
An Application of Bernoulli Graphings

MSc thesis

Author: Levente Szemerédi

Supervisor: Endre Csóka

Eötvös Loránd University

Faculty of Science

Institute of Mathematics

2023

NYILATKOZAT

Név:

ELTE Természettudományi Kar, szak:

NEPTUN azonosító:

Diplomamunka címe:

A diplomamunka szerzőjeként fegyelmi felelősségem tudatában kijelentem, hogy a

dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard

szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül

nem használtam fel.

Budapest, 20 _______________________________

a hallgató aláírása

Szemerédi Levente

Matematikus MSc

EIORSE

An Application of Bernoulli Graphings

23. 06. 07.

Contents

1 Introduction 3

2 The algorithm 5

2.1 Doing steps simultaneously . 6

2.2 Localizing . 7

3 Graphings 8

3.1 Bernoulli graphings . 10

3.2 Local convergence . 13

4 Details of the calculation 16

4.1 Error calculation . 19

4.2 Results . 21

5 Implementation 22

2

1 Introduction

In the summer of 2022 I participated in a workshop at Erdős Center. The project
of my group was to prove that a property holds for large 5-regular graphs with high
probability. The problem was already transformed to a seemingly easier one and
there were some numerical results showing that it is a good line of attack. We had
to modify the algorithm to get a better upper bound. We found an improvement
and by running it on some random large graphs we saw that it should be enough.
We had to come up with a technique with which we could prove the theorem in
general – not just on a few examples. For the original algorithm, the general result
was proved by approximating with differential equation systems but we could not
reconstruct their calculations. Endre Csóka suggested us to try to use Bernoulli
graphings for the calculations instead. I learned how to use Bernoulli graphings
for calculating results of local algorithms, and I implemented the solution for this
problem. With slight modifications, my solution could follow the calculations of
other local algorithms as well. Now, we will state the problem and take a look at
some previous results.

Let G be a regular graph. An internal partition of G is a partition of V (G) into
two nonempty sets such that each vertex has at least as many neighbours in its own
class as in the other one. The question is whether there is an internal partition in a
given regular graph. For the 3, 4 and 6-regular case the following theorem holds:

Theorem 1.1 (Shafique-Dutton [5], Ban-Linial [6]). Let d ∈ {3, 4, 6}. Then apart
from finitely many counterexamples all d-regular graphs have internal partitions.
The list of the counterexamples is the following.

� for d = 3, K4 and K3,3 do not have an internal partition. [5]

� for d = 4, K5 does not have an internal partition. [5]

� for d = 6, each graph on at least 12 vertices has an internal partition, the
counterexamples have at most 11 vertices. [6]

For even-regular, graphs it is verified that they asymptotically almost surely have
an internal partition.

Theorem 1.2 (Linial-Louis [7]). Asymptotically almost every 2d-regular graph has
an internal partition.

The odd-case is still open for 3 < d. We will prove the following theorem:

Theorem 1.3. Asymptotically almost every 5-regular graph has an internal parti-
tion.

3

Let G be a (finite) graph. A bisection of G is a partition of V (G) into two equal-
sized parts. The size of the bisection is the number of edges between the two parts.
The bisection width of G is the minimum of the possible bisection sizes. It is known
that computing the bisection width is NP-complete [8].

Bärnkopf, Nagy and Paulovics [9] showed that the bisection with of a 5-regular
graph of size n is at most n/2 + 5 then it has an internal partition. We will show
that the bisection with of a 5-regular graph of size n is asymptotically almost surely
below 0.498n which concludes the theorem 1.3.

The thesis is organised as follows: in section 2 we discuss the greedy algorithm of
Diaz, Serna and Wormald and improve it. Next, in section 3 we will discuss the
general notions in the limit theory of bounded degree graphs and discuss how it can
be used to approximate calculations on finite graphs. In section 4 we look at how
we can do the calculations to solve the problem of the internal partitions. Finally,
in section 5 we give the concrete implementation.

Acknowledgements. I am grateful to my thesis advisor, Enrde Csóka and the
group of people who I was working with during the workshop: Zoltán Lóránd Nagy,
Panna Fekete and Marcin Briański.

4

2 The algorithm

For estimating the bisection width we will give a refined version of the Diaz-Serna-
Wormald algorithm [1]: first we run the original, locally greedy algorithm then do
some modification on the result.

The first part is a randomized greedy algorithm. The vertices will be put into two
classes: red and blue, in pairs. If there is a partial colouring of the vertices of the
graph G we classify its uncoloured vertices according to the number of their red
and blue neighbours: a vertex is of type (r, b) if it has r red neighbours and b blue
neighbours. Two uncoloured vertices form a symmetric pair if one of them is of type
(r, b) and the other is of type (b, r).

The colouring of G goes step by step: at each step, we choose a symmetric pair
of types (r, b) and (b, r) and colour the one with more red neighbours red, the
other blue. If they have the same amount of red and blue neighbours, then one of
them is coloured red, the other blue, uniformly at random. The values of r and b
are determined according to a priority ordering for types, and vertices are picked
uniformly at random from those which have the highest priority.

The priority order of types is defined as follows:

� Type(r, b) has the same priority as Type(b, r).

� If r1 ≤ b1 and r2 ≤ b2 then the priority of Type(r1, b1) is less than the priority
of Type(r2, b2) if and only if b1 − r1 < b2 − r2 or b1 − r1 = b2 − r2 and r1 < r2.

For example, for a 5-regular graph the priority order (from highest to lowest) is as
follows: (0, 5), (1, 4), (2, 3), (0, 4), (0, 3), (1, 3), (0, 2), (1, 2), (0, 1), (2, 2), (1, 1), (0, 0).

If there are no more symmetric pairs left, we colour half of the remaining vertices
red and the other half blue uniformly at random.

The original Diaz-Serna-Wormald algorithm ends here. Unfortunately, for d = 5 it
will give a bound 0.503n on the bisection size which is not good enough for us.

In the second part, we swap wrongly placed vertices. Because of the techniques we
will use for the actual implementation, we have to be careful at this part.

Let us call a vertex of terminal type (r′, b′) if it has r′ red neighbours and b′ blue
neighbours when the first part of the algorithm terminates. Let us call a red vertex
lost red vertex if it is of terminal type (r′, b′) with r′ < b′. Similarly, a blue vertex is
a lost blue vertex if it is of terminal type (r′, b′) with r′ > b′.

Lemma 2.1. If we can find an independent set I in the induced bipartite graph

5

spanned by the lost red and lost blue vertices then we can improve the bisection size
by at least |I| when we flip the colour of the vertices in I.

Proof. Let us do the recolouring one by one. We have to show that in each step all
the non-recoloured vertices remain lost. When we recolour a lost red vertex to be
blue then it is not connected to lost blue vertices in I thus all of them remain lost.
It can be connected to some lost red vertices in I but it will make those more lost.
In each step, the bisection size decreases by at least 1 so we improved at least |I|
during the procedure.

2.1 Doing steps simultaneously

As one can see, the first part of the algorithm described above has the same order
of steps as the number of vertices of the graph. First, we address this problem in
the following way. Fix an arbitrary N positive integer – and denote 1/N by ε. We
will denote the number of vertices of the graph G by n.

Modify the first part of the algorithm such that in each step – there will be ap-
proximately N – we will colour εn/2 vertices of G red and εn/2 vertices blue si-
multaneously according to the rule of the original algorithm. The coloured vertices
are chosen uniformly at random from vertices of type (r, b) and (b, r) respectively.
We will pick the values r and b almost the same way as before but now we will
only consider those types which have at least εn vertices in total (in this condition
vertices of type (r, b) and (b, r) are united). After we terminated, we colour half of
the remaining vertices red and the other half blue uniformly at random.

For the second part, we pick a (big) independent set with the same amount of red
and blue vertices in the graph spanned by the lost red and the lost blue vertices and
flip the colour of the matched vertices.

What happens with the complexity of the algorithm (and its optimality)? In the
first part, now we have N steps for any (big enough) graph. Unfortunately, the run
time of each step is of order εn – but as we will see, we will be able to give a good
approximation in constant time. As we take bigger steps this algorithm probabliy
give a slightly worse cut than the first one but it will turn out that this is not a big
problem. In the second part, we can guarantee a big enough matching according to
the following theorem:

Theorem 2.2 (Axenovich-Sereni-Snyder-Weber [10]). Suppose that H is a balanced
bipartite graph on n+ n vertices and has maximal degree 3. If n is big enough then
H contains a balanced independent set of size k + k where k > 0.34116n.

