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Introduction

In this thesis we wish to give an exposition on the known literature regarding the tit-

ular rational homology disk smoothings of isolated surface singularities. As discussed

in the introduction of [30], this construction is helpful for constructing interesting

smooth 4-manifolds, because a generalisation of the blowdown process can be car-

ried out for a con�guration of spheres in a manifold representing a resolution of

such a singularity. Besides the applications, this class of singularities is interesting

in its own right, being at the intersection of surface singularity theory, and various

branches of 4-manifold theory.

We begin with deriving a necessary condition for a graph to be eligible for this gen-

eralised blowdown (codi�ed in 1.1.4), purely combinatorial in nature but motivated

by geometric principles. The �rst chapter presents the main methods and arguments

used in [30], where a complete classi�cation of graphs satisfying the requirements

derived is given.

This condition is only necessary, but for "star-shaped" graphs the classi�cation is

complete, the precise statement, and the proof of a subcase comprises chapter 2.

We tried minimizing the use of symplectic geometric notions as possible, the idea of

the proof should be accessible to readers with little to no background in symplectic

topology as well.

The third chapter is devoted to the construction of the objects used for the gener-

alised blowdown procedure, which are smoothings of the given singularities. Much

of the star-shaped case is given in detail, and a di�erent method is sketched as well.

Afterwards we present some obstructions, which may be used to �nish the classi�-

cation and hopefully prove that the list conjectured by Wahl is complete. A possible

approach to this is [25], the continuation of which is planned for the future.

ii



Contents

Acknowledgements i

Introduction ii

1 Symplectic plumbing trees 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Some generalities . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Case A: cyclic quotient singularities . . . . . . . . . . . . . . . . . . . 11

2 Stars 14

2.1 Weighted homogeneous singularities . . . . . . . . . . . . . . . . . . . 15

3 Constructions and obstructions 22

3.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Smoothings of negative weights . . . . . . . . . . . . . . . . . 22

3.1.2 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 The geometric genus . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 The mubar invariant . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Dimension count . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 McDu�'s theorem and lattice embeddings . . . . . . . . . . . 33

A Algebraic geometry 35

A.1 The Milnor �bration . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Taut singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Graph algorithms in SageMath 41

Bibliography 46



1 Symplectic plumbing trees

1.1 Motivation

1.1.1. Consider a normal surface singularity (X, o), with minimal good resolution

X̃, and suppose further, that there exists a smoothing X, that is a contractible Stein

space and a (proper �at analytic) map f : (X, o) → (D, o) ⊂ (C, o) over a small

disk, which has a rational homology disk �breM = f−1(ϵ). By [16, Theorem 4.10. i)]

(see also [23, Example 6.9.11]) we see that X is a rational singularity (see De�nition

3.2.1), so the resolution dual graph is a tree, and every exceptional divisor is a CP 1

([22, 3.9.]).

1.1.2. The complex structure on X̃ and M induces an almost contact structure on

the link of the singularity Y := ∂X̃ = ∂M , the planes are given by the complex

tangent lines TY ∩ iTY to the boundary. The homotopy type of such a 2-plane �eld

cannot change under a small deformation. From the Hirzebruch signature theorem

it follows, that c21 − 3σ − 2χ is an invariant of almost contact structures. Since

the plumbing is negative de�nite ([23, Proposition 2.1.12]), we have σ(X̃) = −n

(n := dimH2(X̃;Q)), and χ(X̃) = 1+n, and similarly for the smoothing σ(M) = 0,

since it has no second rational homology (in particular c21(M) = 0), and χ(M) = 1.

Equating the two sides gives us

c21(X̃) + 3n− 2(1 + n) = c21(M)− 0− 2 ⇒ c21(X̃) + n = 0

By the long exact sequence of the pair (M,Y ), the boundary of a rational homology

disk is a rational homology sphere, hence rationally c1(X̃)|Y = 0, so it has compact

support in X̃. If we take Z = X̃ ∪ −M this �rst Chern class extends rationally to

it, and is zero outside a compact subset of X̃, so its previously calculated integral

−n doesn't change.

1.1.3. Considering the CW homology chain complex of M we see that H2(M ;Z) = 0

(free and rank 0). The adjunction identity in X̃ shows, that the �rst Chern class is a

characteristic element of the lattice H2(X̃;Z) equipped with the intersection form,
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1. Symplectic plumbing trees

since
c1(X̃)[Σ] = 2 + [Σ] · [Σ] ≡ [Σ] · [Σ] mod 2

The manifold Z is smooth, closed and negative de�nite (since M is a QHD4) so

by Donaldson's theorem ([7, Theorem 1.3.1]) we get, that its intersection form is

diagonalizable. In this diagonal basis E1, . . . , En the �rst Chern class has to have

odd multiplicities with each basis element, and square −n, as previously calculated.

This implies, that it is of the form

±Ei ± · · · ± En

by another change of basis we can presume, that all coe�cients are +1. Collecting

the above we have

De�nition 1.1.4. A negative de�nite dual plumbing graph Γ on n vertices is called

a symplectic plumbing tree, if the following are satis�ed

� Γ is a tree

� the associated intersection form (Z⟨v1, . . . , vn⟩, QΓ) admits a lattice embedding

φ into the Euclidean lattice of the same rank (Z⟨E1, . . . , En⟩,−In)

� de�ning the canonical element K =
∑

Ei ∈ (Z⟨E1, . . . , En⟩,−In) the adjunc-

tion identity is satis�ed for all vertices −In(vi, K) +−In(vi, vi) = −2.

1.1.5. The main purpose of investigating these objects is the construction of inter-

esting 4-manifolds. The general strategy is to �nd spheres embedded according to

a symplectic plumbing tree, remove their neighborhood, and if it actually exists,

glue back the rational homology disk smoothing instead. This decreases the Euler

characteristic, while leaving other interesting invariants unchanged. The �rst moti-

vating example was the rational blowdown procedure of [9], and more generally [26],

where it is shown, that path graphs can be blown down in this way if and only if

the decorations correspond to the Hirzebruch-Jung continued fraction expansion of

p2

pq−1
, where p > q > 0 are relatively prime integers.

We will be working mainly in the symplectic category, the previous construction

still holds if the spheres are symplectic submanifolds, instead of holomorphic ones,

the adjunction identity stays true, and we have a contractible choice of compatible
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1. Symplectic plumbing trees

almost complex structures (which we will start exploiting shortly). The symplectic

form extends over the glued back smoothing by [10, Theorem 1.1], thus we can "blow

down" these more complicated arrangements, like −1 spheres.

1.2 The list

Firstly we will give a complete classi�cation of symplectic plumbing trees. The la-

borious proof will not be fully provided (it was carried out in [30, 3-6.]), but we

will indicate the main methods, which will be mostly combinatorial. Note, that Γ

being a symplectic plumbing tree is a purely combinatorial condition, which does

not guarantee the existence of a QHD4 smoothing for the corresponding plumbed

4-manifold. The question as to which of them do is still open, and will be discussed

later.

To state the theorem we make the following

De�nition 1.2.1. Let S denote the set of minimal* symplectic plumbing trees.

De�ne the graph classes G,W ,N ,M,A,B, C as follows:

� The class G consists of path graphs, with framings given by the negatives of

the Hirzebruch-Jung continued fraction expansion of p2

pq−1
for some relatively

prime 0 < q < p.

� W is depicted by Figure 1.1 (a), the parameters are nonnegative.

� N consists of Figure 1.1 (b) with p, q, r ≥ 0, and a further degenerate case

1.1 (c).

� M is shown mainly by Figure 1.1 (g) with p, q, r ≥ 0, and certain degenerations

as previously (with p or r ” = −1”) de�ned by (d), (e).

� Finally the A,B, C classes are de�ned inductively as follows. For A consider

the graph depicted on �gure 1.2 (a), and blow up the central −1 vertex, or one

of its intersection points with its neighbors. This produces a new graph, which

again has a unique −1 vertex. Blow it up, or one of the edges eminating from

it, and so on. Finally replace the −1 framing with −4. The graphs arising by

this algorithm constitute the class A.
*no vertex has decoration −1
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1. Symplectic plumbing trees
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Figure 1.1: De�nition of the classes W ,N ,M
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Figure 1.2: The graphs used for the de�nition of the A,B, C classes

� For B start the same process with �gure 1.2 (b), and at the end change the

−1 to −3.

� C is done in much the same way beginning from Figure 1.2 (c), and after the

blowups changing the −1 to a −2.

Remark 1.2.2. It is worth noting, that the degenerations in the de�nition of the

N ,M classes disappear if one considers their dual graphs* instead, see 3.1.2.

Now we can state

Theorem 1.2.3 ([30, Theorem 1.8]).

S = G ∪W ∪N ∪M∪A ∪ B ∪ C
*de�ned in 2.1.3, 2.1.4

4



1. Symplectic plumbing trees

1.2.1 Some generalities

We follow [30, Section 3.]. In the following we identify the generator vi with its

image φ(vi) =
∑

j α
j
iEj. To get a better understanding of the relations between the

αj
i consider the adjunction identity

∑
Ej ·

∑
αj
iEj +

∑
αj
iEj ·

∑
αj
iEj = −2 ⇒ −

∑
i

αj
i (α

j
i + 1) = −2

Since αj
i ∈ Z, either there is one αj

i which equals 1, and the others are 0 or −1,

or one coe�cient is −2, and all others are again 0, −1. This is true because if

αj
i ∈ Z \ {−2,−1, 0, 1}, then αj

i (α
j
i + 1) ≥ 6. This proves

Lemma 1.2.4. The image of a vertex v ∈ Γ has one of the following forms in the

diagonal basis Ei

i. v = Eiv −
∑

Jv
Ej

ii. v = −2Eiv −
∑

Jv
Ej

for some index set Jv depending on the vertex with iv ̸∈ Jv.

Remark 1.2.5. Notice, that if vi and vj are adjacent in Γ, i.e. vi · vj = 1, then

K · (vi+vj)+(vi+vj)
2 = K ·vi+K ·vj +v2i +v2j +2 = −2−2+2, so the adjunction

identity still holds. Repeating the same argument, and using induction we get, that

the sum of vertices over a connected subgraph Γ′ ⊂ Γ still has one of the two above

forms in the Ei basis.

Next we claim, that

Theorem 1.2.6. If there exists a vertex of type ii, then it is unique.

Proof. Aiming for a contradiction, suppose that there are two such vertices v, w.

Consider the vertices of the path connecting them in Γ, v = v1, . . . , vk = w. By

shortening the path if necessary, we can assume, that v2, . . . , vk−1 are all of the form

i in Lemma 1.2.4. Using Remark 1.2.5 and the previous assumption on v2, . . . , vk−1,

the sums v1 + v2, . . . , v1 + · · · + vk−1 all have a coordinate −2. This is seen by

induction. For the sum −2Eiv1
−
∑

Jv1
Ej +Eiv2

−
∑

Jv2
Ej to be of form i we would

need iv1 = iv2 , but then since all other coe�cients are negative, a +E∗ cannot appear.

5



1. Symplectic plumbing trees

Continuing the path to the very end we need to look at ⟨v1 + · · · + vk−1, vk⟩ = 1

(since the path v1 . . . , vk−1 and vk are connected by an edge, and having more than

one edge would create a cycle in the graph). In the diagonal basis this is

1 = ⟨−2Eα −
∑
j∈Jα

Ej,−2Eivk
−

∑
j′∈Jvj

Ej⟩

Using the Kronecker we can expand as follows

= −4δα,ivk − 2
∑

j′∈Jvk

δα,j′ − 2
∑
j∈Jα

δj,ivk −
∑
j∈Jα

∑
j′∈Jvk

δj,j′ ≤ 0

a contradiction.

Using the same method we get the following

Corollary 1.2.7. If Γ1,Γ2 ⊂ Γ are disjoint connected subtrees, then at least one of

the vectors
∑

Γi
v has form i.

Moreover, the '+' indices for the type i vertices are unique.

Lemma 1.2.8. If v, w ∈ Γ, v ̸= w are two vertices of type i, then the distinguished

indices iv, iw are not equal.

Proof. Suppose on the contrary, that the indices are equal. The two vertices pair as

either 0 or 1 depending on their adjacency, from this we get

0 ≤ ⟨Eiv −
∑
j∈Jv

Ej, Eiw −
∑
j′∈Jw

Ej′⟩ = −1−
∑
j∈Jv

∑
j′∈Jw

δj,j′

since iv = iw ̸∈ Jv ∪ Jw. This gives 0 ≤ −1, a contradiction.

Proposition 1.2.9. For a minimal symplectic plumbing tree �x a basis vector Ei in

the diagonal lattice. This basis element can appear in the image of 1,2,3 or 4 vectors

with multiplicities as shown by the following table, or none at all.

#\Σ -2 -1 0 1
1 (-2) (-1) (1)
2 (-1,-1) (1,-2) (1,-1)
3 (1,-1,-2) (1,-1,-1)
4 (1,-1,-1,-1)

6



1. Symplectic plumbing trees

Proof. Applying Remark 1.2.5 to the whole Γ (a connected subgraph of itself), we

see that the sum of the coe�cients of any basis element Ei is either −2,−1, 0 or

1. Combining this with Theorem 1.2.6 and Lemma 1.2.8 we only have to �nd the

number of ways there are to make a sum of −2,−1, 0, 1 while using at most one −2,

at most one 1, and possibly many −1's. This is done in the above table.

Remark 1.2.10. This observation only uses some of the information we have at our

disposal. To re�ne the statement, notice that Ei cannot be of type (1,−1,−2), since

if v = −2Ei −
∑

j∈Jv Ej and ⟨w,Ei⟩ = −1, the product ⟨v, w⟩ is at most −1, a

contradiction. If an Ei does not appear in any vertex, then if we change the graph

and the embedding by adding −Ei to an arbitrary vertex v we still get a minimal

symplectic plumbing tree. It is still embedded into (Zn,−In). The intersections be-

tween vertices, i.e. the structure of the undecorated graph doesn't change, since Ei

is in no other vertex. The self-intersection of v decreases by 1 and the adjunction

identity stays intact*, since

⟨
∑

Ej, v−Ei⟩+(v−Ei)
2 = ⟨

∑
Ej, v⟩+v2−⟨

∑
Ej, Ei⟩+(−Ei)

2 = −2+1−1 = −2.

So from the last possibility we can produce a graph with a basis element of type

(−1). Note, that the reverse construction does not always (in fact it will turn out

never to) produce a minimal plumbing tree.

Now we continue the restrictions on the possible embeddings with

Theorem 1.2.11. If Γ is a minimal symplectic plumbing tree consisting of more

than just a vertex, then there cannot be a basis element of type (−2).

Proof. We proceed by induction. Consider the graph consisting of two vertices with

an edge connecting them. By assumption one of the two vertices has the form −2Ei

or −2Ei−Ej for {i, j} = {1, 2}. Now by 1.2.6 the other vertex is type i, and has the

form +Ej since Ei is type (−2), in contradiction with the minimality assumption.

Suppose that the embedding of Γ has a basis element of type (−2), and no graph

on fewer vertices has such an embedding. Denote the basis vector of type (−2) by

E1. Since it is not contained in any other vertex, it has to be the distinguished basis

*every other vertex stays unchanged, so we only need to check v

7



1. Symplectic plumbing trees

element in x =
∑

Γ v as well (in particular it is of type ii). This rules out basis

elements of types (−1,−1), (1,−1,−1,−1), (1).

By assumption, the graph has more than one vertex. Therefore we know that there

is a leaf (valency 1 vertex) of type i, call it v. Since it contains the vertex of type

ii, the sum
∑

Γ\{v}w is of type ii. From this we see, that Eiv cannot be of type

(1,−2), (1,−1,−1), since this would mean, that the sum has both −2E1 and −2Eiv ,

which is a contradiction.

This means, that Eiv is of type (1,−1); we argue that this cannot happen either.

Consider the unique vertex v′ ∈ Γ, neighboring v, and �rst suppose, that the −Eiv

is in v′. Replace the edge vv′ by a new vertex, the framing of which is given by

v + v′. Notice, that (v + v′)2 = v2 + v′2 + 2 < −1. This eliminates Eiv from the

embedding, and we get a new minimal symplectic plumbing tree on n− 1 vertices,

with an embedding containing a (−2) basis element, a contradiction.

Similarly, if the vertex containing −Eiv is not v′, then delete v, and add Eiv to

this vertex, again eliminating this basis element from the embedding. We have to

check, that the new graph stays minimal after this modi�cation. If this modi�ed

vertex v′′ becomes a −1 vertex, then originally it had the form Eiv′′
−Eiv . Consider

0 = ⟨v, v′′⟩. Substituting the expression for v′′ we get ⟨Eiv ,−Eiv⟩+⟨−
∑

Jv
Ej, Eiv′′

⟩,

the other terms pair as zero, since iv′′ ̸= iv. This expression is at least one, which is a

contradiction. The new graph is again a minimal symplectic plumbing tree on fewer

vertices than Γ, still containing a (−2) element in its embedding, in contradiction

with the inductive assumption.

Remark 1.2.12. The graph containing a single vertex with decoration −4 with em-

bedding −2E shows, that our assumption on the vertex set is necessary, having a

basis element of type (−2) is equivalent to |Γ| = 1.

Repeating the same argument* we also get

Corollary 1.2.13. Basis elements of type (1) cannot exist for a minimal symplectic

plumbing tree.

*or noticing, as in Remark 1.2.10, that a type (1) can be changed to a type (−2) while staying
in S

8



1. Symplectic plumbing trees

Proof. The induction starts easier, since a single vertex graph with basis vector of

type (1) is not minimal. Choose a graph Γ with a type (1) basis element and minimal

vertex set, denote the basis element of type (1) by E1.
∑

Γ v will be of type i, since

E1 cannot disappear, so no basis elements of types (−1,−1), (1,−1,−1,−1). This

means, that there are no vertices of type ii, if there would be one, then the whole

sum would by type ii. This forbids basis elements of type (1,−2).

Consider a leaf v not containing E1 (this exists, since there are at least two vertices in

Γ). By the previous argument, the sum
∑

Γ\{v}w is also of type i, so the distinguished

coordinate of v cannot be of type (1,−1,−1), so it is of type (1,−1).

If the vertex containing −Eiv is the vertex adjacent to v, we can replace the edge

by a new vertex and get a contradiction from the inductive assumption. Otherwise

delete v, and add Eiv to the vertex containing −Eiv , the same proof shows that the

new graph is again minimal, and the proof is complete by induction.

1.2.14. This means, that
∑

Γ v is always of type ii. For a more systematic treatment

of the actual list of indices, which can occur consider the sum
∑

i<j⟨vi, vj⟩, which

counts the number of edges in Γ, which is n−1, since it is assumed to be a connected

tree. Expand this sum in terms of the diagonal basis Ei. Since these all pair as −δij,

the contribution to the sum only depends on the type of the basis element. By a

simple calculation we see that the contributions of the basis elements are as follows:

� (1,−2) contributes 2

� (1,−1) and (1,−1,−1) both contribute 1

� (−1) and (1,−1,−1,−1) both contribute 0

� (−1,−1) contributes −1

This helps us organize our investigation. Since
∑

Γ v is of type ii, there has to be a

single basis element of type (−1,−1) or (1,−1,−1,−1), and we collect the di�erent

cases that can occur in

Proposition 1.2.15. The following three collections of basis element types can occur

in a minimal symplectic plumbing tree:

9



1. Symplectic plumbing trees

(A) one (−1,−1), one (1,−2), and n − 2 are a combination of (1,−1) and

(1,−1,−1)

(B) one (1,−1,−1,−1), one (1,−2), one (−1), and the remaining n − 3 can be

(1,−1) or (1,−1,−1)

(C) one (1,−1,−1,−1) and n− 1 can be (1,−1) or (1,−1,−1)

Proof. We saw that x =
∑

Γ v is of type ii, so there has to be a basis element of type

(−1,−1) or (1,−1,−1,−1), since these are the only ones which provide a −2E∗ to

x. Consider the sum
∑

i<j⟨vi, vj⟩ = n − 1, expanding this in terms of the Ei basis

and collecting the terms corresponding to a single basis vector we see an n term

sum, each term of which is ∈ {−1, 0, 1, 2} as above.

First suppose, that there is a basis element of type (−1,−1), which contributes −1

to the sum, we have to produce a contribution of n out of the remaining n−1 terms.

For this there has to be an (1,−2) basis element contributing 2, and there cannot

by more by 1.2.6. This means, that the others have to contribute 1, i.e. a mix of

basis elements of types (1,−1) and (1,−1,−1), this is case (A).

If the distinguished −2 in the sum of the vertices is provided by a basis element

of type (1,−1,−1,−1), then our sum stays 0, and we have to produce n − 1 out

of n − 1 terms. There are two ways to do this, either all terms contribute 1, or a

term contributes 2 (there can be at most one as before), another 0, and all others

contribute 1, which are cases (C) and (B) respectively.

In the proofs of 1.2.11 and 1.2.13 we already saw that basis elements of type (1,−1)

require more care to deal with, than the others. We solidify this distinction in the

following

De�nition 1.2.16. A vertex v ∈ Γ is called full, if it is of type i, and its distinguished

basis element is of type (1,−2), (1,−1,−1) or (1,−1,−1,−1). Further, Γ is called

full, if it has an embedding without a basis element of type (1,−1).

Lemma 1.2.17. Γ is full if and only if
∑

Γ v = −E1 − · · · − En−1 − 2En (after

possibly reordering the basis).

10



1. Symplectic plumbing trees

Proof. We ruled out either generally, or by de�nition the types, which have multi-

plicity 1 or 0 in the sum, i.e. every basis element has multiplicity −1 or −2, and

there can only be one of the latter.

The next statement motivates the nomenclature.

Corollary 1.2.18. Γ is full if and only if
∑

Γ v
2 = −3n− 1.*

Proof. If it is full, then w =
∑

Γ v = −E1 − · · · − 2En, and using the fact that Γ is

a connected tree w2 =
∑

Γ v
2 + 2(n− 1) = −(n− 1)− 4, the other direction follows

similarly: if w does not contain an Ei, then w2 grows.

We are ready to state the main

Theorem 1.2.19. If Γ ∈ S is in case (A), then Γ ∈ G, if it is in case (B), then

Γ ∈ C, and if it is in case (C), then Γ ∈ A ∪ B ∪M∪N ∪W.

Along with constructions showing that each class is in S, this will prove 1.2.3. In

the following we present the proof for case (A).

1.3 Case A: cyclic quotient singularities

Firstly we need a characterisation of the continued fraction coe�cients for the ra-

tional numbers de�ning the graphs in G.

Proposition 1.3.1 ([30, Proposition 4.1]). (−a1, . . . ,−ak) is the vector of dec-

orations for a graph Γ ∈ G if and only if it is in the minimal set of vec-

tors containing (−4), and for which if (−a1, . . . ,−ak) is contained, then so are

(−2,−a1, . . . ,−ak − 1) and (−a1 − 1, . . . ,−ak,−2).

The proof consists of simple induction reliant on the crucial fact, that

Proposition 1.3.2 ([28, Corollary 5.7]). If the Hirzebruch-Jung continued fraction

[a1, a2, . . . , an] =
p
q
, then [an, an−1, . . . , a1] =

p
q′
, where qq′ ≡ 1 mod p and 0 < q′ <

p.

This allows for an inductive proof for case (A), but �rst

*it is the least possible

11



1. Symplectic plumbing trees

Proposition 1.3.3. The graphs in G are full.

Proof. The �rst graph on a single vertex is clearly full by 1.2.18, since −4 = −3·1−1.

One step of the inductive de�nition raises the vertex count by 1, and lowers the

square sum of the vertices by 3. Now since −3(n− 1)− 1− 3 = −3n− 1 we get the

statement.

Theorem 1.3.4. If Γ contains a basis element Et of type (−1,−1) (i.e. it is of case

(A)), then Γ ∈ G, and the two −Et's are in the endpoints of the chain.

Proof. To start our induction we check the n = 2 case. Say E1 is the type (−1,−1),

the distinguished basis element has to be E2 in both vertices, v and w so by Lemma

1.2.8 and Theorem 1.2.6 up to reordering of the vertices the only possibility is

v = E2 − E1, w = −2E2 − E1, which clearly satis�es the requirements of the

statement.

Now proceed by induction. Suppose the statement is known for k < n, where n ≥ 3,

and denote the (−1,−1) basis element Et. First consider the case, when the −Et's

are in the endpoints v1, vn. Add Et to both, and delete the one which has smaller

decoration in absolute value. This procedure gives us a graph on n − 1 vertices,

removes Et from the embedding, so it is now embedded into Zn−1. Since v1 · vn = 0,

the adjunction identity stays intact (cf. Remark 1.2.10). Finally the graph will be

minimal, since if it were non-minimal, then both v1, vn would be of the form Evi−Et

in the original Γ, which implies that they pair to −1, a contradiction.

Γ′ is also of case (A), since we only removed a −1 from the types of the remaining ba-

sis elements, or left them unchanged, and this cannot produce a type (1,−1,−1,−1).

Now by induction we know that Γ′ ∈ G. In particular Γ′ is full. For Γ the sum of

decorations is at least −3n− 1, we raise the sum by 1 when adding Et to the vertex

which will remain, thus the deleted vertex has to have decoration −2, i.e. it looks

like E∗−Et (the decoration cannot be −1). Following the removal process backwards

we see, that it coincides with the inductive characterisation of the graphs in G. We

subtract 1 from one end, and concatenate a new vertex of decoration −2.

The other case to consider is if there is a non-leaf vertex containing −Et, say it is

vi. Since n ≥ 3 there is at least one leaf v with v · Et = 0. v cannot be full, since

12



1. Symplectic plumbing trees

full vertices contribute −2Eiv to the sum
∑

Γ\{v} u, but this also contains −2Et, a

contradiction. v is a leaf, so Γ \ {v} is also connected, and the sum of its vertices

is of type ii (it has Et as its distinguished basis element), v is of type i. Comparing

with the possible types in case (A), we get that Eiv is type (1,−1).

We split into two further cases based on whether the unique neighbor of v is the

vector containing −Eiv , or not, and begin with the latter. So let Eiv · w = 1, with

v ·w = 0. Now delete v, and replace w with w+Eiv to get a graph on n− 1 vertices,

with an embedding into Zn−1. The adjunction identity stays intact at w, just like

before (Remark 1.2.10). It will also be minimal, the only problematic vertex is w,

if it squares to −1, then it is of the form Eiw − Eiv , which means that v · w ≥ 1,

contradiction. In conclusion this new Γ′ ∈ S, still without a type (1,−1,−1,−1)

basis element, i.e. case (A). By induction Γ′ ∈ G, in particular it's full, repeating the

same argument as in the previous case provides that v = Eiv −Eι, implying that its

neighbor v′ has the form Eι −
∑

Jv′
Ej. This contradicts the fullness of Γ

′, Eι could

have type (1,−1,−1) or (1,−1), in any case after removing v, Γ′ will not be full in

the former case, or |Γ′| = 1 in the latter, in contradiction with Proposition 1.3.3 or

the inductive hypothesis.

Lastly if v′ and w coincide, modify v′ to v + v′ and delete v. By Remark 1.2.5 the

adjunction identity stays intact, (v + v′)2 = v2 + (v′)2 + 2 ≤ −2 so it stays minimal

and Eiv gets eliminated from the embedding, so we produce Γ′′ ∈ G by induction.

