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Introduction
The complexity of a computational problem is the amount of resources an optimal
algorithm needs to use in order to solve it. The classical model for determining
complexity defines it with Turing machines: assuming we have a Boolean function
f : {0, 1}n → {0, 1}, the task is to construct a Turing machine, which given input
x ∈ {0, 1}n outputs f(x), and the amount of steps it takes for the worst case input
is as low as possible. This is the time complexity of the function f . If the critical
resource is memory space rather than time, then the corresponding definition yields
the notion of space complexity.

We may classify computational problems based on their complexities: e.g. P is
the set of problems which have a polynomial time complexity. Based on time and
space complexity, we may also define well-known complexity classes such as EXP
and PSPACE, and by modifying the notion of Turing machines, we can get new
complexity classes based on these resources, for instance co-NP and NPSPACE.

A different model for defining the difficulty of a problem is through decision tree
complexity, also known as query complexity : in this model, we assume that reading
an input bit requires a large amount of resources compared to making computations
with information already available to us. Therefore in this model, the price of an
execution of an algorithm is the amount of input-bits it queried while running.

We may think of decision tree complexity as the analogue of time complexity
in this model. There are other notions similar to their counterparts in the original
model: we can define complexities for randomized algorithms, as well as certificate
complexity, which is the smallest amount of bits of an input x an oracle has to reveal
in order to prove that the value of the function must be f(x), for the worst case
input.

We will later see that the decision tree complexity of a function can be bounded
from below by its certificate complexity, but also from above by the square of its
certificate complexity. However, the corresponding claim is not known to be true in
the Turing machine model: if there was always an algorithm with time complexity
not greater than the square of the complexity of a certificate, it would imply P = NP,
which is a famous unsolved problem.

This observation shows that these two models are significantly different. In the
query model, it is typical that for two notions of complexity, both can be approxi-
mated by above with a polynomial of the other, which means they are polynomially
equivalent.

We may also define complexities of functions based on different properties: the
degree of a Boolean function is the smallest possible degree of a polynomial rep-

1



resenting it, while sensitivity examines the effect of small changes in the input on
the output. Surprisingly, these notions are also polynomially equivalent to the ones
described above.

A different type of computational problems is the set of search problems. In this
model, the set of possible outputs (called solutions) is a set Q instead of {0, 1}, and
for each input, Qx ⊂ Q is the set of feasible solutions. An algorithm solving search
problem S, given input x, must output an element of Qx.

Some complexity notions in the query model have natural variants for search
problems, e.g. query complexity, while others need some adjustment, such is critical
block sensitivity, replacing block sensitivity and sensitivity.

In my thesis, I will introduce the most common notions of complexity, and exam-
ine their interrelationships. Section 2 contains upper bounds between them, estab-
lishing their polynomial equivalence. The most notable of these inequalities is the
result of Huang [1], who showed that the sensitivity of a function is polynomially
equivalent to its degree, thus solving a 27-year-old conjecture.

When polynomial equivalence is already established, we may examine the largest
possible gap between two notions of complexity. This is an actively researched area,
I will present some recent results in section 3.

Section 4 contains the analysis of the Tarski search problem. I show current
results about its query complexity and suggest a new method of tackling it, using
critical block sensitivity.
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1 Computational complexites
Let there be a Boolean function f : {0, 1}n → {0, 1}.

1.1 Decision tree complexity
A decision tree is a directed binary tree in which
every non-leaf vertex has an out-edge labeled 0 and
the other out-edge labeled 1. Each inner (non-leaf)
vertex v also has a coordinate iv ∈ [n] assigned
to it, while every leaf has an output-label 0 or 1.
This defines an evaluation of the function for an
arbitrary input x: the algorithm starts at the root-
vertex v0 and queries the coordinate iv0 of x. Then
it follows the out-edge with the label xiv0

and ar-
rives at the next vertex. It repeats this until it
reaches a leaf, in which case it outputs the label of
the leaf.
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Example of a decision tree:
Each inner vertex is labeled with
its assigned coordinate of x,
while each leaf is labeled with the
relevant output.

We say that this tree calculates f if it gives the correct output for all possible
inputs. The depth of the decision tree is the maximal amount of queries made for
any input.

Definition 1.1. The decision tree complexity of f is the minimal depth over all
decision trees that calculate f . Let us denote this by Ddt(f).

1.2 Communication complexity

In this case the function is a bit different: let X = P ({0, 1}k) and Y = P ({0, 1}m)
be two sets, and f : X × Y → {0, 1} a Boolean function.

There are two parties: Alice, who knows
x ∈ X and Bob, who has y ∈ Y .
They don’t have information about each-
other’s inputs, and their goal is to calcu-
late f(x, y) with as little communication
as possible.

Alice
Bob 00 01 10 11

00 0 1 1 0
01 1 0 0 1
10 1 0 0 1
11 0 1 1 0

Example of a communication matrix for
the function Parity(x, y) = the number of

1′s in x and y modulo 2.
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In a general step of a protocol, a party can send a bit to the other, based on
which one of them sends another bit or they end the protocol. The progress can be
tracked using subrectangles of the table, which tracks the possible input pairs.

For example, if Alice sends her first bit
as 0 and then Bob sends his second bit
as 1, the relevant subrectangle will be
the following:

Alice
Bob 00 01 10 11

00 0 1 1 0
01 1 0 0 1
10 1 0 0 1
11 0 1 1 0

The protocol ends if the current subrectangle only contains 0′s or only contains
1′s, since in that case both parties can be sure of the output. For a given protocol,
the maximal amount bits communicated over all inputs is called the depth of the
protocol.

Definition 1.2. The communicational complexity of f , denoted by Dcc(f), is the
minimal depth over all protocols that solve f .

1.3 Polynomial degree

Every f : {0, 1}n → {0, 1} function can be represented as a multivariate polynomial.
We may assume that it is linear in every variable, and we take the lowest degree
representation, which is unique.

The degree of this R→ R polynomial can also be viewed as a complexity measure,
denoted by deg f .

A general form of this polynomial is f(x) =
∑

I⊂[n]

αI

∏
i∈I

xi.

1.4 Certificate complexity

The certificate complexity of a function is the minimal amount of bits an oracle has
to reveal to determine the output of a function.

Let S ⊂ [n] be a set of bits. We call a function CS : S → {0, 1}|S| an assignment
of values. For an input x, if f(x) = b, we call an assignment CS a b-certificate if for
each i ∈ S, CS(i) = xi and for each input y ∈ {0, 1}n such that y|S = x|S, f(y) = b.
In other words, revealing the bits of x in S already ensures that the output of the
function is b. Let us call the size of the smallest b-certificate of x the certificate
complexity of f at x, let us denote it by C(x, b).
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Definition 1.3. The certificate complexity of f is C(f) = max
x∈{0,1}n

C(x, f(x)).

The 0-certificate complexity of f is C(0)(f) = max
x∈{0,1}n
f(x)=0

C(x, 0).

The 1-certificate complexity of f is C(1)(f) = max
x∈{0,1}n
f(x)=1

C(x, 1).

Observation. C(f) = max(C(0)(f), C(1)(f)).

