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Abstract

We consider numerical solutions of linear and non-linear elliptic systems of PDEs and
their finite element discretizations. We obtain eigenvalue-based estimations of the rate
of superlinear convergence of some preconditioned conjugate gradient-type methods
in the case of symmetric and non-symmetric linear elliptic systems. These results are
used in the nonlinear case to provide mesh independence estimations of the rate of su-
perlinear convergence for inner iterations of a Newton-Krylov method in terms of the
growth power property of the non-linearities. Numerical examples are implemented
to verify our findings.

Keywords: Superlinear convergence, preconditioned conjugate gradient type methods,
Sobolev spaces, elliptic partial differential equations, nonlinear elliptic transport sys-
tems, iterative methods.
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Introduction

Linear and non-linear elliptic partial differential equations (PDEs) describe a large
range of physical models, from diffusion phenomena to modeling the transport of
air pollutants. Unfortunately, finding an analytical solution for such kinds of prob-
lems is often impossible. Another approach is to construct a finite element or finite
difference discretization to solve our PDE approximately. The key issue is to solve
the arising systems using some iterative processes. In this setting, there are many ad-
vantages to using iterative methods, such as memory cost efficiency and preserving
the sparsity of the system. Some examples of widely used iterative solvers are the
preconditioned conjugate gradient method (PCGM) for the symmetric linear case and
the damped inexact Newton (DIN) method for the nonlinear case. Furthermore, for
non-symmetric linear problems, several CG-type methods have been developed such
as the generalized minimal residual algorithm (GMRES), [17]. For the PCG and GM-
RES algorithms, preconditioning is a fundamental part of the iterative process as it
speeds up convergence. Moreover, sometimes it allows us to obtain, under certain con-
ditions, mesh-independent superlinear convergence, [3]. When solving large systems
of equations, by choosing a proper preconditioner we can transform the system into a
simpler one to solve, see Remark 2.6. One approach for constructing such a precon-
ditioner is to find an approximation of the original elliptic operator and choose as a
preconditioner its discretization. This technique involves the theory of equivalent and
compact-equivalent operators on Hilbert spaces. For a survey on this subject, see [4].

The mesh-independent superlinear convergence feature ensures that the rate of
convergence of the method does not deteriorate as the mesh is refined and that the
number of steps necessary to obtain a new correct digit in the approximate solution
will be decreasing over the course of the iteration, [4]. There are many instances where
this property comes in handy. For instance, when PCG or GMRES is used as an inner
iteration of an outer process, such as the DIN algorithm. Here, for each step of the
method, we require to solve some linear problem and therefore we seek optimal solvers
in order not to spoil the overall convergence speed of the method.

In this master thesis, we consider different kinds of preconditioned second-order el-
liptic systems and their finite element discretization. We study the mesh-independent
superlinear convergence of the PCGM applied to symmetric linear elliptic PDEs, and
GMRES for the non-symmetric case. The main goal is to find an eigenvalue-based esti-
mation of the concrete rate of superlinear convergence for such methods and show that
a similar estimate can be obtained in the case of systems of PDEs. This extends pre-
vious results of [13] to the case of unbounded reaction coefficients in some Lebesgue
spaces. Additionally, we analyze inner-outer iterations of the Damped Inexact Newton
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(DIN) method applied to the finite element discretization of some non-linear systems of
PDEs. Our goal is to give more explicit estimates for the rate of superlinear conver-
gence obtained in [1], where the DIN plus CGN technique is used. We achieve this by
replacing the CGN method with GMRES and then applying our results obtained for
linear non-symmetric systems.

This work is organized as follows. In Chapter 1, we list some definitions and results
from functional and numerical analysis that are essential for our work.

In Chapter 2, we prove our estimations of the rate of superlinear convergence for
different linear problems: first for single equations, then for symmetric, and finally for
non-symmetric systems.

In Chapter 3, we consider a family of nonlinear elliptic transport systems and their
finite element discretization and approximate its solution using the DIN method. We
realize this method as an inner-outer process and use GMRES to solve the linearized
problem at each step of DIN. Then, we apply the results from Chapter 2 to obtain
estimations on the rate of superlinear convergence of the inner iterations.

Finally, in Chapter 4, we present our conclusions and recommendations.



Chapter 1

Theoretical background: some basic
results and definitions

This chapter presents various concepts and results of functional and numerical anal-
ysis, which are fundamental in this work. We start with some basic definitions and
results on Lebesgue and Sobolev spaces. Then we briefly introduce various kinds of
operators and some well-posedness theorems for linear and nonlinear operator equa-
tions. Finally, we discuss some results in numerical analysis. The terminology and
notation used in this work are standard. We shall mostly work over the field R. The
main references are [7], [10], [11], [16].

1.1 Functional analysis

1.1.1 Sobolev and Lebesgue spaces

The study of the properties of Sobolev and Lebesgue spaces is a key part of the the-
ory of PDEs. In this subsection, we present some of its most important results and
definitions. We shall assume Ω ⊂ Rd for an arbitrary positive integer d ≥ 2.

Lebesgue spaces

Let 1 ≤ p < ∞. For f ∈ C∞
0 (Ω) we use the notation

∥∥ f
∥∥

Lp(Ω)
=

(∫
Ω
| f (x)|pdx

)1/p
, ∥ f ∥L∞(Ω) = sup

x∈Ω
| f (x)|. (1.1)

This represents a norm in C∞
0 (Ω) and is called the Lp − norm. The completion

Lp(Ω) =
(

C∞
0 (Ω), ∥·∥Lp(Ω)

)

1
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is the Lebesgue space Lp(Ω) and its elements are equivalence classes given by the equiv-
alence relation

f ∼ g ⇐⇒
∫

Ω
| f (x)− g(x)|dx = 0.

The next result provides a useful inequality in Lebesgue spaces.

Theorem 1.1 (Hölder’s inequality). For any f ∈ Lp(Ω) and g ∈ Lp′(Ω), f g is in L1(Ω)

and ∥∥ f g
∥∥

L1(Ω)
≤
∥∥ f
∥∥

Lp(Ω)

∥∥g
∥∥

Lp′ (Ω)

where 1
p +

1
p′ = 1.

Remark 1.2. In the next chapters, we shall use a more generalized version of Hölder’s in-
equality, see e.g [7, Remark 2, Chapter 4.2]. Assume that f1, . . . , fk ∈ Lpi(Ω) such that
1
p1
+ · · ·+ 1

pk
= 1

p ≤ 1. Then

∥ f ∥Lp(Ω) ≤ ∥ f1∥Lp1 (Ω) · · · ∥ fk∥Lpk (Ω).

We finish this topic by defining the space of locally integrable functions. We use the
notation χK for the characteristic function of a set K:

χK(x) =

{
1 , if x ∈ K,
0 , if x /∈ K.

We say that a function f : Ω → R belongs to Lp
loc(Ω) if f χK ∈ Lp(Ω) for every compact

set K contained in Ω.

Sobolev spaces

We begin with a brief introduction to weak derivatives since Sobolev spaces are built
using this notion. Let α = (α1, . . . , αn) be a multiindex of order |α| = k and u ∈ Ck(Ω).
We use the notation

Dαu(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n
= ∂α1

x1 · · · ∂αn
xn u(x).

If v ∈ C∞
0 (Ω), then integration by parts yields∫

Ω
uDαv = (−1)|α|

∫
Ω

vDαu.

We can weaken this notion by allowing u to belong to a broader space. This moti-
vates the definition of the weak derivative.

Definition 1.3. Let u ∈ Lp
loc(Ω). If α is a multiindex, the αth-weak partial derivative of u is a

function w ∈ L1
loc(Ω) such that ∫

Ω
uDαv = (−1)|α|

∫
Ω

uw

for all v ∈ C∞
0 (Ω). We write w = Dαu.

2
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Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. The Sobolev space Wk,p(Ω) consists
of all functions u ∈ L1

loc(Ω) such that for each multi-index α with |α| ≤ k, Dαu exists
in the weak sense and belongs to Lp(Ω), i.e.,

Wk,p(Ω) = {u ∈ L1
loc(Ω)/∀|α| ≤ k : Dαu ∈ Lp(Ω)}.

We shall focus on the special case when p = 2 and k = 2. Here, we write

H1(Ω) = W1,2(Ω).

This is a Hilbert space under the inner product

⟨ f , g⟩H1(Ω) =
∫

Ω
∇ f · ∇g +

∫
Ω

f g ( f , g ∈ H1(Ω)).

The completion of C∞
0 (Ω) under this inner product is denoted as H1

0(Ω). Furthermore,

⟨ f , g⟩H1
0(Ω) =

∫
Ω
∇ f · ∇g ( f , g ∈ H1

0(Ω))

is an equivalent inner product in H1
0(Ω).

We finish this subsection by giving an important inequality for functions in H1
0(Ω).

This result is called Poincaré’s inequality.

Theorem 1.4. Assume that Ω is a bounded open subset of Rd. Then, for any p ≤ 2∗ := 2d
d−2

and u ∈ H1
0(Ω)

∥u∥Lp(Ω) ≤ Cp∥u∥H1
0(Ω),

for some constant Cp = C(p, d, Ω) > 0.

A proof of this theorem can be found in [10, Ch.5, Th. 3].

1.1.2 Operator theory

Let X, Y be Banach spaces. We denote by B (X, Y) the space of all bounded linear
operators L : X → Y, i.e.,

∥Lx∥Y ≤ c∥x∥X (x ∈ X), (1.2)

for some c > 0 independent of x. Furthermore, B(X,Y) is a Banach space with the
operator norm defined by

∥L∥ = sup
x ̸=0

∥Lx∥Y
∥x∥X

.

Note that∥L∥ is the smallest constant such that (1.2) holds.

Example 1.5. If Y = R, then B(X, R) =: X∗ is called the dual space of X. Here, we shall use
the usual pairing notation between X∗ and X. That is, if ϕ ∈ X∗, then

⟨ϕ, v⟩X∗,X = ϕv (v ∈ X).

3
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The above notation is motivated by the following theorem. Furthermore, this result
characterizes the dual space of a Hilbert space.

Theorem 1.6 (Riesz-Fréchet theorem). Let H be a Hilbert space. For each ψ ∈ H∗, there
exists a unique yψ ∈ H such that

ψx = ⟨x, yψ⟩, and
∥∥ψ
∥∥ = ∥yψ∥ (x ∈ H).

A proof of this theorem can be found in [14, Th. II.4].
The following class of operators plays a major role in our work and they are very

useful since they behave in some way similarly to operators in finite-dimensional
spaces.

Definition 1.7. Let X, Y be a pair of Banach spaces. A linear operator L : X → Y is called
compact if for any bounded sequence (xn)n∈N ⊂ X

(Lxn)n∈N has a convergent subsequence.

Proposition 1.8. Let X, Y, Z be Banach spaces. Let S ∈ B(Y, Z) and T : X → Y or T : Y →
X. Assume that T or S is a compact operator. Then their product ST and TS are compact.

Example 1.9 (Sobolev embeddings). Let p < 2d
d−2 . Then the operator I : H1

0(Ω) 7→ Lp(Ω)

defined by I(u) = u is a compact operator. We say that H1
0(Ω) is compactly embedded in

Lp(Ω). Indeed, from Theorem 1.4 we know that for any u ∈ H1
0(Ω)

∥u∥Lp(Ω) ≤ Cp∥u∥H1
0(Ω),

for some constant Cp = C(p, d, Ω) > 0. Hence I is well defined. Further, it can be proved that
if (um)m∈N ⊂ H1

0(Ω) is bounded, then there exists a subsequence (umj)j∈N which converges
in Lp(Ω).

This result is a special case of Rellich-Kondrachov theorem, see e.g. [10].

In addition to bounded and compact linear operators, there are other families of
operators whose properties we shall use in the next chapters. In the following, we
summarize them in a list. Let H be a Hilbert space. We say that a linear operator
L : H → D(L) ⊂ H is:

• Unbounded if supu ̸=0
∥Lu∥
∥u∥ = +∞.

