the spectral radius and multiplying a matrix by a real scalar commutes). Then:

βr = β0(I + rβ0)
−1 = β0 − rβ2

0 + ... ≥ 0

Because β0 ≥ 0, one cannot have non-zero elements for β2
0 , where β0 does have, which clearly

implies that the same property is necessary for the RK coefficients A. This does not hold for a

classical RK4 method because multiplying a lower triangular matrix with itself ”shift down diag-

onally” the non-zero elements by one.

Another question, which arises, is the maximal SSP coefficient what a given order method can

possess. For low order - 1st,2nd - explicit methods, one can construct arbitrary large (integer) C
by considering more stages. For first order methods, it is clear that

1RK methods, for which the unnecessary stages which does not contribute to / does not influence explicitly or

implicitly the last stage u(m+1) = un+1 are omitted.

14



v̂ =



1

0

0
...

0

 ; α̂ =



0 0 · · · 0 0

1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
. . .

...

0 0 · · · 1 0


; β̂ =



0 0 · · · 0 0
1
m 0 · · · 0 0

0 1
m

. . . 0 0
...

...
. . .

. . .
...

0 0 · · · 1
m 0


is an m-th stage method with C=m. If One would consider the same scheme with smaller off-

diagonal elements in β̂, then the RK method would lose consistency [15]. For second order meth-

ods with s stages, the maximal attainable C is s − 1 [15]. To compare two same order methods

with different number of stages, one defines the efficient SSP coefficient Ceff = C
s (i.e. more

function evaluations are penalized). It was shown that for explicit methods Ceff ≤ 1, while for

implicit methods Ceff ≤ 2 [12]. We also point out that the computational cost of solving nonlinear

equations for implicit methods is not ’incorporated’ into Ceff and is generally more than twice the

computation for explicit methods; for this reason, implicit methods are less used.

As we have stated in (3.13) the condition

0 ≤ ∆t ≤ C∆tFE (3.20)

for a fixed SSP RK method holds for arbitrary convex functionals ∥.∥ and functions f . We have also

seen that it is generally strict in the sense that Ceff is small, so another important question is the

sharpness/necessity of the condition for different function classes and norms. One can construct

a function f and show that for some norm the condition (3.20) is necessary [12, Thm. 3.3.], but

it is clear that if one considers specific function classes, then the conditions can be weakened. For

example, if the considered function class is {f ∈ C1|f(u) ≥ c > 0; u ≥ 0}, then arbitrary explicit

RK method is unconditionally positive.

One popular way to expand the family of Runge-Kutta methods with non-zero SSP coefficient

is by letting the values of β to be negative in (3.5) and in (3.11a). In this case one also requires

that for some f̂ we have the forward Euler condition (3.7) with ’backward stepping’:

∥u−∆tf̂(u)∥ ≤ ∥u∥, (∀u ∈ Rd, ∆t ≤ ∆tFE). (3.21)

Clearly in this case the derivation of strong stability preservation in (3.8) holds if for the negative

βij values we use the condition (3.21). Then the apparent SSP coefficient is:

C(α,β∗) =

min
i,j

αij

|βij | if all αij , vi are non-negative

0 otherwise

Where the .∗ represents that we let negative βij values with the function f̂ . Because we still want

our approximation to converge to the solution of the continuous problem, we have to choose f̂ in

a meaningful way. For hyperbolic PDEs, if we choose f̂ similarly as f but with opposite winding

(for the semi/spatial-discretisation), then both f and f̂ will approximate the original PDE. By

allowing this, one can get positive SSP coefficients for (some) methods with negative elements in

β. This is the case for some four stage fourth order methods. For example, the classical RK4

method can be written as
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v̂ =


1

0

0

0

 ; α̂ =


0 0 0 0 0

1 0 0 0 0
1
2

1
2 0 0 0

1
9

2
9

2
3 0 0

0 1
3

1
3

1
3 0

 ; β̂ =


0 0 0 0 0
1
2 0 0 0 0

− 1
4

1
2 0 0 0

− 1
9 − 1

3 1 0 0

0 1
6 0 1

6 0

 .

It can be easily checked that C(α,β∗) = 2
3 , but this representation (α,β∗) is not unique. The

above considered theory breaks down; namely, one cannot rewrite the RK4 method in the Canonical

Shu-Osher form (3.17). Therefore, the same question arises as before: is the above representation

optimal? (i.e. is C(α,β∗) maximal over the different representations?). Fortunately, it turns

out that one can study these methods (with negative βij-s) in a similar way as for positive βij-s

considered above, by studying, the RK method under some perturbation. For the concrete theory,

see [14]. The two problems with this is that the computational cost is more, because of the function

evaluations of f̂ and it is not clear how to construct f̂ for ODEs which are not semi-discretisations

of hyperbolic PDEs. The former was partially answered in [16] by using additive Runge-Kutta

and additive SSP Runge-Kutta methods in an unconventional way. We leave out the details, but

the result is that if f̂ = −f , then the method with negative βij values preserve positivity under

a different step-size restriction which depends in a non-linear way on the considered method, and

on the maximal step-sizes for which f and f̂ preserves its positivity.

3.3 SSP linear multistep methods

The general form of a k-step linear multistep method (LMM) for an autonomous ODE is:

un + α1un−1 + · · ·+ αkun−k = ∆t(β0fn + β1fn−1 + · · ·+ βkfn−k), n = k, k + 1, . . . (3.22)

where fn−k := f(un−k), where ∆t is the constant step size and uk is the approximation of u(∆tk).

Unlike for the RK methods, the consistency conditions of the LMM methods can easily be found

from the Taylor expansions, which are
∑k

j=0 αj = 0 and
∑k

j=0 jαj+
∑k

j=0 βj=0, where α0 = 1. All

linear multistep methods are mass-preserving/conservative, which follows directly from remark 2.1.

One can use the idea of considering convex combinations of forward Euler steps -introduced above

for Runge-Kutta methods - for linear multistep methods to get positivity preservation: suppose

that for a given f under the discretisation of the explicit Euler method is conditionally positive i.e.

0 ≤ u+∆tf(u), ∀u ∈ Rn
+, ∀∆t ≤ ∆tFE . (3.23)

Then an explicit LMM can be rewritten as:

un =

k∑
j=1

(
− αjun−j + βj∆tf(un−j)

)

=

k∑
j=1

−αj

(
un−j + cj∆tf(un−j)

)

where cj :=
−βj

αj
. The positivity holds for arbitrary starting procedures if αj ≤ 0, βj ≥ 0 and

cj∆t ≤ ∆tFE , j = 1, . . . , k i.e.

∆t ≤ C∆tFE , C := min
j=1,...,k

αj

−βj

where C is the SSP-coefficient of the LMM. Clearly, the SSP LMM representation is unique (α0 = 1

fixed). Similarly for SSP RK methods, this gives severe restrictions for consistent (zero stable)
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methods; it was shown in [12] that the maximal attainable order is strictly smaller than the number

of steps:

Theorem 3.1 (Conditions for the order of SSP LMM, [12]). For p ≥ 2, there is no p step,

order p SSP explicit linear multistep method - considering arbitrary starting procedure - with all

non-negative βi coefficients.

This can be seen for second order methods, where from the order conditions we have

α1 = ξ − 2, α2 = 1− ξ, β1 =
ξ

2
+ 1, β2 =

ξ

2
− 1

where for zero-stable methods ξ is arbitrary in the interval (0, 2]. Under the SSP conditions

αj ≤ 0, βj ≥ 0, j = {1, 2}, we get that ξ = 2, but in this case C := min{ 1
2 , 0} = 0, so there exist no

second order 2-step LMM with positive SSP coefficient. In [11] and later in [17] the monotonicity

and positivity preservation was analysed in the case if one fixes the starting procedure. They

showed that the above theorem does not hold. To see this suppose we use the explicit Euler

method as the starting procedure, i.e.

u1 = u0 +∆tf(u0). (3.24)

By introducing a constant θ, and adding and subtracting θun−1, we get:

un = −(α1 − θ)un−1 + β1∆tf(un−1) + θun−1 − α2un−2 + β2∆tf(un−2).

Using the method to rewrite θun−1 and adding and subtracting θ2un−2 we get:

un =− (α1 − θ)un−1 + β1∆tf(un−1)− (α2 + θα1 + θ2)un−2 + (β2 + θβ1)∆tf(un−2)+

+ θ2un−2 + θ(−α2un−3 + β2∆tf(un−3)).

Similarly adding and subtracting θjun−j for j = {3, . . . , n−3} and using the explicit Euler starting

procedure (3.24):

un =− (α1 + θ)un−1 + β1∆tf(un−1)

+

n−1∑
j=2

θj−2
(
− α2 − θα1 − θ2)un−j − (β2 + θβ1)∆tf(un−j)

)
+ θn−2

(
(θ − α2)u0 + (θ + β2)f(u0)

)
.

