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Notations and Conventions

• The word ”ring” means ring with identity. The category of rings is denoted by Ring.

• For an algebraic structure A (e.g. a group, algebra, module, ring, etc.) that has a topology
on it, K ≤c A denotes a compact substructure of A. Similarly, K ≤o A denotes an open
substructure of A. Finally, K ≤c,o G denotes a compact and open substructure.

• If C is a category, then the notation A ∈ C means that A is an object of C.

• For any ring R, R-Mod denotes the category of left R-modules. R-mod denotes the category
of finitely generated left R-modules.

• For any ring R, R× denotes the group of units of R.

• For any ring R, R[x1, . . . , xk], R[[x1, . . . , xk]], R((x1, . . . , xk)) denote the polynomial ring, the
ring of formal power series, and the ring of formal Laurent series over R with indeterminates
x1, . . . xk, respectively.

• For any field K, K denotes some (fixed) algebraic closure of K.

• A p-adic number field is a field K which is a finite extension of Qp.
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Chapter 1

Introduction and Notes

Consider a prime p, and a finite field extension F/Qp. The description of the absolute Galois group
Gal(Qp/F ) is a central problem in number theory, as it might give an insight on the absolute Ga-
lois group of Q. One can say that a group is reasonably well understood once the category of its
representations is described. The celebrated local Langlands programme does just that; for any
fixed prime ℓ ̸= p and n ∈ N, it gives a bijection between certain irreducible Qℓ-linear continu-
ous representations of Gal(Qp/F ) over n-dimensional Qℓ-vector saces, and a class of ”sufficiently
well-behaved” representations of GLn(F ) on Qℓ-vector spaces. There local Langlands program is
a collection of statements (some of which are still conjectural) about these bijections. Besides the
description of the absolute Galois groups, another reason to be interested in such a correspon-
dence is that representations of GLn(Qp) come from adélic automorphic representations; and the
description of such representations has immense applications in analytic number theory.

The case ℓ = p is much less understood. p-adic Banach space representations of GLn(F ) are
considered instead of Qp- representations. As described by Vigneras [1], for the ℓ ̸= p case, the
representations of GLn(F ) can be replaced by certain representations on ℓ-adic Banach spaces,
hence this approach to the p = ℓ case is a generalization of the local Langlands correspondence.
When ℓ = p, one calls the statements about the mostly conjectural correspondence between such
categories of representations, the p-adic local Langlands programme. The first (and so far, only)
such correspondence was established by Colmez [2], for n = 2 and F = Qp. At the present, a similar
correspondence is not known for any other n and F . Although several functors, from categories
of n-dimensional representations of Gal(Qp/F ) to p-adic Banach-representations of GLn(F ), were
proposed (for example in [3], [4]), none of these are known to be equivalences of categories. Colmez
described his results in a famous lecture in Montréal, hence his functor is sometimes called the
Montréal functor; and it is customary to call its generalizations Montréal functors as well. An
important distinction between the local and the p-adic Langlands setting is that the correspondence
of Colmez is actually a functor, while the local Langlands correspondence is ”only” a bijection,
with remarkable properties.

The goal of this thesis is, on one hand, to give an overview of the general ”setting” of the p-adic
Langlands programme, in particular, to describe some of the basic properties of the numerous types
of representations in the local and p-adic Langlands program. On the other hand, we describe the
functor of Colmez, and deduce some of its properties (although not all of them; that would vastly
exceed the scope of this text). We will mostly follow Colmez [2], but will eventually deviate, and
instead employ a more algebraic approach, developed by Emerton [5].

Preliminaries

We start with an elementary observation. Suppose that ϕi : Xi → Yi are maps of topological
spaces. If both ϕ1 and ϕ2 are continuous, then ϕ1 × ϕ2 : X1 ×X2 is continuous as well. If both
ϕ1 and ϕ2 are open, then ϕ1 × ϕ2 : X1 ×X2 is open as well. Similar trivial topological statements
will be used throughout the text.

Obviously, p-adic numbers and p-adic number fields (i.e. finite extensions of Qp) are the funda-
mental objects in this text. These are non-Archimedean local fields of characteristic 0. The ring
of integers is always a maximal compact subgroup (the set with absolute value at most 1), and
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a discrete valuation ring, with finite residue field. With a few exceptions, we will use algebraic
methods, and only rarely depend on analytical techniques (but the topology on these rings is still
used).