As a corollary, at the last step, we improve by 0.34116 times the number of lost

6

vertices. We will not be interested in the concrete set with which the improvement
is made.

2.2 Localizing

For the calculations, we do not want our graph to have a huge number of cycles of
size at most 2N . It is known that if we tend to infinity with the size of the graph,
the expected number of cycles at most 2N converges. This means that with high
probability most of the points are far from the cycles of size at most 2N , meaning
that most of the N balls are trees.

The first part of the algorithm is almost local. With randomization, it can be made
to be local in the following way:

At each step, every vertex will know the expected distribution of the types of vertices.
In this context, the expected distribution is the distribution on the infinite tree.
Before the first step, every vertex is of Type(0, 0). The type of each step is calculated
from this expected distribution (not the actual one) thus it is the same for almost all
the vertices. In a step if a vertex is of the appropriate type then it decides randomly
whether it will be coloured or not – with the appropriate probability. After that,
every vertex updates its type and the expected distribution of the types. Because
we took at most N steps, it is enough for each vertex to only communicate in its
N -neighbourhood.

In the previous paragraph, I cheated a bit because it is not enough for the vertices
to follow the distribution of types (i.e. 1-balls) but rather the types of stars (i.e.
2-balls). At this point, it is not necessarily needed to know all the details, we will
discuss them later.

After (the first part) of the algorithm terminates, we have every vertex coloured but
also we have (the expected) distribution of the types of the vertices. How much
error do we make if we calculate only the latter?

Proposition 2.3. The distribution of the types of vertices tends to the expected
distribution in probability as the size of the graphs tends to infinity.

For the proof of proposition 2.3 and the computations we need to introduce the
notion of Bernoulli graphings.

7

3 Graphings

In this section, we discuss the basic notions of the limit theory of bounded degree
graph sequences and how can we use it to approximate calculations on finite graphs.
During this section, we will follow the book [2] by Lovász.

Before we see any specifics let us discuss where large graphs can emerge and why it is
useful in general to define a limit theory for them. We are surrounded by large graphs
(or networks) everywhere. The most common examples are the Internet and social
networks. But whenever there are some objects which are somewhat connected we
can think about them as graphs. These graphs may have more structure on them
corresponding to additional information about the system we try to model: we can
label its vertices or edges.

Now we have some large graphs – occasionally with some additional data – and
want to calculate some of their parameters or run some algorithms on them. The
problem is that usually, we do not know exactly how our graph looks like because
real networks are constantly changing. For this reason, some classical questions of
graph theory are not even meaningful. For example, we cannot tell the parity of
the number of vertices of the graph of ’connections between people’ because at any
time there are people who are currently being born or dying. Even if somehow we
manage to solve this problem and ’know’ the graph we will still have a hard time
during (theoretical) calculations. We will see that we can do calculations on some
kind of limit object with a small error.

So when we work with the limit objects we do not have to know the exact structure
of the graph we would like to work with. But to know what our limit object will
be we have to know some local properties. Let us discuss some of the potential
techniques which could work for this purpose. For this, there are basically two
(three) types of graph-sequences: dense, bounded degree (and in between).

Definition 3.1. Let G1, G2, . . . be a graph sequence with |V (Gn)| → ∞.

� This graph sequence is dense if |E(Gn)| = Ω(|V (Gn)|).

� If there is a D number such that for every Gn graph in the sequence has
maximal degree at most D, then the graph sequence is a bounded degree graph
sequence.

In this thesis, we will focus on the bounded degree case. From now on, we will
assume that every graph is a bounded degree graph with maximal degree at most
D.

I will follow the notations of the book [2] by Lovász. In particular,

8

� Finite graphs are denoted by the letters F and G and their decorated versions
(eg. F ′, G1).

� Families of finite graphs are denoted by calligraphic letters.

� G denotes the family of all finite graphs.

� Countable graphs are denoted by letters H and its decorated versions (eg.
H ′, H1).

� Families of countable graphs are denoted by gothic letters.

� G denotes the family of all countable graphs (with bounded degree).

� Boldface letters will denote graphs with larger cardinality (eg. G)

� For a non-negative r the set Br is the set of rooted r-balls, i.e. graphs where
each vertex is at a distance of at most r from the root.

Our limit objects will be measures on some infinite graphs. Before we can define
these measures we must introduce the notion of Borel graphs.

Definition 3.2. Let (Ω,B) be a Borel sigma-algebra. Let G a graph with V (G) =
Ω. If the edge set E(G) is a Borel subset then G is a Borel graph. Because we will
use bounded degree graphs only, we will also assume that a Borel graph is also a
bounded degree graph.

The following lemma gives a characterisation or alternative definition for Borel
graphs which will be useful in the future.

Lemma 3.3. [2][Lemma 18.2] Let G be a graph on a Borel space (Ω,B). It is a
Borel graph if and only if for every Borel set B ∈ B, the neighbourhood N(B) is
Borel.

On Borel graphs, we can define Borel functions. The most important for us is the
degree function: degG

A (x) which is the degree of x in a Borel set A.

Finally, we can define the objects which will be the limit objects of bounded degree
graph sequences.

Definition 3.4. Let (Ω,B) be a Borel sigma-algebra with a probability measure
λ on it. A Borel graph G is called a graphing on the node set Ω if for any two
measurable sets A and B∫

A

degB(x) dλ(x) =

∫
B

degA(x) dλ(x)

holds. This means that if we take the measure of edges from A to B then we get
the same number as if we would ’count’ from B to A.

9

From the measure λ some other measures can be computed naturally. The first one
is the volume measure which is just the integral of the degree function:

Vol(A) =

∫
A

deg dλ.

If we take the volume of the whole underlying set we get the average degree d0 =
Vol(Ω). If we normalize the volume measure with the average degree we get another
probability measure λ∗ which is the stationary distribution on G – which refers to
the random walk on G. So the definition of λ∗ is

λ∗(A) = Vol(A)/Vol(Ω).

We can connect λ and λ∗ in the following way: generate a random point x from
the distribution λ and keep it with probability deg(x)/D, otherwise reject it and
generate a new one. The point which is accepted will be a random point from the
distribution λ∗.

We can also define a measure on the edges of the graphing in the following way: let
η be a measure on (Ω× Ω,B × B) satisfying the following:

η(A×B) =

∫
A

degB dλ

for product sets. By Caratheodory’s Theorem η can be extended to the sigma
algebra generated by the product sets. If we normalize it with the average degree
we get a probability measure η/d0 on the edges of G. By the definition of graphings,
this measure is symmetric.

3.1 Bernoulli graphings

Previously, we defined graphings in general. Now we will introduce a special kind of
them: the Bernoulli graphings and discuss some of its properties. As before, all the
graphs discussed here are bounded degree graphs with maximal degree at most D.

First, let us define the graph of graphs as follows. Let G∗ be the set of all connected,
countable rooted graphs with maximal degree at most D. A rooted graph Gx is a
graph with a special node x ∈ V (G) which we call its root. Similarly, G∗ is the set
of all connected, finite rooted graphs with maximal degree at most D. Two rooted
graphs are the same if there is a root preserving isomorphism between them.

Definition 3.5. Let H be the following graph: its node set V (H) is the previously
defined G∗ and the edges adjacent to a rooted graph Hx ∈ H are HxHx′ where xx′

are an edge in H. This H is the graph of graphs.

10

We want to have a Borel structure on H. For this, let us consider the following
notion of distance which will turn out to be a metric.

Definition 3.6. Let H1, H2 ∈ G∗. Let their ball distance be

d∗(H1, H2) = inf{2−r : BH1,r
∼= BH2,r}

where BH,r is the ball of radius r in H centered at its root.

Proposition 3.7. For the ball distance defined above the following are true:

1. The ball distance is a metric on G∗.

2. Let F be a finite r-ball. G∗F denotes those graphs H for which BH,r
∼= F hold.

Then the sets G∗F are clopen and they form an open basis.

3. The space (G∗, d∗) is compact and totally disconnected.

Proof. The only non-trivial part is compactness. It follows from the fact that G∗ is
complete and totally bounded.

We will denote the sigma-algebra of Borel sets of (G∗, d∗) by A.

Proposition 3.8. The graph of graphs H is a Borel graph.

