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Introduction
In light of the COVID-19 pandemic and its significant influence on a global scale, we contribute
in this manuscript to the rise of interest in infectious disease modeling. Contagious diseases
have been for long a great threat to human populations, especially in areas with limited re-
sources ([5]). The challenge of fighting these diseases and mitigating their expense on human
life has brought significant attention to the field of epidemiology which is a rich and diverse
interdisciplinary field that brings together experts from mathematics, epidemiology, computa-
tional physics, ecology, evolutionary biology, immunology, sociology, and public health ([22],
[21]). It involves the use of mathematical modelling and the study of these models’ aim is to
understand the consequence of the assumptions about the infection process and how disease
spreads through a population. By using the results, we can develop effective strategies to inter-
vene and control dramatic outbreaks and predict their potential trajectory into the future. As
such, these models have become an indispensable part of the fight against infectious diseases,
helping us to mitigate their impact on our communities and improve the well-being of people
worldwide ([4], [12]).

COVID-19
At the end of December 2019, the World Health Organization country office in China was
notified of several cases of pneumonia of unknown etiology. These were the first cases of
COVID-19 to soon later become a true catastrophe. In the three years since, COVID-19 has
killed more than 7.3 million people worldwide ([14]). The virus was subsequently identified as
a novel coronavirus known as SARS-CoV-2 which may have originated in bats ([15]), which are
known to carry coronaviruses, and then transmitted to an intermediate animal host, possibly
a pangolin, before jumping to humans. However, the exact pathway of transmission and the
identity of the intermediate host are still under investigation. COVID-19 has experienced
multiple waves of outbreaks and the emergence of different variants since the start of the
pandemic ([24]). A wave is a period of increased transmission and cases of the disease, often
followed by a decrease in cases. These waves can be caused by various factors, such as changes
in public health measures, the introduction of new variants, and seasonal patterns ([23]). Some
of the most well-known COVID-19 variants include:

• AlphaV ariant (B.1.1.7): First identified in the UK ([26]), this variant is thought to be
more transmissible than the original strain.

• BetaV ariant (B.1.351): First identified in South Africa, this variant is thought to be less
susceptible to some treatments and vaccines.

• GammaV ariant (P.1): First identified in Brazil, this variant is also thought to be more
transmissible and may be less susceptible to some treatments and vaccines.

• DeltaV ariant (B.1.617.2): First identified in India, this variant is highly transmissible
and has been associated with a surge in cases in many countries.

v



vi INTRODUCTION

These variants ([23]) along with others, have led to concerns about their potential impact on
public health and the effectiveness of current treatments and vaccines ([27]). Health officials
and researchers are closely monitoring these variants and studying their characteristics and
potential impact on the pandemic. Vaccines have also been developed and updated to be
effective against these variants, and public health measures such as mask-wearing, social dis-
tancing, and testing continue to be important tools in controlling the spread of COVID-19 ([6]).

Overall, up until the finishing of this manuscript, the COVID-19 pandemic is still ongoing, and
the daily confirmed cases continue to be reported at a high level ([25]), and its effects are likely
to be experienced for years to come. Therefore continued mathematical modelling is essential
for ongoing efforts to control.

Models structure
In the attempt of describing an epidemiological model, the choice of which compartments, trans-
mission, and formulas associated with each arrow can all change, depending on the outbreak’s
biology and the modeler’s focus. Yet the connection between equations stays consistent: one
differential equation per compartment, each arrow showing flow into one compartment and/or
flow out of another. Acronyms for epidemiology models are often based on the flow patterns
between the compartments such as SEIR, SEIRS, SIR, SIRS, SEI, SEIS, SI, and SIS ([1], [17]).
For example, in the SEIR model, newborns first become susceptible, then exposed in the latent
period in which the disease is held, but not yet unleashed, then infectious, and then removed
with permanent immunity. An SEIRS model would be similar, but the immunity in the R class
would be imperfect so that individuals would regain their susceptibility after the temporary
immunity has ended.

Abstract
This thesis is organized in a twofold structure, with two distinct sections that share similar
themes. We introduce the basic compartmental models SIR and SEIR and their characteristics
together with representing the threshold value R0 with the next generation matrix method
outlined in [10], resp. in [11], and we are discussing how it relates to the parameters and
structure of the SIR model then we are presenting a time delay definition, all in Chapter 1.
Investigation of the model in [3] with taking care of its well-posedness in Chapter 2. Then
its extension to a more realistic model incorporating a time delay and stability analysis of the
equilibrium points in Chapter 3. Chapter 4 is devoted to a modification of the model proposed
in [2] and its equilibrium points stability analysis followed by the analysis incorporating a time
delay in Chapter 6.
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Compartmental Models
1.1 SIR Model
The basic paradigm for understanding the spread of infectious diseases, called (SIR), The
model was first proposed in 1927 by Scot’s epidemiologists Anderson Kermack and William
McKendrick ([18]), it has become a very popular tool in epidemiology.

Susceptible (S(t)): The total susceptible population at time t. Who are the people who are
exposed to the disease at the time t?

Infected (I(t)): These are individuals that are able to spread the disease to individuals in
the S-class.

Recovered (R): Individuals that can neither spread the disease nor contract it again, Indi-
viduals may enter this compartment by isolation, infection prevention vaccinations, recu-
peration from infection with latent infection immunity, or disease-related death ([15]).

Each individual belongs to one and only one compartment at each time t. Transitions
from S → I (infected) to I → R (recovered) may occur over time, and it is assumed that
a recovered individual has immunity and cannot go back to being susceptible. The transit
between one compartment to another is captured by a system of ODE’s, including time t and
the transfer rates between the compartments, which are independent parameters that make
sense biologically. The derivatives in the ODE system express the evolution in the size of each
compartment with respect to time t. We define the (SIR) model by the following ODE system:

d

dt
S(t) = −βSI,

d

dt
I(t) = βSI − αI,

d

dt
R(t) = αI,

(1.1)

1



2 CHAPTER 1. COMPARTMENTAL MODELS

Providing visualization of the interactions between the compartments:

S I R
β α

Figure 1.1: SIR model with 3 states

The following statements serve to define the system:

• β is used as the parameter describing the transmission rate that transfers individuals from
S to I, and α is the recovery rate, describing the rate at which individuals go from I to
R.

• The SI product serves for simulating chance meetings between the two compartments.
Specifically, the term βSI can be utilized to model the transmission of a disease from
infected individuals to susceptible ones.

• At a rate of αI per unit time, the population from the contaminated compartment trans-
fers to the recovered compartment.

However, the ODE system cannot be analytically solved, quantitative methods are used to
determine the behavior of the solutions.

If S(0) < α/β with S(0) being the initial value of S, then I ′ < 0 and I, in this case,
decreases to zero (no epidemy), but if S(0) > α/β, I increases which implies epidemy presence.

The limit
R0 = β

S(0)
α

,

commonly called the "Fundamental Reproduction Number" represents the average number of
new infections generated by a single infected individual in a susceptible population.

1.1.1 The Fundamental Reproduction Number
In a lot of epidemiology models, the outbreak of an infection in a fully susceptible population is
possible only if R0 is larger than unity, which could be seen in the previous case. Therefore, R0
is often considered as the threshold value that determines whether an infection can invade and
sustain itself in a new population. For this classic SIR model and a lot of other more complex
models, the behavior of solutions almost completely depends on the threshold quantity R0,
meaning that it determines when the local stability of the endemic-free equilibrium switches.
It is worth noting that R0 is also referred to as the basic reproductive ratio or basic reproductive
rate.

1.2 The SEIR Model
After introducing the simple compartmental model SIR, we continue by extending it to have
another compartment called Exposed (E), getting reached by the Suscebtible population, as
it is commonly recognized that, in general, when a susceptible individual contracts mumps for
example, there is a long time lag until he or she becomes infectious or show symptoms. Thus
this period in which E takes place is called latent. For a variety of diseases, this period takes
typically from 2 to 18 days. So in the SEIR model that we are about to discuss, it is assumed
that an exposed individual holds but does not transmit the disease. We will also add rates of
natural births and deaths (unrelated to the disease) in a population. We propose an example
of what a general SEIR model can look like:



1.2. THE SEIR MODEL 3



dS

dt
= µ− βSI − µS,

dE

dT
= βSI − σE − µE,

dI

dt
= βSI − σE − µE,

dR

dt
= γI − µR,

where µ, β, σ, and γ represent the natural birth/death rate (often assumed to be equal for
simplicity reasons), transmission rate, incubation rate, and recovery rate, respectively.

1.2.1 The Next Generation Method

We use the Next Generation Method to find this model’s basic reproduction number R0, The
method is given by Diekmann et al. (1990) (cf. [10]) and van den Driessche and Watmough
(2002) (cf. [11]) and is usually evaluated from observational data, which is often the most
productive approach where there are large numbers of compartments. We first need to find the
disease-free equilibrium point (I = 0) of the system by setting all derivatives equal to zero we
can see that it is the point (S,E, I, R) = (1, 0, 0, 0). We refer to it by C0, JF (C0)J−1

V (C0) denotes
the next generation matrix such that F represents the rate of appearance of new infections in
compartment I and J is the Jacobian. New infections can originate from dS

dt
and dR

dt
as these

are called non-infection classes. From dS
dt
, infection is only generated by the term βSI, hence

we have F1 = βSI. From, dR
dt

no new infection is generated, then F2 = 0. As compartments dE
dt

and dI
dt

are the ones that pass infection through the population, we consider these dimensions
when constructing the Jacobian it will then be:

JF =


δF1
δE

δF1
δI

δF2
δE

δF2
δI

 .
Substituting C0:

JF (C0) =
 0 β

0 0

.
Here V represents the rate of transfer of individuals into and out of E and I by means other
than infection originating outside of these classes. After attaching a minus sign we have V1 =
(µ+ σ)E, the transfer rate in E, and V2 = −σE + (µ+ γ)I which is the transfer rate in I. We
can now have the Jacobian for V :

JV (C0) =


δV1
δE

(C0) δV1
δI

(C0)

δV2
δE

(C0) δV2
δI

(C0)

 =

 µ+ σ 0

−σ µ+ γ

 .
Now we get J−1

V (C0):

J−1
V (C0) = 1

(µ+ σ)(µ+ γ)

[
µ+ γ 0
σ µ+ σ

]
.

Then finally:

JF (C0)J−1
V (C0) =

[
βσ

(µ+σ)(µ+γ)
β(µ+σ)

(µ+σ)(µ+γ)
0 0

]
.