1.5 Randomized decision tree complexity

A randomized decision tree is a probability distribution µ over all decision trees. On
an input x, it chooses a decision tree with respect to µ and evaluates the input with
it. The cost of the tree on an input x, C(µ, x) is the expected amount of queries
made with distribution µ for x. The cost of the distribution µ is the cost for the
worst case input, C(µ) = max

x∈{0,1}n
C(µ, x). There are three different models about the

error allowed in the computation:

• In the zero-error (Las Vegas) model, every decision tree in the support of µ
must correctly evaluate f .

• In the one-sided error model, positive inputs must be accepted with probability
1, while negative input must be rejected with probability at least 1/2.

• In the two-sided error model, positive inputs must be accepted with at least 2
3

probability, while negative inputs must be rejected with at least 2
3

probability.

We denote by Rdt
0 (f), Rdt

1 (f) and Rdt
2 (f) the lowest possible cost of a distribution

for the zero-error, one-sided error, and two-sided error models respectively.

1.6 Sensitivity and block sensitivity

Definition 1.4. The sensitivity of f at an input x, s(f, x) is the number of i co-
ordinates for which flipping the xi bit (while the other coordinates stay the same)
changes the output.

The sensitivity of f is the maximal sensitivity over all inputs, s(f) = max
x∈{0,1}n

s(f, x).

Let us call a set of indices a block, and flipping a block means changing the input
on each index of the block.
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Definition 1.5. The block sensitivity of f at an input x, bs(f, x) is the maximal
amount of disjoint blocks, such that by flipping any of the blocks, the output changes.

The block sensitivity of f is the maximal block sensitivity over all inputs, bs(f) =
max

x∈{0,1}n
bs(f, x).

We may choose the blocks to be of size 1, which yields the following inequality.

Observation. bs(f) ≥ s(f).

It has been known for a long time that block sensitivity is polynomially related to
the other complexity measures, but whether sensitivity also falls into this equivalence
was unsolved until very recently. In 2019, Huang [1] proved that bs(f) ≤ s(f)4 for
any Boolean function, thus establishing the polynomial equivalence. The best known
separation is quadratic, i.e. there exists an f for which bs(f) ≥ Ω(s(f)2), which can
be found in example 3.1.

Huang’s solution can be found at the end of subsection 2.2.
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2 Polynomial equivalence of complexities
In this section I will show some of the polynomial relations between notions of com-
plexity, establishing their polynomial equivalence. As before, let f : {0, 1}n → {0, 1}
be a Boolean function.

2.1 Linear upper bounds

s(f) bs(f) C(f)

Rdt
2 (f) Rdt

1 (f) Rdt
0 (f) Ddt(f)

deg(f)

Linear relations between complexities

Proposition 2.1. Ddt(f) ≥ Rdt
0 (f) ≥ Rdt

1 (f) ≥ 1
2
Rdt

2 (f).

Proof. The explanations of the three inequalities from left to right:

• A zero-error protocol can simulate a decision tree.

• Any zero-error distribution also satisfies the one-sided error model’s require-
ments.

• If we repeat a one-sided error protocol twice, and only accept the input if
both executions accepted it, we get a protocol which always accepts positive
inputs and rejects negative inputs with at least 3/4 probability, this satisfies
the requirements of the two-sided error model.

Notation. We denote the input given by flipping the bits of a block B ⊂ [n] in an
input x by xB.

Theorem 2.2. bs(f) ≤ C(f).

Proof. Let x be an input and B1, B2, . . . , Bk be blocks such that flipping any of
them changes the output. Then C(f) ≥ k, since if the input is x, a certificate must
show at least one bit from each block: If a block Bi is still completely unknown, the
input could still be x or xBi , which give different outputs, so more bits need to be
revealed.
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Theorem 2.3. C(f) ≤ Ddt(f).

Proof. Let T be an optimal decision tree. For an input x, the inputs queried dur-
ing the execution of T for x give a certificate for output being f(x) since the tree
calculates f . Therefore C(x, f(x))) ≤ depth(T ) = Ddt(f) for each x.

Theorem 2.4. deg(f) ≤ Ddt(f).

Proof. Let us take an optimal decision tree T calculating f , and identify each non-
leaf vertex with its corresponding variable. For each leaf l labeled “1”, let Pl =
{xl

0, x
l
1, . . . , x

l
d(l)−1} be the path from the root to l, where d(l) is the depth of leaf l.

Let us define xi
l the following way: if the out-edge going from xl

i to xl
i+1 is labeled

“1”, then xi
l = xl

i, otherwise xi
l = 1 − xl

i. Define the monomial Ml(x) =
d(l)−1∏
i=i

xi
l.

Notice that Ml(x) = 1 if and only if for input x, the execution of the decision tree
follows along the path Pl. Since T calculates f , f(x) = 1 if and only if the execution
follows along a path Pl for a leaf l labeled “1”. Therefore the following multinomial
of degree depth(T ) = Ddt(f) calculates f :

∑
l is a leaf,
label(l)=1

Ml(x).

Theorem 2.5. bs(f) ≤ 3Rdt
2 (f).

Proof. Take input x and blocks B1, B2, . . . , Bk with k = bs(f) such that f(x) ̸=
f(xBi) for each block, and fix an optimal two-sided error randomized decision tree
distribution µ.

Let pi be the probability that the algorithm queries at least one bit in Bi.

Lemma 2.6. For each i, pi ≥ 1
3
.

Proof. Suppose that pi < 1
3

for some i. Then with more than 2
3

probability, µ makes
the same execution, and gives the same output for x and xBi . But only one of these
can be correct, therefore

P (µ gives the correct output for x) + P (µ gives the correct output for xBi) ≤

≤ pi + pi + (1− pi) <
4

3
,

which implies that for either x or xBi , the probability of an error is more than 1
3
,

which is a contradiction.
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Let us denote the expected amount of queries by E(). Then we have the following
inequality:

Rdt
2 (f) = E(queries) =

k∑
i=1

E( queries in block Bi) ≥
k∑

i=1

pi ≥
k

3
=

bs(f)

3
.

2.2 Non-linear upper bounds

In this subsection I will show some of the upper bounds between complexities which
prove their polynomial equivalence. Most of these are not known to be sharp, the
maximal separation is an open problem.

s(f) bs(f) C(f)

R2(f) R1(f) R0(f) Ddt(f)

deg(f)

Polynomial relations between complexities: A black arrow implies a linear, a green
arrow implies a quadratic, a blue arrow implies a cubic, while a red arrow implies a

quartic upper bound.

Theorem 2.7 (Nisan [5]). C(f) ≤ s(f)bs(f).

Proof. Let x ∈ {0, 1}n be an arbitrary input, we want to show that C(x, f(x)) ≤
s(f)bs(f, x) ≤ s(f)bs(f). Let B1, B2, . . . , Bk be minimal blocks exhibiting k =
bs(f, x), f(xBi) ̸= f(x).

Lemma 2.8. For each i, |Bi| ≤ s(f).