Let G = GLn(L) for some p-adic number field L, and let OL be the ring of integers of L,
GLn(OL) the maximal compact subgroup of G Then we have the following decomposition:

Proposition 1.0.1 (Iwasawa decomposition). G = UK, where U is the subgroup of upper trian-
gular matrices, and K = GLn(OL).

Abelian Categories

An Abelian category is an additive category in which every morphism has a kernel and a cokernel
and every monomorphism and every epimorphism is normal.

Fact 1.0.2. For any ring R, the category of R-modules is Abelian.

On multiple occasions in this text, it will be necessary to prove that some full subcategory of
an Abelian category (usually that of certain representations) is Abelian. The following lemma is
the main tool of these proofs.

Lemma 1.0.3. Let S be a full subcategory of an Abelian category A. If for all A,B ∈ ObS, and
f ∈ HomS(A,B)

1. the zero object is in ObS.
2. A⊕B ∈ ObS
3. ker f and coker f ∈ ObS

then S is an Abelian category.

For a proof, see [6, Proposition 5.92].

Coherent Rings

Let R be a (not necessarily commutative) ring with identity,M ∈ R-Mod. We say thatM is finitely
generated, if there exists a surjective homomorphism from Rn to M . We say that M is finitely
presented, if there exists an exact sequence Rm → Rn → M → 0. Informally, finitely presented
modules are the finitely generated modules which can be defined using only finitely many relations.

Definition 1.0.4. We say that a ring R with identity is left-coherent, if every finitely generated
left ideal of R is in fact finitely presented. We can similarly define the right coherence of rings.

One usually prefers to work with some finiteness condition; a common restriction is that the
rings should be Noetherian. In a sense, coherent rings are a natural enlargening of the category of
Noetherian rings. With the following few propositions, we wish to compare left-coherent rings to
left-Noetherian rings.

Proposition 1.0.5. Any left-Noetherian ring is left-coherent.

Proof. A finitely generated left-ideal of R, I ≤R R is just an exact sequence Rn → I → 0. Rn

is a left-Noetherian module over R, implying that all of its submodules are finitely generated. In
particular, kerRn → I is finitely generated, hence I is finitely presented.

By the same argument, any finitely generated module over a Noetherian ring is finitely presented
as well.

Proposition 1.0.6. Let R be a ring. Then the following are equivalent.
1. R is left-Noetherian.
2. The category R-mod of finitely generated left modules over R is Abelian.

Proposition 1.0.7. Let R be a ring. Then the following are equivalent.
1. R is left-coherent.
2. The category R-modfp of finitely presented left modules over R is Abelian.

Althought the definition of left-coherence seems technical, it is ”the best” one can get when
working with non-Noetherian rings. In particular, proposition 1.0.7 can be an extremely useful
property.
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Flatness

Definition 1.0.8. Let R be a ring, M ∈ Mod -R a right module. We say that M is flat, if the
functor M ⊗A − : R-Mod→ Ab is exact.

If φ : R→ S is a ring homomorphism, we say that φ is flat, if the functor S ⊗R − : R-Mod→
S-Mod is exact.

Note that since S is itself an S-R bimodule, its tensor product with any left R-module (i.e. any
R-Z bimodule) is an S-Z bimodule, hence a left S-module. This shows that the functor S ⊗R −
indeed has an image in S-Mod. Furthermore, since any exact sequence of Abelian groups that
consists of left S-modules and left S-module homomorphisms is exact as a sequence of S-modules,
we have that φ : R→ S is flat if and only if S is a flat right module over R.

Suppose that R is a ring, and F : R → R is a ring-endomorphism. Then R has an R-R-
bimodule structure, where multiplication from the left is just the usual multiplication of R, but

multiplication by right is defined by F ; r′ ◦ r def
= r′ · F (r). For any left R-module M ∈ R-Mod, the

tensor product F ∗M
def
= (R, ◦) ⊗R M is then a left R-module with the usual multiplication of R:

r · (r′ ⊗m)
def
= (rr′)⊗m. The flatness condition on F means precisely that M 7→ F ∗M is an exact

functor. Note that in F ∗M we have that F (r)⊗m = 1⊗ rm.