Proof. It is enough to prove that the edge set of H is closed. We will show that in
G∗×G∗ a small neighbourhood of a non-edge of H does not contain any edge of H.

Let us take two rooted graphs H,H ′ ∈ H which do not form an edge in H. Let us
denote the neighbours of H in H by H1, . . . , Hd (because we only consider bounded
degree graphs, clearly d ≤ D holds). Since d∗ is a metric there is a radius r such
that BH′,r 6∼= BHi,r for i = 1, . . . , d.

Now we will prove that if H̄, H̄ ′ ∈ H two rooted graphs for which d∗(H, H̄) < 2−r

and d∗(H ′, H̄ ′) < 2−r holds then H̄ and H̄ ′ are not connected by an edge in H.

Let us suppose that there is an edge between H̄ and H̄ ′. Because of d∗(H, H̄) < 2−r,
their r + 1-balls are isomorphic: BH,r+1

∼= BH̄,r+1. Because of the edge between H̄
and H̄ ′ and the definition of edges in H, if we shift the roots, we have BHi,r

∼= BH̄′,r

for some 1 ≤ i ≤ d. By d∗(H ′, H̄ ′) < 2−r we also have that BH′,r
∼= BH̄′,r. Combining

these together we get BHi,r
∼= BH′,r which is a contradiction.

We want to be able to choose from G∗ randomly, i.e. to have a probability measure.
Now, let us take and arbitrary probability measure σ on (G∗,A). The degree function

11

deg of the root is a measurable function on G∗, so we can introduce the following
measure on G∗:

σ∗(A) =

∫
A

deg dσ∫
G∗

deg dσ
.

We want the measure to respect the graph in some sense. For this let us introduce
the following notion.

Definition 3.9. Take a random graph H from the distribution σ∗ and select a
uniformly random edge e from the root of H. e is considered oriented away from
the root of H. This gives a probability distribution σ→ on G→ which is the set of
rooted graphs from G∗ with an oriented edge, a root edge, specified. Let us call
σ involution invariant if the map G→ → G→ which reverses the orientation of the
root edge if measure preserving with respect to σ→. An involution invariant random
graph is a random rooted graph from an involution invariant probability measure
on G∗.

To see why involution invariant measures are important, consider the following con-
struction.

Construction 3.10. Let G be an arbitrary graphing and x ∈ V (G) is one of its
vertices chosen randomly according to the measure λ. The connected component of x
in G is a Gx graph which is in G∗ which will be called a random rooted component of
G. So the component map x 7→ Gx is a measurable map which defines a probability
distribution σ on (G∗,A). If x was selected from the distribution λ∗, then Gx is
selected from the distribution σ∗. If we choose one of the edges coming from x in Gx,
we get an edge from the distribution η/d0 with an orientation. Since the measure
η is symmetric, if we change the orientation of the edge the distribution does not
change. Thus σ is an involution invariant measure.

With the construction above, we can make an involution invariant measure from
any graphing. From the other direction, this graphing represents the involution
invariant measure σ on G∗. The inverse of this statement also holds:

Theorem 3.11. Every involution invariant probability distribution σ can be repre-
sented by a graphing.

We will prove this statement by giving such a representant.

If the graphs from σ have no symmetries as unrooted graphs then it is not so hard
to give a representant by the following

Lemma 3.12. If σ is an involution invariant measure on G∗ such that graphs from
the distribution σ has no automorphisms with probability 1, then (H, σ) is a graphing
and it is a representant of σ.

12

If graphs from σ do have symmetries the previous construction does not work.
However, with some modifications, we can break the symmetries:

Definition 3.13. Let us denote the set of triplets (H, v, α) by G+ where Hv ∈ G∗

is a rooted graph and α : V (H) → [0, 1] is a weighting on its vertices. Two such
triplets are considered equivalent if there is an isomorphism between the graphs
which preserves both the root and the weighting. The following sets will be the
generator of the sigma-algebra A+: fix the isomorphism type of the r-ball around
the root and for every vertex in the r-ball and fix a Borel set of [0, 1] from which the
weights can be chosen on the r-ball (these could be different Borel sets for different
vertices). Define the graph of weighted graphs H+ as follows. The vertex set of H+

is G+ and two vertices are connected if they are isomorphic as non-rooted weighted
graphs and their roots are neighbours. For a given probability distribution σ on
G∗ we can create a probability distribution σ+ on G+ by choosing a random rooted
graph according to σ and assigning independent uniform random weights from [0, 1]
to its vertices. With the construction above for any σ involution invariant measure
we can associate a graphing. This is called the Bernoulli graphing representing σ

Proposition 3.14. The construction above is indeed a graphing representing σ.

Proof. First, we prove that it is a graphing. Similarly to the definition of σ∗, let

us define σ+∗(A) =
∫
A deg dσ+∫

G+ deg dσ+ . Take a rooted, weighted graph (H, v, α) from the

distribution σ+∗ and uniformly at random a neighbour u of v in H. With probability
1, the values of α are all different, so the rooted, weighted graph (H, u, α) is almost
surely different from (H, v, α). These two also form an edge in H+ by definition. This
gave us a way to get a random (oriented) edge from H+. Because σ was involution
invariant, this distribution is invariant under the flipping of the orientation of the
edges. Thus (G+, σ+) is a graphing.

For the representation we have to argue that if we take the graphing (G+, σ+) and
apply the steps of 3.10 then we get back the distribution σ. As before, those rooted,
weighted graphs (H, v, α) where any two weights are equal form a set of measure
0. So almost surely the connected component of (H, v, α) is isomorphic to Hv as a
rooted graph. This gives us a distribution on G∗. But we constructed σ+ in such a
way that first we select a graph and then a weighting so the construction must give
back σ.

3.2 Local convergence

Let us discuss the relation between bounded degree graph sequences and graphings.
In particular, we will answer the question of when we can say that a graph sequence
converges to a given graphing in some sense.

13

The convergence is a topological notion, so we have to give a topology on the space
of graphs and graphings. We will do this by introducing a metric on it. But before
that, we need some new definitions.

Definition 3.15. Let G ∈ G be a graph. Let us denote the distribution of its r-balls
ρG,r. We will call this sample distribution of size r.

For two different graphs (not necessarily of the same size) the sample distribution
of size r is supported on the same set, the set of r-balls, Br. Thus we can take their
variational distance as distributions. Using this we have the following definition.

Definition 3.16. Let G,G′ ∈ G be two graphs. Then their sampling distance of
depth r is the variational distance of their sample distribution of size r denoted by
δr(G,G′). We can combine these distances together to get the sampling distance of
the two graphs by the following formula:

δ(G,G′) =
∞∑
r=0

1

2r
δr(G,G′).

Let us use the previous definition for defining the convergence of bounded degree
graph sequences as follows.

Definition 3.17. A graph sequence Gn with |V (Gn)| → ∞ is locally convergent if
for every r and every r-ball F the r-neighbour densities ρGn,r(F) converges.

Note that this is equivalent to (Gn) being a Cauchy-sequence in the sampling dis-
tance.

The definition does not give us directly a limit object. We will construct one but it
will be not unique. First, let us discuss the properties which a limit object should
have.

Definition 3.18. For every r, let us denote the limit of the distribution ρGn,r σr.
σr is on the set of Br and it is consistent, i.e. if we take a random r-ball from σr
and delete those vertices which are at distance r from the root, we get a random
r − 1-ball from σr−1.

But there are r − 1-balls in a r-ball centered at the neighbours of the original root.
These also should give back the distribution σr−1. Because different r-balls could
have different root-degrees when we write the induced distribution on the r−1 balls
we have to do a weighting according to these. Let us define the following modified
distribution with this in mind:

σ∗r(F) =
deg(F)σr(F)∑

G∈Br
deg(G)σr(G)

.

14

Now let us take a random ball F from the distribution σ∗ and a random edge from
the root of F . We create two r − 1-balls: one with the original root and one with
the other end of the edge. We also remember, which edge was the ’connecting’ edge.
This construction gives us two distributions on Br−1 with a root edge. If these
distributions are the same for all r > 0, then the sequence (σ1, σ2, . . .) is involution
invariant.

The other direction also works: if there is a consistent sequence (σ1, σ2, . . .) then this
gives us a distribution σ on (G∗,A) by σ(G∗F) = σr(F) for every r-ball F . By the
definition of involution invariance it follows that (σ1, σ2, . . .) is involution invariant
if and only if σ is involution invariant. This is the local limit of the sequence (also
called as Benjamini-Schramm limit).