Proof. For each j ∈ Bi, f(xBi−{j}) = f(x) ̸= f(xBi), otherwise exchanging Bi to
B′

i = Bi − {j} would give a set of disjoint sensitive blocks whose union is smaller,
contradicting the minimality of (B1, . . . , Bk). This implies s(f) ≥ s(f, xBi) ≥ |Bi|.
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Let the certificate consist of the bits in B1 ∪ B2 ∪ · · · ∪ Bk. This will have size
k∑

i=1

|Bi| ≤ s(f)bs(f) and proves the output f(x): Suppose that f(x′) ̸= f(x) but x

and x′ are the same on the bits of B1 ∪B2 ∪ · · · ∪Bk. Let Bk+1 be the set of indices
on which they differ. Then we have k + 1 disjoint blocks such that flipping any of
them changes the output for input x, which is a contradiction, since k = bs(f, x).

Corollary 2.9. C(f) ≤ bs(f)2.

Remark 2.10. If C(1)(f) = m for a function f , then for each input x for which
f(x) = 1, there exists a 1-certificate of size at most m.

Theorem 2.11 (Beals et al. [6]). Ddt(f) ≤ C(1)(f)bs(f).

Proof. We describe a decision tree which uses at most C(1)bs(f) steps to calculate
f(x).

1. Repeat the following k = bs(f) times:
Choose an input y with f(y) = 1, for which there exists a 1-certificate Ci of
size at most C(1)(f) whose bits agree with our input on the coordinates queried
so far. Query all its yet unqueried coordinates. If all of them agree with the
certificate, stop the algorithm with output 1. If there is no such certificate,
stop the algorithm with output 0.

2. Let x be an arbitrary input consistent with the queries made so far. Output
f(x).

This always correctly evaluates f : If the algorithm stops in step 1 with output
1, then it has verified a 1-certificate, ensuring a correct output. If the value of the
function on our input x is 1, there must exist such a certificate of size at most
C(1)(f, x) ≤ C(1)(f).

Consequently, if it stops in step 1 with output 0, then there are no 1-certificates
for the input of size at most C(1)(f), therefore the value of the function must be 0.

We need to show that if step 2 is reached, all remaining possible inputs give the
same output.

Suppose that there is a y and a y′ both consistent with the queries made in step
1, with f(y) = 0 and f(y′) = 1. Since f(y′) = 1, there must be a 1-certificate of size
at most C(1)(f) which is consistent with y′, denote this by Ck+1. Since f(y) = 0, for
each 1 ≤ i ≤ k+1 there must be coordinates for which Ci and y don’t agree. Let us
denote this set with Bi.
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Lemma 2.12. For i ̸= j, Bi and Bj are disjoint.

Proof. We may assume i < j. Suppose that there is a coordinate h ∈ Bi ∩ Bj. By
definition, Cj(h) ̸= y(h). At the jth iteration, certificate Cj was chosen with y(h)
already queried (in the ith iteration or earlier), therefore Cj(h) = y(h) must hold,
which is a contradiction.

Since f(y) = 0 and yBi is consistent with Ci, yi is sensitive for each block Bi, this
implies bs(f) ≥ k + 1, which is a contradiction.

Corollary 2.13. Ddt(f) ≤ C(f)2, Ddt(f) ≤ s(f)bs2(f) ≤ bs(f)3.

For a quadratic bound between bs(f) and deg(f), we need the following theorem,
proven by Ehlich and Zeller [9]:

Theorem 2.14 (Ehlich and Zeller). Let p : R → R be a polynomial such that
b1 ⩽ p(i) ⩽ b2 for every integer 0 ⩽ i ⩽ n, and |p′(x)| ⩾ c for some real 0 ⩽ x ⩽ n.

Then deg(p) ⩾
√

cn/ (c+ b2 − b1).

It also uses the method of symmetrization, introduced by Minsky and Papert [8].
If p is a polynomial on n variables, and Sn is the set of all possible permutations on n

elements, we define psym(x) =

∑
π∈Sn

p(π(x))

n!
, a polynomial symmetric in the coordinates

of the input, with a degree not higher than the original.

Lemma 2.15 (Minsky, Papert). If p : Rn → R is a multilinear polynomial, then
there exists a single-variate polynomial q : R→ R, of degree at most the degree of p,
such that psym (x) = q(|x|) for all x ∈ {0, 1}n.

Proof. Since psym is a symmetric polynomial, it can be written as p(x1, . . . , xn) =
c0V0 + c1V1 + . . . cnVn, where Vi is the ith elementary basic polynomial, Vi(x) =∑
j1<j2<···<ji

xj1 · xj2 · · · · · xji , and ci is a constant. Therefore it is enough to show that

Vi(x) can be written as such a single-variate polynomial on binary inputs.
For this we only need to observe that for x ∈ {0, 1}n, Vi(x) =

(|x|
i

)
. Since the

degree of this expression is the same as the degree of Vi(x), the degree of q(|x|) will
be at most the largest i for which ci ̸= 0, which is the degree of p.

Theorem 2.16 (Nisan and Szegedy [2]). bs(f) ≤ 2 deg2(f).
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Proof. Let a be an input and B1, B2, . . . , Bk blocks for which f is sensitive in a,
where k = bs(f). We may assume without loss of generality that f(a) = 0, since
otherwise we could look the function 1 − f , which has the same degree and block
sensitivity as f . Let p(x1, x2, . . . , xn) be a polynomial of degree deg(f) representing
f . Let us define a polynomial q(y1, y2, . . . , yk) the following way: replace every xi in
p with a variable yj or a constant:

• If i ∈ Bj and ai = 0, replace xi with yj.

• If i ∈ Bj and ai = 1, replace xi with (1− yj).

• If i is not in a block, replace it with a constant ai.

Note that q is a multilinear polynomial of degree at most deg(f), for which

• q(0, 0, . . . , 0) = f(a) = 0

• q(ei) = f(aBi) = 1, where ei is the ith unit vector.

Let r be the single-variate polynomial of degree at most deg(f) lemma 2.15 yields
for q.

Since every value of q on binary inputs is either 0 or 1, 0 ≤ r(t) ≤ 1 for each
integer 0 ≤ t ≤ k, and r(0) = f(0) = 0, r(1) = (q(e1) + q(e2) + · · · + q(ek))/k = 1
together imply that there exists an x ∈ (0, 1) such that r′(x) = 1.

Applying theorem 2.14 implies that deg(f) ≥ deg(r) ≥
√

k/2.

Sensitivity vs. Block Sensitivity

The question about their polynomial equivalence was first proposed by Nisan and
Szegedy [2]. Gotsman and Linial [3] reduced it to a graph theory problem: Let Q be
the graph of the n-dimensional hypercube, i.e. the vertices of the graph correspond to
the vertices of the hypercube, and the edges correspond to the edges of the hypercube,
so two vertices x, y ∈ {0, 1}n span an edge if and only if they differ in exactly one
coordinate.