(3.25)

If θ > 0 and all the coefficients are positive in (3.25), then positivity preservations holds under the

step-size condition 0 < ∆t ≤ C(θ)∆tFE , where

C(θ) := min

{
A(θ), B(θ), C(θ)

}
:= min

{
−α1 − θ

β1
,
(1− θ)(θ − α2)

β2 + θβ1
,
θ − α2

θ + β2

}
where we have used that α1 = −1 − α2. For 0 < ξ ≤ 2, A(θ), B(θ), C(θ) are monotonic

decreasing functions of θ. The minimal θ such that the coefficients in (3.25) are positive is

θmin = max{α2,−β2

β1
,−β2} = −β2. Then the optimal C(θ) is

max
θ

C(θ) = min
{
A(θmin), B(θmin), C(θmin)

}
=

B(θmin) =
ξ

2−ξ if 0 < ξ ≤ 2
3

A(θmin) =
2−ξ
2+ξ if 2

3 ≤ ξ ≤ 2
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From the considered two-step methods the SSP coefficient is maximal, when ξ = 2
3 and it is C = 1

2 .

In this case the boundedness property (3.10) also holds, since the coefficients in (3.25) add up to

1 (θ = −β2). In the literature, this method is called extrapolated BDF2 method:

un =
4

3
un−1 −

1

3
un−2 +∆t

(
4

3
f(un−1)−

2

3
f(un−2)

)
. (3.26)

Considering the barriers of SSP LMM methods, it can be shown that these methods does not suffer

from order barriers - unlike RK SSP methods - so there exist an SSP LMM method with C > 0.

In the case of arbitrary starting procedures there is a barrier considering Ceff , namely for explicit

methods Ceff ≤ 1, while for implicit methods Ceff ≤ 2[12]. We point out that we had the same

conditions for SSP RK methods.

3.4 Modified Patankar-Runge-Kutta methods

A popular family of methods which possess unconditional positivity and conservativity for a large

class of systems are the Modified-Patankar-Runge-Kutta (MPRK) methods. These methods are

based on the so-called Patankar-trick introduced in [18], but modified in the way that not only the

source term is changed. These methods can be used for positive and fully conservative production-

destruction systems.

Definition 3.4. We call an ODE production-destruction system (PDS) if it can be represented in

the following form:

u̇i =

d∑
j=1

pi,j(u)−
d∑

j=1

di,j(u), (i = 1, . . . , d) (3.27)

where di,j , pi,j : Rd
+ → R+ ∪ {0} are functions such that di,j(u) = pj,i(u) ≥ 0; ∀i, j = 1, ..., d; ∀u ∈

Rd
+. The PDS is positive if ∀u0 := u(0) > 0 initial value, the solution positive u(t) > 0, (∀t > 0)

and fully conservative if pi,i = di,i = 0, i = 1, . . . , d.

In the case of chemical reactions ui(t) is the concentration of the i-th constituent, pi,j(u) is the

rate at which the j-th constituent transforms into the i-th component, while dij(u) is the rate at

which the i-th constituent transforms into the j-th component. The first order MPRK method -

originally introduced in [19] - called the modified-Patankar-Euler scheme has the following form:

un+1,i = un,i +∆t

d∑
j=1

(
pij(un)

un+1,j

un,j
− dij(un)

un+1,i

un,i

)
, (i = 1, . . . , d) (3.28)

One can see that the method is the explicit-Euler method modified by step dependent weights in

the form of
un+1,j

un,j
. These weights make the method semi-implicit, which means that the method

can be rewritten in the matrix-vector product form

Aun+1 = un, where (3.29a)

aii = 1 +∆t

d∑
k+1

di,k(un)

un,i
, i = 1, . . . , d (3.29b)

aij = −∆t
pi,j(un)

un,j
, i, j = 1, . . . , d, i ̸= j (3.29c)

where we have used that the original system is fully conservative (i.e. pi,i = 0, i = 1, . . . , d).

Because the matrix A := {aij}di,j=1 does not depend on any of the coordinates of un+1, it can

be solved by any system of linear equations solver. To see that the MPE possess the desired

properties, we state the following
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Theorem 3.2 ([19]). The modified-Patankar-Euler scheme (3.28) used for fully conservative and

positive PDS (3.27) is unconditionally positive and fully conservative.

Proof. It is fully conservative since

d∑
i=1

(
un+1,i − un,i

)
= ∆t

d∑
i=1

( d∑
j=1

pi,j(un)
un+1,j

un,j
−

d∑
j=1

di,j(un)
un+1,i

un,i

)

= ∆t

( d∑
i,j=1

pi,j(un)
un+1,j

un,j
−

d∑
i,j=1

pj,i(un)
un+1,i

un,i

)
where we have used that pi,j = dj,i.

To show the positivity, first note that the off-diagonal elements (3.29c) in the matrix A are nega-

tive, while the diagonal elements (3.29b) are strictly positive. It is sufficient to show that A is a

nonsingular M matrix, because then A−1 ≥ 0. Then since A−1 is also nonsingular and non-negative

at least one element in each row has to be positive then for un ≥ 0, un ̸≡ 0 we have un+1 ≥ 0,

un+1 ̸≡ 0. Now we will show that A is a nonsingular M-matrix. Note that A is strictly diagonally

dominant since for arbitrary i ∈ {1, . . . , d}:

|ai,i| = 1 +∆t

d∑
k=1

di,k(un)

un,i
d > ∆t

d∑
k=1

pk,i(un)

un,i
=

d∑
k=1,k ̸=i

(−ak,i) =

d∑
k=1,k ̸=i

|ak,i|.

Since A is strictly diagonally dominant and with g := et = (1, . . . , 1)t ∈ Rd we have Ag > 0

(elementwise), then the matrix A is an M-matrix by definition.

A second-order modified-Patankar-Runga scheme was introduced in [19], which was later general-

ized in [20] in the following way:

y(1) = un

y
(2)
i = un,i +∆tα

d∑
j=1

(
pij(y

(1))
y
(2)
j

y
(1)
j

− dij(y
(1))

y
(2)
i

y
(1)
i

)

un+1,i = un,i +∆t

d∑
j=1

[((
1− 1

2α

)
pij(y

(1)) +
1

2α
pij(y

(2))

)
un+1,j

(y
(2)
j )

1
α (y

(1)
j )1−

1
α

−
((

1− 1

2α

)
dij(y

(1)) +
1

2α
dij(y

(2))

)
un+1,i

(y
(2)
i )

1
α (y

(1)
i )1−

1
α

]
where i = 1, . . . , d. The above scheme is called MPRK22(α) method, where α ≥ 1

2 . The name

comes from the result such that all second order two stage RK methods has the following Butcher-

tableau

0

α α

1- 1
2α

1
2α
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Notice that for α = 1 there is a simplification to

y(1) = un

y
(2)
i = un,i +∆t

d∑
j=1

(
pij(y

(1))
y
(2)
j

y
(1)
j

+ dij(y
(1))

y
(2)
i

y
(1)
i

)

un+1,i = un,i +∆t

d∑
j=1

[(
1

2
pij(y

(1)) +
1

2
pij(y

(2))

)
un+1,j

(y
(2)
j )

−
(
− 1

2
dij(y

(1)) +
1

2
dij(y

(2))

)
un+1,i

(y
(2)
i )

]
Similarly, the following holds

Theorem 3.3 ([20]). The MPRK22(α) scheme used for fully conservative and positive PDS (3.27)

is second order, unconditionally positive and fully conservative with unconditionally positive and

fully conservative stage values.

We won’t reproduce the proof, because the positivity and conservativity is identical with the proof

used for the MPE scheme, while we omit the proof of the consistency order by its length. In [21]

third order MPRK methods were introduced. These methods are based on the 3 stage third-order

explicit RK methods. Interestingly, similarly for SSP theory, to ensure the positivity of the meth-

ods, a necessary condition is that A ≥ 0 and β ≥ 0. The derived MPRK methods are called

MPRK43(α, β) schemes, because one needs to solve an additional linear system.

These methods are widely used for ODE models of chemical reactions, where the positivity and

conservativity of the constituents hold by the principles of law of conservation of mass. They

can be also used for diffusion-convection-reaction systems, where one, after semi-discretisation and

splitting uses one of the MPRK method for the reaction part. Such systems can be found for ex-

ample in geobiochemical marine modelling[19]. Apart from the preservation properties, the scheme

can be applied to stiff systems too[19]. Numerous numerical schemes have been modified by the

Patankar-trick - the explicit scheme is weighted by some implicit stage - to get unconditionally pos-

itive and conservative schemes. In [22] two stage second order RK SSP methods in their Shu-Osher

representation (3.5) were modified in such way. The main advantage of this scheme is that one can

easily modify it for the semi-discretisation of convection-reaction systems, where the positivity of

the convection part is preserved under the assumption that it is preserved for the explicit Euler

method (instead of using splitting and solving the two part separately). By this, the positivity of

the semi-discretised system is ’only’ conditionally preserved, but the reaction can be stiff. In [23]

third order SSP MPRK schemes were introduced.

3.4.1 Stability questions, problematic behaviours

The absolute stability of the MPRK methods has been recently studied in [24] and in [25]. The

reason is that the usual Dahlquist test equation u̇ = λu cannot be used because it is not conservative

and even for linear systems, the resulting iteration un+1 = g(un) is nonlinear. For these reasons,

the following test equation was considered: u̇ = Au where the matrix A ∈ Rd×d has the following

properties:

• The matrix A is a Metzler matrix (i.e. the off-diagonal elements are positive), to ensure the

positivity of the continuous system (see theorem 2.3).

• The matrix A possesses at least one linear invariants i.e. there exists n1, . . . ,nk ∈ Rd − {0}
such that nt

iA = 0, to ensure that ni ·u(t) = ni ·u(0). Note that the conservativity is a linear
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invariant with n = e. Also note that this implies that n1, . . . ,nk are (left) eigenvectors of

the eigenvalue λ = 0.