With these definitions at hand, we can state the following lemma.

Lemma 3.19. Let Gn be a sequence of random d-regular graphs where each Gn has
n vertices. We generate the random graphs with the configuration model: at each
vertex, there are d half edges and we take a random pairing of these. Then the
sequence Gn is almost surely locally convergent and its limit is the infinite d-regular
tree.

Proof. Let us fix an r radius. We will show that the distribution ρGn,r almost surely
tends to the probability distribution concentrated on the regular tree of depth r. The
expected number of at most 2r-cycles in Gn is convergent, bounded by a function
of d and r. So most vertices will be farther than r from any at most 2r cycles thus
almost all r-neighbourhood is a tree.

This holds for each r so the sequence is locally convergent. Its limit is concen-
trated on the infinite d-regular tree. And it is represented by a Bernoulli graphing
concentrated on the d-regular tree.

15

4 Details of the calculation

Now, we can prove 2.3. Take a sequence of random 5-regular graphs with increasing
size. By lemma 3.19 it is convergent almost surely and its local limit is represented
by the Bernoulli graphing concentrated on the 5-regular infinite tree. With the
number of steps N fixed, we have that the N -neighbourhood of almost all vertex
is a d-tree, in these neighbourhoods, the root has the same type distribution as
the root of the infinite tree. With high probability the number of neighbourhoods
containing small cycles is bounded by a constant so as we tend to infinity with the
size of the graph, their ratio tends to 0, thus their contribution to the average as
well.

So we just have to calculate the expected distribution of the final types. We will do
the calculation on a Bernoulli graphing representing the involution invariant measure
which is concentrated on the infinite d-regular tree. With this technique, we can
calculate directly the limit distribution and avoid dealing with the (finitely) many
parameters from the weak laws which control the error terms. However, we will have
some error due to ignoring events with low probability in exchange for significantly
faster run time but this will be controllable.

Now it is time to discuss which ’vertex types’ we will follow. These are not the
same as the types defined in the beginning so from now on, we will call them star
types. A star type decodes a coloured two-neighbourhood up to isomorphism. We
can represent this as a coloured one-neighbourhood where the root can be red, blue
or uncoloured and the leaves can be red, blue or typed uncoloured. For easier
implementation, the type of an uncoloured leaf encodes how many red and blue
neighbours it has outside the star, i.e. if we colour the root the type of the uncoloured
leaves does not change. From the star types, we can easily get back the (uncoloured)
vertex types just by taking the appropriate marginals.

root

leaf

(a) The root is uncoloured

root

leaf

(b) The root is red

Figure 1: Both leaves have the same leaf type (2, 1).

To be able to continue our calculations, we need the following lemma.

Lemma 4.1. Suppose that at one point in the algorithm, there is an edge with both
endpoints uncoloured. If we take out this edge, the infinite tree falls to two parts.

16

Then the colouring (red, blue or uncoloured on each vertex) of the two parts are
identical and independent in distribution.

Proof. It is enough to prove that during the algorithm, no information goes through
that edge other than both of its endpoints are uncoloured. But this is true: in each
step, every vertex asks the colours of its neighbours and if it got coloured tells this
information to its neighbours. Since both endpoints of the edge are uncoloured, the
first type of information is always ’uncoloured’ and the second type never occurs.

From this lemma, we can conclude that when we want to update the distribution of
the stars, the distribution of an uncoloured ’outer’ neighbour of an uncoloured leaf
is identical to the distribution of (uncoloured) vertex types conditional to having at
least one uncoloured neighbours and these are independent of each other.

Now we just have to calculate in each step how these star types develop, i.e. for each
star type S and S ′ we have to calculate what ratio of stars of type S will become of
type S ′. And we have to do this in a smart way because the number of star types
increasing very fast in d.

Lemma 4.2. Let S and S ′ be two star types with fixed leaf-order. At a step of the
algorithm where the type of the colourable vertices is Type(r, b) a star of type S can
become a star of type S ′ if and only if all the following conditions hold:

� if the root of S is coloured then the root of S ′ is also coloured with the same
colour

� if the root of S is uncoloured then either

– the root of S ′ is uncoloured

– the root of S is of Type(r, b) and the root of S ′ is of the appropriate colour
(this can be red, blue and red or blue)

� for each pair of leaves in S and S ′ with the same index

– if the leaf in S is coloured then the leaf in S ′ is also coloured with the
same colour

– if the leaf in S is uncoloured with outer type (r′, b′) then either

* the leaf in S ′ is uncoloured and it has at least r′ red outer neighbours
and at least b′ blue outer neighbours

* the leaf in S is of Type(r, b) and the leaf in S ′ is of the appropriate
colour

17

Let us calculate the probability of a star of type S developing to be a star of type
S ′ at a step of Type(r, b). Let us denote the probability of an uncoloured vertex of
Type(r, b) gets coloured red p, and the probability of an uncoloured vertex with at
least one uncoloured neighbours becomes red q. This probability is the product of
a root part and a leaf part. The root part is 1, if the root of S is coloured or it is
uncoloured but not of Type(r, b) and it is p or 1− 2p if the root of S is uncoloured
and the root of S ′ is coloured or uncoloured respectively.

Each leaf has a contribution to the leaf part and these are multiplied together. For
one leaf the contribution is calculated as follows.

� if the leaf in S was coloured then it is 1.

� if the leaf in S was uncoloured but in S ′ it is coloured then it is p.

� if the leaf in S was uncoloured and in S ′ it is still uncoloured then

– let us suppose that S has r1, b1, u1 red, blue and uncoloured outer neigh-
bours respectively and S ′ has r2, b2 and b2 red, blue and uncoloured outer
neighbours respectively. Let us call the differences r2 − r1 and b2 − b1 dr
and db respectively. From the lemma, we know that they are nonnegative
numbers.

– the contribution of this leaf is
(

u1
u1−dr−db

)
·
(
dr+db
db

)
· qdr+db · (1− 2q)u1−dr−db .

– if the leaf in S was of Type(r, b) then the previous expression must by
multiplied with 1− 2p.

Now the algorithm goes as follows: first, everything is uncoloured so the appropriate
star type is of measure 1, and everything else is of measure 0. In each of the N (or
so) steps we take every pair of ordered star types S and S ′ then see if a star of type
S could become S ′. If so, we calculate its probability and we take that portion of S
to be S ′ after the step. Unfortunately, it is terribly slow: in the 5-regular case, there
are more than 4 million ordered star types. Let us consider what could be done to
optimize the algorithm.

Preprocessing. If we look at the probabilities calculated above, we can notice
that if we fix the type of the colourable vertex then these probabilities are of form
c0 · pc1 · (1 − p)c2 · qc3 · (1 − q)c4. So as a 0th step calculate these five numbers from
all pairs of star types and create a list for all star types containing the pairs: (what
it can become, the coefficients in the formula). In each step, we just have to go
through the list of all star types and plug in the appropriate values of p and q to
the formula. We will call these polynomials transition polynomials.

Just calculate with unordered star types. We can use unordered star types,
but it makes the calculations a bit trickier because of the multiplicities. If d = 5

18

then there are ’only’ about 60 thousand unordered star types instead of the 4 million
ordered one.

Ignore events with low probability. We will ignore those transition polynomials
where the exponent of q is greater than a threshold. We will calculate, that if we
choose 2 as this threshold then the total error we make is of order ε. These ignored
probabilities will be added to the ’nothing happens’ case.

Ignore certainly wrong star types. Because of the previous simplifications, we
know that a very little portion of star type pairs will have a nonzero transition
polynomial. So when taking these pairs let us do the following: fix S and take only
those S ′-s which are different in at most 2 (the threshold above) colouring to S.

With the ideas above the algorithm can run in a reasonable time. But before we
discuss the results, we need to calculate the error due to the approximation at the
step Ignore events with low probability.

4.1 Error calculation

Now we will estimate the probability that for a given star there are at least three
2-neighbours which would got coloured if we not ignore this event. Let us denote the
number of uncoloured 2-neighbour (which are a 2-neighbours through an uncoloured
1-neighbour) u.

root

Figure 2: In this star the root has 3 uncoloured 2-neighbours.