Conjecture 2.17 (Gotsman and Linial). Let H be an induced graph of Q with at
least 2n−1 + 1 vertices. Then there exists a vertex of H with degree at least

√
n.
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This statement was shown to be sharp, i.e. there exists a subgraph with 2n−1+1
vertices with maximal degree

√
n. The best known lower bound was logarithmic

until recently, which was improved by Huang.
The reduction was done using polynomial representations. We have seen previ-

ously that deg(f) is polynomially equivalent to bs(f), therefore it is enough to show
the equivalence of deg(f) and s(f). Theorem 2.16 together with s(f) ≤ bs(f) imply
s(f) ≤ 2 deg2(f), therefore it was enough to show that d(f) can be approximated by
a polynomial of s(f) by above. Gotsman and Linial proved that this is equivalent to
Proposition 2.17 using the following theorem:

Notation. For a subgraph H of Q , Γ(H) := max(∆(H),∆(Q\H)), the maximum
of the maximal degree of H and the maximal degree of the subgraph induced by
V (Q)\V (H).

Theorem 2.18. Let h : N→ R be a monotonically increasing function. The follow-
ing two statements are equivalent:

(1) For any induced subgraph G of Q such that |V (G)| ≠ 2n−1, Γ(G) ≥ h(n)

(2) For any Boolean function f , deg(f) < h−1(s(f)).

Substituting h(n) =
√
n shows that proving Proposition 2.17 is enough to prove

the sensitivity conjecture, since if V (G) ̸= 2n−1, then either G or Q\G has at least
2n−1 + 1 vertices, therefore Proposition 2.17 implies (1), proving deg(f) < s(f)2 for
any Boolean function f .

Proof of Conjecture 2.17 (Huang)

Considering this problem (and its equivalent version) was unsolved for decades, his
proof is surprisingly simple and elegant.

He used Cauchy’s interlace theorem, as well as two other lemmas for symmetric
matrices.

A principal m×m submatrix of an n× n matrix is submatrix for which the set
of indices for the rows and columns chosen is the same.

Theorem 2.19 (Cauchy’s Interlace Theorem for Symmetric Matrices). Let A be a
symmetric n×n matrix with eigenvalues λ1, λ2, . . . , λn. Let B be a symmetric m×m
principal submatrix of A with eigenvalues µ1, µ2, . . . , µm for some m < n. Then for
each 1 ≤ i ≤ m,

λi ≥ µi ≥ λn−m+i.

13



He iteratively defined a sequence of matrices, which can be “almost” considered
the adjacency matrix of the given size cube graph Q: Let

A1 =

[
0 1
1 0

]
, and An =

[
An−1 I
I −An−1

]
,

where I is the 2n−1 × 2n−1 identity matrix.

Remark 2.20. If we take the absolute value of each element in An, we get the
adjacency matrix of Qn.

Proof. We can see this by induction, we get the graph of Qn by placing two copies
of Qn−1 under one another and connecting the corresponding vertex pairs, from a
vertex in Qn−1 with index k the indices of the corresponding vertices in Qn are of
the form k, 2n−1 + k, this indexing gives the adjacency matrix An.

Lemma 2.21. The eigenvalues of An are
√
n with multiplicity 2n−1, and −

√
n with

multiplicity 2n−1.

Proof. It is easy to see by induction that A2
n = n · I2n , whose eigenvalue is n with

multiplicity n, therefore the eigenvalues of An can only be ±
√
n. Since the sum of

eigenvalues is the trace is matrix, which is 0 by induction, the multiplicities must
both be 2n−1.

The next lemma connects the eigenvalues to the maximal degree of a graph.

Lemma 2.22. Let H be an m-vertex undirected graph, and An ∈ {−1, 0, 1}m×m

a matrix such that its columns and rows are indexed with the vertices of H, and
whenever two vertices u, v ∈ V (H) are non-adjacent, Au,v = 0. Then

∆(H) ≥ λ1(A),

where λ1 is the largest eigenvalue of A.

Proof. Let v = (v1, v2, . . . , vn) be the eigenvector corresponding to λ1. Suppose that

v1 is the coordinate with the largest absolute value. Then |λ1v1| =
∣∣∣∣ n∑
i=1

A1,ivi

∣∣∣∣ ≤
n∑

i=1

|A1,i||v1| ≤ ∆(H)|v1|, since the number of i indices where |A1,i| is 1 instead of 0

is at most ∆(H). Since |v1| ≠ 0, |λ1| ≤ ∆(H) follows.
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The proof of Proposition 2.17:
Remark 2.20 implies that An and Qn satisfy the conditions of Lemma 2.22, and

any 2n−1 + 1-vertex H induced subgraph and its associated subgraph AH also sat-
isfy these conditions, therefore ∆(H) ≥ µ1(AH). But Theorem 2.19 implies that
µ1(AH) ≥ λ2n−2n−1−1+1(An) =

√
n, since the eigenvalues of An were

√
n with multi-

plicity 2n−1, and −
√
n with multiplicity 2n−1, this concludes the proof.
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3 Separations
As we have seen, most complexity measures are polynomially equivalent to each
other, but we can examine the exact relationship between them, i.e. search for the
functions exhibiting the largest separations between two given complexity measures.

3.1 Sensitivity vs. block sensitivity

As we have seen in the previous section, bs(f) ≤ s(f)4 is a polynomial upper
bound, but the exact sharp upper bound is unknown. The best known separation is
quadratic, which was first shown by Rubinstein [4]:

Theorem 3.1 (Rubinstein). There exists an f with bs(f) ≥ Ω(s(f)2).

Proof. Let n = k2 for some even integer k, and let us partition [n] into
√
n sets of size√

n = k, with Si = {xk·i+1, xk·i+2, . . . , xk·i+k−1}. For an input x = (x1, x2, . . . , xn), let
f(x) = 1 if and only if there exists a set Si such that exactly two adjacent coordinates
in Si are 1, the other k − 2 are 0.

It is easy to see that bs(f) ≥ n/2: let us partition [n] into n/2 blocks of adjacent
integers, with Bi = {x2i−1, x2i}. For the all-0 input, bs(f, x) ≥ n/2 with these blocks
since flipping any block gives two adjacent 1′s in some set Si (because k is even).

Now we need an upper bound on the sensitivity of f . Let x be an arbitrary input.

• Case 1: f(x) = 1. This means that there exists a set Si with two adjacent
1′s. If these aren’t changed, the value of the function remains one, therefore
s(f, x) ≤ 2.

• Case 2: f(x) = 0. Flipping a bit in a set Si can only change the output if
there were exactly one or three 1′s in that set. If there was one, it had to
be adjacent to the flipped bit. If there were three, then one of them had to
be flipped to change the output, such that the remaining two 1′s are adjacent
(therefore the middle “1” bit couldn’t be flipped). This means that there can
be at most two bits in each set for which the function is sensitive at x. This
implies s(f, x) ≤ 2k = 2

√
n.

These bounds together imply bs(f) ≥ 1
8
s(f)2 for infinitely many n-s.
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3.2 Unambiguous non-deterministic vs. deterministic com-
plexities

Göös, Pitassi, and Watson [7] examined separations between unambiguous non-
deterministic and deterministic models for both decision tree and communication
complexity. This subsection contains their results for both cases.

They first found an f which has a large gap between its decision tree and unam-
biguous decision tree complexity.