Pontryagin Dual of Modules

Let A be a locally compact, commutative topological group, then the Pontryagin dual A∨ is the
set of continuous group homomorphisms from A to T = S1 ≤ C×, equipped with the compact open
topology. Pontryagin duality is a contravariant endofunctor on the category of locally compact
Abelian groups which is, in fact a contravariant equivalence LCA → LCAop. It sends projective
limits to injective limits, and maps any compact group to a discrete group and vice versa.

If A is equipped with a continuous group action of some group G from the left, then A∨ has two
possible group actions (both continuous), one from the left, the other from the right. Let µ ∈ A∨.

1. (gµ)(a)
def
= µ(g−1a) or

2. (µg)(a)
def
= µ(ga).

Throughout this text, we will use the second definition, which is more common in the literature.
If A happens to be a (not necessarily topological) left R-module for some ring R, then, and

if R is not commutative, the only reasonable way to equip A with the structure of a topological

R module is to act with R from the right: (µr)(a)
def
= µ(ra). The problem with the convention

we just fixed for group actions on Abelian groups is that if A is a G-representation over a ring R,
the action of G on the dual group is from the left, but the action of R on the dual group is from
the right. For commutative R, this problem is obviously not present, since any left module is a
right module as well. To avoid this problem, we simply require R to be commutative whenever
the dual of a module over R[G] is considered. To summarize, if R is a commutative ring, G is
a group, then if M ∈ R[G]-Mod, then M∨ ∈ R[G]-Mod via the inverse action: if µ ∈ M∨, then

(rg)µ(m)
def
= µ(rg−1m).
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Chapter 2

p-adic Representations

Representations of locally profinite groups are the main objects of the ”GLn” side of the local
Langlands correspondence and the p-adic Langlands correspondence. As the work of Colmez ([2]),
which we cover in chapter 3, almost entirely handles the GLn side, these representations are actually
the main objects we consider throughout this thesis.

In this chapter, we introduce the various types of representations that shall be used in, or are
related to the description of the Montréal functor. We will also highlight a key difference between
representations over p-adic and ℓ-adic modules with ℓ ̸= p.

2.1 Locally Profinite Groups

The most general type of topological group that occurs in the p-adic Langlands programme is a
locally profinite group.

Definition 2.1.1. We say that a topological group G is profinite, if it is the inverse limit of finite
topological groups.

Although this definition seems restrictive, the following proposition shows that such groups are
actually quite general among totally disconnected groups.

Proposition 2.1.2. A topological group is profinite if and only if it is Hausdorff, compact, and
totally disconnected.

This proposition trivially implies that closed subgroups, quotients, and finite products of profi-
nite groups are again profinite. In particular:

Lemma 2.1.3. Let K = lim←−K/H be a profinite group. Then any closed subgroup C of K is again
profinite, and C = lim←−C/(H ∩ C).

The prime example of a profinite group is the ring of p-adic integers, Zp. We call a profinite
group pro-p, if it is the inverse limit of finite subgroups, each of which has order pn for some prime
number p ∈ N. The ring of integers OK for any p-adic number field K is a pro-p group.

Proposition 2.1.4. If G is a profinite group, and 1 ∈ G is the identity element, then one can
choose a neighbourhood basis of 1 consisting of open normal subgroups.

Note that since G is compact, any open subgroup is of finite index. In general, any open
subgroup is closed, hence in a Hausdorff compact topological group, any open subgroup is actually
compact. We obtain:

Corollary 2.1.5. In a profinite group G, 1 admits a neighbourhood basis consisting of compact,
open subgroups.

If G is compact, Hausdorff, then the converse of this statement holds as well.

9
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The non-compact generalization of a profinite group is a locally profinite group:

Definition 2.1.6. We say that a topological group G is locally profinite, if it has a profinite
subgroup.

Trivially, a locally profinite group is profinite if and only if it is compact. From the properties
of profinite groups, the following proposition is more or less trivial.

Proposition 2.1.7. Let G be a topological group. Then the following are equivalent:

1. G is locally profinite.

2. G is locally compact, Hausdorff, and totally disconnected.

3. 1 ∈ G admits a neighbourhood basis consisting of compact open subgroups.

