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1 Introduction

I met with matroids at the very beginning of my university career. In my first
year, Gyula O.H. Katona gave an introduction on the topic, and then I started to read
about matroids from Oxley’s excellent book [36] in the next year. It fascinated me
from the beginning that matroids are connected to various areas of mathematics such
as combinatorics and algebra, but only years later, the problem-solving and research
seminar on matroids organized by Kristóf Bérczi and Tamás Schwartz made me decide
to dive into this topic deeper with Kristóf Bérczi as supervisor.

Whitney [45] introduced matroids as a combinatorial abstraction of linear indepen-
dence in vector spaces. It turned out that matroids also appear naturally in combi-
natorics, the probably most notable example being the cycle-free subsets of edges of a
graph. The theory of matroids became a powerful tool in combinatorial optimization. In
particular, one of the most fundamental results of matroid theory is Edmonds’ matroid
intersection theorem [11] that provides a min-max formula for the maximum size of a
common independent set of two matroids, which can be extended to weighted matroids
as well [12, 16], providing another general theorem with several applications.

Unfortunately, the analogous problem for the intersection of three or more matroids
results in hard problems. Indeed, we will see that the NP-complete Hamiltonian s − t

path problem in a directed graph reduces to finding a maximum sized common inde-
pendent set in the intersection of three matroids, hence there is no hope for giving a
good characterization in general. Still, there is a long list of open problems that can
be formulated as special cases, hence identifying tractable instances is of interest. In
this thesis, we gather five famous, widely open conjectures that can be formulated as a
matroid intersection problem for three matroids. The ultimate goal is to examine the
structure of these instances, identify some general pattern fulfilled by every triple of
matroids in these conjectures, and prove a general theorem for the intersection of three
matroids having this special property.

As the intersection of two matroids defines a simplicial complex, the intersection of
three matroids can be looked at as the intersection of a simplicial complex and a ma-
troid. Simplicial complexes received significant interest due to their nice combinatorial
properties in various areas, see for example [5, 25, 32]. By using a topological approach,
Aharoni and Berger [1] formulated several results that aim at bounding the maximum
size a set can have in the intersection of a complex and a matroid. The homotopical con-
nectivity of the simplicial complex plays a key role in these results, hence understanding
and computing the value of this parameter is of fundamental interest.

Though we hardly know anything about the intersection of three matroids, there are
various interesting questions on the intersection of even more matroids. Clearly, the
intersection of matroids is a simplicial complex, and it is well-known that the converse
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is also true: every simplicial complex can be written as the intersection of finite number
of matroids. We examine the problem of recognizing whether a simplicial complex is
the intersection of k matroids, and we give an exponential lower bound for the minimal
number κ(n) such that every simplicial complex on n vertices can be written as the
intersection of κ(n) matroids. Combining this result with the trivial upper bound, we
find the order of magnitude of κ(n).

1.1 Structure of the thesis

In the next subsection, we introduce the main notation used throughout the thesis.
In Section 2, we give several equivalent definitions of matroids and overview the fun-

damental concepts of matroid theory. We show several examples of matroids appearing
naturally in combinatorics and present some essential methods for generating matroids
from other matroids. Finally, we give a list of fundamental results of matroid theory
that will be needed later on.

In Section 3, we state the main problem of the thesis on the intersection of matroids
and explain that it is solvable for two matroids but hard for more than two matroids.

In Section 4, we survey the main results of Aharoni and Berger. We begin with the
necessary topological preliminaries followed by the presentation of the main theorem of
Aharoni and Berger. Then we consider the limitations of this theorem and its applica-
bility for proving conjectures related to the intersection of three or more matroids.

In Section 5, we list five famous conjectures and provide a reformulation of each of
them as a matroid intersection problem involving three matroids.

In Section 6, we consider the structure of the intersection of more matroids. Specif-
ically, we talk about the problem of recognizing whether a simplicial complex can be
written as the intersection of k matroids. Additionally, we consider the extremal prob-
lem of determining the minimal number κ(n) such that all simplicial complexes on n

vertices can be written as the intersection of κ(n) matroids.

1.2 Notation

We use calligraphic letters for denoting families of sets, particularly simplicial com-
plexes or families arising from matroids. We use capital letters for sets and matroids,
and we use lowercase letters for elements of a set. We use A+ x for A ∪ {x} and A− x

for A \ {x}. We denote by 2X the family of subsets of X. For a function f : S → T and
a set X ⊆ S, let

f(X) = {y ∈ T : there exists x ∈ X with f(x) = y}.
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We use N for the set of nonnegative integers. We denote the symmetric difference of two
sets X and Y by X∆Y , and we denote the disjoint union by X∪̇Y . We always denote
the set of independent sets, bases and circuits of matroids by the calligraphic letters F ,
B and C, respectively, possibly with some index or prime symbol. Similarly, we always
use r to denote the rank function.

2 Matroid prerequisites

In this section, we introduce the basic definitions, examples and theorems about
matroids to keep this thesis self-contained. We do not prove these results as they are
well-known and can be found for example in the lecture notes of Frank [17] or the book
of Oxley [36].

2.1 Definitions of matroids

A matroid can be characterized in several ways, we overview the definitions through
independent sets, bases, rank function and circuits in this order.

Let F ⊆ 2S be a family over the finite ground set S. We call the pair (S,F) a matroid
if the following three conditions hold.

(F1) ∅ ∈ F ,

(F2) If X ⊆ Y ∈ F then X ∈ F ,

(F3) If X, Y ∈ F with |X| < |Y | then there exists an y ∈ Y \X with X + y ∈ F .

We call the members of F independent and call the rest of the subsets of S dependent.
The bases of a matroid M = (S,F) are the maximal independent sets with respect

to set inclusion, we denote the family of bases by B. It is easy to see that all bases have
the same size r(M), called the rank of M . The bases of a matroid have the following
properties.

(B1) B is nonempty,

(B2) For any B1, B2 ∈ B and x1 ∈ B1 \ B2 there exists an x2 ∈ B2 \ B1 such that
B1 − x1 + x2 ∈ B.

Note that from the set of bases B, we can determine the set of independent sets,

F = {F ⊆ S : there exists B ∈ B with F ⊆ B}.

It can be proved that if a family B satisfies (B1) and (B2) then (S,F) is a matroid with
family independent sets F , i.e. the family F satisfies (F1), (F2) and (F3). Hence, we can
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define a matroid by giving the family of its bases instead of the family of independent
sets. We will use this, we write the pair (S,B) instead of (S,F) when we define a matroid
through its bases.

The bases exchange property (B2) can be strengthened to obtain the so-called sym-
metric bases exchange property (B2’), and it is also equivalent to the so-called co-
exchange axiom (B2”) in which the role of B1 and B2 is reversed.

(B2’) For any B1, B2 ∈ B and x1 ∈ B1 \ B2 there exists an x2 ∈ B2 \ B1 such that
B1 − x1 + x2 ∈ B and B2 − x2 + x1 ∈ B.

(B2”) For any B1, B2 ∈ B and x1 ∈ B1 \ B2 there exists an x2 ∈ B2 \ B1 such that
B2 + x1 − x2 ∈ B.

Note that if a matroid M = (S,F) is restricted to a subset Z ⊆ S, i.e. we consider
the family {F ∈ F : F ⊆ Z} over Z, then we obtain a matroid. Hence, by the
earlier observation that every maximal independent set is of equal size, this property
also holds for all subsets of S. Let r(Z) be the size of a maximal independent set with
respect to inclusion contained in Z. By the above discussion, this value is well-defined.
The function r : 2S → N is called the rank function of the matroid M . The following
propositions always hold for the rank function of a matroid.

(R1) r(∅) = 0,

(R2) r(X) ≤ r(Y ) if X ⊆ Y ,

(R3) r(X) ≤ |X|,

(R4) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ).

The first three properties are obvious, while (R4) is called the submodularity property
of r. Interestingly, we can define a matroid by its rank function. If a function r : 2S → N
satisfies (R1), (R2), (R3) and (R4) then M = (S,F) is a matroid where

F = {X ⊆ S : r(X) = |X|},

and the rank function of M is exactly r.
Finally, we define a matroid with its circuits. In a matroid M = (S,F) a circuit is a

minimal dependent set (with respect to inclusion). The family of circuits of M , denoted
by C, meet the following conditions.

(C1) ∅ /∈ C,

(C2) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2,
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(C3) If C1, C2 ∈ C with C1 ̸= C2 and e ∈ C1 ∩ C2 then there exists C ∈ C with
C ⊆ C1 ∪ C2 − e.

Condition (C3) is called the weak circuit axiom, and it is the only one which is not
obvious. These properties characterize a matroid in the sense that if a family C fulfills
(C1), (C2) and (C3), then C is the set of circuits of the matroid (S,F) where

F = {F ⊆ S : there is no C ∈ C with C ⊆ F}.