By the additional inductive hypothesis we get that vi is one of the endpoints of Γ
′′,

but it was not a leaf in Γ, so vi coincides with the modi�ed v′. Now we can justify

deleting v from the original Γ, and adding Eiv to v′, since it contains one of the

−Et's, the graph will stay minimal, and the previous case's argument �nishes the

proof.

1.3.5. Finally we must show, that G ⊂ S. The proof above already indicates how

this can be done inductively. The single −4 vertex graph is readily embedded by

v 7→ −2E. (−5,−2) is embedded by (−2E1−E2, E1−E2), as seen at the beginning

of the proof. Here E2 is the unique (−1,−1) basis vector of our graph. Now the

inductive step can be completed by mapping the new (−2) vertex to Et − En, and

modifying the other end of the chain to v1 − En (En is the new basis element, and

Et is still the unique type (−1,−1)).

13



2 Stars

Now we begin the discussion about which resolution graphs actually admit QHD4

smoothings. The case, when the graph admits a unique vertex of valency > 2 (also

called star-shaped) is completely classi�ed as follows:

Theorem 2.0.1 ([2, Theorem 1.4, 1.6]). Suppose Γ is a minimal star-shaped plumb-

ing tree with at least three branches and the weight of the node* in the dual� Γ′ is at

least −1, then the following are equivalent:

1. There is a singularity with minimal good resolution graph Γ admitting a QHD4

smoothing

2. The Milnor �llable contact structure� of the link of the plumbed 3-manifold

corresponding to Γ admits a weak symplectic QHD4 �lling

3. Γ ∈ W ∪N ∪M∪ the subfamilies of A,B, C depicted on Figure 2.1
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Figure 2.1: The star-shaped subfamilies of A,B, C admitting a QHD smoothing

*the vertex with valency > 2
�see Remark 2.1.4
�see section 1.1 and section A.1 or [5]
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Remark 2.0.2. We see in Example A.2.7 that the graphs where the node has valency

3 are taut (De�nition A.2.1). The framing assumption is automatically satis�ed

in this case. It is also worth noting, that this assumption on the valency 4 case

places no additional restrictions on the holomorphic result*, since our singularities

are rational, the framing of any vertex cannot be less than the valency of the vertex

minus one in absolute value (cf. Remark 3.2.3). In [32] it is conjectured, that this

list is complete, i.e.:

Conjecture 2.0.3. The only normal surface singularities admitting a rational ho-

mology disk smoothing are the known weighted homogeneous examples.

2.1 Weighted homogeneous singularities

Now following [2, Section 2-3] we expose the main arguments and methods used in

the proof. The �rst important construction is the Hirzebruch surface (see [12, 3.4.7],

[17, II.1-2]), used for the de�nition of the dual graph later.

De�nition 2.1.1. Consider the complex plane bundle O(0)⊕O(n) → CP 1, where

O(n) is the complex line bundle over CP 1 with Euler number n. We call its projec-

tivization P(O(0)⊕O(n)) a Hirzebruch surface, and denote it by Σn.

Example 2.1.2. Σ0 = CP 1 × CP 1 and Σ1 = CP 2#CP 2. Up to di�eomorphism

these are the only two cases, dependent only on the parity of n.

2.1.3. These surfaces have two obvious (smooth) sections, corresponding to the ori-

gin, and the "point at in�nity" on each �ber, we call these the zero and in�nity sec-

tions respectively (c.f. the coordinate description in [17]). These are two disjointly

embedded CP 1's, with self intersections n and −n respectively. Now let there be

given a star-shaped negative de�nite graph Γ with the central vertex having valency

m and decoration b. Pick m di�erent �bers in Σb. By blowing up the intersection

points of these �bers with the in�nity section and then the new divisors as depicted

on Figure 2.2, recreate Γ as the neighborhood of the zero section and some curves

on the strict transforms of the �bers. Disregarding the −1 curves "in the middle",

the complement of this con�guration is called the dual graph of Γ, denoted Γ′.

Remark 2.1.4. This construction is needed only to obtain the compactifying divisor

*but the question of symplectic �llability is still an open question if the central framing is = −2
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Figure 2.2: m = 3 example for the construction of the dual graph and the
intersections of the spheres at the end of the construction

XΓ′ (an open neighborhood of Γ′ ⊂ Σb#nCP 2)), one does not need to run this

algorithm to determine the dual graph Γ′. Consider instead the Hirzebruch-Jung

continued fraction given by reading the negatives of the decorations of an arm of

the graph from the central vertex outwards, this encodes each arm as a rational

number pi
qi
.* If Γ had m arms, and the central vertex had decoration −b, then the

dual graph Γ′ will have the same number of arms, central decoration b−m, and each

arm will have decorations given by the negatives of the continued fraction coe�cients

of pi
pi−qi

(again written from the center outwards). A particularly simple algorithmic

way of obtaining these numbers is the Riemenschneider point rule ([28, Proposition

2.8], see also [23, 2.3.5]). Consider p
q
= [a1, a2, . . . , ak], and write a1 − 1 dots in a

row, next begin a new row of a2− 1 dots, the �rst one of which is under the last one

of the previous row, and so on. Reading the diagram by columns, instead of rows

gives us back on less, than the coe�cients of p
p−q

.

Example 2.1.5. The following diagram represents 64
23

= [3, 5, 3, 2], reading by

columns we see 1, 2, 1, 1, 2, 2, thus 64
41

= [2, 3, 2, 2, 3, 3].

1 2 1 1 2 2
2 • •
4 • • • •
2 • •
1 •

*In our case of interest each decoration is at most −2, so this number is greater than 1
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2.1.6. By construction, the corresponding XΓ′ has boundary −∂XΓ =: −YΓ. Now

suppose that there is a QHD smoothing K of the singularity of XΓ. This smoothing

provides a strong convex �lling of the Milnor �llable contact structure of YΓ as well,

since the deformation induces a homotopy of ξM through contact structures on the

boundary. Now use [8, Proposition 4] to cut out a su�ciently small neighborhood of

XΓ from the just constructed Σb#nCP 2, and replace it withK to obtain a new closed

symplectic manifold X containing XΓ′ . This can be done, since by [8, Corollary 6.]

any su�ciently small neighborhood of the spheres encoded by Γ will be ω-convex,

allowing us to preform the surgery symplectically, see [loc. cit.].

2.1.7. The case which is of interest to us are the star-shaped graphs Γ ∈ A∪B ∪ C,

since the other graphs already have QHD smoothings constructed, see Theorem

3.1.2. We split the classes according to the arm, where the blowup process de�ning

the class begins, and according to whether the central vertex has valency 3 or 4.

Denote them by A3,B2,B4, C2, C3, C6,A4,B4, C4 respectively*. Each of these classes

have simple enough shapes for us to be able to describe the corresponding dual

graphs with the use of Remark 2.1.4. The strategy of the proof relies on the following

theorem:

Theorem 2.1.8 (McDu�, [18, Theorem 1.4]). If a closed symplectic 4-manifold

(M4, ω) contains a symplectically embedded sphere L with self-intersection 1, then

(M,L) is symplectomorphic to a blowup of (CP 2,CP 1) away from L (i.e. the blown

up −1 spheres are disjoint from L, which descends to a projective line).

2.1.9. We wish to apply this theorem to the above constructed symplectic manifold

X = K ∪YΓ
XΓ′ . By blowing up and down the con�guration in the XΓ′ component

we create a suitable L with [L]2 = 1. A simple application of the Mayer-Vietoris

sequence shows that rkH2(X) = rkH2(XΓ′). Now Theorem 2.1.8 guarantees us the

existence of suitably many disjoint (−1)-spheres to blow down, but we wish to follow

what happens to the dual graph during this process, so we choose a tame almost

complex structure for which every curve of Γ′ is pseudoholomorphic. A consequence

of the above theorem ([2, Lemma 2.2]) tells us, that the remaining curves are all −1

spheres, used to initiate the blowdown process. Now the strategy is clear, since the

con�guration Γ′ does not contain −1 curves, these new curves must intersect it to

*subscripts indicate the decoration of the arm where we �rst blow up, superscripts indicate
that the inductive process started by blowing up the central vertex
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start the blowdown*. We must �nd the possible places they meet the already present

curves and see, that these are precisely the cases stated in the theorem, thus ruling

out every other member of the families from having QHD �llings.

Remark 2.1.10. Some helpful facts aid us to this end. Since b+2 (X) = 1, there are no

symplectic spheres of nonnegative self-intersection in the complement of L. There

also cannot exist irreducible singular rational curves, or higher genus curves in the

complement ([2, 2.5, 2.3]). This also means, that there cannot exist a cycle of rational

curves in the complement of L, since we could glue them together to produce a higher

genus embedded curve in contradiction with the previous statement. Now we begin

discussing the simplest case, that of C6.

Theorem 2.1.11. If the link YΓ of a singularity associated to a singularity with

minimal good resolution graph Γ ∈ C6 admits a weak QHD �lling, then the blown

up arm has decorations (−2, . . . ,−2,−n− 5), where n ≥ 2 is the length of the arm.

Remark 2.1.12. The proof is modi�ed slightly from the presentation in [2], since the

symplectic geometrical arguments made there are di�cult to pin down precisely. For

some background see [20, Remark 3.2.3].

Proof. The dual graph Γ′ can be described simply, the −2 arm dualizes to another

−2 arm, for −3, we see 3
3−1

= [2, 2]. The third arm we can only describe abstractly of

course, but there are a few pieces of information we note. First, the arm has length

at least 5, since the last vertex has decoration at most −6.� By the de�nition of the

C class the central vertex has framing at most −2, so the dual graph has central

framing at least −1. If the framing is not equal to −1 we blow up the intersection

of the central sphere and the '6' arm to make it −1.

Now blow down this central −1 sphere, and the two −2 spheres constituting the dual

of the −3 arm of Γ to obtain a +1 sphere L, a curve C triply intersecting it, and the

rest of the dual of the 6 arm unchanged as on Figure 2.3. If the original graph had a

rational homology disk smoothing, then we can obtain a closed symplectic manifold

as discussed above, in which this con�guration is embedded (note, that blowing

*since all symplectic curves are nonzero in homology every curve not intersecting L must
disappear before we arrive at CP 2

�at the end of the Hirzebruch surface construction we need to produce −6 or less, which brings
at least 5 −2's to the end of the dual chain
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up and down is possible symplectically, and it does not change the boundary, see

[24, Appendix 3.3.3]). Applying McDu�'s theorem, we need to be able to blow this

con�guration down, and L has to descend to a line. This implies, that C (which

we cannot blow down either since it intersects L) will become a cubic curve, since

L · C = 3.

.......

-2 -1

-2

-2

L

C

S1

S2
Sk-1

Sk

E

Figure 2.3: The dual con�guration with the three blowdowns and the placement of
the extra −1 curve indicated

Every blowdown removes a CP 2 connected summand from our manifold, thus

rkH2(X) drops by one at every step until it reaches one, when we stop. This rank is

coming from XΓ′ , since we closed it with a rational homology ball. After the setup

we see that this rank is k + 2, so X ∼= CP 2#(k + 1)CP 2 up to di�eomorphism. We

see the generator of CP 2, and k curves which need to be blown down, since they

don't intersect L. This means, that by choosing a tame almost complex structure

for which the current con�guration is pseudoholomorphic, there will be one more

−1 sphere E, which has to intersect the chain at some point for us to be able to

blow down the con�guration. This can only happen at a single point, otherwise it

would create a cycle of spheres contradicting Remark 2.1.10. Since the image of the

sphere C represents 3L after we blow everything down it has to be singular *, so E

has to intersect it as well.

If the central framing is not −1, then after the initial constructions the curve C will

have framing 2 since we had to blow up the central vertex, meaning that its framing

must increase by precisely 7 after we blow everything down. Notice however, that

every step increases its framing, and at least once it gets increased by� ≥ 4, when

the loop created by E gets closed, i.e. 7 ≥ k + 4, so k ≤ 3 which is a contradiction,

*A smooth curve representing 3L has genus 1
�If [S] · [S′] = k, with [S]2 = −1, then blowing S down increases the self-intersection of S′ by

k2 [12, Figure 5.17-18]
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since the dual arm has length at least 5 (by the general formula of Equation 2.1

one step in the construction cannot decrease the length of the dual arm, and in the

beginning it is of length 5).

If the central framing is already −1, then this means, that during the construction

of the 6 arm we don't blow up next to the central vertex (node) since the node of

the dual graph will have framing a− 3 if −a was the framing of the original graph.

By the Riemenschneider point rule (Remark 2.1.4) we see that if the original arm

of the graph had framings −c1, . . . ,−cn, then the dual arm has length

k = −(n− 1) +
n∑
1

(ci − 1). (2.1)

The sum gives the points in the diagram. The number of rows is this number, but we

lose one for every new row we start beginning from the second. Using this formula

simple induction shows, that in our case the length of the dual arm = k+1 = n+4.

For the length 1 graph this is clear, since (−6) dualizes to (−2,−2,−2,−2,−2). One

step in the construction of the C class is a modi�cation of the form: (the underline

indicates the inductive −1 vertex, that changes to −2 when we �nish the blowups)

(. . . , ci−1,−2, ci+1, . . . ) → (. . . , ci−1 − 1,−2,−2, ci+1, . . . )

(. . . , ci−1,−2, ci+1, . . . ) → (. . . , ci−1,−2,−2, ci+1 − 1, . . . )

(notice, that we are using here, that the blowup isn't happening next to the central

vertex). This means, that Equation 2.1 changes by 2− 1, proving the statement.

We also see, that C has framing at least 3 − (n + 1) by the point rule, since in Γ

the length of the arm is n, the corresponding diagram has n rows. The previous

argument applies to this case as well. We blow down n + 4 times, and at least one

of these raises the framing of C by (at least) 4 instead of just 1, i.e. it gets raised to

at least 3− (n+ 1) + n+ 3 + 4 = 9, and it cannot be more since it will descend to

a singular cubic.

Now if E does not intersect the chain at its far end, then we claim, that there will

be more than one blowdown which increases the framing of C by more than 1. For

if it intersects some Si which is not the endpoint, then blowing down E, then Si we

see a con�guration of three spheres intersecting at a point, one of which we have to
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blow down, say Si−1. Doing so increases the intersection multiplicity of Si+1 with

the (image of) C, thus when we blow Si+1 down we increase the framing by at least

4, and Si+2 will also intersect C with higher multiplicity. This contradicts the bound

derived previously, since when the loop C,E, Si, Si−1, . . . gets closed we also have

an increase of (at least) 4. Thus the only possibility is for E to intersect the chain

at its far end, and this forces the framings to be −2 for all Si, and C has framing

2 − n. Notice, that to get back to the unmodi�ed dual graph, we have to blow up

the three spheres, which we blew down to produce L, so in the actual dual graph

the �rst vertex of the 6 arm has framing −n− 1.

Finally we can check, that this graph is indeed dual to the claimed con�guration. A

continued fraction containing n twos can be calculated by simple induction

[(2)n] := [2, 2, . . . , 2] =
n+ 1

n
(2.2)

thus the dual long arm is represented by n+1−n+3
n+4

= n2+4n+1
n+4

, so n2+4n+1
n2+3n−3

encodes the

long arm of the original Γ. Now since n(n2+3n−3) ≡ n(−n−4) ≡ 1 mod n2+4n+1

we see that by Proposition 1.3.2 reversing the coe�cients corresponds to n2+4n+1
n

=

n+ 5− n−1
n

= [n+ 5, (2)n−1], the claimed framings.
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3 Constructions and obstructions

3.1 Constructions

3.1.1 Smoothings of negative weights

In this section we introduce a method for constructing smoothings for all of the

known cases (star-shaped graphs i.e. weighted homogeneous singularities). We use

a corollary of a result of Pinkham

Theorem 3.1.1 ([30, Theorem 8.1], [27, Theorem 6.7]). Let Γ be a star-shaped

negative de�nite graph. If there exists a smooth projective rational surface Z and a

collection of smooth rational curves D ⊂ Z intersecting according to the dual graph

of Γ, Γ′ satisfying rkH2(Z,Z) = rkH2(D,Z), then Z is a smoothing of a singularity

with resolution graph Γ, moreover the interior of the Milnor �ber is di�eomorphic

to Z \D.

Using this theorem our aim is to �nd curve con�gurations in some blowup of CP 2,

a subcollection of which represents the dual graph of a member of the class under

consideration. The complete* list of constructions can be found in [30, Section 8.1-2],

[3, Section 3.] and [2, proof of theorem 1.4&1.6].

Theorem 3.1.2 ([30, Example 8.3-4]). The graphs in G,M,N ,W all admit QHD

smoothings.

Proof. For G consider a smooth quadric Q and a line L transversely intersecting it

in CP 2. Blow up the two intersection points of Q with L to obtain the square dual

graph depicted on Figure 3.1. Given a graph Γ ∈ G, we consider it a star-shaped

graph with two legs (one possibly empty) by designating the image of the −4 vertex

to be the node. We can build its dual graph from the con�guration above by blowing

up the intersection points of the image of L with its two neighbors.

*with regards to the star-shaped case
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3. Constructions and obstructions

2

-1

-2 -1

-2blowup

2

-1-1

-1

Figure 3.1: The basic con�guration and the �rst blowup indicated by dashes

Identify this with the dual graph of Γ by considering the construction of the dual

graph in the Σ4 Hirzebruch surface. Blow up two �bres as usual, and then the con-

struction is modi�ed slightly as follows: remember that each step in the construction

for G consists of lowering the framing on one end of the chain by one, and concate-

nating a new −2 onto the other. We can mimic this by doing blowups on both

distinguished*−1 curves in the con�guration as indicated by Figure 3.2. Building

up Γ in this way we almost get back the original de�nition of the dual graph, but

there is a trailing chain of a −1 curve followed possibly by some −2's on one of the

arms of the claimed dual. This is a byproduct of our method, blowing them down

corresponds precisely to the fact that the −4 curve has had its framing lowered.

The length of this −1 subarm is precisely the number of times −4 had its framing

lowered by construction (notice, that when −4 is no longer on one of the ends of

the chain, the construction changes the last −2 of this portion of the dual arm to

a −3, and thus the blowdown process stops at this point). The Γ portion of the

-4

2

-1

-1

-1

-1

-5

2

-2

-1

-2

-1

-2

-1

Figure 3.2: The �rst step of the modi�ed construction with the two possible
blowup-pairs indicated by empty and full circles.

con�guration stays unchanged during this blowdown process, and we get the dual

*At the �rst step the −1 curves intersecting the −4 central curve, and afterwards always the
"newest" −1 curve on both arms.
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3. Constructions and obstructions

graph according to the original de�nition.

Now it is clear, that the previous construction provides the same dual graph. The

starting con�guration is identical, disregarding the "bottom" −1 curve on the left

of Figure 3.1. A single blowup step produces the same result (namely one arm gets

a new −2 vertex, and the other arm's last vertex's framing gets dropped by one) as

the original construction of the dual graph. This is true by noticing the symmetry

of the construction. If one arm of Γ gets a new −2 vertex, the blowup also lowers

the framing of the last member of the corresponding dual arm, and vice versa on the

other arm. The rank will also be equal to the rank of the ambient space by induction.

It is so in the �rst step and after every blowup a single new generator is added to

the con�guration. Afterwards we blow down only vertices in the con�guration, so

the rank of the ambient space, and also of the subcomplex gets dropped by one.

E4

◦
E1

•

L3 • E5◦

E2 •
L2

•
L1

•
+1 L4

• E3•

E6

◦

E4

◦
E1

•

E3 •

L1

•
L2

•

L3

•
0

L4

•
E2
• E6•

E5◦

E7 ◦

Figure 3.3: The blowup process used for W (left) and N (right)
Full circles are framed −2, empty circles are framed −1 unless otherwise indicated

For the W class consider four lines L1, . . . , L4 ⊂ CP 2 in general position. Blow up

their intersection points 6 times as indicated by E1, . . . , E6 on the left diagram of

Figure 3.3, and a further p, q and r times at the intersections of L2, L3, L4 with their

respective neighboring −1 curves (Figure 3.4).

After the necessary blowups disregarding the three −1 curves gives an appropriate

D for us, the central vertex will be L1 with framing +1. From the construction

we can read o� that the arms will be represented by* [p + 2, (2)r+1], [q + 2, (2)p+1],

[r+2, (2)q+1]. The graph we get is the dual of Γp,q,r. This is readily checked by pairing

up the arms by parameters and checking that the concatenated con�guration blows

*see Equation 2.2 for this notation
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3. Constructions and obstructions

E4

E5

◦

◦

E1

•

L3 • ◦

E2 •
L2

•
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•
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•
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E3•
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◦
•

•

..
.

•

•

}

•

q

◦ • ... }

r

◦

•

•

...

}

p

-p-2

-q-2

-r-2

Figure 3.4: The con�guration after the p+ q + r + 6-fold blowup

down to the appropriate Hirzebruch surface, by the symmetry of the construction it

is enough to check one arm.

•• • • •... ••• ...{ {
p

◦•
•-p-2

r+1

*-r-3-4

◦

••• ... {

r+1

*•

-r-2-4

•

•

◦
*+1-4

•

•

Figure 3.5: The blowdown process for the p, r arm

For N begin with the same con�guration, and through a di�erent sequence of

blowups arrive at the con�guration on the right of Figure 3.3. To obtain the dual of

some speci�c ∆p,q,r blow up the intersection between L1, L2, L4 and its neighboring

−1 curve p, q, r times respectively as before. Disregarding the three −1 curves we

get the desired D with Z = CP 2#(p+ q + r + 7)CP 2. T

he homological assumption is clearly satis�ed, and once again we can check arm by

arm, that it is indeed dual to ∆p,q,r. The central vertex is L3 of course, the arms pair

up by parameters as previously. Concatenating as on Figure 3.5 the single −p − 2

vertex arm of ∆p,q,r gets blown down by the E1 arm, the [(2)2, q + 4] arm is dual to

the L4 arm of our con�guration. The long arm is a bit more tricky, but is clear to

follow.
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3. Constructions and obstructions
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Figure 3.6: The con�guration after the appropriate blowups, the full circles
represent the dual of ∆p,q,r and the blowdown of the long arm

C1

•
E6

◦

E1 •

E3

•

E5

◦
C2
•

E2

•

E4

•

L2

• E7•

L1◦

E8 ◦

Figure 3.7: The starting blown up con�guration with the indicies indicating the
order of the blowups

For M a more elaborate con�guration is required, to this end de�ne the following

curves in CP 2:

� C1 = {x2 − yz = 0}

� C2 = {x2 − yz + xy = 0}

� L1 = {x = 0}

� L2 = {z = 0}

i.e. two smooth conics with a triple intersection, the line through the two intersection

points ([0 : 0 : 1], [0 : 1 : 0]) and the tangent of the �rst at the transverse intersection

of the two conics. As before, blow up the intersections 8 times, to get the curve
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3. Constructions and obstructions

con�guration of Figure 3.7. Further p, q, r-fold blowups of the intersection between

E4, C2, E2 and their −1 neighbors produces a con�guration from which if we throw

the −1's out represents the dual of Λp,q,r (E5 will be the root).

C1

•
E6

◦

◦
E1 •

E3

•

E5

◦
C2
•
•

E2

•
• E4

•

•

L2

• E7•

L1◦

◦

E8 ◦

◦

•

•

..
. ..
.}q } r

}p

-q-2 -r-2

-p-2

•

•

•

•

..
.

Figure 3.8: The auxiliary blowups producing the dual graph of Λp,q,r

By the conditional nature of the de�nition of the Λp,q,r graphs this assertion requires

more checking, but all cases are very similar. The dual arms are [(2)p+1], [(2)r+2],

[q+2, r+2, p+2, (2)q+2]. The (2)∗ arms pair up with the single vertex p+2 and r+3

arms of the original, and the long arm also blows down in each case, analogously to

the long arm of the N graphs.

After these constructions appealing to Pinkham's theorem proves the stated result.

3.1.2 Quotients

3.1.3. Another method we shall mention brie�y is the construction of smoothings via

quotients ([30, 8.2], [31, 5.8]). Consider a normal threefold singularity germ (Y , o)

on which a �nite group G acts freely away from o. An invariant function f ∈ OG
Y,o,

whose zero set (Y, o) is an isolated surface singularity actually de�nes a smoothing

of Y/G, whose Milnor �ber is the factor of the free action of G on the Milnor �ber

of Y . This implies that if one can �nd such an f and G where the group has order

equal to the Euler characteristic of the Milnor �ber of Y (i.e. 1 + µ(Y )), then one

has a QHD smoothing of the factor X.
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3. Constructions and obstructions

Example 3.1.4 (G revisited ([31, Example 5.9.1])). Take (Y , o) = (C3, 0) and 0 <

q < p relatively prime integers. Let ω be a primitive pth root of unity, and let

Z/pZ act on C3 via coordinatewise multiplication by [x, y, z] 7→ [ωx, ωqy, ωp−1z]. The

function f = xz−yp is clearly invariant under this action, the factor is the (p2, pq−1)

cyclic quotient singularity ([23, 2.3]). We can calculate the Milnor number* using [14,

Korollar 3.10 a)], since f is clearly weighted homogeneous of degree p with weights

(1, 1, p− 1), µ = (p− 1)(p− 1)( p
p−1

− 1) = p− 1.� This means, that the Milnor �ber

of f has Euler characteristic p, so after factoring by G p(1 + µ(F/G)) = p, and we

get rational homology disk smoohtings for the G family.

Remark 3.1.5. These constructions make computing other invariants (i.e. π1) of these

spaces possible as well, for the valency 3 case see [30, 8.2], for valency 4, [32]. Before

moving on we also mention, that in theM,N ,W cases the above constructed spaces

are the unique minimal �llings up to symplectic deformation, see [1].

3.2 Obstructions

There are a few obstructions for a singularity to admit a QHD smoothing, with most

depending on only the (smooth) topological type of the minimal good resolution XΓ.

3.2.1 The geometric genus

As stated in �1.1.1, any singularity admitting a rational homology ball smoothing

must be a rational singularity.

De�nition 3.2.1 ([22, De�nition 3.1-2]). The geometric genus of a normal surface

singularity germ (X, o) is de�ned by pg := dimH1(X̃;OX̃) for some good resolution

X̃ → X. (X, o) is called a rational singularity, if pg = 0.

Being rational is an analytic property of the singularity at �rst glance, but this turns

out not to be the case. A variation of Laufer's algorithm makes it relatively simple to

determine rationality from a good resolution graph for the singularity at hand. We

follow [29], but also cf. [22, 2.10, 3.8-9] or [23, 7.1.2] for a more detailed exposition

and proofs.

*The Milnor �ber has the homotopy type ∨µS
2, we call µ the Milnor number, see [23, 3.2.13]

�The same formula has a typo in [23, 5.1.15 (a)] the terms should be multiplied, instead of
summed
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3. Constructions and obstructions

3.2.2. Denote the exceptional curves corresponding to the vertices of Γ by Ei.

Consider Z0 :=
∑

[Ei] ∈ H2(XΓ,Z) and the products (Z0, Ei) ∈ Z. Now we split the

cases according to if among these products there is an Ei with (Z0, Ei)

� > 1 stop, the singularity is not rational

� = 1 replace Z0 with Z0 + Ei and repeat

� < 1 then repeat with Ei+1

We stop when (Z0, Ei) ≤ 0 ∀i, and this shows the singularity at hand to be rational.