• All non-zero eigenvalues of A has negative real part and the eigenvalues with zero real part

have Jordan block size 1, to ensure the (Lyapunov) stability of the system.

We will denote the generated map by g : Rd → Rd (i.e. un+1 = g(un)). By the nonlinear nature

of the generated map g and since the linearization of g around the steady state is non-hyperbolic,

center manifold theory was used. It was shown [25, Thm. 2.9], that despite its non-hyperbolic

nature, the stability is determined by the eigenvalues of the linearized map, namely the stability

is preserved if the eigenvalues which are not one, are smaller than one. This works, since after

affine transformation (one of) the central manifold is locally the zero function, which simplifies the

reduced system considerably. It was also shown that since MPRK preserves all linear invariants

the stability in the above case is asymptotically stable in the subspace defined by the invariants.

Two problematic behaviour of the MPRK schemes were discussed in the literature. One is that

in some cases, MPRK scheme can give rise to spurious oscillatory behaviour even for linear sys-

tems[26]. This is not specific to MPRK schemes; it is well known that linear schemes can give

rise to spurious oscillatory behaviour also. In [26],[27] that for two dimensional systems the non-

oscillatory behaviour can be guaranteed for small enough step-sizes depending on the scheme. The

other problematic behaviour is the order reduction for initial values close to 0, which was analysed

for linear models in [26].

3.5 Regularity of numerical methods, stability of equilibria

Another question considering the dynamics under the discretisation by different numerical methods

is whether the continuous model has the same equilibria as the discrete map (3.1). We will see

that this is not the case for many linear methods. We denote the set of the equilibria of (2.1) and

of (3.1) as F and F∗
∆t, respectively. (F∗

∆t := {u∗ ∈ Rn : Φf,∆t(u
∗, . . . , u∗) = u∗}). The question

was first studied in [28].

For LMMs, if we suppose that u∗ ∈ F∗
∆t, then by consistency we have that

∑
ak = 0 and

∑
bk ̸= 0,

so f(u∗) = 0 i.e. u∗ ∈ F . On the other hand, uk ≡ u∗ ∈ F implies Φf,∆t(u
∗, . . . , u∗) = u∗ by con-

sistency. In conclusion, for (consistent) linear multistep methods F = F∗
∆t for all ∆t > 0. It is also

clear that an irregular RK method as a starting procedure of an LMM does not alter the equilibria.

For Runge-Kutta methods, if u∗ ∈ F , then Φf,∆t(u
∗) = u∗ holds with the choice ki = 0 for all i =

1, . . . , s. So F ⊂ F∗
∆t holds by the supposed uniqueness of the solution. Hairer et al. gave condi-

tions on the RK methods for F = F∗
∆t and they named these methods regular [29]. They showed

that for regular (s-stage) methods one can construct an s−1 stage RK method which preserves the

regularity (Thm. 3.). From the exact construction, it follows easily that the only explicit regular

method is the explicit-Euler. This construction also gives an algorithm to determine the regularity

of any RK method. For methods of order p ≥ 2, they also showed that a necessary condition for

regularity is that the trace of the matrix A is 1
2 (this is also sufficient for s = 2) and there is no

regular A-stable method with order larger than 4 (Thm. 7.,11.). One advantage of the implicit

RK methods, that is the order compared to the number of stages is large, does not hold for regular

methods because:

Theorem 3.4 ([29], Barriers of regular RK methods). The order p of a regular s stage RK method
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satisfies

p ≤ s+ 2 if s is even

p ≤ s+ 1 if s is odd

It should be noted that regularity does not imply the non-existence of spurious periodic solutions, a

well-known example for the latter is the period-doubling behaviour of the explicit-Euler discretised

logistic equation[30]. The full characterization for LMM for the existence of spurious 2-cycles are

known, but in general these conditions are strict, so one puts some condition on the function f to

get less strict conditions[31]. This shows the well-known fact that one has to choose a preferred

numerical method (partly) in a problem-driven way. We also want to point out, that conditional

properties are sufficient, since the stability is also conditional for most of the methods.

To obtain similar dynamics for the numerical maps, it is also required that the asymptotic be-

haviour of the equilibria of (3.1) is the same as that of the equilibria of the continuous model. This

holds for the limit ∆t → 0 by convergence, but might not hold for arbitrary ∆t > 0.

For discrete maps, one can define the stability of an equilibrium as it was done in the contin-

uous case (def. 2.1) with straightforward alteration. For simplicity we define it for a general

scheme in the form

un+1 = un +∆tF∆t(un)

The explicit Euler method and the RK method is in this form. Note that in this case u∗ is an

equilibrium if and only if F∆t(u
∗) = 0. To find the stability of an equilibrium, one uses a similar

technique as in (2.2)-(3.32) for the continuous system. Namely, we perturb the fixed point u∗ of

the discrete map yn = un − u∗, which has a Taylor expansion at the equilibrium u∗

yn+1 = un − u∗ +∆tF∆t(yn + u∗) = yn +∆tF∆t
′(u∗)yn + r(yn)

Where we have used that F∆t(u
∗) = 0 and F∆t is sufficiently smooth. For small enough yn, the

linear part dominates, so we obtain the approximate linear system:

yn+1 =
(
1 + ∆tF ′

∆t(u
∗)
)
yn (3.32)

It is clear that for one dimensional systems, the linearised system has an asymptotic stable equi-

librium if |
(
1 + ∆tF ′

∆t(u
∗)
)
| < 1 and unstable if it is strictly larger than one. Similarly, for d

dimensional systems, it is asymptotically stable if all eigenvalues of 1 + ∆tF ′
∆t(u

∗) are inside the

unit disk, while unstable if there is an eigenvalue has strictly larger modulus than one. Note that,

we excluded that case, when an eigenvalue lie on the unit circle. In this case the equilibrium of the

nonlinear system is called non-hyperbolic, and we have to consider the larger order terms of the

Taylor expansion. It is clear that for the explicit Euler method F∆t = f , so if λ is an eigenvalue

of f ′(u∗), then 1 + ∆tf ′(u∗) is an eigenvalue for the method.

From the absolute stability theory it is clear that the preservation of equilibria is a step-size and

problem dependent question. The existence of irregular RK methods motivates and complicates

this question, even in the case if the spurious equilibrium is unstable, because it may happen that

this unstable equilibrium has an unstable manifold which connects to infinity, so the boundedness

property of the solutions of the IVP can get lost[31].
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4 Epidemiological models

In the following two subsections, we will introduce and analyse two epidemiological compartmental

models. The first is a more simple model, where the total population is constant, while this does

not hold for the second model.

4.1 conservative model

Vertical transmission occurs when a newborn (or unborn) is infected via its parents, while horizontal

transmission is when a person is infected by physical contacts or through droplets etc. Diseases

where vertical transmission can occur are AIDS, Hepatitis B, herpes simplex virus, Keystone

virus etc. It should be noted that one can define vertical and horizontal transmission for animal

and plant diseases similarly. The following model is an extension of the Kermack-McKendrick

model (1.1). To incorporate the possibility of vertical transmission, one has to consider a model

with demography/changing population. The population is considered to be asexual or it is only

the female subpopulation. The immunity is considered to be non-permanent and a fraction of

the newborn population gets vaccinated (or every newborn gets vaccinated but the vaccine is

imperfect). It is also assumed that the vaccine does not create immunity in those born of infected

parents and there is no death by the disease. Under these assumptions, the model is

dS

dt
= −kSI + (1−m)b(S +R) + pb′I − rS + φR (4.1a)

dI

dt
= kSI + qb′I − r′I − vI (4.1b)

dR

dt
= vI − rR+mb(S +R)− φR (4.1c)

where S, I,R denotes the susceptible, infected and recovered subpopulation, respectively. The

above model was introduced in [2] and should be considered as some test model, since there are

better - though more complex - models for the above mentioned diseases. A flowchart can be found

in 1. The parameters are strictly positive and they denote the following:

Parameters

b Birth rate of uninfected individuals

b′ Birth rate of infected individuals

r Death rate of uninfected individuals

r′ Death rate of infected individuals

v Recovery rate

φ Rate of immunity loss

q ∈ (0, 1) Rate of vertical transmission q + p = 1

m ∈ (0, 1) Fraction born vaccinated (or vaccine effectiveness)
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Figure 1: Flowchart of the conservative epidemiological model (4.1a):(4.1c)

We will denote the total population at time t ≥ 0 as N(t). If b = b′ and r = r′, then the population

remains constant, we will assume this with N ≡ N0 = 1 from so on, but the calculations can be

easily carried out to other or arbitrary N0. We can rewrite the system in the following reduced

form:

dS

dt
= −kSI + (1−m)b(N0 − I) + pb′I − rS + φ(N0 − I − S) (4.2a)

dI

dt
= kSI + qb′I − r′I − vI (4.2b)

We denote the biologically feasible region for the above system as Ω∗ = {(s, i) ∈ R2 | 0 ≤ s, i ≤ 1},
which is positively invariant since the positivity follows from theorem 2.3 and the boundedness

from the constant population. The solutions with initial values from Ω∗ exists for all t ≥ 0 by the

positive invariance of Ω∗ and by the system (4.2a)-(4.2b) being in C1 by its polynomial structure.