An example of a locally profinite group is (Qp,+); condition 1. is trivially satisfied withH = Zp.
If K is a p-adic number field, then, since OK is profinite, K is locally profinite.

The last big family of groups we consider are the p-adic Lie groups.

Definition 2.1.8. We say that a group G is a p-adic Lie group, if it is topological group that is
also an analytic manifold over Qp.

Proposition 2.1.9. Any p-adic Lie group is locally profinite.

We will mostly work with the group GLn(K) for some p-adic number field K. It is clearly
a p-adic Lie group, hence profinite. A neighbourhood basis of 1 in GLn(K) is {Kk}k∈N , where
Kk = 1+ pkZn×n

p . We will refer to this family of subgroup as the ”standard” neighbourhood basis
of 1 in GLn(L). A locally profinite group that admits a compact and open pro-p is called a locally
pro-p group. The standard neighbourhood basis of 1 shows that any p-adic number field is locally
pro-p. It is important to note that for a locally pro-p group, not all compact open subgroups
are necessarily pro-p. For example, the standard neighbourhood basis of GLn(Qp) consists of pro-
p, compact open subgroups (showing that GLn(Qp) is locally pro-p); but GLn(Zp), which is the
maximal compact subgroup of GLn(Qp) is not pro-p.

2.2 Smooth Representations

The most general type of representation we consider is a smooth representation. We allow represen-
tations over arbitrary base rings instead of just fields; this is necessary to work with representations
over Zp, OK (for some p- adic number field K), or any finite quotient of these rings.

Definition 2.2.1. For any group G, a representation of G over a ring R is a pair (π,M), where
M ∈ R-Mod, and π : G → AutR(M) is a group homomorphism. Given two representations
(π1,M1), (π2,M2), we say that a morphism of modules f : M1 → M2 is a G-equivariant map, if
∀g ∈ G, ∀m ∈ M1: π2(g)f(m) = f(π1(g)m). A representation is called irreducible, if the only
submodules N ≤M that satisfy π(G)N ⊂ N are N =M and N = 0. For a subset U ⊆ G, we use
the notation MU = {m ∈ M | ∀u ∈ U : π(u)m = m} for the submodule of U -invariant elements.
For some m ∈M , StabG(m) = {g ∈ G | π(g)m = m} is the stabilizer of m.

Definition 2.2.2. The representations of G over R form a category, with the morphisms being
the G-equivariant maps. We denote this category by RepR(G).

Proposition 2.2.3. RepR(G) is equivalent to R[G]-Mod.

Here, R[G] is the group ring of G with coefficients in R. The proof of this proposition is
straightforward. It implies, in particular, that RepR(G) is an Abelian category.

Let Z(G) denote the center of G. We say that a representation (π,M) ∈ RepR(G) is of central
character, if there exists a multiplicative character δZ : Z → R×, such that π(g)m = δ(g)m for all
g ∈ Z(G). Note that we do not require the central character to be unique.
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Suppose now that G is a topological group. We only wish to consider representations that satisfy
certain continuity properties. To make this precise, for a representation (π,M) ∈ RepR(G), one
can consider the map Φπ : G×M →M , (g,m) 7→ π(g)m.

Definition 2.2.4. If (π,M) ∈ RepR(G) is a representation of G over R, whereM is equipped with
a topology, then we say that (π,M) is a continuous representation, if the map Φπ : G×M → M
is continuous.

If (π,M) ∈ RepR(G) is any representation of G over R (andM is not equipped with a topology),
then we call (π,M) a smooth representation, if Φπ : G×M →M is continuous with respect to the
discrete topology on M (i.e. (π,M) is a continuous representation w.r.t. the discrete topology).

Notice that for a smooth representation, each of the maps φm : G → M , g 7→ π(g)m satisfies
that the preimage of any set is open. In particular, if we were to give M any other topology, these
maps would still remain continuous. Hence a smooth representation is ”as continuous as possible”.
This justifies the term ”smooth”. Note that if H ≤ G is any subgroup, then the restriction of a
smooth representation from G to H is again smooth: indeed, H ×M →M is just the composition
H ×M → G ×M → M , which is continuous. We emphasize that even if R is a topological ring,
the continuity or smoothness of a G-representation does not depend on this topology.