Remark 3.2.3. Note that this algorithm uses only topological data, so rationality

does not depend on the analytical type of the singularity, only the topological type

of its resolution(s). It is also worth noting, that by this algorithm any graph in which

every vertex v has valency* |N(v)| ≤ |v2| automatically corresponds to a rational

singularity, and if there is a vertex with |v2| ≤ |N(v)| − 2 it automatically fails.

Example 3.2.4. Any element of the A,B, C classes where one begins the construc-

tion by blowing up the central vertex and then the new vertex will automatically be

non-rational and thus will not admit a QHD smoothing by the previous remark.

3.2.2 The µ̄ invariant

Consider a plumbing graph with 2 ̸ | det Γ. From this it follows that H1(YΓ;Z2) = 0,

where YΓ = ∂XΓ is the boundary of the plumbed 4-manifold corresponding to Γ.

This also means that YΓ has a unique spin structure, which will be important for us,

since generally µ̄ only obstructs YΓ from bounding a spin rational homology 4-ball.

However in the special case when det Γ is odd, the unique spin structure of YΓ always

extends to a QHD bounding it ([29, Proposition 4.2, Theorem 1.4]), and thus the

to be de�ned µ̄ can be used to rule out certain plumbing graphs. This invariant can

be calculated combinatorially as follows ([29, Section 2]).

3.2.5. Begin with the plumbing graph Γ. First we reduce the graph until it consists

of isolated points, and then build up a subset of the vertices following this reduction

process backwards. The reduction step consists of two possible moves we can make

*N(v) := {w ∈ Γ : (v, w) is an edge of Γ}
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3. Constructions and obstructions

on the graph. If Γ does not consist of isolated points, consider a valency 1 vertex v

and its unique neighbor w ∈ Γ.

1. if v2 ≡ 0 mod 2, delete* v and w from Γ

2. if v2 ≡ 1 mod 2 delete v, and change the parity of w2.

This produces a sequence of decorated graphs Γ = Γ1,Γ
i2
2 , . . . ,Γ

ik
k where we take

note of the type of move used with ij ∈ {1, 2}, and where the sets of vertices form

a descending chain. Now if the resulting set of points do not all have odd framing,

stop, the graph has even determinant.

Take the set of these points S1 = Γik
k , and follow the previous reduction process

in reverse. We omit the indices from the Si for easier readability, and use primes

instead to present a single step. Given S ⊂ Γ
ij
j , if the next vertex to be re-added is

v ∈ Γ
ij−1

j−1 with neighbor w, then the new subset S ′ will be depending on the type of

move used

1. S = S ′ if |N(w) ∩ S ′| ≡ w2 mod 2 or S = S ′ ∪ {v} if not when ij−1 = 1.

2. S = S ′ if w ∈ S ′ or S = S ′ ∪ {v} if not for ij−1 = 2.

Running through all the steps we arrive at some subset of vertices S ⊂ Γ. Now using

this set S we de�ne µ̄(YΓ) := −n−
∑

S v
2.

Theorem 3.2.6 ([29, Corollary 1.2]). Using the previous notations, if det Γ is odd,

and µ̄(YΓ) ̸= 0, then no normal surface singularity with resolution graph Γ admits a

QHD smoothing.

Remark 3.2.7. By construction the set S represents a disjoint union of spheres.

It is also simple to check, that cS := PD([⊔SSi]) ∈ H2(XΓ,Z) is a characteristic

cohomology class, and since π1(XΓ) = 0 it corresponds to a unique spinc structure

on XΓ, with �rst Chern class cS. This means that this class has compact support

in XΓ, so the restriction to the boundary gives us not just a spinc, but the spin

structure on YΓ. S is called the Wu set corresponding to the unique spin structure

of YΓ.

*along with any other edges w is an endpoint of
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3. Constructions and obstructions

Example 3.2.8. The family depicted on Figure 3.9 has odd determinant, and

µ̄(YΓ) = 0 for odd n, but no rational homology disk smoothing, as shown later.

Proposition 3.2.9. Elements of B have even determinant.

Proof. If we reduce the intersection matrix for the smallest element of B we see

det


−3 1 1 1
1 −2 0 0
1 0 −4 0
1 0 0 −4

 ≡ det


1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 ≡ 0 mod 2

since the last three rows are the same. One step in the construction changes at most

one of these rows, and further steps cannot touch these either. This means, that all

intersection matrices have two rows, which are linearly dependent mod 2, and thus

have even determinant.

Corollary 3.2.10. By the same argument, if one begins with blowing up the vertex,

or the −3 edge in C, the resulting graphs will have even determinant.

3.2.3 Dimension count

From the algebraic viewpoint we have the following

Theorem 3.2.11 ([32, Theorem 8.1]). Let (X, o) be a rational surface singular-

ity with minimal good resolution (X̃, E1 ∪ · · · ∪ En). Let the sheaf SX̃ be de�ned

by the exact sequence 0 → SX̃ → TX → ⊕iνEi⊂X̃ → 0 (see also [33, 2.2]). If

dimH1(X̃;SX̃)−
∑n

1 (E
2
i + 3) ≤ 0 then (X, o) does not admit a QHD smoothing.

Remark 3.2.12. The formula computes the dimension of any QHD smoothing com-

ponent in the base space of the semi-universal deformation space for (X, o), but this

is outside the scope of this thesis. We only need an important corollary.

Corollary 3.2.13. With the above notations, if (X, o) is taut, then H1(X̃;SX̃) = 0,

in particular QHD smoothings cannot exist if
∑n

1 (−E2
i − 3) ≤ 0.

Corollary 3.2.14 ([32, Theorem 8.6]). The taut "H-shaped" (having exactly two

vertices of valency 3, and the others of valency 1, 2) graphs in the three families

A,B, C cannot have QHD smoothings.
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3. Constructions and obstructions

Proof. To obtain an H-shaped graph in one of the families we have to �rst blow up

one of the intersection points, and (possibly after a sequence of other edge blowups)

blow up the vertex once, and then possibly the edges a few more times. It is easy

to check, that the number
∑

Γ(−v2 − 3) does not change under edge blowups: this

lowers the framing of a vertex by one, and creates a new vertex of framing −2, i.e.

the sum changes by 1 + 2 − 3 = 0. A similar check shows, that the sum decreases

by 1 under a vertex blowup. Without any blowups, the graphs of Figure 1.2 (after

changing the −1 to −4,−3,−2 respectively) have this sum equal 1, so if we have

a taut H-shaped member of these families, the sum is zero, and thus the theorem

rules them out from having a QHD smoothing.

Remark 3.2.15. Note, that tautness does not behave well under blowups, let alone

the construction of the A,B, C classes. In particular, a taut graph has at most two

vertices of valency > 2 by Theorem A.2.2.

Example 3.2.16. Nonetheless, we get many members of A,B, C not admitting a

QHD smoothing. In particular all H-shaped graphs, where the second node (ob-

tained by blowing up the vertex during the construction) has framing at most −3

are taut of the form (L1) + (J1) + (R2) (see Table A.1).

Example 3.2.17 ([32, Corollary 8.7]*, cf. [11, Proposition 4.2]). For n ≥ 2 the

graph falls into the previous example. For n = 1 the second node of the family on

Figure 3.9 has framing −2, but is also taut of type (L1) + (J2) + (R4) − (C3), and

so it cannot admit a QHD smoothing.

...

−4 −2 −n− 1

n− 1

−3 −3

−3−4

−2

−2
}

Figure 3.9: A subfamily of A admitting no QHD smoothing

*Note that in [32, Remark 8.9] a graph is erroneously claimed to be non-taut, in fact it is
(L1) + (J1) + (R8)− (C4), see Example A.2.9. ([25, Remark 4.2])
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3. Constructions and obstructions

Example 3.2.18. A simple search utilising Appendix B and manual checking of

tautness shows, that all rational graphs with µ̄ = 0 where we blow up at most

4 times are taut with one exception in A and two exceptions in B depicted on

Figure 3.10. These graphs cannot be taut, since they contain a vertex of valency 4,

but are rational and their µ̄ invariant vanishes for some spin structure (the graphs

with the same shape in C all have nonzero µ̄). One of the smallest graphs which these
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-2 -2

-2

-4

-4

-3 -3

-2

-3 -2

-3

-3

-3

-4 -2

-4

-2 -2

Figure 3.10: Three graphs not ruled out by our previous conditions

invariants cannot rule out in C is depicted on Figure 3.11 along with an H-shaped

example from A and B as well. The latter two require 5 blowups, while the smallest

example from C still needs 4. They cannot be taut, since a vertex of degree two

cannot support two arms of length > 1.

-3

-3

-3 -2

-2

-4

-2 -3 -4

-4

-4

-3 -2

-2

-3

-2 -3 -3

-3

-6

-4 -2

-2

-2

-2 -3

Figure 3.11: Smallest non-taut rational H-shaped graphs with µ̄ = 0 in A,B, C.

3.2.4 McDu�'s theorem and lattice embeddings

A direct application of the strategy in chapter 2 can be used to rule out certain

subfamilies of the remaining A,B, C classes. For suitable graphs one can construct

a "dual" con�guration in a Hirzebruch surface, manipulating it until one produces

a +1 sphere allows for the application of Theorem 2.1.8. Ruling out every possible

sequence of blowdowns shows that the given singularity link cannot admit a weak

rational homology ball �lling, thus no such smoothing either. An example of this

strategy is found in [4]. Start with one of the graphs on Figure 3.12, and substitute

the corresponding subgraph in place of the arm as indicated. The graphs produced

this way admit no QHD smoothing ([4]).*

*Note, that the family ΓB
n of [4] is not in fact a member of B, one of the short arms should be

framed −4 instead of −2.
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Figure 3.12: The starting graphs and the inductive subgraphs producing
subfamilies of A, C not admitting a rational homology disk smoothing.

One can also extend the strategy of chapter 2 more generally. In [11] an explicit

construction is given for symplectic caps, i.e. concave �llings of plumbed 4-manifolds

along a negative de�nite tree of spheres, with −v2i ≥ |N(v)| (c.f. 3.2.3 and also with

the dual graph construction in 2.1.6). This is done, so arguments in the spirit of

2.1.9 could be carried out in a more general setting. A Kirby diagram for the �lling

can be described as follows:

3.2.19. Choose a leaf v ∈ Γ. The diagram will be described as the closure of a braid,

take −w2−|N(w)| many strands for each vertex v ̸= w ∈ Γ, and −v2−2 many for v

(note, that this number is nonnegative, since −v2 ≥ 2). Make a full −1 twist on this

trivial braid, and for each edge e a full negative twist on the strands corresponding

to connected components of Γ \ {e}, which don't contain v. The framing of the

strings associated to v will be −2, and each string associated to a vertex w ̸= v will

be framed −d(v, w)− 3, where d(v, w) is the (vertex) distance between v, w in Γ.

Now using this construction we can suppose that the manifold ∂XΓ has a rational

homology sphere �lling, and derive a contradiction by showing, that the intersection

lattice (which can be read o� from the Kirby diagram of the cap) cannot be embed-

ded into the diagonal lattice of the same rank, contradicting Donaldson's theorem

([7, 1.3.1]). This is done for the family depicted on Figure 3.9 in [11, Proposition

4.4].
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A Algebraic geometry

For the sake of completeness and easier reading we review brie�y two unrelated, but

equally important notions used multiple times in the main text.

A.1 The Milnor �bration

The �rst important construction is the Milnor �bration and the Milnor �ber asso-

ciated to a holomorphic function. For a detailed exposition see [21].

Theorem A.1.1 ([23, Proposition 3.2.3]). Let (X, o) be an isolated singularity germ,

ρ : X → [0,∞) a real analytic function with ρ−1(0) = {o} and f : (X, o) →

(C, o) a holomorphic function germ having an isolated singularity at o. Then for all

su�ciently small 0 < δ < ϵ

1. ρ−1([0, ϵ]) ∩ f−1(ξ) is a smooth manifold, which is transverse to ρ−1(ϵ) for all

nonzero ξ ∈ D2
δ ⊂ C (i.e. 0 < |ξ| ≤ δ).

2. f : (ρ−1([0, ϵ]) ∩ f−1(S1
δ ), ρ

−1(ϵ) ∩ f−1(S1
δ )) → ∂D2

δ = S1
δ is a locally trivial

�bration of pairs

3. The "boundary" �bration f : ρ−1(ϵ) ∩ f−1(S1
δ ) → S1

δ extends to the disc D2
δ .

Moreover these �brations are independent of the choice of ρ.

Remark A.1.2. The above �bration is called the nearby �bration of the pair. The

space ρ−1([0, ϵ]) ∩ f−1(t) for some t ∈ D2
δ \ {0} is called the Milnor �ber. By the

third statement its boundary is oriented di�eomorphic to the link of the singularity

of f .

The next ingredient we require is the notion of a deformation, but �rst an algebraic

notion

De�nition A.1.3 ([6, De�nition 10.39.1]). If R is a unital commutative ring and

M is an R-module, then we call M �at, if the functor N 7→ N ⊗RM is exact, i.e. for

all short exact sequences 0 → N1 → N2 → N3 → 0 the sequence 0 → N1 ⊗R M →
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f
D�

f -1(0)
f -1(t)

-1([0, ])

X

o

Figure A.1: Schematic picture of the nearby �bration with the singular �ber and
the Milnor �ber depicted.

N2 ⊗R M → N3 ⊗R M → 0 is also exact. A map φ : A → B of commutative unital

rings is called �at, if the induced A-module structure*on B makes it into a �at A-

module. A map between germs ϕ : (X, o) → (Y, o) is called �at if the mapping

induced on the local ring ϕ∗ : OY,o → OX,o is �at.

Remark A.1.4. The tensor functor is automatically right exact, only the �rst ”0 → ”

of the sequence is needed. The geometric importance of this de�nition comes from

a theorem of Frisch, which implies that the �bres of a �at map are equidimensional

([6, Lemma 10.112.9]) if the domain and the range have well de�ned dimensions

([13]).

De�nition A.1.5. [13, De�nition 1.1] Fix a normal surface singularity germ (X, o).

A �at morphism ϕ : (Y , o) → (C, o) together with an isomorphism (X, o) ∼=
(ϕ−1(o), o) is called a deformation of the singularity (X, o).

The details of this theory are beyond our current scope, we only wish to apply the

nearby �bration theorem to a given deformation. This shows us, as stated in �1.1.1,

that the Milnor �ber of a deformation gives a �lling of the link of the singularity,

which we use repeatedly during the constructions.

*a · b = ϕ(a)b
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A.2 Taut singularities

We also wish to reproduce here the list of taut singularities of Laufer ([15]).

De�nition A.2.1. Let (X, o) be a normal surface singularity, with minimal reso-

lution dual graph* Γ. We call (X, o) taut if for any other singularity (X ′, o) with

the same minimal resolution dual graph Γ′ = Γ we have an analytic isomorphism

(X, o) = (X ′, o).

Theorem A.2.2 ([15, �2.2]). The taut resolution graphs are precisely the type I−V

graphs of the following list.

All genera are 0 (higher genus curves don't have unique complex structures). •n will

denote a vertex of framing at most n.

Remark A.2.3. Note, that if a graph is taut, the modi�ed graph, where the framing

of any vertex is lowered will be taut as well.

Remark A.2.4. Note, that some details are omitted in this exposition, the original

paper goes through some trouble�, so that every graph �ts into exactly one category,

but for the sake of recognizing taut graphs this is super�uous.

For brevity let • := •−2, and · · · a path of • vertices, which may consist of a single

edge and no vertex at all.

Now the list begins as follows: a single vertex • (denoted type I), or a path • · · · •

(type II) is always taut.

The possibilities with one star� (type III) are the graphs depicted on Figure A.2

together with E6, E7, E8 (denoted here as III.7, III.8, III.9). Note the possibility

of lowering the framing from −2 on the latter three as well.

For the graphs with two stars (type IV ) there is a scheme for building taut graphs

from two star-shaped components very similar to the ones of Figure A.2. We describe

the building blocks and list the permitted combinations in Table A.1.

*here every vertex is decorated with not just the Euler number of the normal bundle, but the
genus of the component as well

�some nodes are only allowed to be framed −2, otherwise they fall into some previous category
�star-shaped subgraph
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... ...

...

-3

1 2 3

4 5

6

... ... ...

-3

...

-3

-3

...

-3

...

Figure A.2: The taut star-shaped graphs besides E6, E7, E8.

The list of star-shaped subgraphs is on Figure A.3. We list only the left versions,

the right graphs (R1), . . . , (R8) are simply the mirror images of the left ones.

(L1) (L2) (L3) (L4)

-3 -3

...
...

...

-3

-3 -3

-3 -3

...

(L5) (L6)

(L7) (L8)

Figure A.3: The left star-shaped subgraphs.

These star-shaped subgraphs will be joined by (J1) = · · · , or (J2) = · · · •−3 · · · .

Some subgraphs may be contracted as follows: A •−3 · · · •−3 subgraph between the
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two nodes may be contracted to a −3 or −4 framed vertex:

(C1) = •−3 (C2) = •−4

A subgraph of the form
•
...

• · · · • · · · •
−3 −3

may be replaced by the following subgraphs:

(C3) =

•
...

• · · · •
−4

or by

•
|

• · · · •
−3

(C4) =

•
...

• · · · •
−4

or by

•
|

• � •
−3

Remark A.2.5. The two options for both subgraphs may seem redundant, but as

mentioned previously not all combinations are permitted.

R1 R2 R3&R4 R5&R6 R7&R8

L1 J1 J1 J2, C3 J1, C3 J1, C4

L2 J1
* J2 J1 J1

L3&L4 J2 J1 J2, C2

L5&L6 J1, C1 J1, C2

L7&L8 J1, C2

Table A.1: The table of taut graphs with two stars.

Remark A.2.6. Some subgraphs share a column/row, since their allowed operations

are the same, but note, that only such (Li), (Rj) combinations are allowed where

i ≤ j. All graphs produced by Table A.1 are taut, with one subtle exception. The

(L2)+ (J1)+ (R2) (marked with *) entry is only negative semide�nite if all framings

are −2, and thus cannot correspond to a singularity ([23, Proposition 2.1.12]). At

least one vertex has to have its framing lowered to make it so.

For the sake of completeness (even though it does not come up in our investigations),

the last (type V ) taut graphs are depicted on Figure A.4.

*At least one of the framings has to be chosen −3 or less.
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-3

...

-1 -5

Figure A.4: The cyclic taut graphs

Example A.2.7 (The main families of Figure 1.1). Elements of G are of type I and

II, and so are taut. W ,N are type III.1, while M are of type III.2, and so are

all taut as well. The star-shaped subfamilies of A,B, C of Figure 2.1 are also of type

III.2.

Remark A.2.8. The valency 4 graphs of Figure 2.1 are non-taut, but are still spe-

cial. Their analytical type is determined by the analytical type* of the exceptional

curve con�guration. Since spheres have a unique complex structure, this is in turn

determined by the cross-ratio of the 4 intersection points of the central vertex with

the arms, see [15, �4] and [32, proof of Corollary 8.2].

Example A.2.9. Two example entries from Table A.1.

-3

... ...

...

(L1) + (J1) + (R2)

-4

...

...

...

(L1) + (J1) + (R8)− (C4)

*as opposed to the topological type, as is the de�nition of taut singularities
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Given a graph G and some edge or vertex o, the following algorithm checks if o is a

vertex of the graph, and blows it up, otherwise assumes that it is an edge, and blows

that up. The vertices are encoded by numbers, and the edges by pairs as usual.

1 def blowup(G,o): #blow up the graph G at the vertex or edge o

2 switch=False #blow up an edge by default

3 for v in G.vertex_iterator (): #check if o is a vertex

4 if v==o:

5 switch=True

6 break

7 if switch: #blow up the vertex o

8 new=G.add_vertex () #the new vertex

9 G.add_edge(o,new) #connected to the one we blew up

10 G.set_vertex(new ,-1) #new vertex framed -1

11 weight=G.get_vertex(o) -1 #lower the framing of o

12 G.set_vertex(o,weight)

13 else: #blow up the edge o

14 new=G.add_vertex () #the new vertex

15 G.delete_edge(o) #remove the blown up edge&connect the

16 G.add_edges ([(o[0],new),(o[1],new)]) #new vertex

17 G.set_vertex(new ,-1) #new vertex framed -1

18 left=G.get_vertex(o[0]) -1 #subtract one from the

19 right=G.get_vertex(o[1]) -1 #framings of both endpoints

20 G.set_vertex(o[0],left)

21 G.set_vertex(o[1], right)

22 return G

The reduction steps of 3.2.5: The following algorithm recursively produces a list of

ordered triples encoding the reduction process, consisting of the graph, which vertex

was deleted and the type of step (either 1 or 2), and the input graph separately for

easier usage.

1 def rank(graph ,l=[]):

2 G=graph.copy()

3 if G.size()==0: #if there are no edges we are done
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4 return [G,l]

5 for v in G.vertex_iterator ():

6 nbrs=G.neighbors(v) #get the neighbors of v

7 if len(nbrs)==1: #find a leaf

8 if G.get_vertex(v)%2==0: #type 1 reduction

9 l.append ([G.copy(),v,1]) #add to the list

10 G.delete_vertices ({v,nbrs [0]}) #delete them

11 break

12 else: #type 2 reduction

13 l.append ([G.copy(),v,2]) #add to the list

14 G.set_vertex(nbrs[0],G.get_vertex(nbrs [0]) -1)

15 G.delete_vertex(v) #change parity and delete

16 break

17 return rank(G,l)

The wuset function is one step in the second part of 3.2.5. Requires a graph, the

Wu set for the previous step, which vertex was added, and by which type of move.

1 def wuset(graph ,Sprime ,v,n):

2 G=graph.copy() #the original G stays unmodified

3 w=G.neighbors(v)[0] #the unique neighbor of the leaf v

4 if n==1: #v was type 1

5 number =( Sprime.intersection(Set(G.neighbors(w)))).

cardinality () #number of neighbors of w in Sprime

6 if (number -G.get_vertex(w))%2==0: #|N(w)|=w^2 (2)?

7 S=Sprime

8 else:

9 S=Sprime.union(Set([v]))

10 else: # v was type 2

11 if w in Sprime:

12 S=Sprime

13 else:

14 S=Sprime.union(Set([v]))

15 return S

Putting together the previous two algorithms, the following function computes the

µ̄ invariant for a given negative de�nite graph. Note also, that this implements

the general version of the algorithm found in [29], and outputs the product of the

µ̄(Y, s)'s for each spin structure s of Y .

1 def mubar(G):
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2 sigma=-G.order () #we assume G is negative definite

3 var=rank(G.copy() ,[]) #get the list of reductions

4 l=var[1] #the list of reductive steps

5 l.reverse () #we go through the reduction in reverse

6 out=1 #initialise the output

7 generators=Set ([]) #initialise S

8 R=var[0] #the graph consisting of disjoint vertices

9 for v in R.vertex_iterator (): #go through all vertices

10 dec=R.get_vertex(v) #get the framing

11 if dec %2==0: #collect the even framed vertices

12 generators=generators.union(Set([v]))

13 ones=Set(var [0]. vertices ()).difference(generators)

14 onesets=generators.subsets () #every subset of the even vertices

gives a spin structure

15 for S in onesets:

16 wus=copy(S)

17 wus=wus.union(ones)

18 for H in l: #the backwards step of the wuset algorithm

19 wus=wuset(H[0],wus ,H[1],H[2])

20 square=int(0) #initialise the square sum

21 for v in wus: #add together the framings

22 square +=int(G.get_vertex(v))

23 out*=(sigma -square)

24 return out

Given a list of vertices, the following function generates the graph in one of the three

classes corresponding to it. Since the −1 vertex is always unique, the edge blowups

are encoded by the neighboring vertex. The graph's vertices are indexed from −3, so

in the beginning the −1 vertex has index 0, and in the further steps the −1 vertex

will always be the one indexed by index of the vertex in the list l.

1 def generate_graph(l):

2 G=Graph ({0: [-1,-2,-3]}) #initialize the graph

3 G.set_vertices ({-3:-3,-2:-3,-1:-3,0:-1}) #replace the values

with -2,-4,-4 or -2,-3,-6 for B and C

4 for a in range(0,len(l)):

5 if G.get_vertex(l[a])==-1:

6 G=blowup(G,l[a]) #blow up at the -1 vertex

7 else:

8 G=blowup(G,(a,l[a],None)) #blow up the edge encoded by
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the neighbor a

9 G.set_vertex(len(l) ,-4) #also replace with -3 or -2 for B or C

10 return G

intersection_form produces the intersection form as a matrix from the given

graph. Note, that this assumes, that the graph was created by generate_graph.

1 def intersection_form(G):

2 M=G.adjacency_matrix ()

3 for v in G.vertex_iterator ():

4 M[v+3,v+3]=G.get_vertex(v) #the indexing is shifted by 3

5 return M

pg implements Laufer's algorithm 3.2.2, outputting 1 if the graph is found to be

rational and −1 if not.

1 def pg(G):

2 Q=intersection_form(G)

3 n=Q.dimensions ()[0] #Q has dimension (n,n)

4 v=[] # initialize Z_0

5 for i in range(0,n): # Z_0 begins as the sum of the E_i

6 v.append (1)

7 v=vector(v) # convert v from list to vector

8 vektor=v*Q #coordinates of this are the v*E_i

9 while len([s for s in vektor if s>0]) >0: #any product >0?

10 vektor=v*Q #recalculate the products

11 for i in range(0,n): #check them all

12 prod=vektor[i]

13 if prod >1: #product >1

14 return -1 #not rational

15 elif prod ==1: #the multiplicity with E_i is 1

16 v[i]+=1 #add E_i to v

17 break

18 elif prod <1: #multiplicity is negative

19 continue #next vertex

20 return 0 #if we came here , that means every multiplicity is <1

search is a simple breadth-�rst search. Beginning from a list of graphs additional

blowups produce graphs from the ones on the list. It then checks the µ̄, det Γ, pg

invariants.
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1 def search(l):

2 uj=[] #initialise the list for the current step

3 while True:

4 for lista in l: #go through every element of l

5 G=generate_graph(lista)

6 neighbors=G.neighbors(len(lista)) #neighbors of the -1

7 neighbors.append(len(lista)) #search for vertex blowups as well

8 for v in neighbors: #do each possible blowup

9 w=copy(lista) #copy the list of blowups

10 w.append(v) #take note of the new blowup

11 H=generate_graph(w) #do the blowup

12 mu=mubar(H) #calculate mubar

13 genusz=pg(H) #calculate pg

14 uj.append(w) # add w to the new list

15 nodes=len([x for x in H.degree_sequence () if x>2]) # calculate

the number of nodes in the graph

16 if mu==0: #modify the conditions here for different searches

17 print('constr=',w)

18 print("mubar=",mu)

19 print("pg=",genusz)

20 print("det=",intersection_form(H).det()%2)

21 print("# of nodes=",nodes)

22 H.show(vertex_labels=H.get_vertices ())

23 #return(w)

24 l=uj #update the list with the new blowup sequences

25 uj=[] #zero out the temporary list

26 print("# of blowups:",len(l[0])) #how many steps checked

After checking all possible graphs in A, C up to 11 blowups (this brought our atten-

tion to Proposition 3.2.9 as well, µ̄ cannot rule out any element of B), we make the

following conjecture:

Conjecture B.0.1. For Γ ∈ A ∪ C if det Γ is odd, then µ̄(Γ) ∈ {0, 8}.