2.2 Examples for matroids

In this subsection, we consider some important examples of matroids that will be
useful in later sections of the thesis.

Example 2.1 (Uniform matroid). Let S be an n-element set and let 0 ≤ k ≤ n. Define
F to be the family that contains all subsets of S with cardinality at most k. Then (S,F)

is called a uniform matroid.

Example 2.2 (Partition matroid). Let k be a positive integer, P1, P2, . . . , Pk be a par-
tition of S and a1, a2, . . . , ak be positive integers with ai ≤ |Pi| for all 1 ≤ i ≤ k. Define

F = {A ⊆ S : |A ∩ Pi| ≤ ai for all 1 ≤ i ≤ k}.

The pair (S,F) is a matroid called a partition matroid.

Example 2.3 (Graphic matroid). Let G = (V,E) be a graph. Let F contain the
subsets of E that contain no cycles. Then (E,F) is a matroid, called the graphic matroid
associated with the graph G.

In the previous examples, we saw that there are various structures in mathematics
that form a matroid. In the following examples, we define new matroids from existing
ones.

Example 2.4 (Restriction of a matroid). Given a matroid M = (S,F) and a subset
X ⊆ S, define M |X = (X,F|X) with

F|X = {F ∈ F : F ⊆ X}.

It is easy to see that M |X is a matroid called the restriction of M to X.

Example 2.5 (Contraction of a matroid). Let M = (S,F) be a matroid, let X ⊆ S and
let B be a maximal independent set contained in X. The contraction of M by X is the
matroid M/X = (S \X,F/X) where

F/X = {F ⊆ S \X : F ∪B ∈ F}.
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It can be proved that M/X is a matroid

Example 2.6 (Direct sum of matroids). Let S1, S2, . . . , Sn be pairwise disjoint sets, and
let M1 = (S1,F1),M2 = (S2,F2), . . . ,Mn = (Sn,Fn) be matroids. Then M = (S,F) is
the direct sum of the above matroids, denoted by M = M1⊕M2⊕. . .⊕Mn if S =

⋃̇n

i=1Si,
and

F = {F ⊆ S : F ∩ Si ∈ Fi for all 1 ≤ i ≤ n}.

It is easy to see that M is indeed a matroid.

Example 2.7 (Dual matroid). Given a matroid M = (S,B), define

B∗ = {B ⊆ S : S \B ∈ B}.

It can be proved that B∗ is the family of bases of a matroid on S. We call M∗ = (S,B∗)

the dual matroid of M . Note that the dual of the dual matroid M∗ is M .

2.3 Further definitions

Matroids (S1,F1) and (S2,F2) are isomorphic if there exists a bijection φ : S1 → S2

with the property that φ(X) ∈ F2 if and only if X ∈ F1 for all X ⊆ S1. It is easy to
see that if G is a planar graph and G∗ is its dual, then the dual of the graphic matroid
associated with G is isomorphic to the graphic matroid of G∗.

Given a matroid M = (S,F) with rank function r, we call a subset X ⊆ S a flat if
r(X + x) > r(X) for all x ∈ S \X. The flats of rank r(S)− 1 are called hyperplanes. It
can be proved that the intersection of flats is also flat.

In a matroid M = (S,F) we call a set X ⊆ S a cocircuit if it is a circuit in the dual
matroid M∗. Cocircuits are also called cuts of the matroid M . It is easy to see that
cocircuits are exactly the complements of hyperplanes. Therefore, the sets that intersect
all cocircuits are exactly the sets that contain a basis.

3 The fundamental problem

The most general form of the problem we are interested in is the following.

Problem 3.1. Given k matroids on the same ground set S, what is the maximum
cardinality of a set that is independent in all k matroids?

The problem is motivated by the fact that numerous problems can be formulated
in this way, as we will see later on. Note that Problem 3.1 includes the problem of
determining whether there exists a common basis of k matroids with the same rank.
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3.1 Case of two matroids

It turns out that in the case of k = 2, there exists a beautiful min-max characteriza-
tion for Problem 3.1 given by Edmonds [11].

Theorem 3.2 (Edmond’s theroem). Let M1 = (S,F1) and M2 = (S,F2) be two matroids
over the same ground set S with rank functions r1 and r2, respectively. There exists a
set A ⊆ S with |A| = k and A ∈ F1 ∩ F2 if and only if

r1(X) + r2(S \X) ≥ k

for all X ⊆ S.

Note that the only if direction is easy, as |A∩X| ≤ r1(X) and |(S \A)∩X| ≤ r2(X)

for all A ∈ F1 ∩ F2. The hard part is to prove that there exists a common independent
set having

max
X⊆S

{r1(X) + r2(S \X)}

elements. Though we will not go into the details of the proof, we would like to highlight
that there exist algorithmic proofs showing that it is possible to find a maximal common
independent set in polynomial time. For matroids with rank r, Cunningham [7] presented
an algorithm with O(nr1.5) independence oracle calls, where n denotes the size of the
ground set S.

The matroid intersection theorem is a cornerstone result in combinatorial optimiza-
tion, and many combinatorial quantities can be written in this form. For example, Ed-
mond’s theorem and the corresponding algorithms can be used to find maximum-sized
matchings in a bipartite graph, see the following example.

Example 3.3. Let G = (S, T,E) be a bipartite graph, and let Ev denote the set of
edges incident to v for all v ∈ S ∪ T . Define partition matroids

• M1 = (E,F1) with F1 = {X ⊆ E : |Ev ∩X| ≤ 1 for all v ∈ S}, and

• M2 = (E,F2) with F2 = {X ⊆ E : |Ev ∩X| ≤ 1 for all v ∈ T}.

Note that {Ev}v∈S and {Ev}v∈T are partitions of E, hence M1 and M2 are indeed parti-
tion matroids. Clearly, a set X ⊆ E is independent in both matroids if and only if X is
a matching.

We mention that there exist generalizations of Edmond’s theorem for weighted ma-
troids, see [12,16] for details.
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3.2 Case of more than two matroids

Unfortunately, calculating the maximum size of a common independent set of more
than two matroids is hard. For instance, the NP-complete Hamiltonian path problem
can be formulated this way.

Proposition 3.4. Let D = (V,A) be a directed graph, and let s, t ∈ V be two given
vertices. The problem of determining whether there exists a Hamiltonian path from s to
t can be written as a case of Problem 3.1 using three matroids.

Proof. Consider the following three matroids on the ground set A.

• Let M1 = (A,F1) be the partition matroid with

F1 = {X ⊆ A : |X ∩ Ev| ≤ 1 for all v ∈ V − s and |X ∩ Es| = 0},

where Ev ⊆ A are the edges ending in v for all v ∈ V .

• In a similar manner, let M2 = (A,F2) be a partition matroid, where

F2 = {X ⊆ A : |X ∩ E ′
v| ≤ 1 for all v ∈ V − t and |X ∩ E ′

t| = 0},

where E ′
v is the set of edges starting in v for all v ∈ V .

• Let M3 = (A,F3) be the graphic matroid of the underlying undirected graph of G.

M1 guarantees that all indegrees are at most one, and there is no edge ending in s. In the
same way, M2 contains subsets of edges with all outdegrees being at most one, and the
outdegree of vertex t is zero. Hence, it is easy to see that the existence of a Hamiltonian
path from s to t in D is equivalent to the size of the largest common independent set of
M1, M2 and M3 being |V (G)| − 1.

Though the problem is hard in general, it would be still intriguing to characterize
Problem 3.1 for special matroid classes. The 3-dimensional matching problem shows
that in the case of one of the most basic classes of matroids, partition matroids, the
problem is still NP-hard even for three matroids.

Definition 3.5. Let X, Y and Z be disjoint, finite sets, and let T be a 3-uniform
hypergraph over X ∪ Y ∪ Z with |T ∩ X| = |T ∩ Y | = |T ∩ Z| = 1 for all T ∈ T . A
3-dimensional matching is a subhypergraph T ′ ⊆ T consisting of pairwise disjoint sets.

Proposition 3.6. The maximum size of a 3-dimensional matching can be formulated as
a special case of Problem 3.1 with three partition matroids.
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Proof. We use the notation introduced in Definition 3.5. For any a ∈ X ∪ Y ∪ Z, let
Ta ⊆ T be the subhypergraph consisting of the sets containing a. Consider the following
three partition matroids over T .

• M1 = (T ,F1) with F1 = {S ∈ T : |S ∩ Tx| ≤ 1 for all x ∈ X}.

• M2 = (T ,F2) with F2 = {S ∈ T : |S ∩ Ty| ≤ 1 for all y ∈ Y }.

• M3 = (T ,F3) with F3 = {S ∈ T : |S ∩ Tz| ≤ 1 for all z ∈ Z}.

Clearly, a subhypergraph T ′ ⊆ T is in F1 ∩ F2 ∩ F3 precisely if it is a 3-dimensional
matching.