• Symmetric if ⟨Lx, y⟩ = ⟨x, Ly⟩ for any x, y ∈ D(L).

• Positive/strictly positive if for any x ∈ D(L): ⟨Lx, x⟩ ≥ 0, ⟨Lu, u⟩ > 0 for u ̸= 0,
respectively.

• Uniformly positive if for any x ∈ D(L): ⟨Lx, x⟩ ≥ m∥x∥2, for some m > 0
independent of x.

4
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Let L be strictly positive and symmetric. Then the energy inner product of L is defined
by

⟨u, v⟩L = ⟨Lu, v⟩.
Further, the induced energy norm is denoted by

∥u∥L = ⟨Lu, u⟩ 1
2 .

Definition 1.10. The energy space HL is defined as the completion of D(L) under the energy
norm, i.e.,

HL = (D(L), ⟨·, ·⟩L).

Then HL is a Hilbert space.

Note that if H is a complex Hilbert space, then the strict positivity of L implies
symmetry, and thus assuming L is strictly positive is enough.

Let L : H → H be symmetric and uniformly positive and g ∈ H. We can define the
weak form of the equation Lu = g as follows

⟨u, v⟩L = ⟨g, v⟩ (v ∈ HL).

It is well known that there exists a unique u ∈ HL such that the equation above holds.
We call u the weak solution of the operator equation Lu = g.

If L is not symmetric, then we introduce an auxiliary operator S : H → H which is
symmetric and uniformly positive. Then, we look for weak solutions of Lu = g in HS.
For this, we require some conditions for L:

(i) D(L) ⊂ HS and it is dense w.r.t ∥ · ∥S.

(ii) S-boundedness: there exists M > 0 such that |⟨Lu, v⟩| ≤ M∥u∥S∥v∥S for all
u, v ∈ D(L).

(iii) S-coercivity: there exists m > 0 such that ⟨Lu, u⟩ ≥ m∥u∥2
S for all u, v ∈ D(L).

Under these conditions, it can be proved that there exists a unique bounded linear
operator LS : HS → HS such that ⟨LSu, v⟩S = ⟨Lu, v⟩. Hence, the weak formulation of
the operator equation Lu = g becomes

⟨LSu, v⟩S = ⟨g, v⟩ (v ∈ HS).

Further, it can be proved that u ∈ HS exists and is unique.
Let us now study the nonlinear case. Here, in order to prove the existence and

uniqueness of weak solutions we require some extra conditions on the operator.

Definition 1.11. Let X, Y be normed spaces. We say that F : X → Y is Gateaux differen-
tiable (GD) at u ∈ X if

(i) The following limit exists for any v ∈ X :

∂vF(u) = lim
t→0

F(u + tv)− F(u)
t

.

5
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(ii) The mapping F′(u) : v 7→ ∂vF(u) is a linear bounded operator.

Remark 1.12. Any bounded linear operator L : X → Y is GD. In fact, for any u, v ∈ X we
get

lim
t→0

L(u + tv)− Lu
t

= Lv

and L′(u)v = Lv.

The following theorem is a classical result on Gateaux differentiable functionals.

Theorem 1.13 (Lagrange mean value theorem). Let X be a normed space and u, v ∈ X
arbitrary. Let ϕ : X → R be GD. Then there exists ξ ∈ [u, v] := {u + t(v − u) : t ∈ [0, 1]}
such that

ϕ(u)− ϕ(v) = ⟨ϕ′(ξ), v − u⟩X∗,X.

We finish this section with a well-posedness theorem for Gateaux differentiable
non-linear operators.

Theorem 1.14. Let H → H be a Hilbert space, A : H → H be a GD operator satisfying the
following conditions:

(i) Uniform monotonicity: there exists m > 0 such that ⟨A′(u)h, h⟩ ≥ m∥h∥2, for any
u, h ∈ H.

(ii) Boundedness: there exists M > 0 such that |⟨A′(u)h, v⟩ ≤ M∥h∥∥v∥, for any u, h, v ∈
H.

Then, for any b ∈ H, there exists a unique u ∈ H such that A(u) = b.

Remark 1.15. We can allow M in the second condition on Theorem 1.14 to depend on ∥u∥,
see e.g. [11]. That is, we replace (ii) by the weaker condition

|⟨A′(u)h, v⟩| ≤ M(∥u∥) · ∥h∥∥v∥,

for all u, v, h ∈ H.

1.2 Numerical analysis

Let us start by introducing the following well-posedness theorem on the variational
problem.

Theorem 1.16 (Lax-Milgram theorem). Let H be a Hilbert space and a : H × H → R be a
bilinear form which is

6
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(i) Bounded, i.e., there exists M > 0 such that |a(u, v)| ≤ M∥u∥∥v∥ for any u, v ∈ H.

(ii) Coercive, i.e., there exists m > 0 such that a(u, u) ≥ m∥u∥2 for any u ∈ H.

Then for any bounded linear functional ℓ : H → R, the variational problem

a(u, v) = ℓv (v ∈ H)

has a unique solution u ∈ H.

Next, we introduce a class of methods for approximating a solution to the varia-
tional problem. These are called Galerkin-type methods.

Let H be a Hilbert space and a : H × H → R a bounded, coercive, symmetric
bilinear form. Let VH be a finite N dimensional subspace of H and {ψ1, . . . ψN} a basis
in Vh. We look for solutions of the projected equation

a(uh, vh) = ℓvh (vh ∈ Vh).

Indeed, by substituting uh = ∑N
j=1 cjψj in the projected equation and letting vh = ψi,

we get
N

∑
j=1

a(ψj, ψi)cj = ℓψi (i = 1, . . . , N).

Hence, by denoting Ah = {a(ψi, ψj)}N
i,j=1, bh = {ℓψi}N

i=1 and c = {ci}N
i=1 we obtain the

algebraic linear system Ahc = b. This system has a unique solution c ∈ RN since uh is
unique by the Lax-Milgram theorem.

It is well known, see e.g [11], that if {Vh}h>0 be a family of finite-dimensional
subspaces of H such that

lim
h→0

dist(u, Vh) = 0 (u ∈ H)

then the Galerkin method converges in the sense that

lim
h→0

∥uh − u∗∥ = 0,

where u∗ denotes the exact solution of the variational problem.

7



Chapter 2

Linear elliptic problems

The preconditioned conjugate gradient method (PCGM) is a widespread way to find
the solution of discretized elliptic partial differential equations iteratively. Further-
more, the preconditioned CGM can be competitive with multigrid methods and, un-
der certain conditions, operator preconditioning can provide mesh-independent su-
perlinear convergence. In this chapter, we consider a self-adjoint second-order elliptic
boundary value problem with variable zeroth order coefficient and its finite element
discretization. We study the mesh-independent superlinear convergence of the precon-
ditioned CGM for this type of problem see e.g [13], [4], and extend previous results of
[13] to the case of unbounded reaction coefficients in some Lebesgue spaces. Our goal
is to find an eigenvalue-based estimation of the rate of superlinear convergence and to
show that a similar estimate can be obtained in the case of systems of PDEs.

2.1 General framework

2.1.1 The linear operator equation and its Galerkin discretization

Let H be a real Hilbert space and let us consider a linear operator equation

Au = g (2.1)

with some g ∈ H, under the following

Assumptions 2.1.1:

(i) The operator A is decomposed as

A = S + Q (2.2)

where S is a symmetric operator in H with dense domain D and Q is a compact
self-adjoint operator defined on the domain H.

(ii) There exists k > 0 such that ⟨Su, u⟩ ≥ k∥u∥2 (∀u ∈ D).

8
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(iii) ⟨Qu, u⟩ ≥ 0 (∀u ∈ H).

We recall that the energy space HS is the completion of D under the energy inner
product

⟨u, v⟩S = ⟨Su, v⟩, (2.3)

and the corresponding norm is denoted by ∥ · ∥S. Assumption (ii) implies HS ⊂ H.
Then there exists a unique bounded linear operator, denoted by QS : HS 7→ Hs, such
that

⟨QSu, v⟩S = ⟨Qu, v⟩ (∀u, v ∈ HS).

We replace equation (2.1) by its formally preconditioned form

Bu ≡ S−1Au = S−1g,

that is, (I + S−1Q)u = S−1g in HS. This gives the weak formulation

⟨(I + QS)u, v⟩S = ⟨g, v⟩ (∀v ∈ Hs). (2.4)

Since by assumption (iii) the bilinear form on the left is coercive on HS, by the Lax-
Milgram theorem, there exists a unique solution u ∈ HS of (2.4).

Now equation (2.4) is solved numerically using a Galerkin discretization. Consider a
given finite-dimensional subspace V = span{φ1, . . . , φn} ⊂ HS, and let

Sh = {⟨φi, φj⟩S}n
i,j=1 and Qh = {⟨Qφi, φj⟩}n

i,j=1

the Gram matrices corresponding to S and Q. We look for the numerical solution uV ∈ V
of equation (2.4) in V, i.e., for which

⟨(I + QS)uv, v⟩S = ⟨g, v⟩ (∀v ∈ V). (2.5)

Then uV = ∑n
i,j=1 cj φj, where c = (c1, . . . , cn) ∈ Rn is the solution of the system

(Sh + Qh)c = b (2.6)

with b = {⟨g, φj⟩}n
j=1. The matrix Ah := Sh + Qh is SPD.

By using matrix Sh as the preconditioner for the system (2.6), we shall work with
the preconditioned system

(I + S−1
h Qh)c = b̃, (2.7)

where I is the identity matrix in Rn and b̃ = S−1
h b. We apply the CGM for the solution

of this system.

2.1.2 The preconditioned conjugate gradient method and superlinear

convergence

Let us consider a general linear system Au = g and its preconditioned form

Bu = g̃, (2.8)

9
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where B = S−1A and g̃ = S−1g. The preconditioner Sh induces the energy inner
product ⟨c, d⟩Sh := Sh c · d.

Then the PCG method is given by the following algorithm. Let u0 be arbitrary,
ρ0 = Au0 − g, Sp0 = ρ0, r0 = ρ0 and for k ∈ N

uk+1 = uk + αk pk,
rk+1 = rk + αkS−1Apk,
pk+1 = rk+1 + βk pk

with

αk =
−∥rk∥2

S
⟨Apk, pk⟩

, βk =
∥rk+1∥2

S
∥rk∥2

S
.

In fact, the vector zk := S−1Apk is computed by solving the auxiliary problem

Szk = Apk .

Moreover, setting wk = zk − pk, this problem is equivalent to{
Swk = Qpk,
zk = wk + pk .

(2.9)

We are interested in the superlinear convergence rates for the CGM, and now recall
the corresponding well-known estimation. Let A = S + Q. Then B in (2.8) has the
compact perturbation form B = I + E with E := S−1Q. Let us order the eigenvalues of
the latter according to |λ1(S−1Q)| ≥ |λ2(S−1Q)| ≥ · · · ≥ |λn(S−1Q)|. Then the error

vectors ek := ck − c are measured by ⟨Bek, ek⟩1/2
S =

〈
S−1Aek, ek

〉1/2

S
= ⟨Aek, ek⟩1/2 =

∥ek∥A, and they are known to satisfy(
∥ek∥A

∥e0∥A

)1/k

≤ 2∥B−1∥S

k

k

∑
j=1

|λj(S−1Q)| (k = 1, 2, . . . , n), (2.10)

see, e.g., [2].
For the discretized problem described in subsection 2.1.1, the following result al-

lows us to give a convergence rate for the upper bound of (2.10) through the eigenval-
ues of the operator QS. This is a modification of Theorem 1 in [13] where the square
of eigenvalues was considered.