This is quite surprising, as it would mean that even if the µ̄ invariant (and the

associated Gauge theoretic d invariant) rule out a certain graph from having a

rational homology disc �lling, the value of the invariant is the least possible.
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\chapter{Smooth and symplectic 4-manifolds}
We will be mostly discussing algebraic surfaces, but it is convenient to translate our problems into the symplectic category.
This will be beneficial for the greater flexibility provided (for a more detailed discussion of the close connection between symplectic and (almost-)complex manifolds see \cite{Ozbagci}), as we will see shortly.
\begin{Def}
A closed, non-degenerate $2$-form on a smooth manifold $M$ is called a symplectic form, the pair $(M,\omega)$ is called a symplectic manifold.
\end{Def}


Consider an isolated surface singularity $(Y,o)$\todo{más betűket} with dual resolution graph $\Gamma$ and the corresponding plumbed $4$-manifold $M$, and further suppose, that $Y$ admits a rational homology disk smoothing.


The Stein structure of $M$ induces a compatible symplectic structure\footnote{If $z_i:U\rightarrow\C$ is a chart with $z_i=x_i+iy_i$, the symplectic structure will be $\sum dx_i\wedge dy_i$}.\todo{ez valszeg nem igaz?? de, csak nem ezért, hanem azért mert Stein, és ezért Kähler}
By \cite[Theorem 1.1]{gay2009} we get that this symplectic structure extends to $X=M\cup -B$, and it's clear\footnote{$0=H^1(\partial M)\rightarrow H^2(X)\rightarrow H^2(M)\oplus 0\rightarrow H^2(\partial M)=0$ by the rational Mayer-Vietoris LES}\todo{footnote???}, that $\rk H^2(X,\Q)=\rk H^2(M,\Q)$.
Choosing a compatible almost-complex structure we get an extension of the integrable a.c.s. on $M_\Gamma$ to $X$, in particular, since compatible structures form a contractible space, we get an extension of the first Chern class of $M$.

We need two general formulae from \cite[Theorem 4.10., \S4.11.]{LW86} relating invariants of the resolution and its smoothing:
\begin{equation}\label{spt:chern}
\ip{-c_1(M),[M]}+\chi(M)+12p_g(Y)=\ip{-c_1(B),[B]}+\chi(B)
\end{equation}
(where $\chi$ denotes the topological Euler characteristic, and $p_g$ is the geometric genus of the singularity) and denoting the dimensions of the positive definite, negative definite and zero subspaces of the intersection form on $H^2(B)$ by $\mu_+,\mu_-,\mu_0$ respectively we also have
$$\mu_0+\mu_+=2p_g(Y).$$
\begin{megj}
This shows, that $Y$ is a rational singularity, since in our case $rk H^2(B)=0$, thus $\mu_0=\mu_+=0$.
\end{megj}
From the cohomological assumption on $B$ we get that $\chi(B)=0$, furthermore, using the fact that $B$ is Stein (\cite[\S4.4]{LW86}) the hyperplane theorem of Lefschetz implies (\cite[Theorem 7.2.]{milnormorse}), that $H^2(B)$ is free, and thus equal to zero.

Substituting the above discussion into \ref{spt:chern} we see, that $\ip{-c_1(M),[M]}=-|\Gamma|$, and the same will hold for the extended Chern class of $X$\todo{why}.
Now Donaldson's diagonalisability theorem tells us\footnote{$\Gamma$ is negative definite since it is a resolution dual graph \cite[Proposition 2.1.12]{nemethi2022normal}} that the intersection form of $H^2(X)$ is isomorphic to the standard negative definite Euclidean lattice $(Z^{|\Gamma|},-I)$.
This motivates the following definition:
\begin{Def}[{\cite[Definition 1.1]{ratbd}}]
A plumbing tree $\Gamma$ is called a symplectic plumbing tree, if there exists an embedding $\phi$ of the lattice associated to $\Gamma$ into $(\Z^{|\Gamma|},-I)$,\todo{nem derül ki mért lesz $K=\sum E_i$}
\end{Def}

normál felület szingularitás, és egy qhd smoothingja. a link ilyenkor egy qhs3.
%Az érintőnyaláb c1-e a peremre úgy szorul meg, mint a perem komplex érintői 2-mezője, akkor a két dolgot összeragasztjuk és kiterjed a c1
a plane fillingnek invariánsa c12-3sigma-2khi/4, ebből megkapjuk a c1 négyzetét, a c1 osztály maga racionálisan kiterjed, mert egy relatív osztályból jön, a hirzebruch megadja a c1 négyzetet (megint), donaldson adja a beágyazást, és inspekció+ az adjunkciós formula azt, hogy a c1 hogyan néz ki.
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\chapter*{Introduction}
\addcontentsline{toc}{chapter}{Introduction}

In this thesis we wish to give an exposition on the known literature regarding the titular rational homology disk smoothings of isolated surface singularities.
As discussed in the introduction of \cite{ratbd}, this construction is helpful for constructing interesting smooth 4-manifolds, because a generalisation of the blowdown process can be carried out for a configuration of spheres in a manifold representing a resolution of such a singularity.
Besides the applications, this class of singularities is interesting in its own right, being at the intersection of surface singularity theory, and various branches of 4-manifold theory.

We begin with deriving a necessary condition for a graph to be eligible for this generalised blowdown (codified in \ref{symplumb}), purely combinatorial in nature but motivated by geometric principles.
The first chapter presents the main methods and arguments used in \cite{ratbd}, where a complete classification of graphs satisfying the requirements derived is given.

This condition is only necessary, but for "star-shaped" graphs the classification is complete, the precise statement, and the proof of a subcase comprises chapter 2.
We tried minimizing the use of symplectic geometric notions as possible, the idea of the proof should be accessible to readers with little to no background in symplectic topology as well.

The third chapter is devoted to the construction of the objects used for the generalised blowdown procedure, which are smoothings of the given singularities.
Much of the star-shaped case is given in detail, and a different method is sketched as well.
Afterwards we present some obstructions, which may be used to finish the classification and hopefully prove that the list conjectured by Wahl is complete.
A possible approach to this is \cite{parkshinstip}, the continuation of which is planned for the future.
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\chapter{Symplectic plumbing trees}
\section{Motivation}\label{sec:motivation}
\begin{parg}\label{intro}
Consider a normal surface singularity $(X,o)$, with minimal good resolution $\tilde X$, and suppose further, that there exists a smoothing $\mathfrak X$, that is a contractible Stein space and a (proper flat analytic) map $f:(\mathfrak X,o)\rightarrow(D,o)\subset(\C,o)$ over a small disk, which has a rational homology disk fibre $M=f^{-1}(\epsilon)$.
By \cite[Theorem 4.10. i)]{LW86} (see also \cite[Example 6.9.11]{nemethi2022normal}) we see that $X$ is a rational singularity (see Definition \ref{geomgenus}), so the resolution dual graph is a tree, and every exceptional divisor is a $\C P^1$ (\cite[3.9.]{fivelec}).
\end{parg}
\begin{parg}
The complex structure on $\tilde X$ and $M$ induces an almost contact structure on the link of the singularity $Y:=\partial \tilde X=\partial M$, the planes are given by the complex tangent lines $TY\cap iTY$ to the boundary.
The homotopy type of such a 2-plane field cannot change under a small deformation.
From the Hirzebruch signature theorem it follows, that $c_1^2-3\sigma-2\chi$ is an invariant of almost contact structures. Since the plumbing is negative definite (\cite[Proposition 2.1.12]{nemethi2022normal}), we have $\sigma(\tilde X)=-n$ ($n:=dim H^2(\tilde X;\Q)$), and $\chi(\tilde X)=1+n$, and similarly for the smoothing $\sigma(M)=0$, since it has no second rational homology (in particular $c_1^2(M)=0$), and $\chi(M)=1$.
Equating the two sides gives us
$$c_1^2(\tilde X)+3n-2(1+n)=c_1^2(M)-0-2\Rightarrow c_1^2(\tilde X)+n=0$$
By the long exact sequence of the pair $(M,Y)$, the boundary of a rational homology disk is a rational homology sphere, hence rationally $c_1(\tilde X)|_{Y}=0$, so it has compact support in $\tilde X$.
If we take $Z=\tilde X\cup -M$ this first Chern class extends rationally to it, and is zero outside a compact subset of $\tilde X$, so its previously calculated integral $-n$ doesn't change.
\end{parg}
\begin{parg}
Considering the CW homology chain complex of $M$ we see that $H_2(M;\Z)=0$ (free and rank 0).
The adjunction identity in $\tilde X$ shows, that the first Chern class is a characteristic element of the lattice $H^2(\tilde X;\Z)$ equipped with the intersection form, since $$c_1(\tilde X)[\Sigma]=2+[\Sigma]\cdot[\Sigma]\equiv [\Sigma]\cdot[\Sigma]\mod 2$$
The manifold $Z$ is smooth, closed and negative definite (since $M$ is a $\Q HD^4$) so by Donaldson's theorem (\cite[Theorem 1.3.1]{donaldson1997geometry}) we get, that its intersection form is diagonalizable.
In this diagonal basis $E_1,\dots,E_n$ the first Chern class has to have odd multiplicities with each basis element, and square $-n$, as previously calculated. This implies, that it is of the form
$$\pm E_i\pm\dots\pm E_n$$
by another change of basis we can presume, that all coefficients are $+1$.
Collecting the above we have
\end{parg}
\begin{Def}\label{symplumb}
A negative definite dual plumbing graph $\Gamma$ on $n$ vertices is called a \textit{symplectic plumbing tree}, if the following are satisfied
\begin{itemize}
    \item $\Gamma$ is a tree
    \item the associated intersection form $(\Z\ip{v_1,\dots,v_n},Q_\Gamma)$ admits a lattice embedding $\varphi$ into the Euclidean lattice of the same rank $(\Z\ip{E_1,\dots,E_n},-I_n)$
    \item defining the canonical element $K=\sum E_i\in (\Z\ip{E_1,\dots,E_n},-I_n)$ the adjunction identity is satisfied for all vertices $-I_n(v_i,K)+-I_n(v_i,v_i)=-2$.
\end{itemize}
\end{Def}
\begin{parg}
The main purpose of investigating these objects is the construction of interesting 4-manifolds.
The general strategy is to find spheres embedded according to a symplectic plumbing tree, remove their neighborhood, and if it actually exists, glue back the rational homology disk smoothing instead. This decreases the Euler characteristic, while leaving other interesting invariants unchanged.
The first motivating example was the rational blowdown procedure of \cite{FS97}, and more generally \cite{PAR97}, where it is shown, that path graphs can be blown down in this way if and only if the decorations correspond to the Hirzebruch-Jung continued fraction expansion of $\frac{p^2}{pq-1}$, where $p>q>0$ are relatively prime integers.

We will be working mainly in the symplectic category, the previous construction still holds if the spheres are symplectic submanifolds, instead of holomorphic ones, the adjunction identity stays true, and we have a contractible choice of compatible almost complex structures (which we will start exploiting shortly).
The symplectic form extends over the glued back smoothing by \cite[Theorem 1.1]{gay2009}, thus we can "blow down" these more complicated arrangements, like $- 1$ spheres.
\end{parg}

\section{The list}
Firstly we will give a complete classification of symplectic plumbing trees.
The laborious proof will not be fully provided (it was carried out in \cite[{}3-6.]{ratbd}), but we will indicate the main methods, which will be mostly combinatorial.
Note, that $\Gamma$ being a symplectic plumbing tree is a purely combinatorial condition, which does not guarantee the existence of a $\Q HD^4$ smoothing for the corresponding plumbed 4-manifold.
The question as to which of them do is still open, and will be discussed later.

To state the theorem we make the following
\begin{Def}
Let $\mathcal S$ denote the set of minimal\footnote{no vertex has decoration $-1$} symplectic plumbing trees.
Define the graph classes $\mathcal G, \mathcal W, \mathcal N, \mathcal M, \mathcal A, \mathcal B, \mathcal C$ as follows:
	\begin{itemize}
		\item The class $\mathcal G$ consists of path graphs, with framings given by the negatives of the Hirzebruch-Jung continued fraction expansion of $\frac{p^2}{pq-1}$ for some relatively prime $0<q<p$.
	\end{itemize}
	\begin{figure}[ht!]
		\centering
		\includegraphics[width=\textwidth]{wmn.eps}
		\caption{Definition of the classes $\mathcal W,\mathcal N,\mathcal M$}
		\label{wmn}
	\end{figure}
	\begin{itemize}
		\item $\mathcal W$ is depicted by Figure~\ref{wmn}~(a), the parameters are nonnegative.
		\item $\mathcal N$ consists of Figure~\ref{wmn}~(b) with $p,q,r\geq 0$, and a further degenerate case \ref{wmn}~(c).
		\item $\mathcal M$ is shown mainly by Figure~\ref{wmn}~(g) with $p,q,r\geq0$, and certain degenerations as previously (with $p$ or $r$ $"=-1"$) defined by (d),~(e).
	\end{itemize}
	\begin{figure}[ht!]
		\centering
		\includegraphics[width=0.6\textwidth]{abc.eps}
		\caption{The graphs used for the definition of the $\mathcal A, \mathcal B,\mathcal C$ classes}
		\label{abc}
	\end{figure}
	\begin{itemize}
		\item Finally the $\mathcal A, \mathcal B,\mathcal C$ classes are defined inductively as follows.
			For $\mathcal A$ consider the graph depicted on figure~\ref{abc}~(a), and blow up the central $-1$ vertex, or one of its intersection points with its neighbors.
			This produces a new graph, which again has a unique $-1$ vertex. Blow it up, or one of the edges eminating from it, and so on. Finally replace the $-1$ framing with $-4$. The graphs arising by this algorithm constitute the class $\mathcal A$.
		\item For $\mathcal B$ start the same process with figure~\ref{abc}~(b), and at the end change the $-1$ to $-3$.
		\item $\mathcal C$ is done in much the same way beginning from \autoref{abc}~(c), and after the blowups changing the $-1$ to a $-2$.
\end{itemize}
\begin{megj}
	It is worth noting, that the degenerations in the definition of the $\mathcal N,\mathcal M$ classes disappear if one considers their dual graphs\footnote{defined in \ref{hirzebruch-dual}, \ref{dual}} instead, see \ref{construction}.
\end{megj}
\end{Def}
Now we can state 
\begin{tetel}[{\cite[Theorem 1.8]{ratbd}}]\label{classification}
    $$\mathcal S=\mathcal G\cup\mathcal W\cup\mathcal N\cup\mathcal M\cup\mathcal A\cup\mathcal B\cup\mathcal C$$
\end{tetel}
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\subsection{Some generalities}
We follow \cite[Section 3.]{ratbd}.
In the following we identify the generator $v_i$ with its image $\varphi(v_i)=\sum_j \alpha^j_iE_j$.
To get a better understanding of the relations between the $\alpha^j_i$ consider the adjunction identity
$$\sum E_j\cdot \sum\alpha_i^j E_j+\sum \alpha_i^jE_j\cdot\sum\alpha_i^j E_j=-2\Rightarrow -\sum_i\alpha_i^j(\alpha_i^j+1)=-2$$
Since $\alpha_i^j\in\Z$, either there is one $\alpha_i^j$ which equals $1$, and the others are $0$ or $-1$, or one coefficient is $-2$, and all others are again $0,\ -1$.
This is true because if $\alpha_i^j\in\Z\setminus\{-2,-1,0,1\}$, then $\alpha_i^j(\alpha_i^j+1)\geq6$.
This proves 
\begin{lemma}\label{form}
The image of a vertex $v\in\Gamma$ has one of the following forms in the diagonal basis $E_i$
\begin{enumerate}[i.]
    \item\label{egy} $v=E_{i_v}-\sum_{J_v} E_j$
    \item\label{ketto} $v=-2E_{i_v}-\sum_{J_v}E_j$
\end{enumerate}
    for some index set $J_v$ depending on the vertex with $i_v\not\in J_v$.
\end{lemma}
\begin{megj}\label{connected}
Notice, that if $v_i$ and $v_j$ are adjacent in $\Gamma$, i.e. $v_i\cdot v_j=1$, then $K\cdot(v_i+v_j)+(v_i+v_j)^2=K\cdot v_i+K\cdot v_j+v_i^2+v_j^2+2=-2-2+2$, so the adjunction identity still holds.
Repeating the same argument, and using induction we get, that the sum of vertices over a connected subgraph $\Gamma'\subset\Gamma$ still has one of the two above forms in the $E_i$ basis.

\end{megj}
Next we claim, that 
\begin{tetel}\label{kettounique}
If there exists a vertex of type \ref{ketto}, then it is unique.
\end{tetel}
\begin{proof}
    Aiming for a contradiction, suppose that there are two such vertices $v,w$.
    Consider the vertices of the path connecting them in $\Gamma$, $v=v_1,\dots,v_k=w$. By shortening the path if necessary, we can assume, that $v_2,\dots,v_{k-1}$ are all of the form \ref{egy} in Lemma \ref{form}.
    Using Remark \ref{connected} and the previous assumption on $v_2,\dots,v_{k-1}$, the sums $v_1+v_2,\dots,v_1+\dots+v_{k-1}$ all have a coordinate $-2$.
    This is seen by induction. For the sum $-2E_{i_{v_1}}-\sum_{J_{v_1}} E_j+E_{i_{v_2}}-\sum_{J_{v_2}} E_j$ to be of form \ref{egy} we would need $i_{v_1}=i_{v_2}$, but then since all other coefficients are negative, a $+E_*$ cannot appear.
    Continuing the path to the very end we need to look at $\ip{v_1+\dots+v_{k-1},v_k}=1$ (since the path $v_1\dots,v_{k-1}$ and $v_k$ are connected by an edge, and having more than one edge would create a cycle in the graph). In the diagonal basis this is
    $$1=\ip{-2E_\alpha-\sum_{j\in J_\alpha}E_j,-2E_{i_{v_k}}-\sum_{j'\in J_{v_j}}E_j}$$
    Using the Kronecker we can expand as follows
    $$=-4\delta_{\alpha,i_{v_k}}-2\sum_{j'\in J_{v_k}}\delta_{\alpha,j'}-2\sum_{j\in J_\alpha}\delta_{j,i_{v_k}}-\sum_{j\in J_\alpha}\sum_{j'\in J_{v_k}}\delta_{j,j'}\leq 0$$
    a contradiction.
\end{proof}
Using the same method we get the following
\begin{kov}
    If $\Gamma_1,\Gamma_2\subset\Gamma$ are disjoint connected subtrees, then at least one of the vectors $\sum_{\Gamma_i} v$ has form \ref{egy}.
\end{kov}
Moreover, the '+' indices for the type \ref{egy} vertices are unique.
\begin{lemma}\label{egyunique}
    If $v,w\in\Gamma$, $v\neq w$ are two vertices of type \ref{egy}, then the distinguished indices $i_v,\ i_w$ are not equal.
\end{lemma}
\begin{proof}
    Suppose on the contrary, that the indices are equal.
    The two vertices pair as either 0 or 1 depending on their adjacency, from this we get
    $$0\leq\ip{E_{i_v}-\sum_{j\in J_v}E_j,E_{i_w}-\sum_{j'\in J_w}E_{j'}}=-1-\sum_{j\in J_v}\sum_{j'\in J_w}\delta_{j,j'}$$
    since $i_v=i_w\not\in J_v\cup J_w$.
    This gives $0\leq -1$, a contradiction.
\end{proof}
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\begin{all}
For a minimal symplectic plumbing tree fix a basis vector $E_i$ in the diagonal lattice. This basis element can appear in the image of 1,2,3 or 4 vectors with multiplicities as shown by the following table, or none at all.
    \begin{table}[h!]
    \centering
    \begin{tabular}{|c|c c c c|}
    \hline
         $_\#\setminus^{\Sigma}$&-2&-1&0&1  \\
         \hline
         1&(-2)&(-1)& &(1)\\
         2 &(-1,-1)&(1,-2)&(1,-1)&\\
         3 & (1,-1,-2)&(1,-1,-1)& & \\
         4 &(1,-1,-1,-1)& & &\\
         \hline
    \end{tabular}
\end{table}
\end{all}
\begin{proof}
    Applying Remark \ref{connected} to the whole $\Gamma$ (a connected subgraph of itself), we see that the sum of the coefficients of any basis element $E_i$ is either $-2,-1,0$ or $1$.
    Combining this with Theorem \ref{kettounique} and Lemma \ref{egyunique} we only have to find the number of ways there are to make a sum of $-2,-1,0,1$ while using at most one $-2$, at most one $1$, and possibly many $-1$'s. This is done in the above table.
\end{proof}
\begin{megj}\label{furamegj}
This observation only uses some of the information we have at our disposal.
To refine the statement, notice that $E_i$ cannot be of type $(1,-1,-2)$, since if $v=-2E_i-\sum_{j\in J_v}E_j$ and $\ip{w,E_i}=-1$, the product $\ip{v,w}$ is at most $-1$, a contradiction.
If an $E_i$ does not appear in any vertex, then if we change the graph and the embedding by adding $-E_i$ to an arbitrary vertex $v$ we still get a minimal symplectic plumbing tree.
It is still embedded into $(\Z^n,-I_n)$.
The intersections between vertices, i.e. the structure of the undecorated graph doesn't change, since $E_i$ is in no other vertex.
The self-intersection of $v$ decreases by $1$ and the adjunction identity stays intact\footnote{every other vertex stays unchanged, so we only need to check $v$}, since $$\ip{\sum E_j,v-E_i}+(v-E_i)^2=\ip{\sum E_j,v}+v^2-\ip{\sum E_j,E_i}+(-E_i)^2=-2+1-1=-2.$$
So from the last possibility we can produce a graph with a basis element of type $(-1)$.
Note, that the reverse construction does not always (in fact it will turn out never to) produce a minimal plumbing tree.
\end{megj}
Now we continue the restrictions on the possible embeddings with
\begin{tetel}\label{no-2}
    If $\Gamma$ is a minimal symplectic plumbing tree consisting of more than just a vertex, then there cannot be a basis element of type $(-2)$.
\end{tetel}
\begin{proof}
    We proceed by induction. Consider the graph consisting of two vertices with an edge connecting them.
    By assumption one of the two vertices has the form $-2E_i$ or $-2E_i-E_j$ for $\{i,j\}=\{1,2\}$. Now by \ref{kettounique} the other vertex is type \ref{egy}, and has the form $+E_j$ since $E_i$ is type $(-2)$, in contradiction with the minimality assumption.
        
    Suppose that the embedding of $\Gamma$ has a basis element of type $(-2)$, and no graph on fewer vertices has such an embedding.
    Denote the basis vector of type $(-2)$ by $E_1$. Since it is not contained in any other vertex, it has to be the distinguished basis element in $x=\sum_\Gamma v$ as well (in particular it is of type \ref{ketto}). This rules out basis elements of types $(-1,-1),(1,-1,-1,-1),(1)$.

    By assumption, the graph has more than one vertex. Therefore we know that there is a leaf (valency 1 vertex) of type \ref{egy}, call it $v$.
    Since it contains the vertex of type \ref{ketto}, the sum $\sum_{\Gamma\setminus\{v\}}w$ is of type \ref{ketto}.
    From this we see, that $E_{i_v}$ cannot be of type $(1,-2), (1,-1,-1)$, since this would mean, that the sum has both $-2E_1$ and $-2E_{i_v}$, which is a contradiction.
    
    This means, that $E_{i_v}$ is of type $(1,-1)$; we argue that this cannot happen either.
    Consider the unique vertex $v'\in\Gamma$, neighboring $v$, and first suppose, that the $-E_{i_v}$ is in $v'$.
    Replace the edge $\overline{v v'}$ by a new vertex, the framing of which is given by $v+v'$. Notice, that $(v+v')^2=v^2+v'^2+2<-1$.
    This eliminates $E_{i_v}$ from the embedding, and we get a new minimal symplectic plumbing tree on $n-1$ vertices, with an embedding containing a $(-2)$ basis element, a contradiction.
    
    Similarly, if the vertex containing $-E_{i_v}$ is not $v'$, then delete $v$, and add $E_{i_v}$ to this vertex, again eliminating this basis element from the embedding. We have to check, that the new graph stays minimal after this modification.
    If this modified vertex $v''$ becomes a $-1$ vertex, then originally it had the form $E_{i_{v''}}-E_{i_v}$.
    Consider $0=\ip{v,v''}$. Substituting the expression for $v''$ we get
    $\ip{E_{i_v},-E_{i_v}}+\ip{-\sum_{J_v} E_j,E_{i_{v''}}}$, the other terms pair as zero, since $i_{v''}\neq i_v$. This expression is at least one, which is a contradiction.
    The new graph is again a minimal symplectic plumbing tree on fewer vertices than $\Gamma$, still containing a $(-2)$ element in its embedding, in contradiction with the inductive assumption.    
\end{proof}
\begin{megj}
    The graph containing a single vertex with decoration $-4$ with embedding $-2E$ shows, that our assumption on the vertex set is necessary, having a basis element of type $(-2)$ is equivalent to $|\Gamma|=1$. 
\end{megj}
Repeating the same argument\footnote{or noticing, as in Remark \ref{furamegj}, that a type $(1)$ can be changed to a type $(-2)$ while staying in $\mathcal S$} we also get
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\begin{kov}\label{no-1}
    Basis elements of type $(1)$ cannot exist for a minimal symplectic plumbing tree.
\end{kov}
\begin{proof}
    The induction starts easier, since a single vertex graph with basis vector of type $(1)$ is not minimal.
    Choose a graph $\Gamma$ with a type $(1)$ basis element and minimal vertex set, denote the basis element of type $(1)$ by $E_1$.
    $\sum_\Gamma v$ will be of type \ref{egy}, since $E_1$ cannot disappear, so no basis elements of types $(-1,-1), (1,-1,-1,-1)$.
    This means, that there are no vertices of type \ref{ketto}, if there would be one, then the whole sum would by type \ref{ketto}. This forbids basis elements of type $(1,-2)$.

    Consider a leaf $v$ not containing $E_1$ (this exists, since there are at least two vertices in $\Gamma$). By the previous argument, the sum $\sum_{\Gamma\setminus\{v\}}w$ is also of type \ref{egy}, so the distinguished coordinate of $v$ cannot be of type $(1,-1,-1)$, so it is of type $(1,-1)$.