Although we usually cannot solve Problem 3.1 for k = 3, it is still meaningful to
try to find manageable cases and applicable methods, as several unsolved problems can
be formulated this way, see Section 5. In the next section, we examine a topological
approach for attacking the problem based on the results of Aharoni and Berger [1].

4 Intersection of a matroid and a simplicial complex

I learned the basic concepts of simplicial complexes and combinatorial homotopy
theory from the Combinatorial Algebraic Topology book of D. Kozlov [32] and the lecture
notes of L. Lovász on Topological Methods in Combinatorics [34], hence we will mainly
follow the notation introduced in these works.

4.1 Topological preliminaries

An abstract simplicial complex K is a down-closed family over a finite set S, i.e.
K ⊆ 2S with the property that X ∈ K if X ⊆ Y ∈ K. In combinatorial optimization,
an abstract simplicial complex is usually called an independence system. We stick to the
former, as we are also interested in the link between abstract simplicial complexes and
topology. The vertices of K are the elements contained in at least one set K ∈ K, i.e.
the elements x ∈ S with {x} ∈ K. The sets in K are called the simplices of K.

A (geometric) simplex is the convex hull of finitely many affine independent points
(the vertices of the simplex) in Rk for some positive integer k. A geometric simplicial
complex is a set of simplices K in Rk with the properties that if K ∈ K then every
face of K is in K, and if K1, K2 ∈ K then K1 ∩K2 is either empty or a face of both of
them. Denote the topological space given by the union of all simplices in K by |K|. Note
that an abstract (geometric) simplex can also be considered as an abstract (geometric)
simplicial complex by taking itself and all of its subsets (subsimplices).
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Let K be an abstract simplicial complex with vertex set S where |S| = n. Consider
the space Rn and denote by ei the i-th standard basis vector with all coordinates being
0 except for the i-th one, which is 1. Label the elements of S with the set {1, 2, . . . , n},
and to each element i ∈ S assign the standard basis vector ei. This creates a bijection
between the sets X ⊆ S and the simplices of Rn with vertices {ei}i∈X . The standard
geometric realization of K is the topological space assigned to the geometric simplicial
complex consisting of the simplices in Rn corresponding to the simplices of K. This
space is also denoted by |K|. Note that if we embed the points of S as affine independent
points into Rk for some k, and consider the union of the corresponding simplices of K,
we obtain a topological space homeomorphic to the standard geometric realization of
K. Consequently, we assigned a topological space to each abstract simplicial complex.
When we write simplicial complex, or complex for short, we always mean abstract sim-
plicial complex, and when we are referring to the corresponding topological space or the
corresponding geometric simplex of an abstract simplex, we use the |.| notation as above.

Similar to matroids, we denote by

K|X = {K ∈ K : K ⊆ X}

the restriction of the simplicial complex K to X. Clearly, K|X is also a simplicial
complex.

Let K be a simplicial complex and x ∈ |K|. The smallest simplex K ∈ K with respect
to inclusion, such that x ∈ |K| is called the support of x and is denoted by suppK(x).

A simplicial map between two abstract simplicial complexes K and L with vertex
sets V (K) and V (L), respectively, is a map f : V (K) → V (L) with the property that
for every simplex K ∈ K the image of K under f is a simplex of L. Note that f

is not necessarily injective. A simplicial map can be extended to a continuous map
F : |K| → |L| as follows. Any point x in the standard geometric realization of K can
be written as the convex combination of vertices in suppK(x), let x =

∑k
i=1 αivi where

αi ∈ [0, 1] with
∑k

i=1 αi = 1 and suppK(x) = {v1, v2, . . . , vk}. Let F (x) =
∑k

i=1 αif(vi).
As f is a simplicial map, the image of {v1, v2, . . . , vk} under f is in L, hence F (x) ∈ |L|.
It is easy to see that F is a continuous function, and F is called the affine extension of
f . Note that suppL(F (x)) is the image of suppK(x) under f .

Let ∆ be a simplex. The boundary of the geometric simplex |∆| ∈ Rk is the boundary
in the usual topological sense, and is denoted by ∂|∆|. A point x ∈ ∂|∆| precisely if
supp∆(x) ⊊ ∆.

For a simplicial complex K, let β(K) denote its barycentric subdivision, i.e. the
complex with vertex set equal to the simplices of K, and a subset X ⊆ K is a simplex
of β(K) if the simplices in X can be ordered X = {X1, X2, . . . , Xk} in such a way
that X1 ⊆ X2 ⊆ . . . ⊆ Xk. The following theorem about barycentric subdivision is
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well-known, the proof is omitted.

Theorem 4.1. Let K be a simplicial complex with barycentric subdivision β(K). Then
there exists a homeomorphism f : |K| → |β(K)| with the property that for every x ∈ |K|
and every simplex K ∈ K with K ∈ suppβ(K)(f(x)), we have K ⊆ suppK(x).

Let Sk denote the k-dimensional sphere and Bk denote the k-dimensional ball. It
can be proved that ∂|∆| is homeomorphic to Sn−2 where ∆ is a simplex with n vertices.
A topological space T is called (homotopically) k-connected if for every 0 ≤ r ≤ k, any
continuous map f : Sr → T has a continuous extension Br+1 → T . Let η(T ) be the
largest k for which T is k-connected, plus 2. If T is k-connected for every nonnegative
integer k, then we define η(T ) = ∞.

We will need the famous Knaster-Kuratowski-Mazurkiewicz (KKM) Theorem [28].

Theorem 4.2 (Knaster-Kuratowski-Mazurkiewicz Theorem). Let ∆ be a simplex with
vertex set V (∆) and assign an open subset Av ⊆ |∆| to every vertex v ∈ V (∆). Assume
that for all x ∈ |∆| there exists a vertex v ∈ supp∆(x) with x ∈ Av. Then

⋂
v∈V (∆) Av is

nonempty.

4.2 The main theorem of Aharoni and Berger

Aharoni and Berger [1] considered the general question of finding large sets in the
intersection of a matroid M = (S,F) and a simplicial complex K on the vertex set S.
Note that the intersection of any number of matroids is a simplicial complex. Therefore,
we cannot expect to have an efficient algorithm that calculates the maximum size of a
set in F ∩K. However, their main result is a sufficient condition for K containing a basis
of M .

We state and prove the main theorem of Aharoni and Berger [1].

Theorem 4.3. Let M = (S,B) be a matroid with rank function r and let K be a simplicial
complex with vertex set S. Assume that η(K|X) ≥ r(M/(S \X)) for all X ⊆ S. Then
there exists a set B ∈ B ∩ K.

Proof. Let Z(M) be the complex with vertices being the flats of M except S, and
{Z1, Z2, . . . , Zℓ} ∈ Z(M) if they form a chain, i.e. Zφ(1) ⊆ Zφ(2) ⊆ . . . ⊆ Zφ(ℓ) for some
bijection φ of {1, 2, . . . , ℓ}. The main lemma of the proof is the following.

Lemma 4.4. There exists a continuous map g : |Z(M)| → |K| such that for every
x ∈ |Z(M)| there exists a flat Z ∈ suppZ(M)(x) with Z ∩ suppK(g(x)) = ∅.

Proof. We define g by induction on the size of the simplices of Z(M), i.e. in the k-th
step, under the assumption that g is defined on all simplices with size at most k− 1, we
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define it in the interior of the simplices of Z(M) with k vertices. For the base case, let
g({Z}) be any vertex of S \ Z for all singleton subsets {Z} ∈ Z(M).

Let ∆ = {Z1, Z2, . . . , Zk} ∈ Z(M) with Z1 ⊆ Z2 ⊆ . . . ⊆ Zk and assume that we
already defined g on each point of |Z(M)| contained in a simplex with at most k − 1

vertices. In particular, the function g is defined on ∂|∆|. By the induction hypothesis,
for each x ∈ ∂|∆| there exists a flat Z ∈ suppZ(M)(x) with Z ∩ suppK(g(x)) = ∅. As
x ∈ ∂|∆|, we have Z1 ⊆ Z, hence Z1 ∩ suppK(g(x)) = ∅. It follows that the image of
∂|∆| under g is contained in K|(S \ Z1). Notice that

r(M) > r(Zk) > r(Zk−1) > . . . > r(Z1),

hence r(Z1) ≤ r(M)− k. Consequently,

η(K|(S \ Z1)) ≥ r(M/Z1) ≥ k.

Therefore, the function g defined on the boundary of |∆| isomorphic to Sk−2 can be
extended continuously to the whole simplex |∆| such that g(x) ∈ |K|(S \ Z1)| for all
x ∈ |∆|. This means that for any x ∈ |Z(M)| with support ∆, the flat Z1 satisfies
Z1 ∩ suppK(g(x)) = ∅, as required.