The Disease-free equilibrium can be calculated by letting LHS in (4.2a)-(4.2b) be zero and I = 0:

E0 := (S0, I0) =

(
(1−m)b+ φ

φ+ b
, 0

)
while the endemic equilibrium can be calculated by letting LHS in (4.2a)-(4.2b) be zero:

E∗ := (S∗, I∗) =

(
pb′ + v

k
,
((1−m)b+ φ)k − (b+ φ)(pb′ + v)

(φ+ (1−m)b+ v)k

)
(4.3)

The Jacobian of (4.2a)-(4.1b) at the disease free equilibrium E0 is(
−r − φ −kS0 − (1−m)b+ pb′ − φ

0 kS0 − pb′ − v

)
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Thus the system is asymptotically stable if the eigenvalues are negative i.e.

−r − φ < 0 and (4.4)

kS0 − pb′ − v < 0 (4.5)

where the first condition always holds and the second condition is equivalent with

R0 := k
(1−m)b+ φ

(φ+ b)(pb′ + v)
< 1

where R0 is called the Basic Reproduction Number. From (4.3), we can see that this is equivalent

with that there is no infected subpopulation (since I∗ < 0), while when R0 > 1, then there is an

equilibria in the positive orthant (I∗ > 0).

The proof of the global stability of E∗ can be found in [4]. We simplified the proof to omit

the graph-based arguments (Lemma 2.2.(a)).

Theorem 4.1. The endemic equilibrium (4.3) of the system (4.1a)-(4.1c) is GAS (within Ω∗).

Proof. One can rewrite the system (4.2a)-(4.2b) as:

ż = F (z) := diag(z)(e+Az) +Bz + c (4.6)

where z = (S, I) and

A =

(
0 −k

k 0

)
;B =

(
0 (m− 1)b+ pb′ − φ

0 0

)
; e =

(
−(b− φ)

−(v − pb′)

)
; c =

(
(1−m)b+ φ

0

)

and denote b(z) := Bz + c. Let E∗ = z∗ > 0 (element-wise), so F (z∗) = 0 = diag(z∗)(e + Az∗) +

Bz∗ + c. After rearranging to e, we get that

e = −Az∗ − diag(1/z∗)b(z∗)

After the substitution of e to the ODE 4.6:

ż = diag(z)

(
A+ diag(1/z∗)B

)
(z − z∗)− diag(z − z∗)diag(1/z∗)b(z). (4.7)

We define the Lyapunov function

V (z) :=

d∑
i=1

wi

(
zi − z∗i − z∗i ln

zi
z∗i

)
(4.8)

where wi > 0, i = 1, . . . , d are real constants. So V (z∗) = 0 and V maps from the strictly positive

quadrant to R+ (see fig 2). Differentiating V alongside the solution of (4.7) we have

V̇ (z) = (z − z∗)⊺WÃ(z − z∗)−
d∑

i=1

wi
bi(z)

ziz∗i
(zi − z∗i )

2 (4.9)

where Ã := A+ diag(1/z∗)B and W := diag(w1, . . . , wd) strictly positive matrix. Now, if we can

choose W such that ÃW is antisymmetric, then (4.9) simplifies to

V̇ (z) = −
d∑

i=1

wibi(z)

ziz∗i
(zi − z∗i )

2.

Since in our case

Ã =

(
0 k[(m−1)b−φ−v]

pb′+v

k 0

)
(4.10)
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where ã12 < 0 since all parameters are positive and m ∈ (0, 1]. Thus we can choose W :=

diag(1,−1/ã12) > 0 to make ÃW antisymmetric.

If we assume that b(z) ≥ 0 - which holds in our specific case - then V̇ (z) ≤ 0 i.e. z∗ is stable

Ω∗. To show that the stability is asymptotic in Ω∗,thus z∗ is GAS, we use the LaSalle invariance

principle (Thm. (2.2)). For this, — denote E := {z ∈ Ω|V̇ (z) = 0}, and the largest invariant

subset of E by M . We show that M is the singleton {z∗}. Since b1 > 0, we must have z1 = z∗1 for

the solution which are in M , which implies that ż1 = 0. Using this for the equation (4.7), we get

that for the solutions in M , it must hold that ã12(z2 − z∗2) = 0, and since ã12 ̸= 0, it implies that

we also must have z2 = z∗2 . In other words M = {z∗}, and the global asymptotic stability follows

by the LaSalle invariance principle (Thm. (2.2)) since the solutions starting in Ω∗ stay there by

the positive invariance of the set, which implies that they are also bounded.

Figure 2: Left: The Lyapunov function (4.8) for some specific values and the phase portrait. Right:

The contours of the Lyapunov function, its gradient and the vector field specified by the system

(4.1a)-(4.1c). From the figure, it can be seen that the angle between the gradient of V and the

vector field f is always obtuse implying V̇ (z(t)) ≤ 0

4.2 Non-conservative model

In 2020, Yang and Wang proposed the following model to investigate the early days of the epi-

demic of COVID-19 in Wuhan, China, with incorporation of the possibility that the environment

is a possible transmission route (besides the infected people)[32]. The reason for including the

environmental reservoir as a possible transmission route was that officials received a positive result

when they collected samples from the Huanan Seafood Market area. In addition, some studies

suggest that the virus can survive on different surfaces such as metal, glass, and plastic for up to

9 days[33][34]. By fitting the outbreak data to the proposed model, they found that the environ-

mental reservoir had a significant contribution to the overall infection risk[32]. We have modified

their proposed model to include a class with infected but not infectious subpopulation. We have

also included a class with imperfect vaccination, which means that vaccinated people can become

infected also. We have made the following assumptions:
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1.A1 There is always an infected but non-infectious phase.

1.A2 Vaccination is imperfect w.r.t infectious individuals and the environment, but in general for

the vaccinated subpopulation to become infected at a lower rate.

1.A3 The imperfection of the vaccine is the same against infected people and the environment.

1.A4 A vaccinated person can lose immunity.

Our proposed model:

dS

dt
= Λ− βISI − βV SV +ΨC + δR− (χ+ µ)S (4.11a)

dE

dt
= βISI + βV SV + ρβICI + ρβV CV − (α+ µ)E (4.11b)

dI

dt
= αE − (γ + ω + µ)I (4.11c)

dR

dt
= γI − (µ+ δ)R (4.11d)

dC

dt
= χS − ρβICI − ρβV CV − (Ψ + µ)C (4.11e)

dV

dt
= ξI − σV (4.11f)

where S(t), E(t), I(t), R(t), C(t) are the number of susceptible, exposed (infected but not yet

infectious), infected (infectious), recovered, and vaccinated at time instance t, respectively. V

represents the environmental reservoir and is integrated to the model to include the possibility

that a susceptible individual may acquire the disease through the environment and not directly by

susceptible-infectious contacts. Note that there are no space variables, so the virus concentration

in the environment is assumed to be homogeneous (e.g. possibly a city). A flowchart can be

seen in 5. All the parameters are non-negative and their ”meaning” can be seen in the table. By

assumption [1.A2] ρ ∈ (0, 1).

Parameters

Λ Population influx

µ Natural death rate

ω Disease induced death rate

1/α Mean incubation period

γ Recovery rate

1/δ Mean-time spent in the recovered class

βI Transmission rate by infected individual

βV Transmission rate by the environmental reservoir

1− ρ Vaccine effectiveness

χ Vaccination rate of the susceptible class

Ψ Rate of the vaccination loss

ξ Rate of the exposed individuals contributing the virus to the environment

σ Rate of (natural and artificial) removal of the virus from the environment
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Figure 3: Flowchart of the non-conservative epidemiological model (4.11a)-(4.11f)

The disease free equilibrium (DFE) can be obtained by setting all the derivatives in (4.11a)-(4.11f)

to 0 and also E, I, V equal to zero (i.e. no infections in the population):

E0 := (S0, E0, I0, R0, C0, V0) =

(
Λ(Ψ + µ)

µ(Ψ + χ+ µ)
, 0, 0, 0,

Λχ

µ(Ψ + χ+ µ)
, 0

)
. (4.12)

For the endemic equilibrium when ρ ̸= 1, we get a quadratic function for I, When ρ = 0, the

function reduces to a linear function.

We will compute R0 for the system by the next generation approach introduced in 1.1: The

infection components for the model (4.11a)-(4.11f) are E, I, V . Rewriting the model as:

ẋi = Fi(x, y)− Vi(x, y) i = 1, 2, 3

ẏj = gj(x, y) j = 1, 2
(4.13)

where (x1, x2, x3) = (E, I, V ), (y1, y2, y3) = (S,R,C) where

F =

βESI + βV SV + ρβISI + ρβV SV

0

0

 V =

 (α+ µ)E

−αE + (γ + ω + µ)I

−ξI + σV

 .

The Jacobi matrices of the subsystems F and V at the disease free equilibrium (0, y0) = (0, 0, 0, S0, R0, C0)

F := F ′(X0) =

0 βIS0 + ρβIC0 βV S0 + ρβV C0

0 0 0

0 0 0

 V := V ′(X0) =

α+ µ 0 0

−α w + γ + µ 0

0 −ξ σ

 .