Lemma 2.1. Let Assumptions 2.1.1 hold. Then for any k = 1, 2, . . . , n

k

∑
j=1

|λj(S−1
h Qh)| ≤

k

∑
j=1

λj(QS). (2.11)

10
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Proof. We have in fact
k

∑
j=1

σj(S−1
h Qh) ≤

k

∑
j=1

σj(QS), (2.12)

where the σj denote the singular values of the given matrix or operator, see [6]. Now
both the matrix S−1

h Qh (w.r.t. the Sh-inner product) and the operator QS (in HS) are
self-adjoint, hence their singular values coincide with the modulus of the eigenvalues.
Since QS is a positive operator from assumption (iii), the modulus can be omitted.

An immediate consequence of this lemma is the following mesh-independent bound.

Corollary 2.2. For any k = 1, 2, . . . , n(
∥ek∥Ah

∥e0∥Ah

)1/k

≤ 2∥B−1∥S

k

k

∑
j=1

λj(QS) (k = 1, 2, . . . , n). (2.13)

Proof. By [3, Prop. 4.1], we are able to estimate ∥B−1∥S ≤ ∥B−1∥S. This, together with
(2.10) and (2.11), completes the proof.

Since |λ1(QS)| ≥ |λ2(QS)| ≥ · · · ≥ 0 and the eigenvalues tend to 0, the convergence
factor is less than 1 for k sufficiently large. Hence the upper bound decreases as k → ∞
and we obtain superlinear convergence rate.

2.2 Estimation of the rate of superlinear convergence

In this section, we apply the previous abstract setting to different kinds of second-
order elliptic boundary value problems with a general variable coefficient η in some
Lebesgue space Lq(Ω). First, we develop the results in detail for single equations.
Afterward, we extend the estimates for symmetric systems of PDEs and we show that
these estimates also work for the nonsymmetric case by applying an adequate CG-
type algorithm. This situation shows the real strength of the idea of preconditioning
operators since one can reduce large coupled systems of PDEs to independent single
PDEs, hence the numerical solution of the latter can be parallelized. In each case, we
provide an estimation of the rate of mesh-independent superlinear convergence such
that the dependence of the rate on the integrability exponent of the reaction coefficient
is determined.

2.2.1 Single elliptic equations

Let d ≥ 2, p > 2 and Ω ⊂ RN be a bounded domain. We consider the elliptic problem{
−div(G∇u) + ηu = g,
u|∂Ω = 0,

(2.14)

11
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under the standard assumptions listed below. We shall focus on the case when the
principal part has constant or separable coefficients, i.e.,

G(x) ≡ G ∈ RN × RN or G(x) ≡ diag{Gi(xi)}N
i=1

whereas η = η(x) is a general variable (i.e. nonconstant) coefficient.

Assumptions 2.2.1:

(i) The symmetric matrix-valued function G ∈ L∞(Ω, RN × RN) satisfies

G(x)ξ · ξ ≥ m|ξ|2

for all ξ ∈ RN, m > 0 independent of ξ.

(ii) η ∈ Lp/(p−2)(Ω) and η ≥ 0.

(iii) ∂Ω is a Lipschitz boundary.

(iv) g ∈ L2(Ω).

Then problem (2.14) has a unique weak solution in H1
0(Ω).

Let Vh ⊂ H1
0(Ω) be a given FEM subspace. We look for the numerical solution uh

of (2.14) in Vh: ∫
Ω
(G∇uh · ∇v + ηuhv) =

∫
Ω

gv, v ∈ Vh. (2.15)

The corresponding linear algebraic system has the form

(Gh + Dh)c = gh,

where Gh and Dh are the corresponding stiffness and mass matrices, respectively. We
apply the matrix Gh as preconditioner, thus the preconditioned form of (2.15) is given
by

(Ih + G−1
h Dh)c = g̃h (2.16)

with g̃h = G−1
h gh. Then we apply the CGM to (2.16) and the auxiliary systems with Gh

can be solved efficiently with fast solvers.

Theorem 2.3. Let Assumptions 2.2.1 hold. Then there exists C > 0 such that for all k ∈ N(
∥ek∥Ah

∥e0∥Ah

) 1
k

≤ Ck−α, (2.17)

where α = 1
d −

1
2 +

1
p .

Proof. Let us consider the Hilbert space L2(Ω) endowed with the usual inner product.
Let D = {u ∈ H1

0(Ω) ∩ H2(Ω) / G∇u ∈ H1(Ω)N}. We define the operators

Su ≡ −div(G∇u), u ∈ D and Qu ≡ ηu, u ∈ H1
0(Ω) (2.18)

12
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and since p < 2∗ = 2N
N−2 , the embedding I : H1

0(Ω) → Lp(Ω) is compact, see Example
1.9, in particular, there exists Cp > 0 such that for all u ∈ H1

0(Ω)

∥u∥Lp(Ω) ≤ Cp∥u∥H1
0(Ω). (2.19)

Then
⟨Su, u⟩ ≥ m

∫
Ω
|∇u|2 ≥ mν

∫
Ω

u2, u ∈ D,

where ν is the Sobolev constant. Hence, the energy space HS is a well-defined Hilbert
space with ⟨u, v⟩S =

∫
Ω G∇u · ∇v. It is easy to see that HS = H1

0(Ω) and that the
following inequality √

m∥u∥H1
0(Ω) ≤ ∥u∥HS (2.20)

holds for all u ∈ HS. Furthermore,

∥QSv∥HS = sup
∥u∥HS=1

|⟨QSv, u⟩S| = sup
∥u∥HS=1

⟨Qv, u⟩

= sup
∥u∥HS=1

∫
Ω

ηvu

≤ sup
∥u∥HS=1

(∫
Ω
|η|

p
p−2

) p−2
p
(∫

Ω
|v|p

) 1
p
(∫

Ω
|u|p

) 1
p

≤ Cp sup
∥u∥HS=1

∥η∥Lp/(p−2)(Ω)∥v∥Lp(Ω)∥u∥H1
0(Ω)

≤
CpMη√

m
∥v∥Lp(Ω) sup

∥u∥HS=1
∥u∥HS

= CQ∥v∥Lp(Ω),

(2.21)

where Mη = ∥η∥Lp/(p−2)(Ω) and CQ =
Cp Mη√

m . Here we applied the extension of Hölder’s
inequality ([7, Th. 4.6]) with

1 =
1
p
+

1
p
+

(
p − 2

p

)
.

Hence QS is compact and self-adjoint in HS.
Let λn = λn(QS). Since QS is a compact self-adjoint operator in HS, by [12, Ch.6,

Th.1.5] we have the following characterization of the eigenvalues of QS:

∀n ∈ N : λn(QS) = min{∥QS − Ln−1∥ / Ln−1 ∈ L(HS), rank(Ln−1) ≤ n − 1}. (2.22)

By taking the minimum over a smaller subset of finite rank operators, we obtain

λn(QS) ≤ min{∥QS − QSLn−1∥ / Ln−1 ∈ L(HS), rank(Ln−1) ≤ n − 1}. (2.23)

13
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Now, by (2.21) and (2.20) we get

∥QS − QSLn−1∥ = sup
u∈HS

∥(QS − QSLn−1)u∥HS

∥u∥HS

= sup
u∈HS

∥QS(u − Ln−1u)∥HS

∥u∥HS

≤ CQ sup
u∈HS

∥u − Ln−1u∥Lp(Ω)

∥u∥HS

≤
CQ√

m
sup

u∈H1
0(Ω)

∥u − Ln−1u∥Lp(Ω)

∥u∥H1
0(Ω)

.

This, together with (2.23) yields

λn(QS) ≤
CQ√

m
min{∥I − Ln−1∥ / Ln−1 ∈ L(H1

0(Ω), Lp(Ω)), rank(Ln−1) ≤ n − 1}

:=
CQ√

m
an(I),

(2.24)

where an(I) denotes the approximation numbers of the compact embedding I : H1
0(Ω) 7→

Lp(Ω), [18]. Furthermore, we have the estimation [9]

an(I) ≤ Cappn−α, α =
1
d
− 1

2
+

1
p

,

for some constant Capp > 0. Therefore, we arrive at the inequality

λn(QS) ≤
CappCQ√

m
n−α.

Now, taking the arithmetic mean on both sides and estimating the sum from above by
an integral we obtain

1
k

k

∑
n=1

λn(QS) ≤
CappCQ√

m
1
k

(
1 +

∫ k

1

1
xα

)
≤

CappCQ√
m(1 − α)

1
kα

. (2.25)

Then, by (2.13), we conclude.

Remark 2.4. The auxiliary problem Swk = Qpk for the PCGM can be solved easily with fast
solvers due to the special structure of S, [15], [8].

2.2.2 Symmetric elliptic systems

In this section, we prove that the previous results can be extended to certain systems
of elliptic PDEs. For simplicity and also due to practical occurrence, we only include

14
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Laplacian principal parts. Nonetheless, the results remain similar when the principal
parts have the form (2.18).

First, let us consider systems of the form{
−∆ui + ηi1u1 + . . . ηisus = gi,
ui|∂Ω = 0, (i = 1, . . . , s),

(2.26)

where H = {ηij}s
i,j=1 is a symmetric positive semidefinite variable coefficient matrix

such that
∀i, j ∈ {1, . . . , s} : ηij ∈ Lp/(p−2)(Ω).

We work with the space Lp(Ω)s with the norm

∥u∥Lp(Ω)s =

 s

∑
j=1

∥uj∥2
Lp(Ω)

1/2

, u = (u1, . . . , us) ∈ Lp(Ω)s.

Let H = L2(Ω)s. Let u = (u1 . . . us) ∈ D = (H1
0(Ω) ∩ H2(Ω))s, we define the

operators

Su =


−∆u1

.

.

.
−∆us

 , Qu = Hu, u ∈ H1
0(Ω)s. (2.27)

Clearly, S is a uniformly positive symmetric operator in H. In fact, by Poincare’s
inequality

⟨Su, u⟩ ≥ 1
ν2

s

∑
i=1

∥ui∥2
L2(Ω) =

1
ν2∥u∥2

H, (2.28)

where ν is the Sobolev constant. Then, the energy space HS is well defined with

⟨u, v⟩S =
s

∑
i=1

∫
Ω
∇ui∇vi, ∥u∥2

HS
=

s

∑
i=1

∫
Ω
|∇ui|2

and so HS = H1
0(Ω)s. Furthermore, by (2.19) we have that

∥u∥2
HS

≥ 1
C2

p

s

∑
i=1

∥ui∥2
Lp(Ω) =

1
C2

p
∥u∥2

Lp(Ω)s . (2.29)

Then there exists a unique operator QS : H1
0(Ω)s → L2(Ω)s such that

⟨QSu, v⟩S =
∫

Ω

s

∑
i,j=1

ηijujvi. (2.30)
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It is easy to see that QS is self-adjoint in HS. Analogous to (2.21), by (2.29), (2.28)
and Hölder’s inequality we get

∥QSv∥HS = sup
∥u∥S=1

|⟨QSv, u⟩S|

≤ sup
∥u∥HS=1

s

∑
i,j=1

∫
Ω
|ηij||vj||ui|

≤ sup
∥u∥HS=1

s

∑
i,j=1

∥ηij∥Lp/(p−2)(Ω)∥vj∥Lp(Ω)∥ui∥Lp(Ω)

≤ Mη sup
∥u∥HS=1

s

∑
j=1

∥vj∥Lp(Ω)

s

∑
i=1

∥ui∥Lp(Ω)

≤ Mη sup
∥u∥HS=1

√
s

 s

∑
j=1

∥vj∥2
Lp(Ω)

1/2
√

s

(
s

∑
i=1

∥ui∥2
Lp(Ω)

)1/2

= sMη sup
∥u∥HS=1

∥v∥Lp(Ω)s∥u∥Lp(Ω)s

≤ sMηCp∥v∥Lp(Ω)s

= CQ∥v∥Lp(Ω)s .

(2.31)

where Mη = maxi,j ∥ηij∥Lp/(p−2)(Ω) and CQ = sMηCp. Hence, we have proved that
QS is a compact self-adjoint operator in HS. Then, the characterization (2.22) of the
eigenvalues of QS holds. The rest of the proof follows by modifying the scalar case. In
this case, we take the minimum over a smaller subset of finite rank operators to obtain

λn(QS) ≤ min{∥QS − QSLn−1∥ / Ln−1 ∈ Ldiag(HS), rank(Ln−1) ≤ n − 1},

with Ln−1 ∈ Ldiag(HS) if and only if

Ln−1u =


Ls

n−1u1
.
.
.