Let ∆ be the simplex with vertex set V (∆) equal to the set of all cocircuits of M .
Recall that β(∆) denotes the barycentric subdivision of ∆. For every vertex D of β(∆)

corresponding to a set of cocircuits of M , define

π(D) = S \

(⋃
D∈D

D

)
=
⋂
D∈D

(S \D).

The complements of cocircuits are flats, and the intersection of flats is flat, hence π(D) is
a flat of M for all vertex D of β(∆). Therefore, it can be considered as a vertex of Z(M),
hence we can regard π as a function from β(∆) to Z(M). If D1 and D2 are vertices of β(∆)

with D1 ⊆ D2, then π(D1) ⊇ π(D2). Hence, for any simplex {D1,D2, . . . ,Dk} of β(∆)

with D1 ⊆ D2 ⊆ . . . ⊆ Dk, the corresponding flats after applying π also form a chain,
π(D1) ⊇ π(D2) ⊇ . . . ⊇ π(Dk). Consequently, the image of {D1,D2, . . . ,Dk} under π

is a simplex of Z(M) which means that π is a simplicial map between the complexes
β(∆) and Z(M). This implies that π can be extended affinely to a continuous map
π′ : |β(∆)| → |Z(M)|.

Using Theorem 4.1, there exists a homeomorphism f : |∆| → |β(∆)| such that for
every x ∈ |∆| and every subset of cocircuits D ∈ suppβ(∆)(f(x)) we have D ⊆ supp∆(x).
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For each cocircuit D of M let

AD = {x ∈ |∆| : D ∩ suppK(g(π
′(f(x)))) ̸= ∅}.

The idea is to prove that the sets AD satisfy the conditions of the KKM Theorem
(Theorem 4.2). If this is true, then there exists an x ∈

⋂
D∈V (∆) AD. It follows that

suppK(g(π
′(f(x)))) intersects every cocircuit of M , hence suppK(g(π

′(f(x)))) is a simplex
of K containing a bases of M , which is exactly what we want. It remained to show that
the sets AD satisfy the conditions of the KKM Theorem.

First, we show that AD is open for all cocircuit D of M . As g, π′ and f are continuous
functions, their composition is also continuous, hence it is enough to show that

A′
D = {x ∈ |K| : suppK(x) ∩D ̸= ∅}

is open, as AD is the preimage of A′
D under the map g ◦ π′ ◦ f . The complement of A′

D

in |K| is exactly |K|(S \ D)|, which is clearly closed, as it is a subcomplex of |K|, thus
A′

D is open.
We want to show that for every x ∈ |∆| there exists a cocircuit D ∈ supp∆(x)

with D ∩ suppK(g(π
′(f(x)))) ̸= ∅. By the definition of the map g, there exists a flat

Z ∈ suppZ(M)(π
′(f(x))) with Z∩suppK(g(π

′(f(x)))) = ∅. By the properties of the affine
extension, there exists a set of cocircuits D ∈ suppβ(∆) f(x) such that

Z = π′(D) = π(D) = S \

(⋃
D∈D

D

)
.

Consequently, suppK(g(π
′(f(x)))) ∩D ̸= ∅ for some cocircuit D ∈ D, as

suppK(g(π
′(f(x)))) ⊆ S \ Z =

(⋃
D∈D

D

)
.

From Theorem 4.1, D ⊆ supp∆(x), hence D ∈ supp∆(x), concluding the proof of the
theorem.

Remark 4.5. The theorem also holds if we only assume the η(K|X) ≥ r(M/(S \ X))

condition for sets X ⊆ S such that S \X is a flat of M .

4.3 Applications and limitations

In order to apply Theorem 4.3 for matroid intersection problems, we need lower
bounds for the connectivity of simplicial complexes that arise as the intersection of
matroids. There are few general results about this, Aharoni and Berger [1] proved the
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following two theorems.

Theorem 4.6. Given matroids M1 = (S,F1),M2 = (S,F2), . . . ,Mk = (S,Fk), let ν be
the size of the largest set independent in all of them. Then

η

( k⋂
i=1

Fi

)
≥ ν

k
.

Theorem 4.7. For any pair of matroids M1 = (S,F1) and M2 = (S,F2),

η(F1 ∩ F2) ≥ |S| − r(M∗
1 )− r(M∗

2 ) = r(M1) + r(M2)− |S|.

There are theorems that were solved using these bounds and Theorem 4.3. Most
notably, these results imply the best known bound for the covering number of the inter-
section of two matroids. For a matroid M = (S,F), let β(M) be the minimum number
such that S can be covered with β(M) sets from F . A theorem of Edmonds [10] implies
that β(M) = max{⌈|X|/r(X)⌉ : ∅ ̸= X ⊆ S}. Similarly, for a pair of matroids M1,M2

on S, let β(M1,M2) be the minimal number such that S can be covered with β(M1,M2)

common independent sets of M1 and M2.

Theorem 4.8. For every pair of matroids M1 and M2,

β(M1,M2) ≤ 2 ·max{β(M1), β(M2)}.

However, the results of Aharoni and Berger are usually weak to prove the strongest
bound. In this case, the following much stronger conjecture is still open.

Conjecture 4.9. If β(M1) ̸= β(M2), then β(M1,M2) ≤ max{β(M1), β(M2)}, and
β(M1,M2) ≤ max{β(M1), β(M2)}+ 1 otherwise.

The main limitation of applying Theorem 4.3 is the fact that we usually cannot cal-
culate, or even give sufficiently strong bounds on the connectivity of a combinatorially
defined simplicial complex. However, there are some methods for determining connec-
tivity, and possibly we will have even stronger tools in the future. In addition, there are
several simplicial complexes arising as the intersection of two matroids which were pos-
sibly not investigated thoroughly yet. These topological methods go beyond the scope
of this thesis.

In the next section, we consider five famous open problems that can be formulated
as the intersection of three matroids. In every case, we have three possibilities to choose
a pair of matroids out of the three and consider the intersection of them as a simplicial
complex. It would be enough to prove an appropriate lower bound for any of these three
simplicial complexes to prove an unsolved conjecture, hence this line of research is of
particular interest.
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5 Conjectures as the intersection of three matroids

In the first subsection we show that another famous, hard problem, the common
basis packing problem can be formulated in the form of Problem 3.1. In the follow-
ing subsections, we talk about five open problems. In each subsection, we present the
conjecture and summarize the associated results. Then we show how to formulate the
problem as a case of Problem 3.1 with three matroids. At the end of each subsection,
we reflect on considering the intersection of two matroids as a simplicial complex and
explore potential applications of Theorem 4.3.

5.1 Packing common bases

Given two matroids, M1 = (S,F1) and M2 = (S,F2), the following problem arises
naturally as several problems and conjectures in combinatorics can be formulated this
way, see Subsections 5.5 and 5.6.

Problem 5.1. Does S contain k pairwise disjoint sets that are bases in both M1 and
M2?

Bérczi and Schwartz [4] showed that Problem 5.1 is difficult, i.e. there is no algorithm
that decides whether there exist k disjoint common bases of two matroids by using a
polynomial number of independence queries. For strongly base orderable matroids Davies
and McDiarmid [8] found a nice characterization which also implies that the problem is
decidable in polynomial time.

Problem 5.1 is strongly connected with the problem of covering the set S with com-
mon independent sets. As we mentioned in Subsection 4.3, the strongest known result
is due to Aharoni and Berger [1] who proved that β(M1,M2) ≤ 2 ·max{β(M1), β(M2)}
for any two matroids M1 and M2, see Theorem 4.8.

We prove that Problem 5.1 can be formulated as a case of Problem 3.1 with three
matroids. Let M1 = (S,F1) and M2 = (S,F2) be rank-r matroids, and let k be a positive
integer. Let S1, S2, . . . , Sk be pairwise disjoint copies of the ground set S, i.e. for all
s ∈ S there exists a corresponding si ∈ Si for all 1 ≤ i ≤ k. Let As denote the set
of these copies for all s ∈ S. Let T =

⋃̇k

i=1Si and let M i
1 and M i

2 be the copies of the
matroids M1 and M2 on the ground set Si for all 1 ≤ i ≤ k. Define the following three
matroids on the ground set T .

• Let N1 =
⊕k

i=1 M
i
1.

• Let N2 =
⊕k

i=1 M
i
2.

• Let N3 = (T,F3) be the partition matroid with

F3 = {X ⊆ T : |As ∩X| ≤ 1 for all s ∈ S}.
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Proposition 5.2. The matroids M1 and M2 have k disjoint common bases if and only
if the matroids N1, N2 and N3 have a common independent set of size kr.

Proof. If B1, B2, . . . , Bk ⊆ S are disjoint sets that are bases both in M1 and M2, then
taking the union of the corresponding sets of B1, B2, . . . , Bk in S1, S2, . . . , Sk, respectively,
gives a set with kr elements which is clearly independent in N1, N2 and N3.