19

P (> 2 coloured) =1− P (< 3 coloured)

=1− (1− 2q)u−2 ·
(

(1− 2q)2 + u · 2q · (1− 2q) +

(
u

2

)
· (2q)2

)
=1−

(
1− (u− 2) · 2q +

(
u− 2

2

)
· (2q)2 −

(
u− 2

3

)
· (2q)3 + o(q3)

)
·
(

(1− 2q)2 + u · 2q · (1− 2q) +

(
u

2

)
· (2q)2

)
=q3 ·

(
4

3
u3 − 4u2 +

16

3
u

)
+ o(q3) < 4/3(u3 + 1) · q3 + o(q3).

If T is an arbitrary vertex type then let us denote µ(T) the ratio of vertices which
are of type T and denote the number of uncoloured neighbours U(T). Note that
µ(T) is not the true value, it has already accumuluted errors in the previous steps.
It can be shown that if the step type is T (r, b), then the value of q is as follows:

q =
ε/2 · (d− r − b)∑

T vertex type µ(T) · U(T)
.

Now it is enough to show that
∏1/ε

1 (1 + 4/3(u3 + 1) · q3) is not much bigger than 1.
If we could guarantee 4/3(u3 + 1) · q3 < ε for each step then we could conclude that
the product is less than exp ε ≈ 1 + ε.

By reordering the terms, we have the following formula: (1/6(u3 + 1))
1/3 · (d −

r − b) · ε2/3 <
∑

T vertex type µ(T) · U(T). In the first step, inequality holds. Af-
ter that there will be no steps of Type(0, 0), so the left hand side is at most

(1/6((d(d− 1))3 + 1))
1/3 · 4 · ε2/3 ≈ 44 · ε2/3 for d = 5. Those steps where we

colour vertices which have a fully determined neighbourhood, i.e. only the root is
uncoloured, the leaves are coloured, does not contribute to the error calculation – in
these cases, q = 0 automatically. So if there are at least k real steps ahead then the
right hand side is at least kε. So we need 44 · ε2/3 < kε. After rearranging, we have
44 · N1/3 < k. Thus our stated inequality hold before the last 44 · N1/3 real steps.
In this calculation we used the calculated values of the ratio of the different star
types. Note that finnally we managed to ask for a lower bound on the remaining
true steps. But – at least not until the very end – we cannot have that much error
that the number of remaining true steps would differ significantly in the calculated
and in the real case.

In each step the ratio of each vertex type (maybe with coloured root) can change
with at most 6ε. So the last, possibly wrong real steps could modify the final vertex
distribution by 264 · ε2/3 for each vertex type. So this type of error also tends to 0.
I believe this second type of error could be estimated in a better way such that it

20

would be much less than the first type. Because of that in the table below (and in
the code) I did not calculat with that.

4.2 Results

I implemented the algorithm discussed above in C++ (the source files are in section
5, it was compiled with g++ 9.4.0 with c++14). The table below contains the
output values for d = 5.

ε
cut size without

improvement
lost vertices

improved
cut size

10−3 0.51009 0.018628 0.50425
10−4 0.50347 0.016906 0.49775
10−5 0.50282 0.016500 0.49720

So we got that for ε = 10−5 the improved cut size is at most 0.49720 which concludes
the proof of 1.3.

Which in turn concludes the proof of theorem 1.3.

21

5 Implementation

In this section I will provide my implementation of the methods discussed in the
previous sections. I compiled with g++ 9.4.0 with c++14.

The interesting thing about this implementation is that with slight modifications it
could do calculations for other local algorithms as well – where in each step it is
enough to know the 2-neighbourhood of the root.

Here are some example of possible modifications:

� the parameters of the algorithm: d, ε and the degree of the approximation can
be modified in config.h

� the priority order of the vertex types can be modified by changing the function
Priority::operator¡

� the other similar local algorithm can be implemented by modifying the func-
tions Transition::isTransitionable and Transition::getTransitionData

� new colours or other decorations can be introduced in the class Point and
SimpleStar

main.cpp

#include ”main.h”

#include ”math.h”
#include <iostream>
#include <algorithm>
#include <numeric>

int main() {
auto stars = generateStars();

auto priorities = generatePriorities();
cout << ”Order of priorities:\n”;
for(auto it=priorities.begin(); it!=priorities.end(); ++it)

it−>printType();
cout << ”\n−−−−−−−−−−\n”;
vector<Transition> transitions;
while(update(stars, priorities, transitions));
report(stars, priorities);

return 0;

22

}

bool incLeafOutType(vector<int>& lot, int maxVal) {
int idx = lot.size()−1;
while(idx>0 && lot[idx]==lot[idx−1])

idx−−;
if(idx == 0) {

if(lot[0] == maxVal−1) {
fill(lot.begin(), lot.end(), 0);
return false;

}
lot[lot.size()−1]++;
fill(lot.begin(), lot.end()−1, 0);
return true;

}
lot[idx−1]++;
fill(lot.begin()+idx,lot.end()−1,lot[idx−1]);
return true;

}

vector<Star> generateStars() {
vector<Star> stars;
int maxLeaf = DEGREE*(DEGREE+1)/2+2;
for(int c=0; c<3; c++) {

vector<int> lot(DEGREE, 0);
do {

stars.push back(Star(c,lot));
} while(incLeafOutType(lot, maxLeaf));

}
stars[SimpleStar::getNewStarIndex(SimpleStar(0, vector<int>(DEGREE, 2)))].

setMeas(1);
auto s = stars[SimpleStar::getNewStarIndex(SimpleStar(0, vector<int>(DEGREE,

2)))];
cout << s.getCenter().getColour() << ” ” << s.getLeafs()[0].getColour() << ”\n”;
return stars;

}

vector<Priority> generatePriorities() {
vector<Priority> p;
for(int r=0; r<=DEGREE; r++)

for(int b=r; b+r<=DEGREE; b++)
p.push back(Priority(PointType(r,b)));

sort(p.rbegin(), p.rend());
return p;

}

23

bool update(vector<Star>& stars, vector<Priority>& priorities, vector<Transition>&
transitions) {
udouble sumOfMargs = calculateMargs(stars, priorities);
auto colouredIt = find if(priorities.begin(), priorities.end(),

[](auto p) {return p.isColourable();});
if(colouredIt == priorities.end())

return false;
cout << sumOfMargs/EPS << ” ”;
colouredIt−>printType();
cout << endl;
auto transitionIt = find if(transitions.begin(), transitions.end(),

[colouredIt](auto t) {return *colouredIt == t.getColoured();});
if(transitionIt == transitions.end()) {

transitions.push back(Transition(stars, *colouredIt));
transitionIt = −−transitions.end();

}
udouble probKnown = EPS*(2−colouredIt−>isSymmetric())/(2* (colouredIt−>

getMeas()));
udouble probUnknown = probKnown/(2−colouredIt−>isSymmetric())*colouredIt
−>numOfUncol()*colouredIt−>getMeas()/
accumulate(priorities.begin(), priorities.end(), udouble(0),

[](udouble s, auto p){return s+p.numOfUncol()*p.getMeas();});
transitionIt−>doTheTransition(stars, probKnown, probUnknown);
return true;

}

udouble calcCut(const vector<Star>& stars) {
vector<udouble> c;
for(auto s: stars) {

if(s.getCenter().getColour() == 1)
c.push back(s.getMeas()*s.getMultiplicity()*s.getCenter().numOfNeig()[2]);

else if(s.getCenter().getColour() == 2)
c.push back(s.getMeas()*s.getMultiplicity()*s.getCenter().numOfNeig()[1]);

}
sort(c.begin(), c.end());
return accumulate(c.begin(), c.end(), udouble(0))/2;

}

udouble calculateMargs(const vector<Star>& s, vector<Priority>& p) {
vector<udouble> m;
for(auto it = p.begin(); it!=p.end(); ++it)

m.push back(it−>calculateMeas(s));
sort(m.begin(), m.end());
udouble res = accumulate(m.begin(), m.end(), udouble(0));
return res;

}

24

void report(const vector<Star>& s, vector<Priority>& p) {
cout << ”\n−−−−− REPORT −−−−−\n”;
cout << ”DEGREE: ” << DEGREE << endl;
cout << ”EPS: ” << EPS << endl;
udouble e0 = exp(−EPS);
udouble e1 = exp(EPS);
cout << ”Error multiplier due to not considering higher order terms: ” << e0

