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Abstract

In the factor analysis the well-known KMO statistics is often used. In general,
the KMO is a one-dimensional representation of a multidimensional random
variable’s dependence structure. This depends on both the correlation and
the partial correlation of the coordinates. In statistics, we represent a cor-
relation between two random variables as a linear relationship, and also we
define a partial correlation as a correlation of the dual bases of the observa-
tions.

The main result of our dissertation are the Claims 0. 1. 2. 3. and 4. in
Chapter 5. These Claims are unknown in the literature. These show the
exact range and the distribution of possible values for KMO statistics and a
critique of Kaiser’s rating.

These results have of great practical importance because they show that, in
contrast to general application practice, the range of possible KMO values is
only a narrower part of the [0, 1] interval, and its distribution is neither even
nor symmetrical.

The paper begin by introducing the correlation and the partial correlation,
and their matrices. Then we deal which some theorems and properties, that
help us to understand generation methods of random correlation matrices.
Finally, the dissertation deals in detail with the properties of the tools needed
to interpret the results concerning the KMO that is the Kaiser–Meyer–Olkin
test.

The results are conjectures that are supported by simulations and calcula-
tions. Therefore, the thesis contains scripts in several places.
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1

Correlation and partial correlation

1.1 The correlation

Definition 1 (The correlation).
Let ξ, η be two real random value where each one has finite variance, we denote the
correlation of ξ, η by cor(ξ, η) or ϱ(ξ, η), is defined by:

ϱ(ξ, η) =
E
(
(ξ − E(ξ))(η − E(η))

)
D(ξ)D(η)

(1.1)

with standard deviations D(ξ) and D(η) and expected values E(ξ) and E(η).

The properties of the correlation:

(1) The value of the correlation coefficient is between -1 and +1 .

(2) If ξ and η are independent then ϱ = 0.

(3) If ϱ = 0 then the ξ and η are not necessarily independent (see Example 1.1).

(4) The correlation invariant with respect to linear transformations

cor(a ξ + b, c η + d) = sign(ac) · cor(ξ, η)

where a, b, c, d are arbitrary constants.

(5) If for all g and h functions cor(g(ξ), h(η)) = 0 then the ξ and η are independent.

(6) If ξ and η are standardized random values, then argmin
c

E((η − cξ)2) = ϱ.
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Chapter 1 Correlation and partial correlation

(7) If η̂|ξ denotes ϱξ, the best linear approximation of η using ξ, then ϱ2 = D2(η̂|ξ)

is the explained proportion of the variance of η.

(8) The positive correlation isn’t always transitive. (see Example 1.2)

Example 1.1. Let be ξ have a symmetric distribution, and let η = ξ2, then cor(ξ, η) = 0

but ξ and η are not independent. To demonstrate the zero correlation, enough to prove
that cov(ξ, η) = E(ξη)−E(ξ)E(η) = 0. But here both terms are really zero. The second
because of symmetry then E(ξ) = 0 and the first because ξη = ξ3 has also a symmetric
distribution.
To show non-independence, it is sufficient to show only one pair of non-independent
events defined by the two random variables. For the sake of simplicity, such a pair of
events is given only in a very special case. Let U([−1, 1]), then

P(ξ < .5, η < .25) = P(η < .25) = 5/8 ̸= P(ξ < .5) · P(η < .25) = .75 · 5/8

Example 1.2. Let A, B and C three independent variable, for which the expected values
are 0 and the standard deviations are

√
2 . Determine the values of X, Y and Z using

the following equations:

X = A+B

Y = C +B

Z = C −A

Then cor(X,Y ) = .5 > 0, cor(Y, Z) = .5 > 0 but cor(X,Z) = −.5 < 0.

1.2 The partial correlation

Definition 2 (the partial correlation).
Let ξ, η and ζ = (ζ1, ..., ζk) three random variables. By definition, the partial correlation
of ξ and η according of ζ is equal to the correlation of the errors of the linear predictions
of ξ and η using ζ:

ϱξ,η•ζ1,...,ζk = ϱ
(
Eξ∼(ζ1,...,ζk),Eη∼(ζ1,...,ζk)

)
= ϱ
(
ξ− ℓξ(ζ1, ..., ζk), η− ℓη(ζ1, ..., ζk)

)
(1.2)

where ℓξ(ζ1, ..., ζk) is the linear regression of ξ on (ζ1, ..., ζk) and
ℓη(ζ1, ..., ζk) is the linear regression of η on (ζ1, ..., ζk) and
Eξ∼(ζ1,...,ζk) and Eη∼(ζ1,...,ζk) are the errors of this two regressions respectively.
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Chapter 1 Correlation and partial correlation

The properties of the partial correlation:

• The case of one dimensional predictor variable:

Lemma 1 (linear approximation in dispersion).
Let η and ξ two arbitrary random value.
The best linear approximation of η with X, measured in dispersion is:

argmin
a,b

D
(
η − ℓη(ξ)

)
= argmin

a,b
D
(
η − (a+ bξ)

)
= (aη, bη) (1.3)

where aη = any number, and bη = cov(η,ξ)
D2(ξ)

Proof of Lemma 1.

D2(η − (a+ bξ)) = D2
(
η − (a+ bξ)−

(
E(η)− (a+ bE(ξ))

))
= D2(η0 − bξ0)

= E
(
(η0 − bξ0)

2
)
−
(
E(η0 − bξ0)

)2 second term is zero

= D2(η)− 2bcov(η, ξ) + b2D2(ξ)

Where we used the notation η0 = η−E(η) and ξ0 = ξ−E(ξ), and the equivalence
E(η0 − bE(ξ0)) = 0− b · 0 = 0.
The minimum place of this second-order expression is according to b is

b =
−(−2cov(η, ξ))

2D2(ξ)
=

cov(η, ξ)

D2(ξ)

Lemma 2 (linear approximation in mean squared error).
Let η and ξ two arbitrary random value.
The best linear approximation of η with ξ, measured in mean squared error is:

argmin
a,b

E
((

η − ℓη(ξ)
)2)

= argmin
a,b

E
((

η − (a+ bξ)
)2)

= (aη, bη) (1.4)

where aη = E(η)− bηE(ξ), and bη = cov(η,ξ)
D2(ξ)

3



Chapter 1 Correlation and partial correlation

Proof of Lemma 2.
∂

∂a

(
E
((

η − (a+ bξ)
)2))

= −2E
(
η − (a+ bξ)

)
= 0

With equivalent conversion: E(η)− a− bE(ξ) = 0

That is why a = E(η)− bE(ξ).

∂

∂b

(
E
((

η − (a+ bξ)
)2))

= −2E
(
ξ
(
η − (a+ bξ)

))
= 0

E(ηξ)− aE(ξ)− bE(ξ2) = 0

E(ηξ)− (E(η)− bE(ξ))E(ξ)− bE(ξ2) = 0

E(ηξ)− E(η)E(ξ)− b
(
E(ξ2)− (E(ξ))2

)
= 0

cov(η, ξ)− bD2(ξ) = 0

In the second line we used that a = E(η)− bE(ξ), and
based on the last line it follows that indeed b = cov(η,ξ)

D2(ξ)
is the solution.

Let ℓη(ξ) = a+ bξ where a = E(η)− bE(ξ), b = cov(ξ,Y )
D2(ξ)

E
(
ℓη(ξ)

)
= E(a+ bξ) = a+ bE(ξ) = (E(η)− bE(ξ)) + bE(η) = E(η)

D2
(
ℓη(ξ)

)
= D2(a+ bξ) = b2D2(ξ) =

cov2(η, ξ)

D4(ξ)
D2(ξ) =

cov2(η, ξ)

D2(ξ)

Let Eη|ξ = η − ℓη(ξ) then

E
(
Eη|ξ

)
= E(η − ℓη(ξ)) = E(η)− E(ℓη(ξ)) = E(η)− E(η) = 0

D2
(
Eη|X

)
= E

(
(η − ℓη(ξ))

2
)
−
(
E(η − ℓη(ξ))

)2
= second term is zero

= E
(
(η − E(η) + E(η)− (a+ bξ))2

)
= E

(
(η − E(η) + (a+ bE(ξ))− (a+ bξ))2

)
= E

((
(η − E(η))− b(ξ − E(ξ))

)2)
= D2(η)− 2bcov(Y, ξ) + b2D2(ξ)

= D2(η)− 2
cov(η, ξ)

D2(ξ)
cov(η, ξ) +

cov2(η, ξ)

D4(ξ)
D2(ξ)

= D2(η)− cov2(η, ξ)

D2(ξ)

= D2(η)
(
1− ϱ2(η, ξ)

)
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Chapter 1 Correlation and partial correlation

Where we used in the second line that +E(η) = a+ bE(ξ), and
in the last the notation ϱ = cov(ξ,η)

D(η)D(ξ) , the correltion of η and ξ.