Ls
n−1us

 , such that Ls
n−1 ∈ L(H1

0(Ω)) and rank(Ls
n−1) ≤

[
n − 1

s

]
,

where [·] denotes the lower integer part. Furthermore, we shall use the approxima-
tion numbers

a[ n−1
s ] = min

{
∥I − Tn−1∥ / Tn−1 ∈ L(H1

0(Ω), Lp(Ω)), rank(Tn−1) ≤
[

n − 1
s

]}
.

Note that if n ≤ s, then we can use λn(QS) ≤ ∥QS∥, and for n ≥ s + 1 the above
numbers are estimated by

a[ n−1
s ] ≤ Capp

[
n − 1

s

]−α

, (2.32)
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with α = 1
d −

1
2 +

1
p . Then

∥QS − QSLn−1∥ = sup
u∈HS

∥(QS − QSLn−1)u∥HS

∥u∥HS

= sup
u∈HS

∥QS(u − Ln−1u)∥HS

∥u∥HS

≤ CQ sup
u∈HS

∥u − Ln−1u∥Lp(Ω)s

∥u∥HS

= CQ sup
u∈HS

(
∑s

j=1 ∥ui − Ls
n−1ui∥2

Lp(Ω)

)1/2

(
∑s

j=1 ∥ui∥2
H1

0(Ω)

)1/2

≤ CQ sup
u∈HS

(
∥I − Ls

n−1∥2
L(H1

0(Ω),Lp(Ω))
∑s

j=1 ∥ui∥2
H1

0(Ω)

)1/2

(
∑s

j=1 ∥ui∥2
H1

0(Ω)

)1/2

= CQ∥I − Ls
n−1∥L(H1

0(Ω),Lp(Ω)).

Therefore

λn(QS) ≤ CQ min

{
∥I − Ls

n−1∥L(H1
0(Ω),Lp(Ω)) / Ls

n−1 ∈ L(H1
0(Ω), Lp(Ω)), rank(Ls

n−1) ≤
[

n − 1
s

]}
= CQa[ n−1

s ].

Hence, by (2.32) we obtain the estimation

λn(QS) ≤ CQCapp

[
n − 1

s

]−α

, n ≥ s + 1. (2.33)

λn(QS) ≤ ∥QS∥ ≤ CQ n ≤ s. (2.34)

Note that
0.5 ≤ [x]

x
≤ 1, ∀x > 1.

Thus, for n ≥ s + 1 [
n − 1

s

]−α

≤ 1
0.5α

sα

(n − 1)α

= (2s)α

(
nα

(n − 1)α

)
1

nα

≤ 2α(s + 1)α 1
nα

.
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Hence, (2.33) becomes

λn(QS) ≤ CQCapp2α(s + 1)α 1
nα

:= Rs,αCQ
1

nα

with Rs,α = Capp2α(s + 1)α. Then, by taking arithmetic meaning on both sides and
splitting the sum we get

1
k

k

∑
n=1

λn(QS) ≤
1
k

(
s∥QS∥+

k

∑
n=s+1

λn(QS)

)

≤ 1
k

(
s∥QS∥+ Rs,αCQ

k

∑
n=s+1

1
nα

)

≤ 1
k

(
s∥QS∥+ Rs,αCQ

∫ k

s

1
xα

)

≤ s
k
∥QS∥+

Rs,αCQ

1 − α

1
kα

≤ C
1
kα

,

(2.35)

where C = max{s∥QS∥, Rs,αCQ(1 − α)−1}. Finally, by Corollary 2.2, we have proved
there exists C > 0 such that for all k ∈ N(

∥ek∥Ah

∥e0∥Ah

) 1
k

≤ Ck−
1
α , (2.36)

where C = C(s, p, α, H).

2.2.3 Extension to non-symmetric systems

Consider the iterative solutions of the non-symmetric linear problem Bu = g. Assume
that B + B∗ > 0, where B∗ denotes the adjoint of B with respect to the inner prod-
uct. Further, consider the decomposition B = I + E. We apply the generalized minimal
residual (GMRES) method to solve this system. This method is an extension of the CG
method to non-symmetric systems, [17]. For simplicity, we show only the algorithm
of the Generalized Conjugate Residual (CGR) method, since the latter is mathematically
equivalent to GMRES, see e.g [16]. Let u0 be arbitrary, r0 = Sg − Bu0, p0 = r0 and for
k ∈ N 

xk+1 = xk + αk pk

rk+1 = rk − αkBpk

pk+1 = rk+1 + ∑k
i=0 βik pi

18
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with
αk =

⟨rk, Bpk⟩
⟨Bpk.Bpk⟩

, βik = −⟨Brk+1, Bpi⟩
⟨Bpi.Bpi⟩

(i = 0, 1, . . . , k).

Remark 2.5. The main reason one does not use CGR directly is the amount of storage re-
quirement and the number of steps CGR needs for convergence compared to GMRES. From the
equations above we realize that we require to double the memory used in the algorithm com-
pared to GMREs, since both the set of p′is and Bp′is need to be saved. Moreover, the number
of arithmetic operations per step is also around 50% higher than GMRES, [16]. Hence, the
implementation of the method CGR is simpler but less efficient than GMRES.

An advantage of GMRES is that superlinear convergence is not lost. In fact, if
B ∈ B(H) and H is a Hilbert space, then we get the estimate(

∥rk∥
∥r0∥

)1/k

≤ ∥B−1∥
k

k

∑
j=1

sj(E) (k = 1, 2, . . . )

where (sj(E))j are the singular values of E.
Let us now go back to (2.26) for H = {ηi,j}s

i,j=1 non-symmetric. We apply GMRES
to the corresponding discretized system. By [5], we have an analogue of Corollary
1 when A is non-Hermitian. In this case, the GMRES method provides superlinear
convergence estimates for the residuals rk, and (2.11) is replaced by the more general
case (2.12). Altogether, we have(

∥rk∥
∥r0∥

)1/k

≤ ∥B−1∥S

k

k

∑
j=1

sj(QS), ∀k = 1, 2, . . . , n. (2.37)

To show that Theorem 2.3 still holds in this case, we follow the same steps as we
did previously. We define the operators S, Q, QS as before, (2.27), (2.30). Here, QS

is no longer self-adjoint and its eigenvalues do not coincide with its singular values.
Nonetheless, by [12, Ch.6, Th.1.5] we have the following characterization of the singular
values of QS:

∀n ∈ N : sn(QS) = min{∥QS − Ln−1∥ / Ln−1 ∈ L(HS), rank(Ln−1) ≤ n − 1}. (2.38)

Then, similarly to the proof for symmetric systems, we can show that

1
k

k

∑
n=1

sn(QS) ≤ C
1
kα

, α =
1
d
− 1

2
+

1
p

, (2.39)

where C > 0 is defined as in (2.35). Therefore, by (2.37), we obtain that there exists
C > 0 such that (

∥rk∥
∥r0∥

)1/k

≤ C
1
kα

, (2.40)
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where C = C(s, p, α, H). Finally, note that rk = Ahek. Then ∥ek∥Ah ≤ ∥A−1
h ∥∥rk∥ and

∥r0∥ ≤ ∥Ah∥∥e0∥Ah . Hence(
∥ek∥Ah

∥e0∥Ah

)1/k

≤ C
1
kα

cond(A)1/k ≤ C
1
kα

.

where cond(A) = ∥A∥∥A−1∥ < 1 denotes the conditioning number of A.

Remark 2.6. For elliptic symmetric systems, the auxiliary problem Swk = Qpk for the PCGM
becomes 

−∆(wk)1 = ∑s
j=1 η1j(pk)j,

−∆(wk)2 = ∑s
j=1 η2j(pk)j,

.

.

.

−∆(wk)s = ∑s
j=1 ηsj(pk)j,

(wi)|∂Ω = 0, ∀i = 1, . . . , s.

Note that these equations are independent of one another. Hence, they can be solved in parallel.
Furthermore, in practice, these types of systems can be large, e.g in [19], long-range transport of
air pollution models are described by a system of PDEs with s = 30. That is, S is considerably
simpler than B.

2.3 A numerical example

Let us solve the following PDEs numerically −∆u + ηu = fi, in Ω = [0, 1]2,

u|∂Ω = 0
(Ei)

with i = 1, 2. Here η ∈ L
p

p−2 (Ω) is defined as

η(x, y) = (x2 + y2)−β, 0 < β <
p − 2

p

and
f1(x, y) = 1,

f2(x, y) = 1 − x − y,
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f3(x, y) =
1
10

(1 + x + y).

Applying FEM with Courant elements to (Ei) with stepsize h = 1/(N + 1) we
obtain the algebraic system

(Gh + Dh)ci = gi
h, i = 1, 2. (E′

i)

Then, we apply Gh as a preconditioner and we solve the preconditioned system using
the CGM.

(a) Numerical solution of E1 (b) Numerical solution of E2

(c) Numerical solution of E3

Figure 2.1: Graphs of the numerical solutions of (Ei) with i = 1, 2, 3, N = 40 and
β = 1/4.

To measure the error of the PCGM, we use the energy norm

∥e∥Ah = ⟨Ahe, e⟩ 1
2 e ∈ RN,

where Ah = Gh + Dh. Table 1 shows the residual error obtained at each iteration k of
the method applied to (E′

i) for i = 1, 2, 3 respectively. We see that it takes 7 steps to
reach a O(10−14) residual error.
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To test Theorem 2.3, note that d = 2 and so α = 1
p . Furthermore, recall that

η ∈ L
p

p−2 (Ω) if β <
p − 2

p
= 1 − 2α.

That is, if p > 2
1−β , we get that the theorem holds when α < 1−β

2 . Table 2 shows the
values of

δ̂k =

(
∥rk∥Gh

∥r0∥Gh

) 1
k

kα

for each problem (E′
i) and for different choices of β (and hence of α) while fixing a

mesh size. The value of δ̂i
k corresponds to the system (E′

i). This demonstrates that
(2.17) holds in these cases since the values of δ̂k are bounded by a constant.

Finally, Table 3 shows the values of δ̂k for different mesh sizes while fixing the
values of β. Here we verify that the results of Theorem 2.3 are not sensitive to the size
of the mesh.

∥r1
k∥Gh ∥r2

k∥Gh ∥r3
k∥Gh

1 0.1872869890826060000000 0.0438591951304650000000 0.0377132992611370000000

2 0.0021778212752603100000 0.0003744621215674900000 0.0005135054728180300000

3 0.0000134272507943374000 0.0000089983886838118200 0.0000041947047929654800

4 0.0000001224317125796750 0.0000000614690100912966 0.0000000303294910379450

5 0.0000000004417617185916 0.0000000003075987138478 0.0000000001113030628806

6 0.0000000000021058757996 0.0000000000011266031196 0.0000000000005252511482

7 0.0000000000000082093367 0.0000000000000035087716 0.0000000000000020265486

8 0.0000000000000003001190 0.0000000000000000110731 0.0000000000000000071527

9 0.0000000000000000000816 0.0000000000000000000864 0.0000000000000000000238

10 0.0000000000000000000006 0.0000000000000000000005 0.0000000000000000000002

Table 2.1: Norm of residual error ri
k at each iteration of PCGM applied to system (E′

i).
Here N = 40 and β = 1/4.
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β = 2/3, α = 0.15 β = 3/4, α = 0.12 β = 1/4, α = 0.374 β = 1/2, α = 0.24
δ̂1

k δ̂2
k δ̂3

k δ̂1
k δ̂2

k δ̂3
k δ̂1

k δ̂2
k δ̂3

k δ̂1
k δ̂2

k δ̂3
k

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.1786 0.1904 0.1887 0.1921 0.2098 0.2006 0.1397 0.1197 0.1512 0.1592 0.1593 0.1715

3 0.0925 0.1087 0.0973 0.1027 0.1127 0.1070 0.0627 0.0889 0.0725 0.0790 0.1026 0.0853

4 0.0621 0.0744 0.0650 0.0702 0.0792 0.0731 0.0478 0.0578 0.0503 0.0537 0.0670 0.0562

5 0.0476 0.0548 0.0492 0.0542 0.0611 0.0559 0.0344 0.0427 0.0359 0.0406 0.0476 0.0422

6 0.0372 0.0434 0.0386 0.0432 0.0490 0.0447 0.0293 0.0336 0.0303 0.0324 0.0376 0.0331

7 0.0313 0.0352 0.0321 0.0362 0.0406 0.0370 0.0256 0.0279 0.0263 0.0260 0.0304 0.0265

8 0.0264 0.0297 0.0269 0.0300 0.0340 0.0309 0.0231 0.0244 0.0236 0.0225 0.0254 0.0223

9 0.0227 0.0253 0.0229 0.0261 0.0287 0.0268 0.0207 0.0245 0.0216 0.0205 0.0225 0.0195

10 0.0203 0.0221 0.0202 0.0232 0.0250 0.0236 0.0213 0.0242 0.0224 0.0191 0.0208 0.0189

Table 2.2: Values of δ̂k for different α’s and β’s, with a fixed mesh size. Here N = 40.