<< ” ... ” << e1 << ”\n”;
udouble cut = calcCut(s);
cout << ”Size of cut: ” << cut << endl;
cout << ”Remaining uncoloured vertices: ” << calculateMargs(s, p) << endl;
cout << ”Maximal contribution to cut: ”;
udouble cont = 0;
for(int i=0; i<s.size(); i++) {

if(s[i].getCenter().getColour() != 0)
continue;

if(s[i].getCenter().numOfNeig()[1]<s[i].getCenter().numOfNeig()[2]) {
cont += (DEGREE−s[i].getCenter().numOfNeig()[2])*s[i].getMeas()*s[i].

getMultiplicity();
} else if(s[i].getCenter().numOfNeig()[1]>s[i].getCenter().numOfNeig()[2]) {

cont += (DEGREE−s[i].getCenter().numOfNeig()[1])*s[i].getMeas()*s[i].
getMultiplicity();

} else {
cont += (DEGREE−s[i].getCenter().numOfNeig()[1])*s[i].getMeas()*s[i].

getMultiplicity()/2;
}

}
cout << cont << ”\n”;
cout << ”So the total cut is ” << cut+cont << ”\n”;
cout << ”Distribution of fully coloured stars:\n”;
cout << ”Center\tRed\tBlue\tMeas\n”;

udouble lost = 0;
for(int i=0; i<s.size(); i++) {

if(s[i].getCenter().getColour()==0 or s[i].getCenter().numOfUncol()>0)
continue;

if(s[i].getCenter().getColour()==1)
cout << ”Red\t”;

else
cout << ”Blue\t”;

cout << s[i].getCenter().numOfNeig()[1] << ”\t”
<< s[i].getCenter().numOfNeig()[2] << ”\t”
<< s[i].getMeas()*s[i].getMultiplicity() << ”\n”;

if(s[i].getCenter().numOfNeig()[s[i].getCenter().getColour()] < s[i].getCenter().
numOfNeig()[3−s[i].getCenter().getColour()])
lost += s[i].getMeas()*s[i].getMultiplicity();

25

}
cout << ”Measure of lost vertices: ” << lost << ”\n”;
cout << endl;
cout << ”So the improved cut size is at most ” << e1*cut+e1*cont−e0*lost*

impConst << endl;
}

main.h

#include ”star.h”
#include ”transition.h”
#include ”config.h”
#include ”priority.h”

#include <vector>

using namespace std;

vector<Star> generateStars();
vector<Priority> generatePriorities();
bool update(vector<Star>&, vector<Priority>&, vector<Transition>&);
udouble calcCut(const vector<Star>&);
udouble calculateMargs(const vector<Star>&, vector<Priority>&);
void report(const vector<Star>&, vector<Priority>&);

transition.cpp

#include ”transition.h”
#include ”binom.h”

#include <iostream>
#include <algorithm>

void Transition::initTransitionTable(const vector<Star>& stars) {
m transitionTable.resize(stars.size());
for(int from = 0; from < stars.size(); from++) {

auto neigh = SimpleStar::firstNeighs(stars[from]);
auto sneigh = SimpleStar::secondNeighs(stars[from]);
neigh.insert(neigh.end(), sneigh.begin(), sneigh.end());

for(int i=0; i<neigh.size(); i++) {
auto to = neigh[i];
if(!isTransitionable(stars[from], to))

continue;
auto tData = getTransitionData(stars[from], to);
if(!isNegligible(tData))

26

m transitionTable[from].push back(pair<int, vector<tDataType>>(
SimpleStar::getNewStarIndex(to.getOrderedVersion()), tData));

}
}

}

bool Transition::isTransitionable(const SimpleStar& from, const SimpleStar& to)
const {
if(from.getCenter().getColour() > 0 and

from.getCenter().getColour() != to.getCenter().getColour())
return false;

else if(from.getCenter().getColour() == 0) {
if(m coloured == from.getCenter()) {

if(to.getCenter().getColour() > 0) {
if(from.getCenter().numOfNeig()[to.getCenter().getColour()] <

from.getCenter().numOfNeig()[3−to.getCenter().getColour()])
return false;

}
} else if(to.getCenter().getColour() > 0) {

return false;
}

}
auto l1 = from.getLeafs();
auto l2 = to.getLeafs();
for(int i=0; i<DEGREE; i++) {

if(l1[i].getColour() != 0) { // it is coloured
if(l1[i].getColour() != l2[i].getColour())

return false;
} else { // it was not coloured

if(l2[i].getColour() != 0) { // it get coloured
if(not(l1[i] == m coloured)) // it couldnt get coloured

return false;
if(l1[i].numOfNeig()[l2[i].getColour()] <

l1[i].numOfNeig()[3−l2[i].getColour()])
return false;

} else {
int dr = (l2[i].numOfNeig()[1]−(to.getCenter().getColour()==1))

−(l1[i].numOfNeig()[1]−(from.getCenter().getColour()==1));
int db = (l2[i].numOfNeig()[2]−(to.getCenter().getColour()==2))

−(l1[i].numOfNeig()[2]−(from.getCenter().getColour()==2));
if(dr<0 or db<0)

return false;
}

}
}

27

return true;
}

vector<tDataType> Transition::getTransitionData(const SimpleStar& from, const
SimpleStar& to) const {
vector<tDataType> tData(5, 0);
if(from.getCenter().getColour() == 0) {

if(m coloured == from.getCenter()) {
if(to.getCenter().getColour() == 0)

tData[2]++;
else

tData[1]++;
}

}
auto l1 = from.getLeafs();
auto l2 = to.getLeafs();
tData[0] = 1;
for(int i=0; i<DEGREE; i++) {

if(l1[i].getColour() == 0) { // it was not coloured
if(l2[i].getColour() != 0) { // it get coloured

tData[1]++;
} else {

if(l1[i] == m coloured) // could get coloured but it didnt
tData[2]++;

int dr = (l2[i].numOfNeig()[1]−(to.getCenter().getColour()==1))
−(l1[i].numOfNeig()[1]−(from.getCenter().getColour()==1));

int db = (l2[i].numOfNeig()[2]−(to.getCenter().getColour()==2))
−(l1[i].numOfNeig()[2]−(from.getCenter().getColour()==2));

int tu = (l1[i].numOfNeig()[0]−(from.getCenter().getColour()==0));
tData[0] *= binom(tu, tu−dr−db)*binom(dr+db,db);
tData[3] += dr+db;
tData[4] += tu−dr−db;

}
}

}
return tData;

}

bool Transition::isNegligible(const vector<tDataType>& tData) const {
return tData[0] == 0 or tData[3]>=HOT;

}

udouble Transition::calculateTransitionValue(const vector<tDataType>& tData, const
udouble probKnown, const udouble probUnknown) const {

udouble result = tData[0];
for(int i=0; i<tData[1]; i++)

28

result *= probKnown;
for(int i=0; i<tData[2]; i++)

result *= 1−(1+m coloured.isSymmetric())*probKnown;
for(int i=0; i<tData[3]; i++)

result *= probUnknown;
for(int i=0; i<tData[4]; i++)

result *= 1−2*probUnknown;
return result;

}

Transition::Transition(const vector<Star>& stars, const PointType& coloured) :
m coloured{coloured} {
initTransitionTable(stars);

}

void Transition::doTheTransition(vector<Star>& stars, const udouble probKnown,
const udouble probUnknown) const {
for(int from = 0; from < m transitionTable.size(); from++)

for(auto t: m transitionTable[from]) {
int to = t.first;
auto tData = t.second;
udouble diff = stars[from].getMeas() * calculateTransitionValue(tData,

probKnown, probUnknown);
stars[from].addDiff(−diff);
stars[to].addDiff(diff*stars[from].getMultiplicity()/stars[to].getMultiplicity())

;
}

for(auto it = stars.begin(); it != stars.end(); ++it)
it−>updateMeas();

}

PointType Transition::getColoured() const {
return m coloured;

}

transition.h

#include ”point.h”
#include ”star.h”
#include ”config.h”

#include <vector>
#include <utility>

using namespace std;

29

typedef int tDataType;
class Transition {

private:
const PointType m coloured;
vector<vector<pair<int,vector<tDataType> > > > m transitionTable;

void initTransitionTable(const vector<Star>&);
bool isTransitionable(const SimpleStar&, const SimpleStar&) const;
vector<tDataType> getTransitionData(const SimpleStar&, const SimpleStar