The spectral radius of JF (C0)J−1
V (C0) that is the eigenvalue with the largest absolute value

is the basic reproduction number, in our case, we get:

R0 = βσ

(µ+ σ)(µ+ γ) .
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1.3 The incorporation of a time delay in epidemiological
models

The SIR and SEIR models are relatively simple compartmental models that consider a constant
rate of disease transmission and recovery. Nowadays, mathematical models are more complex
resulting from aiming to imitate reality. For example, including a large number of health classes
such as pre-symptomatic, asymptomatic, and severely symptomatic individuals (see [29], for a
model with much more epidemiological classes). However, in relation to the analysis of these
models, one of the challenges is how to establish the stability of equilibrium points to learn more
about the dynamic behavior of these models hence the disease. Other models are extended after
the consideration that transmission and recovery rates can vary over time due to changes in
the environment, behavior, and interventions. For example, some researchers have added age
or spatial structure to the models to better capture the heterogeneity of the population and
the effect of mobility on disease spread.

Another line of research concerns models that represent the dynamics of disease by systems
of differential equations with a time delay, where a time delay is incorporated, to accurately
provide a more detailed mechanism for the epidemic as people will stay in a specific compart-
ment for an indefinitely long period of time, which leads to the definition of the delay between
arriving and moving to another compartment. It is often reflecting the time taken for the
holders of the disease to become infectious which is called the incubation period.
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A non-delayed model of
coronavirus

In this second chapter, we discuss a model as presented in [3]. Let N(t) denote the total
population. It is divided into the following five classes of populations:

• S(t): the susceptible class, the individuals who have not yet been exposed to the virus.

• E(t): the exposed class refers to individuals who have come into contact with the virus
but are still in the incubation period and cannot yet transmit the disease.

• I(t): the symptomatic infectious class, individuals that manifest symptoms and can spread
the disease.

• A(t): the asymptomatic infectious class; those persons that can spread the disease without
explicit symptoms.

• R(t): the removed class includes the people who recovered from the disease.

Figure 2.1 illustrates the fundamental mechanisms that underlie the model. The model con-
siders all potential interactions among the compartments previously described. It is imposed
that susceptible individuals are recruited at the constant rate Λ, and become infected by direct
contact with an infectious individual at a rate βI , which is scaled by a factor k to account for
the possibility that the latter is asymptomatic. Finally, all human individuals are subject to
natural mortality dp. These considerations are incorporated in the first equation of the system
(2.1). Individuals that contract the disease are accounted for in the second equation of (2.1).
They become exposed, i.e., they cannot yet spread the virus, which needs an incubation period
within the body of its hosts. The susceptible that were contaminated in the aforementioned
two possible ways enter this class. People leave it by becoming infectious, and either showing
symptoms, thereby migrating into class I, or not, therefore, finding themselves in class A. The
progression rates into these two classes are ωp and ω′

p. Furthermore, we assume that a fraction
α becomes asymptomatic and 1 −α instead will manifest symptoms. The third equation mod-
els the symptomatic infectious, recruited from the exposed class at rate (1 − α)ωp as described
above. Furthermore, there could be asymptomatic individuals that become symptomatic at

5



6 CHAPTER 2. A NON-DELAYED MODEL OF CORONAVIRUS

rate ξ. They leave this class by either progressing to the recovered class at rate γ′
p, or dying,

naturally, or by causes related to the disease, at rate µ. The asymptomatic individuals mod-
eled in the fourth equation appear from the exposed ones and leave the class by overcoming the
disease at rate γ′

p, dying naturally or by disease-related causes at rate ν, or eventually showing
the symptoms, for which they migrate into class I. Recovered individuals are those that have
healed from the disease. They are subject only to natural mortality. We assume that they have
also become immune so that they are unaffected if they become in contact with the infectious.

S E I

A

RΛ
βI(I + kA) (1 − α)ωp

αω′
p

γp

γ′
p

ξ

Figure 2.1: SEIR model with 4 states.

Taking into account the above considerations, the model dynamics is regulated by the
following system of nonlinear ordinary differential equations:

d

dt
S(t) = Λ − βIS(t)[kA(t) + I(t)] − dpS(t),

d

dt
E(t) = βIS(t)[kA(t) + I(t)] − (1 − α)ωpE(t) − αω′

pE(t) − dpE(t),
d

dt
I(t) = (1 − α)ωpE(t) − (γp + dp + µ)I(t) + ξA(t),

d

dt
A(t) = αω′

pE(t) −
(
dp + ν + γ′

p

)
A(t) − ξA(t),

d

dt
R(t) = γpI(t) + γ′

pA(t) − dpR(t).

(2.1)

All the parameters are non-negative and their meaning is summarized in Table 2.
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parameters description
Λ susceptible recruitment rate
dp natural mortality
β1 disease transmission rate
k transmissible ratio
µ disease-related mortality for infected
ν disease-related mortality for asymp-

tomatic
ωp progression rate from exposed to symp-

tomatic
ω′

p progression rate from exposed to
asymptomatic

α fraction of exposed that turn asymp-
tomatic

ξ progression rate from asymptomatic to
symptomatic

γp recovery rate from symptomatic infec-
tion

γ′
p recovery rate from asymptomatic infec-

tion

Table 2.1: Model parameters and their meaning

2.0.1 Existence, uniqueness, and boundedness
The system (2.1) can be rewritten as

Ẋ(t) = f(X(t)) (t > 0)
with X = (S,E, I, A,R) ∈ R5 where the non-linear operator f is defined in R5 by

f(S,E, I, A,R) =


Λ − βIS(t)[kA(t) + I(t)] − dpS(t)

βIS(t)[kA(t) + I(t)] − (1 − α)ωpE(t) − αω′
pE(t) − dpE(t)

(1 − α)ωpE(t) − (γp + dp + µ)I(t) + ξA(t)
αω′

pE(t) −
(
dp + ν + γ′

p

)
A(t) − ξA(t)

γpI(t) + γ′
pA(t) − dpR(t)

 .
In order to prove that the problem determined by (2.1) is well-posed, we introduce the compact
region Ω defined by

Ω =
{
X = (S,E, I, A,R) ∈ (R+

0 )5; 0 < S + E + I + A+R ≤ M
}
, (2.2)

where
M := max

{
N(0), Λ

dp

}
.

The following theorem establishes the existence of global solutions to (2.1).
Theorem 1

For any X0 = (S0;E0; I0;A0;R0) ∈ Ω, the Cauchy problem given by (2.1) and
X(0) = X0 admits a unique solution, denoted by X(t;X0), defined on [0,+∞[, whose
components are non-negative. Furthermore, the region Ω defined by (2.2) is positively
invariant.

Proof:
From Cauchy-Lipschitz’s theorem proved in [8], the existence and uniqueness of a max-
imal solution in time solution X(t;X0) to problem (2.1) starting from X0 ∈ Ω. The
non-negativity of the components is guaranteed by the quasi-positivity of the non-
linear operator f, which means that it satisfies the property:
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

d

dt
S(t)|S(t)=0 = Λ > 0,

d

dt
E(t)|E(t)=0 = βIS(t)[kA(t) + I(t)] ≥ 0,
d

dt
I(t)|I(t)=0 = (1 − α)ωpE + ξA ≥ 0,

d

dt
A(t)|A(t)=0 = αω′

pE ≥ 0,
d

dt
R(t)|R(t)=0 = γpI + γ′

pA ≥ 0.

(2.3)

It follows that the components of any solution X(t;X0) stemming from X0 in Ω
remain non-negative in future time. Finally, summing the five equations of system
(2.1) leads to:

dN

dt
+ dpN = Λ − νA− µI ≤ Λ.

Solving the differential inequality gives:
N(t) ≤ N(0)exp(−dpt) + Λ

dp

[1 − exp(−dpt)] ≤ M,

so that all subpopulations, being non-negative, are bounded as well. And the set Ω is
positively invariant, Q.E.D.

2.1 Analyzing Equilibrium Points

The equilibrium points of the model are obtained by equating the right-hand side of system
(2.1) to zero. The following equations hold:

Λ − βIS(kA+ I) − dpS = 0, (2.4)
βIS(t)(kA+ I) −BTE = 0, (2.5)

(1 − α)ωpE − CT I + ξA = 0, (2.6)
αω′

pE −HTA = 0, (2.7)
γpI + γ′

pA− dpR = 0. (2.8)

where
BT := (1 − α)ωp + αω′

p + dp,

CT := γp + µ+ dp,

HT := γ′
p + ν + ξ + dp.

Adding (2.4) and (2.5) yields

S = Λ −BTE

dp

.
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From (2.7) we get

A =
(
αω′

p

HT

)
E.

and by (2.6) we get

I =
(

(1 − α)ωpHT + αω′
pξ

CTHT

)
E.

By (2.8) we get

R = γp

dp

(
(1 − α)ωpHT + αω′

pξ

CTHT

)
E +

γ′
p

dp

(
αω′

p

HT

)
E.

We have

SI =
[(1 − α)ωpHT + αω′

pξ][ΛE −BTE
2]

dpCTHT

,

SA =
αω′

p[ΛE −BTE
2]

dpHT

=
αω′

pCT [ΛE −BTE
2]

dpHTCT

.

βIS(t)(kA(t) + I(t)) =
βI [ΛE −BTE

2][αω′
pkCT + (1 − α)ωpHT + αω′

pξ]
dpHTCT

=
βI [ΛE −BTE

2][αω′
pDT + (1 − α)ωpHT ]

dpHTCT

,

where DT = ξ + kCT . By replacing in (2.5) we get,
βI [ΛE −BTE

2][αω′
pDT + (1 − α)ωpHT ]

dpHTCT

−BTE = 0,

then either, E = 0 or
βI [Λ −BTE][αω′

pDT + (1 − α)ωpHT ]
dpHTCT

−BT = 0. Thus,

βIΛ[αω′
pDT + (1 − α)ωpHT ] − βIBTE[αω′

pDT + (1 − α)ωpHT ]
dpHTCT

= BT .

Hence,
βIΛ[αω′

pDT + (1 − α)ωpHT ] − βIBTE[αω′
pDT + (1 − α)ωpHT ] = BTdpHTCT .

Therefore,
βIΛ[αω′

pDT + (1 − α)ωpHT ] −BTdpHTCT = βIBTE[αω′
pDT + (1 − α)ωpHT ],

Moreover,

E =
βIΛ[αω′

pDT + (1 − α)ωpHT ] −BTdpHTCT

βIBT [αω′
pDT + (1 − α)ωpHT ] ,

Consequently,

E = 1
BT

[
Λ − dpBTCTHT

βI [(1 − α)ωpHT + αω′
pDT ]

]
,

with feasibility condition: [
Λ >

dpBTCTHT

βI [(1 − α)ωpHT + αω′
pDT ]

]
.
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The system gives two equilibrium points:
• The coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0, ), with S0 = Λ

dp
.