Theorem 1 (value of the partial correlation based on the correlations).
Let ξ, η and ζ three random varables. Then we can calculate the partial correlation
of ξ and η according ζ based on the pairwise correlations of the three variables by
the following formula:

ϱξ,η•ζ =
ϱξ,η − ϱξ,ζϱη,ζ√

1− ϱ2ξ,ζ

√
1− ϱ2η,ζ

(1.5)

Proof of Theorem 1.

cov(Eξ|ζ ,Eη|ζ) = E(Eξ|ζEη|ζ)− E(Eξ|ζ)E(Eη|ζ)

= E
(
ξ − (aξ + bξζ)

)(
η − (aη + bηζ)

)
= E

((
(ξ−E(ξ))− bξ(ζ−E(ζ))

)(
(η−E(η))− bη(ζ−E(ζ))

))
= cov(ξ, η)− bηcov(ξ, ζ)− bξcov(η, ζ) + bξbηD2(ζ)

= cov(ξ, η)− cov(η, ζ)

D2(ζ)
cov(ξ, ζ)−

cov(ξ, ζ)

D2(ζ)
cov(η, ζ) +

cov(η, ζ)

D2(ζ)

cov(ξ, ζ)

D2(ζ)
D2(ζ)

= cov(ξ, η)− cov(η, ζ)

D2(ζ)
cov(ξ, ζ)

We used in the first row that E(Eξ|ζ) = E(Eη|ζ) = 0. In the third row we wrote in
place of aξ and aη the E(ξ)− bξE(ζ) and E(η)− bηE(ζ).

ϱ(Eξ|ζ ,Eη|ζ) =
cov(ξ, η)− cov(η,ζ)

D2(ζ)
cov(ξ, ζ)

D(ξ)
√
1− ϱ2ξ,ζ D(η)

√
1− ϱ2η,ζ

=
ϱξ,η − ϱξ,ζϱη,ζ√

1− ϱ2ξ,ζ

√
1− ϱ2η,ζ

Which was to be proved.

5



Chapter 1 Correlation and partial correlation

• The case of multidimensional predictor variable:

Theorem 2 (recursive formula of the partial correlation).

ϱξ,η•(ζ1,...,ζk,ζk+1) =
ϱξ,η•(ζ1,...,ζk) − ϱξ,ζk+1•(ζ1,...,ζk)ϱη,ζk+1•(ζ1,...,ζk)√

1− ϱ2ξ,ζk+1•(ζ1,...,ζk)

√
1− ϱ2η,ζk+1•(ζ1,...,ζk)

(1.6)

Theorem 3 (multidimensional predictor variable).
Let ξ = (ξ1, ..., ξp) a p dimensional random value.
The value of the ϱξ1,ξp•(ξ2,...,ξp−1) partial correlation gives the following equation:

ϱξ1,ξp•(ξ2,...,ξp−1) =
r − r1,2R

−1
2,2r2,3√

1− r1,2R
−1
2,2r2,1

√
1− r3,2R

−1
2,2r2,3

(1.7)

In the formula above the ‘r’-s are submatrices of the correlation matrix of η.
Where η = (η1, η2, η3), here η1 = ξ1, η2 = (ξ2, ..., ξp−1), η3 = ξp, and

cor(η) = cor
(
(η1, η2, η3)

)
=


1 r1,2 r

r2,1 R2,2 r2,3

r r3,2 1



Definition 3 (alternative definition of the partial correlation).
The partial correlation of two elements of a variable set, according to the other elements
of the set is the same as ‘the minus correlation between the two variables own informa-
tion’. For example, let ξ1, ..., ξk be a variable set, then the partial correlation of ξ1 and
ξk according to ξ2, ..., ξk−1 is:

ϱξ1,ξk•ξ2,...,ξk−1
=

− ϱ
(
Eξ1∼(ξ2,...,ξk),Eξk∼(ξ1,...,ξk−1)

)
= −ϱ

(
ξ1 − ℓξ1(ξ2, ..., ξk), ξk − ℓξk(ξ1, ..., ξk−1)

)
where ℓξ1(ξ2, ..., ξk) is the regression of ξ1 on (ξ2, ..., ξk) and
ℓξk(ξ1, ..., ξk−1) is the regression of ξk on (ξ1, ..., ξk−1) and
Eξ1∼(ξ2,...,ξk) and Eξk∼(ξ1,...,ξk−1) are the errors of this two regressions respectively.

Lemma 3 (the equivalence of the two definitions of partial correlation).
Considering the correlation pair also as an explanatory variable only changes the sign
of the partial correlation. Which means that

ϱ
(
Eξ1∼(ξ2,...,ξk−1),Eξk∼(ξ2,...,ξk−1)

)
= −ϱ

(
Eξ1∼(ξ2,...,ξk),Eξk∼(ξ1,...,ξk−1)

)
(1.8)

6



Chapter 1 Correlation and partial correlation

A numerical example in R .

set.seed(54321)
n <- 123
p <- 5

X <- matrix(rnorm(n*p),n,p)

# the standard definition
# explanation without X1 and Xp
e_1k <- residuals(lm(X[,1]~X[,-c(1,p)]))
e_pk <- residuals(lm(X[,p]~X[,-c(1,p)]))
cor(e_1k,e_pk) # 0.02449181

# the alternative definition
# the correlation when we use the counterpart variable also
e_1m <- residuals(lm(X[,1]~X[,-1]))
e_pm <- residuals(lm(X[,p]~X[,-p]))
cor(e_1m,e_pm) # -0.02449181

# they differ only in sign
cor(e_1k,e_pk)+cor(e_1m,e_pm) # 0

Proof of Lemma 3:
We transform the notation so that the notation of the proof be simpler.
Let denote the target variables by η1 ≡ ξ1 and η2 ≡ ξk and the circumstance variables
by ξ ≡ (ξ2, ..., ξk−1). And denote the investigated errors by ε1 ≡ Eη1∼ξ and ε2 ≡ Eη2∼ξ.
And the errors of the alternative definition let denoted by δ1 ≡ Eη1∼(η2,ξ) and δ2 ≡
Eη2∼(η1,ξ). So the question of Lemma 3 is, whether the following equality:

ϱ(ε1, ε2) = −ϱ(δ1, δ2)

is true or not?

7



Chapter 1 Correlation and partial correlation

Denote by PH the orthogonal projection on the space spanned by the variable set H.

δ1 = η1 − Pη2,ξ(η1)

= η1 − Pη2,ξ(Pξ(η1) + ε1)

= η1 −
(
Pη2,ξ(Pξ(η1)) + Pη2,ξ(ε1)

)
= η1 −

(
Pξ(η1) + Pη2,ξ(ε1)

)
because Pξ(η1) ∈ {η2, ξ}

= η1 −
(
Pξ(η1) + Pξ(ε1) + Pε2(ε1)

)
because ξ⊥ε2 thus Pη2,ξ = Pξ + Pε2

= η1 − Pξ(η1)− Pε2(ε1) because ε1⊥ξ

= ε1 − Pε2(ε1) because η1 = Pξ(η1) + ε1

= Pε⊥2
(ε1)

It can be proved in the same way that δ2 = Pε⊥1
(ε2). So δ1 is the projection of ε1

onto the subspace perpendicular to ε2, and δ2 is the projection of ε2 onto the subspace
perpendicular to ε1. Considering that the correlation is equal to the cosine of the angle
of the vectors, the figure below interprets the truth of the statement. [1, 2]

ε
1

ε2

δ
1

δ2

Figure 1.1: The ∠(ε2, ε1) = π − ∠(δ2, δ1).
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Chapter 1 Correlation and partial correlation

Remark 1.

The partial correlation is not necessarily less than the correlation. (see Example 1.3)

Example 1.3. We take two cases used the Figure 1.2.

A case when the partial correlation is less then the correlation:

rxy <- ryx <- .5
rxz <- rzx <- .5
ryz <- rzy <- .5
pxy.z <- (rxy-rxz*ryz)/(sqrt(1-rxz^2)*sqrt(1-ryz^2))
pxy.z # 1/3 .33333

If the cor(ξ, η) = .5 and cor(ξ, ζ) = cor(η, ζ) = .5 then the cor(ξ, η •ζ) = 1/3 < cor(ξ, η).

A case when the partial correlation is greather then the correlation:

rxy <- ryx <- .5
rxz <- rzx <- - 1/3
ryz <- rzy <- 1/3
pxy.z <- (rxy-rxz*ryz)/(sqrt(1-rxz^2)*sqrt(1-ryz^2))
pxy.z # 11/16 = .6875

If the cor(ξ, η) = .5 and −cor(ξ, ζ) = cor(η, ζ) = 1
3 then the cor(ξ, η •ζ) = 11

16 > cor(ξ, η).