    If the vertex containing $-E_{i_v}$ is the vertex adjacent to $v$, we can replace the edge by a new vertex and get a contradiction from the inductive assumption.
    Otherwise delete $v$, and add $E_{i_v}$ to the vertex containing $-E_{i_v}$, the same proof shows that the new graph is again minimal, and the proof is complete by induction.
\end{proof}
\begin{parg}
This means, that $\sum_\Gamma v$ is always of type \ref{ketto}.
For a more systematic treatment of the actual list of indices, which can occur consider the sum $\sum_{i<j} \ip{v_i,v_j}$, which counts the number of edges in $\Gamma$, which is $n-1$, since it is assumed to be a connected tree.
Expand this sum in terms of the diagonal basis $E_i$. Since these all pair as $-\delta_{ij}$, the contribution to the sum only depends on the type of the basis element.
By a simple calculation we see that the contributions of the basis elements are as follows:
\begin{itemize}
    \item $(1,-2)$ contributes $2$
    \item $(1,-1)$ and $(1,-1,-1)$ both contribute $1$
    \item $(-1)$ and $(1,-1,-1,-1)$ both contribute $0$
    \item $(-1,-1)$ contributes $-1$
\end{itemize}
This helps us organize our investigation. Since $\sum_\Gamma v$ is of type \ref{ketto}, there has to be a single basis element of type $(-1,-1)$ or $(1,-1,-1,-1)$, and we collect the different cases that can occur in
\end{parg}
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\begin{all}
    The following three collections of basis element types can occur in a minimal symplectic plumbing tree:
    \begin{enumerate}[(A)]
        \item one $(-1,-1)$, one $(1,-2)$, and $n-2$ are a combination of $(1,-1)$ and $(1,-1,-1)$
        \item one $(1,-1,-1,-1)$, one $(1,-2)$, one $(-1)$, and the remaining $n-3$ can be $(1,-1)$ or $(1,-1,-1)$
        \item one $(1,-1,-1,-1)$ and $n-1$ can be $(1,-1)$ or $(1,-1,-1)$
    \end{enumerate}
\end{all}

\begin{proof}
	We saw that $x=\sum_\Gamma v$ is of type \ref{ketto}, so there has to be a basis element of type $(-1,-1)$ or $(1,-1,-1,-1)$, since these are the only ones which provide a $-2E_*$ to $x$.
	Consider the sum $\sum_{i<j}\ip{v_i,v_j}=n-1$, expanding this in terms of the $E_i$ basis and collecting the terms corresponding to a single basis vector we see an $n$ term sum, each term of which is $\in\{-1,0,1,2\}$ as above.
	
    First suppose, that there is a basis element of type $(-1,-1)$, which contributes $-1$ to the sum, we have to produce a contribution of $n$ out of the remaining $n-1$ terms. For this there has to be an $(1,-2)$ basis element contributing $2$, and there cannot by more by \ref{kettounique}.
    This means, that the others have to contribute $1$, i.e. a mix of basis elements of types $(1,-1)$ and $(1,-1,-1)$, this is case (A).

    If the distinguished $-2$ in the sum of the vertices is provided by a basis element of type $(1,-1,-1,-1)$, then our sum stays $0$, and we have to produce $n-1$ out of $n-1$ terms.
    There are two ways to do this, either all terms contribute $1$, or a term contributes $2$ (there can be at most one as before), another $0$, and all others contribute $1$, which are cases (C) and (B) respectively.
\end{proof}
In the proofs of \ref{no-2} and \ref{no-1} we already saw that basis elements of type $(1,-1)$ require more care to deal with, than the others.
We solidify this distinction in the following
\begin{Def}
    A vertex $v\in\Gamma$ is called \textit{full}, if it is of type \ref{egy}, and its distinguished basis element is of type $(1,-2),(1,-1,-1)$ or $(1,-1,-1,-1)$.
    Further, $\Gamma$ is called \textit{full}, if it has an embedding without a basis element of type $(1,-1)$.
\end{Def}
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\begin{lemma}
    $\Gamma$ is full if and only if $\sum_\Gamma v=-E_1-\dots-E_{n-1}-2E_n$ (after possibly reordering the basis).
\end{lemma}
\begin{proof}
    We ruled out either generally, or by definition the types, which have multiplicity $1$ or $0$ in the sum, i.e. every basis element has multiplicity $-1$ or $-2$, and there can only be one of the latter.
\end{proof}
The next statement motivates the nomenclature.
\begin{kov}\label{fullchar}
    $\Gamma$ is full if and only if $\sum_\Gamma v^2=-3n-1$.\footnote{it is the least possible}
\end{kov}
\begin{proof}
    If it is full, then $w=\sum_\Gamma v=-E_1-\dots-2E_n$, and using the fact that $\Gamma$ is a connected tree $w^2=\sum_\Gamma v^2+2(n-1)=-(n-1)-4$, the other direction follows similarly: if $w$ does not contain an $E_i$, then $w^2$ grows.
\end{proof}
We are ready to state the main
\begin{tetel}
    If $\Gamma\in\mathcal S$ is in case (A), then $\Gamma\in\mathcal G$, if it is in case (B), then $\Gamma\in\mathcal C$, and if it is in case (C), then $\Gamma\in\mathcal A\cup\mathcal B\cup\mathcal M\cup\mathcal N\cup\mathcal W$.
\end{tetel}
Along with constructions showing that each class is in $\mathcal S$, this will prove \ref{classification}. In the following we present the proof for case (A).
\section{Case A: cyclic quotient singularities}
Firstly we need a characterisation of the continued fraction coefficients for the rational numbers defining the graphs in $\mathcal G$.
\begin{all}[{\cite[Proposition 4.1]{ratbd}}]
    $(-a_1,\dots,-a_k)$ is the vector of decorations for a graph $\Gamma\in\mathcal G$ if and only if it is in the minimal set of vectors containing $(-4)$, and for which if $(-a_1,\dots,-a_k)$ is contained, then so are $(-2,-a_1,\dots,-a_k-1)$ and $(-a_1-1,\dots,-a_k,-2)$.
\end{all}
The proof consists of simple induction reliant on the crucial fact, that 
\begin{all}[{\cite[Corollary 5.7]{popescu07}}]\label{qvesszo}
	If the Hirzebruch-Jung continued fraction $[a_1,a_2,\dots,a_n]=\frac pq$, then $[a_n,a_{n-1},\dots,a_1]=\frac{p}{q'}$, where $q q'\equiv 1\mod p$ and $0<q'<p$.
\end{all}
This allows for an inductive proof for case $(A)$, but first
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\begin{all}\label{Gfull}
    The graphs in $\mathcal G$ are full.
\end{all}
\begin{proof}
    The first graph on a single vertex is clearly full by \ref{fullchar}, since $-4=-3\cdot 1-1$.
    One step of the inductive definition raises the vertex count by $1$, and lowers the square sum of the vertices by 3. Now since $-3(n-1)-1-3=-3n-1$ we get the statement.
\end{proof}
\begin{tetel}
    If $\Gamma$ contains a basis element $E_t$ of type $(-1,-1)$ (i.e. it is of case (A)), then $\Gamma\in\mathcal G$, and the two $-E_t$'s are in the endpoints of the chain.
\end{tetel}
\begin{proof}
    To start our induction we check the $n=2$ case.
    Say $E_1$ is the type $(-1,-1)$, the distinguished basis element has to be $E_2$ in both vertices, $v$ and $w$ so by Lemma \ref{egyunique} and Theorem \ref{kettounique} up to reordering of the vertices the only possibility is $v=E_2-E_1,\ w=-2E_2-E_1$, which clearly satisfies the requirements of the statement.
    
    Now proceed by induction.
    Suppose the statement is known for $k<n$, where $n\geq 3$, and denote the $(-1,-1)$ basis element $E_t$.
    First consider the case, when the $-E_t$'s are in the endpoints $v_1,v_n$. 
    Add $E_t$ to both, and delete the one which has smaller decoration in absolute value.
    This procedure gives us a graph on $n-1$ vertices, removes $E_t$ from the embedding, so it is now embedded into $\Z^{n-1}$.
    Since $v_1\cdot v_n=0$, the adjunction identity stays intact (cf. Remark \ref{furamegj}).
    Finally the graph will be minimal, since if it were non-minimal, then both $v_1,\ v_n$ would be of the form $E_{v_i}-E_t$ in the original $\Gamma$, which implies that they pair to $-1$, a contradiction.
    
    $\Gamma'$ is also of case (A), since we only removed a $-1$ from the types of the remaining basis elements, or left them unchanged, and this cannot produce a type $(1,-1,-1,-1)$.
    Now by induction we know that $\Gamma'\in\mathcal G$.
    In particular $\Gamma'$ is full. For $\Gamma$ the sum of decorations is at least $-3n-1$, we raise the sum by $1$ when adding $E_t$ to the vertex which will remain, thus the deleted vertex has to have decoration $-2$, i.e. it looks like $E_*-E_t$ (the decoration cannot be $-1$).
    Following the removal process backwards we see, that it coincides with the inductive characterisation of the graphs in $\mathcal G$.
    We subtract $1$ from one end, and concatenate a new vertex of decoration $-2$.

    The other case to consider is if there is a non-leaf vertex containing $-E_t$, say it is $v_i$.
    Since $n\geq 3$ there is at least one leaf $v$ with $v\cdot E_t=0$.
    $v$ cannot be full, since full vertices contribute $-2E_{i_v}$ to the sum $\sum_{\Gamma\setminus\{v\}}u$, but this also contains $-2E_t$, a contradiction.
    $v$ is a leaf, so $\Gamma\setminus\{v\}$ is also connected, and the sum of its vertices is of type \ref{ketto} (it has $E_t$ as its distinguished basis element), $v$ is of type \ref{egy}.
    Comparing with the possible types in case (A), we get that $E_{i_v}$ is type $(1,-1)$.

    We split into two further cases based on whether the unique neighbor of $v$ is the vector containing $-E_{i_v}$, or not, and begin with the latter.
    So let $E_{i_v}\cdot w=1$, with $v\cdot w=0$.
    Now delete $v$, and replace $w$ with $w+E_{i_v}$ to get a graph on $n-1$ vertices, with an embedding into $\Z^{n-1}$. 
    The adjunction identity stays intact at $w$, just like before (Remark \ref{furamegj}). 
    It will also be minimal, the only problematic vertex is $w$, if it squares to $-1$, then it is of the form $E_{i_w}-E_{i_v}$, which means that $v\cdot w\geq 1$, contradiction.
    In conclusion this new $\Gamma'\in\mathcal S$, still without a type $(1,-1,-1,-1)$ basis element, i.e. case (A).
    By induction $\Gamma'\in\mathcal G$, in particular it's full, repeating the same argument as in the previous case provides that $v=E_{i_v}-E_\iota$, implying that its neighbor $v'$ has the form $E_\iota-\sum_{J_{v'}}E_j$.
    This contradicts the fullness of $\Gamma'$, $E_\iota$ could have type $(1,-1,-1)$ or $(1,-1)$, in any case after removing $v$, $\Gamma'$ will not be full in the former case, or $|\Gamma'|=1$ in the latter, in contradiction with Proposition \ref{Gfull} or the inductive hypothesis.

    Lastly if $v'$ and $w$ coincide, modify $v'$ to $v+v'$ and delete $v$. By Remark \ref{connected} the adjunction identity stays intact, $(v+v')^2=v^2+(v')^2+2\leq -2$ so it stays minimal and $E_{i_v}$ gets eliminated from the embedding, so we produce $\Gamma''\in\mathcal G$ by induction.
    By the additional inductive hypothesis we get that $v_i$ is one of the endpoints of $\Gamma''$, but it was not a leaf in $\Gamma$, so $v_i$ coincides with the modified $v'$.
    Now we can justify deleting $v$ from the original $\Gamma$, and adding $E_{i_v}$ to $v'$, since it contains one of the $-E_t$'s, the graph will stay minimal, and the previous case's argument finishes the proof.
\end{proof}
\begin{parg}
Finally we must show, that $\mathcal G\subset\mathcal S$.
The proof above already indicates how this can be done inductively. The single $-4$ vertex graph is readily embedded by $v\mapsto -2E$. $(-5,-2)$ is embedded by $(-2E_1-E_2,E_1-E_2)$, as seen at the beginning of the proof. Here $E_2$ is the unique $(-1,-1)$ basis vector of our graph.
Now the inductive step can be completed by mapping the new $(-2)$ vertex to $E_t-E_n$, and modifying the other end of the chain to $v_1-E_n$ ($E_n$ is the new basis element, and $E_t$ is still the unique type $(-1,-1)$).
\end{parg}

%We can also construct fillings in this case.\todo{redundans?}
%Using the same inductive procedure first take a smooth quadric in $\overline{\C P^2}$, topologically this is a sphere, and a tubular neighborhood of this sphere has boundary $L(4,1)$. Using the fact that lens spaces are rational homology spheres and considering the rational Mayer-Vietoris exact sequence one sees immediately, that the complement of this neighborhood is a rational homology disk, providing the desired smoothing.
%Consider now a line\footnote{note, that its orientation is flipped} $\C P^1\subset\overline{\C P^2}$, which meets the quadric at two negative intersection points. Blowing up at one of these intersection points reproduces the inductive step in the construction of $\mathcal G$. The quadric, which represented $-2[\overline{\C P^1}]$ in homology gets modified to $-2[\overline{\C P^1}]-E$ with the new exceptional divisor introduced by the blowup, and similarly the projective line with flipped orientation will change to $[\C P^1]-E$. 
%A similar computation shows, that the tubular neighborhood of the two curves (disregarding the new exceptional $-1$ curve) has a rational homology disk filling by its complement.
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\chapter{Constructions and obstructions}
\section{Constructions}
\subsection{Smoothings of negative weights}
In this section we introduce a method for constructing smoothings for all of the known cases (star-shaped graphs i.e. weighted homogeneous singularities).
We use a corollary of a result of Pinkham
\begin{tetel}[{\cite[Theorem 8.1]{ratbd}, \cite[Theorem 6.7]{pinkham78}}]
	Let $\Gamma$ be a star-shaped negative definite graph.
	If there exists a smooth projective rational surface $Z$ and a collection of smooth rational curves $D\subset Z$ intersecting according to the dual graph of $\Gamma$, $\Gamma'$ satisfying $\rk H_2(Z,\Z)=\rk H_2(D,\Z)$, then $Z$ is a smoothing of a singularity with resolution graph $\Gamma$, moreover the interior of the Milnor fiber is diffeomorphic to $Z\setminus D$.
\end{tetel}
Using this theorem our aim is to find curve configurations in some blowup of $\C P^2$, a subcollection of which represents the dual graph of a member of the class under consideration.
The complete\footnote{with regards to the star-shaped case} list of constructions can be found in \cite[Section 8.1-2]{ratbd}, \cite[Section 3.]{Bhupal2013} and \cite[proof of theorem 1.4\&1.6]{weighted}.
\begin{tetel}[{\cite[Example 8.3-4]{ratbd}}]\label{construction}
	The graphs in $\mathcal G, \mathcal M, \mathcal N, \mathcal W$ all admit $\Q HD$ smoothings.
\end{tetel}
\begin{proof}
For $\mathcal G$ consider a smooth quadric $Q$ and a line $L$ transversely intersecting it in $\C P^2$.
Blow up the two intersection points of $Q$ with $L$ to obtain the square dual graph depicted on \autoref{negyzet}.
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.6\textwidth]{negyzet.eps}
	\caption{The basic configuration and the first blowup indicated by dashes}
	\label{negyzet}
\end{figure}
Given a graph $\Gamma\in\mathcal G$, we consider it a star-shaped graph with two legs (one possibly empty) by designating the image of the $-4$ vertex to be the node.
We can build its dual graph from the configuration above by blowing up the intersection points of the image of $L$ with its two neighbors.

Identify this with the dual graph of $\Gamma$ by considering the construction of the dual graph in the $\Sigma_4$ Hirzebruch surface.
Blow up two fibres as usual, and then the construction is modified slightly as follows:
remember that each step in the construction for $\mathcal G$ consists of lowering the framing on one end of the chain by one, and concatenating a new $-2$ onto the other.
We can mimic this by doing blowups on both distinguished\footnotemark $-1$ curves in the configuration as indicated by \autoref{gdual}. Building up $\Gamma$ in this way we almost get back the original definition of the dual graph, but there is a trailing chain of a $-1$ curve followed possibly by some $-2$'s on one of the arms of the claimed dual.
This is a byproduct of our method, blowing them down corresponds precisely to the fact that the $-4$ curve has had its framing lowered.
The length of this $-1$ subarm is precisely the number of times $-4$ had its framing lowered by construction (notice, that when $-4$ is no longer on one of the ends of the chain, the construction changes the last $-2$ of this portion of the dual arm to a $-3$, and thus the blowdown process stops at this point).
\footnotetext{At the first step the $-1$ curves intersecting the $-4$ central curve, and afterwards always the "newest" $-1$ curve on both arms.}
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.75\textwidth]{Gdual.eps}
	\caption{The first step of the modified construction with the two possible blowup-pairs indicated by empty and full circles.}
	\label{gdual}
\end{figure}
The $\Gamma$ portion of the configuration stays unchanged during this blowdown process, and we get the dual graph according to the original definition.

Now it is clear, that the previous construction provides the same dual graph.
The starting configuration is identical, disregarding the "bottom" $-1$ curve on the left of \autoref{negyzet}.
A single blowup step produces the same result (namely one arm gets a new $-2$ vertex, and the other arm's last vertex's framing gets dropped by one) as the original construction of the dual graph.
This is true by noticing the symmetry of the construction.
If one arm of $\Gamma$ gets a new $-2$ vertex, the blowup also lowers the framing of the last member of the corresponding dual arm, and vice versa on the other arm.
The rank will also be equal to the rank of the ambient space by induction.
It is so in the first step and after every blowup a single new generator is added to the configuration.
Afterwards we blow down only vertices in the configuration, so the rank of the ambient space, and also of the subcomplex gets dropped by one.

\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.43\textwidth]{w_constr.eps}
	\includegraphics[width=0.56\textwidth]{n_constr.eps}
	\caption{The blowup process used for  $\mathcal W$ (left) and $\mathcal N$ (right)\\Full circles are framed $-2$, empty circles are framed $-1$ unless otherwise indicated}
	\label{wn_constr}
\end{figure}

For the $\mathcal W$ class consider four lines $L_1,\dots,L_4\subset \C P^2$ in general position. 
Blow up their intersection points 6 times as indicated by $E_1,\dots,E_6$ on the left diagram of \autoref{wn_constr}, 
and a further $p,q$ and $r$ times at the intersections of $L_2,L_3,L_4$ with their respective neighboring $-1$ curves (\autoref{w_blowup}).

\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.6\textwidth]{w_blowup.eps}
	\caption{The configuration after the $p+q+r+6$-fold blowup}
	\label{w_blowup}
\end{figure}
	
After the necessary blowups disregarding the three $-1$ curves gives an appropriate $D$ for us, the central vertex will be $L_1$ with framing $+1$.
From the construction we can read off that the arms will be represented by\footnote{see \autoref{kettesek} for this notation} $[p+2,(2)^{r+1}]$, $[q+2,(2)^{p+1}]$, $[r+2,(2)^{q+1}]$.
The graph we get is the dual of $\Gamma_{p,q,r}$.
This is readily checked by pairing up the arms by parameters and checking that the concatenated configuration blows down to the appropriate Hirzebruch surface, by the symmetry of the construction it is enough to check one arm.
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.6\textwidth]{w_blowdown}
	\caption{The blowdown process for the $p,r$ arm}
	\label{w_blowdown}
\end{figure}

\pagebreak[3]

For $\mathcal{N}$ begin with the same configuration, and through a different sequence of blowups arrive at the configuration on the right of \autoref{wn_constr}.
To obtain the dual of some specific $\Delta_{p,q,r}$ blow up the intersection between $L_1, L_2, L_4$ and its neighboring $-1$ curve $p,q,r$ times respectively as before.
Disregarding the three $-1$ curves we get the desired $D$ with $Z=\C P^2\#(p+q+r+7)\overline{\C P^2}$.
T\\
he homological assumption is clearly satisfied, and once again we can check arm by arm, that it is indeed dual to $\Delta_{p,q,r}$.
The central vertex is $L_3$ of course, the arms pair up by parameters as previously.
Concatenating as on \autoref{w_blowdown} the single $-p-2$ vertex arm of $\Delta_{p,q,r}$ gets blown down by the $E_1$ arm, the $[(2)^2,q+4]$ arm is dual to the $L_4$ arm of our configuration.
The long arm is a bit more tricky, but is clear to follow.
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.69\textwidth]{n_blowup.eps}
	\includegraphics[width=0.29\textwidth]{n_blowdown.eps}
	\caption{The configuration after the appropriate blowups, the full circles represent the dual of $\Delta_{p,q,r}$ and the blowdown of the long arm}
	\label{n_blowup}
\end{figure}

\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.8\textwidth]{m_constr.eps}
	\caption{The starting blown up configuration with the indicies indicating the order of the blowups}
	\label{m_constr}
\end{figure}

\pagebreak[3]

For $\mathcal M$ a more elaborate configuration is required, to this end define the following curves in $\C P^2$:
\begin{itemize}
\item $C_1=\{x^2-yz=0\}$
\item $C_2=\{x^2-yz+xy=0\}$
\item $L_1=\{x=0\}$
\item $L_2=\{z=0\}$
\end{itemize}
i.e. two smooth conics with a triple intersection, the line through the two intersection points ($[0:0:1]$, $[0:1:0]$) and the tangent of the first at the transverse intersection of the two conics.
As before, blow up the intersections 8 times, to get the curve configuration of \autoref{m_constr}.
Further $p,q,r$-fold blowups of the intersection between $E_4,C_2,E_2$ and their $-1$ neighbors produces a configuration from which if we throw the $-1$'s out represents the dual of $\Lambda_{p,q,r}$ ($E_5$ will be the root).
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.8\textwidth]{m_blowup.eps}
	\caption{The auxiliary blowups producing the dual graph of $\Lambda_{p,q,r}$}
	\label{m_blowup}
\end{figure}

By the conditional nature of the definition of the $\Lambda_{p,q,r}$ graphs this assertion requires more checking, but all cases are very similar.
The dual arms are $[(2)^{p+1}]$, $[(2)^{r+2}]$, $[q+2,r+2,p+2,(2)^{q+2}]$.
The $(2)^*$ arms pair up with the single vertex $p+2$ and $r+3$ arms of the original, and the long arm also blows down in each case, analogously to the long arm of the $\mathcal N$ graphs.

After these constructions appealing to Pinkham's theorem proves the stated result.
\end{proof}
\subsection{Quotients}
\begin{parg}
 Another method we shall mention briefly is the construction of smoothings via quotients (\cite[{}8.2]{ratbd}, \cite[5.8]{wahl81}).
 Consider a normal threefold singularity germ $(\mathcal Y,o)$ on which a finite group $G$ acts freely away from $o$.
 An invariant function $f\in\mathcal O_{\mathcal Y,o}^G$, whose zero set $(Y,o)$ is an isolated surface singularity actually defines a smoothing of $Y/G$, whose Milnor fiber is the factor of the free action of $G$ on the Milnor fiber of $Y$.
 This implies that if one can find such an $f$ and $G$ where the group has order equal to the Euler characteristic of the Milnor fiber of $Y$ (i.e. $1+\mu(Y)$), then one has a $\Q HD$ smoothing of the factor $X$.
 \end{parg}
 \begin{pl}[{$\mathcal G$ revisited (\cite[Example 5.9.1]{wahl81})}]
 	Take $(\mathcal Y,o)=(\C^3,0)$ and $0<q<p$ relatively prime integers.
 	Let $\omega$ be a primitive $p$th root of unity, and let $\Z/p\Z$ act on $\C^3$ via coordinatewise multiplication by $[x,y,z]\mapsto[\omega x,\omega^q y,\omega^{p-1} z]$.
 	The function $f=xz-y^p$ is clearly invariant under this action, the factor is the $(p^2,pq-1)$ cyclic quotient singularity (\cite[{}2.3]{nemethi2022normal}).
 	We can calculate the Milnor number\footnote{The Milnor fiber has the homotopy type $\vee_\mu S^2$, we call $\mu$ the Milnor number, see \cite[{}3.2.13]{nemethi2022normal}} 
 	%from definition: $\dim\C\{x,y,z\}/(z,y^{p-1},x)=p-1$.
 	using \cite[{}Korollar 3.10 a)]{greuel1978invarianten}, since $f$ is clearly weighted homogeneous of degree $p$ with weights $(1,1,p-1)$, $\mu=(p-1)(p-1)(\frac{p}{p-1}-1)=p-1$.\footnote{The same formula has a typo in \cite[5.1.15 (a)]{nemethi2022normal} the terms should be multiplied, instead of summed}
 	This means, that the Milnor fiber of $f$ has Euler characteristic $p$, so after factoring by $G$ $p(1+\mu(F/G))=p$, and we get rational homology disk smoohtings for the $\mathcal G$ family.
 \end{pl}
\begin{megj}
These constructions make computing other invariants (i.e. $\pi_1$) of these spaces possible as well, for the valency 3 case see \cite[{}8.2]{ratbd}, for valency 4, \cite{wahl11}.
Before moving on we also mention, that in the $\mathcal M,\mathcal N,\mathcal W$ cases the above constructed spaces are the unique minimal fillings up to symplectic deformation, see \cite{bhupal2012}.
\end{megj}
\section{Obstructions}
There are a few obstructions for a singularity to admit a $\Q HD$ smoothing, with most depending on only the (smooth) topological type of the minimal good resolution $X_\Gamma$.
\subsection{The geometric genus}
As stated in ยง\ref{intro}, any singularity admitting a rational homology ball smoothing must be a rational singularity.
\begin{Def}[{\cite[Definition 3.1-2]{fivelec}}]\label{geomgenus}
	The \textit{geometric genus} of a normal surface singularity germ $(X,o)$ is defined by $p_g:=\dim H^1(\tilde X;\mathcal O_{\tilde X})$ for some good resolution $\tilde X\rightarrow X$.
	$(X,o)$ is called a \textit{rational singularity}, if $p_g=0$.
\end{Def}
Being rational is an analytic property of the singularity at first glance, but this turns out not to be the case.
A variation of Laufer's algorithm makes it relatively simple to determine rationality from a good resolution graph for the singularity at hand. We follow \cite{stipsicz08}, but also cf. \cite[2.10, 3.8-9]{fivelec} or \cite[7.1.2]{nemethi2022normal} for a more detailed exposition and proofs.
\begin{parg}\label{laufer}
	Denote the exceptional curves corresponding to the vertices of $\Gamma$ by $E_i$.
    Consider $Z_0:=\sum [E_i]\in H_2(X_\Gamma,\Z)$ and the products $(Z_0,E_i)\in\Z$.
	Now we split the cases according to if among these products there is an $E_i$ with $(Z_0,E_i)$
	\begin{itemize}
		\item $> 1$ stop, the singularity is not rational
		\item $=1$ replace $Z_0$ with $Z_0+E_i$ and repeat
		\item $<1$ then repeat with $E_{i+1}$
	\end{itemize}
	We stop when $(Z_0,E_i)\leq 0\ \forall i$, and this shows the singularity at hand to be rational.
\end{parg}
\begin{megj}\label{geomgrmk}
	Note that this algorithm uses only topological data, so rationality does not depend on the analytical type of the singularity, only the topological type of its resolution(s).
	It is also worth noting, that by this algorithm any graph in which every vertex $v$ has valency\footnote{$N(v):=\{w\in\Gamma:(v,w)\text{ is an edge of }\Gamma\}$} $|N(v)|\leq|v^2|$ \textit{automatically} corresponds to a rational singularity, and if there is a vertex with $|v^2|\leq |N(v)|-2$ it automatically fails.
\end{megj}
\begin{pl}
	Any element of the $\mathcal{A},\mathcal{B},\mathcal{C}$ classes where one begins the construction by blowing up the central vertex and then the new vertex will automatically be non-rational and thus will not admit a $\Q HD$ smoothing by the previous remark.
\end{pl}
\subsection[The mubar invariant]{The $\bar\mu$ invariant}
%\begin{tetel}[{\cite[Theorem 1.1]{stipsicz08}}]
%	If $Y_\Gamma$ is a plumbed 3-manifold, $\Gamma$ is the resolution graph of a rational singularity with $\bar\mu(Y,\mathfrak s)\neq 0$ for some spin structure $\mathfrak s\in Spin(Y_\Gamma)$, then there is no $spin^c$ rational homology ball $(K,s)$ with $\partial(K,s)=(Y_\Gamma,\mathfrak s)$.
%\end{tetel}
Consider a plumbing graph with $2\not|\det\Gamma$. From this it follows that $H_1(Y_\Gamma;\Z_2)=0$, where $Y_\Gamma=\partial X_\Gamma$ is the boundary of the plumbed 4-manifold corresponding to $\Gamma$.
This also means that $Y_\Gamma$ has a unique spin structure, which will be important for us, since generally $\bar\mu$ only obstructs $Y_\Gamma$ from bounding a spin rational homology 4-ball.
However in the special case when $\det\Gamma$ is odd, the unique spin structure of $Y_\Gamma$ always extends to a $\Q HD$ bounding it (\cite[Proposition 4.2, Theorem 1.4]{stipsicz08}), and thus the to be defined $\bar\mu$ can be used to rule out certain plumbing graphs.
This invariant can be calculated combinatorially as follows (\cite[Section 2]{stipsicz08}).
\begin{parg}\label{rank}
	Begin with the plumbing graph $\Gamma$. First we reduce the graph until it consists of isolated points, and then build up a subset of the vertices following this reduction process backwards.
	The reduction step consists of two possible moves we can make on the graph.
	If $\Gamma$ does not consist of isolated points, consider a valency 1 vertex $v$ and its unique neighbor $w\in\Gamma$.
	\begin{enumerate}
		\item if $v^2\equiv 0\mod2$, delete\footnote{along with any other edges $w$ is an endpoint of} $v$ and $w$  from $\Gamma$
		\item if $v^2\equiv 1\mod2$ delete $v$, and change the parity of $w^2$.
	\end{enumerate}
	This produces a sequence of decorated graphs $\Gamma=\Gamma_1, \Gamma_2^{i_2},\dots,\Gamma_k^{i_k}$ where we take note of the type of move used with $i_j\in\{1,2\}$, and where the sets of vertices form a descending chain.
	Now if the resulting set of points do not all have odd framing, stop, the graph has even determinant.
	