Conversely, if F is a common independent set of N1, N2 and N3 with |F | = kr, then
F ∩Si is independent in M i

1 and M i
2, hence |F ∩Si| ≤ r. Consequently, |F ∩Si| = r for all

1 ≤ i ≤ k, so F ∩ Si is a basis in both M i
1 and M i

2. Let Bi ⊆ S be the set corresponding
to F ∩ Si. The sets B1, B2, . . . , Bk are bases in M1 and M2 and are pairwise disjoint as
F is independent in N3.

5.2 Barnette’s conjecture

Tait [42] conjectured that every cubic polyhedral graph is Hamiltonian, which would
imply the famous Four Colour Theorem. However, this conjecture turned out to be false,
as shown by Tutte’s counterexample [43]. Barnette [3] proposed the following weaker
variant.

Conjecture 5.3 (Barnette). Every bipartite, 3-regular, planar, 3-vertex-connected graph
has a Hamiltonian cycle.

An extensive survey about the conjecture was written by Hertel [22]. We call a graph
that satisfies the above conditions, that is, bipartite, 3-regular, planar and 3-vertex-
connected, a Barnette graph. Let G be a Barnette graph. For our purposes, we need the
graphic matroid of the dual graph G∗, which is isomorphic to the dual of the graphic
matroid of G. It is not unprecedented that Barnette’s conjecture was examined using the
dual of G. For example, the following lemma considering the existence of a Hamiltonian
cycle in a dual graph already appeared implicitly in the work of Stein [41], and used
by several authors since. It is explicitly stated and proved by Alt, Payne, Schmidt and
Wood [2].

Lemma 5.4. Let G = (V,E) be a triangulated planar graph and denote its dual by G∗.
The following statements are equivalent.

• G∗ is Hamiltonian.

• G contains an induced subtree that meets every face of G.

• G contains two disjoint induced subtrees that meet every face of G such that their
vertex sets partition V .
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However, considering Barnette’s conjecture as the intersection of matroids is an ap-
proach that we have not come across yet. Given a Barnette graph G = (S, T,E) on 2n

vertices, let Ev denote the set of edges incident to v for all v ∈ V . Consider the following
three matroids.

• Let M1 = (E,F1) be the partition matroid with

F1 = {X ⊆ E : |Ev ∩X| ≤ 1 for all v ∈ S}.

• Let M2 = (E,F2) be the partition matroid with

F2 = {X ⊆ E : |Ev ∩X| ≤ 1 for all v ∈ T}.

• Let M3 = (E,F3) be the dual of the graphic matroid corresponding to G.

Proposition 5.5. The Barnette graph G is Hamiltonian if and only if there exists a set
in F1 ∩ F2 ∩ F3 with n elements.

Proof. We prove that X ⊆ F1 ∩ F2 ∩ F3 with |X| = n is equivalent to E \ X being a
Hamiltonian cycle of G. Note that G is 3-regular, hence the complement of a Hamiltonian
cycle is a perfect matching. The intersection of the first two matroids, M1 and M2, are
exactly the matchings in G, see Example 3.3.

We show that X ∈ F3 if and only if the spanning subgraph of G with edges E \X
is a connected graph. As the edges of G and its dual G∗ are in a natural one-to-one
relation with each other, we denote the edge set of both of them by E. Also, recall that
M3 is isomorphic to the graphic matroid of G∗. If X /∈ F3, then it contains a cycle in
G∗ determining a closed Jordan curve in the plane cutting it into two parts. This means
that the regions, which correspond to the vertices of G are not connected with edges
in E \ X. Conversely, if E \ X is not connected in G, then the corresponding regions
are not connected in G∗, hence they must be separated by edges in X, implying that X
contains a cycle, which means X /∈ F3.

Consequently, the n-element common independent sets of M1, M2 and M3 are exactly
the perfect matchings with connected complements. The complement of a matching is
a 2-regular subgraph which is connected precisely if it is a Hamiltonian cycle, which
finishes the proof.

As mentioned in the proof, the intersection of M1 and M2 are exactly the set of
matchings. The matchings of a graph as a simplicial complex is called the matching
complex, and it has been investigated in depth earlier, see e.g. Jonsson [25] who dedicated
a chapter to them in his book. Unfortunately, the connectivity properties of the matching
complex seem to be way too weak to apply Theorem 4.3. For this reason, we considered
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the intersection of M1 and M3. At first sight, it looked promising in small examples,
however, we believe that it also does not fulfill the conditions of Theorem 4.3.

5.3 Equitability of matroids

A matroid M = (S,B) is called equitable if for any set X ⊆ S there exists a basis
B ∈ B such that its complement is also a basis and ⌊|X|/2⌋ ≤ |B ∩X| ≤ ⌈|X|/2⌉. Note
that we obtain the same definition if we only require the above condition for X ⊆ S with
even elements, because if Y ⊆ S is of odd cardinality then any appropriate B ∈ B for a
set X with |X∆Y | = 1 is also suitable for Y .

The fact that the following simple conjecture remains unsolved is somewhat unex-
pected [27].

Conjecture 5.6 (Equitability). If the ground set of a matroid M can be partitioned
into two bases, then M is equitable.

A natural generalization of the problem is when S is the union of k disjoint bases and
we want to find B1, . . . , Bk ∈ B with ⌊|X|/k⌋ ≤ |Bi ∩X| ≤ ⌈|X|/k⌉. However, it is easy
to prove that the two versions are actually equivalent, hence it suffices to concentrate on
the first one.

The equitability conjecture is closely linked to several other unsolved problems which
confirms its importance. We highlight two such relevant open problems. Gabow [19]
formulated the following beautiful conjecture which would be a strengthening of the
strong basis exchange property (B2’).

Conjecture 5.7 (Gabow). Let M = (S,B) be a matroid and A,B ∈ B. Then there
exists an ordering of the elements A = {a1, a2, . . . , ar} and B = {b1, b2, . . . , br} such that
{a1, . . . , ai, bi+1, . . . , br} and {b1, . . . , bi, ai+1, . . . , ar} are both bases for all 0 ≤ i ≤ r.

The following proposition shows the connection between the above conjectures.

Proposition 5.8. Gabow’s conjecture implies the equitability conjecture

Proof. Let S = A∪̇B with A,B ∈ B in a matroid M = (S,B), and X ⊆ S is an
arbitrary subset with even elements for the sake of easier notation. Assume that Gabow’s
conjecture is true and let Ai = {a1, . . . , ai, bi+1, . . . , br} and Bi = {b1, . . . , bi, ai+1, . . . , ar}
with Ai, Bi ∈ B for all 0 ≤ i ≤ r with an appropriate ordering of the elements of A and B.
Let f(i) = |X ∩ Ai|. Note that A0 = B and Ar = A, hence f(0) + f(r) = |X|, implying
that either f(0) ≤ |X|/2 and f(r) ≥ |X|/2 or the other way around. The inequality
|f(i + 1) − f(i)| ≤ 1 holds for all 0 ≤ i ≤ r − 1 as |Ai+1∆Ai| = 1. It follows that the
sequence f(0), f(1), . . . , f(r) must take the value |X|/2. Assume that |X ∩Ak| = |X|/2.
As Ak∪̇Bk = S, the matroid M is indeed equitable.
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A different extension of the bases exchange axiom was examined by White [44]. Let
k be an arbitrary positive integer, and let X = (X1, X2, . . . , Xk) be a sequence of bases
of a matroid M = (S,B). If there exist xi ∈ Xi and xj ∈ Xj for some i ̸= j with
Xi−xi+xj ∈ B and Xj −xj +xi ∈ B then the sequence of bases X ′ where we change Xi

to Xi−xi+xj and Xj to Xj−xj+xi in X is said to be obtainable from X by a symmetric
exchange. Let X = (X1, X2, . . . , Xk) and Y = (Y1, Y2, . . . , Yk) be basis sequences. Then
X and Y are called equivalent if one can be obtained by the other with a sequence of
symmetric exchanges, and they are called compatible if

|{i ∈ {1, 2, . . . , k} : s ∈ Xi}| = |{i ∈ {1, 2, . . . , k} : s ∈ Yi}|

for every s ∈ S. White conjectured the following.

Conjecture 5.9 (White). Two basis sequences X and Y of the same length are equiv-
alent if and only if they are compatible.

Equivalent basis sequences are clearly compatible, as a symmetric exchange does not
change the cardinality of the sets in the definition of compatibility. White’s conjecture
also implies the equitability conjecture. To see this briefly, if A∪̇B = S in a matroid
M = (S,B) with A,B ∈ B, then (A,B) and (B,A) are compatible, and in a similar
way as in the proof of Proposition 5.8, if we move from (A,B) to (B,A) by symmetric
exchanges then there must be a pair (C,D) on the way with |X ∩C| = |X ∩D| = |X|/2
for an arbitrary X ⊆ S with even elements.