The figure created by R we illustrates, that the situation mentioned in Remark 1 isn’t
a rare case.

lg.plot <- function(rXY,res=99){
title <- paste("Order of magnitude of correlation and",

"partial correlation to each other",
"\nCorr(X,Y)=.5,",
"partial: smaller=’green’, larger=’blue’",
"\nimpossible correlation pairs = ’white’")

rXZ <- as.vector(rep(-res:res/(res+1),2*res+1))
n <- length(rXZ)
rYZ <- sort(rXZ)
rYX <-rXY;rZX<-rXZ;rZY<-rYZ
rXY.Z <- (rXY-rXZ*rYZ)/(sqrt(1-rXZ^2)*sqrt(1-rYZ^2))
col <- rep("black",n)
col[abs(rXY.Z) < abs(rXY)] <- "green"

9



Chapter 1 Correlation and partial correlation

col[abs(rXY.Z) > abs(rXY)] <- "blue"
non.pos.def <- rep(FALSE,n)
for(k in 1:n)
{ R <- matrix(c(1,rYX,rZX[k],rXY,1,rZY[k],rXZ[k],rYZ[k],1),3,3)

if(det(R) <= 0) non.pos.def[k] <- TRUE }
col[non.pos.def] <- "white"
par(mar=c(5,5,4,.5))
plot(rXZ,rYZ,pch=20,col=col,las=1,asp=1,

main=title,xlab="Corr(X,Z)",ylab="Corr(Y,Z)")
abline(h=c(-1,1),v=c(-1,1),col="gray",lty=3)
return(paste("the conditions ’pos.def’ and ’|parc.cor|<1’",

"are equivalent:",
all.equal(abs(rXY.Z)>1,non.pos.def)))

}
lg.plot(.5)
# "the conditions ’pos.def’ and ’|parc.cor|<1’ are equivalent: TRUE"

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Order of magnitude of correlation and partial correlation to each other 
Corr(X,Y)=.5, partial: smaller='green', larger='blue' 

impossible correlation pairs = 'white'

Corr(X,Z)

C
or

r(
Y,

Z
)

Figure 1.2: The relation of the correlation and the partial correlation

The two coordinates are cor(X,Z) and cor(Z, Y ), and cor(X,Y ) is fixed at .5.
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Chapter 1 Correlation and partial correlation

Colors indicate whether the cor(X,Y • Z) partial correlation is greater or less as the
cor(X,Y ) = .5 correlation.

The program also demostrate the validity of the Lemma 4 "feasibility of correlations".

Lemma 4 (feasibility of correlations).

The triad of three correlations (ϱξ,η, ϱξ,ζ , ϱη,ζ) is a valid correlations triad of three ran-

dom values (ξ, η, ζ) if and only if the partial correlation ϱξ,η•ζ calculated by the above

formula 1.5 (see Theorem 1) has a value in [−1, 1].

Proof of Lemma 4.

A matrix with diagonal equals 1 can be a correlation matrix if and only if it is positive

semi-definite. According to the classical Sylvester condition the matrix M

M =


1 ϱξ,η ϱξ,ζ

ϱη,ξ 1 ϱη,ζ

ϱζ,ξ ϱζ,η 1


is positive semi-definite than and only then, if the determinant of all of its principal

minors are non-negative. The determinant of the symmetric sub-matrices of size 1× 1

and 2×2 are necessarily non-negative. The only problem is the non-negativeness of the

determinant of the whole matrix.

By definition the determinant of M is:

det(M) = 1·1·1 + ϱξ,η ·ϱη,ζ ·ϱζ,ξ + ϱξ,ζ ·ϱη,ξ ·ϱζ,η

−ϱξ,ζ ·1·ϱζ,ξ − 1·ϱη,ζ ·ϱζ,η − ϱξ,η ·ϱη,ξ ·1

= 1 + 2·ϱξ,η ·ϱη,ζ ·ϱζ,ξ − ϱ2ξ,ζ − ϱ2η,ζ − ϱ2ξ,η

Using the condition that the result of the formula of the partial correlation 1.5 (see

Theorem 1) gives a value in [−1, 1], by equivalent transformations gives:

11



Chapter 1 Correlation and partial correlation

ϱξ,η•ζ =
ϱξ,η − ϱξ,ζϱη,ζ√

1− ϱ2ξ,ζ

√
1− ϱ2η,ζ

∈ [−1, 1]

(ϱξ,η − ϱξ,ζϱη,ζ)
2

(1− ϱ2ξ,ζ)(1− ϱ2η,ζ)
≤ 1

(ϱξ,η − ϱξ,ζϱη,ζ)
2 ≤ (1− ϱ2ξ,ζ)(1− ϱ2η,ζ)

ϱ2ξ,η + ϱ2ξ,ζϱ
2
η,ζ − 2ϱξ,ηϱξ,ζϱη,ζ ≤ 1− ϱ2ξ,ζ − ϱ2η,ζ + ϱ2ξ,ζϱ

2
η,ζ

ϱ2ξ,η − 2ϱξ,ηϱξ,ζϱη,ζ ≤ 1− ϱ2ξ,ζ − ϱ2η,ζ

0 ≤ 1 + 2ϱξ,ηϱξ,ζϱη,ζ − ϱ2ξ,ζ − ϱ2η,ζ − ϱ2ξ,η

And that’s exactly what we’re looking for.
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2

Correlation and partial correlation

matrices

2.1 Correlation matrices

Definition 4 (covariance matrix).

Let ξ a p-dim, η a q-dim random value, then the p× q size C matrix, with elements

Ci,j = cov(ξi, ηj) = E
(
(ξi − E(ξi))(ηj − E(ηj))

)
(2.1)

is the covariance matrix of ξ and η

Proposition 1.

If C is a covariance matrix of a random vector ξ (the covariance of ξ with ξ, i.e. the

covariance of ξ with itself), then for any constant vector µ⃗ we have

µ⃗TCµ⃗ ≥ 0 (2.2)

That is, C satisfies the property of being a positive semi-definite matrix.

13
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Definition 5 (correlation matrix).

Let ξ a p-dim, η a q-dim random value, then the p× q size R matrix, with elements

Ri,j = Ci,j/(D(ξi)D(ηj)) (2.3)

is the correlation matrix of ξ and η

In the following, we are forced to give three not significantly different definitions of the
partial correlation matrix, because unfortunately there is no uniform definition of the
partial correlation matrices used in practice.

2.2 Partial correlation matrices

Definition 6 (Partial Correlation Matrix (the negative definit variant)).

The (i, j)-th off-diagonal element of the partial correlation matrix of a p dimensional ξ

random value equals by the partial correlation of the i-th and j-th coordinates given all

of the other coordinates:

ϱξi,ξj •ζk∈I
for all i=1,...,p and j = 1, ..., p where I = {1, ..., p}

∖
{i, j}

The diagonal of the partial correlation matrix is equal to −1.

Let denote this version of the partial correlation matrix by P− to distinguish it from

other versions of the definitions.

Remark 2.

There are two important alternative definitions of the partial correlation matrix:

= marked as P ∗, formed by changing the sign of the diagonal elements of P−

= marked as P+, formed by changing the sign of each element of the matrix P−

That is, the alternative partial correlation matrices are defined according to the following

equations:

P ∗ = P− + 2 · I

P+ = −P−

14
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Comment
The P ∗ is the version for which all elements, including the diagonal, are equal to the
partial correlations of the corresponding variables, given all other variables as circum-
stances.
The corpcor [3] and randcorr [4] R supplementary packages – which was used several
times in our simlation study – works with the P ∗ type partial correlation matrices.

Notation mode
For a square matrix M the Diag−1/2(M) is a diagonal matrix, which off-diagonal ele-
ments are zeros and the diagonal elements are the reciprocal of the square root of the
diagonal elements of M .

Lemma 5 (the scaled and negated inverse of the Correlation matrix).

The P− identical to the scaled and negated version of the inverse of the correlation

matrix:

P− = −Diag−1/2(R−1) R−1 Diag−1/2(R−1) (2.4)

Proof of Lemma 5.

Using the alternative definition of the partial correlation (see Definition 3), the partial

correlation is the negated correlation of Eξ1∼(ξ2,...,ξk) and Eξk∼(ξ1,...,ξk−1) (see Lemma 3).

But the Eξ1∼(ξ2,...,ξk) is nothing else as an orthogonal vector to the subspace generated

by the variables ξ2, ..., ξk and the Eξk∼(ξ1,...,ξk−1) in the same way.

Let (ξ∗1 , ..., ξ
∗
k) the biorthogonal base for the vector set (ξ∗1 , ..., ξ

∗
k). In other words, let

cor(ξ∗i , ξj) = δ(i, j) where δ(i, j) = 1 or 0 must be fulfilled, according to conditions i = j

and i ̸= j, respectively. Then Eξ1∼(ξ2,...,ξk) = λ1ξ
∗
1 and Eξk∼(ξ1,...,ξk−1) = λkξ

∗
k. And the

partial correlation of ξ1 and ξk equal to the negated correlation of ξ∗1 and ξ∗k, because

we can drop the λ1 and λk due to standardization.