	Take the set of these points $S_1=\Gamma_k^{i_k}$, and follow the previous reduction process in reverse. We omit the indices from the $S_i$ for easier readability, and use primes instead to present a single step.
	Given $S\subset\Gamma_j^{i_{j}}$, if the next vertex to be re-added is $v\in\Gamma_{j-1}^{i_{j-1}}$ with neighbor $w$, then the new subset $S'$ will be depending on the type of move used
	\begin{enumerate}
		\item $S=S'$ if $|N(w)\cap S'|\equiv w^2\mod 2$ or $S=S'\cup\{v\}$ if not when $i_{j-1}=1$.
		\item $S=S'$ if $w\in S'$ or $S=S'\cup\{v\}$ if not for $i_{j-1}=2$.
	\end{enumerate}
	Running through all the steps we arrive at some subset of vertices $S\subset\Gamma$.
	Now using this set $S$ we define $\bar\mu(Y_\Gamma):=-n-\sum_Sv^2$.
\end{parg}
\begin{tetel}[{\cite[Corollary 1.2]{stipsicz08}}]
    Using the previous notations, if $\det\Gamma$ is odd, and $\bar\mu(Y_\Gamma)\neq 0$, then no normal surface singularity with resolution graph $\Gamma$ admits a $\Q HD$ smoothing.
\end{tetel}
\begin{megj}
    By construction the set $S$ represents a disjoint union of spheres.
    It is also simple to check, that $c_S:=PD([\sqcup_S S_i])\in H^2(X_\Gamma,\Z)$ is a characteristic cohomology class, and since $\pi_1(X_\Gamma)=0$ it corresponds to a unique spin$^c$ structure on $X_\Gamma$, with first Chern class $c_S$.
    This means that this class has compact support in $X_\Gamma$, so the restriction to the boundary gives us not just a spin$^c$, but the spin structure on $Y_\Gamma$.
    $S$ is called the \textit{Wu set} corresponding to the unique spin structure of $Y_\Gamma$. 
\end{megj}
\begin{pl}
	The family depicted on \autoref{rossz} has odd determinant, and $\bar\mu(Y_\Gamma)=0$ for odd $n$, but no rational homology disk smoothing, as shown later.
\end{pl}
\begin{all}\label{mubarB}
    Elements of $\mathcal B$ have even determinant.
\end{all}
\begin{proof}
    If we reduce the intersection matrix for the smallest element of $\mathcal B$ we see
    $$
    \det\begin{bmatrix}
        -3&1&1&1\\
        1&-2&0&0\\
        1&0&-4&0\\
        1&0&0&-4
    \end{bmatrix}\equiv
    \det\begin{bmatrix}
        1&1&1&1\\
        1&0&0&0\\
        1&0&0&0\\
        1&0&0&0
    \end{bmatrix}\equiv 0\mod2
    $$
    since the last three rows are the same.
    One step in the construction changes at most one of these rows, and further steps cannot touch these either.
    This means, that all intersection matrices have two rows, which are linearly dependent $\mod2$, and thus have even determinant.    
\end{proof}
\begin{kov}
    By the same argument, if one begins with blowing up the vertex, or the $-3$ edge in $\mathcal C$, the resulting graphs will have even determinant.
\end{kov}
\subsection{Dimension count}\label{dimcount}
From the algebraic viewpoint we have the following
\begin{tetel}[{\cite[Theorem 8.1]{wahl11}}]
    Let $(X,o)$ be a rational surface singularity with minimal good resolution $(\tilde X,E_1\cup\dots\cup E_n)$.
    Let the sheaf $S_{\tilde X}$ be defined by the exact sequence $0\rightarrow S_{\tilde X}\rightarrow TX\rightarrow\oplus_i\nu_{E_i\subset\tilde X}\rightarrow 0$ (see also \cite[{}2.2]{Wahl1976}).
    If $\dim H^1(\tilde X;S_{\tilde X})-\sum_1^n (E_i^2+3)\leq 0$ then $(X,o)$ does not admit a $\Q HD$ smoothing.
\end{tetel}
\begin{megj}
    The formula computes the dimension of any $\Q HD$ smoothing component in the base space of the semi-universal deformation space for $(X,o)$, but this is outside the scope of this thesis.
    We only need an important corollary.
\end{megj}
\begin{kov}\label{tautharom}
    With the above notations, if $(X,o)$ is taut, then $H^1(\tilde X;S_{\tilde X})=0$, in particular $\Q HD$ smoothings cannot exist if $\sum_1^n (-E_i^2-3)\leq 0$.
\end{kov}
\begin{kov}[{\cite[Theorem 8.6]{wahl11}}]\label{tautH}
	The taut "H-shaped" (having exactly two vertices of valency $3$, and the others of valency $1,2$) graphs in the three families $\mathcal A,\mathcal{B},\mathcal{C}$ cannot have $\Q HD$ smoothings.
\end{kov}

\begin{proof}
    To obtain an H-shaped graph in one of the families we have to first blow up one of the intersection points, and (possibly after a sequence of other edge blowups) blow up the vertex once, and then possibly the edges a few more times.
    It is easy to check, that the number $\sum_\Gamma (-v^2-3)$ does not change under edge blowups: this lowers the framing of a vertex by one, and creates a new vertex of framing $-2$, i.e. the sum changes by $1+2-3=0$.
    A similar check shows, that the sum decreases by 1 under a vertex blowup.
    Without any blowups, the graphs of \autoref{abc} (after changing the $-1$ to $-4,-3,-2$ respectively) have this sum equal $1$, so if we have a taut H-shaped member of these families, the sum is zero, and thus the theorem rules them out from having a $\Q HD$ smoothing.
\end{proof}
\begin{megj}
    Note, that tautness does not behave well under blowups, let alone the construction of the $\mathcal A,\mathcal{B},\mathcal{C}$ classes. In particular, a taut graph has at most two vertices of valency $>2$ by Theorem \ref{tautlist}.
\end{megj}
\begin{pl}
    Nonetheless, we get many members of $\mathcal A,\mathcal{B},\mathcal{C}$ not admitting a $Q HD$ smoothing.
    In particular all H-shaped graphs, where the second node (obtained by blowing up the vertex during the construction) has framing at most $-3$ are taut of the form $(L_1)+(J_1)+(R_2)$ (see \autoref{tauttable}).
\end{pl}
\begin{pl}[{\cite[Corollary 8.7]{wahl11}\footnote{Note that in \cite[Remark 8.9]{wahl11} a graph is erroneously claimed to be non-taut, in fact it is $(L_1)+(J_1)+(R_8)-(C_4)$, see Example \ref{ellenpelda}. (\cite[Remark 4.2]{parkshinstip})}, cf. \cite[Proposition 4.2]{Gay2012}}]
	For $n\geq2$ the graph falls into the previous example.
	For $n=1$ the second node of the family on \autoref{rossz} has framing $-2$, but is also taut of type $(L_1)+(J_2)+(R_4)-(C_3)$, and so it cannot admit a $\Q HD$ smoothing.
    \begin{figure}[ht!]
        \centering
        \includegraphics[width=0.5\textwidth]{images/Yn.eps}
        \caption{A subfamily of $\mathcal{A}$ admitting no $\Q HD$ smoothing}
        \label{rossz}
    \end{figure}
\end{pl}
\begin{pl}
	A simple search utilising \autoref{kod} and manual checking of tautness shows, that all rational graphs with $\bar\mu=0$ where we blow up at most 4 times are taut with one exception in $\mathcal A$ and two exceptions in $\mathcal B$ depicted on \autoref{key}.
	These graphs cannot be taut, since they contain a vertex of valency $4$, but are rational and their $\bar\mu$ invariant vanishes for some spin structure (the graphs with the same shape in $\mathcal C$ all have nonzero $\bar\mu$).
	\begin{figure}[ht!]
		\centering
		\includegraphics[width=0.9\textwidth]{images/B.eps}
		\caption{Three graphs not ruled out by our previous conditions}
		\label{key}
	\end{figure}
	One of the smallest graphs which these invariants cannot rule out in $\mathcal C$ is depicted on \autoref{rosszH} along with an H-shaped example from $\mathcal A$ and $\mathcal B$ as well.
	The latter two require 5 blowups, while the smallest example from $\mathcal C$ still needs 4.
	They cannot be taut, since a vertex of degree two cannot support two arms of length $>1$.
	\begin{figure}[ht!]
		\centering
		\includegraphics[height=13ex]{images/A-hshaped.eps}
		\includegraphics[height=13ex]{images/B-hshaped.eps}			\includegraphics[height=13ex]{images/C.eps}
		\caption{Smallest non-taut rational H-shaped graphs with $\bar\mu=0$ in $\mathcal A,\mathcal B,\mathcal C$.}
		\label{rosszH}
	\end{figure}
\end{pl}

\subsection{McDuff's theorem and lattice embeddings}
A direct application of the strategy in \autoref{stars} can be used to rule out certain subfamilies of the remaining $\mathcal A, \mathcal B,\mathcal C$ classes.
For suitable graphs one can construct a "dual" configuration in a Hirzebruch surface, manipulating it until one produces a $+1$ sphere allows for the application of Theorem \ref{mcduff}.
Ruling out every possible sequence of blowdowns shows that the given singularity link cannot admit a weak rational homology ball filling, thus no such smoothing either.
An example of this strategy is found in \cite{bhupal2016nonexistence}.
Start with one of the graphs on \autoref{nonex}, and substitute the corresponding subgraph in place of the arm as indicated.
The graphs produced this way admit no $\Q HD$ smoothing (\cite{bhupal2016nonexistence}).\footnote{Note, that the family $\Gamma^B_n$ of \cite{bhupal2016nonexistence} is not in fact a member of $\mathcal B$, one of the short arms should be framed $-4$ instead of $-2$.}
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.6\textwidth]{gammaA.eps}
	%\includegraphics[width=0.49\textwidth]{gammaB.eps}
	\includegraphics[width=0.6\textwidth]{gammaC.eps}
	\caption{The starting graphs and the inductive subgraphs producing subfamilies of $\mathcal A,\mathcal C$ not admitting a rational homology disk smoothing.}
	\label{nonex}
\end{figure}

One can also extend the strategy of \autoref{stars} more generally. In \cite{Gay2012} an explicit construction is given for symplectic caps, i.e. concave fillings of plumbed 4-manifolds along a negative definite tree of spheres, with $-v_i^2\geq |N(v)|$ (c.f. \ref{geomgrmk} and also with the dual graph construction in \ref{compactdiv}).
This is done, so arguments in the spirit of \ref{strategia} could be carried out in a more general setting.
A Kirby diagram for the filling can be described as follows:
\begin{parg}
	Choose a leaf $v\in\Gamma$. The diagram will be described as the closure of a braid, take $-w^2-|N(w)|$ many strands for each vertex $v\neq w\in\Gamma$, and $-v^2-2$ many for $v$ (note, that this number is nonnegative, since $-v^2\geq 2$).
	Make a full $-1$ twist on this trivial braid, and for each edge $e$ a full negative twist on the strands corresponding to connected components of $\Gamma\setminus\{e\}$, which don't contain $v$.
	The framing of the strings associated to $v$ will be $-2$, and each string associated to a vertex $w\neq v$ will be framed $-d(v,w)-3$, where $d(v,w)$ is the (vertex) distance between $v,w$ in $\Gamma$.
\end{parg}
Now using this construction we can suppose that the manifold $\partial X_\Gamma$ has a rational homology sphere filling, and derive a contradiction by showing, that the intersection lattice (which can be read off from the Kirby diagram of the cap) cannot be embedded into the diagonal lattice of the same rank, contradicting Donaldson's theorem (\cite[1.3.1]{donaldson1997geometry}).
This is done for the family depicted on \autoref{rossz} in \cite[Proposition 4.4]{Gay2012}.

%I hope you enjoyed reading this essay as much as I enjoyed writing it.
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\chapter{Stars}\label{stars}
Now we begin the discussion about which resolution graphs actually admit $\Q HD^4$ smoothings.
The case, when the graph admits a unique vertex of valency $>2$ (also called star-shaped) is completely classified as follows:
\begin{tetel}[{\cite[Theorem 1.4, 1.6]{weighted}}]
    Suppose $\Gamma$ is a minimal star-shaped plumbing tree with at least three branches and the weight of the node\footnote{the vertex with valency $>2$} in the dual\footnote{see Remark \ref{dual}} $\Gamma'$ is at least $-1$, then the following are equivalent:
    \begin{enumerate}
        \item There is a singularity with minimal good resolution graph $\Gamma$ admitting a $\Q HD^4$ smoothing
        \item The Milnor fillable contact structure\footnote{see \autoref{sec:motivation} and \autoref{sec:milnor} or \cite{caubel06}} of the link of the plumbed 3-manifold corresponding to $\Gamma$ admits a weak symplectic $\Q HD^4$ filling
        \item $\Gamma\in\mathcal W\cup\mathcal N\cup\mathcal M\cup$ the subfamilies of $\mathcal A,\mathcal B,\mathcal C$ depicted on \autoref{kulcsok}
    \end{enumerate}
\end{tetel}
\begin{figure}[ht!]
    \centering
	\includegraphics[width=\textwidth]{kulcsok.eps}
    \caption{The star-shaped subfamilies of $\mathcal A,\mathcal B,\mathcal C$ admitting a $\Q HD$ smoothing}
    \label{kulcsok}
\end{figure}
\begin{megj}
    We see in Example \ref{wmntaut} that the graphs where the node has valency $3$ are taut (Definition \ref{tautdef}).
    The framing assumption is automatically satisfied in this case.
    It is also worth noting, that this assumption on the valency $4$ case places no additional restrictions on the holomorphic result\footnote{but the question of symplectic fillability is still an open question if the central framing is $=-2$}, since our singularities are rational, the framing of any vertex cannot be less than the valency of the vertex minus one in absolute value (cf. Remark \ref{geomgrmk}).
    In \cite{wahl11} it is conjectured, that this list is complete, i.e.:
\end{megj}
\begin{conj}
    The only normal surface singularities admitting a rational homology disk smoothing are the known weighted homogeneous examples.
\end{conj}

\section{Weighted homogeneous singularities}
Now following \cite[Section 2-3]{weighted} we expose the main arguments and methods used in the proof.
The first important construction is the Hirzebruch surface (see \cite[{}3.4.7]{gompf19994}, \cite[{}II.1-2]{manetti2005lectures}), used for the definition of the dual graph later.
\begin{Def}
    Consider the complex plane bundle $\mathcal O(0)\oplus \mathcal O(n)\rightarrow\C P^1$, where $\mathcal O(n)$ is the complex line bundle over $\C P^1$ with Euler number $n$.
    We call its projectivization $\mathbb P(\mathcal O(0)\oplus \mathcal O(n))$ a \textit{Hirzebruch surface}, and denote it by $\Sigma_n$.
\end{Def}
\begin{pl}
    $\Sigma_0=\C P^1\times \C P^1$ and $\Sigma_1=\C P^2\#\overline{\C P^2}$. Up to diffeomorphism these are the only two cases, dependent only on the parity of $n$.
\end{pl}
\begin{parg}\label{hirzebruch-dual}
These surfaces have two obvious (smooth) sections, corresponding to the origin, and the "point at infinity" on each fiber, we call these the zero and infinity sections respectively (c.f. the coordinate description in \cite{manetti2005lectures}).
These are two disjointly embedded $\C P^1$'s, with self intersections $n$ and $-n$ respectively.
Now let there be given a star-shaped negative definite graph $\Gamma$ with the central vertex having valency $m$ and decoration $b$.
Pick $m$ different fibers in $\Sigma_b$.
By blowing up the intersection points of these fibers with the infinity section and then the new divisors as depicted on \autoref{graphdual}, recreate $\Gamma$ as the neighborhood of the zero section and some curves on the strict transforms of the fibers.
Disregarding the $-1$ curves "in the middle", the complement of this configuration is called the dual graph of $\Gamma$, denoted $\Gamma'$.
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.6\textwidth]{dual.eps}
	\caption{$m=3$ example for the construction of the dual graph and the intersections of the spheres at the end of the construction}
	\label{graphdual}
\end{figure}
\end{parg}
\begin{megj}\label{dual}
This construction is needed only to obtain the compactifying divisor $X_{\Gamma'}$ (an open neighborhood of $\Gamma'\subset\Sigma_b\#n\overline{\C P^2})$), one does not need to run this algorithm to determine the dual graph $\Gamma'$.
Consider instead the Hirzebruch-Jung continued fraction given by reading the negatives of the decorations of an arm of the graph from the central vertex outwards, this encodes each arm as a rational number $\frac{p_i}{q_i}$.\footnote{In our case of interest each decoration is at most $-2$, so this number is greater than 1}
If $\Gamma$ had $m$ arms, and the central vertex had decoration $-b$, then the dual graph $\Gamma'$ will have the same number of arms, central decoration $b-m$, and each arm will have decorations given by the negatives of the continued fraction coefficients of $\frac{p_i}{p_i-q_i}$ (again written from the center outwards).
A particularly simple algorithmic way of obtaining these numbers is the \textit{Riemenschneider point rule} (\cite[Proposition 2.8]{popescu07}, see also \cite[2.3.5]{nemethi2022normal}).
Consider $\frac pq=[a_1,a_2,\dots,a_k]$, and write $a_1-1$ dots in a row, next begin a new row of $a_2-1$ dots, the first one of which is under the last one of the previous row, and so on.
Reading the diagram by columns, instead of rows gives us back on less, than the coefficients of $\frac{p}{p-q}$.
\end{megj}
\begin{pl}
	The following diagram represents $\frac{64}{23}=[3,5,3,2]$, reading by columns we see $1,2,1,1,2,2$, thus $\frac{64}{41}=[2,3,2,2,3,3]$.
	\begin{table}[!ht]
		\centering
		\begin{tabular}{c|c c c c c c}
			&1&2&1&1&2&2\\
			\hline
			2&$\bullet$&$\bullet$\\
			4&		&$\bullet$&$\bullet$&$\bullet$&$\bullet$\\
			2&		&		&		&		&$\bullet$&$\bullet$\\
			1&		&		&		&		&		&$\bullet$
		\end{tabular}
	\end{table}
\end{pl}
\begin{parg}\label{compactdiv}
By construction, the corresponding $X_{\Gamma'}$ has boundary $-\partial X_\Gamma=:-Y_\Gamma$.
Now suppose that there is a $\Q HD$ smoothing $K$ of the singularity of $X_\Gamma$. This smoothing provides a strong convex filling of the Milnor fillable contact structure of $Y_\Gamma$ as well, since the deformation induces a homotopy of $\xi_M$ through contact structures on the boundary.
Now use \cite[Proposition 4]{etnyre1998symplectic} to cut out a sufficiently small neighborhood of $X_\Gamma$ from the just constructed $\Sigma_b\#n\overline{\C P^2}$, and replace it with $K$ to obtain a new closed symplectic manifold $X$ containing $X_{\Gamma'}$. This can be done, since by \cite[Corollary 6.]{etnyre1998symplectic} any sufficiently small neighborhood of the spheres encoded by $\Gamma$ will be $\omega$-convex, allowing us to preform the surgery symplectically, see [loc. cit.].
\end{parg}
\pagebreak[3]
\begin{parg}
The case which is of interest to us are the star-shaped graphs $\Gamma\in\mathcal{A}\cup\mathcal{B}\cup\mathcal{C}$, since the other graphs already have $\Q HD$ smoothings constructed, see Theorem \ref{construction}.
We split the classes according to the arm, where the blowup process defining the class begins, and according to whether the central vertex has valency 3 or 4.
Denote them by $\mathcal A_3, \mathcal B_2,\mathcal B_4,\mathcal C_2,\mathcal C_3,\mathcal C_6, \mathcal A^4,\mathcal B^4,\mathcal C^4$ respectively\footnote{subscripts indicate the decoration of the arm where we first blow up, superscripts indicate that the inductive process started by blowing up the central vertex}.
Each of these classes have simple enough shapes for us to be able to describe the corresponding dual graphs with the use of Remark \ref{dual}.
The strategy of the proof relies on the following theorem:
\end{parg}
\begin{tetel}[{McDuff, \cite[Theorem 1.4]{mcduff1990structure}}]\label{mcduff}
    If a closed symplectic 4-manifold $(M^4,\omega)$ contains a symplectically embedded sphere $L$ with self-intersection 1, then $(M,L)$ is symplectomorphic to a blowup of $(\C P^2,\C P^1)$ away from $L$ (i.e. the blown up $-1$ spheres are disjoint from $L$, which descends to a projective line).
\end{tetel}
\begin{parg}\label{strategia}
We wish to apply this theorem to the above constructed symplectic manifold $X=K\cup_{Y_\Gamma} X_{\Gamma'}$.
By blowing up and down the configuration in the $X_{\Gamma'}$ component we create a suitable $L$ with $[L]^2=1$.
A simple application of the Mayer-Vietoris sequence shows that $\rk H^2(X)=\rk H^2(X_{\Gamma'})$.
Now Theorem \ref{mcduff} guarantees us the existence of suitably many disjoint $(-1)$-spheres to blow down, but we wish to follow what happens to the dual graph during this process, so we choose a tame almost complex structure for which every curve of $\Gamma'$ is pseudoholomorphic.
A consequence of the above theorem (\cite[Lemma 2.2]{weighted}) tells us, that the remaining curves are all $-1$ spheres, used to initiate the blowdown process.
Now the strategy is clear, since the configuration $\Gamma'$ does not contain $-1$ curves, these new curves must intersect it to start the blowdown\footnote{since all symplectic curves are nonzero in homology every curve not intersecting $L$ must disappear before we arrive at $\C P^2$}.
We must find the possible places they meet the already present curves and see, that these are precisely the cases stated in the theorem, thus ruling out every other member of the families from having $\Q HD$ fillings.
\end{parg}
\begin{megj}\label{useful facts}
Some helpful facts aid us to this end.
Since $b^+_2(X)=1$, there are no symplectic spheres of nonnegative self-intersection in the complement of $L$.
There also cannot exist irreducible singular rational curves, or higher genus curves in the complement (\cite[2.5, 2.3]{weighted}).
This also means, that there cannot exist a cycle of rational curves in the complement of $L$, since we could glue them together to produce a higher genus embedded curve in contradiction with the previous statement.
Now we begin discussing the simplest case, that of $\mathcal C_6$.
\end{megj}

\begin{tetel}
    If the link $Y_\Gamma$  of a singularity associated to a singularity with minimal good resolution graph $\Gamma\in\mathcal C_6$ admits a weak $\Q HD$ filling, then the blown up arm has decorations $(-2,\dots,-2,-n-5)$, where $n\geq 2$ is the length of the arm.
\end{tetel}
\begin{megj}
    The proof is modified slightly from the presentation in \cite{weighted}, since the symplectic geometrical arguments made there are difficult to pin down precisely.
    For some background see \cite[Remark 3.2.3]{mcduff2012j}.
\end{megj}
\begin{proof}
    The dual graph $\Gamma'$ can be described simply, the $-2$ arm dualizes to another $-2$ arm, for $-3$, we see $\frac{3}{3-1}=[2,2]$. 
    The third arm we can only describe abstractly of course, but there are a few pieces of information we note.
    First, the arm has length at least $5$, since the last vertex has decoration at most $-6$.\footnote{at the end of the Hirzebruch surface construction we need to produce $-6$ or less, which brings at least $5$ $-2$'s to the end of the dual chain}
    By the definition of the $\mathcal C$ class the central vertex has framing at most $-2$, so the dual graph has central framing at least $-1$.
    If the framing is not equal to $-1$ we blow up the intersection of the central sphere and the '6' arm to make it $-1$.

    Now blow down this central $-1$ sphere, and the two $-2$ spheres constituting the dual of the $-3$ arm of $\Gamma$ to obtain a $+1$ sphere $L$, a curve $C$ triply intersecting it, and the rest of the dual of the 6 arm unchanged as on \autoref{C6}.
    If the original graph had a rational homology disk smoothing, then we can obtain a closed symplectic manifold as discussed above, in which this configuration is embedded (note, that blowing up and down is possible symplectically, and it does not change the boundary, see \cite[{}Appendix 3.3.3]{Ozbagci}).
    Applying McDuff's theorem, we need to be able to blow this configuration down, and $L$ has to descend to a line.
    This implies, that $C$ (which we cannot blow down either since it intersects $L$) will become a cubic curve, since $L\cdot C=3$.
    \begin{figure}[ht!]
	\centering
	\includegraphics[width=\textwidth]{C6.eps}
	\caption{The dual configuration with the three blowdowns and the placement of the extra $-1$ curve indicated}
    \label{C6}
    \end{figure}

    Every blowdown removes a $\overline{\C P^2}$ connected summand from our manifold, thus $rk H^2(X)$ drops by one at every step until it reaches one, when we stop.
    This rank is coming from $X_{\Gamma'}$, since we closed it with a rational homology ball.
    After the setup we see that this rank is $k+2$, so $X\cong \C P^2\#(k+1)\overline{\C P^2}$ up to diffeomorphism. 
    We see the generator of $\C P^2$, and $k$ curves which need to be blown down, since they don't intersect $L$.
    This means, that by choosing a tame almost complex structure for which the current configuration is pseudoholomorphic, there will be one more $-1$ sphere $E$, which has to intersect the chain at some point for us to be able to blow down the configuration.
    This can only happen at a single point, otherwise it would create a cycle of spheres contradicting Remark \ref{useful facts}.
    Since the image of the sphere $C$ represents $3L$ after we blow everything down it has to be singular \footnote{A smooth curve representing $3L$ has genus 1}, so $E$ has to intersect it as well.