The equitability conjecture was settled in several special cases. Fekete and Szabó [14]
showed that graphic matroids and weakly base orderable matroids are equitable. Szabó
also checked that all matroids on at most eight elements are equitable. Király [27] proved
that hypergraphic matroids are also equitable using the equitability of graphic matroids.

We illustrate how the equitability conjecture can be written as a special case of
Problem 3.1 with the intersection of three matroids. Assume that X ⊆ S with |X| being
even and a matroid M = (S,B) is given, with S = A∪̇B for some A,B ∈ B. Consider
the following three matroids.

• The matroid M .

• The dual matroid M∗ = (S,B∗) of M .

• The partition matroid MX = (S,BX) with

BX = {B ⊆ S : |B ∩X| = |X|/2 and |B ∩ (S \X)| = |S \X|/2}.

Proposition 5.10. The matroid M is equitable if and only if the matroids M , M∗ and
MX have a common basis for all X ⊆ S with even elements.
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Proof. By definition, a set B is in B ∩ B∗ ∩ BX if and only if it is a basis of M , its
complement is also a basis and it intersects X in |X|/2 elements, which is exactly the
condition of equitability for the set X.

It would be surprising if Theorem 4.3 could be applied to the intersection of M and
MX , as M can be any matroid and the condition of MX being partition matroid of the
given type is also not too strict, for example, we mentioned at the end of Subsection 5.2
that the matching complex, the intersection of two partition matroids, have weak topo-
logical properties for our purposes. On the other hand, the matroid and its dual are
strongly connected, it is more likely that their intersection always satisfies some gen-
eral property. Actually, we think that the study of understanding the structure of the
intersection of a matroid and its dual is interesting on its own.

Problem 5.11. What can we say about the structure of the intersection of a matroid
and its dual from topological or combinatorial perspective?

5.4 Rainbow arborescences

The rainbow arborescence problem is a recent, unpublished conjecture.

Conjecture 5.12. Given n − 1 arborescences on an n element vertex set. Prove that
there exists a rainbow arborescence, that is, an arborescence that intersects every given
arborescence in exactly one edge.

The undirected case of the conjecture, when n − 1 spanning tree is given and the
problem is to find a rainbow spanning tree can be solved greedily. In the directed case,
however, we obtain Conjecture 5.12 which seems to be extremely hard. The conjecture
has been settled only in special cases. For instance, if the root nodes of the arborescences
coincide, then the problem can be solved similarly as in the undirected case, starting from
the joint root node and greedily building up a rainbow arborescence.

Let D = (V,A) be a directed graph such that A = A1∪̇A2∪̇ . . . ∪̇An−1 where the
directed graphs T1 = (V,A1), T2 = (V,A2), . . . , Tn−1 = (V,An−1) are arborescences. Let
Ev ⊆ A denote the set of edges ending in V . Consider the following three matroids on
the ground set A.

• The graphic matroid M1 = (A,F1) associated to underlying undirected graph of
G.

• The partition matroid M2 = (A,F2) with

F2 = {X ⊆ A : |Ev ∩X| ≤ 1 for all v ∈ V }.
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• The partition matroid M3 = (A,F3) with

F3 = {X ⊆ A : |Ai ∩X| ≤ 1 for all 1 ≤ i ≤ n− 1}.

Proposition 5.13. There exists a rainbow arborescence in D if and only if the matroids
M1, M2 and M3 have a common independent set of size n− 1.

Proof. The set of edges of an arborescence is clearly a common independent set of M1,
M2 and M3 with n− 1 elements. Conversely, if F ∈ F1 ∩F2 ∩F3 with |F | = n− 1, then
F is a spanning tree in the undirected sense because of F1, hence it is an arborescence as
it is independent in F2, and finally, F3 guarantees that it is a rainbow arborescence.

As M2 and M3 are partition matroids with bound 1 on each partition class, their
intersection is a matching complex of a bipartite graph. If we intersect M1 with one of the
other matroids then we intersect a graphic matroid and a partition matroid. It seems too
general to be able to have strong results, however, it is definitely interesting to examine
these complexes. The complex F1 ∩F2 is the complex with maximal simplices being the
arborescences. These form a greedoid if the root vertices of the arborescences are the
same. Topological properties of greedoids have been considered earlier, see [5]. However,
if not all the root vertices coincide, we obtain complexes that were not investigated yet,
to the best of our knowledge.

5.5 Woodall’s conjecture

In a directed graph D = (V,A), we call a set of edges A′ ⊆ A a dicut, if there exists
a partition V = V1∪̇V2 of the vertices with no edges going from V2 to V1, and the set of
edges pointing from V1 to V2 is exactly A′. A dijoin is a subset of edges that intersects
every dicut. Equivalently, a set of edges A′ ⊆ A is a dijoin, if we obtain a strongly
connected graph after contracting all the edges of A′. The famous theorem of Lucchesi
and Younger [35] is a min-max theorem, stating that the minimum size of a dijoin is
equal to the maximum number of pairwise disjoint directed cuts. Woodall’s conjecture
is a dual of this in some sense.

Conjecture 5.14 (Woodall). In a directed graph D, the minimum size of a dicut is
equal to the maximum number of pairwise disjoint dijoins.

The statement was proved only in special cases. Frank characterized the directed
graphs containing two disjoint dijoins (see for example in [39]). The conjecture was
proved for source-sink connected graphs by Schrijver [38] and independently Feofiloff [15],
and for series-parallel graphs by Lee and Wakabayashi [33].
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As mentioned in Subsection 5.1, Woodall’s conjecture can be formulated as a bases
packing problem, in the form of Problem 5.1. Frank and Tardos [18] noticed this refor-
mulation which is definitely not trivial. We describe two matroids for a directed graph
D such that disjoint common bases can be corresponded to disjoint dijoins in D.

Let D = (V,A) be a directed graph. We denote the head of an edge e ∈ A by h(e),
and its tail by t(e). For each edge e, assign an element he for the head of e and k elements
t1e, t

2
e, . . . , t

k
e for the tail of e. Assume that all these assigned elements are distinct, let Se

be the set of all elements assigned to the edge e and define S =
⋃

e∈A Se. Let

Z = {Z ⊆ V : Z ̸= ∅, Z ̸= V and there is no edges leaving Z},

and let

S(Z) = {he ∈ S : e ∈ A, h(e) ∈ Z} ∪ {tie ∈ S : e ∈ A, t(e) ∈ Z, 1 ≤ i ≤ k}

for all Z ∈ Z. Denote by i(Z) the number of edges spanned by Z for a subset Z ⊆ V .
Define the following two matroids on S.

• Let M1 = (S,B1) with

B1 = {B ⊆ S : |B| = |A| and |B ∩ S(Z)| ≥ i(Z) + 1 for all Z ∈ Z}.

• Let M2 = (S,B2) be a partition matroid with

B2 = {B ⊆ S : |B| = |A| and |B ∩ Se| ≤ 1 for all e ∈ A}.

It is not trivial that M1 is a matroid, we prove it in Proposition 5.16, but first, we
prove that this is indeed a base packing reformulation of Woodall’s conjecture.

Proposition 5.15. The matroids M1 and M2 contain k disjoint common bases precisely
if D contains k disjoint dijoins.

Proof. We show that the common bases of M1 and M2 can be corresponded to the dijoins
of D. Let B be a common basis of M1 and M2. The partition matroid M2 ensures that
for all e ∈ A, B contains exactly one element corresponding to e. Let H ⊆ A be the
edges with he ∈ B. For all dicut C of D, there exists a Z ∈ Z such that C are exactly
the set of edges between V \ Z and Z. As B ∈ B1, |B ∩ Z| ≥ i(Z) + 1 meaning that
there is an edge e ∈ C such that he ∈ B, hence H ∩ C ̸= ∅. This is true for all dicut C,
so H is a dijoin.

Conversely, assume that H is a dijoin, and let B ⊆ S be a set that contains one
element from each edge, and he ∈ B precisely if e ∈ H. Clearly, B ∈ B2, we show that
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B ∈ B1 also holds. For any Z ∈ Z, one element is in B for all edges spanned by Z, and
H intersects the dicut CZ corresponding to the partition {Z, V \ Z} which means that
there is an edge e ∈ CZ with he ∈ B. Therefore, |B ∩ S(Z)| ≥ i(Z) + 1 indeed holds for
all Z ∈ Z, proving that B ∈ B1.

Consequently, if there exist k disjoint common bases of M1 and M2, then for each
e ∈ A the corresponding he is contained in at most one of the common bases, hence
the corresponding dijoins are disjoint. Conversely, if there are k disjoint dijoins, then
for each dijoin we can assign a common basis of M1 and M2 such that these bases are
disjoint because for all e ∈ A there are k elements corresponding to the tail of e, hence
we can choose a distinct one for all common bases.