δ̂1
k δ̂2

k δ̂3
k

N = 20 N = 40 N = 80 N = 20 N = 40 N = 80 N = 20 N = 40 N = 80

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.1910 0.1921 0.1924 0.2080 0.2098 0.2103 0.1997 0.2006 0.2009

3 0.1013 0.1027 0.1031 0.1123 0.1127 0.1128 0.1057 0.1070 0.1073

4 0.0683 0.0702 0.0707 0.0785 0.0792 0.0794 0.0713 0.0731 0.0736

5 0.0519 0.0542 0.0549 0.0594 0.0611 0.0616 0.0536 0.0559 0.0566

6 0.0403 0.0432 0.0443 0.0466 0.0490 0.0499 0.0418 0.0447 0.0457

7 0.0333 0.0362 0.0373 0.0375 0.0406 0.0418 0.0341 0.0370 0.0382

8 0.0274 0.0300 0.0316 0.0310 0.0340 0.0353 0.0279 0.0309 0.0325

9 0.0234 0.0260 0.0279 0.0279 0.0287 0.0305 0.0236 0.0268 0.0284

10 0.0223 0.0237 0.0245 0.0245 0.0250 0.0268 0.0227 0.0236 0.0248

Table 2.3: Values of δ̂k for different mesh sizes with β = 3/4, α = 0.12.
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Chapter 3

Non-linear elliptic systems

In this chapter, we consider inner-outer iterations of the Damped Inexact Newton (DIN)
method applied to the finite element discretization of some non-linear systems of PDEs.
Here, we use GMRES to solve the linearized problem that arises from the DIN process
at each step. Thus, mesh-independent superlinear convergence of the inner iterations
can be proved. This chapter includes a detailed version of the results found in [1],
where the DIN plus CGN technique is used. Our main goal is to demonstrate that by
modifying the method used for the inner iterations and applying the results from the
previous chapter, we can give more explicit estimates for the superlinear convergence
rate.

3.1 The problem

Let Ω ⊂ Rd be a bounded domain with d = 2, 3. We consider the nonlinear elliptic
transport system of the form−div(Ki∇ui) + bi · ∇ui + fi(x, u1, . . . , ul) = gi;

ui|∂Ω = 0,
(3.1)

where i = 1, . . . , l. To ease the notation, this can be written as−div(K∇u) + b · ∇u + f (x, u) = g;

u|∂Ω = 0.

Furthermore, we follow the same assumptions as in [1]:
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Assumption 3.1

(i) Smoothness conditions: Ki ∈ L∞(Ω), bi ∈ C1(Ω)d and gi ∈ L2(Ω) with i = 1, . . . , l).
Moreover, the function f = ( f1, . . . , fl) : Ω×Rl 7→ Rl is measurable and bounded
w.r.t the variable x ∈ Ω and C1 in the variable ξ ∈ Rl.

(ii) Coercivity condition: there is m > 0 such that Ki ≥ m for all i = 1, . . . , l. Further-
more,

∀(x, ξ) ∈ Ω × Rl, ∀η ∈ Rl : f ′ξ(x, ξ)η · η − 1
2

(
max

i
divbi(x)

)
|η|2 ≥ 0, (3.2)

where f ′ξ(x, ξ) = ∂ f (x,ξ)
∂ξ .

(iii) Local Lipschitz condition: let 3 ≤ p (if d = 2) or 3 ≤ p ≤ 6 (if d = 3), then there
exist constants c1, c2 ≥ 0 such that for any (x, ξ1) and (x, ξ2) ∈ Ω × Rl,

∥ f ′ξ(x, ξ1)− f ′ξ(x, ξ2)∥ ≤
(

c1 + c2 max{|ξ1|, |ξ2|}p−3
)
|ξ1 − ξ2|. (3.3)

Remark 3.1. Assumption (iii) implies the estimates

∥ f ′ξ(x, ξ)∥ ≤ c3 + c4|ξ|p−2, | f (x, ξ)| ≤ c5 + c6|ξ|p−1 (3.4)

for any (x, ξ) ∈ Ω × Rl. Furthermore, we get

|( f ′ξ(x, ξ1)− f ′ξ(x, ξ2))η · ζ| ≤ (c1 + c2(max{|ξ1|, |ξ2|})p−3)|ξ1 − ξ2||η||ζ| (3.5)

for any (x, ξ1), (x, ξ2) ∈ Ω × Rl and η, ζ ∈ Rl.

Remark 3.2. We recall Theorem 1.4 and Example 1.9. Denote p∗ = ∞ if d = 2 or p∗ = 6 if
d = 3. Then for all p ≤ p∗ the following Sobolev embedding holds:

H1
0(Ω) ⊂ Lp(Ω).

In addition, we have the estimate

∥v∥Lp(Ω) ≤ Cp∥v∥H1
0(Ω) (v ∈ H1

0(Ω)). (3.6)

3.2 Well-posedness of the elliptic problem

We show that there exists a unique weak solution to Problem (3.1). For this, we denote

⟨F(u), v⟩H1
0(Ω) =

∫
Ω

l

∑
i=1

Ki∇ui · ∇vi + (bi · ∇ui)vi + fi(x, u)vi)

≡
∫

Ω
(K∇u · ∇v + (b · ∇u) · v + f (x, u) · v)

(3.7)
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for any u, v ∈ H1
0(Ω)l. We claim that this defines an operator F : H1

0(Ω)l → H1
0(Ω)l.

Indeed, for any u ∈ H1
0(Ω)l we define the linear functional ψu by

ψu(v) =
∫

Ω
(K∇u · ∇v + (b · ∇u) · v + f (x, u) · v), (v ∈ H1

0(Ω)l).

Then, Hölder inequality with p−1
p + 1

p = 1 and Remarks 3.1, 3.2 yield

|ψu(v)| ≤
l

∑
i=1

∫
Ω
∥Ki∥L∞(Ω)(|∇ui||∇vi|+ ∥bi∥L∞(Ω)|∇ui||vi|+ | fi(x, u)|vi|)

≤ max
{

max
i

∥Ki∥L∞(Ω), max
i

∥bi∥L∞(Ω), 1
} l

∑
i=1

(∥ui∥H1
0(Ω)∥vi∥H1

0(Ω) + ∥ui∥H1
0(Ω)∥vi∥L2(Ω) + . . .

· · ·+
∫

Ω
(c5 + c6|u|p−1)|vi|))

≤ const ·
l

∑
i=1

(∥ui∥H1
0(Ω)∥vi∥H1

0(Ω) + C2∥ui∥H1
0(Ω)∥vi∥H1

0(Ω) + c5C1∥vi∥H1
0(Ω) + . . .

· · ·+ c6∥u∥p−1
Lp(Ω)

∥vi∥Lp(Ω))

≤ const ·
l

∑
i=1

(∥ui∥H1
0(Ω)∥vi∥H1

0(Ω)) + c5C1

l

∑
i=1

∥vi∥H1
0(Ω) + c6Cp

p∥u∥p−1
H1

0(Ω)

l

∑
i=1

∥vi∥H1
0(Ω)

≤ const · ∥u∥H1
0(Ω)∥v∥H1

0(Ω) + const∥v∥H1
0(Ω) + const · ∥u∥p−1

H1
0(Ω)

∥v∥H1
0(Ω)

≤ const∥v∥H1
0(Ω).

This shows that ψu : H1
0(Ω)l → R is a bounded linear functional. Hence, by the Riesz

representation theorem, there exists a unique F(u) such that

ψu(v) = ⟨F(u), v⟩H1
0(Ω) (v ∈ H1

0(Ω)).

Similarly, we can show that there exists a unique g ∈ H1
0(Ω)l such that∫

Ω
gv = ⟨g, v⟩H1

0(Ω) (v ∈ H1
0(Ω)).

Thus, proving the well-posedness of (3.1) is equivalent to showing that the equation
F(u) = g has a unique solution in H1

0(Ω)l. The following proposition shows that the
coercivity and continuity properties of f ′ξ are inherited by F′. The proof given here of
this statement is a detailed version of the one found in [1].

Proposition 3.3. The operator F : H1
0(Ω)l → H1

0(Ω)l is Gateaux differentiable and satisfies

⟨F′(u)h, h⟩H1
0(Ω) ≥ m∥h∥2

H1
0(Ω)

(u, h ∈ H1
0(Ω)l). (3.8)

Furthermore, F′ is locally Lipschitz continuous. That is,

∥F′(u)− F′(v)∥ ≤ L(r)∥u − v∥H1
0(Ω) (3.9)
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for all u, v ∈ H1
0(Ω)l with ∥u∥H1

0(Ω) ≤ r, ∥v∥H1
0(Ω) ≤ r, where

L(r) = c1C3 + c2Cp
prp−3 (r > 0). (3.10)

Proof. First, we show that F is Gateaux differentiable. Formally,

⟨∂hF(u), v⟩H1
0(Ω) =

∫
Ω

l

∑
i=1

lim
t→0

1
t
(ki∇(ui + thi) · ∇vi + bi · ∇(ui + thi)vi + fi(x, u + th)vi . . .

· · · − (ki∇ui · ∇vi + (bi · ∇ui)vi + fi(x, u)vi))

=
∫

Ω

l

∑
i=1

(ki∇hi · ∇vi + (bi · ∇vi)vi) + lim
t→0

1
t
( fi(x, u + th)− fi(x, u))vi

≡
∫

Ω
K∇h · ∇v + (b · ∇h) · v + f ′ξ(x, u)h · v

:= ⟨D(u, h), v⟩H1
0(Ω).

Using the Riesz representation theorem, we can prove that D(u, h) ∈ H1
0(Ω)l for any

u, v ∈ H1
0(Ω)l. Indeed,

v 7→
∫

Ω
K∇h · ∇v + (b · ∇h) · v + f ′ξ(x, u)h · v

is a linear bounded functional:∣∣∣∣∫Ω
. . .
∣∣∣∣ ≤ ∥K∥L∞(Ω)

∫
Ω
|∇h||∇v|+ ∥b∥max

∫
Ω
|∇h||v|+

∫
Ω
(c3 + c4|u|p−2)|h||v|

≤ ∥K∥L∞(Ω)∥h∥H1
0(Ω)∥v∥H1

0(Ω) + ∥b∥maxC2∥h∥H1
0(Ω)∥v∥H1

0(Ω) + . . .

· · ·+ c3C2
2∥v∥H1

0(Ω)∥h∥H1
0(Ω) + c4∥u∥p−2

Lp(Ω)
∥v∥Lp(Ω)∥h∥Lp(Ω)

≤ const · ∥h∥H1
0(Ω)∥v∥H1

0(Ω) + c4Cp
p∥u∥p−2

H1
0(Ω)

∥v∥H1
0(Ω)∥h∥H1

0(Ω)

≤ const · ∥v∥H1
0(Ω)∥h∥H1

0(Ω).