By the definition of the ξ∗ variables cov(ξ∗, ξ) = I and for a suitable B linear trans-

formation ξ∗ = Bξ. This means, that if cov(ξ) = Σ then cov(ξ∗, ξ) = BΣ, therefore

15
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I = BΣ and follows that B = Σ−1. The statement follows directly from the fact that

cov(ξ∗) = cov(BΣ) = cov(Σ−1ΣΣ−T ) = cov(Σ−T ) = cov(Σ−1)

A short example in R :
An P ∗ type partial correlation matrix generated in three different ways.

1) according to the classical definition (omitting two variables).
2) by alternative definition (only one variable omitted)
3) by inversion method

library("ppcor")
set.seed(123)
p <- 5
n <- 12
X <- matrix(rnorm(n*p),n,p)

# the partial correlation matrix by the package ’ppcor’
P_ref <- pcor(X)[[1]]

# the classical definition
P1 <- matrix(0,p,p)
for(i in 1:p) for(j in 1:p)

P1[i,j] <- cor(residuals(lm(X[,i]~X[,-c(i,j)])),
residuals(lm(X[,j]~X[,-c(i,j)])))

# the alternative definition
P2 <- matrix(0,p,p)
for(i in 1:p) for(j in 1:p)

P2[i,j] <- cor(residuals(lm(X[,i]~X[,-i])),
residuals(lm(X[,j]~X[,-j])))

P2[outer(1:p,1:p,’!=’)] <- -P2[outer(1:p,1:p,’!=’)]

# by inversion
isd <- function(M) diag(1/sqrt(diag(M)))
P3 <- solve(cor(X))
P3 <- - isd(P3) %*% P3 %*% isd(P3)
diag(P3) <- 1 # diag -1 change to 1

# the result of the four calculations is equal
all.equal(P_ref,P1) # TRUE
all.equal(P_ref,P2) # TRUE
all.equal(P_ref,P3) # TRUE

16
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Theorem 4 (properties of the partial covariance matrices [5]).

1. The P− matrix is negative semi-definite.

2. The eigenvalues of the P ∗ partial correlation matrix are less then 2.

3. The P+ matrix is a positive semi-definite.

Proof of the first sentence (1.), the other two are trivial consequences.

The partial correlation matrix P−, by the definition equals to −DTR−1D for D =

Diag−1/2(R−1), and for the positive definite R. If the nonzero eigenvalues of R are

the positive λ1, ..., λk, then the eigenvalues of R−1 are the also positive 1/λ1, ..., 1/λk

real values. And what’s more the R−1 and the DTR−1D matrices are congruent, which

means that this two matrices have the same number of positive, negative and zero

eigenvalues. So the P− is really negative definite.

Proof of the second sentence (2.)

If v an eigenvector of P− with eigenvalue λ, then

P ∗v = (P− + 2I)v = P−v + 2Iv = λv + 2v = (λ+ 2)v

For this reason, the set of eigenvectors of P ∗ is the same as that of P−, and all the

eigenvalues of P ∗ are equal to the eigenvalues of P− plus 2. So since P− is negative

definite, all the eigenvalues of P ∗ are less then or equal to 2.

Proof of the third sentence (3.)

Seeing that P− is negative semidefinite, it is obvious that the P+ = −P− is positive

semi-definite.

Lemma 6 (a bijective volume preserving transformation).

There exists a bijective and volume preserving mapping between the set of correlation

and the set of partial correlation matrices.

17
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If R is a valid correlation matrix, then the P = −DRR
−1DR

where DR = Diag−1/2(R−1), is a valid partial correlation matrix.

If P is a valid partial correlation matrix, then the R = −DPP
−1DP

where DP = Diag−1/2(P−1), is a valid correlation matrix.

This mappings are measure preserving transformations.

Corollary 1 (‘false-method’ for generating a partial correlation matrix).

We obtain a valid partial correlation matrix by generating a random correlation matrix

and simply changing the sign of its off-diagonal elements. The result of this generation

and transformation is a P ∗-like partial correlation matrix.

But obviously this matrix is not equal to any of the types of partial correlation matrices

associated with the generated correlation matrix. That is why we call this very simple

partial correlation generation method as ‘false-method’.

18



3

Generating pseudo random

correlation matrices

In the previous chapter, we discussed correlation matrices, So now we will look at some
methods we used to generate random correlation matrices. Our programming back-
ground is the R programming language with two supplementary packages ‘randcorr’
and ‘clusterGeneration’. The R is an open-source environment for statistical comput-
ing, supported by the R Core Team and the R Foundation for Statistical Computing.
It was initiated in 1991 by statisticians Ross Ihaka and Robert Gentleman, in New-
Zealand [6]. Users have since created countless packages to extend the functionality
of the R language. We use the two above additional packages to generate a random
correlation matrix. The packages which we use are the work of the statisticians who
first published the methods used.

3.1 The Brute Force – a "trial and error" type algorithm

The Brute Force – a "trial and error" type algorithm :
Let generated an matrix with diagonal which is equal to 1 and with off-diagonal elements
which are random, independent and on [−1, 1] uniformly distributed. And repeat this
action until the result isn’t positive definite.

But, this extremely simple "trial and error" algorithm does not work [7].
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If Mn is the set of positive definite matrices of size n, then

P(the trial is positive semi-definite) =
Volume(Mn)

Volume
(
[−1, 1]

n(n−1)
2

) <
(√π

2

)n(n−1)
2

This cause that the rejection rate is growing extremely rapidly with the size of the
matrix:

Size Probability of rejections

2 0.00000000000000000
3 0.38314972493191513
4 0.81722954812797488
5 0.97799554763240115
6 0.99905047980881456
7 0.99998671616120716
8 0.99999994457736563
9 0.99999999993580357

10 0.99999999999998057

3.2 The Pourahmadi-Wang method

The Pourahmadi-Wang method of randcorr package [8], [4]:

The method of M. Pourahmadi and X. Wang use the Cholesky decomposition of the
correlation matrix. This technique necessity a random generation of the lower triangular
Cholesky factor of the correlation matrix.
For this it uses a hyperspherical parameterization of this factor, and a random generation
of the necessary angles with the Makalic-Schmidt sample-rejection algorithm. Makalic-
Schmidt algorithm generate the random angles from the intervall [0, π] with distribution
proportional to sinxk.

The hyperspherical parametrization of the lower triangular Cholesky-factor of a positive
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definite correlation matrix, has the following structure:

L =



1 0 0 0 . . . 0

c2,1 s2,1 0 0 . . . 0

c3,1 c3,2s3,1 s3,1s3,2 0 . . . 0

c4,1 c4,2s4,1 c4,3s4,1s4,2 s4,1s4,2s4,3 . . . 0

c5,1 c5,2s5,1 c5,3s5,1s5,2 c5,4s5,1s5,2s5,3 . . . 0
...

cp,1 cp,2sp,1 cp,3sp,1sp,2 cp,4sp,1sp,2sp,3 . . .
∏p−1

k=1 sp,k


Where the letters ‘c’ represent the function ‘cos’ and the letters ‘s’ represent the function
‘sin’ and the indices refers to the elements of the Θ matrix:

Θ =



0 0 0 . . . 0

ϑ2,1 0 0 . . . 0

ϑ3,1 ϑ3,2 0 . . . 0
...

...
...

...
ϑp,1 ϑp,2 ϑp,3 . . . 0


The elements of Θ are random angles ϑi,j , whose distribution is proportional to sink(x)

on the interval [0, π], in the j-th column with the parameter k = p − j, where p is the
size of the requested random correlation matrix.

The algorithm of E. Makalic and DF. Schmidt for generate the random ϑ values founded
on two independent random values U ∼ U([0, 1]) and X ∼ π ·Beta(k+1, k+1) it accepts
the X if

log(U)/k ≤ log

(
π2 sinX

4X(π −X)

)

So, this technique is a sampling-rejection algorithm where the Beta(k+1, k+1) distri-
bution is the envelope distribution.