Then, the next generation matrix isK = FV −1, which is an upper triangular matrix, so its spectral

radius is

ρ(K) = R0 =
αβIS0

(α+ µ)(γ + ω + µ)
+

αρβIC0

(α+ µ)(γ + ω + µ)
+

βV S0ξα

(α+ µ)(γ + ω + µ)σ
+

ρβV C0ξα

(α+ µ)(γ + ω + µ)σ

= R1
0 +R2

0 +R3
0 +R4

0. (4.14)

It is important to check whether R0 can indeed be interpreted as some secondary infection. In our

case it can be interpreted as the expected number of secondary infections produced in compartment

E by an infected individual originally in compartment E:
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• R1 is the number of the secondary infections in the susceptible subpopulation of the initially

exposed individual in his/her infectious stage, as the ratio α
α+µ is the proportion of individuals

that progress from E to I and one infectious individual causes βIS0

w+γ+µ secondary infections in

the susceptible subpopulation through his/her infectious stage. Similarly, R2 is the number

of the secondary infections in the vaccinated subpopulation of the initially exposed individual

in his/her infectious stage.

• R3
0+R4

0 is the secondary infections by the environment from the initially exposed individual.

R3
0 is the fraction of initially exposed individuals that progress to V through I ( α

α+µ
ξ

w+γ+µ )

causing βV S0 number of new infections in 1
σ time. Similarly, R4

0 can be interpreted for the

vaccinated subpopulation.

Note that by setting ξ = 0, the environmental disease-route disappears.

We will show that there exist a positively invariant biologically feasible invariant set:

Ω =

{
S,E, I,R,C, V ∈ R+ : S + E + I +R+ C ≤ Λ

µ
;V ≤ ξ

ω

Λ

µ

}
⊂ R6

+

We will show this through the positivity and boundedness of the solutions.

Theorem 4.2 (The proposed epidemic model positive). The system (4.11a)-(4.11f) is positive in

the sense of (2.3).

Proof. Because the system (4.11a)-(4.11f) is clearly in C1 since it has a polynomial structure,

following theorem 2.3 the positivity is equivalent with the condition that the sign of the derivatives

at the boundary points are non-negative (i.e. the solutions are reflected from the boundary), that

is: fi(u1, . . . , ui−1, 0, ui+1, . . . , ud) ≥ 0, ∀i ∈ {1, . . . , d}. By this, the positivity of (4.11a)-(4.11f)

follows since the parameter values are non-negative. For example, for E:

βISI + βV SV + ρβICI + ρβV CV ≥ 0 (∀ S, I,R,C, V ∈ [0,∞))

Theorem 4.3 (Ω is positively invariant). The system (4.11a)-(4.11f) is positively invariant on Ω,

that is, with initial conditions in Ω the solutions stays in Ω for arbitrary t ≥ 0.

Proof. Let N(t) denote the total population at an arbitrary time instance t: N(t) := S(t) +

E(t) + I(t) + R(t) + C(t), which by assumption N(0) ≤ Λ
µ and from the system (4.11a)-(4.11f)

N ′(t) = Λ− µN(t)− ωI(t). By multiplying both sides by eµt, we get that

(N(t)eµt)′ = (Λ− ωI(t))eµt

After integration from 0 to t:

N(t) = N(0)e−µt + e−µt

∫ t

0

(
Λ− ωI(s)

)
eµsds

= N(0)e−µt +
Λ

µ
(1− e−µt)− ω

∫ t

0

I(s)ds

≤ N(0)e−µt +
Λ

µ
(1− e−µt) = e−µt

(
N(0)− Λ

µ

)
+

Λ

µ

≤ Λ

µ
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where we have used the non-negativity of I(t) and the parameter ω. Similarly, for V (t):

V ′(t) + σV (t) = ξI(t)

(eσtV (t))′ = eσtξI(t)

V (t) = V (0)e−σt + e−σtξ

∫ t

0

I(s)ds ≤ V (0)e−σt + e−σt ξ

σ

Λ

µ
(eσt − 1)

= e−σt
(
V (0)− ξ

σ

Λ

µ

)
+

ξ

σ

Λ

µ
≤ ξ

σ

Λ

µ

where besides the non-negativity of I, we also used its boundedness property.

Note that since Ω is positively invariant, the solutions of the system with initial values in Ω exist

for all t ≥ 0 (see section 2).

We also want to obtain stability conditions on the disease free equilibrium and the endemic equi-

librium(s). Van den Driessche et al. showed that the endemic equilibrium is asymptotically stable

under some assumptions on F ,V and g in (4.13)[5]. Most of these assumptions are not strict and

follows from the logic of endemic modelling. These conditions hold for our model, except assump-

tion A4, but that only used to show that V is an M-matrix, which holds (and can be checked

directly by calculating V−1). In conclusion, we can state the following theorem for our model:

Theorem 4.4 (Stability of the DFE). If R0 < 1, then the DFE E0 for the system (4.11a)-(4.11f)

is locally asymptotically stable, while for R0 > 1 it is unstable.

To get stability on the endemic equilibria, we use the following theorem from [35]:

Theorem 4.5 (Condition on backward bifurcation[35]). Consider the system of ODEs with pa-

rameter ϕ:
dx

dt
= f(x;ϕ), f : Rn × R → Rn, f ∈ C2(Rn × R),

where 0 is an equilibrium for the system for all ϕ. Assume that

CCS-A1 Denote A := Dxf(0, 0) = ( ∂fi
∂xj

(0, 0)). Assume that zero is a simple eigenvalue of A, and all

the other eigenvalues have negative real part.

CCS-A2 The matrix A for the eigenvalue 0 has a non-negative right eigenvector w and left eigenvector

v.

Let

a : =

n∑
k,i,j

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

b : =

n∑
k,i

vkwi
∂2fk
∂xi∂ϕ

(0, 0)

Then the local dynamics of the system is fully determined by the signs of a and b, specifically:

case i. a > 0, b > 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < ϕ << 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium;

case ii . a < 0, b < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is unstable; when 0 < ϕ ≪ 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;
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case iii. a > 0, b < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is unstable, and there exists a locally asymptotically

stable negative equilibrium; when 0 < ϕ ≪ 1, 0 is stable, and a positive unstable equilibrium

appears;

case iv. a < 0, b > 0. When ϕ changes from negative to positive, 0 changes its stability from stable

to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally

asymptotically stable.

This theorem is based on center manifold theory. From the assumptions, one can conclude that the

center manifold is one-dimensional. After decomposing the center manifold into parts in the center

and stable eigenspaces, the ’part’ in the center eigenspace c(t) can be approximated locally by
dc(t)
dt = a

2 c
2 + bϕc. By the above theorem one can check whether forward or backward bifurcation

occurs at R0 = 1. For forward bifurcation, the DFE and the endemic equilibrium changes their

stability, this is the case iv. While in the case of backward bifurcation, there is an interval for R0,

where a stable and unstable endemic equilibria coexist with a stable DFE. In the above theorem,

this is case i.

Theorem 4.6. The system (4.11a)-(4.11f) exhibits forward bifurcation at R0 = 1 if

δγ

(δ + µ)
>

(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ 2µ))

α(µ+Ψ+ χρ)
, (4.15)

otherwise it exhibits backward bifurcation at R0 = 1.

Proof. We will use the above theorem for the DFE E0, with the parameter ϕ := Λ. Λ∗ is the

critical value obtained from R0 = 1:

Λ∗ =
σµ(α+ µ)(γ + ω + µ)(Ψ + χ+ µ)

α(Ψ + µ+ ρχ)(σβI + ξβV )
.

The matrix of the linearized system at (E0,Λ∗) is

A :=



−(χ+ µ) 0 −βIS
∗
0 δ Ψ −βV S

∗
0

0 −(α+mu) βIS
∗
0 + ρβIC

∗
0 0 0 βV S

∗
0 + ρβV C

∗
0

0 α −(γ + ω + µ) 0 0 0

0 0 γ −(µ+ δ) 0 0

χ 0 −ρβIC
∗
0 0 −(Ψ + µ) −ρβV C

∗
0

0 0 ξ 0 0 −σ


where S∗

0 = Λ∗(Ψ+µ)
µ+χ+µ and C∗

0 = Λ∗χ
µ+χ+µ .

The matrix A has a simple zero eigenvalue, what can be checked directly. The remaining eigenval-

ues cannot be easily calculated, but we only need to check their signs. This can be done by using

the Hurwitz criterion (using the characteristic polynomial of the reduced system, i.e. without the 0

root). To check the signs of the determinant of the minor matrices of the Hurwitz matrix, I wrote

a simple (symbolic) MATLAB code. From the results, we can conclude that the other eigenvalues

have negative real parts.

One left eigenvector for the 0 eigenvalue is

v =

(
0, 1,

α+ µ

α
, 0, 0,

βv(α+ µ)(γ + ω + µ)

α(βV ξ + βIσ)

)
,

which has non-negative entries. After some algebraic manipulation, we get that one right eigen-

vector for the 0 eigenvalue is:

w =

(
ρ(α+ µ)(γ + µ+ ω)

α(µ+Ψ+ χρ)
+

Ψ + µ

µ(χ+ µ+Ψ)
q,

γ + ω + qµ

α
, 1,

γ

µ+ δ
,

χ

µ(χ+ µ+Ψ)
q,

ξ

ω

)T
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where

q :=
(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ µ))

α(µ+Ψ+ χρ)
− δγ

δ + µ
.

This vector has non-negative components that corresponds to zero entries in the DFE, which is

sufficient[35].