(3.11)

Here we use Remarks 3.1, 3.2 and Hölder inequality with p−2
p + 1

p + 1
p = 1. Hence,

D(u, h) ∈ H1
0(Ω)l is the Riesz representative of this functional. Since Gateaux differen-

tiability is known for any bounded linear operator, see Remark 1.12, to prove Gateaux
differentiability of F is enough to show that the nonlinear part of 1

t (F(u+ th)− F(u))−
D(u, h) tends to 0 in H1

0(Ω), i.e.,

lim
t→0

sup
∥v∥H1

0(Ω)
=1

∫
Ω

(
1
t
( f (x, u + th)− f (x, u)) · v − f ′ξ(x, u)h · v

)
= 0. (3.12)
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Using Lagrange mean value theorem we get f (x, u + th)− f (x, u) = f ′ξ(x, u + θth)th, for
some θ = θ(x, t, u, h) ∈ [0, 1]. Then, the l.h.s limit above is equal to

lim
t→0

sup
∥v∥H1

0(Ω)
=1

∫
Ω

(
( f ′ξ(x, u + θth)h) · v − f ′ξ(x, u)h · v

)
≤ lim

t→0
sup

∥v∥H1
0(Ω)

=1

∫
Ω
|( f ′ξ(x, u + θth)− f ′ξ(x, u))h · v|

≤ lim
t→0

sup
∥v∥H1

0(Ω)
=1

∥( f ′ξ(x, u + θth)− f ′ξ(x, u))h∥
L

p
p−1 (Ω)

∥v∥Lp(Ω)

≤ lim
t→0

(∫
Ω
|( f ′ξ(x, u + θth)− f ′ξ(x, u))h|

p
p−1

) p−1
p

(3.13)

Furthermore, since f ∈ C1 in the variable ξ ∈ Rl,

lim
t→0

|( f ′ξ(x, u + θth)− f ′ξ(x, u))h|
p

p−1 = 0 pointwise a.e. (3.14)

Therefore, it remains to prove that |( f ′ξ(x, u + θth) − f ′ξ(x, u))h|
p

p−1 is bounded by a
function in L1(Ω)s and we can apply Lebesgue’s dominated convergence theorem to show
that (3.13) tends to 0 as t tends to 0. In fact, we may assume t ≤ 1 and by (3.3) we
obtain

|( f ′ξ(x, u + θth)− f ′ξ(x, u))h|
p

p−1 ≤ (c1 + c2 max{|u + θth|, |u|}p−3)
p

p−1 (|tθh||h|)
p

p−1

≤ const · (c1 + c2 max{|u + h|, |u|}
p(p−3)

p−1 )|h|
2p

p−1

≤ const · |h|
2p

p−1 + const · (|u|+ |h|)
p(p−3)

p−1 (|u|+ |h|)
2p

p−1

≤ const · |h|
2p

p−1 + const · (|u|+ |h|)p.

(3.15)

Notice that the first term in the RHS of (3.15) is in L1(Ω) since, by Hölder inequality
with 2

p−1 +
p−3
p−1 = 1 and the Sobolev embedding H1

0(Ω) ⊂ Lp(Ω) we get

∫
Ω
|h|

2p
p−1 ≤ ∥h∥

2p
p−1

Lp(Ω)
|Ω|

p−3
p−1

≤ C
2p

p−1
p |Ω|

p−3
p−1∥h∥

2p
p−1

H1
0(Ω)

< ∞.

Further, ∫
Ω
(|u|+ |h|)p ≤ Cp

p∥|u|+ |h|∥p
H1

0(Ω)
< ∞.
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Then, by (3.13), (3.14), and (3.15) we have proved (3.12). Hence, F is Gateaux differ-
entiable with

⟨F′(u)h, v⟩H1
0(Ω) =

∫
Ω

K∇h · ∇v + (b · ∇h) · v + f ′ξ(x, u)h · v. (3.16)

Notice that, by the divergence theorem,∫
Ω
(bi · ∇hi)hi =

∫
Ω

div(bih2
i )−

∫
Ω

hi(bi · ∇hi)−
∫

Ω
div(bi)h2

i

=
∫

∂Ω
(bih2

i ) · ν −
∫

Ω
hi(bi · ∇hi)−

∫
Ω

div(bi)h2
i

= −
∫

Ω
hi(bi · ∇hi)−

∫
Ω

div(bi)h2
i .

Hence, (3.16) with v = h becomes

⟨F′(u)h, h⟩H1
0(Ω) =

∫
Ω

(
K|∇h|2 + f ′ξ(x, u)h · h − 1

2

l

∑
i=1

div(bi)h2
i

)
. (3.17)

The above and assumption (ii) imply

⟨F′(u)h, h⟩H1
0(Ω) ≥

∫
Ω

(
m|∇h|2 + 1

2
max

i
div(bi(x))|h|2 − 1

2
max

i
div(bi(x))

l

∑
i=1

h2
i

)
= m

∫
Ω
|∇h|2.

This proves (3.8).
Let us show F′ is locally Lipschitz continuous. By (3.5) in Remark 3.1 we have that,

for any u, v, h, z ∈ H1
0(Ω)l:

|⟨(F′(u)− F′(v))h, z⟩H1
0(Ω)| =

∣∣∣∣∫Ω
( f ′ξ(x, u)h · z − f ′ξ(x, v)h · z)

∣∣∣∣
≤
∫

Ω
(c1 + c2(max{|u|, |v|})p−3)|u − v|h||z|

≤ c1∥u − v∥L3(Ω)∥h∥L3(Ω)∥z∥L3(Ω) + . . .

· · ·+ c2(max{∥u∥Lp(Ω), ∥v∥Lp(Ω)})p−3∥u − v∥Lp(Ω)∥h∥Lp(Ω)∥z∥Lp(Ω)

≤ c1C3
3∥u − v∥H1

0(Ω)∥h∥H1
0(Ω)∥z∥H1

0(Ω) + . . .

· · ·+ c2Cp
p(max{∥u∥H1

0(Ω), ∥v∥H1
0(Ω)})p−3∥u − v∥H1

0(Ω)∥h∥H1
0(Ω)∥z∥H1

0(Ω).

(3.18)

Here we used the Sobolev embeddings H1
0(Ω) ⊂ L3(Ω), H1

0(Ω) ⊂ Lp(Ω), and Hölder
inequality twice with 1

3 +
1
3 +

1
3 = 1 and p−3

p + 1
p +

1
p +

1
p = 1, respectively. Now, (3.18)

yields

∥F′(u)− F′(v)∥ = sup
∥h∥H1

0(Ω)
=∥z∥H1

0(Ω)
=1

|⟨(F′(u)− F′(v))h, z⟩H1
0(Ω)|

≤
(

c1C3
3 + c2Cp

p(max{∥u∥H1
0(Ω), ∥v∥H1

0(Ω)})
p−3
)
∥u − v∥H1

0(Ω).

(3.19)
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By assuming ∥u∥H1
0(Ω) ≤ r, ∥v∥H1

0(Ω) ≤ r and denoting L(r) = c1C3
3 + c2Cp

prp−3 we get
(3.9).

Proposition 3.4. There exists a unique solution in H1
0(Ω)lfor the equation F(u) = g.

Proof. We claim that |⟨F′(u)h, z⟩H1
0(Ω)| ≤ R(∥u∥H1

0(Ω)) · ∥h∥H1
0(Ω)∥z∥H1

0(Ω). Indeed, by
(3.18) with v ≡ 0:∣∣∣⟨F′(u)h, z⟩H1

0(Ω)

∣∣∣ ≤ const · ∥h∥H1
0(Ω)∥z∥H1

0(Ω)(∥u∥p−2
H1

0(Ω)
+ ∥u∥H1

0(Ω)) +
∣∣∣⟨F′(0)h, z⟩H1

0(Ω)

∣∣∣ .

Furthermore, using (3.11) we deduce that

|⟨F′(u)h, z⟩H1
0(Ω)| ≤ const · ∥h∥H1

0(Ω)∥z∥H1
0(Ω)(∥u∥p−2

H1
0(Ω)

+ ∥u∥H1
0(Ω) + 1). (3.20)

Thus, by denoting R(∥u∥H1
0(Ω)) = const · (∥u∥p−2

H1
0(Ω)

+ ∥u∥H1
0(Ω) + 1), we proved our

claim. Furthermore, since F′(u) is coercive, by Theorem 1.14 and Remark 1.15, we
conclude.

3.3 FEM discretization and Newton iteration

Let Vh ∈ H1
0(Ω)l be a N-dimensional subspace and ψ1, . . . , ψN ∈ Vh be a basis. We look

for uh = ∑N
j=1 cjψj ∈ Vh such that

⟨F(uh), vh⟩H1
0(Ω) = ⟨f, vh⟩H1

0(Ω) (vh ∈ Vh).

Denote Fh : Vh → Vh the operator given by

⟨Fh(uh), vh⟩H1
0(Ω) = ⟨F(uh), vh⟩H1

0(Ω) (vh ∈ Vh),

and gh ∈ Vh by
⟨gh, vh⟩H1

0(Ω) = ⟨f, vh⟩H1
0(Ω) (vh ∈ Vh).

This allows us to rewrite the problem as

Fh(uh) = gh in Vh. (3.21)

Let A : RN → RN such that A = (A1, . . . , AN) and Ai(c) = ⟨Fh(uh), ψi⟩H1
0(Ω). Then

c ∈ RN is the unique solution of the nonlinear algebraic system:

A (c) = G , (3.22)

where G = (⟨gh, ψ1⟩H1
0(Ω), . . . , ⟨gh, ψN⟩H1

0(Ω)). To solve this system numerically, we
apply the Damped inexact Newton method (DIN).
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Construction of the DIN iteration

Let u0 ∈ Vh arbitrary. The DIN iteration defines a sequence (un) ⊂ Vh constructed
recursively as

un+1 = un + τnpn (n ∈ N),

where pn ∈ Vh is the approximate solution of the linear auxiliary problem

⟨F′
h(un)pn, vh⟩H1

0(Ω) = −⟨Fh(un)− gh, vh⟩H1
0(Ω) (3.23)

in the sense that

∥F′
h(un)pn + (Fh(un)− gh)∥H1

0(Ω) ≤ δn∥Fh(un)− gh∥H1
0(Ω) 0 < δn ≤ δ0 < 1

and

τn = min

1,
1 − δn

(1 + δn)2
m2

L(R0)∥Fh(un)− gh∥H1
0(Ω)

 .

Here R0 = 2
m∥Fh(u0)− gh∥H1

0(Ω) + ∥u0∥H1
0(Ω) and L(R0) is defined as in (3.10).

The convergence of the method is given by the following theorem

Theorem 3.5. Let Assumptions (i)-(iii) hold. Then

∥un − uh∥H1
0(Ω) ≤

1
m
∥Fh(uh)− gh∥H1

0(Ω) → 0 monotonically.

In particular, if

δn ≤ const · ∥Fh(un)− gh∥
γ

H1
0(Ω)

with some 0 < γ ≤ 1,

then the convergence is local of order 1+ γ. That is, the convergence is linear for n0 steps until
∥Fh(uh)− gh∥H1

0(Ω) ≤ ϵ, where ϵ ≤ (1 − δ0)
m2

2L(R0)
, and further on (as τn ≡ 1)

∥un − uh∥H1
0(Ω) ≤ d1q(1+γ)n−n0

for some d1 > 0 and 0 < q < 1.