Three examples of generating random correlation matrices:

# install.packages("randcorr")
library("randcorr")
randcorr(5)
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S <- randcorr(1000)
class(S) # "matrix" "array"
dim(S) # 1000 1000
attributes(S) # dim 1000 1000

set.seed(123)
S <- randcorr(12)
round(eigen(S)$val,3) # $2.786 2.292 1.897 ... 0.152 0.032 0.02

The following is a list of the ‘rand.theta’ and ‘rcorr_ch’ functions. These are sub-
stantially simplified and faster versions of ‘randcorr::randcorr.sample.sink()’ and
‘randcorr::randcorr()’ functions:

rand.theta <- function (k)
{

th <- rep(0 , k)
OK <- rep(FALSE, k)
while (!all(OK)) {

i <- !OK
m <- sum(i)
th[i] <- pi * stats::rbeta(m, k + 1, k + 1)
OK[i] <- log(stats::runif(m))/k <

2*log(pi/2)+log(sin(th[i]))-log(th[i])-log(pi-th[i])
}
return(th)

}

# ---

rcorr_ch <- function(p)
{

theta <- matrix(0, p, p)
for (j in 1:(p - 1))

theta[(j + 1):p, j] <- rand.theta(p - j)
S <- cbind(1,(t(apply(sin(theta),1,cumprod))[,-p]))
C <- cos(theta)
L <- S*C
R <- L%*%t(L)
return(R)

}
rcorr(4)
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3.3 The Joe’s method

The Joe’s method of ‘clusterGeneration’ package [9],[10]:

The outline of Henry Joe’s method is as follows.
If we want to generate a correlation matrix of p×p size, we first take an identity matrix
of p × p size. Then fill the diagonals parallel to the main diagonal with independent
Beta random quantities. Let the two parameters of these Beta distributions in the case
of the d-th parallel diagonal (p+ 1− d)/2.

From the symmetric parameter matrix prepared in this way, a series of transformations
modifying only the corner elements of the sub-matrices gives the desired correlation
matrix.

First, the 3×3, then the 4×4, etc., and finally the symmetric sub-matrices of p×p size
must be taken in this consecutive order. For each sub-matrix, only the pair of elements
in the two corners of the sub-matrix must be modified in the matrix. The new value of
the corner cells corresponds to the inverse of the transformation of Theorem 3:

r = r1,2R
−1
2,2r2,3 + ϱξ1,ξp•(ξ2,...,ξp−1)

√
1− r1,2R

−1
2,2r2,1

√
1− r3,2R

−1
2,2r2,3

Here, the R matrix represents the current sub-matrix.

Notes
The diagonal of the generated matrix is therefore identically 1, and the values in the
first diagonal below and above the main diagonal are identical to the generated Beta

distribution values. All Beta distributions used in this algorithm are to be understood
on the [−1, 1] interval.

Example 3.1.

Generating a correlation matrix using ‘clusterGeneration::rcorrmatrix()’:

# install.packages("clusterGeneration")
library("clusterGeneration")

set.seed(123)
S <- rcorrmatrix(4)
class(S) # "matrix" "array"
round(eigen(S)$val,3) # 1.879 1.371 0.716 0.034$
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The following is a list of ‘rcorr_pc()’ and ‘corner()’ functions which are substantially

simplified and faster versions of the functions ‘clusterGeneration::rcorrmatrix()’

and ‘clusterGeneration::rjm()’ respectively:

rcorr_pc <- function (d)
{

if (d == 1) return(matrix(1,1,1))
if (d == 2) return(matrix(c(1,rho<-runif(1,-1,1),rho,1),2,2))
rr <- diag(d)
for (j in 1:(d - 1))

rr[j,j+1] <- rr[j+1,j] <- 2*rbeta(1,d/2,d/2)-1
for (m in 2:(d - 1))

for (j in 1:(d - m))
rr[j,j+m] <-rr[j+m,j] <-corner(rr[j:(j+m),j:(j+m)],(d+1-m)/2)

return(rr)
}

# ---

corner <- function(subM,alp)
{

rcond <- 2*rbeta(1,alp,alp)-1
b <- nrow(subM)
M1 <- subM[2:(b-1),1]
M3 <- subM[2:(b-1),b]
M2 <- solve(subM[2:(b-1),2:(b-1)])
r13 <- t(M1)%*%M2%*%M3
r11 <- t(M1)%*%M2%*%M1
r33 <- t(M3)%*%M2%*%M3
return(r13+rcond*sqrt((1-r11)*(1-r33)))

}

set.seed(123);rcorr_pc(4);set.seed(123);rcorrmatrix(4)
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4

Adequacy tests of the factor models

4.1 The factor analysis

We will discuss factor models in this chapter and we focus on the KMO test.

Introduction:

In this chapter, we assume that we want to model a p-dimensional variable η =

(η1, ..., ηp). And our objective is to model the common information contained in the
variables η1, ..., ηp. In the case of the factor model, we assume that there exists a q < p

dimensional ξ = (ξ1, ..., ξq) common variable, and a p-dimensional δ = (δ1, ..., δp) unique-
ness with uncorrelated coordinates, and an ε = (ε1, ..., εp) error, as little as possible,
for which:

η = Lξ + δ + ε

where L is a linear transformation Rq → Rp, that is a matrix of size p × q. In this
decomposition the ξ is the common variable, which coordinates are the factors. The
coordinates of δ are the unique factors, each of which explains the standard deviation
of only one of the coordinates η1, ..., ηp. The ε is the error term, which completes the
approximation Lξ + δ.

We assume that the three right-hand side terms are uncovaried. We want the model
to explain the covariance matrix of the observed variable η. Therefore, we can assume
without introducing further restrictions that the expected value of all elements of the

25



Chapter 4 Factor analysis

model is zero. Under these conditions, the equation of the covariance matrices is:

Ση = LΣξL
T +D+Σε

where D = Σδ, the covariance matrix of δ, a diagonal matrix with non-negative diagonal
elements. The Ση, Σξ and Σε are the covariance matrices of η, ξ and ε respectively.

We will take the advantage of the fact that L is arbitrary. If Σξ = RTR is the Cholesky
decomposition of Σξ, then Lξ = LRTR−T ξ. So with the notation LI = LRT and
instead of ξ with the q dimensional variable ξI = R−T ξ whose covariance matrix is an
identity, since cov(ξI) = cov(R−T ξ) = R−TΣξR

−1 = R−T (RTR)R−1 = Iξ:

cov(Lξ) = cov(LRTR−T ξ) = cov(LIξI) = LIIξL
T
I = LIL

T
I

As a result, without further limitation can be assumed, that the covariance matrix Σξ

is an identity matrix. In other words, it follows from the above formula and can be
expected to hold that:

Ση = LLT +D+Σε

The requirement for ε to be small means that the following approximation must be met:

Ση ≈ LLT +D

and the question is the optimal value of q, the count of the common factors, and the
value of the L, the transformation between the unobserved ξ factors and the observed
η vector.

Unfortunately, there is no closed form solution to this problem.

If the D were known, then the problem is only the approximation of Ση − D, which
is apparently a principal component task, with an explicit solution. But in the case
of factor analysis the diagonal matrix D is not known and in the same time the full
diagonal need not be approximated, which fact essentially changes the task.
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Examples:

We present in the following the factor model of four artificial data sets of size N =

10000. We assume four different dependencies between the coordinates. In other words,
we show four examples where the assumed data generation mechanism is significantly
different. Let all the analyzed variable be 6 dimensional.

The R script that initializes the examples:

rm(list=ls())
p <- 6 # dimension of examples datasets
N <- 10000 # the size of the datasets

kmo <- function(x)
{

R <- if(nrow(x)==ncol(x)) x else cor(x)
P <- corpcor::cor2pcor(R)
sR <- sum(R^2)-ncol(R)
sP <- sum(P^2)-ncol(P)
return(sR/(sR+sP))

}

Example 4.1.

Now we create and analyze a 6-dimensional variable whose coordinates are independent,

but with different (1.5, 1.3, 1.1, 0.9, 0.7, 0.5) deviations:

# a six independent variable with different standard deviations
set.seed(321)
Y1 <- matrix(rnorm(N*p),N,p)
Y1 <- Y1%*% diag(sqrt(seq(1.5,.5,length=6)))
R <- cor(Y1)
round(R,3) # the off-diagonal is approximately zero
round(corpcor::cor2pcor(R),3) # off-diag approx 0
kmo(R) # 0.4988599
factanal(Y1,3)
# Factor1 Factor2 Factor3
# Cumulative Var 0.078 0.085 0.091
# Uniquenesses: 0.993 0.535 0.997 0.966 0.999 0.961

The high values of the ‘Uniquenesses’ i.e the variances of the δ show that the factor
model explains a very small fraction of the information encoded in the covariances of
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η. This is justified because the coordinates are uncorrelated, so there is actually no
common information in the coordinates.

Example 4.2.