    If the central framing is not $-1$, then after the initial constructions the curve $C$ will have framing $2$ since we had to blow up the central vertex, meaning that its framing must increase by precisely $7$ after we blow everything down.
    Notice however, that every step increases its framing, and at least once it gets increased by\footnote{If $[S]\cdot[S']=k$, with $[S]^2=-1$, then blowing $S$ down increases the self-intersection of $S'$ by $k^2$ \cite[Figure 5.17-18]{gompf19994}} $\geq4$, when the loop created by $E$ gets closed, i.e. $7\geq k+4$, so $k\leq3$ which is a contradiction, since the dual arm has length at least $5$ (by the general formula of \autoref{dualhossz} one step in the construction cannot decrease the length of the dual arm, and in the beginning it is of length 5).

    If the central framing is already $-1$, then this means, that during the construction of the $6$ arm we don't blow up next to the central vertex (node) since the node of the dual graph will have framing $a-3$ if $-a$ was the framing of the original graph.
    By the Riemenschneider point rule (Remark \ref{dual}) we see that if the original arm of the graph had framings $-c_1,\dots, -c_n$, then the dual arm has length 
    \begin{equation}\label{dualhossz}
    k=-(n-1)+\sum_1^n(c_i-1).
    \end{equation}
    The sum gives the points in the diagram.
    The number of rows is this number, but we lose one for every new row we start beginning from the second.
    Using this formula simple induction shows, that in our case $\text{the length of the dual arm}=k+1=n+4$.
    For the length $1$ graph this is clear, since $(-6)$ dualizes to $(-2,-2,-2,-2,-2)$.
    One step in the construction of the $\mathcal C$ class is a modification of the form: (the underline indicates the inductive $-1$ vertex, that changes to $-2$ when we finish the blowups)
    $$(\dots,c_{i-1},\underline{-2},c_{i+1},\dots)\rightarrow(\dots,c_{i-1}-1,\underline{-2},-2,c_{i+1},\dots)$$
    $$(\dots,c_{i-1},\underline{-2},c_{i+1},\dots)\rightarrow(\dots,c_{i-1},-2,\underline{-2},c_{i+1}-1,\dots)$$
    (notice, that we are using here, that the blowup isn't happening next to the central vertex).
    This means, that \autoref{dualhossz} changes by $2-1$, proving the statement.

    We also see, that $C$ has framing at least $3-(n+1)$ by the point rule, since in $\Gamma$ the length of the arm is $n$, the corresponding diagram has $n$ rows.
    The previous argument applies to this case as well.
    We blow down $n+4$ times, and at least one of these raises the framing of $C$ by (at least) $4$ instead of just $1$, i.e. it gets raised to at least $3-(n+1)+n+3+4=9$, and it cannot be more since it will descend to a singular cubic.

    Now if $E$ does not intersect the chain at its far end, then we claim, that there will be more than one blowdown which increases the framing of $C$ by more than $1$.
    For if it intersects some $S_i$ which is not the endpoint, then blowing down $E$, then $S_i$ we see a configuration of three spheres intersecting at a point, one of which we have to blow down, say $S_{i-1}$.
    Doing so increases the intersection multiplicity of $S_{i+1}$ with the (image of) $C$, thus when we blow $S_{i+1}$ down we increase the framing by at least $4$, and $S_{i+2}$ will also intersect $C$ with higher multiplicity.
    This contradicts the bound derived previously, since when the loop $C,E,S_i,S_{i-1},\dots$ gets closed we also have an increase of (at least) $4$.
    Thus the only possibility is for $E$ to intersect the chain at its far end, and this forces the framings to be $-2$ for all $S_i$, and $C$ has framing $2-n$.
    Notice, that to get back to the unmodified dual graph, we have to blow up the three spheres, which we blew down to produce $L$, so in the actual dual graph the first vertex of the $6$ arm has framing $-n-1$.

Finally we can check, that this graph is indeed dual to the claimed configuration.
A continued fraction containing $n$ twos can be calculated by simple induction
\begin{equation} \label{kettesek}
[(2)^n]:=[2,2,\dots,2]=\frac{n+1}n
\end{equation}
 thus the dual long arm is represented by $n+1-\frac{n+3}{n+4}=\frac{n^2+4n+1}{n+4}$, so $\frac{n^2+4n+1}{n^2+3n-3}$ encodes the long arm of the original $\Gamma$.
 Now since $n(n^2+3n-3)\equiv n(-n-4)\equiv1\mod n^2+4n+1$ we see that by Proposition \ref{qvesszo} reversing the coefficients corresponds to $\frac{n^2+4n+1}{n}=n+5-\frac{n-1}{n}=[n+5,(2)^{n-1}]$, the claimed framings.
\end{proof}
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\chapter{Introduction}
\label{ch:intro}

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In eu egestas mauris. Quisque nisl elit, varius in erat eu, dictum commodo lorem. Sed commodo libero et sem laoreet consectetur. Fusce ligula arcu, vestibulum et sodales vel, venenatis at velit. Aliquam erat volutpat. Proin condimentum accumsan velit id hendrerit. Cras egestas arcu quis felis placerat, ut sodales velit malesuada. Maecenas et turpis eu turpis placerat euismod.\footnote{Maecenas a urna viverra, scelerisque nibh ut, malesuada ex.}

Aliquam suscipit dignissim tempor. Praesent tortor libero, feugiat et tellus porttitor, malesuada eleifend felis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nullam eleifend imperdiet lorem, sit amet imperdiet metus pellentesque vitae. Donec nec ligula urna. Aliquam bibendum tempor diam, sed lacinia eros dapibus id. Donec sed vehicula turpis. Aliquam hendrerit sed nulla vitae convallis. Etiam libero quam, pharetra ac est nec, sodales placerat augue. praesent eu consequat purus. 







samples_en/sim.tex

\chapter{Simulation results}
\label{appx:simulation}

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque facilisis in nibh auctor molestie. Donec porta tortor mauris. Cras in lacus in purus ultricies blandit. Proin dolor erat, pulvinar posuere orci ac, eleifend ultrices libero. Donec elementum et elit a ullamcorper. Nunc tincidunt, lorem et consectetur tincidunt, ante sapien scelerisque neque, eu bibendum felis augue non est. Maecenas nibh arcu, ultrices et libero id, egestas tempus mauris. Etiam iaculis dui nec augue venenatis, fermentum posuere justo congue. Nullam sit amet porttitor sem, at porttitor augue. Proin bibendum justo at ornare efficitur. Donec tempor turpis ligula, vitae viverra felis finibus eu. Curabitur sed libero ac urna condimentum gravida. Donec tincidunt neque sit amet neque luctus auctor vel eget tortor. Integer dignissim, urna ut lobortis volutpat, justo nunc convallis diam, sit amet vulputate erat eros eu velit. Mauris porttitor dictum ante, commodo facilisis ex suscipit sed.

Sed egestas dapibus nisl, vitae fringilla justo. Donec eget condimentum lectus, molestie mattis nunc. Nulla ac faucibus dui. Nullam a congue erat. Ut accumsan sed sapien quis porttitor. Ut pellentesque, est ac posuere pulvinar, tortor mauris fermentum nulla, sit amet fringilla sapien sapien quis velit. Integer accumsan placerat lorem, eu aliquam urna consectetur eget. In ligula orci, dignissim sed consequat ac, porta at metus. Phasellus ipsum tellus, molestie ut lacus tempus, rutrum convallis elit. Suspendisse arcu orci, luctus vitae ultricies quis, bibendum sed elit. Vivamus at sem maximus leo placerat gravida semper vel mi. Etiam hendrerit sed massa ut lacinia. Morbi varius libero odio, sit amet auctor nunc interdum sit amet.

Aenean non mauris accumsan, rutrum nisi non, porttitor enim. Maecenas vel tortor ex. Proin vulputate tellus luctus egestas fermentum. In nec lobortis risus, sit amet tincidunt purus. Nam id turpis venenatis, vehicula nisl sed, ultricies nibh. Suspendisse in libero nec nisi tempor vestibulum. Integer eu dui congue enim venenatis lobortis. Donec sed elementum nunc. Nulla facilisi. Maecenas cursus id lorem et finibus. Sed fermentum molestie erat, nec tempor lorem facilisis cursus. In vel nulla id orci fringilla facilisis. Cras non bibendum odio, ac vestibulum ex. Donec turpis urna, tincidunt ut mi eu, finibus facilisis lorem. Praesent posuere nisl nec dui accumsan, sed interdum odio malesuada.






samples_en/user.tex

\chapter{User documentation}
\label{ch:user}

Lorem ipsum dolor sit amet $\mathbb{N}$\nomenclature{$\mathbb{N}$}{Set of natural numbers}, consectetur adipiscing elit. Duis nibh leo, dapibus in elementum nec, aliquet id sem. Suspendisse potenti. Nullam sit amet consectetur nibh. Donec scelerisque varius turpis at tincidunt. Cras a diam in mauris viverra vehicula. Vivamus mi odio, fermentum vel arcu efficitur, lacinia viverra nibh. Aliquam aliquam ante mi, vel pretium arcu dapibus eu. Nulla finibus ante vel arcu tincidunt, ut consectetur ligula finibus. Mauris mollis lectus sed ipsum bibendum, ac ultrices erat dictum. Suspendisse faucibus euismod lacinia $\mathbb{Z}$\nomenclature{$\mathbb{Z}$}{Set of integer numbers}.


\section{Enumerations and lists}

Etiam vel odio ante. Etiam pulvinar nibh quis massa auctor congue. Pellentesque quis odio vitae sapien molestie vestibulum sit amet et quam. Pellentesque vel dui eget enim hendrerit finibus at sit amet libero. Quisque sollicitudin ultrices enim, nec porta magna imperdiet vitae. Cras condimentum nunc dui, eget molestie nunc accumsan vel.

\begin{itemize}
	\item Fusce in aliquet neque, in pretium sem.
	\item Donec tincidunt tellus id lectus pretium fringilla.
	\item Nunc faucibus, erat pretium tempus tempor, tortor mi fringilla neque, ac congue ex dui vitae mauris.
\end{itemize}

Donec dapibus sodales ante, at scelerisque nunc laoreet sit amet. Mauris porttitor tincidunt neque, vel ullamcorper neque pulvinar et. Integer eu lorem euismod, faucibus lectus sed, accumsan felis. Nunc ornare mi at augue vulputate, eu venenatis magna mollis. Nunc sed posuere dui, et varius nulla. Sed mollis nibh augue, eget scelerisque eros ornare nec.

\begin{enumerate}
	\item\label{step:first} Donec pretium et quam a cursus. Ut sollicitudin tempus urna et mollis.
	\item Aliquam et aliquam turpis, sed fermentum mauris. Nulla eget ex diam.
	\item Donec eget tellus pharetra, semper neque eget, rutrum diam Step~\ref{step:first}.
\end{enumerate}

Praesent porta, metus eget eleifend consequat, eros ligula eleifend ex, a pellentesque mi est vitae urna. Vivamus turpis nunc, iaculis non leo eget, mattis vulputate tellus. Maecenas rutrum eros sem, pharetra interdum nulla porttitor sit amet. In vitae viverra ante. Maecenas sit amet placerat orci, sed tincidunt velit. Vivamus mattis, enim vel suscipit elementum, quam odio venenatis elit\footnote{Phasellus faucibus varius purus, nec tristique enim porta vitae.}, et mollis nulla nunc a risus. Praesent purus magna, tristique sed lacus sit amet, convallis malesuada magna. 

\begin{description}
	\item[Vestibulum venenatis] malesuada enim, ac auctor erat vestibulum et. Phasellus id purus a leo suscipit accumsan.
	\item[Orci varius natoque] penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nullam interdum rhoncus nisl, vel pharetra arcu euismod sagittis. Vestibulum ac turpis auctor, viverra turpis at, tempus tellus.
	\item[Morbi dignissim] erat ut rutrum aliquet. Nulla eu rutrum urna. Integer non urna at mauris scelerisque rutrum sed non turpis.
\end{description}

\subsection{Lists with narrow spacing inbetween items}

Phasellus ultricies, sapien sit amet ultricies placerat, velit purus viverra ligula, id consequat ipsum odio imperdiet enim:
\begin{compactenum}
	\item Maecenas eget lobortis leo.
	\item Donec eget libero enim.
	\item In eu eros a eros lacinia maximus ullamcorper eget augue.
\end{compactenum}

\bigskip

In quis turpis metus. Proin maximus nibh et massa eleifend, a feugiat augue porta. Sed eget est purus. Duis in placerat leo. Donec pharetra eros nec enim convallis:
\begin{compactitem}
	\item Pellentesque odio lacus.
	\item Maximus ut nisl auctor.
	\item Sagittis vulputate lorem.
\end{compactitem}

\bigskip

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed lorem libero, dignissim vitae gravida a, ornare vitae est.
\begin{compactdesc}
	\item[Cras maximus] massa commodo pellentesque viverra.
	\item[Morbi sit] amet ante risus. Aliquam nec sollicitudin mauris
	\item[Ut aliquam rhoncus sapien] luctus viverra arcu iaculis posuere
\end{compactdesc}


\section{Images and figures}

Aliquam vehicula luctus mi a pretium. Nulla quam neque, maximus nec velit in, aliquam mollis tortor. Aliquam erat volutpat. Curabitur vitae laoreet turpis. Integer id diam ligula. Nulla sodales purus id mi consequat, eu venenatis odio pharetra. Cras a arcu quam. Suspendisse augue risus, pulvinar a turpis et, commodo aliquet turpis. Nulla aliquam scelerisque mi eget pharetra. Mauris sed posuere elit, ac lobortis metus. Proin lacinia sit amet diam sed auctor. Nam viverra orci id sapien sollicitudin, a aliquam lacus suscipit, Figure~\ref{fig:example-1}:

\begin{figure}[H]
	\centering
	\includegraphics[width=0.6\textwidth,height=100px]{elte_cimer_szines}
	\caption{Quisque ac tincidunt leo}
	\label{fig:example-1}
\end{figure}

\subsection{Framing figures}

Ut aliquet nec neque eget fermentum. Cras volutpat tellus sed placerat elementum. Quisque neque dui, consectetur nec finibus eget, blandit id purus. Nam eget ipsum non nunc placerat interdum.

\begin{figure}[H]
	\centering
	\includegraphics[width=0.6\textwidth,height=100px,frame]{elte_cimer_szines}
	\caption{Quisque ac tincidunt leo}
\end{figure}

\subsection{Subfigures}

In non ipsum fermentum urna feugiat rutrum a at odio. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla tincidunt mattis nisl id suscipit. Sed bibendum ac felis sed volutpat. Nam pharetra nisi nec facilisis faucibus. Aenean tristique nec libero non commodo. Nulla egestas laoreet tempus. Nunc eu aliquet nulla, quis vehicula dui. Proin ac risus sodales, gravida nisi vitae, efficitur neque, Figure~\ref{fig:example-2}:

\begin{figure}[H]
	\centering
	\subcaptionbox{Vestibulum quis mattis urna}{
		\includegraphics[width=0.45\linewidth]{elte_cimer_szines}}
	\hspace{5pt}
	\subcaptionbox{Donec hendrerit quis dui sit amet venenatis}{
		\includegraphics[width=0.45\linewidth]{elte_cimer_szines}}
	\caption{Aenean porttitor mi volutpat massa gravida}
	\label{fig:example-2}
\end{figure}

Nam et nunc eget elit tincidunt sollicitudin. Quisque ligula ipsum, tempor vitae tortor ut, commodo rhoncus diam. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Phasellus vehicula quam dui, eu convallis metus porta ac.


\section{Tables}

Nam magna ex, euismod nec interdum sed, sagittis nec leo. Nam blandit massa bibendum mattis tristique. Phasellus tortor ligula, sodales a consectetur vitae, placerat vitae dolor. Aenean consequat in quam ac mollis. 

\begin{table}[H]
	\centering
	\begin{tabular}{ | m{0.25\textwidth} | m{0.65\textwidth} | }
		\hline
		\textbf{Phasellus tortor} & \textbf{Aenean consequat} \\
		\hline \hline
		\emph{Sed malesuada} & Aliquam aliquam velit in convallis ultrices. \\
		\hline
		\emph{Purus sagittis} &  Quisque lobortis eros vitae urna lacinia euismod. \\
		\hline
		\emph{Pellentesque} & Curabitur ac lacus pellentesque, eleifend sem ut, placerat enim. Ut auctor tempor odio ut dapibus. \\
		\hline
	\end{tabular}
	\caption{Maecenas tincidunt non justo quis accumsan}
	\label{tab:example-1}
\end{table}

\subsection{Multi rows and multi columns}

Mauris a dapibus lectus. Vestibulum commodo nibh ante, ut maximus magna eleifend vel. Integer vehicula elit non lacus lacinia, vitae porttitor dolor ultrices. Vivamus gravida faucibus efficitur. Ut non erat quis arcu vehicula lacinia. Nulla felis mauris, laoreet sed malesuada in, euismod et lacus. Aenean at finibus ipsum. Pellentesque dignissim elit sit amet lacus congue vulputate.

\begin{table}[htb]
	\centering
	\begin{tabular}{ | c | r | r | r | r | r | r | }
		\hline
		\multirow{2}{*}{\textbf{Quisque}} & \multicolumn{2}{ c | }{\textbf{Suspendisse}} & \multicolumn{2}{ c | }{\textbf{Aliquam}} & \multicolumn{2}{ c | }{\textbf{Vivamus}} \\
		\cline{2-7}
		& Proin & Nunc & Proin & Nunc & Proin & Nunc \\
		\hline \hline		
		Leo & 2,80 MB & 100\% & 232 KB & 8,09\% & 248 KB & 8,64\% \\
		\hline
		Vel & 9,60 MB & 100\% & 564 KB & 5,74\% & 292 KB & 2,97\% \\
		\hline
		Auge & 78,2 MB & 100\% & 52,3 MB & 66,88\% & 3,22 MB & 4,12\% \\
		\hline 
	\end{tabular}
	\caption[Rövid cím a táblázatjegyzékbe]{Vivamus ac arcu fringilla, fermentum neque sed, interdum erat. Mauris bibendum mauris vitae enim mollis, et eleifend turpis aliquet.}
	\label{tab:example-2}
\end{table}

\subsection{Long tables over multiple pages}

Nunc porta placerat leo, sit amet porttitor dui porta molestie. Aliquam at fermentum mi. Maecenas vitae lorem at leo tincidunt volutpat at nec tortor. Vivamus semper lacus eu diam laoreet congue. Vivamus in ipsum risus. Nulla ullamcorper finibus mauris non aliquet. Vivamus elementum rhoncus ex ut porttitor.

\begin{center}
	\begin{longtable}{ | p{0.3\textwidth} | p{0.7\textwidth} | }
		
		\hline
		\multicolumn{2}{|c|}{\textbf{Praesent aliquam mauris enim}}
		\\ \hline
		
		\emph{Suspendisse potenti} & \emph{Lorem ipsum dolor sit amet}
		\\ \hline \hline
		\endfirsthead % table header on first page
		
		\hline
		\emph{Suspendisse potenti} & \emph{Lorem ipsum dolor sit amet}
		\\ \hline \hline
		\endhead % table header on further pages
		
		\hline
		\endfoot % table footer on previous pages
		
		\endlastfoot % table footer on last page
		
		\emph{Praesent}
		& Nulla ultrices et libero sit amet fringilla. Nunc scelerisque ante tempus sapien placerat convallis.
		\\ \hline
		
		\emph{Luctus}
		& Integer hendrerit erat massa, non hendrerit risus convallis at. Curabitur ultrices, justo in imperdiet condimentum, neque tortor luctus enim, luctus posuere massa erat vitae nibh.
		\\ \hline
		
		\emph{Egestas}
		& Duis fermentum feugiat augue in blandit. Mauris a tempor felis. Pellentesque ultricies tristique dignissim. Pellentesque aliquam semper tristique. Nam nec egestas dolor. Vestibulum id elit quis enim fringilla tempor eu a mauris. Aliquam vitae lacus tellus. Phasellus mauris lectus, aliquam id leo eget, auctor dapibus magna. Fusce lacinia felis ac elit luctus luctus.
		\\ \hline
		
		\emph{Dignissim}
		& Praesent aliquam mauris enim, vestibulum posuere massa facilisis in. Suspendisse potenti. Nam quam purus, rutrum eu augue ut, varius vehicula tellus. Fusce dui diam, aliquet sit amet eros at, sollicitudin facilisis quam. Phasellus tempor metus vel augue gravida pretium. Proin aliquam aliquam blandit. Nulla id tempus mi. Fusce in aliquam tortor.
		\\ \hline
		
		\emph{Pellentesque}
		& Donec felis nibh, imperdiet a arcu non, vehicula gravida nibh. Quisque interdum sapien eu massa commodo, ac elementum felis faucibus.
		\\ \hline
		
		\emph{Molestie}
		& Cras ullamcorper tellus et auctor ultricies. Maecenas tincidunt euismod lectus nec venenatis. Suspendisse potenti. Pellentesque pretium nunc ut euismod cursus. Nam venenatis condimentum quam. Curabitur suscipit efficitur aliquet. Interdum et malesuada fames ac ante ipsum primis in faucibus.
		\\ \hline
		
		\emph{Vivamus semper}
		& In purus purus, faucibus eu libero vulputate, tristique sodales nunc. Nulla ut gravida dolor. Fusce vel pellentesque mi, vel efficitur eros. Nunc vitae elit tellus. Sed vestibulum auctor consequat. 
		\\ \hline
		
		\emph{Condimentum}
		& Nulla scelerisque, leo et facilisis pretium, risus enim cursus turpis, eu suscipit ipsum ipsum in mauris. Praesent eget pulvinar ipsum, suscipit interdum nunc. Nam varius massa ut justo ullamcorper sollicitudin. Vivamus facilisis suscipit neque, eu fermentum risus. Ut at mi mauris.
		\\ \hline
		
		\caption{Praesent ullamcorper consequat tellus ut eleifend}
		\label{tab:example-3}		
	\end{longtable}
\end{center}






samples_en/sum.tex

\chapter{Conclusion}
\label{ch:sum}

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In eu egestas mauris. Quisque nisl elit, varius in erat eu, dictum commodo lorem. Sed commodo libero et sem laoreet consectetur. Fusce ligula arcu, vestibulum et sodales vel, venenatis at velit. Aliquam erat volutpat. Proin condimentum accumsan velit id hendrerit. Cras egestas arcu quis felis placerat, ut sodales velit malesuada. Maecenas et turpis eu turpis placerat euismod. Maecenas a urna viverra, scelerisque nibh ut, malesuada ex.

Aliquam suscipit dignissim tempor. Praesent tortor libero, feugiat et tellus porttitor, malesuada eleifend felis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nullam eleifend imperdiet lorem, sit amet imperdiet metus pellentesque vitae. Donec nec ligula urna. Aliquam bibendum tempor diam, sed lacinia eros dapibus id. Donec sed vehicula turpis. Aliquam hendrerit sed nulla vitae convallis. Etiam libero quam, pharetra ac est nec, sodales placerat augue. Praesent eu consequat purus.







samples_en/impl.tex

\chapter{Developer documentation}
\label{ch:impl}

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis nibh leo, dapibus in elementum nec, aliquet id sem. Suspendisse potenti. Nullam sit amet consectetur nibh. Donec scelerisque varius turpis at tincidunt.


\section{Theorem-like environments}

\begin{definition}
Mauris tristique sollicitudin ultrices. Etiam tristique quam sit amet metus dictum imperdiet. Nunc id lorem sed nisl pulvinar aliquet vitae quis arcu. Morbi iaculis eleifend porttitor.
\end{definition}

Maecenas rutrum eros sem, pharetra interdum nulla porttitor sit amet. In vitae viverra ante. Maecenas sit amet placerat orci, sed tincidunt velit. Vivamus mattis, enim vel suscipit elementum, quam odio venenatis elit, et mollis nulla nunc a risus. Praesent purus magna, tristique sed lacus sit amet, convallis malesuada magna. Phasellus faucibus varius purus, nec tristique enim porta vitae.

\begin{theorem}
Nulla finibus ante vel arcu tincidunt, ut consectetur ligula finibus. Mauris mollis lectus sed ipsum bibendum, ac ultrices erat dictum. Suspendisse faucibus euismod lacinia. Etiam vel odio ante.
\end{theorem}
\begin{proof}
Etiam pulvinar nibh quis massa auctor congue. Pellentesque quis odio vitae sapien molestie vestibulum sit amet et quam. Pellentesque vel dui eget enim hendrerit finibus at sit amet libero. Quisque sollicitudin ultrices enim, nec porta magna imperdiet vitae. Cras condimentum nunc dui.
\end{proof}

Donec dapibus sodales ante, at scelerisque nunc laoreet sit amet. Mauris porttitor tincidunt neque, vel ullamcorper neque pulvinar et. Integer eu lorem euismod, faucibus lectus sed, accumsan felis. 

\begin{remark}
Nunc ornare mi at augue vulputate, eu venenatis magna mollis. Nunc sed posuere dui, et varius nulla. Sed mollis nibh augue, eget scelerisque eros ornare nec. Praesent porta, metus eget eleifend consequat, eros ligula eleifend ex, a pellentesque mi est vitae urna. Vivamus turpis nunc, iaculis non leo eget, mattis vulputate tellus.
\end{remark}

Fusce in aliquet neque, in pretium sem. Donec tincidunt tellus id lectus pretium fringilla. Nunc faucibus, erat pretium tempus tempor, tortor mi fringilla neque, ac congue ex dui vitae mauris. Donec pretium et quam a cursus.

\begin{note}
Aliquam vehicula luctus mi a pretium. Nulla quam neque, maximus nec velit in, aliquam mollis tortor. Aliquam erat volutpat. Curabitur vitae laoreet turpis. Integer id diam ligula.
\end{note}

Ut sollicitudin tempus urna et mollis. Aliquam et aliquam turpis, sed fermentum mauris. Nulla eget ex diam. Donec eget tellus pharetra, semper neque eget, rutrum diam.

\subsection{Equations, formulas}

Duis suscipit ipsum nec urna blandit, $2 + 2 = 4$ pellentesque vehicula quam fringilla. Vivamus euismod, lectus sit amet euismod viverra, dolor metus consequat sapien, ut hendrerit nisl nulla id nisi. Nam in leo eu quam sollicitudin semper a quis velit.

$$a^2 + b^2 = c^2$$

Phasellus mollis, elit sed convallis feugiat, dolor quam dapibus nibh, suscipit consectetur lacus risus quis sem. Vivamus scelerisque porta odio, vitae euismod dolor accumsan ut.