An unambiguous decision tree is a non-deterministic decision tree which has a
unique accepting computation for each correct input: formally, a non-deterministic
decision tree is a collection of 1-certificates, in the unambiguous case, each input
can only have 1 certificate verifying it. Non-deterministic decision tree complexity is
denoted by NPdt(f), and its unambiguous variant by UPdt(f).

The following proof uses non-Boole functions to find separations. In general, if
a function f is defined on strings of length n from an alphabet Σ, the decision tree
complexities of f : Σn → {0, 1} are defined the same way, querying a coordinate
reveals xi ∈ Σ.

Results using larger alphabets can be applied in our model for Boolean functions:
Let h : {0, 1}⌈log |Σ|⌉ → Σ be an arbitrary surjection. If a decision tree Tf for

f : Σn → {0, 1} solves f , we can construct a decision tree Tf◦hn for
f ◦ hn : {0, 1}n·⌈log |Σ|⌉ → {0, 1} which simulates Tf , such that if Tf queries a bit
xi ∈ Σ, Tf◦hn queries all ⌈log |Σ|⌉ bits necessary to compute xi, therefore Ddt(f◦hn) ≤
Ddt(f) · ⌈log |Σ|⌉.

In the other direction, it is easy to see that Ddt(f ◦hn) ≥ Ddt(f), since a decision
tree Tf◦hn for f ◦ hn can be simulated with no extra cost: If Tf◦hn queries a bit bij
(where i ∈ [n], j ∈ [⌈log |Σ|⌉]), then Tf queries the corresponding coordinate xi of
its input. The value of bit bij only holds information about xi, therefore Tf has at
least the same amount of information about the input as Tf◦hn at any step. This
argument holds true for the non-deterministic and unambiguous cases as well.

This implies that taking a larger alphabet only creates an error of size log |Σ| =
O(log(n)) if |Σ| = poly(n), which can often be neglected.

Theorem 3.2 (Göös et al.). There is a function f for which UPdt(f) ≤ 2k− 1, and
Ddt(f) ≥ k2 for any k ∈ N.

Proof. Let us start with defining a function for which NPdt(f) ≤ 2k−1, and Ddt(f) ≥
k2, and then modifying it to allow unique certificates.

Let f : {0, 1}k×k → {0, 1} be a Boolean function, we interpret it as a k × k grid
filled with 1’s and 0’s. On an arbitrary input, f gives output 1 if and only if there
exists a unique column containing only 1’s (all other columns contain at least one 0).
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For this f , Ddt(f) ≥ k2, since the algorithm cannot always be sure of the answer
after k2 − 1 queries:

In each column, we answer queries with “1”, unless it is the last query in that
column, in which case we answer “0”. This makes it so the algorithm cannot be sure
whether there exists an all-1 column until it has queried all columns fully.

However, there exists a non-deterministic decision tree, proving the existence
using 2k− 1 queries: It can guess the unique all-1 column, query each cell in it, and
query (guess) a 0-cell in each other column, this is enough to prove that the output
is 1 on the given input.

Notice however that this collection of certificates is not unambiguous, because
there may be multiple zeroes in the other columns, so there may be multiple ways
to prove the positivity for one input. To solve this, they modified the function:

Instead of {0, 1}, let us take a bigger alphabet: Σ = {0, 1} × ([k]× [k] ∪ {⊥}),
and work with functions f : Σk×k → {0, 1}.

Intuitively this means that in the k×k 0−1 table we also assign to each element
(i0, j0) ∈ [k]× [k] a pointer to another element (i1, j1) in the table, or we assign to it
the sign ⊥, called the zero pointer.

1

1

1

1

1

1

1

1

⊥⊥

⊥⊥

⊥⊥

⊥⊥

⊥⊥

⊥⊥

⊥⊥
0

0

0

0

0

0

0

Figure 1: Example of an accepted input. The undefined values can be arbitrary.
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For a given input x, let f(x) = 1 if and only if there exists a unique all-1 column
(as before), while also requiring that in the unique column, each element has the
zero pointer except for one, which has a pointer (i1, j1). If we iteratively follow these
pointers, letting (iv+1, jv+1) be the element to which the pointer of (iv, jv) leads, the
elements (i0, j0), (i1, j1), . . . , (ik−1, jk−1) should be in pairwise different columns, and
(i1, j1), . . . , (ik−1, jk−1) should all contain 0’s.

This is a stronger condition than the previous example, but now we can efficiently
give unambiguous certificates: for each accepting input, querying the 2k−1 elements
mentioned in the definition ensures that the output would be 1. These are also
unambiguous, since for each such input there is a unique 1-column, a unique non-⊥
element in that column, and a unique path following the pointers from that element.
Therefore UPdt(f) ≤ 2k − 1.

We also prove that Ddt(f) ≥ k2, by giving an answer strategy for any series of
queries such that even after k2−1 queries, the algorithm cannot decide the value of f .

In each column, let us call the last unqueried element “critical”. For each non-
critical query, the answer should be (1,⊥). For the first critical query, let us an-
swer with (0,⊥), and recursively, for the mth critical query let us answer with
(0, (im−1, jm−1)), where (im−1, jm−1) are the coordinates of the previous critical query.

With this strategy, regardless of the query algorithm, after k2 − 1 moves the
output can still be 1, if we set the last element to be (1, (ik−1, jk−1)), or 0, if we set
the last element to be any other value, therefore Ddt(f) ≥ k2.

Let us call f the Göös-Pitassi function.

Notation. We use the Ω̃ notation as an Ω which hides polylogarithmic factors, so
g(n) ≥ Ω̃(h(n)) means ∃C, k ∈ R+ : g(n) ≥ C · h(n) · 1

log(n)k
for every n ∈ N.

We get the following separation as a direct consequence:

Corollary 3.3. There exists a Boolean function f such that Ddt(f) ≥ Ω̃
(
UPdt(f)2

)
.

Using this result as a black box, the authors proved another separation theorem
in communication complexity:

Definition 3.4. For a communication problem with a matrix M , χ1(f) is the least
number of pairwise disjoint rectangles needed to cover the 1’s of M that no 0 is
covered by any rectangle.

Definition 3.5. For a function F : X × Y → {0, 1}, UPcc(F )
def
= ⌈logχ1(F )⌉ is the

unambiguous nondeterministic communication complexity of F .
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This is an analogous version of UPdt to communication protocols, since a 1-
certificate in a communication problem is a collection of 1-rectangles which cover all
the 1′s in the matrix.

Theorem 3.6. There is a function F with deterministic communication complexity
Ω̃(log2 χ1(F )) = Ω̃(UPcc(F )2).

Remark 3.7. It was known for a long time that logχ1 ≤ Dcc(F ) ≤ O(log2 χ1),
but the maximal separation was unknown, this theorem proves that the maximum
allowed by this bound is possible.

To prove Theorem 3.6, they used a simulation theorem. Let f : {0, 1}n → {0, 1}
be a Boolean function, and X ,Y be the set of possible inputs of Alice and Bob
respectively. The size of Alice’s input is log(|X |) = Θ(log n), while the size of Bob’s
input is Θ(poly(n)).

Theorem 3.8 (Simulation theorem). There is a gadget g : X × Y → {0, 1} such
that for all f : {0, 1}n → {0, 1}, the following holds:

Dcc(f ◦ gn) = Ddt(f) ·Θ(log(n)).