Let U, V, W and (ε1, .., ε6) be independent random variables, and let

η = (η1, ..., η6) = (U,U,U,V,V,V) + (0, 0,W,W, 0, 0) + (ε1, ..., ε6)

That is, let η be a variable formed from three factors, observed with error. The first two

background variables explain the first three and the second three variables on the one

hand. The third background variable is present in the fourth and fifth variables.

uv <- 4/5;w <- 4/7
set.seed(123)
E <- matrix(rnorm(6*N),N,6)
U <- matrix(rnorm(N),N,1)
V <- matrix(rnorm(N),N,1)
W <- matrix(rnorm(N),N,1)
Y2 <- uv*cbind(U,U,U,V,V,V)+sqrt(1-uv^2)*E
Y2[,3:4] <- sqrt(1-w^2)*Y2[,3:4]+w*cbind(W,W)
kmo(Y2) # 0.6228279
factanal(Y2,3)
# Common variables xi_1 xi_2 xi_3
# Cumulative Var 0.277 0.549 0.679
# Loadings
# eta_1: 0.804
# eta_2: 0.789
# eta_3: 0.602 0.621
# eta_4: 0.617 0.615
# eta_5: 0.808
# eta_6: 0.792
# Uniquenesses: 0.351 0.374 0.251 0.239 0.343 0.370

The factor model clearly reconstructs the background variables. The uniquenesses are
small and the cumulative explained variance is also high. In other words, this factor
model is good from every point of view.

Example 4.3.

Six consecutive observations of an AR(1) process.

ηt = φ · ηt−1 + εt
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# a 6 observations length section of an AR(1) process
phi <- 2/3
set.seed(123)
Y3 <- matrix(rnorm(N*p),N,p)
for(k in 2:p)

Y3[,k] <- phi*Y3[,k-1] + sqrt(1-phi^2)*Y3[,k]
R <- cor(Y3)
round(R,3) # a Toeplitz matrix
round(corpcor::cor2pcor(R),3) # approx tridiagonal
kmo(R) # 0.7292996
factanal(Y3,3)

# Factor1 Factor2 Factor3
# Cumulative Var 0.277 0.549 0.679
# Uniquenesses 0.541 0.027 0.378 0.005 0.005 0.559

The correlation matrix of such a process is necessarily a Toeplitz matrix, and its partial
correlation matrix is tridiagonal. Because the theoretical auto-correlations are time-
invariant, and the higher-order partial correlations are zero. The uniquenesses shows a
great variety, because we only analyzed a short section of the stationary process.

Example 4.4.

In this example, the same information is loaded with independent errors.

η = (η1, ..., η6) = (ξ, ξ, ξ, ξ, ξ, ξ) + (ε1, ..., ε6)

# six identical coordinates + independent noise
a <- 3/4
set.seed(123)
X <- matrix(rep(rnorm(N),6),N,6)
E <- matrix(rnorm(N*6),N,6)
Y4 <- a*X +sqrt(1-a^2)*E
R <- cor(Y4)
round(R,3) # the out-diagonal is a constant
corpcor::cor2pcor(R) # constant out-diag
kmo(R) # 0.9132102
factanal(Y4,3)
# Factor1 Factor2 Factor3
# Cumulative Var 0.332 0.634 0.637
# Uniquenesses: 0.005 0.432 0.439 0.425 0.445 0.432

The common information ξ is obviously present in these coordinates, loaded with errors.
The out-diagonal correlations and the out-diagonal partial correlations are necessarily
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constants. The standard deviations were chosen so that the partial correlation are
smaller. The uniqueness is only good for the first variable. Because this is an overfitted
model. For these data, the correct number of factors would be 1.

A natural question is:
How can we foresee whether a data set can be modeled well with the factor model?

If the correlation matrix is a unity matrix, then all eigenvalues of the correlation matrix
are one. In a factor analysis, this case would correspond to such a solution where
the highest number of observable variables – that strongly correlate with a calculated
factor – is only 1. Thus, if the out-diagonal elements of the correlation matrix is a zero,
then there is no common information, and the factor analysis solutions cannot explain
nothing for the whole information encoded in the observed variables.

The partial correlation measures the relationship strength of that parts of the two
variables which cannot be explained by the other variables. This means that a good
factor model is not possible if the partial correlation values are too large.

These considerations show that a good factor model can be constructed if the correla-
tions are large and the partial correlations are relatively small.

A kind of test of these aspects is the use of KMO statistic.

4.2 The Kaiser–Meyer–Olkin (KMO ) statistic

Let R be the correlation matrix for the observations and P the partial correlation matrix
for the same observations. Denote the elements of R by ri,j and the elements of P by
pi,j . Then the KMO statistics of the observations is

KMO =

∑
i ̸=j ri,j

2∑
i ̸=j ri,j

2 +
∑

i ̸=j pi,j
2

It is clear that the value of KMO is certain in the interval [0, 1]. At first glance, it may
seem that the possible values for KMO are the full [0, 1] interval.
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That is each correlation can be 0, and in the same way each partial correlation can be
0. But as we will show in the next chapter, this is not true.

The literature [11] recommends that the KMO value for factor analysis be evaluated
according to the following table.

KMO interpretation

in the .90s, marvelous
in the .80s, meritorious
in the .70s, middling
in the .60s, mediocre
in the .50s, miserable
below .50s, unacceptable

This recommendation is widely used in practice. In the next section, we show that
in light of the frequency of occurrence of possible values of KMO, this assessment is
questionable. Especially for low dimensions.

The KMO is an abbreviation derived from initials of mathematicians: HF. Kaiser, GJ.
Meyer and I. Olkin. They have published several articles using this statistic.

Ratings of the four above examples according to the KMO :

The following script, using the befors defined ‘kmo()’ function calculate the KMO in the
case of the four examples:

kmo(Y1) # 0.4988599 ‘unacceptable’
kmo(Y2) # 0.6228279 ‘mediocre’
kmo(Y3) # 0.7292996 ‘middling’
kmo(Y4) # 0.9132102 ‘marvelous’

So, in the previous four examples, the KMO is 0.5, 0.62, 0.73 and 0.91 respectively.

It can be seen that, in the case of the first example, when the sample has independent
coordinates and the ‘uniquenesses’ of the factor model are also large, we obtained an
‘unacceptable’ KMO value according to Kaiser’s classification.
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In the second case, when the variables are builded from 3 common factors, the factor
model is also better and the KMO rating is ‘mediocre’.

The third example is a special case. Here, the data is a section of an AR1 process. It
is then known that the higher order partial correlations are zero. In other words, it is
necessary for the KMO qualification to be better. It can be seen that the factor model is
also better: higher cumulative variance and lower uniquenesses.

The fourth example above shows that the classification of the sample according to KMO

can be even ‘marvelous’ if the off-diagonal of the correlation matrix is constant.
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Study of the KMO statistic

5.1 A simulation study of the KMO statistics
The next generator and KMO calculator function will be used

KMO <- function(R)
{

P <- corpcor::cor2pcor(R)
R2 <- sum(R^2) - ncol(R)
P2 <- sum(P^2) - ncol(P)
return(KMO=R2 / (R2+P2))

}
randKMO <- function(k)

{
R <- randcorr::randcorr(k)
return(randKMO=KMO(R))

}

We studied the distribution of KMO statistics based on samples of 100,000 sizes for ran-
dom matrices of different sizes. Thus, the random correlation matrices were generated
using an implementation of the Pourahmadi-Wang ([8]) algorithm.

The three tests that laid the foundation for the rest :
- The estimated range (minimum and maximum) of the possible KMO values (5.1).
- The quantiles of the distribution of the KMO statistics (5.2).
- The kernel smoothed density function estimate of the KMO statistics (5.1).
- The sizes of the examined matrices were k = 3, 4, 5, 6, 7 and 8 (5.2).
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matrix size minKMO maxKMO
3x3 0.20038760 0.79462910
4x4 0.10638300 0.86166370
5x5 0.07099476 0.84957787
6x6 0.06393129 0.81668437
7x7 0.05950654 0.77532830
8x8 0.05170802 0.74238502

Table 5.1: The estimated range of the random KMO values by a sample of size 100 thousand

matrix size 0% 25% 50% 75% 100%
3x3 20.0 35.8 46.4 54.3 79.5
4x4 10.6 30.5 41.1 50.8 86.2
5x5 7.1 26.9 36.6 46.4 85.0
6x6 6.4 24.3 33.1 42.3 81.7
7x7 6.0 22.1 30.2 38.7 77.5
8x8 5.2 20.3 27.6 35.6 74.2

Table 5.2: The estimated quantiles of the random KMO values by a sample of size 100
thousand
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Figure 5.1: The frequency distribution of the KMO statistic for a 3× 3 random matrix
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Figure 5.2: Density function of KMO for different matrix sizes.

The density function drawings above are a bit misleading. Because the range of possible
values for KMO statistics is growing in reality. But this is not reflected in the density func-
tion estimates made by the kernel function smoothing method, because the probability
of occurrence of extreme KMO values is very small.

5.2 Five different Claimes for KMO statistics

5.2.1 Claime 0 - the property of the false pair of a correlation matrix

The application of the volume preserving bijection of the Lemma 6, allows an alternative
way to investigate the distribution of the KMO statistical.
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Take a random correlation matrix and by negating its off-diagonal elements we catch a
random partial correlation matrix.
It is important that the resulting matrix is not the partial correlation matrix’s counter-
part to the original correlation matrix.