Proposition 2.2.5. Let G be any topological group, (π,M) ∈ RepR(G) for some ring R ∈ Ring.
Then the following are equivalent:

a) (π,M) is smooth.

b) For any m ∈ M , the map φm : G → M , g 7→ Φπ(g,m) = π(g)m is locally constant, i.e. for
any g ∈ G, there exists an open neighbourhood g ∈ U such that ∀x, y ∈ U : π(x)m = π(y)m.

Proof. a) =⇒ b): The continuity of Φπ implies that each φm is continuous: φm = Φπ ◦ im, where
im : G→ G×M , g 7→ (g,m) is a continuous function. Hence φm is the composition of continuous
functions. In particular, the preimage of any singleton set by φm is open. But then for any h ∈ G,
the set P = φ−1

m ({φm(h)}) is open, contains h, and, by definition, φm is constant on P .

b) =⇒ a): By our assumption, φm is locally constant, hence for any point x ∈ φ−1
m (n), there is

an open neighbourhood U of x in G such that U ⊆ φ−1(n). This implies that φ−1
m (n) is open, since

for any point x ∈ φ−1
m (n), there is an open neighbourhood of x that is fully contained in φ−1

m (n).
It follows that φm is continuous for any m. But Φ−1

π (n) = {(g,m) ∈ G ×M | π(g)m = n} =⋃
m∈M{g ∈ G | π(g)m = n} × {m} =

⋃
m∈M φ−1

m (n)× {m}, which is a union of finite products of
open sets, hence itself open. The continuity of Φπ follows.

The above proposition implies that π is constant on each connected component of G. This
shows that one can only expect good properties of smooth representations only if G is totally
disconnected. It is furthermore reasonable to require G to be Hausdorff and locally compact;
hence the groups of interest are precisely the locally profinite groups. We shall see that smooth
representations of locally profinite groups indeed have nice properties.

Proposition 2.2.6. Suppose that G is a locally profinite group, (π,M) ∈ RepR(G) for some ring
R. Then the following are equivalent:

a) (π,M) is smooth.

b) ∀m ∈M : g 7→ π(g)m is locally constant.

c) ∀m ∈M : ∃H ≤o G open subgroup s.t. m ∈MH .

d) ∀m ∈M : ∃H ≤o,c G open compact subgroup s.t. m ∈MH .

e) For any m ∈M , StabG(m) ≤o G is an open (hence closed) subgroup.

f) M =
⋃

H≤oG
MH , where the union is taken over all open subgroups of G.

g) M =
⋃

H≤o,cG
MH , where the union is taken over all compact open subgroups of G.
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Proof. We have seen a) ⇐⇒ b) in general.
a) =⇒ e): We have that φm : g 7→ π(g)m is continuous, hence for all n ∈M : φ−1

m (n) is open.
Then StabG(m) = {g ∈ G | π(g)m = m} = φ−1

m (m) is also open.
e) =⇒ d): We have a neighbourhood basis of e consisting of compact open sugroups, hence

(since StabG(m) is open) ∃K compact open, such that K ⊆ StabG(m). This compact open
subgroup then stabilizes m.

d) =⇒ c): trivially.
c) =⇒ b): We need that for any m ∈ M , φm is locally constant. Fix some h ∈ G. Then

for any s ∈ U : φm(hs) = π(hs)m = π(h)π(s)m = π(h)m = φm(h). Since 1 ∈ U , we have that
h ∈ hU . Multiplication with h is a homeomorphism of G, hence hU is open. By the previous
argument, we have seen that φm is constant on hM . This shows that φm is locally constant.

f) and g) are just reformulations of c) and d).

Definition 2.2.7. The full subcategory of RepR(G) with objects being the smooth representations
of G over R is denoted SRepR(G).

Proposition 2.2.8. If G is locally profinite, then SRepR(G) is an Abelian category.

Proof. We will use lemma 1.0.3. Clearly, 0 is a smooth representation. For (π,M), (ρ,N) smooth
representations, the direct sum (π⊕ρ,M⊕N) is smooth, since Φπ⊕ρ : (g, (m,n)) 7→ (π(g)m, ρ(g)n)

is continuous. This can be seen by considering the preimage of a singleton (m,n): P
def
= {(g, a, b) :

π(g)a = m∧ρ(g)b = n}. But then P =
(
Φ−1

π (m)×N
)
∩
(
Φ−1

ρ (n)×M
)
, as a subset of G×M×N .