By taking into account the zero entries of the right eigenvector and the second derivative of f :

b = v2w3
∂f2
∂I∂Λ

(E0,Λ∗) + v2w6
∂f2

∂V ∂Λ
(E0,Λ∗)

= (v2w3βV + v2w6βI)
Ψ + µ+ ρχ

µ(χ+Ψ+ µ)

= (βV +
ξ

σ
βI)

Ψ + µ+ ρχ

µ(χ+Ψ+ µ)

> 0

and

a = 2v2

(
w1w3

∂f2
∂S∂I

(E0,Λ∗) + w1w6
∂f2

∂S∂V
(E0,Λ∗) + w5w3

∂f2
∂C∂I

(E0,Λ∗) + w5w6
∂f2

∂C∂V
(E0,Λ∗)

)
= 2v2(w1 + w5)(w3βI + w6βV ).

from which we can conclude that backward bifurcation occurs if and only if

δγ

µ(δ + µ)
<

(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ 2µ))

µα(µ+Ψ+ χρ)

i.e. a > 0.

Note that from (4.15) we can conclude that the parameters ξ, σ and the transmission rate βV ,

which directly determine the dynamics of the environmental reservoir, does not have any influence

on the type of the bifurcation.

5 Numerical Experiments

In this section, we investigate how the explicit Euler discretisation alters the qualitative proper-

ties, namely the positivity and the stability of the equilibria for the two epidemiological models

introduced in section 4. We have performed numerical experiments to see how these results change

when we use higher order SSP or modified-Patankar-Runge-Kutta methods.

We used the two stage second order SSPRK(2,2) method:

u(1) = un +∆tf(un)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tf(u(1))

(which has C = 1 and Ceff = 1), the second order extrapolated BDF2 linear multistep method

introduced in (3.26), the classical RK4 method introduced in (3.4) (which has C = 0, as we have

seen). For the conservative model, we have also used the MPRK22(1) method and to analyse the

SSP methods, we have also used the explicit Euler method. Note that the SSPRK(2,2) method is

the explicit trapezoidal rule with Butcher tableau

c A
bt

=

0

1 1

1/2 1/2
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from Runge-Kutta theory. While at first glance it may sound preferable to also use the SSP MPRK

methods for the non-conservative case, this would be problematic since these methods preserve the

’mass’ with the convection part [22, Thm. 2.2].

5.1 Conservative model case

Due to the low dimensionality of the conservative model, the explicit Euler discretisation can be

extensively analysed. To study the positivity under the explicit Euler discretisation, we rewrite

the system (4.1a)-(4.1c) in the so-called Graph-Laplacian form [36]

u̇ = A(u)u (5.1)

where A : Rd → Rd×d with the properties

1. aij(u) ≥ 0 for i, j = 1, . . . , d; i ̸= j, while aii(u) ≤ 0 for i = 1, . . . , d; ∀u ≥ 0.

2. The column-sums add to zero i.e. ∀u ≥ 0:
∑d

i=1 aij(u) = 0; ∀j = 1, . . . , d.

The system (4.1a)-(4.1c) in the graph Laplacian form with u = (S, I,R) is

A :=

−kI − r + (1−m)b pb′ φ+ (1−m)b

kI −v − pb′ 0

mb v −φ+ b(m− 1)

 (5.2)

Now, considering the positivity of the discretisation, one can state the following

Proposition 5.1. The explicit Euler discretised system is positively invariant in Ω if

∆t ≤ min

{
1

k + bm
,

1

v + pb′
,

1

φ+ b(1−m)

}
Proof. Suppose that (sn, in, rn) ∈ Ω, we want to prove that (sn+1, in+1, rn+1) ∈ Ω. It is clear,

that the Explicit Euler method is conservative, so one has to prove only the positivity. Using the

graph-Laplacian (5.2) form of the system, the explicit Euler discretisation reads

un+1 = un +∆tA(un)un = (I +∆tA(un))un

since un ≥ 0, it is sufficient that all elements of A(un) are positive. By the properties of A(un),

the off-diagonal elements are positive for any step-size, for a11(un), we require

1 ≥ −∆t(−kin −mb).

since in the model r=b. If−∆t(−kin−mb) ≤ 0, then it holds for arbitrary ∆t. If−∆t(−kin−mb) >

0, then for the positivity we require that

1

−(−kin −mb)
> ∆t.

One can ensure this by choosing ∆t such that 1
k+mb ≥ ∆t since the explicit Euler method preserves

conservativity unconditionally i.e. in ≤ 1; ∀n ∈ N. This ’technique’ can be used to the other

diagonal elements in a straightforward way to get the other conditions.

Note that the second and third value in 5.1 is sharp, in the sense that if we use any step size for

which, the condition does not hold, then there exist u0 ∈ R3
+, for which the numerical solutions

’steps out’ from R3
+, i.e. the positive orthant is not positively invariant.
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To see this, let us choose ∆t such that (v+pb′)∆t = 1+ε, where ε > 0. Then clearly the condition

in the theorem does not hold. The first step for the infectious compartment is

i1 = i0(1−∆t(v + pb′)) + ∆tki0s0

=

(
− ε+

(1 + ε)ks0
v + pb′

)
i0.

If we suppose that i0 ̸= 0, then i1 is negative if

s0 <
ε

1 + ε

v + pb′

k
. (5.3)

Since limε→0
ε

1+ε = 0, it is sharp for s0 = 0 with i0, r0 arbitrary.

For the third condition, if we choose the step-size as ∆t = 1+ε
φ+b(1−m) and use the conservativ-

ity property r0 = 1− s0 − i0, we get that r1 is negative if(
ε+

1 + ε

ε

v

φ+ b(1−m)

)
i0 +

(
ε+

1 + ε

ε

mb

φ+ b(1−m)

)
s0 < ε (5.4)

which is sharp for i0 = s0 = 0, r0 = 1− s0 − i0 = 1.

Considering its stability, the following can be showed

Proposition 5.2. The explicit Euler discretised system of (4.1a)-(4.1c)

1. has two, and no more equilibria, which coincides with the equilibria (DFE and EE) of the

continuous system. The DFE is positive if and only if R0 ≥ 1 while the EE is always positive.

2. The DFE equilibrium is conditionally locally asymptotically stable with step sizes ∆t < H1,

if R0 < 1 where

H1 = min

{
2

r + φ
,

2

(pb′ + v)(1−R0)

}
and unstable if ∆t > H1 or R0 > 1.

3. The endemic equilibria is locally asymptotically stable with step sizes ∆t < H2, if R0 > 1

where

H1 = min

{
∆t <

1

φ+ (1−m)b+ v
,

4(φ+ (1−m)b+ v)

(φ+ b)(pb′ + v)(R0 − 1) + (r + φ)(φ+ (1−m)b+ v)

}
and unstable if R0 > 1.

Proof. As it was shown in 3.5, the explicit Euler method preserves the equilibria of the contin-

uous method and no spurious equilibria emerges independently of the step-size. So we are done

with the first half of the proof. To show the second half, following the theory introduces in the

subsection 3.5, if λ is an eigenvalue of the linearized system at equilibrium point u∗, then 1+∆tλ

is an eigenvalue for the linearized system of the Euler method u + ∆tf(u). To have asymptotic

stability for the discretised system, it is sufficient that |1+∆tλ| < 1 for all the eigenvalues of f ′(u∗).

The eigenvalues of the considered system at the DFE are (4.4)-(4.5). The first eigenvalue im-

plies that for the asymptotic stability of the DFE, one must have

∆t ≤ 2

r + φ
.

Considering the second eigenvalue, it is asymptotically stable if

|1 + ∆t(kS0 − (pb′ + v))| ≤ 1
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which is equivalent with

|1 + ∆t(pb′ + v)(R0 − 1)| ≤ 1.

Hence, the other necessary conditions for the asymptotic stability are R0 ≤ 1 and

∆t ≤ 2

(pb′ + v)(1−R0)
(5.5)

and if R0 > 1 then the linearized system is unstable. Considering the endemic equilibria, the

linearized system issn+1

in+1

rn+1

 =

(
1−∆t

( (φ+b)(pb′+v)(R0−1)
φ+(1−m)b+v + r + φ

)
−∆t(v + (1−m)b+ φ)

∆t (φ+b)(pb′+v)(R0−1)
φ+(1−m)b+v 1

)
·

sn

in

rn

 .

Since the eigenvalues of the above matrix does not simplify, we use the Schur-Cohn conditions,

which states that a second order polynomial p(λ) = λ2 + λa1 + λa0 has its eigenvalues inside the

unit disk in the complex plane if and only if |a1| < 1 + a2 < 2 [37, Thm. 4.5], which for the above

matrix is

|trace(A)| < 1 + det(A) < 2.

Considering the case 1− det(A) > 0, it is

−1 <
(φ+ b)(pb′ + v)(R0 − 1)(1−∆t(φ+ (1−m)b+ v)

(r + φ)(φ+ (1−m)b+ v)
,

which holds if R0 > 1 and

∆t <
1

φ+ (1−m)b+ v
.

The condition 1− tr(A) + det(A) > 0 is equivalent with R0 > 1, while the condition 1 + tr(A) +

det(A) > 0 is equivalent with

p(∆t) := 4− 2∆t
( (φ+ b)(pb′ + v)(R0 − 1)

φ+ (1−m)b+ v
+ r + φ

)
+∆t2(φ+ b)(pb′ + v)(R0 − 1) > 0

The roots of the above polynomial can be calculated and one can give a sharp condition. A sufficient

condition can be given by linear approximation of the polynomial at ∆t = 0, where p(0) = 4. The

root of the linear approximant will be smaller than the root of the polynomial if R0 > 1 since in

that case the polynomial is monotonically decreasing at ∆t = 0 and convex. The condition reads

as

∆t <
4(φ+ (1−m)b+ v)

(φ+ b)(pb′ + v)(R0 − 1) + (r + φ)(φ+ (1−m)b+ v)
.