Therefore, finding k disjoint dijoins can be formulated as a case of Problem 5.1, hence
it is also a case of Problem 3.1 with k = 3 from Proposition 5.2.

Finally, we prove that M1 is a matroid.

Proposition 5.16. The family B1 forms the bases of a matroid on S.

Proof. We prove (B1) and (B2”). It is easy to see that
⋃

e∈A{he} ∈ B1, proving (B1).
For (B2”) let B1, B2 ∈ B1 and let x ∈ B1 \ B2. We need to prove that there exists a
y ∈ B2 \B1 such that B2 + x− y ∈ B1.

For easier notation, let m(Z) = |B2 ∩S(Z)| and p(Z) = i(Z)+ 1 for all Z ∈ Z. Note
that by definition, m(Z) ≥ p(Z) for all Z ∈ Z. Call a set Z ∈ Z tight, if m(Z) = p(Z).

Let y ∈ B2 \B1, and assume that B2+x− y /∈ B1. This means that there is a Z ∈ Z
with |(B2 + x− y) ∩ S(Z)| < p(Z). Note that B2 ∈ B1, hence

p(Z) ≤ m(Z) ≤ |(B2 + x− y) ∩ S(Z)|+ 1 < p(Z) + 1.

This can only happen if p(Z) = m(Z) = |(B2 + x − y) ∩ S(Z)| + 1, meaning that Z is
tight, and y ∈ S(Z), x /∈ S(Z).

We say that Z,Z ′ ∈ Z are crossing, if all the sets Z \ Z ′, Z ′ \ Z,Z ∩ Z ′, Z ∪ Z ′ are
nonempty. If Z,Z ′ ∈ Z then clearly, Z ∩ Z ′, Z ∪ Z ′ ∈ Z ∪ {∅, V }. Furthermore, if
Z,Z ′ ∈ Z are crossing sets, then the supermodular inequality

p(Z) + p(Z ′) ≤ p(Z ∩ Z ′) + p(Z ∪ Z ′)

holds. This is true as p(Z) = i(Z) + 1, hence it is enough to prove the supermodular
inequality for i(Z). On the left-hand side, we count every edge once which is spanned
by Z or Z ′, and we count the edges that are spanned by both twice. On the right-hand
side, we also count every edge which is spanned by Z or Z ′, and we also count the edges
that are spanned by both twice. Maybe even more, as we also count the edges with one
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endpoint in Z \ Z ′ and the other in Z ′ \ Z. Hence the right-hand side is indeed cannot
be smaller than the left-hand side.

Notice that if Z,Z ′ ∈ Z are crossing, then

m(Z) +m(Z ′) = m(Z ∩ Z ′) +m(Z ∪ Z ′).

Combining these, and using that p(Z) ≤ m(Z) for all Z ∈ Z, we get that if Z,Z ′ ∈ Z
are crossing and tight, then

m(Z ∩ Z ′) +m(Z ∪ Z ′) = m(Z) +m(Z ′) = p(Z) + p(Z ′) ≤

≤ p(Z ∩ Z ′) + p(Z ∪ Z ′) ≤ m(Z ∩ Z ′) +m(Z ∪ Z ′),

hence all inequalities are actually equalities, implying that Z ∩ Z ′ and Z ∪ Z ′ are tight.
Assume by contradiction, that for all y ∈ B2 \ B1, we have B2 + x − y /∈ B1.

Let Z1, Z2, . . . , Zℓ ∈ Z be the maximal tight sets with respect to inclusion, such that
x /∈ S(Zi) for all 1 ≤ i ≤ ℓ. These sets are pairwise disjoint, as the union of tight crossing
sets is also tight. Also, for all y ∈ B2 \ B1 there exists an index i with y ∈ S(Zi). We
have

|B2 \B1|+

∣∣∣∣∣(B1 ∩B2) ∩
ℓ⋃

i=1

S(Zi)

∣∣∣∣∣ =
ℓ∑

i=1

|S(Zi) ∩B2| =
ℓ∑

i=1

m(Zi) =

=
ℓ∑

i=1

p(Zi) ≤
ℓ∑

i=1

|S(Zi) ∩B1| =

∣∣∣∣∣(B1 \B2) ∩
ℓ⋃

i=1

S(Zi)

∣∣∣∣∣+
∣∣∣∣∣(B1 ∩B2) ∩

ℓ⋃
i=1

S(Zi)

∣∣∣∣∣ ,
hence

|B2 \B1| ≤

∣∣∣∣∣(B1 \B2) ∩
ℓ⋃

i=1

S(Zi)

∣∣∣∣∣ ,
which is a contradiction, as |B2 \B1| = |B1 \B2| and x /∈ (B1 \B2) ∩

⋃ℓ
i=1 S(Zi).

Remark 5.17. We only used about p(Z) = i(Z) + 1 that

p(Z) + p(Z ′) ≤ p(Z ∩ Z ′) + p(Z ∪ Z ′)

for any crossing sets Z,Z ′ ∈ Z. Therefore, the above proposition can be stated in a
much more general form with any family Z provided that Z∩Z ′, Z∪Z ′ ∈ Z for crossing
sets Z,Z ′ ∈ Z, and with any function p : Z → N satisfying the supermodular inequality
for all crossing sets Z,Z ′ ∈ Z.

Examining Woodall’s conjecture as the intersection of a simplicial complex and a
matroid does not seem to lead to results, as among the three matroids there are two
partition matroids, with bound 1 on each partition class, hence their intersection is a
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matching complex, and the third matroid is defined in a complicated manner, so it looks
difficult to work with it.

5.6 Rota’s conjecture

Rota [23] formulated a conjecture motivated by linear algebra. Let M = (S,B) be
a matroid with rank r such that its ground set can be partitioned into r bases, i.e.
S = B1∪̇B2∪̇ . . . ∪̇Br with Bi ∈ B for all 1 ≤ i ≤ n. We call a basis B ∈ B transversal
with respect to this partition if |B ∩Bi| = 1 for all 1 ≤ i ≤ r. It is a folklore result that
M contains a transversal basis. Rota conjectured the following much stronger statement.

Conjecture 5.18 (Rota). If M = (S,B) is a matroid with rank r and B1, B2, . . . , Br

partition S, where Bi ∈ B for all 1 ≤ i ≤ r, then there exists r pairwise disjoint
transversal bases with respect to B1, B2, . . . , Br.

Equivalently, the conjecture states that the elements of S can be arranged in an
r × r table such that the rows are exactly B1, B2, . . . , Br and the columns also form
bases of M . The conjecture was proved by Davies and McDiarmid [8] for strongly base
orderable matroids as the problem is a special case of packing common bases (Subsec-
tion 5.1). Rota’s conjecture was also proved in the case of paving matroids by Geelen
and Humphries [20]. A natural approach is to prove weaker results about the number of
disjoint traversal bases, which has a long research history. Geelen and Webb [21] proved
that there always exist Ω(

√
r) disjoint traversal bases. Dong and Geelen [9] improved

this to Ω(r/ log r). Most recently, Bucić, Kwan, Pokrovskiy and Sudakov [6] verified the
bound (1/2−o(1))r. In another recent paper, Pokrovskiy [37] considered the problem of
finding large independent sets intersecting each Bi in at most one element, and proved
that n− o(n) such disjoint sets can be found, all having n− o(n) elements.

To see that Rota’s conjecture is indeed a special case of the common basis packing
problem (Problem 5.1), consider the following two matroids.

• The matroid M .

• The partition matroid M ′ = (S,B′) with

B′ = {B ⊆ S : |B ∩Bi| ≤ 1 for all 1 ≤ i ≤ r}.

Proposition 5.19. Rota’s conjecture is equivalent to M and M ′ having r pairwise dis-
joint common bases.

Proof. Trivial from definitions.
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Applying Proposition 5.2, we obtain that Rota’s conjecture is a special case of the
matroid intersection problem (Problem 3.1) with k = 3 matroids. Examining Rota’s
conjecture as the intersection of a simplicial complex and a matroid seems unproductive,
similar to Woodall’s conjecture. This is because two of the three matroids involved are
partition matroids with bound 1 on each partition class, hence their intersection is a
matching complex, while the third matroid has no significant constraints.

6 Simplicial complexes as the intersection of matroids

As we saw in the earlier sections, we understand the structure of the intersection of
k matroids only if k ≤ 2. There are plenty of open problems in connection with the
intersection of three matroids. Still, it would be interesting to examine the intersection
of even more matroids. Clearly, the intersection of any number of matroids is a simplicial
complex. For a simplicial complex K, let µ(K) denote the smallest number such that
there exist µ(K) matroids whose intersection is K.

First, we prove that µ(K) is a finite number for all simplicial complexes K. This was
proved several times before, for instance [13,26,30,31].