Proof. First, we notice that for any n ∈ N, ∥un∥H1
0(Ω) satisfies the following a priori

estimate:

∥un∥H1
0(Ω) ≤ ∥un − uh∥H1

0(Ω) + ∥uh − u0∥H1
0(Ω) + ∥u0∥H1

0(Ω)

≤ 2
m
∥Fh(un)− gh∥H1

0(Ω) + ∥u0∥H1
0(Ω)

≤ 2
m
∥Fh(u0)− gh∥H1

0(Ω) + ∥u0∥H1
0(Ω)

= R0,

(3.24)

31



Institute of Mathematics ELTE

where in the last step we used the fact that the sequence (∥Fh(un)− gh∥H1
0(Ω))n∈N is

decreasing. Further, Fh is Gateaux differentiable and satisfies

∥F′
h(u)h∥H1

0(Ω) ≥ m∥h∥H1
0(Ω),

∥F′
h(u)− F′

h(v)∥ ≤ L(r)∥u − v∥H1
0(Ω) (u, v ∈ B(0, r) ⊂ Vh).

Indeed, these properties are inherited from F′, which were proven in Proposition 3.3.
Then, by (3.24) F′

h has Lipschitz constant L(r) = L(R0) on the ball B(0, R0). Finally, we
conclude by [11, Theorem 5.12, Remark 5.17].

3.4 Solution of the linearized problems: inner GMRES

iterations

We can realize the previous method as an inner-outer iteration method, where we
use inner iterations to numerically solve the linearized problem (3.23). We proceed as
follows. Let un be constructed in the DIN iteration and consider the linearized problem
(3.23), written by

F′
h(un)ph = rh, (3.25)

where rh = gh − Fh(un). This is equivalent to the FEM solution in Vh of the linear
elliptic problem −div(Ki∇pi) + bi · ∇pi + ∑l

j=1 ∂j fi(x, un)pj = ri

pi|∂Ω = 0
(i = 1, . . . , l), (3.26)

where ri = gi +div(Ki∇un,i)−bi · ∇un,i − fi(x, un). Denote by L(n)
h the stiffness matrix

corresponding to (3.26). We look for the solution to the system

L(n)
h c = d, (3.27)

where c and d are the coefficient vectors of ph and rh, respectively. To solve we system,
we use a PCG-type algorithm. The preconditioner is constructed as follows: for any
ui|∂Ω = 0 let

Siui = −div(Ki∇ui) + hiui (i = 1, . . . , l),

where hi ∈ L∞(Ω) and hi ≥ 0, then we define the equivalent operator

Su = (S1u1, . . . Slul). (3.28)
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Denote by Sh the stiffness matrix of S in the same FEM subspace Vh. Then the precon-
ditioned system of (3.27) is given by

S−1
h L(n)

h c = f := S−1
h d. (3.29)

This results in the solution of non-symmetric auxiliary linear elliptic systems of the
form

−div(Ki∇ui) + hiui = fi (i = 1, . . . , l).

Such systems were studied in the previous chapter. Further, we already recognized
that Sh is an efficient preconditioner, see Remark 2.4 and Remark 2.6.

Remark 3.6. During the construction of the preconditioner S, we required hi ∈ L∞(Ω), but
hi ∈ L

p
p−2 (Ω) is enough. However, this could diminish the practicality of S as a preconditioner

of system 3.27.

Our goal is to solve (3.29) by applying a suitable CG-type iteration that preserves
the superlinear convergence of the outer iteration.

3.4.1 Convergence analysis of GMRES for preconditioned non-symmetric

linear problems

In the previous chapter, we briefly introduced the GMRES method and proved an
estimation for the rate of superlinear convergence of the method when applied to
nonlinear elliptic systems. In this section, we study the use of this method for solving
the FEM discretization of the following Dirichlet problem Liui ≡ −div(Ki∇ui) + bi · ∇ui + ∑l

j=1 Vijui = gi

ui|∂Ω = 0
(i = 1, . . . , l) (3.30)

on a bounded domain Ω ⊂ Rd. This problem is well-posed on H1
0(Ω)l under the

following conditions: Ki is as in Assumption 3.1, gi ∈ L2(Ω), bi ∈ C1(Ω)d, Vij ∈
L

p
p−2 (Ω) and the matrix V = {Vij}l

i,j=1 together with bi satisfy the coercivity property

λmin(V + VT)− max
i

divbi ≥ 0 (3.31)

pointwise on Ω, where λmin denotes the smallest eigenvalue. As before, we choose a
FEM subspace Vh ⊂ H1

0(Ω)l and look for the solutions of the corresponding algebraic
system Lhc = b.
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We shall use as preconditioner the stiffness matrix Sh in Vh of the operator S defined
in (3.28) and the corresponding inner product on H1

0(Ω)l

⟨u, v⟩S =
∫

Ω

l

∑
i=1

(Ki∇ui · ∇vi + hiuivi).

This is well-defined since S is uniformly positive and symmetric w.r.t the usual inner
product on H1

0(Ω)l. Moreover, the corresponding norm is equivalent to the standard
norm in H1

0(Ω) and in particular

∥u∥2
S =

∫
Ω

l

∑
i=1

(Ki|∇ui|2 + hi|u|2i ) ≥ m∥u∥2
H1

0(Ω)
. (3.32)

Then, we apply GMRES with the Sh−inner product to the preconditioned system
S−1

h Lhc = S−1
h b . First, notice that we have the decomposition

S−1
h Lh = I + QSh,

where QSh is the corresponding Gram matrix in Vh of the operator QS defined implic-
itly as follows:

⟨QSu, v⟩S =
l

∑
i=1

∫
Ω

(bi · ∇ui)vi +

 l

∑
j=1

Vijuj − hiui

 vi


≡
∫

Ω
((b · ∇u) · v + (V − hI)u · v) (u, v ∈ H1

0(Ω)l).

(3.33)

We claim that QS : H1
0(Ω)l → H1

0(Ω)l is a compact operator w.r.t the S−inner product.
Since I : Lp(Ω) → H1

0(Ω) is compact, it is enough to prove that there exists CQ > 0
such that

∥QSv∥S ≤ CQ∥v∥Lp(Ω) (v ∈ H1
0(Ω)l). (3.34)

In fact, we can divide our problem by observing that QS = QS,1 + QS,2 where

⟨QS,1u, v⟩S =
∫

Ω
((b · ∇u) · v, ⟨QS,2u, v⟩S =

∫
Ω
(V − hI)u · v) (u, v ∈ H1

0(Ω)l).

Here QS,2 is of the form (2.30), which was studied in Section 2.2.2, and for this case
we proved (3.34) with CQ = l Cp√

m maxi,j ∥Vij − hi∥
L

p
p−2 (Ω)

. Then, we only need to show

(3.34) for QS,1. This follows from the divergence theorem, inequality (3.32), Hölder
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inequality with 2
p +

p−2
p = 1 and the Sobolev embedding H1

0(Ω) ⊂ L2(Ω):

∥QS,1v∥S = sup
∥u∥S=1

|⟨QS,1v, u⟩S|

= sup
∥u∥S=1

∣∣∣∣∣ l

∑
i=1

∫
Ω
|(bi · ∇vi)ui

∣∣∣∣∣
≤ sup

∥u∥S=1

l

∑
i=1

∫
Ω
| − vi(bi · ∇ui)− divbiviui|

≤ sup
∥u∥S=1

(∥b∥max∥v∥L2(Ω)∥u∥H1
0(Ω) + max

i
∥divbi∥L∞(Ω)∥v∥L2(Ω)∥u∥L2(Ω))

≤ sup
∥u∥S=1

(
|Ω|

p−2
2p

√
m

∥b∥max∥v∥Lp(Ω)∥u∥S + max
i

∥divbi∥L∞(Ω)∥v∥L2(Ω)∥u∥L2(Ω))

≤ sup
∥u∥S=1

(
|Ω|

p−2
2p

√
m

∥b∥max∥v∥Lp(Ω)∥u∥S + max
i

∥divbi∥L∞(Ω)|Ω|
p−2
2p ∥v∥Lp(Ω)C2∥u∥H1

0(Ω))

≤ sup
∥u∥S=1

(
|Ω|

p−2
2p

√
m

∥b∥max∥v∥Lp(Ω)∥u∥S +
C2|Ω|

p−2
2p

√
m

max
i

∥divbi∥L∞(Ω)∥v∥Lp(Ω)∥u∥S)

=
|Ω|

p−2
2p

√
m

(∥b∥max + C2 max
i

∥divbi∥L∞(Ω))∥v∥Lp(Ω)

Altogether, we proved (3.34) with

CQ =
|Ω|

p−2
2p

√
m

(∥b∥max + C2 max
i

∥divbi∥L∞(Ω)) +
Cpl
√

m
max

i,j
∥Vij − hi∥

L
p

p−2 (Ω)
. (3.35)

Hence, using the results from the previous chapter: mainly inequalities (2.37) and
(2.40) in Section 2.2.3, we obtain the following superlinear convergence theorem

Theorem 3.7. The GMRES algorithm with Sh-inner product, applied for the N × N precon-
ditioned system S−1

h Lhc = S−1
h b, yields

(
∥rk∥
∥r0∥

)1/k

≤ ∥B−1∥S

k

k

∑
j=1

sj(QS) (k = 1, 2, . . . , N), (3.36)

where B = I + QS. Furthermore, there exists C > 0 such that(
∥rk∥
∥r0∥

)1/k

≤ C
1
kα

, where α =
1
d
− 1

2
+

1
p

. (3.37)

Specifically,
C = max{l∥QS∥, Rl,α · CQ(1 − α)−1}.

Thus C = C(l, α, b, h, V). Therefore, the superlinear convergence rate estimate (3.37) is inde-
pendent of Vh and n.
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3.4.2 Uniform superlinear convergence of the inner PGMRES itera-

tion

In this subsection, we solve the preconditioned system (3.29) using GMRES with Sh−inner
product. By Theorem 3.7, our method verifies the superlinear convergence property.
However, in this case, GMRES is being applied at each step of an outer Newton itera-
tion. Indeed, in the construction of the operator QS, the matrix V is now replaced by
the Jacobian f ′ξ(x, un). That is, QS = Q(n)

S given by

⟨Q(n)
S v, z⟩S =

l

∑
i=1

∫
Ω

(bi · ∇vi)zi +

 l

∑
j=1

∂j fi(x, un)vj − hivi

 zi


≡
∫

Ω
((b · ∇v) · z + ( f ′ξ(x, un)− hI)v · z) (v, z ∈ H1

0(Ω)l).

Hence, it is not clear that the estimation of the superlinear convergence rate is inde-
pendent of the outer Newton iterate un or Vh since in this context the constant C in
Theorem 3.7 depends on V = f ′ξ(x, un), which depends on un. Nonetheless, from the
previous section, we know that this can be fixed by finding a proper upper bound for
∥QS∥S.

Theorem 3.8. The GMRES algorithm with Sh-inner product, applied for the N × N precon-
ditioned system (3.29), yields

(
∥rk∥
∥r0∥

)1/k

≤ C
1
kα

, α =
1
d
− 1

2
+

1
p

(k = 1, 2, . . . , N), (3.38)

where C > 0 is independent of Vh and un.

Proof. As before, consider the decomposition Q(n)
S = Q(n)

S,1 + Q(n)
S,2 :

⟨Q(n)
S,1 v, z⟩S =

∫
Ω
((b · ∇v) · z, ⟨Q(n)

S,2 v, z⟩S =
∫

Ω
( f ′ξ(x, un)− hI)v · z) (v, z ∈ H1

0(Ω)l).

Then, using the same calculations from the previous subsection, we can prove that

∥Q(n)
S v∥S ≤ CQ∥v∥Lp(Ω) (v ∈ H1

0(Ω)l), (3.39)

where

CQ =
|Ω|

p−2
2p

√
m

(∥b∥max + C2 max
i

∥divbi∥L∞(Ω)) +
Cpl
√

m
max

i,j
∥∂j fi(x, un)− hi∥

L
p

p−2 (Ω)
.