We point out that the explicit Euler discretisation also preserves the geometric property of the

DFE that, it is a stable node (since both eigenvalues are real) with reversed orientation when

det
(
1 + ∆tf ′(u∗)

)
< 0. For the definitions of the above, see [7]. We can compare the conditions

for the positivity from prop. 5.1 with the conditions for the stability for the DFE from 5.2 since

they are sharp. Since
2

R0 − 1
> 1

is equivalent with R0 < 3 when R0 < 1, so it always holds for R0 < 1. This implies that in the

case 2
r+φ > 1

(pb′+v) the positivity breaks down first, then the local stability of the DFE, when we

increase the step-size for the explicit Euler method.
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We have done extensive numerical calculations to see for which step-sizes the solution of the problem

becomes negative. In order to cover the entire biologically feasible region Ω, we solved the problem

with the different schemes for initial values in the triangle with resolution 0.01 and at the boundary

with resolution 0.001 and at the neighbouring points, where the explicit Euler method first (w.r.t.

∆t) ’steps’ into one of the negative quadrants with resolution 10−14. Thus we have approximately

found the ’system-dependent SSP coefficients C’ (i.e. the smallest step size for which the numerical

solution for a particular numerical scheme loses its positivity divided by the smallest step size for

which the numerical solution for the explicit Euler method loses its positivity) for 4 realisations of

(4.1a)-(4.1c). Two systems have R0 < 1, while two have R0 > 1. The results can be seen in figure

4, where the different colours are the different systems (i.e. different specific parameters), while the

values are the first time-step instances where the numerical solution was negative weighted by the

first instance where the approximation with the explicit Euler became negative. In all cases, the

positivity conditions of proposition 5.1 were sharp. We emphasise that different colours represent

different specific systems (i.e. different specific parameters for the model). We excluded the MPRK

method from the numerical simulation as it is unconditionally positive.

Figure 4: Numerically found ’system dependent SSP coefficients’ (i.e. the coefficient C in the figure

is the smallest step size for which the numerical solution loses its positivity for a given numerical

scheme divided by the smallest step size for which the numerical solution loses its positivity for the

explicit Euler method). The four systems are four different realisations of the model (4.1a)-(4.1c),

i.e. the parameters are specified, and listed in the table 1.

From figure 4 and table 1, it is clear that the maximal step-sizes, for which positivity is preserved

are significantly larger than the values what one would get from the SSP theory, and in all cases the

largest is for the classical RK4 method, which has the smallest theoretical SSP coefficient, namely 0.

It is also clear, that for the extrapolated-BDF2 method, one could not expect a coefficient greater

than 1 for any system, since the explicit Euler starting procedure is used to preserve positivity.

The numerical simulations also showed that the positivity conditions of proposition 5.1 are not

only sufficient, but also necessary, and the first instances, where the positivity is lost are s0 = 0, i0

arbitrary when the positivity condition is 1
v+pb′ and s0 = i0 = 0 when the positivity condition is

1
φ+b(1−m) (see (5.3) and (5.4)). From the table, it also follows, that the condition ∆t 1

k+bm is not
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System 1. System 2. System 3. System 4.

p 0.7 0.4 0.7 0.6

b 1 3 1 3

b’ 1 5 1 3

v 2 1 2 2

k 2 2 6 5

m 0.3 0.2 0.3 0.2

φ 5 0.1 5 2.2

R0 0.7037 0.5376 2.1111 1.1640
1

v+pb′ 0.3704 0.3333 0.3704 0.2632
1

k+bm 0.4348 0.3846 0.1587 0.1786
1

φ+b(1−m) 0.1754 0.4 0.1754 0.2174

explicit Euler ∆t 0.1755 0.3334 0.1754 0.2174

SSPRK22 ∆t 0.2412 0.4652 0.2412 0.2545

Ext-BDF2 ∆t 0.1755 0.3334 0.1754 0.1909

RK4 ∆t 0.3792 0.6483 0.3708 0.3969

Table 1: Specific parameter values and numerically found positivity conditions of the four system

which were considered in the numerical simulation. The positivity conditions (see prop. 5.1) for

the explicit Euler method are highlighted in bold.

neccesary. Interestingly, for the larger order methods, the first instances where positivity is lost are

in some cases different from the explicit Euler case. Namely, for the SSPRK2 method, these first

instances are at s0 = 0, i0 = 1 for all the systems. For the Ext-BDF2 method, the fourth system

while for the RK4 method the first and the second system differ (with s0 = 0, i0 = 1). The larger

coefficients can be partially explained by the fact, that we did not require positivity preservation

for the internal stages of the Runge-Kutta methods. The theory introduced in [14] and summarised

at the end of the subsection 3.2.2, namely, one can guarantee non-zero step-size restriction for the

positivity preservation for the classical RK4 method. This can be done if for the continuous model

it holds that its explicit Euler discretisation also preserves positivity for backward steps

0 ≤ u+ f̂(u) = u− f(u), ∀u ≥ 0, ∀∆t ≤ ∆tFE∗

where ∆tFE∗ is the largest step-size for which it holds. This does not explain our results, since at

the boundary i0 = 0 c1 is strictly positive in (4.6), which implies (with the continuity of the vector

field) that ∆tFE∗ = 0. Note that this is the general case for epidemiological models of the form

(4.6). In [14] the logistic equation u̇ = u(u− 1) was considered, which has a stable equilibrium at

u = 0.

If we also require the positivity of the internal stages, then the SSPRK(2,2) has the same values as

the explicit Euler, since that is its internal stage. For the classical RK4 method, the smallest such

step-sizes when one of the internal stages loses its positivity can be found in the table 2. For all

considered systems, the step sizes are still larger than for the explicit Euler method. Note that in

this case it cannot be larger than twice the explicit Euler’s, since the second stage is un+∆t 12f(un).
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System 1. System 2. System 3. System 4.

RK4

+ internal stages ∆t
0.2249 0.4393 0.2081 0.2545

Table 2: Numerically found positivity conditions for the classical RK4 method when we also require

the positivity preservation of the internal stages. The parameters of the four systems considered

in the numerical simulation can be found in the table 1.

We also checked the trajectories of the numerical solutions with specific initial values for which

the positivity first breaks down. In all cases the positivity was lost, but the long term behaviour

of the continuous model was preserved, except for the two systems with R0 > 1 for the RK4

discretisation. In these cases, the positivity and the local stability were lost at the same time.

The conservative model (4.1a)-(4.1c) in the PDS formulation (3.27) with (u1, u2, u3) = (S, I,R),

which is used for the MPRK method is

p12 = pb′I p23 = 0

p13 = (φ+ b)R p31 = mb(S +R)

p21 = kSI p32 = vI

and di,j = pj,i, i, j ∈ {1, 2, 3}. To address the issue of order reduction, we have compared the

numerical solutions with a very accurate numerical solution obtained with Matlab’s ode45 method -

which is based on the Dormand-Prince embedded RK method - with minimal tolerances (Abstol =

10−14, Reltol = 10−13). Note that embedded RK methods give values at t points where the

consistency error is small enough, and not at any t points, therefore their values cannot be compared

with the approximate solutions of the other methods in a straightforward way. This problem can

be solved using Matlab’s ’deval’ function, which works by using a third RK method (alongside the

embedded method) called the dense output RK method. From this, an interpolating polynomial

can be constructed based on the end points and some intermediate points, which for the Dormand-

Prince method gives a fifth order approximation at any inner points[38]. We have not found

order-reduction for our model, considering solutions with initial values near the boundary. A case

can be seen in figure 5.
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Figure 5: Order of the different method by comparing the numerical solutions with a very accurate

method.

It is clear that to have a good numerical approximation of the continuous model, we expect not

only local, but global asymptotic stability as in the continuous model. While we have not proved

global stability for the discretisations - for sufficiently small step sizes - it can be ’checked’ by

numerical simulations. To do this, we solved the system numerically using the various methods

with numerous initial conditions from the feasible region. More precisely, with resolution 0.01 for

large enough times to obtain the long-term behaviour of the solutions. By this procedure, one

can find the asymptotically stable solutions - equilibria, periodic orbits - of the system and it

also shows whether the system exhibits chaotic behaviour or whether the solutions may become

unbounded and diverge. We have done this procedure for different values of R0 and plotted

the long-term numerical solutions of the infectious subpopulation, obtaining so-called bifurcation

diagrams. For the explicit methods, for sufficiently small step-sizes, all the solutions converged to

the DFE equilibrium for R0 < 1 and to the endemic equilibrium for R0 > 1. For large step-sizes,

the numerical solutions diverged to ±∞. For the explicit Euler method, the global convergence

and divergence coincide with the conditions of proposition 5.2 for the DFE. or the MPRK method,

the long term behaviour of the numerical solutions ’mimics’ the continuous model for arbitrarily

large step sizes. This can be seen on 6 with ∆t = 10. Note that the stability of the equilibria

locally follows from the unconditional absolute stability of the method, but not globally.
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Figure 6: Numerical bifurcation diagram of the MPRK22(1) scheme with the same parameters as

in system 1 in table 1, but with varied parameter k.