Let the gadget g be the following: let m = poly(n), X = [m], and Y = {0, 1}m,
g(x, y) = yx for x ∈ X , y ∈ Y . This way it is not easy for the two parties to gain
meaningful information about an input bit of f without querying the relevant bits
of x and y.

One side of this theorem is fairly straightforward, Dcc(f ◦gn) ≤ Ddt(f) ·O(log(n))
is true because a communication protocol can follow along a decision tree: if the
decision tree queries a bit, Alice can communicate the relevant parts of her input
using O(log(m)) bits, and this way they find out the queried bit, so they can simulate
a query with a O(log(m)) cost, therefore Dcc(f ◦ gn) ≤ Ddt(f) ·O(log(m)) = Ddt(f) ·
O(log(n)) holds.

For the other direction, we need to prove that there is no communication with a
more efficient strategy than the one described above. This is significantly harder, we
can prove it in a similar way: we take a communication protocol, and give a decision
tree which makes queries using the protocol. In the following paragraphs, I provide
a sketch of their proof.

The simulation starts at the beginning of the protocol, in each iteration, it either
makes the protocol send a bit, or queries a bit. If we are currently at a node v in the
protocol, let us denote by Rv the subrectangle corresponding to v, the set of possible
input pairs at v. We also maintain a “cleaned up” subrectangle A × B ⊂ Rv such
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that all input pairs in A× B are still possible given the queries of our decision tree
so far.

If there is a coordinate of our input which depends too much on other unqueried
bits then we query that coordinate, if there isn’t, we move in the communication
protocol, always choosing the node which leaves more options, i.e. for which the up-
dated cleaned up subrectangle will be larger. The algorithm maintains an invariant
which ensures that there are at most 1

Θ(log(m))
times as many queries as communica-

tion steps, which is sufficient as there can be at most Dcc(f)-many communication
steps in any execution of the protocol.

3.3 Deterministic decision tree complexity vs. randomized
query complexity

Ambainis et al. [10] used the Göös-Pitassi function to find other separations:

Theorem 3.9 (Ambainis et al.). There exists an f such that Ddt(f) ≥
(
Ω̃ (R0(f))

)2

.

They modified the function to exhibit this separation. Let M be a grid of 2n
rows and n columns, filled with binary entries. Each cell also has 3 pointers.

• Left and right pointers point to another cell in the grid, or take the value “⊥”.

• Back pointers point to a column or take the value “⊥”.

So each cell v has 4 parameters, its value, right pointer, left pointer, and back
pointer, denoted by val(v), rpoint(v), lpoint(v) and bpoint(v) respectively.
Let us fix a balanced binary tree T on
n leaves and n − 1 inner vertices: if
2p ≤ n < 2p+1, every vertex will be
at a distance p or p+1 from the root,
let us add the vertices on level p + 1
from left to right (see figure 2). Label
the leaves from left to right with the
elements of [n]. 1 2 3 4

5 6

Figure 2: Example of a balanced binary tree with p = 2
levels and 6 leaves

Let us define f2n,n : M × (M ∪ {⊥}) × (M ∪ {⊥}) × ([n] ∪ {⊥}) → {0, 1} the
following way:
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For the output to be 1, there needs to be a unique all-1 column, let us call this
the marked column with index b ∈ [n]. In the marked column, each input must be
(1,⊥,⊥,⊥) except for one, which we call the special element.

We also need to assign a cell to each vertex of T such that it satisfies the following
criteria:

The root must be the special element a, and for every inner vertex y of T , if the
cell v is assigned to it, the left child of y must be lpoint(v), and the right child must
be rpoint(v).

For each unmarked column j ∈ [n]\{b}, there is a unique left-right sequence T (j)
going from the root of T to the leaf labeled j.

1

1

1

1

1

1

1

1

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥ ⊥⊥⊥⊥⊥⊥

⊥⊥

0

0

0

0

0

0

0

1 2 3 4 5 6 7 8

An accepted input of the function.
The undefined inputs can be arbi-
trary. The 3rd leaf of T is inconse-
quential since there are no condi-
tions between the marked column
and the binary tree.
The top 8 rows have been omit-
ted, there is no condition on their
inputs except for the cells 3rd col-
umn, which have the same input
as the other non-red cells in that
column.

We define a sequence of cells with the help of this sequence: let us start in the
special element a and in each step, we take either the left or right pointer of the
current cell depending on the corresponding element of the sequence T (j), and we
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move on to the cell it points to. When we reach the end of the sequence, we arrive
at a cell lj. We require that this cell exists (that is, no pointer up to this point was
⊥), that lj is in column j, bpoint(lj) = b, and val(lj) = 0.

The value of the function is 1 if and only if it satisfies all these conditions.
The following theorem states that any decision tree needs to query at least half

the cells in M in the worst case.

Theorem 3.10. If n is large enough, Ddt(f) ≥ n2.

Proof. We describe an adversary strategy for which the algorithm cannot be sure of
the output after n2 steps.

Assume it queries the cell (i, j), and it is the kth queried cell in the column. If
k ≤ n, answer with (1,⊥,⊥,⊥), otherwise answer with (0,⊥,⊥, k − n)

Lemma 3.11. If there is a column b ∈ [n] with at least n unqueried cells and there are
at least 4n unqueried cells in M , then the value of the function is still undetermined.

Proof. If each unqueried cell v had val(v) = 0, then the output would be 0, since
the adversary strategy didn’t make an all-1 column at any point.

The output can also be 1:
The marked column will be b. Let all unqueried cells there have value (1,⊥,⊥,⊥)

except for one arbitrary cell, which will be the special element a, this will be assigned
to the root of T .

At a column j ∈ [n]\{b}, if there is an unqueried cell, let its value be (0,⊥,⊥, b),
this cell will be lj. If all cells are queried, then there is a cell with value (0,⊥,⊥, b),
let this be lj.

After these assignments there are still at least 4n − n − n = 2n unqueried cells,
we use n− 2 of these as the inner vertices of T . We can use any assignment, but we
need to set the left and right pointers such that lj is assigned to the jth leaf of T .
This makes sure that the value of the function is 1.

If there are at least n2 unqueried cells then there must be a column with at least
n unqueried cells and if n ≥ 4, there are at least 4n ≤ n2 unqueried cells, so the
conditions of the lemma are satisfied.

Theorem 3.12. The function f has Las Vegas randomized complexity Õ(n).

Proof. Most of the algorithm is deterministic, it uses random queries in only one
part of it.

It uses two subroutines:

• VerifyColumn(j) checks whether column j is marked:
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1. It first queries each cell in column j, checking that each input is (1,⊥,⊥,⊥)
except for one, which is the special element a.

2. Then following the left and right pointers from a, it checks the second
condition for the output to be one, namely that for each column i the
left-right sequence defined by T (i) leads to a cell li in column i, whose
input is (0,⊥,⊥, j).

• Testcolumn(c, k) always returns 1 if there are no zeroes in column c. If there
are at least k/2 zeroes, it returns 0 with at least 1− 1

n4 probability. It returns
anything in intermediate cases.