• The full coronavirus endemic equilibrium C∗ = (S∗, E∗, I∗, A∗, R∗) where

S∗ = Λ −BTE
∗

dp

,

E∗ = 1
BT

Λ − dpBTCTHT

βI

[
(1 − α)ωpHT + αω′

pDT

]
 ,

I∗ =
(

(1 − α)ωpHT + αω′
pξ

CTHT

)
E∗,

A∗ =
(
αω′

p

HT

)
E∗

R∗ = γp

dp

(
(1 − α)ωpHT + αω′

pξ

CTHT

)
E∗ +

γ′
p

dp

(
αω′

p

HT

)
E∗.

Remark 1
When α = 1 and ξ = 0, we get the corona virus-symptomatic-infected-free equilibrium
CI = (SI , EI , 0, AI , RI), which is the special case of C∗, where

SI = Λ −BTEI

dp

,

EI = 1
BT

(
Λ − dpBTCTHT

βIω′
pDT

)
,

AI =
( ω′

p

HT

)
EI ,

RI =
( γ′

pω
′
p

dpHT

)
EI .

The feasibility conditions are:

Λ >
dpBTCTHT

βIω′
pDT

, α = 1 and ξ = 0. (2.9)

2.2 The Basic Reproduction Number
The basic reproduction number R0 for system (2.1) is found using the next generation matrix
method outlined in [11] to our model (2.1), the basic reproduction number can be computed
by considering the new generation matrices F and V , that is, the matrices associated with the
rate of appearance of new infections and the net rate out of the corresponding compartments,
respectively, The reduced system of (2.1) may be written in compact form as x′ = F (x) −V (x)
where x = (E, I, A),

F (E, I, A) =

βIS(I + kA)
0
0

 ,
and

V (E, I, A) =

 (1 − α)ωpE + αω′
pE + dpE

−(1 − α)ωpE + (γp + dp + µ)I − ξA
−αω′

pE + (γ′
p + dp + ν)A+ ξA

 .
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The Jacobian matrices of F (X) and V (X) at the disease-free equilibrium point C0 are

JF (C0) =

0 βIS0 βIS0k
0 0 0
0 0 0


and

JV (C0) =

 BT 0 0
−(1 − α)ωp +CT −ξ

−αω′
p 0 +HT


We find that

J−1
V (C0) =


1

BT
0 0

[(1−α)ωpHT +αω′
pξ]

CT BT HT

1
CT

ξ
CT HT

αω′
p

BT HT
0 1

HT


The next-generation matrix is

−JF (C0)J−1
V (C0) =

−βIS0
(1−α)ωpHT +αω′

pDT

CT BT HT
−βIS0

CT
−βIS0DT

CT HT

0 0 0
0 0 0

 .
Thus,

R0 = ρ
[
(−JF )(C0)J−1

V (C0)
]

= max
λ∈Spec[(−JF )(C0)J−1

V (C0)]
|λ| = βI

Λ[(1 − α)ωpHT + αω′
pDT ]

dpCTBTHT

.

We have the following theorem
Theorem 2

System (2.1) has the following equilibrium:

1. The coronavirus free equilibrium can be calculated as C0 = ( Λ
dp
, 0, 0, 0, 0) which

exists always.

2. In addition, if R0 > 1 then system (2.1) admits another non-trivial equilibrium,
in fact: when α = 1 and ξ = 0, it is the corona virus-symptomatic-infected-free
equilibrium CI = (SI , EI , 0, AI , RI). When either α ̸= 1 or ξ ̸= 0, it is the full
coronavirus endemic equilibrium C∗ = (S∗, E∗, I∗, A∗, R∗).

2.3 Stability of the equilibrium point
Letting

a0 = BTCTHT ,

a1 = HT [BT + CT ] +BTCT ,

a2 = BT + CT +HT ,

b0 = (1 − α)ωpHT + αω′
pDT ,

b1 = (1 − α)ωp + kαω′
p,

R0 = βI
Λb0

a0dp

.

2.3.1 Local Stability at C0

Theorem 3
1. If R0 < 1 (resp.Λ < a0dp

βIb0
) the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of

the system (2.1) is stable.
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2. If R0 > 1 (resp.Λ > a0dp

βIb0
) the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of

the system (2.1) is unstable.

Proof:
The characteristic equation of system (2.1) at C0 is defined as

det(λI − L) = 0,
where L is the Jacobian matrix of system (2.1) at C0. Then,

L =


−dp 0 −βI

Λ
dp

−kβI
Λ
dp

0
0 −BT βI

Λ
dp

kβI
Λ
dp

0
0 (1 − α)ωp −CT ξ 0
0 αω′

p 0 −HT 0
0 0 γp γ′

p −dp


and the characteristic equation of system (2.1) at the coronavirus-free equilibrium C0
is: ∣∣∣∣∣∣∣∣∣∣∣∣

λ + dp 0 βI
Λ
dp

kβI
Λ
dp

0
0 λ +BT −βI

Λ
dp

−kβI
Λ
dp

0
0 −(1 − α)ωp λ + CT −ξ 0
0 −αω′

p 0 λ +HT 0
0 0 −γp −γ′

p λ + dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

After calculation, this equation becomes
(λ + dp)2(λ3 + a2λ

2 + s1λ + s0) = 0. (2.10)
Where

s1 = a1 − βI
Λ
dp

b1,

s0 = a0 − βI
Λ
dp

b0.

We need to prove that all roots of the characteristic equation (2.10) have negative
real parts.
Note that −dp is a negative real root of the characteristic equation (2.10) and this
equation reduces to,

P1(λ) := (λ3 + a2λ
2 + s1λ + s0) = 0. (2.11)

Using the Routh–Hurwitz criterion [38], we know that all roots of P1(λ) have negative
real parts if, and only if, the coefficients of P1(λ) are strictly positive and a2s1 > s0.
In this case,

s1 = a1 − βI
Λ
dp

b1 = 1
b0

[a1b0 − βI
Λ
dp

b0b1]

= 1
b0

[HTCT b0 +HTBT b0 +BTCT b0 + (s0 − a0)b1]

= 1
b0

[HTCT b0 +HTBT b0 + αω′
pDTBTCT + s0b1 − kαω′a0]

= 1
b0

[HTCT b0 +HTBT [(1 − α)ωpHT + αω′
pDT ] + αω′

pBTCTDT + s0b1 − kαω′a0]

= 1
b0

[HTCT b0 +HTBT [(1 − α)ωpHT + αω′
p(ξ + kCT )] + αω′

pBTCTDT + s0b1 − kαω′a0]

= 1
b0

[HTCT b0 +H2
TBT (1 − α)ωp + αω′

pHTBT ξ + αω′
pBTCTDT + s0b1] > 0.
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And
s0 = a0[1 − βI

Λ
dpa0

b0]

= a0[1 − R0].
We have a2 > 0, s1 > 0 and if R0 < 1, s0 > 0. Now, we only need to show the
following statement: a2s1 > s0.

a2s1 = (BT + CT +HT ) 1
b0

[HTCT b0 +H2
TBT (1 − α)ωp + αω′

pHTBT ξ + αω′
pBTCTDT + s0b1]

= (BT + CT +HT )[HTCT + 1
b0
H2

TBT (1 − α)ωp + 1
b0
αω′

pHTBT ξ + 1
b0
αω′

pBTCTDT + s0b1

b0
]

= a0 + 1
b0
H2

TB
2
T (1 − α)ωp + 1

b0
αω′

pHTB
2
T ξ + 1

b0
αω′

pB
2
TCTD + 1

b0
s0b1BT +

+ (CT +HT )[HTCT + 1
b0
H2

TBT (1 − α)ωp + 1
b0
αω′

pHTBT ξ + 1
b0
αω′

pBTCTDT + 1
b0
s0b1]

a2s1 − s0 = a2s1 − a0[1 − R0]
= a2s1 − a0 + a0R0

= 1
b0
H2

TB
2
T (1 − α)ωp + 1

b0
αω′

pHTB
2
T ξ + 1

b0
αω′

pB
2
TCTD + 1

b0
s0b1BT + a0R0+

+ (CT +HT )[HTCT + 1
b0
H2

TBT (1 − α)ωp + 1
b0
αω′

pHTBT ξ + 1
b0
αω′

pBTCTDT + s0b1

b0
].

(2.12)
Thus a2s1 > s0. Then, according to the Routh-Hurwitz criterion, all the roots of the
characteristic equation (2.11) have negative real parts. Therefore, the coronavirus-
free equilibrium point C0 is locally asymptotically stable under condition R0 < 1,
(resp.Λ < a0dp

β1b0
).

For R0 > 1.(resp. Λ > a0dp

β1b0
), we have P1(0) = a0(1−R0) < 0, lim

λ→+∞
P1(λ) = +∞.

By the continuity of P1(λ) , there exists at least one positive root of P1(λ) = 0. Thus,
the infection-free equilibrium C0 is unstable.

2.3.2 Local Stability at C∗

Since we can deduce the stability of the coronavirus symptomatic infected-free equilibrium CI

from the stability of the coronavirus endemic equilibrium C∗ simply by taking α = 1 and ξ = 0
in the latter, we now just analyze the coronavirus endemic equilibrium C∗.

Theorem 4
If R0 > 1 (resp. Λ > a0dp

β1b0
), the coronavirus endemic equilibrium C∗ is locally asymp-

totically stable.

Proof:
The characteristic equation of system (2.1) at the coronavirus endemic equilibrium C∗

is: ∣∣∣∣∣∣∣∣∣∣∣∣

λ + dp + βI(I∗ + kA∗) 0 βIS
∗ βIS

∗k 0
−βI(I∗ + kA∗) λ +BT −βIS

∗ −βIS
∗k 0

0 −(1 − α)ωp λ + CT −ξ 0
0 −αω′

p 0 λ +HT 0
0 0 −γp −γ′

p λ + dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

in which BT , CT and HT are same as before. From this, we get the characteristic
polynomial:

P2(λ) = (λ + dp)[λ4 + (c3 + d3)λ3 + (c2 + d2)λ2 + (c1 + d1)λ + (c0 + d0)], (2.13)
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where
c3 = dp +BT + CT +HT ,

c2 = dp(HT +BT + CT ) +BTCT +HTBT +HTCT ,

c1 = dp(BTCT +HTBT +HTCT ) +HTBTCT ,

c0 = dpHTBTCT ,

d3 = βI(I∗ + kA∗),
d2 = (BT + CT +HT )βI(I∗ + kA∗) − βIS

∗b1,

d1 = (BTCT +HTBT +HTCT )βI(I∗ + kA∗) − βIS
∗[b0 + b1dp],

d0 = HTBTCTβI(I∗ + kA∗) − βIS
∗dpb0.