&) const;
bool isNegligible(const vector<tDataType>&) const;
udouble calculateTransitionValue(const vector<tDataType>&, const udouble,

const udouble) const;
public:

Transition(const vector<Star>&, const PointType&);
void doTheTransition(vector<Star>&, const udouble, const udouble) const;
PointType getColoured() const;

};

priority.cpp

#include ”priority.h”

#include <math.h>
#include <algorithm>
#include <numeric>

Priority::Priority(const PointType& center) :
PointType{center},
m meas{0}

{}

bool Priority::operator<(const Priority& p) const {
int r1 = m red;
int b1 = m blue;
int r2 = p.m red;
int b2 = p.m blue;
if(r1+b1 == DEGREE)

return false;
if(r2+b2 == DEGREE)

return true;
if(abs(r1−b1) < abs(r2−b2))

return true;
if(abs(r1−b1) > abs(r2−b2))

return false;
if(min(r1, b1) < min(r2, b2))

return true;

30

return false;
}

udouble Priority::calculateMeas(const vector<Star>& stars) {
vector<udouble> m;
for(auto s: stars)

if(s.getCenter().getColour() == 0 and s.getCenter() == *this)
m.push back(s.getMeas()*s.getMultiplicity());

sort(m.begin(), m.end());
m meas = accumulate(m.begin(), m.end(), udouble(0));
return m meas;

}

udouble Priority::getMeas() const {
return m meas;

}

bool Priority::isColourable() const {
return m meas >= EPS;

}

priority.h

#include ”point.h”
#include ”config.h”
#include ”star.h”

#include <vector>
#include <iostream>

using namespace std;

class Priority : public PointType{
private:

udouble m meas;
public:

Priority(const PointType&);
bool operator<(const Priority&) const;
udouble calculateMeas(const vector<Star>&);
udouble getMeas() const;
bool isColourable() const;
void printType() const {

cout << ”(” << m red <<”, ” << m blue <<”),\t”;
}

};

31

star.cpp

#include ”star.h”

#include <algorithm>
#include <numeric>
#include <iostream>
#include <utility>
#include <map>
#include ”binom.h”

using namespace std;

int numberOfRedLeafs(const vector<int>& leafOutTypes) {
return count(leafOutTypes.begin(), leafOutTypes.end(), 0);

}

int numberOfBlueLeafs(const vector<int>& leafOutTypes) {
return count(leafOutTypes.begin(), leafOutTypes.end(), 1);

}

static pair<int, vector<int>> computeInitDataFromIndex(const int idx) {
int maxLeaf = DEGREE*(DEGREE+1)/2+2;
int mIdx = 1;
for(int i=0; i<DEGREE; i++)

mIdx *= maxLeaf;
int c = idx / mIdx;
vector<int> l;
int ci = idx % mIdx;
for(int i = 0; i<DEGREE; i++) {

l.push back(ci % maxLeaf);
ci /= maxLeaf;

}
return pair<int, vector<int>>(c,l);

}

static int computeMultiplicity(const vector<int>& leafOutTypes) {
map<int, int> c;
for(auto i: leafOutTypes)

c[i]++;
int res = factorial(leafOutTypes.size());
for(auto p: c)

res /= factorial(p.second);
return res;

}

32

SimpleStar::SimpleStar(const int center, const vector<int>& leafOutTypes) :
m center{center, numberOfRedLeafs(leafOutTypes), numberOfBlueLeafs(

leafOutTypes)},
m multiplicity{computeMultiplicity(leafOutTypes)}

{
for(int i=0; i<DEGREE; i++) {

m leafs.push back(Point::calculateLeafPoint(m center, leafOutTypes[i]));
}

}

SimpleStar::SimpleStar(const int idx) : SimpleStar{computeInitDataFromIndex(idx).
first, computeInitDataFromIndex(idx).second} {}

SimpleStar::SimpleStar() : SimpleStar{−1} {cout << ”Something went wrong with
SimpleStars...”;}

Star::Star(const int center, const vector<int>& leafOutTypes, const udouble meas) :
SimpleStar{center, leafOutTypes},
m meas{meas}

{}

Star::Star(const int center, const vector<int>& leafOutTypes) :
Star{center, leafOutTypes, 0}

{}

Point SimpleStar::getCenter() const {
return m center;

}

vector<Point> SimpleStar::getLeafs() const {
return m leafs;

}

int SimpleStar::getMultiplicity() const {
return m multiplicity;

}

SimpleStar SimpleStar::getOrderedVersion() const {
int c = getCenter().getColour();
vector<int> leafOutTypes;
for(int i=0; i<DEGREE; i++)

leafOutTypes.push back(Point::calculateLeafOutType(getCenter(), getLeafs()[i])
);

sort(leafOutTypes.begin(), leafOutTypes.end());
return SimpleStar(c, leafOutTypes);

}

33

static int getStarIndex(const SimpleStar& ss) {
int maxLeaf = DEGREE*(DEGREE+1)/2+2;
int mIdx = 1;
for(int i=0; i<DEGREE; i++)

mIdx *= maxLeaf;
int idx = 0;
auto l = ss.getLeafs();
for(auto it = l.rbegin(); it != l.rend(); it++) {

idx *= maxLeaf;
idx += Point::calculateLeafOutType(ss.getCenter(), *it);

}
idx += ss.getCenter().getColour() * mIdx;
return idx;

}

// only for increasing leaf types
int SimpleStar::getNewStarIndex(const SimpleStar& ss) {

int maxLeaf = DEGREE*(DEGREE+1)/2+2;
vector<int> T;
auto l = ss.getLeafs();
for(auto a: l) {

T.push back(Point::calculateLeafOutType(ss.getCenter(), a));
}
int idx = ss.getCenter().getColour() * binom(DEGREE+maxLeaf−1,DEGREE);
int S = T[DEGREE−1];
idx += (S==0) ? 0 : binom(DEGREE+S−1,DEGREE);
idx += binom(DEGREE+S−1,DEGREE−1) − binom(DEGREE+S−1−T[0],

DEGREE−1);
S −= T[0];
for(int i=1; i<DEGREE; i++) {

idx += binom(DEGREE+S−i−1,DEGREE−i−1);
idx −= binom(DEGREE+S−i−1−T[i]+T[i−1],DEGREE−i−1);
S −= T[i]−T[i−1];

}
return idx;

}

vector<SimpleStar> SimpleStar::firstNeighs(const SimpleStar& s) {
vector<SimpleStar> res;
int c = s.getCenter().getColour();
vector<int> leafOutTypes;
for(int i=0; i<DEGREE; i++)

leafOutTypes.push back(Point::calculateLeafOutType(s.getCenter(), s.getLeafs()
[i]));

34

if(c == 0) {
res.push back(SimpleStar(1,leafOutTypes));
res.push back(SimpleStar(2,leafOutTypes));

}
for(int i=0; i<DEGREE; i++) {

if(leafOutTypes[i] > 1) {
auto l = leafOutTypes;
l[i] = 0;
res.push back(SimpleStar(c,l));
l[i] = 1;
res.push back(SimpleStar(c,l));
if(s.getLeafs()[i].numOfUncol()>(s.getCenter().getColour() == 0)) {

l[i] = Point::calculateLeafOutType(s.getCenter(), s.getLeafs()[i])
+ DEGREE − (s.getLeafs()[i].numOfNeig()[1]−(s.getCenter().

getColour()==1));
res.push back(SimpleStar(c,l));
l[i] = Point::calculateLeafOutType(s.getCenter(), s.getLeafs()[i])

+ 1;
res.push back(SimpleStar(c,l));

}
}

}
sort(res.begin(), res.end(), [](auto a1, auto a2){return getStarIndex(a1) <

getStarIndex(a2);});
auto it = unique(res.begin(), res.end(), [](auto a1, auto a2){return getStarIndex(

a1) == getStarIndex(a2);});
res.resize(distance(res.begin(), it));
return res;

}

vector<SimpleStar> SimpleStar::secondNeighs(const SimpleStar& s) {
auto fn = firstNeighs(s);
vector<SimpleStar> res;
for(auto a: fn) {

auto f = firstNeighs(a);
res.insert(res.end(), f.begin(), f.end());

}
sort(res.begin(), res.end(), [](auto a1, auto a2){return getStarIndex(a1) <

getStarIndex(a2);});
auto it = unique(res.begin(), res.end(), [](auto a1, auto a2){return getStarIndex(

a1) == getStarIndex(a2);});
res.resize(distance(res.begin(), it));
return res;