1. Query ⌈8n
k
log(n)⌉ random elements from column c. If all of them have

value 1, output 1, otherwise output 0.

This yields the desired results: the probability of a false positive is at most(
n−k/2

n

)4n
k
2 log(n)

=
(
1− k

2n

) 2n
k
·4 log(n)≤ sup

x∈(0,1)
(1− x)

1
x
·4 log(n) = e−4 log(n) = 1

n4 .

The main procedure of the algorithm:

1. Begin with an arbitrary column j ∈ [n] and k = n.

Then repeat these steps until the algorithm stops:

2. Query all the elements in column j.

(a) If all of them have value 1, VerifyColumn(j).

(b) If there are more than k zeroes, query all the elements in M and output
the value of the function.

(c) In intermediate cases, let C be the set of back pointers from the zeroes of
the column. For each c ∈ C, TestColumn(c, k). If all of them return 0,
then reject the input. Otherwise, let j′ ∈ C be an arbitrary column for
which it returned 1, and move on to column j′ instead of j.

3. If k = 0, reject the input. Otherwise, k ← ⌊k
2
⌋.

Analysis of the algorithm

If we find an all-1 column, then it must be the marked column, which can be checked
in O(n) time in step 2.(a) .
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If there is a small number of zeroes in column j, then if the input is to be accepted,
the marked column can only be where one of the back pointers of the 0′s in column
j points. The column we move on to might be a false positive, but the probability
of this is set such that this “error” only adds a logarithmic factor to the expected
amount of queries.

Case 2.(b) adds a quadratic number of steps, but also has low probability of
happening.

Let us check the correctness of the algorithm:
If the input should be accepted, then the algorithm never rejects it:

• In step 2.(c), the marked column will always be in C,

• In step 3., if k = 0 then either case 2.(a) or (b) holds, the former will give the
correct output since there can be only one all-1 column, while the latter always
gives the correct output. The algorithm never reaches step 3. if k = 0 and the
input is correct.

The algorithm only accepts an input if it satisfies all the necessary criteria in Veri-
fyColumn, therefore it always rejects any false input.

Now estimate the expected amount of queries for the worst case input:
Let us fix an arbitrary input x. Since the value of k is halved in each iteration,

there are at most O(log n) loops.
Case 2.(a) can only hold once, in which case the algorithm queries O(n) cells and

gives the correct output.
Case 2.(b) cannot hold in the first iteration, and if it later holds, it means we got

a false positive in the previous step. A given column has at most 1
n4 probability to

be a false positive, therefore this case can only add O
(
n3 · log(n) · 1

n4

)
= o(1) to the

expected number of queries.
In case 2.(c), we need to check at most k columns using O(k · 8n

k
log(n)) queries.

This case can be invoked at most O(log n) times, therefore the expected number of
queries added by this case can be at most O(n log2 n) = Õ(n).

Each possible case adds at most Õ(n) to the expected number of queries, the
expected number of total queries is also Õ(n).

This concludes the proof of the separation theorem 3.9.
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4 Tarski search problem
In this section, I will examine the properties of the Tarski search problem.

In general, a search problem S ⊂ {0, 1}n × Q is a problem with a set of inputs
{0, 1}n and a set of possible solutions Q. The set of feasible input-solution pairs is
denoted by S. We assume that every input has at least one feasible solution.

Given an input x, our goal is to find a solution q ∈ Q for which (x, q) ∈ S. We
say that function s : {0, 1}n → Q solves S if (x, s(x)) ∈ S for each input x.

We may define complexities for search problems the same way as we did for
Boolean functions, for example the deterministic decision tree complexity of S is the
smallest possible cost of a decision tree which solves S.

The definitions of sensitivity and block sensitivity use the evaluating Boolean
function f , which is not defined in this case. Therefore these notions are not well-
defined for search problems, so we need to modify the definition to include the choice
of s:

Definition 4.1. We call an input x critical if there is only one feasible solution for
it.

Definition 4.2. The critical block sensitivity of S at s is the block sensitivity re-
stricted to critical inputs, cbs(S, s) = max

x critical
bs(s, x).

The critical block sensitivity of S is the minimal critical block sensitivity over all
s ⊂ S functions which solve S, cbs(S) = min

s:{0,1}n→Q
s⊂S

cbs(S, s).

On the d-dimensional n-sized grid, [n]d, there is a natural partial ordering:
(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn) if and only if xi ≤ yi for all 1 ≤ i ≤ n. Given a
monotone function f with respect to this partial ordering on this grid, Tarski’s fixed
point theorem implies the existence of a fixpoint. In the d-dimensional Tarski search
problem, denoted by Td = Td(n), the inputs are the monotone functions while the
possible solutions are vertices of the grid. Our goal is to find a fixpoint of the input
function, therefore the set of feasible solutions is S = {(f, x) : f(x) = x}.

4.1 Decision tree complexity of the Tarski search problem

We may examine the decision tree complexity of this problem. Let us start with the
d = 1 case.

Lemma 4.3. If f(i) ≥ i for some i ∈ [n], there exists a fixpoint in the subinterval
[i, n]. If f(i) ≤ i for some i, there exists a fixpoint in the subinterval [1, i].
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Proof. Monotonicity implies that f(j) ≥ i for each j ≥ i, therefore the image of
f |[i,n] is in [i, n], this constrained function is also monotone, therefore the fixed point
theorem for f |[i,n] implies the existence of a fixpoint in [i, n].

The second statement can be proven similarly.

These two observations imply that we can find a fixpoint using binary search,
in each step we move left or right depending on whether the value of the queried
variable is less or more than its index. Therefore Ddt(T1) ≤ ⌈log(n)⌉.

For the lower bound, fix a set of possible inputs: let i ∈ [n] be an arbitrary
coordinate, and the only fixpoint of f . At all the other indices, let f(j) = j + 1 if
j < i, and f(j) = j−1 if j > i. If we only consider these n strings as possible inputs,
finding a fixpoint is exactly as hard as a binary search problem, which is known to
be of ⌈log(n)⌉ complexity.

Corollary 4.4. Ddt(T1) = ⌈log(n)⌉.

The previous lemma has a generalization in d dimensions:

Lemma 4.5. If f(x) ≥ x for some x ∈ [n]d, then there is a fixpoint in the sublattice
{y ∈ [n]d : y ≥ x}. Similarly, if f(x) ≤ x for some x ∈ [n]d, then there is a fixpoint
in the sublattice {y ∈ [n]d : y ≤ x}.

Proof. If f(x) ≥ x, then by monotonicity, f(y) ≥ x for all y ≥ x, therefore f maps
the sublattice L′ = {y ∈ [n]d : y ≥ x} into itself, thus we can apply Tarski’s fixed
point theorem for f |L′ , so there exists a fixpoint of f in L′.

The other case can be proven the same way.

In the d-dimensional case, logd(n) is a not too difficult upper bound:

Proposition 4.6 (Dang et al. [14]). Ddt(Td) ≤ logd(n).