Note that

βIS
∗ = βI

Λ −
(
Λ − dpBT CT HT

βI((1−α)ωpHT +αω′
pDT )

)
dp

,

= dpBTCTHT

dp

(
(1 − α)ωpHT + αω′

pDT

) ,
= a0

b0
,

and βI(I∗ + kA∗) = βI
b0

CTHT

E∗ = dp(R0 − 1). Thus,

c3 = dp + a2,

c2 = dpa2 + a1,

c1 = dpa1 + a0,

c0 = dpa0,

d3 = dp(R0 − 1),

d2 = a2dp(R0 − 1) − a0

b0
b1,

d1 = a1dp(R0 − 1) − a0

b0
[b0 + b1dp] ,

d0 = a0dp(R0 − 1) − a0

b0
dpb0.

We have
c0 + d0 = a0dp(R0 − 1),

c1 + d1 = dp

b0
[a1R0b0 − a0b1],

= dp

b0
[(1 − α)ωpHTBT (CT (R0 − 1) +HT ) +HTCT b0 + αω′

pBT (ξHT +DTCT R0)],

c2 + d2 = a2dpR0 + 1
b0

[(1 − α)ωpH
2
TBT +HTCT b0 +HTBTαω

′
pξ + αω′

pDTBTCT ],

c3 + d3 = dp + a2 + dp(R0 − 1) = a2 + dpR0.

For R0 > 1. We have c0 + d0 > 0, c1 + d1 > 0, c2 + d2 > 0, c3 + d3 > 0. By the
Routh-Hurwitz criterion, we only need to show the following statement:
(c1 + d1)[(c3 + d3)(c2 + d2) − (c1 + d1)] > (c0 + d0)(c3 + d3)2, (the proof from [3] is in
appendix A).
Then, according to the Routh-Hurwitz criterion, all the roots of the characteristic Equa-
tion (2.13) have negative real parts. Therefore, the coronavirus-free equilibrium point
C∗ is locally asymptotically stable under condition R0 > 1.
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2.3.3 Local Stability at CI

Theorem 5
If R0 > 1,(resp.Λ > a0dp

β1b0
), the coronavirus endemic equilibrium CI is locally asymp-

totically stable.
Proof:

The result can be easily obtained from Theorem 4 by taking α = 1 and ξ = 0.

2.4 Global stability when R0 < 1
Theorem 6

If R0 < 1, (resp.Λ < a0dp

βIb0
), the disease-free equilibrium C0 is globally asymptotically

stable.
Proof:

Note that the four equations of (2.1) are independent ofR, therefore, the last equation of
(2.1) can be omitted without loss of generality. Let us consider the following Lyapunov
functional,

V (t) = 1
2S0

(S(t) − S0)2 + E(t) + BT

b0
[HT I(t) +DTA(t)]. (2.14)

By calculating the time derivative of V along the positive solution of system (2.1),
we get

dV (t)
dt

= 1
S0

(S − S0)S ′(t) + E ′(t) + BT

b0
[HT I

′(t) +DTA
′(t)],

dV (t)
dt

= 1
S0

(S − S0)[−βIS(I + kA) − dp(S − S0)] + βIS(I + kA) −BTE+

+ BTHT

b0
[(1 − α)ωpE − CT I + ξA] +

BTDT [αω′
pE −HTA]
b0

,

dV (t)
dt

= −dp

S0
(S − S0)2 + βI [2S − S2

S0
− S0](I + kA) + βIS0(I + kA)

− BTHT

b0
[CT I + (DT − ξ)A],

dV (t)
dt

= − dp

S0
(S − S0)2 + βI

[
2S − S2

S0
− S0

]
(I + kA) +

[
βIS0 − a0

b0

]
(I + kA),

= − dp

S0
(S − S0)2 − βI

(S − S0)2

S0
(I + kA) + βI

dp

[
Λ − a0dp

βIb0

]
(I + kA).

Since (R0 < 1), resp. Λ < a0dp

βIb0
), then, dV (t)

dt
≤ 0 for all (S,E, I, A) ∈ R4

+. dV (t)
dt

= 0 if and
only if (S,E, I, A) = (S0, 0, 0, 0). Thus, the only invariant set contained in R4

+ is {(S0, 0, 0, 0)}.
Hence, LaSalle’s theorem implies convergence of the solutions (S,E, I, A) to (S0, 0, 0, 0). From
the last equation of (2.1) we can show obviously that R converges also to 0. Therefore, C0 is
globally asymptotically stable when R0 < 1.
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Delayed Model of
Coronavirus

By presenting a compartmental model and incorporating time delay to provide a more detailed
description of the transmission dynamics, it is precisely reflecting the time taken for the holders
of the disease to become infectious which is called the incubation period, this time delay plays
an important effect on the stability of the equilibrium points which by the end contribute to
a more reliable forecasting. When adding a time delay τ to an ordinary differential equation
(ODE) it becomes a delayed differential equation (DDE). The difference between them is that
the derivatives of the DDE at any time t depend on the solution at prior times ([32]). Because
of that, to solve a DDE we need to define how the dynamical system behaves when τ − t < t0,
with t0 being the starting time of the system. To describe the behavior of the system in the
interval before t0 an initial history function is used to specify the values of the solution set at
that interval.

d

dt
S(t) = Λ − βIS(t− τ)[kA(t− τ) + I(t− τ)] − dpS(t),

d

dt
E(t) = βIS(t− τ)[kA(t− τ) + I(t− τ)] − (1 − α)ωpE(t) − αω′

pE(t) − dpE(t),
d

dt
I(t) = (1 − α)ωpE(t) − (γp + dp + µ)I(t) + ξA(t),

d

dt
A(t) = αω′

pE(t) −
(
dp + ν + γ′

p

)
A(t) − ξA(t),

d

dt
R(t) = γpI(t) + γ′

pA(t) − dpR(t),

(3.1)

where the state variables are subject to the initial conditions,

S(θ) = ψ1(θ) > 0,
I(θ) = ψ2(θ) > 0, θ ∈ [−τ, 0],
A(θ) = ψ3(θ) > 0,
R(0) = R0 and E(0) = E0

(3.2)

where ψ = (ψ1, ψ2, ψ3) ∈ C Here C denotes the Banach space C([−τ, 0]) of continuous functions
mapping the interval [−τ, 0] into R3

+.

17
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3.0.1 Existence and Uniqueness
Proposition 1

For any initial condition (3.2) defined in C, the system (3.1) has a unique positive
solution on [0,+∞[, denoted by (S(t), E(t), I(t), A(t), R(t)).

Proof:
From Hale and Verduyn Lunel [13], for each continuous initial condition (3.2), system
(3.1) has a continuous maximal solution (S(t), E(t), I(t), A(t), R(t)). We can prove that
this solution is bounded the same way as the previous model. Hence the solution is
defined globally for [0,+∞[.

3.1 Non-negativity of solutions

Proposition 2
The solutions (S(t), E(t), I(t), A(t), R(t)) of (3.1) are non-negative for all t ≥ −τ with
non-negative initial conditions (3.2).

Proof:
We have,

d

dt
S(t)|S(t)=0 = Λ > 0,

d

dt
E(t)|E(t)=0 = βIS(t− τ)[kA(t− τ) + I(t− τ)] ≥ 0,
d

dt
I(t)|I(t)=0 = (1 − α)ωpE + ξA ≥ 0,

d

dt
A(t)|A(t)=0 = αω′

pE ≥ 0,
d

dt
R(t)|R(t)=0 = γpI + γ′

pA ≥ 0.

(3.3)

Therefore, any solution of system (3.1) is such that (S(t), E(t), I(t), A(t), R(t)) ∈ (R+
0 )5

for all t ≥ −τ.

3.2 Stability of the System’s Equilibrium
The equilibrium points of the new system are the same as for the system with zero delays.
This is because, by definition, all nearby trajectories will approach the stable equilibrium point
asymptotically as t → +∞, so the delay will not have an effect on the equilibrium points.

Now, we prove some sufficient conditions for the local asymptotic stability of the disease
free equilibrium, C0, and the endemic equilibrium point, C∗, for any time delay τ ≥ 0.

Consider the following coordinate transformation:
x1(t) = S(t) − S̄, x2(t) = E(t) − Ē, x3(t) = I(t) − Ī, x4(t) = A(t) − Ā and x5(t) = R(t) − R̄,
where (S̄, Ē, Ī, Ā, R̄) is any equilibrium of (3.1).
Then the linearized system of (3.1) takes the form

X ′(t) = L1X(t) + L2X(t− τ),
where X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T . The characteristic equation at any equilibrium
point (S̄, Ē, Ī, Ā, R̄) is given by

∆(λ, τ) := det(λI − L1 − e−λτL2) = 0 (3.4)
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with

L1 =


−dp 0 0 0 0

0 −BT 0 0 0
0 (1 − α)ωp −CT ξ 0
0 αω′

p 0 −HT 0
0 0 γp γ′

p −dp

 ,

L2 =


−βI(kĀ+ Ī) 0 −βI S̄ −βIkS̄ 0
βI(kĀ+ Ī) 0 βI S̄ βIkS̄ 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
So, (3.4) becomes∣∣∣∣∣∣∣∣∣∣∣∣

λ + dp + βI(kĀ+ Ī)e−λτ 0 βI S̄e
−λτ kβI S̄e

−λτ 0
−βI(kĀ+ Ī)e−λτ λ +BT −βI S̄e

−λτ −kβI S̄e
−λτ 0

0 −(1 − α)ωp λ + CT −ξ 0
0 −αω′

p 0 λ +HT 0
0 0 −γp −γ′

p λ + dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

3.2.1 Local Stability at C0

The characteristic equation of system (3.1) at the coronavirus-free equilibrium C0 is:∣∣∣∣∣∣∣∣∣∣∣∣

λ + dp 0 βIS0e
−λτ kβIS0e

−λτ 0
0 λ +BT −βIS0e

−λτ −kβIS0e
−λτ 0

0 −(1 − α)ωp λ + CT −ξ 0
0 −αω′

p 0 λ +HT 0
0 0 −γp −γ′

p λ + dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

It is equivalent to
λ3 + a2λ

2 + a1λ + a0 − βIS0e
−λτ [b1λ + b0] = 0. (3.5)

where a0, a1, a2, b0 and b1 are defined in Chapter 2.
Theorem 7

If R0 > 1 the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of the system (3.1) is
unstable.

Proof:
When R0 > 1, let

f(λ) = λ3 + a2λ
2 + a1λ + a0 − βIS0e

−λτ [b1λ + b0] = 0. (3.6)
Then f(0) = a0(1 − R0) < 0, lim

λ→∞
f(λ) = +∞. By the continuity of f(λ), there

exists at least one positive root of f(λ) = 0. Thus, the infection-free equilibrium C0 is
unstable if R0 > 1.

Theorem 8
If R0 < 1 the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of the system (3.1) is
locally asymptotically stable.