5.2 Non-conservative system

By discretising the system (4.11a)-(4.11f) by the explicit Euler method, we get the following (dis-

crete) model:

sn+1 = sn +∆t
[
Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn

]
(5.6a)

en+1 = en +∆t
[
βIsnin + βV snvn + ρβIcnin + ρβV cnvn − (α+ µ)en

]
(5.6b)

in+1 = in +∆t
[
αen − (γ + ω + µ)in

]
(5.6c)

rn+1 = rn +∆t
[
γin − (µ+ δ)rn

]
(5.6d)

cn+1 = cn +∆t
[
χsn − ρβIcnin − ρβV cnvn − (Ψ + µ)cn

]
(5.6e)

vn+1 = vn +∆t
[
ξin − σvn

]
(5.6f)

The positivity and boundedness of the above method can be guaranteed by the following sufficient

condition:

Theorem 5.1. The explicit-Euler discretisation of the system (4.11a)-(4.11f) is conditionally pos-

itive with step-size ∆t ≤ H, where

H = min

{
1

α+ µ
,
1

σ
,

1

µ+ δ
,

1

γ + ω + µ
,

1

χ+ µ+ Λ
µ (βI + βV

ξ
σ )

,
1

Ψ + µ+ ρΛ
µ (βI + βV

ξ
σ )

}
Proof. For the positivity, we will need some boundedness, so in general we will show that if

(sn, en, in, rn, cn, vn) ∈ Ω then (sn+1, en+1, in+1, rn+1, cn+1, vn+1) ∈ Ω. Denote nn := sn + en +

in+ rn+ cn, then nn+1 = nn+∆t(Λ−µnn−ωin) ≤ (1−∆tµ)nn+∆tΛ, which is smaller or equal

than Λ
µ if ∆t ≤ 1

µ . Similarly, if ∆t ≤ 1
σ , then vn+1 ≤ ξΛ

σµ .

For the positivity, we will use the same logic as in [39]. For the first variable, we want to show

that sn+1 ∈ [0, λ
µ ]. From the explicit-Euler discretisation:

sn+1 = sn +∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn)

The positivity holds if and only if

sn ≥ −∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn). (5.7)
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If

−(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn) ≤ 0

then the inequality (5.7) holds for any step size. If

−∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn) > 0

then the positivity holds for step sizes

∆t <
sn

−Λ + βIsnin + βV snvn −Ψcn − δrn + (χ+ µ)sn)
. (5.8)

From the inequality:

1

(χ+ µ) + (βI + βV
ξ
σ )

Λ
µ

=
sn

sn(χ+ µ) + (βI + βV
ξ
σ )

Λ
µ sn

≤ sn
−Λ + βIsnin + βV snvn + (χ+ µ)sn −Ψcn − δrn

(5.9)

So for any ∆t ≤ 1
(χ+µ)+(βI+βV

ξ
σ )Λ

µ

the inequality (5.7) holds, i.e. sn+1 ≥ 0.

For en+1, in+1, rn+1, cn+1, vn+1 the proof can be carried out similarly, but one gets simpler sufficient

conditions for ∆t because of the sign of the terms.

Note that (5.9) is sufficient but not necessary condition, the non-negativity for sn is fully determined

by the condition (5.8) and one can get similar conditions for the other coordinates. Considering

the local stability of the equilibria under the explicit Euler discretisation, sufficient and necessary

conditions cannot be easily given since for this we have to determine the eigenvalues of 6×6 matrix

which is equivalent with finding the roots of a 6th degree polynomial. Considering only sufficient

conditions, Gershgorin circle theorem can be used in general [40], but this was not done in this

thesis.

In order to study the sharpness of the above results and the sharpness of the SSP coefficients

from the SSP theory introduced in section 3, we performed a similar numerical procedure as for

the conservative model. Namely, we solved the system with numerous initial conditions in the

feasible region to find the smallest such step-size ∆t for which the positivity or the boundedness of

the solution does not hold. Since the system is 6 dimensional, solving it for initial conditions with

resolution 0.01 (which are then rescaled to be in the feasible region) would require numerically solv-

ing 1012 initial value problems, which is not feasible, so we choose 1000 points from the grid with

resolution 0.01 from the feasible region, and another 1000 from near the boundary. We have done

this for two systems with given parameters2. The results can be found in table 3. The results are

similar to those for the conservative model, namely, if we calculate the smallest step size for which

the numerical solution loses its positivity or boundedness for a specific numerical scheme divided

by the smallest step size for which the numerical solution loses its positivity or boundedness for

the explicit Euler method, then for all schemes and systems, they are significantly larger than the

theoretical SSP coefficients and largest for the classical RK4 method when we require the positive

invariance of Ω only for the steps and not for the internal stages. From table 3 it is also clear that

the sufficient conditions of proposition 5.1 for the explicit Euler method are not sharp. It should

be emphasised that since we have not been able to cover the whole feasible region, and since we

have not been able to specify the initial value(s) for which the positivity or the boundedness first

breaks down, unlike for the conservative case, these results can be questioned.

2For both systems βI = 4, βV = 3, µ = 2, α = 1, ω = 1, γ = 0.1, ξ = 1, σ = 1, ρ = 0.9, ψ = 1, χ = 0.1, δ = 3.

For the first system Λ = 1.2487, for the second system Λ = 3.6058.
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System 1. System 2.

explicit Euler positivity

condition from proposition
0.1442 0.0679

explicit Euler ∆t 0.210 0.124

SSPRK22 ∆t 0.251 0.338

Ext-BDF2 ∆t 0.251 0.124

RK4 ∆t 0.375 0.356

RK4

+ inner stages ∆t
0.250 0.161

Table 3: Numerically found positivity conditions of the two systems which were considered in the

numerical simulation. The sufficient positivity conditions (see prop. 5.1) for the explicit Euler are

also shown in the second row.

6 Summary, Conclusions

Through the construction of epidemiological models, we can better understand - and possibly pre-

dict - the dynamics and qualitative properties of different infectious diseases. As these systems

cannot generally be solved analytically, various numerical methods are used to obtain the approxi-

mate solutions that are of interest, for example, for forecasting. It is well-known that discretisations

by different numerical schemes can alter the qualitative properties of the ODE system, therefore it

is of interest when and for which schemes these qualitative properties are not changed. One such

evident and well-studied property is the positivity (non-negativity) of the compartments/coordi-

nates when the initial conditions are also non-negative.

Considering the classical linear methods, namely Runge-Kutta and linear multistep methods, it is

known that there is no second or higher order method that preserves positivity for all step sizes

and for all positive ODE systems. It is therefore of interest to find the largest such step-size for

which the positivity is preserved for a given method. The positivity preservation of these classical

methods can be studied through SSP theory, but this general theory gives strict sufficient step-size

conditions, since it preserves not only the positivity, but arbitrary convex functionals, and not for

a specific ODE, but for arbitrary ODEs. Hence, it is of interest how sharp these step-sizes are and

what are the necessary conditions for preserving positivity under different schemes.

In view of the above, we analysed how sharp the step-sizes are for two different epidemic models.

While for we were able to give sufficient, and for one of the models necessary conditions for preserv-

ing positivity (and boundedness) under the explicit Euler discretisation, considering higher order

methods, we found the smallest such step-sizes through numerical simulations. We found that the

theoretical SSP coefficients are significantly smaller than the smallest such step-size for which the

positivity is preserved for all considered methods. In particular, while the classical RK4 method

has C = 0, for our specific models, the maximal step-sizes were 1.5− 2.5 times larger than for the

explicit Euler method. These results can be partially explained by the negative internal stages, but

even when we required positivity preservation from the internal stages, the maximal step-sizes were

larger than for the explicit Euler method. It is a possible future direction to give formal proofs of

the results found through numerical simulations. Another possible future direction is to study the

influence of the conservativity or the Graph-Laplacian form on the positivity preservation since the

proof of proposition 5.1 cannot be carried out for Runge-Kutta methods with more stages, since

these discretisations do not preserve the Graph-Laplacian structure.
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We have also constructed a new epidemiological method to study the spread of the SARS-CoV-2

virus. This model incorporates the propagation of the virus through the environment and the

vaccination of the population with an imperfect vaccine. We showed that the model exhibits back-

ward bifurcation, i.e. for some parameter values a stable disease-free equilibrium coexists with an

unstable endemic equilibrium. We also showed that this is independent of the dynamics of the

environment and its disease spread.

We also introduced a family of (nonlinear) unconditionally positive and conservative schemes,

called modified-Patankar-Runge-Kutta schemes and summarised some of the recent developments

considering these schemes. While we did not prove global stability under the discretisation for

arbitrary step-sizes, the bifurcation diagrams possibly imply it. Although we have not given the

specific running times of the different schemes, it is clear that the MPRK schemes require the most

time and the most computational power, since one has to solve two linear algebraic systems in

each time step. It depends on the application and the specific circumstances, whether the MPRK

method should be used instead of linear explicit methods for non-stiff systems, like the one we

had. While we solved them directly, the positivity is also preserved under the Jacobi iterative

method[19]. Since these systems are relatively new and have only recently been systematically

analysed, there are numerous open questions regarding their dynamics. Some of these are the

existence of spurious k-periodic solutions, the existence of spurious equilibria, or the preservation

of quasi-monotonic structure/monotonicity, which was analysed for the Runge-Kutta methods in

[41].
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