This shows that P is open. For an equivariant morphism f : (π,M) → (ρ,N), let us denote the
kernel of f by (τ,K). Then K ≤ M is a submodule. If k ∈ K ⊆ M is fixed by an open subgroup
U : k ∈MU , then it is fixed by U as an element of K as well: k ∈ KU . By 2.2.6, (τ,K) is smooth.
Let (α,C) = coker f , then C = N/ im f . If n ∈ N is fixed by some open sugroup U ≤o G, then in
C, we have U(n+ im f) = Un+ U im f = n+ im f , which shows that n+ im f ∈ CU . By 2.2.6, C
is smooth.

Maschke’s theorem is a useful tool when working with representations in general. The following
is a smooth version of Maschke’s theorem. The restriction |K : N | · 1R ∈ R× will turn out to be
problematic in the p-adic Langlands setting, as one usually has pro-p groups and representations
over OK , where OK is a ring of integers of a p-adic number field.

Lemma 2.2.9 (Maschke’s theorem). Let G be any group, R any ring with identity. Then R[G] is
semisimple if and only if the following conditions hold:

i) R is semisimple.
ii) G is finite.
iii) |G| · 1R ∈ R×.

For a proof, see for example the book [7] of Milies and Sehgal on group rings.

Theorem 2.2.10 (Smooth Maschke’s theorem for profinite groups). Suppose that K is a profinite
group, R ∈ Ring a semisimple ring. Furthermore assume, that 1 ∈ K has a neighbourhood basis
consisting of open normal subgroups N ◁o K, satisfying |K : N | · 1R ∈ R×. Then any smooth
representation (π,M) ∈ SRepR(K) is semisimple.

Proof. Let (π,M) ∈ SRepR(K). We fix v ∈ M . Let Mv be the R-module generated by the
K-orbit K · v of v; it is then an R[K]-submodule of M , i.e. a subrepresentation. (π,M) is a
smooth representation =⇒ by 2.2.6, ∃U ≤o K open subgroup, such that v ∈ MU . By the
assumption, ∃N ◁o K such that |K : N | is invertible in R, and N ⊆ U . Hence v ∈ MN . But
then Mv ⊆ MN , and we have a K/N -action on Mv; indeed, if k

−1
1 · k2 ∈ N , then for all w ∈ Mv,

k2w = (k1 · n)w = k2w (for some n ∈ N).
|K : N | is invertible in R =⇒ by the general Maschke’s theorem 2.2.9, R[K/N ] is semisimple.

All modules over a semisimple ring are semisimple =⇒ M is semisimple as an R[K/N ]-module,
i.e. Mv =

⊕
i∈I Si where each Si is a simple K/N -representation. But then Si is a simple K-

representation as well. We can prove this by contradiction: ifW ≤ Si was anyK-subrepresentation,
then KW ⊆ W =⇒ ∀k ∈ K : kW ⊆ W =⇒ (kN)W ⊆ W =⇒ W is a K/N subrepresentation
of Si. If W is the zero representation, over K/N , then it is the zero representation over K as well.
This shows that W is a nontrivial K/N subrepresentation of Si, which contradicts the fact that
Si is simple.
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We obtained that Mv is semisimple over R[K]. But

M =
∑
v∈M

Mv =
∑
v∈M

⊕
i∈I(v)

S
(v)
i .

This shows that M is a sum of a family of simple submodules, i.e. is semisimple.

Corollary 2.2.11 (Smooth Maschke’s theorem for pro-p groups). Let K be a pro-p group, R ∈
Ring a semisimple ring such that p · 1R ∈ R×. Then any smooth representation of K over R is
semisimple.

Proof. Since K is profinite, 1 ∈ K has a neighbourhood basis consisting of open normal subgroups.
Since K is pro-p, the index of all of these subgroups is a power of p. Since p is invertible in R, so
is pk for all positive integers k. Hence we can apply 2.2.10.