Proof:
Let R0 < 1. We divide the proof into the non-delayed and delayed cases.
• Let τ = 0 we get the same characteristic equation as for the no-delay model. Then the
coronavirus-free equilibrium point is locally asymptotically stable, as shown in Chapter
2.
• Let τ > 0. In this case, we will use Rouché’s theorem to prove that all roots of the
characteristic Equation (3.5) cannot intersect the imaginary axis, i.e., the characteristic



20 CHAPTER 3. DELAYED MODEL OF CORONAVIRUS

equation cannot have pure imaginary roots.
Suppose the contrary, that is, suppose there exists y ∈ R such that λ = yi is a solution
of (3.5). Replacing yi in we get that

−iy3 + a0 + ia1y − a2y
2 − S0βIe

−iτy (iyb1 + b0) = 0
then,

−iy3 + a0 + ia1y − a2y
2 − S0βI(cos τy − i sin τy) (iyb1 + b0) = 0

Separating real and imaginary parts, it follows that

cos(yτ) = −b1y
4 + (b1a1 − b0a2)y2 − b0a0

βIS0(b2
0 + b2

1y
2)

sin(yτ) = (b0 − a2b1)y3 + (a0b1 − a1b0)y
βIS0(b2

0 + b2
1y

2)
Replacing the above expressions in the following relation

cos2(yτ) + sin2(yτ) = 1
we get(

−b1y
4 + (b1a1 − b0a2)y2 − b0a0

)2
+
(
(b0 − a2b1)y3 + (a0b1 − a1b0)y

)2
= βI

2S2
0(b2

0 + b2
1y

2)2.

Hence, it follows that

b2
1y

8 +
[
b2

0 + b2
1(a2

2 − 2a1)
]
y6 +

[
b2

0(a2
2 − 2a1) + b2

1(a2
1 − 2a0a2) − b4

1S
2
0βI

2
]
y4 (3.7)

+
[
b2

0(a2
1 − 2a0a2) + a2

0b
2
1 − 2b2

0b
2
1S

2
0βI

2
]
y2 + a2

0b
2
0 − b4

0S
2
0βI

2 = 0.
Let

K1 =b2
0 + b2

1(a2
2 − 2a1),

K2 =b2
0(a2

2 − 2a1) + b2
1(a2

1 − 2a0a2) − b4
1S

2
0βI

2,

K3 =b2
0(a2

1 − 2a0a2) + a2
0b

2
1 − 2b2

0b
2
1S

2
0βI

2,

K4 =a2
0b

2
0 − b4

0S
2
0βI

2,

then (3.7) becomes

b2
1y

8 +K1y
6 +K2y

4 +K3y
2 +K4 = 0 (3.8)

We have
a2

2 − 2a1 = B2
T + C2

T +H2
T ,

a2
1 − 2a0a2 = H2

TB
2
T + C2

TH
2
T +B2

TC
2
T

and S0βI = R0a0
b0

then

K1 = b2
0 + b2

1(B2
T + C2

T +H2
T ) > 0

K4 = a2
0b

2
0(1 − R2

0) > 0 (since R0 < 1)

K2 = 1
b2

0

[
b4

0(B2
T + C2

T +H2
T ) + b2

0b
2
1(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − b4

1R0
2a2

0

]
K3 = b2

0(H2
TB

2
T + C2

TH
2
T +B2

TC
2
T ) + a2

0b
2
1(1 − 2R0

2).
It remains to show that,

K3 > 0 and K2 > 0.
Lemma 1

Let M = b2
0(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − a2

0b
2
1 then M > 0.
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Proof:
In fact,

M = b2
0(H2

TB
2
T ) + b2

0(C2
TH

2
T +B2

TC
2
T ) − a2

0b
2
1

= b2
0(C2

TH
2
T +B2

TC
2
T ) + b2

0(H2
TB

2
T ) − C2

TH
2
TB

2
T b

2
1

= b2
0(C2

TH
2
T +B2

TC
2
T ) +H2

TB
2
T [b2

0 − C2
T [(1 − α)ωp + kαω′

p]2]

> H2
TB

2
T

[ (
(1 − α)ωpHT + αω′

pDT

)2
− C2

T [(1 − α)ωp + kαω′
p]2
]

> H2
TB

2
T

[
(1 − α)2ωp

2H2
T + α2ω′

p
2
D2

T + 2(1 − α)αωpω
′
pHTDT − C2

T (1 − α)2ωp
2

− C2
Tk

2α2ω′
p

2 − 2C2
Tk(1 − α)αωpω

′
p

]

> H2
TB

2
T

[
(1 − α)2ωp

2(H2
T − C2

T ) + α2ω′
p

2([CTk + ξ]2 − C2
Tk

2)

+ 2(1 − α)αωpω
′
p(HT [CTk + ξ] − C2

Tk)
]
.

In fact,
M = b2

0(H2
TB

2
T ) + b2

0(C2
TH

2
T +B2

TC
2
T ) − a2

0b
2
1

= b2
0(C2

TH
2
T +B2

TC
2
T ) + b2

0(H2
TB

2
T ) − C2

TH
2
TB

2
T b

2
1

= b2
0(C2

TH
2
T +B2

TC
2
T ) +H2

TB
2
T [b2

0 − C2
T [(1 − α)ωp + kαω′

p]2]

> H2
TB

2
T

[ (
(1 − α)ωpHT + αω′

pDT

)2
− C2

T [(1 − α)ωp + kαω′
p]2
]

> H2
TB

2
T

[
(1 − α)2ωp

2H2
T + α2ω′

p
2
D2

T + 2(1 − α)αωpω
′
pHTDT − C2

T (1 − α)2ωp
2

− C2
Tk

2α2ω′
p

2 − 2C2
Tk(1 − α)αωpω

′
p

]

> H2
TB

2
T

[
(1 − α)2ωp

2(H2
T − C2

T ) + α2ω′
p

2([CTk + ξ]2 − C2
Tk

2)

+ 2(1 − α)αωpω
′
p(HT [CTk + ξ] − C2

Tk)
]
.

Since HT > CT , then we have, M > 0.
K3 = b2

0(H2
TB

2
T + C2

TH
2
T +B2

TC
2
T ) + a2

0b
2
1(1 − 2R0

2)
= b2

0(H2
TB

2
T + C2

TH
2
T +B2

TC
2
T ) + a2

0b
2
1(1 − R0

2 − R0
2)

= b2
0(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − a2

0b
2
1R0

2 + a2
0b

2
1(1 − R0

2)
> b2

0(H2
TB

2
T + C2

TH
2
T +B2

TC
2
T ) − a2

0b
2
1

= M > 0.
K2 = 1

b2
0

[
b4

0(B2
T + C2

T +H2
T ) + b2

0b
2
1(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − b4

1R0
2a2

0

]
= 1
b2

0

[
b4

0(B2
T + C2

T +H2
T ) + b2

1[b2
0(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − b2

1R0
2a2

0]
]

>
1
b2

0

[
b4

0(B2
T + C2

T +H2
T ) + b2

1[b2
0(H2

TB
2
T + C2

TH
2
T +B2

TC
2
T ) − b2

1a
2
0]
]

>
1
b2

0

[
b4

0(B2
T + C2

T +H2
T ) + b2

1M
]

Therefore K2 > 0.
Since K1 > 0, K2 > 0, K3 > 0 and K4 > 0. This implies that the equation (3.5) has no
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roots. This shows that (3.5) can not have a purely imaginary root.
Thus C0 is locally asymptotically stable.

3.2.2 Local Stability at C∗

The characteristic equation of system (3.1) at the coronavirus endemic equilibrium C∗ is:∣∣∣∣∣∣∣∣∣∣∣∣

λ + dp + βI(I∗ + kA∗)e−λτ 0 βIS
∗e−λτ βIS

∗ke−λτ 0
−βI(I∗ + kA∗)e−λτ λ +BT −βIS

∗e−λτ −βIS
∗ke−λτ 0

0 −(1 − α)ωp λ + CT −ξ 0
0 −αω′

p 0 λ +HT 0
0 0 −γp −γ′

p λ + dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

It is equivalent to
λ4 + c3λ

3 + c2λ
2 + c1λ + c0 + e−λτ [d3λ

3 + d2λ
2 + d1λ + d0] = 0, (3.9)

where c0, c1, c2, c3, d1, d2, and d3 are defined as in chapter 2.

Theorem 9
• Let τ = 0. If R0 > 1, then the endemic equilibrium point C∗ is locally asymptot-

ically stable.

• If τ > 0, the endemic equilibrium point C∗ is locally asymptotically stable if
1 < R0 < 3,

and
F2, F4, F6, d

2
1 − 2d0d2, d

2
2 − 2d1d3 are strictly positive,

where
F2 = c2

1 − 2c0c2 + 2d0d2 − d2
1,

F4 = c2
2 + 2c0 − 2c1c3 − d2

1 + 2d1d3,

F6 = c2
3 − 2c2 − d2

3.

Proof:
• Let τ = 0, we get the same characteristic equation as for the no-delay model. Then

The endemic equilibrium point is locally asymptotically stable, under condition
R0 > 1, as shown in Chapter 2.

• Let τ > 0.
If iω(ω > 0) is a solution of (3.9), then (3.9) becomes
ω4 − c2ω

2 + c0 − ic3ω
3 + ic1ω + e−iωτ [−iω3d3 − d2ω

2 + iωd1 + d0] = 0.
Separating real and imaginary parts, it follows that{

ω4 − c2ω
2 + c0 + (d0 − d2ω

2) cosωτ + (d1ω − d3ω
3) sinωτ = 0,

−c3ω
3 + c1ω + (d1ω − d3ω

3) cosωτ + (d2ω
2 − d0) sinωτ = 0.

(3.10)

Thus


cosωτ = (d2 − c3d3)ω6 + (c1d3 − c2d2 + c3d1 − d0)ω4 + (c2d0 − c1d1 + c0d2)ω2 − c0d0

(d2ω2 − d0)2 + (d1ω − d3ω3)2 ,

sinωτ = d3ω
7 − (d1 − c3d2 + c2d3)ω5 − (c3d0 − c2d1 + c1d2 − c0d3)ω3 − (c0d1 − c1d0)ω

(d2ω2 − d0)2 + (d1ω − d3ω3)2 .

(3.11)
Replacing the above expressions in the "fundamental trigonometric formula",
we get
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(
ω8 + c2

0 + ω2c2
1 − 2ω6c2 + ω4c2

2 + 2ω4c0 − 2c0c2ω
2 − 2c1c3ω

4 + c2
3ω

6

−d2
0 − d2

1ω
2 + 2d0d2ω

2 − d2
2ω

4 + 2d1d3ω
4 − d2

3ω
6
)

·
(
d2

0 + ω2d2
1 − 2ω2d0d2 + ω4d2

2

−2ω4d1d3 + ω6d2
3

)
= 0.