(3.40)
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We shall focus on the second term above. Notice that

max
i,j

∥∂j fi(x, un)∥
L

p
p−2 (Ω)

≤
(∫

Ω
∥ f ′ξ(x, un)∥

p
p−2

) p−2
p

≤
(∫

Ω
(c3 + c4|un|p−2)

p
p−2

) p
p−2

≤ const ·
(

c3|Ω|+ c4∥un∥p
Lp(Ω)

) p
p−2

≤ const ·
(

c3|Ω|+ c4Cp
p∥un∥p

H1
0(Ω)

) p
p−2

.

Recall that un satisfies the a priori estimate (3.24). Then

max
i,j

∥∂j fi(x, un)− hi∥
L

p
p−2 (Ω)

≤ const ·
(

c3|Ω|+ c4Cp
p Rp

0

) p
p−2

+ max
i

∥hi∥
L

p
p−2 (Ω)

.

Thus, we found another constant CQ such that (3.39) holds. Furthermore, CQ is inde-
pendent of the step size of the mesh h and the outer Newton iterate un. Therefore, in
this case, the constant C appearing in Theorem (3.7) can be replaced by

C = const · max{lCQ, Rl,α · CQ(1 − α)−1},

which does not depend on Vh nor un.

3.5 A numerical example

Let us solve the following PDEs numerically −∆u + ηu3 = f , in Ω = [0, 1]2,

u|∂Ω = 0,
(3.41)

where η and f are defined by

η(x, y) = (x2 + y2)−
1
4 , f (x, y) = 100 (x, y) ∈ Ω.

We apply FEM with Courant elements to (3.41) with stepsize h = 1/(N + 1) to
obtain a nonlinear algebraic system as in (3.22). We look for approximate solutions
using the DIN plus PCGM technique. That is, given un from the DIN iteration, we
solve the linearized problem

F′(un)pn = −(F(un)− f ),
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i.e.,
−∆pn + 3ηu2

n pn = ∆un − ηu3
n + f .

This PDE is of the form (2.14). Hence, we find an approximate solution to pn by
using the same steps as in Section 2.3. That is, we consider the system

(Gh + Dn
h)pn = dn, (3.42)

where dn := −Ghun + h2(f − ηu3
n) and Dn

h changes at each step of the outer iteration.
Next, we apply Gh as a preconditioner and solve the preconditioned system using the
CGM.

We measure the residual error of the PCGM (inner process) as follows

∥rk∥Gh = ⟨Ghrk, rk⟩
1
2 rk ∈ RN.

To demonstrate Theorem 3.8, we proceed similarly to the previous example in Sec-
tion 2.3. First, we define the numbers

δn
k =

(
∥rn

k ∥Gh

∥rn
0∥Gh

) 1
k

kα

where k denotes the inner steps of the process and n the outer ones. Then, we perform
our algorithm for different values of α and check the behavior of the sequence (δn

k )k

for each outer iteration. Indeed, in Tables 3.1, 3.2, and 3.3 we can observe how these
sequences of numbers are uniformly bounded. Further, we verify that this bound is
independent of un.

Figure 3.1: Graph of the numerical solution. Here N = 40.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

δn
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

δn
2 0.0018 0.2629 0.4522 0.8505 0.1577 0.0136 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139

δn
3 0.0005 0.3155 0.1811 0.2221 0.0699 0.0423 0.0492 0.0492 0.0492 0.0492 0.0492 0.0492

δn
4 0.0003 0.3395 0.1874 0.1736 0.0867 0.0645 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640

δn
5 0.0002 0.3216 0.1862 0.1540 0.1115 0.0788 0.0785 0.0785 0.0785 0.0785 0.0785 0.0785

δn
6 0.0002 0.3403 0.2344 0.1883 0.1039 0.0859 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857

δn
7 0.0002 0.3001 0.1857 0.1819 0.1258 0.0938 0.1009 0.1009 0.1009 0.1009 0.1009 0.1009

δn
8 0.0002 0.2872 0.1871 0.1764 0.1264 0.1172 0.1181 0.1181 0.1181 0.1181 0.1181 0.1181

δn
9 0.0002 0.3291 0.1896 0.1648 0.1335 0.1306 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304

δn
10 0.0002 0.3072 0.2107 0.1849 0.1431 0.1272 0.1267 0.1267 0.1267 0.1267 0.1267 0.1267

Table 3.1: Values of δn
k at each step of the inner iterations. Here N = 40 and α = 0.1.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

δn
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

δn
2 0.0019 0.2817 0.4846 0.9115 0.1690 0.0146 0.0149 0.0149 0.0149 0.0149 0.0149 0.0149

δn
3 0.0006 0.3521 0.2022 0.2479 0.0780 0.0472 0.0549 0.0549 0.0549 0.0549 0.0549 0.0549

δn
4 0.0003 0.3900 0.2153 0.1994 0.0996 0.0741 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736

δn
5 0.0003 0.3778 0.2187 0.1809 0.1310 0.0926 0.0923 0.0923 0.0923 0.0923 0.0923 0.0923

δn
6 0.0002 0.4071 0.2804 0.2252 0.1243 0.1027 0.1026 0.1026 0.1026 0.1026 0.1026 0.1026

δn
7 0.0002 0.3646 0.2256 0.2209 0.1528 0.1139 0.1226 0.1226 0.1226 0.1226 0.1226 0.1226

δn
8 0.0002 0.3536 0.2304 0.2172 0.1556 0.1443 0.1454 0.1454 0.1454 0.1454 0.1454 0.1454

δn
9 0.0002 0.4099 0.2362 0.2053 0.1663 0.1627 0.1624 0.1624 0.1624 0.1624 0.1624 0.1624

δn
10 0.0002 0.3868 0.2653 0.2328 0.1801 0.1601 0.1595 0.1595 0.1595 0.1595 0.1595 0.1595

Table 3.2: Values of δn
k at each step of the inner iterations. Here N = 40 and α = 0.2.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

δn
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

δn
2 0.0020 0.3020 0.5194 0.9769 0.1811 0.0157 0.0159 0.0159 0.0159 0.0159 0.0159 0.0159

δn
3 0.0007 0.3930 0.2257 0.2766 0.0871 0.0527 0.0613 0.0613 0.0613 0.0613 0.0613 0.0613

δn
4 0.0004 0.4480 0.2473 0.2290 0.1144 0.0851 0.0845 0.0845 0.0845 0.0845 0.0845 0.0845

δn
5 0.0003 0.4437 0.2569 0.2125 0.1539 0.1088 0.1084 0.1084 0.1084 0.1084 0.1084 0.1084

δn
6 0.0003 0.4870 0.3355 0.2694 0.1486 0.1229 0.1227 0.1227 0.1227 0.1227 0.1227 0.1227

δn
7 0.0003 0.4429 0.2741 0.2684 0.1856 0.1384 0.1490 0.1489 0.1489 0.1489 0.1489 0.1489

δn
8 0.0003 0.4353 0.2837 0.2674 0.1916 0.1777 0.1790 0.1790 0.1790 0.1790 0.1790 0.1790

δn
9 0.0003 0.5106 0.2943 0.2557 0.2072 0.2026 0.2023 0.2023 0.2023 0.2023 0.2023 0.2023

δn
10 0.0003 0.4869 0.3339 0.2930 0.2268 0.2015 0.2008 0.2008 0.2008 0.2008 0.2008 0.2008

Table 3.3: Values of δn
k at each step of the inner iterations. Here N = 40 and α = 0.3.
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Conclusions

We have considered different kinds of preconditioned second-order elliptic systems
and their finite element discretizations. First, we have obtained robust estimations
of the rate of superlinear convergence of the PCGM and GMRES applied to linear
systems. Under appropriate conditions, we have proved the following estimation when
PCGM is applied to single equations or symmetric systems:(

∥ek∥Ah

∥e0∥Ah

) 1
k

≤ Ck−α, α =
1
d
− 1

2
+

1
p

.

Moreover, we have shown that this also holds for the non-symmetric case when replac-
ing PCGM with GMRES. This extends previous results of [13] to the case of unbounded
reaction coefficients in some Lebesgue spaces. Additionally, we have tested this result
for the single equation case and verified our results. In fact, in Tables 2.2 and 2.3 we
have observed the desired behavior of boundedness and mesh independence.

Finally, we have analyzed inner-outer iterations of the Damped Inexact Newton (DIN)
method applied to the finite element discretization of some non-linear systems of PDEs.
We have obtained more explicit estimates for the rate of superlinear convergence than
the ones showed by [1], where the DIN plus CGN technique is used. We achieve this by
replacing the CGN method with GMRES and then applying our previous results from
linear non-symmetric systems. We have demonstrated our results with a numerical ex-
ample, see Tables 3.1, 3.2, and 3.3. In these tables, we have observed that the sequences
of residual errors of the inner iterations are uniformly bounded and independent of
the outer process.

40



Bibliography

[1] I. Antal and J. Karátson, A mesh independent superlinear algorithm for some non-
linear nonsymmetric elliptic systems, Computers & Mathematics with Applications,
55 (2008), pp. 2185–2196.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994.

[3] O. Axelsson and J. Karátson, Mesh independent superlinear PCG rates via compact-
equivalent operators, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1495–
1516.

[4] O. Axelsson and J. Karátson, Equivalent operator preconditioning for elliptic prob-
lems, Numerical Algorithms, 50 (2009), pp. 297–380.

[5] O. Axelsson, J. Karátson, and F. Magoules, Robust superlinear krylov convergence
for complex non-coercive compact-equivalent operator preconditioners, SIAM J. Numer.
Anal., (2023, to appear).

[6] O. Axelsson and J. Karátson, Superlinear convergence of the gmres for pde-
constrained optimization problems, Numer. Funct. Anal. Optim., 39 (2018),
p. 921–936.

[7] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, vol. 2,
Springer, 2011.

[8] G. Chávez, G. Turkiyyah, S. Zampini, H. Ltaief, and D. Keyes, Accelerated cyclic
reduction: A distributed-memory fast solver for structured linear systems, Parallel Com-
puting, 74 (2018), pp. 65–83.

[9] D. E. Edmunds and H. Triebel, Entropy numbers and approximation numbers in func-
tion spacess, Proceedings of the London Mathematical Society, 3 (1989), pp. 137–
152.

[10] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.

41



Institute of Mathematics ELTE

[11] I. Faragó and J. Karátson, Numerical solution of nonlinear elliptic problems via
preconditioning operators: Theory and applications, vol. 11, Nova Publishers, 2002.

[12] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Operator theory: Advances and
applications, Classes of Linear Operators, 49 (1992).

[13] J. Karátson, Mesh independent superlinear convergence estimates of the conjugate gra-
dient method for some equivalent self-adjoint operators, Applications of Mathematics,
50 (2005), pp. 277–290.

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol. I,Functional
Analysis, Academic Press, 1980.

[15] T. Rossi and J. Toivanen, A parallel fast direct solver for the discrete solution of sepa-
rable elliptic equations., in PPSC, Citeseer, 1997.

[16] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[17] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM Journal on scientific and statistical com-
puting, 7 (1986), pp. 856–869.

[18] J. Vybíral, Widths of embeddings in function spaces, Journal of Complexity, 24 (2008),
pp. 545–570.

[19] Z. Zlatev, Numerical treatment of large air pollution models, in Computer Treatment
of Large Air Pollution Models, Springer, 1995, pp. 69–109.

42


	Acknowledgments
	Abstract
	Introduction
	Theoretical background: some basic results and definitions
	Functional analysis
	Sobolev and Lebesgue spaces
	Operator theory

	Numerical analysis

	Linear elliptic problems
	General framework
	The linear operator equation and its Galerkin discretization
	The preconditioned conjugate gradient method and superlinear convergence

	Estimation of the rate of superlinear convergence
	Single elliptic equations
	 Symmetric elliptic systems
	Extension to non-symmetric systems

	A numerical example

	Non-linear elliptic systems
	The problem
	Well-posedness of the elliptic problem
	FEM discretization and Newton iteration
	Solution of the linearized problems: inner GMRES iterations
	Convergence analysis of GMRES for preconditioned non-symmetric linear problems
	Uniform superlinear convergence of the inner PGMRES iteration

	A numerical example

	Conclusions
	Bibliography