The script below demonstrates, that the ‘false’ partial correlation pair of a correlation
matrix (see the Lemma 6) has a KMO statistic, that is the complement of the KMO of the
original correlation matrix.

k <- 5
set.seed(123)
X <- randcorr::randcorr(k)
R1 <- X
P1 <- corpcor::cor2pcor(R1)
kmo1 <- (sum(R1^2) - k) / (sum(R1^2) + sum(P1^2) - 2*k)
P2 <- -X
diag(P2) <- 1
R2 <- corpcor::pcor2cor(P2)
kmo2 <- (sum(R2^2) - k) / (sum(R2^2) + sum(P2^2) - 2*k)

c(kmo1,kmo2,kmo1+kmo2) 0.2111204 0.7888796 1

This shows, taking into account the asymmetry of the distribution of the KMO statistic,
that from the point of view of the distribution of the KMO statistic, it does not matter
whether the correlation or partial correlation matrix is considered uniformly distributed,
among all possible matrices.

5.2.2 Claime 1 - increasing the KMO
If we change the correlations of a correlation matrices to a constant, which is equals to
the squared mean of the correlations, then

- the matrix remains positive semi-definite
- the KMO value does not decrease

The following simulation shows the truth of the Claime 1.

PR_eq <- function(k=3)
{

R0 <- randcorr(k)
i <- 1:k; j <- 1:k;
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r0 <- R0[outer(i,j,"<")]; r1 <- sqrt(mean(r0^2))
R1 <- matrix(r1,k,k); diag(R1) <- 1
pos.def <- all(eigen(R1)$val>0)
P0 <- cor2pcor(R0); P1 <- cor2pcor(R1);
sR0 <- sum(R0^2)-k; sP0 <- sum(P0^2)-k
sR1 <- sum(R1^2)-k; sP1 <- sum(P1^2)-k
kmo0 <- sR0/(sR0+sP0);kmo1 <- sR1/(sR1+sP1);
log <- c(pos.def=pos.def,less=sum(P0^2)>sum(P1^2),better=kmo0<kmo1)
return(list(c(sR0=sum(R0^2),sR1=sum(R1^2),sP0=sum(P0^2),sP1=sum(P1^2)),

kmo=c(KMO0=kmo0,KMO1=kmo1),
log=log))

} # $

5.2.3 Claime 2 - exact range of the KMO
The exact range of the KMO value of an matrix of size k×k is :

( 1/(k2 − 2 ∗ k + 2) , (k − 1)2/(k2 − 2 ∗ k + 2) )

The plot of the exact ranges of the possible KMO values:
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Figure 5.3: The exact KMO range for different matrix sizes.
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Proof of Claime 2 :

First of all, we calculate the value of the partial correlations as a function of the size of

the matrix using the formula 1.5 of Theorem 1 and then using the recursive formula 1.6

of Theorem 2.

The off-diagonal elements of the partial correlation matrix of size 3× 3 matrices, if the

matrix belongs to the correlation matrix of size 3× 3 with constant r correlations:

p3 = p1,3 =
r1,3 − r2,1r2,3√

1− r22,1

√
1− r22,3

=
r − r2√

1− r2
√
1− r2

=
r − r2

1− r2
=

r

1 + r

We know that pk = r
1+(k−2)·r for k = 3.

We show that the same is true for k = k + 1

pk+1 =
pk

1 + pk
=

r
1+(k−2)·r

1 + r
1+(k−2)·r

=
r

1 + (k + 1− 2)r

In a matrix of size k × k there are k(k − 1) off-diagonal elements.

So the KMO value of a correlation matrix with constant r correlations is :

KMOk =
k(k−1) · r2

k(k−1)·r2 + k(k−1)·p2k
=

r2

r2 +
(

r
1+(k−2)·r

)2 =

=
1

1 + 1
(1+(k−2)·r)2

=
(1 + (k − 2) · r)2

1 + (1 + (k − 2) · r)2

The exact ranges of KMO statistics depending on matrix size:

exact range of KMO

matrix size inf sup

3x3 1/5 = 0.200 4/5 = 0.800

4x4 1/10 = 0.100 9/10 = 0.900

5x5 1/17 = 0.059 16/17 = 0.941

6x6 1/26 = 0.038 25/26 = 0.962

7x7 1/37 = 0.027 36/37 = 0.973

8x8 1/50 = 0.020 49/50 = 0.980
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5.2.4 Claime 3 - the extreme point of the KMO parametrized by the correlations

The minimum and maximum of the possible values for the KMO is accessible. Both
the minimum and the maximum are taken by a correlation matrix whose off-diagonal
elements are constant.

If the off-diagonal elements of a matrix of size k×k are −1/(k−1) then the KMO of this
matrix is minimal. If the off-diagonal elements of a matrix of size k×k approximate the
1 from below, then the KMO of this matrix approximate his available maximum value.

The KMO could apparently be 0. After all, if the correlation matrix is an identity matrix,
the numerator of the KMO is zero. However, the definition of partial correlations is
uncertain. It does not matter whether the definition of the correlation of residuals or
the method of calculation from correlations is considered logical.
In any case, with both views, it is acceptable to consider the partial correlations to be
zero. But under the specified conditions, the denominator of KMO is also zero.
However, there is no definition under which the value of KMO is continuous at this point.
The same problem with the correlation matrix in which all correlations are 1.

In short, the KMO is not continuous in the points −1/(k − 1) and 1, that is, in the
environment of the extremal points of the domain.

5.2.5 Claime 4 - the extreme point of the KMO by the partial correlations

The extreme values of the KMO can also be achieved by the appropriate selection of
the partial correlation matrix. Again, a partial correlation matrix whose off-diagonal
elements are constants must be chosen. Only the minimum and maximum locations
will be reversed. The KMO is nearly minimal when the off-diagonal partial correlations
approach 1 from below. KMO is nearly maximal when the off-diagonal partial correlations
approach −1/(k − 1) from above.

The situation is equivalent as for the correlation matrix. This can be explained on
the basis of the relationship between the correlation matrix and the partial correlation
matrix, which was explained in detail in the Chapter 2, based on the article [5].
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5.3 Relation between different matrix generators in

the distribution of KMO statistics

The aim of this last study, documented in the following figure is to illustrate the role of
different matrix generators in the distribution of KMO statistics.

This study is important and interesting because several generators are known to choose
from possible matrices according to an undocumented, unknown distribution.
Moreover, there are some for which not all possible correlation matrices are possible.

We examine the case of matrices of only 3×3. This is because we also wanted to include
the brute force method in the study, and their efficiency deteriorates significantly as the
size increases.

Based on experiments, we found that the examined distributions are sufficiently accurate
for 100 thousand samples. The distributions were estimated by kernel smoothing based
on the generated samples. The obtained density functions were compared only visually,
according to our objectives.

For different generation methods, we will examine how changes the distribution of KMO
depending on whether the we choose at random the correlation or the partial correlation
matrix.

In both cases, we also examine the distribution under the brute force method. The result
of this method is a kind of reference. This is because according to this method we choose
at first a matrix with elements distributed uniform and independent in [−1, 1]. That
is, a random point from the k(k− 1)/2 dimensional parameter space of k×k symmetric
matrices for a matrix with a diagonal of 1 and −1, respectively.

For the correlation matrix, this is repeated until a positive definite matrix is obtained.
For a partial correlation a matrix with each eigenvalue less than 2 is necessary.

That is, the ‘brute force’ method as an "accept-reject type algorithm" take a random
matrix slowly but with obviously uniform distribution from all the possible matrices.
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The simulation shows that the brute force and the two more efficient generation meth-
ods give a similarly distributed KMO value. Thus, according to the theoretical results,
the Pourahmadi-Wang method of parameterizing Cholesky and the method H. Joe of
parameterizing the correlation matrix with partial correlation indeed generates a corre-
lation matrix with a uniform distribution.

If the partial correlation is chosen instead of the correlation matrix according to a
uniform distribution, the distribution of KMO will be the reflection of the original distri-
bution.

The latter remark, from an analytical point of view, is a very important result in the
evaluation of KMO in the case of empirical data sets.

5.3.1 Distribution of KMO statistic of a 3×3 matrix

Our plot below consists of six sub-plot.

The two columns differ in which matrix has a uniform distribution
- on the left side it is seen the distribution of KMO when
the correlation matrix taken at random

- on the right side is the distribution of KMO when
the partial correlation matrix taken at random

The rows show the results obtained when different random generators are used
- in the first row there are the results using the brute force method
- in the second row there are the results using the Cholesky parametrization method
- in the last row there are the results using the Joe’s method

The sample size was in all cases 100 thousand.
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Figure 5.4: Density function of KMO depending on the random generator used.

The previous study shows that the distribution of KMO strongly depends on which of the
correlation and partial correlation matrix is chosen with a uniform distribution from
the all possible ones.

This also means that the classification of a random sample according to KMO strongly
depends on how we model the formation of the particular sample.