Then [
ω8 + (c2

3 − 2c2 − d2
3)ω6 + (c2

2 + 2c0 − 2c1c3 − d2
2 + 2d1d3)ω4

+(c2
1 − 2c0c2 + 2d0d2 − d2

1)ω2 + c2
0 − d2

0

]
·
[
d2

3ω
6 + (d2

2 − 2d1d3)ω4 + (d2
1 − 2d0d2)ω2 + d2

0

]
= 0.

Consequently
[
ω8 + F6ω

6 + F4ω
4 + F2ω

2 + c2
0 − d2

0

]
·
[
d2

3ω
6 + (d2

2 − 2d1d3)ω4 + (d2
1 − 2d0d2)ω2 + d2

0

]
= 0.
(3.12)

We have
c2

0 − d2
0 = −d2

pa
2
0(R0 − 3)(R0 − 1).

Under the assumption 1 < R0 < 3 we get c2
0 − d2

0 > 0 and since F2, F4, F6, d
2
1 − 2d0d2,

d2
2−2d1d3, are strictly positive. We conclude that the left hand-side of equation (3.12) is

strictly positive, which implies that (3.9) does not have imaginary roots, and therefore
C∗ is locally asymptotically stable for any time delay τ > 0.
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SIPR Model
A constant population model with four compartments is proposed, see Fig. 4.1. The compart-
ments are defined as Susceptible (S), Infected (I), Infected symptomatic positive tested (P )
and Recovered (R).

In Fig. 4.1, I is the infectious population compartment representing the population in the
incubation stage, i.e., prior to the onset of symptoms.

S I R

P

µ

µ

α β1 µ

β2µ

µ

β3

Figure 4.1: SIPR model with constant population.

The infected population can be asymptomatic or symptomatic, the incubation period is
assumed to be 5.1 days. Infectiousness occurs 12 hours prior to the onset of the symptoms for
the symptomatic. On the other hand, for those who are asymptomatic, the infectiousness is
assumed to occur 4.6 days after infection. The average time between infection and infectiousness
is 6.5 days.

Those who are asymptomatic or do not develop severe symptoms, i.e., cases which are
neither tested nor documented are moved to the R (Recovered) compartment after a 1/β1
period [2].

The incubation period for those who are symptomatic is 1/β2. Once the infected individual
is tested positive and the case is documented, it is moved to the P compartment, which consists
of those patients with severe symptoms seeking medical attention, to assess the potential role
of multiple preventive measures and strategies imposed. After a period 1/β3 the P population
that recovers is moved to compartment R.

The possibility of temporary immunity for recovered individuals is also considered.
In addition, the population growth and death rates µ, including deaths due to COVID, are

considered to be equal.

25
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N = S(t) + I(t) + P (t) +R(t) (4.1)
From the foregoing considerations, the SIPR mathematical model is given by,

d

dt
S(t) = µ− α(1 − θ)S(t)I(t) − µS(t);
d

dt
I(t) = α(1 − θ)S(t)I(t) − (β1 + β2)I(t) − µI(t);

d

dt
P (t) = β2I(t) − β3P (t) − µP (t);

d

dt
R(t) = β1I(t) + β3P (t) − µR(t).

(4.2)

4.1 Non-negativity of solutions

Proposition 3
The solutions (S(t), I(t), P (t), R(t)) of (4.2) are non-negative for all t ≥ −τ with non-
negative initial conditions.

Proof:
We have,

d

dt
S(t)|S(t)=0 = µ > 0,
d

dt
I(t)|I(t)=0 = 0,

d

dt
P (t)|P (t)=0 = β2I(t) > 0,

d

dt
R(t)|R(t)=0 = β1I(t) + β3P (t) > 0.

(4.3)

In the next Section we show that model (4.2) has two equilibrium points: the disease-free and
he endemic equilibrium.

4.2 Equilibrium Points

The equilibrium points of the model are obtained by equating the right-hand side of system
(4.2) to zero:

µ− α(1 − θ)S(t)I(t) − µS(t) = 0;
α(1 − θ)S(t)I(t) − (β1 + β2)I(t) − µI(t) = 0;

β2I(t) − β3P (t) − µP (t) = 0;
β1I(t) + β3P (t) − µR(t) = 0;

(4.4)

From the second equation, we obtain I = 0 or S = β1+β2+µ
α(1−θ) .

If I = 0 we have S = 1, P = 0, and R = 0, from which the disease-free equilibrium,E0, is given
by E0 = (1, 0, 0, 0).

If S = β1+β2+µ
α(1−θ) , we obtain from the first equation I =

µ[1 − β1+β2+µ
α(1−θ) ]

β1 + β2 + µ
, with feasibility con-

dition α(1 − θ)
β1 + β2 + µ

> 1. From the third equation P = β2I
β3+µ

. And from the last equation
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R = β1I(t)+β3P (t)
µ

= (β3+µ)β1+β3β2
µ(β3+µ) I.

Therefore E∗ = (β1 + β2 + µ

α(1 − θ) ,
µ[1 − β1+β2+µ

α(1−θ) ]
β1 + β2 + µ

,
β2I

β3 + µ
,
(β3 + µ)β1 + β3β2

µ(β3 + µ) I)

4.3 The Basic Reproduction Number
The basic reproduction number R0 for system (4.2) is found using the next generation matrix
method. The reduced system of (4.2) may be written in compact form as X ′ = F (X) − V (X)
where X = (I, P ).

F (I, P ) =
(
α(1 − θ)S(t)I(t)

0

)
,

V (I, P ) =
(

(β1 + β2)I(t) + µI(t)
−β2I(t) + β3P (t) + µP (t)

)
The Jacobian matrices of F (X) and V (X) at the disease-free equilibrium point E0 are

JF (E0) =
(
α(1 − θ) 0

0 0

)
and

JV (E0) =
(

(β1 + β2 + µ) 0
−β2 +(β3 + µ)

)
We find that

J−1
V (E0) =


1

β1+β2+µ
0

β2
(β1+β2+µ)(β3+µ)

−1
β3+µ


The next generation matrix is

−JF (E0)J−1
V (E0) =

(
α(1−θ)

β1+β2+µ
0

0 0

)
Thus

R0 = ρ
[

− JF (E0)J−1
V (E0)

]
= max

λ∈spec[−JF (E0)J−1
V (E0)]

|λ| = α(1 − θ)
β1 + β2 + µ

.

We have the following theorem
Theorem 10

System (4.2) has the following equilibrium:

1. The corona virus-free equilibrium E0 = (S0, 0, 0, 0) = (1, 0, 0, 0) which exists
always.

2. In addition, if R0 > 1 then system (4.2) admits another non-trivial
equilibrium,E∗ = (S∗, I∗, P ∗, R∗). Where

S∗ = β1 + β2 + µ

α(1 − θ) ,

I∗ =
µ[1 − β1+β2+µ

α(1−θ) ]
β1 + β2 + µ

,

P ∗ = β2I
∗

β3 + µ
,

R∗ = (β3 + µ)β1 + β3β2

µ(β3 + µ) I∗.
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4.4 Stability analysis

Now, we prove some sufficient conditions for the local asymptotic stability of the disease-free
equilibrium, E0, and the endemic equilibrium point, E∗.

The characteristic equation at any equilibrium point is given by
∆1(λ) := det(λI −M) = 0, (4.5)

with

M =


−µ− α(1 − θ)I −α(1 − θ)S 0 0

α(1 − θ)I −(β1 + β2 + µ) + α(1 − θ)S 0 0
0 β2 −(β3 + µ) 0
0 β1 β3 −µ

 .
So, (4.5) becomes∣∣∣∣∣∣∣∣∣

λ+ µ+ α(1 − θ)I α(1 − θ)S 0 0
−α(1 − θ)I λ+ (β1 + β2 + µ) − α(1 − θ)S 0 0

0 −β2 λ+ β3 + µ 0
0 −β1 −β3 λ+ µ

∣∣∣∣∣∣∣∣∣ = 0. (4.6)

4.4.1 Stability of E0

Theorem 11
If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable.
If R0 > 1, then the disease-free equilibrium E0 is unstable.

Proof:
From (4.6) the characteristic equation at the disease-free equilibrium E0(1, 0, 0, 0) is
given by,∣∣∣∣∣∣∣∣∣

λ+ µ α(1 − θ) 0 0
0 λ+ (β1 + β2 + µ) − α(1 − θ) 0 0
0 −β2 λ+ β3 + µ 0
0 −β1 −β3 λ+ µ

∣∣∣∣∣∣∣∣∣ = 0. (4.7)

Therefore (4.7) becomes
P (λ) := (λ+ µ)2 (λ+ β3 + µ) [λ+ β1 + β2 + µ− α(1 − θ)] = 0. (4.8)

Let R0 < 1. We need to prove that all roots of the characteristic Equation (4.8) has
negative real parts. It is easy to see that
λ1 = −µ, λ2 = −β3 − µ and
λ3 = −(β1 + β2 + µ) + α(1 − θ) = (β1 + β2 + µ)(R0 − 1)
are roots of Equation (4.8) and all of them are real negative roots. Therefore, E0, is
locally asymptotically stable , whenever R0 < 1.
Suppose now that R0 > 1. We know that the characteristic Equation (4.8) has two
real negative roots λ1 = −µ, λ2 = −(β3 + µ). Thus, we need to check if the remaining
roots of

q(λ) := λ+ β1 + β2 + µ− α(1 − θ) = 0 (4.9)
have positive real roots. We have q(0) = β1+β2+µ−α(1−θ) = (β1+β2+µ)(1−R0) < 0
because we assume R0 > 1. And lim

λ→+∞
q(λ) = +∞. Therefore, by continuity of q(λ),

there is at least one positive root of the characteristic equation (4.8). Therefore, we
conclude that E0 is unstable when R0 > 1. The proof is complete.
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4.5 Stability of the endemic equilibrium point
Theorem 12

If R0 > 1, then the endemic equilibrium point E∗ is locally asymptotically stable.