Lemma 6.1. For every simplicial complex K, there exist finitely many matroids, such
that their intersection is K.

Proof. Let S be the set of vertices of K and let C = {C1, C2, . . . , Cℓ} be the minimal sets,
with respect to inclusion, not contained in K. Define Ci = {Ci} for 1 ≤ i ≤ ℓ. Clearly,
Ci forms the set of circuits of a matroid Mi = (S,Fi). A set X ⊆ S is in K precisely if
Ci ̸⊆ X for each 1 ≤ i ≤ ℓ, and this is also the condition that X is independent in all of
the matroids Mi. Consequently, K =

⋂ℓ
i=1 Fi.

We prove a well-known theorem observed by Jenkyns [24] and Korte and Hausmann
[30], which says that the greedy algorithm approximates the size of the largest set in the
intersection of k matroids by a multiplicative factor of k. This means that for simplicial
complexes µ(K) is a measure of complexity in some sense.

Theorem 6.2. Let K be a simplicial complex over S that can be written as the inter-
section of k matroids. Build up a set by picking arbitrary elements s1, s2, . . . ∈ S one by
one in such a way that after the ℓ-th step, for every ℓ, {s1, s2, . . . , sℓ} ∈ K. We stop if
we cannot add any more elements in this way, i.e. if we arrive at a maximal element
F = {s1, s2, . . . , sk} of K with respect to inclusion. Then

k · |F | ≥ |G|,

where G ∈ K is a set with maximum size. Equality can hold precisely if k ≤ |S| − 1.
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Proof. Let K =
⋂k

i=1Fi with matroids M1 = (S,F1),M2 = (S,F2), . . . ,Mk = (S,Fk).
The set G ∪ F has rank at least |G| in each matroid Mi, as G ∈ Fi. Hence F , which
is also independent in each matroid by definition, can be extended to a set F ∪̇Gi ∈ Fi

with Gi ⊆ G \ F and |F ∪Gi| ≥ |G|. It follows that |G \Gi| ≤ |F |. As F is maximal in
K, for all x ∈ G there exists a matroid Mi with F + x /∈ Fi. Consequently,

|G| ≤
k∑

i=1

|G \Gi| ≤ k · |F |,

as we wanted.
For the case of equality, first, assume that k ≥ |S|. The greedily obtained F contains

at least one element, hence equality can only occur if |F | = 1 and |G| = |S|, but this is
not possible, as the latter equality means that K is the whole 2S, and in this case, the
greedy algorithm also finds the set S.

If k ≤ |S| − 1, then let x ∈ S, X ⊆ S with |X| = k and x /∈ X, and let

K = {K ⊆ S : K ⊆ X or K = {x}}.

This is clearly a simplicial complex. The greedy algorithm can end in the set {x}, as it
is maximal in K. However, the set with maximum size in K is X, and |X| = k. In this
case, the greedy algorithm that starts with element x approximates |X| within a factor
of k.

Because of the first part of the theorem, K cannot be the intersection of less than k

matroids. We show that K can be written as the intersection of k matroids as follows.
Let X = {x1, x2, . . . , xk}. Define

Bi = {X,X + x− xi}

for 1 ≤ i ≤ k. It is easy to check, that Bi forms the bases of a matroid Mi = (S,Fi).
Clearly, the sets X and {x} are in

⋂k
i=1Fi, and for all 1 ≤ i ≤ k we have {x, xi} /∈ Fi.

Also, {z} /∈ F1 for any z ∈ S \ (X + x), hence K =
⋂k

i=1 Fi indeed holds.

We considered two problems after these observations. Recognizing whether a sim-
plicial complex is the intersection of k matroids, and finding the minimal number κ(n),
such that any matroid on n vertices can be written as the intersection of κ(n) matroids.

6.1 Recognizing matroid intersection

We examined the following problem.
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Problem 6.3. Let k be a positive integer. Characterize simplicial complexes K satisfying
µ(K) ≤ k.

The problem is especially important for k = 2, as we understand the structure of
the intersection of two matroids. Surprisingly, it is wide open to finding a characteriza-
tion for a simplicial complex to be the intersection of two matroids. There are results
only in special cases. Fekete, Firla and Spille [13] examined this problem for the match-
ing complex, i.e. the matchings of a graph. They characterized the graphs for which
the matching complex is the intersection of two matroids and gave an integer program-
ming formulation for the more general, µ(K) ≤ k problem. Kashiwabara, Okamoto and
Uno [26] investigated the case of clique complexes, the complexes coming from complete
subgraphs of a graph, and gave a characterization for µ(K) ≤ k using stable-set parti-
tions. Their result implies that determining whether µ(K) ≤ k for a clique complex K
belongs to NP.

There is a double exponential number of matroids on n vertices. Clearly, there
cannot be more, as there are 22

n subsets of 2S where |S| = n. Knuth [29] gave the
first double exponential lower bound, he showed that there are at least 22

n−3/2 log(n)−O(1)

matroids by constructing a large family of so-called sparse paving matroids. Hence, even
in exponential time, it is not trivial the recognize whether a complex is the intersection
of two matroids, as there is no chance to check all the possibilities. We cannot solve this
problem, even in expontential time.

Problem 6.4. Given a simplicial complex K on n vertices by a list of all independent
sets. Is it possible to decide in exponential time in the function of n whether K is the
intersection of two matroids?

6.2 An extremal question of matroid intersection

We considered the following extremal question.

Problem 6.5. What is the minimal number κ(n) such that for every simplicial complex
K over an n element set, µ(K) ≤ κ(n)?

Korte and Hausmann [30] proved that κ(n) ≥ n−1 for all n with the construction ap-
pearing in Theorem 6.2, and conjectured that there are families of complexes with µ(Kn)

being super-linear, or even exponential in n, where Kn has n vertices. Surprisingly, other
than this, we found nothing about Problem 6.5 in the literature other than special cases.
Fekete, Firla and Spille [13] proved that Ω(log log n) ≤ κmatching(n) ≤ O(log n/ log log n),
where κmatching(n) is the minimal number such that every matching complex on n ele-
ments can be written as the intersection of κmatching(n) matroids. Kashiwabara, Okamoto
and Uno [26] proved that κclique(n) = n− 1 for all n > 1, where analogously, κclique(n) is
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the minimal number such that every clique complex on n vertices can be written as the
intersection of κclique(n) matroids.

We prove that the conjecture of Korte and Hausmann is correct by showing a family
of simplicial complexes Kn for which µ(Kn) is exponential in n. We need a celebrated
theorem from extremal combinatorics.

Theorem 6.6 (Sperner’s Theorem, [40]). Let C ⊆ 2S be a family of sets over the n

element set S, and assume that there are no distinct C1, C2 ∈ C with C1 ⊆ C2. Then

|C| ≤
(

n

⌊n/2⌋

)
.

Our theorem is the following.

Theorem 6.7. (
n− 1

⌊(n− 1)/2⌋

)
≤ κ(n) ≤

(
n

⌊n/2⌋

)
.

Proof. Recall that in the proof of Lemma 6.1, we proved that for a simplicial complex
K, the number of minimal sets of K is an upper bound of µ(K). These sets satisfy the
condition of Sperner’s Theorem, which proves the upper bound.

For the lower bound, consider

K = {K ⊆ S : x /∈ K or |K| ≤ ⌊(n− 1)/2⌋}

over the n-element vertex set S where x ∈ S is arbitrary. Notice that the minimal sets
not in K are exactly the sets C ⊆ S with x ∈ C and |C| = ⌊(n+1)/2⌋. Call the family of
these sets C. Clearly, |C| =

(
n−1

⌊(n−1)/2⌋

)
. Let M1 = (S,F1),M2 = (S,F2), . . . ,Mℓ = (S,Fℓ)

be matroids such that their intersection is K where ℓ = µ(K), and let C1, C2, . . . , Cℓ be the
family of their circuits, respectively. For every C ∈ C, there is a matroid Mi with C /∈ Fi.
As C is a minimal set among the sets not in K, and K ⊆ Fi, C is also minimal that is not
in Fi, so C ∈ Ci. If for some distinct C1, C2 ∈ C we have C1, C2 ∈ Ci for some i, then by
x ∈ C1∩C2 and the axiom (C3), there exists a set C ∈ Ci with C ⊆ C1∪C2−x ⊆ S−x.
However, this means that S−x is dependent in Mi, which is a contradiction as S−x ∈ K.
It follows that |C ∩ Ci| ≤ 1 for every 1 ≤ i ≤ ℓ, and C ⊆

⋃ℓ
i=1 Ci, hence

κ(n) ≥ µ(K) = ℓ ≥ |C| =
(

n− 1

⌊(n− 1)/2⌋

)
.

Remark 6.8. From Theorem 6.7, using Stirling’s formula, we obtain that

κ(n) = Θ

(
2n√
n

)
,
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hence f(n) is indeed exponential.
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