5.3.2 Distribution of KMO statistic of a 7×7 matrix

The table 5.3 shows the estimated occurrence probabilities of KMO ratings for 7× 7

matrices, and also it shows that the good rating is extremely rare for random correlation
matrices. In a sample of 1 million items, the KMO was only one time greater than .8.
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Despite, as we have seen, that for 7×7 matrices, the set of theoretical values of KMO is
the same as the interval [0.027027031,0.9729729]. For the simulated data the range was
much shorter. In the case of uniform correlation matrix [0.05950654, 0.77532830],
and in the case of the uniform partial correlation matrix [0.2154118, 0.9450869].

But the theoretical extremes are approachable because e.g
Consider two special off-diagonal constant matrices.
One that is close to minimum and another that is close to maximum:

KMO





1 r0 r0 r0 r0 r0 r0

r0 1 r0 r0 r0 r0 r0

r0 r0 1 r0 r0 r0 r0

r0 r0 r0 1 r0 r0 r0

r0 r0 r0 r0 1 r0 r0

r0 r0 r0 r0 r0 1 r0

r0 r0 r0 r0 r0 r0 1




= 0.0270286 when r0 = −1

6
+ 10−6

KMO





1 r1 r1 r1 r1 r1 r1

r1 1 r1 r1 r1 r1 r1

r1 r1 1 r1 r1 r1 r1

r1 r1 r1 1 r1 r1 r1

r1 r1 r1 r1 1 r1 r1

r1 r1 r1 r1 r1 1r1 r1

r1 r1 r1 r1 r1 r1 1




= 0.9729729 when r1 = 1− 10−6

In other words,extreme values can be approached to any extent.
So the occurrence of a "marvelous" sample is not ruled out either, But we didn’t have
that.
The estimated probabilities of possible ratings – recommended by Tukey, – based on
the simulated size 1 million sample are as follows:

The empirical probabilities were calculated from a sample of 1 million items.
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% probability of occurrence at

KMO of a matrix of size 7× 7 uniform R uniform P

marvelous 1 - .9 0.00 0.76

meritorious .9 - .8 0.00 18.49

middling .8 - .7 0.03 30.51

mediocre .7 - .6 0.66 28.23

miserable .6 - .5 4.99 16.28

unacceptable .5 - 0 94.32 5.73

Table 5.3: The probability of occurrence of Kaiser’s KMO types in 7×7 matrices

The random correlation matrices was obtained by the Cholesky method (see Pourahmadi-
Wang [8], [4]) and the partial correlation matrices was formed by the ‘false-method’ from
random correlation matrices (see Artner and al. [5]).
This result, if we assume that our observed data set follows a random correlation matrix,
or a random partial correlation matrix, casts doubt on Kaiser’s assessment of the KMO

statistic.
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General conclusion

Our work consists of the following main elements and results:

1. Properties of the correlation matrices are presented.

2. Several alternative definitions for the partial correlation.

3. Magnitude relationship of the partial correlation and the correlation:
it is not necessarily less than or greater.

4. Calculations of the partial correlation matrix based on the correlation matrix.

5. -We briefly described the factor analysis model.
-We focus on the role of KMO test.

6. The main results are the consequences of the simulation studies of the KMO test.

7. We presented three different methods for generating random correlation matrices.

8. Joe’s method based on the corner partial correlations is faster and more efficient
compared with the two other methods:

- the Brute Force – a "trial and error" type algorithm and
- the Pourahmadi-Wang method based on Cholesky decomposition.

9. Simulations shows that the KMO is certain in a sub-interval of the interval [0, 1].

10. The test result shows
a refutation of the classical evaluation method of KMO statistics.
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11. The simulation shows that the nature of the distribution does not depend on
which random generator is used.

12. At the same time, the distribution of KMO strongly depends on whether the corre-
lation or partial correlation matrix is chosen according to a uniform distribution.

13. However, the non-symmetrical distribution obtained according to the two different
generation methods examined is a mirror image of each other.

Future work

In our dissertation, we have summarized some interesting results regarding the KMO

statistic used to evaluate the result of a factor analysis. These results seem to be
unknown not only in the applied but also in the theoretical literature. But it is certainly
true that these facts are ignored when the results of factor models are evaluated.

Our results are partly based on calculations, but on several points based on simulations
only. Since these results show that the Kaiser’s standard assessment of the KMO statistics
is not unconditionally well-founded, it would be justified to examine these results in more
detail, not only on a simulation basis.

46



List of Figures

1.1 The ∠(ε2, ε1) = π − ∠(δ2, δ1). . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The relation of the correlation and the partial correlation . . . . . . . . 10

5.1 The frequency distribution of the KMO statistic for a 3× 3 random matrix 34
5.2 Density function of KMO for different matrix sizes. . . . . . . . . . . . . . 35
5.3 The exact KMO range for different matrix sizes. . . . . . . . . . . . . . . 37
5.4 Density function of KMO depending on the random generator used. . . . 42

47



Bibliography

[1] A. Kanto; S. Puntanen. A connection between the partial corre-
lation coefficient and the correlation coefficient of certain residuals.
Communications in Statistics - Simulation and Computation, pages 639–641, 1983.
(8)

[2] Guy Der Megreditchian; Pierre Cazes. Nouvelle démonstration et
généralisation de la formule de Kanto et Puntanen sur les corrélations
entre résidus des régressions linéaires. Annales de l’ISUP, Publications de
l’Institut de Statistique de l’Université de Paris, pages 25–39, 1988, XXXIII (1).
ffhal-03672284. (8)

[3] Juliane Schafer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdes-

maki, A. Pedro Duarte Silva, and Korbinian Strimmer. corpcor: Efficient
Estimation of Covariance and (Partial) Correlation, 2021. R package version 1.6.10.
(15)

[4] E. Makalic; DF. Schmidt. An efficient algorithm for sampling from
sink(x) for generating random correlation matrices. arXiv:1809.05212, 2018.
(15), (20), (44)

[5] R. Artner; PP. Wellingerhof; G. Lafit; T. Loossens; W.Vanpaemel; F.

Tuerlinckx. The shape of partial correlation matrices. Communications
in Statistics - Theory and Methods, 2020m09d03. (17), (39), (44)

[6] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2021. (19)

48

https://CRAN.R-project.org/package=corpcor
https://CRAN.R-project.org/package=corpcor
https://www.R-project.org/


Chapter 6 General Conclusion

[7] W. Böhm; K. Hornik. Generating random correlation matrices by the
simple rejection method: Why it does not work? Statistics and Probability
Letters, pages 27–30, 2014. (19)

[8] M. Pourahmadi; Xiao Wang. Distribution of random correlation matri-
ces: Hyperspherical parameterization of the Cholesky factor. Statistics
and Probability Letters, pages 5–12, 2015. (20), (33), (44)

[9] H. Joe. Generating Random Correlation Matrices Based on Partial Cor-
relations. Journal of Multivariate Analysis, page 2177–2189, 2006. (23)

[10] Weiliang Qiu and Harry Joe. clusterGeneration: Random Cluster Generation
(with Specified Degree of Separation), 2020. R package version 1.3.7. (23)

[11] HF. Kaiser. An index of factorial simplicity. Psychometrika, pages 31–36,
1974. (31)

49

https://CRAN.R-project.org/package=clusterGeneration
https://CRAN.R-project.org/package=clusterGeneration

	Belfedal Chaima Djouhina (Algeria): Rating of correlation and partial correlation matrices
	... Declaration
	... Acknowledgement
	... Abstract
	C O N T E N T S
	1 Correlation and partial correlation
	1.1 The correlation
	1.2 The partial correlation

	2 Correlation and partial correlation matrices
	2.1 Correlation matrices
	2.2 Partial correlation matrices

	3 Generating pseudo random correlation matrices
	3.1 The Brute Force – a "trial and error" type algorithm
	3.2 The Pourahmadi-Wang method
	3.3 The Joe's method

	4 Adequacy tests of the factor models
	4.1 The factor analysis
	4.2 The Kaiser–Meyer–Olkin (KMO ) statistic

	5 Study of the KMO statistic
	5.1 A simulation study of the KMO statistics
	5.2 Five different Claimes for KMO statistics
	5.2.1 Claime 0 - the property of the false pair of a correlation matrix
	5.2.2 Claime 1 - increasing the KMO 
	5.2.3 Claime 2 - exact range of the KMO 
	5.2.4 Claime 3 - the extreme point of the KMO parametrized by the correlations
	5.2.5 Claime 4 - the extreme point of the KMO by the partial correlations

	5.3 Relation between different matrix generators in the distribution of KMO statistics
	5.3.1 Distribution of KMO statistic of a 3 x 3 matrix
	5.3.2 Distribution of KMO statistic of a 7 x 7 matrix


	6 General conclusion
	List of Figures
	Bibliography