}

udouble Star::getMeas() const {

35

return m meas;
}

void Star::setMeas(udouble meas) {
m meas = meas;

}

void Star::addDiff(udouble diff) {
m diffs.push back(diff);

}

void Star::updateMeas() {
m diffs.push back(m meas);
sort(m diffs.begin(), m diffs.end(),

[](udouble a, udouble b){return abs(a)<abs(b);});
m meas = accumulate(m diffs.begin(), m diffs.end(), udouble(0));
m diffs.clear();

}

star.h

#include ”point.h”
#include ”config.h”

#include <vector>

using namespace std;

class SimpleStar {
protected:

Point m center;
vector<Point> m leafs;
int m multiplicity;
//bool m sorted;

public:
SimpleStar(const int, const vector<int>&);
SimpleStar(const int);
SimpleStar();
Point getCenter() const;
vector<Point> getLeafs() const;
int getMultiplicity() const;
SimpleStar getOrderedVersion() const;
//bool isSorted() const;

//static int getStarIndex(const SimpleStar&);
static int getNewStarIndex(const SimpleStar&);
static vector<SimpleStar> firstNeighs(const SimpleStar&);

36

static vector<SimpleStar> secondNeighs(const SimpleStar&);
};

class Star : public SimpleStar {
private:

udouble m meas;
vector<udouble> m diffs;

public:
Star(const int, const vector<int>&, const udouble);
Star(const int, const vector<int>&);
udouble getMeas() const;
void setMeas(udouble);
void addDiff(udouble);
void updateMeas();

};

point.cpp

#include ”point.h”
#include ”config.h”
#include <iostream>

using namespace std;

PointType::PointType(const int red, const int blue):
m red{red},
m blue{blue}

{}

bool PointType::operator==(const PointType& p) const {
return min(m red, m blue) == min(p.m red, p.m blue) and

max(m red, m blue) == max(p.m red, p.m blue);
}

bool PointType::isSymmetric() const {
return m red == m blue;

}

int PointType::numOfUncol() const {
return DEGREE − m red − m blue;

}

Point::Point(const int center, const int red, const int blue) :
PointType{red, blue},
m center{center}

{}

37

int Point::getColour() const {
return m center;

}

vector<int> Point::numOfNeig() const {
return vector<int>{DEGREE−m red−m blue, m red, m blue};

}

Point Point::calculateLeafPoint(const Point& center, const int leafOutType) {
if(leafOutType < 2)

return Point(leafOutType+1,−1,−1);
int red = center.getColour()==1;
int blue = center.getColour()==2;
int m = DEGREE−1;
int lt = leafOutType−2;
while(lt>m) {

lt −= (m+1);
m−−;
red++;

}
blue += lt;
return Point(0, red, blue);

}

int Point::calculateLeafOutType(const Point& center, const Point& leafPoint) {
if(leafPoint.getColour() > 0)

return leafPoint.getColour() − 1;
int red = leafPoint.numOfNeig()[1] − (center.getColour() == 1);
int blue = leafPoint.numOfNeig()[2] − (center.getColour() == 2);
return 2 + red * DEGREE − (red * (red − 1)) / 2 + blue;

}

point.h

#include <vector>

using namespace std;

class PointType {
protected:

int m red;
int m blue;

public:
PointType(const int red, const int blue);
bool operator==(const PointType&) const;
bool isSymmetric() const;
int numOfUncol() const;

38

};

class Point : public PointType {
private:

int m center;
public:

Point(const int center, const int red, const int blue);
int getColour() const; // 0: uncol, 1: red, 2: blue
vector<int> numOfNeig() const; // (#uncol, #red, #blue)

static Point calculateLeafPoint(const Point&, const int);
static int calculateLeafOutType(const Point&, const Point&);

};

config.h

typedef long double udouble;

const udouble EPS = 0.0001;
const int DEGREE = 5;
const udouble impConst = 0.34116;
const int BINOM BIG NUMBER = 50; // for binomial coefficients
const int FACTORIAL BIG NUMBER = 10;
const int HOT = 3;

binom.cpp

#include ”binom.h”
#include ”config.h”
#include <vector>
#include <iostream>

int LOOKUP TABLE FOR BINOMIAL COEFFICIENTS[BINOM BIG NUMBER][
BINOM BIG NUMBER];

int LOOKUP TABLE FOR FACTORIAL[FACTORIAL BIG NUMBER];

int binom(int a, int b) {
if(a>=BINOM BIG NUMBER or b>=BINOM BIG NUMBER) {

std::cout << ”TOO BIG NUMBER IN FUNCTION binom\n”;
return −1;

}
if(a < b)

return 0;
if(LOOKUP TABLE FOR BINOMIAL COEFFICIENTS[a][b] == 0) {

if(a == b or b == 0)
LOOKUP TABLE FOR BINOMIAL COEFFICIENTS[a][b] =

1;

39

else
LOOKUP TABLE FOR BINOMIAL COEFFICIENTS[a][b] =

binom(a−1,b)+binom(a−1,b−1);
}
return LOOKUP TABLE FOR BINOMIAL COEFFICIENTS[a][b];

}

int invBinomU(int a, int b) {
int c = 0;
for(;binom(c,b)<a;c++) {}
return c;

}

int invBinomD(int a, int b) {
int c = 0;
for(;binom(c,b)<=a; c++) {}
return c;

}

int factorial(int a) {
if(a>=FACTORIAL BIG NUMBER) {

std::cout << ”TOO BIG NUMBER IN FUNCTION factorial.\n”;
return −1;

}
if(LOOKUP TABLE FOR FACTORIAL[a] == 0) {

if(a==0) {
LOOKUP TABLE FOR FACTORIAL[a] = 1;

} else {
LOOKUP TABLE FOR FACTORIAL[a] = a * factorial(a−1);

}
}
return LOOKUP TABLE FOR FACTORIAL[a];

}

binom.h

int binom(int a, int b); // calculate a choose b
int invBinomU(int a, int b); // calculate the least int c st. a >= binom(c,b)
int invBinomD(int a, int b); // calculate the most int c st. a <= binom(c,b)

int factorial(int a);

40

References

[1] Dı́az, Josep, Maria J. Serna, and Nicholas C. Wormald. ”Computation of the
bisection width for random d-regular graphs.” LATIN 2004: Theoretical Infor-
matics: 6th Latin American Symposium, Buenos Aires, Argentina, April 5-8,
2004. Proceedings 6. Springer Berlin Heidelberg, 2004.

[2] Lovász, László. Large networks and graph limits. Vol. 60. American Mathemat-
ical Soc., 2012.

[3] Hatami, Hamed, László Lovász, and Balázs Szegedy. ”Limits of locally–globally
convergent graph sequences.” Geometric and Functional Analysis 24.1 (2014):
269-296. 1205.4356

[4] Elek, Gábor, and Gábor Lippner. ”Borel oracles. An analytical approach to
constant-time algorithms.” Proceedings of the American Mathematical Society
138.8 (2010): 2939-2947.

[5] Shafique, Khurram H., and Ronald D. Dutton. ”On satisfactory partitioning of
graphs.” Congressus Numerantium (2002): 183-194.

[6] Ban, Amir, and Nati Linial. ”Internal partitions of regular graphs.” Journal of
Graph Theory 83.1 (2016): 5-18.

[7] Linial, Nathan, and Sria Louis. ”Asymptotically Almost Every 2 r-Regular
Graph Has an Internal Partition.” Graphs and Combinatorics 36.1 (2020): 41-
50.

[8] Garey, Michael R., and David S. Johnson. Computers and intractability. Vol.
174. San Francisco: freeman, 1979.

[9] Bärnkopf, Pál, Zoltán Lóránt Nagy, and Zoltán Paulovics. ”A note on inter-
nal partitions: the 5-regular case and beyond.” arXiv preprint arXiv:2109.14421
(2021).

[10] Axenovich, Maria, et al. ”Bipartite independence number in graphs with
bounded maximum degree.” SIAM Journal on Discrete Mathematics 35.2 (2021):
1136-1148.

41

	Introduction
	The algorithm
	Doing steps simultaneously
	Localizing

	Graphings
	Bernoulli graphings
	Local convergence

	Details of the calculation
	Error calculation
	Results

	Implementation