Proof. The d = 1 is already proven, we will prove the rest using induction.
Let us fix the last coordinate to be ⌊n/2⌋, which gives us a sublattice H in a

hyperplane. Let us define f ′ : H → H by modifying f on H such that f ′(x) =
prH(f(x)) for each x ∈ H, f ′ is the “projection of f |H to H”. This gives us a
monotone function on an n− 1-dimensional grid, therefore we can find a fixpoint of
f ′ in O(logd−1(n)) time by induction.

This means that we found an x with dth coordinate ⌊n/2⌋ such that f(x) can
only differ from x in the dth coordinate, therefore either f(x) ≤ x or f(x) ≥ x
holds. Lemma 4.5 states that it is sufficient to consider points smaller or larger than
x (depending on whether f(x) or x is greater) for the rest of the algorithm, which
halves the height of the grid we need to consider when looking for a fixpoint.
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Applying this log(n) times will yield a fixpoint, thus the total runtime of the
algorithm is O(logd−1(n) · log(n)).

For a while, this upper bound was conjectured to be sharp, but Fearnley et al.
[13] found an algorithm which finds the fixpoint in 3 dimensions in log2(n) time
(by optimizing the 2-dimensional recursive step to only require log(n) steps). Using
this result, Chen and Li [11] gave an algorithm in d dimensions with a runtime of
log⌈

d+1
2

⌉(n).
In 2 dimensions, Etessami et al. [12] showed a lower bound of Ω(log2(n)) by

giving an oracle algorithm for answering queries.
This is the best known lower bound for all d ≥ 2 dimensions, it gives a sharp

bound for d = 2, 3, but the problem is still open for d ≥ 4.

4.2 Critical block sensitivity of the Tarski search problem

We can define communication protocols for search problems the same way as for
Boolean functions, only in this case the final answer of the parties must be a feasible
solution instead of the value of the booelan function.

Similarly to randomized decision trees, a randomized communication protocol is
a distribution over all possible deterministic communication protocols. We say that
a randomized communication protocol consistently solves S, if for each input, there
is a unique feasible solution q ∈ Q which they answer with probability at least 3/4.
Let us denote the minimal complexity of such a protocol with Rcc

cons(S).
Recall the gadget g used in the proof of Theorem 3.8. Let us use the same gadget,

modified for search problems: let S ⊆ {0, 1}n ×Q be a search problem, and l ∈ Z+.
Let X = [l]n and Y =

(
{0, 1}l

)n, and g : [l]× {0, 1}l → {0, 1}, g(x, y) = yx.
This defines a communication search problem Sg ⊂ (X × Y)×Q, where(

(x1, x2, . . . , xn), (y1, y2, . . . , yn), q
)
∈ Sg ⇔

(
(g(x1, y1), g(x2, y2), . . . , g(xn, yn)), q

)
∈ S.

Huynh and Nordstrom [15] showed a connection between critical block sensitivity
and randomized consistent communication complexity:

Theorem 4.7 (Huynh, Nordström). Let S ⊆ {0, 1}m×Q be a search problem. Then
it holds for any ℓ ≥ 3 that any consistent randomized (and hence also any determin-
istic) two-party protocol solving Sg requires Ω (cbs(S)) bits of communication, where
Alice receives the x-variables and Bob receives the y-variables in Sg.

Theorem 4.8 (Theorem 4.7 rephrased). For any search problem S ⊆ {0, 1}m×Q and
l ≥ 3 there exists a gadget g : [l]×{0, 1}l → {0, 1}, for which Rcc

cons(Sg) = Ω(cbs(S)),
and therefore Dcc(Sg) = Ω(cbs(S)).
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Combined with the search problem variant of theorem 3.8 we get the following:

Corollary 4.9. For any search problem S ⊆ {0, 1}m × Q and l ≥ 3 there ex-
ists a gadget g : [l] × {0, 1}l → {0, 1}, for which Ddt(S) = Dcc(Sg)/Θ(log(n)) =
Ω(cbs(S)/ log(n)).

This suggests that we should look at the critical block sensitivity of the Tarski
search problem, as it might give an improved lower bound for its deterministic de-
cision tree complexity. If we could prove a critical block sensitivity of an order
of magnitude ω(log3(n)) for any dimension d, it would already be sufficient for an
improvement.

First, let us look at the critical block sensitivity in 1-dimension.
The following proof constructs bicritical inputs to prove a lower bound for critical

block sensitivity. We call an input x bicritical if it has exactly two feasible solutions.

Theorem 4.10. cbs(T1) = Ω(log(n))

Proof. Let i ∈ [n] be an arbitrary index. Define critical inputs ti (i ∈ [n]) as in the
proof of Corollary 4.4: let t(i) = i, t(h) = h + 1 if h < i, and t(h) = h − 1 if h > i.
We will define Ω(log n) pairwise disjoint blocks of indices Bk such that changing the
input only in Bk creates a bicritical input, which will be useful in proving a lower
bound for critical block sensitivity.

Figure 3: Input t3 for n = 11.

Let Bright
k = {i + 2k, i + 2k + 1, . . . , i + 2k+1 − 1} for k = 0, 1, . . . , ⌊log(n − i)⌋,

and for j ∈ Bk, change the input such that instead of t(j) = j − 1, now t(j) = j + 1
for j ̸= i + 2k+1 − 1, and t(j) = i + 2k+1 − 1 for j = i + 2k+1 − 1, creating a
fixpoint (see figure 4). Let us denote this modified input by ti,j. Define Bleft

k =
{i − 2k, i − (2k + 1), . . . , i − (2k+1 − 1)} for k = 0, 1, . . . , ⌊log(i)⌋, and define tj,i
similarly, by changing the direction of the arrows and creating a fixpoint at the end.

Note that ti,j is a monotone function which we can get using this method from
both ti and tj, so for the sake of simplicity we may assume ti,j = tj,i for all i, j.
Fix an arbitrary function f which solves the Tarski-1 problem, that is, it assigns a
fixpoint to every monotone function.

Specifically, for each ti,j, it either outputs i or j. We can look at this as a directed
graph Gf : let the vertices be the indices 1, 2, . . . , n, and two vertices indexed a, b are
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Figure 4: Input t3,10 for n = 11.

connected by an edge if and only if |a − b| is a power of two (which means there is
a bicritical input ta,b for this indexpair). Direct this edge towards a if f(ta,b) = a,
direct it towards b if f(ta,b) = b. There must be a vertex whose outdegree is at least
the half of its degree, and all the vertices have degree Θ(log(n)), therefore there is an
index l such that f(ti,l) = i for Ω(log(n))-many i′s, therefore cbs(T1, f) = Ω(log(n))
for all f solutions, which proves cbs(T1) = Ω(log(n)).

We were unable to prove a higher lower bound in higher dimensions, our idea was
to use the idea of Etessami et al. to construct a set of inputs which exhibit a high
critical block sensitivity.

Conjecture 4.11. cbs(T2) ≥ Ω(log2(n)).

As mentioned above, finding dimension d with cbs(Td) = ω(log3(n)) would suffice,
but finding such a construction may not be easier than proving query complexity
directly. For this approach, one may try to iterate the idea of Etessami et al., to
hide a path on which the fixpoint is hidden, to reach higher query complexity.
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