Proof:
The characteristic equation, computed at the endemic equilibrium E∗, is given by

P ∗(λ) = (λ+µ)(λ+β3 +µ)
[
(λ+µ)(λ+A)+α(1−θ)[(λ+A)I∗ − (λ+µ)S∗]

]
(4.10)

where A = β1 + β2 + µ.
Then, the equation (4.10) becomes

P ∗(λ) = (λ+µ)(λ+β3+µ)
[
λ2+λ(A+µ)+µA+α(1−θ)[(λ(I∗−S∗)+AI∗−µS∗]

]
(4.11)

Looking at the roots of the characteristic Equation (4.11), it is easy to see that λ1 = −µ
and λ2 = −(β3 +µ) are real negative roots of (4.11). Considering the third term of the
above equation, let

P ∗
1 (λ) := λ2 + λ(A+ µ) + µA+ α(1 − θ)[(λ(I∗ − S∗) + AI∗ − µS∗]

Then,
P ∗

1 (λ) := λ2 + λ[A+ µ+ α(1 − θ)(I∗ − S∗)] + µA+ α(1 − θ)(AI∗ − µS∗)
Using the Routh-Hurwitz criterion, we know that all roots of P ∗

1 (λ) have negative real
parts if, and only if, the coefficients of P ∗

1 (λ) are strictly positive.
We have
A+ µ+ α(1 − θ)(I∗ − S∗) = µR0 > 0
µA+ α(1 − θ)(AI∗ − µS∗) = Aµ(R0 − 1) > 0 since R0 > 1.
Consequently when R0 > 1, then the endemic equilibrium point E∗ is locally asymp-
totically stable.
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Delay SIPR Model
Now we present the second model’s delayed version. Same as we did for our model, representing
the time taken for the infection to run.

d

dt
S(t) = µ− α(1 − θ)S(t− τ)I(t− τ) − µS(t);
d

dt
I(t) = α(1 − θ)S(t− τ)I(t− τ) − (β1 + β2)I(t) − µI(t);

d

dt
P (t) = β2I(t) − β3P (t) − µP (t);

d

dt
R(t) = β1I(t) + β3P (t) − µR(t);

(5.1)

5.1 Stability analysis

Now, we prove some sufficient conditions for the local asymptotic stability of the disease-free
equilibrium, E0, and the endemic equilibrium point, E∗.

The characteristic equation at any equilibrium point is given by
∆1(λ, τ) := det(λI −M1 − e−λτM2) = 0 (5.2)

with

M1 =


−µ 0 0 0
0 −(β1 + β2 + µ) 0 0
0 β2 −(β3 + µ) 0
0 β1 β3 −µ

 ,

M2 =


−α(1 − θ)I −α(1 − θ)S 0 0
α(1 − θ)I α(1 − θ)S 0 0

0 0 0 0
0 0 0 0

 .
So, (5.2) becomes∣∣∣∣∣∣∣∣∣

λ+ µ+ α(1 − θ)Ie−λτ α(1 − θ)Se−λτ 0 0
−α(1 − θ)Ie−λτ λ+ (β1 + β2 + µ) − α(1 − θ)Se−λτ 0 0

0 −β2 λ+ β3 + µ 0
0 −β1 −β3 λ+ µ

∣∣∣∣∣∣∣∣∣ = 0. (5.3)

31
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5.1.1 Stability of E0

Theorem 13
If R0 < 1, then the disease-free equilibrium E0 is locally asymptotically stable for any
time-delay τ ≥ 0.
If R0 > 1, then the disease-free equilibrium E0 is unstable for any time-delay τ ≥ 0.

Proof:
From (5.3) the characteristic equation at the disease-free equilibrium, E0 is given by

P (λ) = (λ+ µ)2 (λ+ β3 + µ) [λ+ β1 + β2 + µ− α(1 − θ)e−λτ ] = 0, (5.4)
Let R0 < 1.
We divide the proof into the non-delayed and delayed cases.

• Let τ = 0. We get the same characteristic equation as for the no-delay model (4.2).
Then the coronavirus-free equilibrium point is locally asymptotically stable, as
shown in Chapter 4.

• Let τ > 0. and consider the third term of equation (5.4)
λ+ β1 + β2 + µ− α(1 − θ)e−λτ = 0 (5.5)

In this case, If jω (ω > 0 and j is the complex identity element) is a solution of
(5.5), then (5.5) becomes

jω + β1 + β2 + µ− α(1 − θ)e−jω = 0.
Then, jω + β1 + β2 + µ− α(1 − θ)[cos(ω τ) − j sin(ω τ)] = 0.
Separating real and imaginary parts, it follows that;

ω + α(1 − θ) sin(ω τ) = 0,

β1 + β2 + µ− α(1 − θ) cos(ω τ) = 0.
Then

sin(ω τ) = −ω
α(1−θ) ,

cos(ω τ) = β1+β2+µ
α(1−θ) .

By adding up the squares of both equations, and using the fundamental trigono-
metric formula, we obtain that

ω2 + (β1 + β2 + µ)2 = α2(1 − θ)2,
which is equivalent to

ω2 = α2(1 − θ)2 − (β1 + β2 + µ)2, (5.6)
therefore ω2 = (β1 + β2 + µ)2[R2

0 − 1]. If R0 < 1, then we have ω2 < 0, which is a
contradiction. Therefore, we have proved that whenever R0 < 1, the characteristic
Equation (5.5) cannot have pure imaginary roots and the disease-free equilibrium
E0 is locally asymptotically stable, for any strictly positive time-delay τ .
Suppose now that R0 > 1. We know that the characteristic Equation (5.4) has
two real negative roots λ1 = −µ, λ2 = −(β3 + µ). Thus, we need to check if the
remaining roots of

q(λ) := λ+ β1 + β2 + µ− α(1 − θ)e−λτ = 0
have positive real roots. We have

q(0) = β1 + β2 + µ− α(1 − θ) = (β1 + β2 + µ)(1 − R0) < 0
because we are assuming R0 > 1. And lim

λ→+∞
q(λ) = +∞. Therefore, by continu-

ity of q(λ), there is at least one positive root of the characteristic equation (5.4).
Hence, we conclude that E0 is unstable when R0 > 1. The proof is complete.
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5.2 Stability of the endemic equilibrium point
Theorem 14

Let τ = 0. If R0 > 1, then the endemic equilibrium point E∗ is locally asymptotically
stable. When τ > 0, the endemic equilibrium point E∗ is locally asymptotically stable
if the basic reproduction number R0 satisfies the following relations:

1 < R0 < 3 (5.7)
and

N2, N3 > 0
where

N2 = 1
R2

0A
2

[
(R0 − 1)[2µ3A(2R2

0 − 4R0 + 12µA3 − µ4(R0 − 1)R0(R0 − 2)]+

+2A2µ2R0(3 − 2R0)
]

N3 = 1
R2

0
(R0 − 1)

[
A2µ2(−R0 + 3) + µ4(−2R3

0 + 10R2
0 − 14R0 + 5) + 4Aµ3(R0 − 2)2

]
Proof:

The characteristic Equation, computed at the endemic equilibrium E∗, is given by

P ∗(λ, τ) = (λ+ µ)(λ+ β3 + µ)
[
(λ+ µ)(λ+A) + α(1 − θ)[(λ+A)I∗ − (λ+ µ)S∗]e−τλ

]
Then

P ∗(λ, τ) = (λ+µ)(λ+β3 +µ)
[
λ2 +λ(A+µ)+µA+α(1−θ)[λ(I∗ −S∗)+AI∗ −µS∗]e−τλ

]
(5.8)

Let τ = 0. In this case, the proof is the same as the proof of Theorem 12.
Let τ > 0. By Rouche’s theorem, we prove that all roots of the characteristic

equation cannot intersect the imaginary axis, i.e., the characteristic equation cannot
have pure imaginary roots. Suppose the opposite, i.e., that there exists w ∈ R such
that y = jw is a solution of (5.8). Replacing λ in the third term of (5.8), we get

−w2 +jw(A+µ)+µA+α(1−θ)[cos(τ w)−j sin(τ w)][jw(I∗ −S∗)+AI∗ −µS∗] = 0.
Then,

−w2 + µA+ α(1 − θ)(AI∗ − µS∗) cos(τ w) + α(1 − θ)w(I∗ − S∗) sin(τ w) = 0,

w(A+ µ) + α(1 − θ)w(I∗ − S∗) cos(τ w) − α(1 − θ)(AI∗ − µS∗) sin(τ w) = 0.
Then, separating real and imaginary parts, it follows that;

cos(τ w) = w2(AS∗ − µI∗) − µA(AI∗ − µS∗)
α(1 − θ)[(AI∗ − µS∗)2 + w2(I∗ − S∗)2] ,

sin(τ w) = w(A2I∗ − µ2S∗) − w3(I∗ − S∗)
α(1 − θ)[(AI∗ − µS∗)2 + w2(I∗ − S∗)2] .

By adding up the squares of both equations and using the fundamental trigonometric
formula, we obtain:

N1w
6 +N2 w

4 +N3 w
2 +N4 = 0, (5.9)

Where
N1 = (I∗ − S∗)2,

N2 = 2(A2I∗ − µ2S∗)(I∗ − S∗) + (AS∗ − µI∗)2 − (I∗ − S∗)4α2(1 − θ)2,

N3 = (A2I∗ − µ2S∗)2 − 2(AS∗ − µI∗)µA(AI∗ − µS∗) − 2(AI∗ − µS∗)2(I∗ − S∗)2α2(1 − θ)2,

N4 = µ2A2(AI∗ − µS∗)2 − (AI∗ − µS∗)4α2(1 − θ)2.

Lemma 2
if 1 < R0 < 3 then N4 ≥ 0.
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Proof:

N4 = µ2A2(AI∗ − µS∗)2 − (AI∗ − µS∗)4α2(1 − θ)2,

= (AI∗ − µS∗)2
[
µ2A2 − (AI∗ − µS∗)2α2(1 − θ)2

]
,

= (AI∗ − µS∗)2
[
µ2A2 −

(
µ(R0 − 2)

R0

)2
A2R2

0

]
,

= (AI∗ − µS∗)2
[
µ2A2 −

(
µ2(R0 − 2)2

R2
0

)
A2R2

0

]
,

= (AI∗ − µS∗)2
[
µ2A2[1 − (R0 − 2)2

]
,

= µ4A2 (R0 − 2)2

R2
0

(3 − R0)(R0 − 1).
Therefore N4 ≥ 0 if and only if 1 < R0 < 3.

N2 = 1
R2

0A
2

[
(R0 − 1)[2µ3A(2R2

0 − 4R0 + 1) + 2µA3 − µ4(R0 − 1)R0(R0 − 2)] + 2A2µ2R0(−2R0 + 3)
]

N3 = 1
R2

0
(R0 − 1)

[
A2µ2(−R0 + 3) + µ4(−2R3

0 + 10R2
0 − 14R0 + 5) + 4Aµ3(R0 − 2)2

]
Under the assumption N2 > 0 N3 > 0 and lemma (2), We conclude that the left-

hand-side of equation (5.9) is strictly positive, which implies that (5.8) does not have
imaginary roots, which implies that E∗ is locally asymptotically stable for any time
delay τ > 0.
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Appendix

6.1 Appendix A

We provide the proof from our first model original paper [3] for the formula in Routh Hurwitz
theorem: (c1 + d1)

[
(c3 + d3)(c2 + d2) − (c1 + d1)

]
> (c0 + d0)(c3 + d3)2.