In mathematica, identitatem Euleri (equation est scriptor vti etiam notum) sit aequalitatem Equation~\ref{eq:euler}:
\begin{equation}\label{eq:euler}
e^{i \times \pi} + 1 = 0
\end{equation}


\section{Source code samples}

Nulla sodales purus id mi consequat, eu venenatis odio pharetra. Cras a arcu quam. Suspendisse augue risus, pulvinar a turpis et, commodo aliquet turpis. Nulla aliquam scelerisque mi eget pharetra. Mauris sed posuere elit, ac lobortis metus. Proin lacinia sit amet diam sed auctor. Nam viverra orci id sapien sollicitudin, a aliquam lacus suscipit. Quisque ac tincidunt leo Code~\ref{src:cpp} and \ref{src:csharp}:

\lstset{caption={Hello World in C++}, label=src:cpp}
\begin{lstlisting}[language={C++}]
#include <stdio>

int main() 
{
	int c;
	std::cout << "Hello World!" << std::endl;

	std::cout << "Press any key to exit." << std::endl;
	std::cin >> c;
	
	return 0;
}
\end{lstlisting}

\lstset{caption={Hello World in C\#}, label=src:csharp}
\begin{lstlisting}[language={[Sharp]C}]
using System;
namespace HelloWorld
{
	class Hello 
	{
		static void Main() 
		{
			Console.WriteLine("Hello World!");
			
			Console.WriteLine("Press any key to exit.");
			Console.ReadKey();
		}
	}
}
\end{lstlisting}

\subsection{Algorithms}

A general Interval Branch and Bound algorithm is shown in Algorithm~\ref{alg:ibb}. An appropriate selection rule is applied in Step~\ref{step:selrule}.\\
Source of example: \href{https://www.inf.u-szeged.hu/actacybernetica/}{Acta Cybernetica (this is a hyperlink)}.

\begin{algorithm}[H]
\caption{A general interval B\&B algorithm} 
\label{alg:ibb} 
\textbf{\underline{Funct}} IBB($S,f$)
\begin{algorithmic}[1] % display line numbers before every n line, here n = 1
\State Set the working list ${\cal L}_W$ := $\{S\}$ and the final list ${\cal L}_Q$ := $\{\}$     
\While{( ${\cal L}_W \neq \emptyset$ )} \label{alg:igoend}
	\State  Select an interval $X$ from ${\cal L}_W$ \label{step:selrule}\Comment{Selection rule}  
	\State Compute $lbf(X)$ \Comment{Bounding rule}		  
	\If{$X$ cannot be eliminated} \Comment{Elimination rule}
		\State Divide $X$ into $X^j,\ j=1,\dots, p$, subintervals   \Comment{Division rule}
		\For{$j=1,\ldots,p$}
			\If{$X^j$ satisfies the termination criterion} \Comment{Termination rule}
				\State Store $X^j$ in ${\cal L}_W$ 
			\Else
				\State Store $X^j$ in ${\cal L}_W$ 
			\EndIf
		\EndFor  
	\EndIf
\EndWhile
\State \textbf{return} ${\cal L}_Q$
\end{algorithmic}
\end{algorithm}
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\clearpage
% \section{other stuff - beta version}
% \begin{tetel}
%     Every member of the class $C$ admits a $\Q HD$ filling.
% \end{tetel}
% \begin{megj}
%     This is not in contradiction with the previous discussions, since the constructed spaces will only fill the 3-manifolds smoothly, they are not realisable by smoothings/symplectically.
% \end{megj}
% \begin{proof}
%     Consider a smooth quadric, and a tangent line in $\overline{\C P^2}$, blowing up the point of intersection twice produces exactly the graph of \autoref{abc} (c).
%     Now the configuration is embedded into $3\overline{\C P^2}$, do further blowups according to the definition to produce some $\Gamma\in\mathcal C$.
%     Each blowup raises the number of $\overline{\C P^2}$ direct summands by one, and also the number of curves in the configuration, afterwards blowing up a generic point of the unique $-1$ curve makes it into a $-2$.
%     Now clearly this embeds $\Gamma\in\mathcal C$ into $|\Gamma|\overline{\C P^2}$, since the beginning configuration has $4$ vertices, which we embedded into $3\overline{\C P^2}$, then raised the number of summands, and the number of elements in the configuration both by the same amount, then blew up one final time.
%     By a standard application of the Mayer-Vietoris exact sequence, as in \cite[{}Section 7]{ratbd} we get rational homology balls bounding the link of the given singularity $\Gamma\in\mathcal C$ after switching orientation.
%     The construction can also be done with Kirby calculus, the steps producing the basic configuration of \autoref{abc} (c) are shown on \autoref{cfill}.
%     Note also that as in \cite[Figure 16.]{ratbd} the first diagram represents (without the -1 arc indicating where the first blowup takes place) $S^4\#\overline{\C P^2}$. Finally it is to be understood, that each diagram has a 3 and a 4-handle attached as well, to be an actual closed manifold.
% \begin{figure}
%     \centering
%     \includegraphics{images/aaasd.pdf}
%     \includegraphics{images/bsd.pdf}
%     \includegraphics{images/vegeuj.pdf}
%     \caption{The moves used to construct \autoref{abc} (c) in $3\overline{\C P^2}$ with the blowups indicated by arcs. All diagrams also have a 3 and a 4-handle attached.}
%     \label{cfill}
% \end{figure}
% \end{proof}
% \begin{megj}
%     The same simple strategy cannot work with the other two families, since the basic starting configurations of \autoref{abc} all have $b_+=0,b_-=3,b_0=1$, so (a) and (b) both would need to be embedded into $3\overline{\C P^2}$, but blowing up a single time can only change the framing by $k^2$ for some $k\in\Z$ as discussed before, and this cannot produce $-3$ and $-4$ from a $-1$.

%     $$Q_{\mathcal B_0}=\left[\,\begin{array}{rrrrrrr}-3 &\,& 0 &\,& 1 &\,& 0\\ 0 &\,& -3 &\,& 1 &\,& 0\\ 1 &\,& 1 &\,& -1 &\,& 1\\ 0 &\,& 0 &\,& 1 &\,& -3\end{array}\,\right]\ 
%     Q_{\mathcal A_0}=\left[\,\begin{array}{rrrrrrr}-4 &\,& 0 &\,& 1 &\,& 0\\ 0 &\,& -4 &\,& 1 &\,& 0\\ 1 &\,& 1 &\,& -1 &\,& 1\\ 0 &\,& 0 &\,& 1 &\,& -2\end{array}\,\right]$$
% \end{megj}
\begin{figure}[ht!]
    \centering
    \includegraphics[width=0.49\textwidth]{images/A.png}
    \includegraphics[width=0.25\textwidth]{images/C.png}
    \caption{Two graphs from A and C with odd determinants and $p_g=0,\ \bar\mu=8$! Also elements of B are all even? Also also every odd graph has $\bar\mu=8$ if it's nonzero?}
    \label{fig:my_label}
\end{figure}
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\chapter{Graph algorithms in SageMath}\label{kod}
Given a graph $G$ and some edge or vertex $o$, the following algorithm checks if $o$ is a vertex of the graph, and blows it up, otherwise assumes that it is an edge, and blows that up.
The vertices are encoded by numbers, and the edges by pairs as usual.
\begin{lstlisting}[language=python]
def blowup(G,o): #blow up the graph G at the vertex or edge o
    switch=False #blow up an edge by default
    for v in G.vertex_iterator(): #check if o is a vertex
        if v==o:
            switch=True
            break
    if switch: #blow up the vertex o
        new=G.add_vertex() #the new vertex
        G.add_edge(o,new) #connected to the one we blew up
        G.set_vertex(new,-1) #new vertex framed -1
        weight=G.get_vertex(o)-1 #lower the framing of o
        G.set_vertex(o,weight)
    else: #blow up the edge o
        new=G.add_vertex() #the new vertex
        G.delete_edge(o) #remove the blown up edge&connect the
        G.add_edges([(o[0],new),(o[1],new)]) #new vertex
        G.set_vertex(new,-1) #new vertex framed -1
        left=G.get_vertex(o[0])-1 #subtract one from the 
        right=G.get_vertex(o[1])-1 #framings of both endpoints
        G.set_vertex(o[0],left)
        G.set_vertex(o[1],right)
    return G
\end{lstlisting}

The reduction steps of \ref{rank}:
The following algorithm recursively produces a list of ordered triples encoding the reduction process, consisting of the graph, which vertex was deleted and the type of step (either $1$ or $2$), and the input graph separately for easier usage.
\begin{lstlisting}[language=python]
def rank(graph,l=[]):
    G=graph.copy()
    if G.size()==0: #if there are no edges we are done
        return [G,l]
    for v in G.vertex_iterator():
        nbrs=G.neighbors(v) #get the neighbors of v
        if len(nbrs)==1: #find a leaf
            if G.get_vertex(v)%2==0: #type 1 reduction
                l.append([G.copy(),v,1]) #add to the list
                G.delete_vertices({v,nbrs[0]}) #delete them
                break
            else: #type 2 reduction
                l.append([G.copy(),v,2]) #add to the list
                G.set_vertex(nbrs[0],G.get_vertex(nbrs[0])-1)
                G.delete_vertex(v) #change parity and delete
                break
    return rank(G,l)
\end{lstlisting}

The \texttt{wuset} function is one step in the second part of \ref{rank}.
Requires a graph, the Wu set for the previous step, which vertex was added, and by which type of move.
\begin{lstlisting}[language=python]
def wuset(graph,Sprime,v,n):
    G=graph.copy() #the original G stays unmodified
    w=G.neighbors(v)[0] #the unique neighbor of the leaf v
    if n==1: #v was type 1
        number=(Sprime.intersection(Set(G.neighbors(w)))).cardinality() #number of neighbors of w in Sprime
        if (number-G.get_vertex(w))%2==0: #|N(w)|=w^2 (2)?
            S=Sprime
        else:
            S=Sprime.union(Set([v]))
    else: # v was type 2
        if w in Sprime:
            S=Sprime
        else:
            S=Sprime.union(Set([v]))
    return S
\end{lstlisting}

Putting together the previous two algorithms, the following function computes the $\bar\mu$ invariant for a given \textit{negative definite} graph.
Note also, that this implements the general version of the algorithm found in \cite{stipsicz08}, and outputs the product of the $\bar\mu(Y,\mathfrak{s})$'s for each spin structure $\mathfrak{s}$ of $Y$.
\begin{lstlisting}[language=python]
def mubar(G): 
    sigma=-G.order() #we assume G is negative definite
    var=rank(G.copy(),[]) #get the list of reductions
    l=var[1] #the list of reductive steps
    l.reverse() #we go through the reduction in reverse
    out=1 #initialise the output
    generators=Set([]) #initialise S
    R=var[0] #the graph consisting of disjoint vertices
    for v in R.vertex_iterator(): #go through all vertices
        dec=R.get_vertex(v) #get the framing
        if dec%2==0: #collect the even framed vertices
            generators=generators.union(Set([v]))
    ones=Set(var[0].vertices()).difference(generators)
    onesets=generators.subsets() #every subset of the even vertices gives a spin structure
    for S in onesets:
        wus=copy(S)
        wus=wus.union(ones)
        for H in l: #the backwards step of the wuset algorithm
            wus=wuset(H[0],wus,H[1],H[2])
        square=int(0) #initialise the square sum
        for v in wus: #add together the framings
            square+=int(G.get_vertex(v))
        out*=(sigma-square)
    return out
\end{lstlisting}

Given a list of vertices, the following function generates the graph in one of the three classes corresponding to it.
Since the $-1$ vertex is always unique, the edge blowups are encoded by the neighboring vertex.
The graph's vertices are indexed from $-3$, so in the beginning the $-1$ vertex has index $0$, and in the further steps the $-1$ vertex will always be the one indexed by index of the vertex in the list $l$.
\begin{lstlisting}[language=python]
def generate_graph(l):
    G=Graph({0: [-1,-2,-3]}) #initialize the graph
    G.set_vertices({-3:-3,-2:-3,-1:-3,0:-1}) #replace the values with -2,-4,-4 or -2,-3,-6 for B and C
    for a in range(0,len(l)):
        if G.get_vertex(l[a])==-1:
            G=blowup(G,l[a]) #blow up at the -1 vertex
        else:
            G=blowup(G,(a,l[a],None)) #blow up the edge encoded by the neighbor a
    G.set_vertex(len(l),-4) #also replace with -3 or -2 for B or C
    return G
\end{lstlisting}

\texttt{intersection\_form} produces the intersection form as a matrix from the given graph.
Note, that this assumes, that the graph was created by \texttt{generate\_graph}.
\begin{lstlisting}[language=python]
def intersection_form(G): 
    M=G.adjacency_matrix()
    for v in G.vertex_iterator():
        M[v+3,v+3]=G.get_vertex(v) #the indexing is shifted by 3
    return M
\end{lstlisting}

\texttt{pg} implements Laufer's algorithm \ref{laufer}, outputting $1$ if the graph is found to be rational and $-1$ if not.
\begin{lstlisting}[language=python]
def pg(G): 
    Q=intersection_form(G)
    n=Q.dimensions()[0] #Q has dimension (n,n)
    v=[] # initialize Z_0
    for i in range(0,n): # Z_0 begins as the sum of the E_i
        v.append(1)
    v=vector(v) # convert v from list to vector
    vektor=v*Q #coordinates of this are the v*E_i
    while len([s for s in vektor if s>0])>0: #any product >0?
        vektor=v*Q #recalculate the products
        for i in range(0,n): #check them all
            prod=vektor[i]
            if prod>1: #product>1
                return -1 #not rational
            elif prod==1: #the multiplicity with E_i is 1
                v[i]+=1 #add E_i to v
                break
            elif prod<1: #multiplicity is negative
                continue #next vertex
    return 0 #if we came here, that means every multiplicity is <1
\end{lstlisting}

\texttt{search} is a simple breadth-first search. Beginning from a list of graphs additional blowups produce graphs from the ones on the list.
It then checks the $\bar\mu$, $\det\Gamma$, $p_g$ invariants.
\begin{lstlisting}[language=python]
def search(l): 
 uj=[] #initialise the list for the current step
 while True:
  for lista in l: #go through every element of l
   G=generate_graph(lista)
   neighbors=G.neighbors(len(lista)) #neighbors of the -1
   neighbors.append(len(lista)) #search for vertex blowups as well
   for v in neighbors: #do each possible blowup
    w=copy(lista) #copy the list of blowups
    w.append(v) #take note of the new blowup
    H=generate_graph(w) #do the blowup
    mu=mubar(H) #calculate mubar
    genusz=pg(H) #calculate pg
    uj.append(w) # add w to the new list
    nodes=len([x for x in H.degree_sequence() if x>2]) # calculate the number of nodes in the graph
    if mu==0: #modify the conditions here for different searches
     print('constr=',w)
     print("mubar=",mu)
     print("pg=",genusz)
     print("det=",intersection_form(H).det()%2)
     print("# of nodes=",nodes)
     H.show(vertex_labels=H.get_vertices())
     #return(w)
  l=uj #update the list with the new blowup sequences
  uj=[] #zero out the temporary list
  print("# of blowups:",len(l[0])) #how many steps checked
\end{lstlisting}
After checking all possible graphs in $\mathcal A,\mathcal C$ up to 11 blowups (this brought our attention to Proposition \ref{mubarB} as well, $\bar\mu$ cannot rule out any element of $\mathcal B$), we make the following conjecture:
\begin{conj}
	For $\Gamma\in\mathcal A\cup\mathcal C$ if $\det\Gamma$ is odd, then $\bar\mu(\Gamma)\in\{0,8\}$.
\end{conj}
This is quite surprising, as it would mean that even if the $\bar\mu$ invariant (and the associated Gauge theoretic $d$ invariant) rule out a certain graph from having a rational homology disc filling, the value of the invariant is the least possible.
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\chapter{Algebraic geometry}
For the sake of completeness and easier reading we review briefly two unrelated, but equally important notions used multiple times in the main text.
\section{The Milnor fibration}\label{sec:milnor}
The first important construction is the Milnor fibration and the Milnor fiber associated to a holomorphic function. For a detailed exposition see \cite{milnor61singular}.
\begin{tetel}[{\cite[Proposition 3.2.3]{nemethi2022normal}}]
	Let $(X,o)$ be an isolated singularity germ, $\rho:X\rightarrow[0,\infty)$ a real analytic function with $\rho^{-1}(0)=\{o\}$ and $f:(X,o)\rightarrow(\C,o)$ a holomorphic function germ having an isolated singularity at $o$.
	Then for all sufficiently small $0<\delta<\epsilon$
	\begin{enumerate}
		\item $\rho^{-1}([0,\epsilon])\cap f^{-1}(\xi)$ is a smooth manifold, which is transverse to $\rho^{-1}(\epsilon)$ for all nonzero $\xi\in D_\delta^2\subset\C$ (i.e. $0<|\xi|\leq\delta$).
		\item $f:(\rho^{-1}([0,\epsilon])\cap f^{-1}(S_\delta^1),\rho^{-1}(\epsilon)\cap f^{-1}(S_\delta^1))\rightarrow\partial D_\delta^2=S^1_\delta$ is a locally trivial fibration of pairs 
		\item The "boundary" fibration $f:\rho^{-1}(\epsilon)\cap f^{-1}(S_\delta^1)\rightarrow S_\delta^1$ extends to the disc $D_\delta^2$.
	\end{enumerate}
	Moreover these fibrations are independent of the choice of $\rho$.
\end{tetel}
\begin{figure}[ht!]
	\centering
	\includegraphics{Milnor_fibration.eps}
	\caption{Schematic picture of the nearby fibration with the singular fiber and the Milnor fiber depicted.}
\end{figure}
\begin{megj}
	The above fibration is called the nearby fibration of the pair.
	The space $\rho^{-1}([0,\epsilon])\cap f^{-1}(t)$ for some $t\in D_\delta^2\setminus\{0\}$ is called the \textit{Milnor fiber}.
	By the third statement its boundary is oriented diffeomorphic to the link of the singularity of $f$.
\end{megj}
The next ingredient we require is the notion of a deformation, but first an algebraic notion
\begin{Def}[{\cite[Definition 10.39.1]{de2013stacks}}]
    If $R$ is a unital commutative ring and $M$ is an $R$-module, then we call $M$ \textit{flat}, if the functor $N\mapsto N\otimes_RM$ is exact, i.e. for all short exact sequences $0\rightarrow N_1\rightarrow N_2\rightarrow N_3\rightarrow 0$ the sequence $0\rightarrow N_1\otimes_RM\rightarrow N_2\otimes_RM\rightarrow N_3\otimes_RM\rightarrow 0$ is also exact.
    A map $\varphi:A\rightarrow B$ of commutative unital rings is called \textit{flat}, if the induced $A$-module structure\footnotemark on $B$ makes it into a flat $A$-module.
    \footnotetext{$a\cdot b=\phi(a)b$}
    A map between germs $\phi:(X,o)\rightarrow(Y,o)$ is called \textit{flat} if the mapping induced on the local ring $\phi^*:\mathcal O_{Y,o}\rightarrow\mathcal O_{X,o}$ is flat.
\end{Def}
\begin{megj}
    The tensor functor is automatically right exact, only the first $"0\rightarrow"$ of the sequence is needed.
    The geometric importance of this definition comes from a theorem of Frisch, which implies that the fibres of a flat map are equidimensional (\cite[Lemma 10.112.9]{de2013stacks}) if the domain and the range have well defined dimensions (\cite{greuel2020deformation}).
\end{megj}
\begin{Def}{\cite[Definition 1.1]{greuel2020deformation}}
	Fix a normal surface singularity germ $(X,o)$.
	A flat morphism $\phi:(\mathcal Y,o)\rightarrow (\C,o)$ together with an isomorphism $(X,o)\cong (\phi^{-1}(o),o)$ is called a \textit{deformation} of the singularity $(X,o)$.
\end{Def}
The details of this theory are beyond our current scope, we only wish to apply the nearby fibration theorem to a given deformation.
This shows us, as stated in ยง\ref{intro}, that the Milnor fiber of a deformation gives a filling of the link of the singularity, which we use repeatedly during the constructions.
\pagebreak
\section{Taut singularities}\label{sec:taut}
We also wish to reproduce here the list of taut singularities of Laufer (\cite{laufer73}).
\begin{Def}\label{tautdef}
	Let $(X,o)$ be a normal surface singularity, with minimal resolution dual graph\footnote{here every vertex is decorated with not just the Euler number of the normal bundle, but the genus of the component as well} $\Gamma$.
	We call $(X,o)$ \textit{taut} if for any other singularity $(X',o)$ with the same minimal resolution dual graph $\Gamma'=\Gamma$ we have an analytic isomorphism $(X,o)=(X',o)$.
\end{Def}
\begin{tetel}[{\cite[ยง2.2]{laufer73}}]\label{tautlist}
    The taut resolution graphs are precisely the type $I-V$ graphs of the following list.
\end{tetel}
All genera are $0$ (higher genus curves don't have unique complex structures).
$\bullet_{n}$ will denote a vertex of framing at most $n$.
% and $\text{\textopenbullet}_{n}$ a vertex of framing exactly $n$.
\begin{megj}
    Note, that if a graph is taut, the modified graph, where the framing of any vertex is lowered will be taut as well.
\end{megj}
\begin{megj}
    Note, that some details are omitted in this exposition, the original paper goes through some trouble\footnotemark, so that every graph fits into exactly one category, but for the sake of recognizing taut graphs this is superfluous.
    \footnotetext{some nodes are only allowed to be framed $-2$, otherwise they fall into some previous category}
\end{megj}
For brevity let $\bullet:=\bullet_{-2}$, and $\dotsm$ a path of $\bullet$ vertices, which may consist of a single edge and no vertex at all.

Now the list begins as follows: a single vertex $\bullet$ (denoted type $I$), or a path $\bullet\dotsm\bullet$ (type $II$) is always taut.

The possibilities with one star\footnote{star-shaped subgraph} (type $III$) are the graphs depicted on \autoref{onestar} together with $E_6, E_7, E_8$ (denoted here as $III.7, III.8, III.9$).
Note the possibility of lowering the framing from $-2$ on the latter three as well.
\begin{figure}[ht!]
	\centering
	\includegraphics[width=0.9\textwidth]{onestar.eps}
	\caption{The taut star-shaped graphs besides $E_6, E_7, E_8$.}
	\label{onestar}
\end{figure}

For the graphs with two stars (type $IV$) there is a scheme for building taut graphs from two star-shaped components very similar to the ones of \autoref{onestar}.
We describe the building blocks and list the permitted combinations in \autoref{tauttable}.

The list of star-shaped subgraphs is on \autoref{Li}. We list only the left versions, the right graphs $(R_1),\dots, (R_8)$ are simply the mirror images of the left ones.
\begin{figure}[ht!]
    \centering
    \includegraphics[width=0.9\textwidth]{images/Li.eps}
    \caption{The left star-shaped subgraphs.}
    \label{Li}
\end{figure}

These star-shaped subgraphs will be joined by $(J_1)=\dotsm$, or $(J_2)=\dotsm\bullet_{-3}\dotsm$.

Some subgraphs \textit{may} be contracted as follows:
A $\bullet_{-3}\dots\bullet_{-3}$ subgraph between the two nodes may be contracted to a $-3$ or $-4$ framed vertex:
% \begin{itemize}
%     \item[$(C_1)$]  $\bullet_{-3}$
%     \item[$(C_2)$]  $\bullet_{-4}$
% \end{itemize}
$$(C_1)=  \bullet_{-3}\qquad
(C_2)=  \bullet_{-4}$$ 
A subgraph of the form 
$$\begin{matrix}
    &&\bullet&&\\
    &&\vdots&&\\
    \bullet&\dotsm&\bullet&\dotsm&\bullet\\
    &&^{-3}&&^{-3}
\end{matrix}$$ may be replaced by the following subgraphs:

$$(C_3)= \ \begin{matrix}
        &&\bullet\\
        &&\vdots\\
        \bullet&\dotsm&\bullet\\
        &&^{-4}
    \end{matrix}\ \text{ or by }\ \begin{matrix}
        &&\bullet\\
        &&|\\
        \bullet&\dotsm&\bullet\\
        &&^{-3}
    \end{matrix}\qquad
(C_4)=
    \begin{matrix}
        &&\bullet\\
        &&\vdots\\
        \bullet&\dotsm&\bullet\\
        &&^{-4}
    \end{matrix}
    \text{ or by } \begin{matrix}
        &&\bullet\\
        &&|\\
        \bullet&\text{---}&\bullet\\
        &&^{-3}
    \end{matrix}
    $$
\begin{megj}
    The two options for both subgraphs may seem redundant, but as mentioned previously not all combinations are permitted.
\end{megj}

\begin{table}[ht!]
    \centering
    \begin{tabular}{c|ccccc}
         &$R_1$&$R_2$&$R_3\& R_4$&$R_5\& R_6$&$R_7\& R_8$ \\
         \hline
         $L_1$&$J_1$&$J_1$&$J_2, C_3$&$J_1,C_3$&$J_1,C_4$\\
         $L_2$&&$J_1$\footnotemark&$J_2$&$J_1$&$J_1$\\
         $L_3\& L_4$&&&$J_2$&$J_1$&$J_2,C_2$\\
         $L_5\&L_6$&&&&$J_1,C_1$&$J_1,C_2$\\
         $L_7\&L_8$&&&&&$J_1,C_2$\\
    \end{tabular}
    \caption{The table of taut graphs with two stars.}
    \label{tauttable}
\end{table}
\footnotetext{At least one of the framings has to be chosen $-3$ or less.}

\begin{megj}
    Some subgraphs share a column/row, since their allowed operations are the same, but note, that only such $(L_i), (R_j)$ combinations are allowed where $i\leq j$.
    All graphs produced by \autoref{tauttable} are taut, with one subtle exception.
    The $(L_2)+(J_1)+(R_2)$ (marked with \footnotemark[\value{footnote}]) entry is only negative semidefinite if all framings are $-2$, and thus cannot correspond to a singularity (\cite[Proposition 2.1.12]{nemethi2022normal}).
    At least one vertex has to have its framing lowered to make it so.
\end{megj}

For the sake of completeness (even though it does not come up in our investigations), the last (type $V$) taut graphs are depicted on \autoref{otos}.
\begin{figure}[ht!]
    \centering
    \includegraphics[width=0.5\textwidth]{images/otos.eps}
    \caption{The cyclic taut graphs}
    \label{otos}
\end{figure}

\begin{pl}[The main families of \autoref{wmn}]\label{wmntaut}
    Elements of $\mathcal G$ are of type $I$ and $II$, and so are taut.
    $\mathcal W, \mathcal N$ are type $III.1$, while $\mathcal M$ are of type $III.2$, and so are all taut as well. 
    The star-shaped subfamilies of $\mathcal A,\mathcal B,\mathcal C$ of \autoref{kulcsok} are also of type $III.2$.
\end{pl}
\begin{megj}
    The valency 4 graphs of \autoref{kulcsok} are non-taut, but are still special.
    Their analytical type is determined by the analytical type\footnote{as opposed to the topological type, as is the definition of taut singularities} of the exceptional curve configuration. Since spheres have a unique complex structure, this is in turn determined by the cross-ratio of the 4 intersection points of the central vertex with the arms, see \cite[ยง4]{laufer73} and \cite[proof of Corollary 8.2]{wahl11}.
\end{megj}

\begin{pl}\label{ellenpelda}
    Two example entries from \autoref{tauttable}.
    \begin{figure}[ht!]
        \centering
        \begin{subfigure}{0.4\textwidth}
        \includegraphics[height=15ex]{images/tautH.eps}
        \caption*{$(L_1)+(J_1)+(R_2)$}
        \end{subfigure}
        \begin{subfigure}{0.59\textwidth}
        \includegraphics[height=15ex]{images/ellenpelda.eps}
        \caption*{$(L_1)+(J_1)+(R_8)-(C_4)$}
        \end{subfigure}
        \label{ellenpeldakep}
    \end{figure}
\end{pl}