We have
a1 = BTCT +HT (BT + CT )
b0 = (1 − α)ωpHT + αω′

pDT ,
c3 + d3 = βI (I∗ + kA∗) + dp +HT +BT + CT > 0,
c2 + d2 = [βI (I∗ + kA∗) + dp] (HT +BT + CT ) + a1 −

[
αω′

pk + (1 − α)ωp

]
βIS

∗,

c1 + d1 = [βI (I∗ + kA∗) + dp] a1 +HTBTCT −
[
αω′

p (kdp +DT ) + (1 − α)ωp (dp +HT )
]
βIS

∗,

c0 + d0 = [βI (I∗ + kA∗) + dp]HTBTCT − dp

[
αω′

pDT + (1 − α)ωpHT

]
βIS

∗

Thus
c3 + d3 = βI

b0
HT CT

E∗ + dp +HT +BT + CT > 0
c0 + d0 = βIb0BTE

∗ > 0

c1 + d1 = βIb0a1
CT HT

E∗ + dp

(BT + CT )H2
T (1 − α)ωp +HTBTαω

′
pξ + CT (BT +HT )αω′

pDT

b0
> 0

c2 + d2 = βIa2
(

b0
CT HT

)
E∗ + dpa2 + CTHT +BT

(1 − α)ωpH
2
T +HTαω

′
pξ + αω′

pCTDT

b0
> 0.

Moreover
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(c3 + d3)(c2 + d2) − (c1 + d1) =
(
βI

[
b0

HTCT

]
E∗ + dp +HT +BT + CT

)
(c2 + d2)

− βIb0

(
CTHT +BT (CT +HT )

CTHT

)
E∗

− dp

(
(BT + CT )H2

T (1 − α)ωp +HTBTαω
′
pξ + CT (BT +HT )αω′

pDT

[b0]

)

= βI

[
b0

HTCT

]
E∗(c2 + d2)

+ (dp +HT +BT + CT ) (c2 + d2)

− βI [b0]
(
CTHT +BT (CT +HT )

CTHT

)
E∗

− dp

(
(BT + CT )H2

T (1 − α)ωp +HTBTαω
′
pξ + CT (BT +HT )αω′

pDT

[b0]

)

= βI

[
b0

HTCT

]
E∗(c2 + d2)

+ (dp +HT +BT + CT ) βI (BT + CT +HT )
(

b0

CTHT

)
E∗

+ (dp +HT +BT + CT ) [dp (HT +BT + CT ) + CTHT ]

+ (dp +HT +BT + CT )BT

(
(1 − α)ωpH

2
T +HTαω

′
pξ + αω′

pCTDT

b0

)

− βI [b0]
(
CTHT +BT (CT +HT )

CTHT

)
E∗

− dp

(
(BT + CT )H2

T (1 − α)ωp +HTBTαω
′
pξ + CT (BT +HT )αω′

pDT

[b0]

)

= βI

[
b0

HTCT

]
E∗(c2 + d2)

+ βI [(dp +HT + CT )HT + (dp + CT )CT ]
(

b0

CTHT

)
E∗

+ βI (dp +HT +BT + CT )BT

(
b0

CTHT

)
E∗

+ (HT +BT + CT ) [dp (HT +BT + CT ) + CTHT ]
+ d2

p (HT +BT + CT )

+ (HT +BT + CT )BT

(
(1 − α)ωpH

2
T +HTαω

′
pξ + αω′

pCTDT

b0

)
.
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Then
[(c3 + d3)(c2 + d2) − (c1 + d1)] (c1 + d1) = βI

[
b0

HTCT

]
E∗(c1 + d1)(c2 + d2)

+βI (dp +HT + CT )HT

(
b0

CTHT

)
E∗(c1 + d1)

+βI (dp + CT )CT

(
b0

CTHT

)
E∗(c1 + d1)

+βI (dp +HT +BT + CT )BT

(
b0

CTHT

)
E∗(c1 + d1)

+ (HT +BT + CT ) [dp (HT +BT + CT ) + CTHT ] (c1 + d1)
+d2

p (HT +BT + CT ) (c1 + d1)

+ (HT +BT + CT )BT

(
(1 − α)ωpH

2
T +HTαω

′
pξ + αω′

pCTDT

b0

)
(c1 + d1)

= I1 + I2 + I3 + I4 + I5 + I6 + I7,
where

I1 = βI

[
b0

HTCT

]
E∗(c1 + d1)(c2 + d2)

I2 = βI (dp +HT + CT )HT

(
b0

CTHT

)
E∗(c1 + d1)

I3 = βI (dp + CT )CT

(
b0

CTHT

)
E∗(c1 + d1)

I4 = βI (dp +HT +BT + CT )BT

(
b0

CTHT

)
E∗(c1 + d1)

I5 = (HT +BT + CT ) [dp (HT +BT + CT ) + CTHT ] (c1 + d1)
I6 = d2

p (HT +BT + CT ) (c1 + d1)

I7 = (HT +BT + CT )BT

(
(1 − α)ωpH

2
T +HTαω

′
pξ + αω′

pCTDT

b0

)
(c1 + d1).

Since
(c2 + d2) =βI (BT + CT +HT )

(
b0

CTHT

)
E∗

+ dp (HT +BT + CT ) + CTHT +BT

(
(1 − α)ωpH

2
T +HTαω

′
pξ + αω′

pCTDT

[b0]

)

>βIHT

(
b0

CTHT

)
E∗,

(c1 + d1) =βI [CTHT +BT (CT +HT )]
(

b0

CTHT

)
E∗

+ dpBT

(
H2

T (1 − α)ωp +HTαω
′
pξ + CTαω

′
pDT

[b0]

)
+ dpCTHT

>βI [CTHT +BT (CT +HT )]
(

b0

CTHT

)
E∗.
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Therefore
I1 > β3

I (BT +HT )CTHT

(
b0

CTHT

)3

E∗3

> β3
IBTCTHT

(
b0

CTHT

)3

E∗3

Moreover
I2 >β

2
I (dp +HT + CT ) (BT +HT )CTHT

(
b0

CTHT

)2

E∗2

>β2
IBTCTHT (dp +HT + CT )

(
b0

CTHT

)2

E∗2

I4 >β
2
IBTCT (dp +HT +BT + CT ) (BT +HT )

(
b0

CTHT

)2

E∗2

>β2
IBTCTHT (dp +HT + 2BT + CT )

(
b0

CTHT

)2

E∗2

I5 >βI [CTHT +BT (CT +HT )] (HT +BT + CT ) dp (HT +BT + CT )
(

b0

CTHT

)
E∗

+ βI [CTHT +BT (CT +HT )] (HT +BT + CT )CTHT

(
b0

CTHT

)
E∗

>2βIBTCTHTdp (HT +BT + CT )
(

b0

CTHT

)
E∗

+ βIBTCTHT [CTHT +BT (CT +HT )]
(

b0

CTHT

)
E∗

+ βIBTCTHT (CT +HT ) (HT + CT )
(

b0

CTHT

)
E∗

I6 >βId
2
p (HT +BT + CT ) (BT +HT )CT

(
b0

CTHT

)
E∗

>βIBTCTHTd
2
p

(
b0

CTHT

E∗
)
.
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and
I7 >βIBT (HT +BT + CT ) [CTHT +BT (CT +HT )] ×(

(1 − α)ωpH
2
T +HTαω

′
pξ + αω′

pCTDT

[b0]

)(
b0

CTHT

)
E∗

>βIBTHT (HT +BT + CT ) [CTHT +BT (CT +HT )] ×(
(1 − α)ωpHT

[b0]

)(
b0

CTHT

)
E∗

+ βIBTCT (HT +BT + CT ) [CTHT +BT (CT +HT )] ×(
αω′

pDT

b0

)(
b0

CTHT

)
E∗

>βIBTCTHT [CTHT +BT (CT +HT )]
(

b0

CTHT

)
E∗

+ βIBTCTHT (HT +BT ) [HT +BT ]
(

(1 − α)ωpHT

[b0]

)(
b0

CTHT

)
E∗

+ βIBTCTHT (BT + CT ) [CT +BT ]
(
αω′

pDT

b0

)(
b0

CTHT

)
E∗

>βIBTCTHT [CTHT +BT (CT +HT )]
(

b0

CTHT

)
E∗

+ βIBTCTHTB
2
T

(
b0

CTHT

E∗.

That is
I2 + I4 >2β2

IBTCTHT (dp +HT +BT + CT )
(

b0

CTHT

)2

E∗2

I5 + I6 + I7 >2βIBTCTHTdp (HT +BT + CT )
(

b0

CTHT

)
E∗

+ βIBTCTHT

[
B2

T + C2
T +H2

T + 2CTHT + 2BT (CT +HT )
] ( b0

CTHT

)
E∗

+ βIBTCTHTd
2
p

(
b0

CTHT

)
E∗

=βIBTCTHT (dp +BT + CT +HT )2
(

b0

CTHT

)
E∗.

Hence
((c3 + d3)(c2 + d2) − (c1 + d1)) (c1 + d1) > I1 + I2 + I4 + I5 + I6 + I7

> (c0 + d0)(c3 + d3)2.
Since

(c0 + d0)(c3 + d3)2 =βIb0BTE
∗
(
βI

[
b0

HTCT

]
E∗ + dp +HT +BT + CT

)2

=β3
IBTCTHT

(
b0

CTHT

)3

E∗3

+ 2β2
IBTCTHT (dp +HT +BT + CT )

(
b0

CTHT

)2

E∗2

+ βIBTCTHT (dp +HT +BT + CT )2
(

b0

CTHT

)
E∗.



40 CHAPTER 6. APPENDIX



Bibliography
[1] Allen, Linda J. S.: Some discrete-time SI, SIR, and SIS epidemic models. Mathematical

Biosciences 124(1) (1994), 83–105.

[2] Batistela, C. M.; Correa, D. P.; Bueno, Á. M.; Piqueira, J. R. C.: SSIRSi-
vaccine dynamical model for the Covid-19 pandemic. ISA Transactions, https://doi.org/
10.1016/j.isatra.2023.05.008.

[3] Belgaid, Y., Helal, M.; Venturino, E.: Analysis of a Model for Coronavirus Spread.
Mathematics, 8 (2020), https://www.mdpi.com/2227-7390/8/5/820.

[4] Brauer, F., Castillo-Chavez, C.; Feng, Z.: Mathematical models in epidemiology,
32. New York: Springer, 2019.

[5] Bygbjerg, I. C.: Double burden of noncommunicable and infectious diseases in developing
countries. Science 337(6101) (2012), 1499–1501.

[6] Calina, D.; Docea, A. O.; Petrakis, D.; Egorov, A. M.; Ishmukhametov, A. A.;
Gabibov, A. G.; Shtilman, M. I.; Kostoff, R.; Carvalho, F.; Vinceti, M.;
Spandidos, D. A.; Tsatsakis, A. : Towards effective COVID-19 vaccines: Updates,
perspectives and challenges. International Journal of Molecular Medicine 46(1) (2020): 3–
16.
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