Corollary 2.2.12. Let K be a pro-p group, F a field with charF ̸= p. Then any smooth K-
representation over F is semisimple.

Once again, let K be a p-adic number field, with ring of integers OK , and G some pro-p (or
locally pro-p) group. This corollary shows, that even though semisimplicity can not be deduced in
the case of OK coefficients, it can for coefficients in K.

The semisimplicity of smooth representations can be used to deduce that a certain important
subcategory of smooth representations is Abelian. In the case of OK , a completely different
apporach is needed; for which we need to introduce Iwasawa algebras.

2.3 Iwasawa Algebras

We need the notion of an Iwasawa algebra to properly handle admissible representations in rings
with characteristic p; in particular in mod p representations (which are needed to tackle unitary
L-Banach space representations). Furthermore, one of the ideas needed to establish the functor of
Colmez is to associate a representation of a formal power series ring to a GL2(Qp)-representation;
the intermediate step of this association is an Iwasawa algebra.

Definition 2.3.1. Let G be a compact topological group, R a topological ring. Then R[[G]]
denotes the completed group algebra of G with coefficients in R:

R[[G]] = lim←−
U∈ON(G)

R[G/U ]

where ON(G) is the set of open normal subgroups of G. The topology on R[[G]] is given by the
inverse limit of the topologies on R[G/U ].

Note that since G is compact, open normal subgroups are of finite index. The quotient groups
with the quotient topology are discrete. We define the topology on R[G/U ] to be the quotient
topology given by R|G/U | → R[G/U ]. This turns R[G/U ] into a topological ring, and a topological
R-module (where the topologies coincide). The arrows of the projective system defining the limit
are simply given by R[G/V ] → R[G/U ]; r(g + V ) 7→ r(g + U), whenever V ≤ U . The inverse
limit of any inverse system of topological spaces exists, since Top is complete; and one can endow
it with a natural ring structure to turn it into a topological ring. In the case when R = OK for a
p-adic number field K, and G is a profinite group, the completed group algebra OK [[G]] is called an
Iwasawa algebra. When G is profinite, open normal subgroups become ”arbitrarily small”, hence
one can expect that the completed group algebra contains all information about G. Also, if G is
profinite, a useful property of R[[G]] is that it encodes the topology of both R and G (unlike the
group ring R[G], which in general does not have a topology that respects the topology of G). The
precise formulation of this statement is the following proposition:

Proposition 2.3.2. If G is profinite, then

a) R[[G]] = lim←−U≤oG
R[G/U ] where U runs on all open subgroups, as a topological space.

b) For any topological ring R, R[[G]] = lim←−K≤c,oG
R[[G/K]] where K runs on all compact open

normal subgroups.
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c) If M is a topological module over R[[G]], then M is naturally a continuous G-representation
over R, and

d) M is naturally a topological module over R.

Proof. 1 ∈ G has a neighbourhood basis consisting of compact open subgroups, and any open
subgroup of a profinite group is compact. This immediately implies the first two propositions. d):
the embedding iR : R ↪→ R[[G]], which maps r to the element rI, where I is the inverse limit of
1 + U , is continuous, since the individual maps R → R[G/U ] are trivially continuous (and iR is
the map given by the universal property of the limit in the category Top). R ×M → M is just
the composition of iR × id and R[[G]]×M →M , which are both continuous maps.

c): We have a map iG : G → R[[G]] given by g 7→ lg, where lg is the inverse limit of the
elements 1R · (g + U). The maps G → G/U ; g 7→ g + U are continuous by the definition of the
profinite topology. But G/U is discrete, hence G/U → R[G/U ] is continuous. The map iG is
exactly the map given by the universal property of the inverse limit in Top (applied to the limit
of the topological spaces R[G/U ]); this shows that iG is continuous. But then G ×M → M is
just the composition of iG × id and R[[G]] ×M → M , which are both continuous maps. We still
need that G×M →M is actually a representation of G. It is enough to show that there is a ring
homomorphism R[G]→ R[[G]], that induces iG. rg 7→ lim←− r(g+U) is clearly such homomorphism
of rings.

In the case R = OK , we have that

OK [R] ≃ lim←−
k∈N,U≤oG

OK/p
k[G/U ] (2.1)

where pK is the unique maximal ideal of OK . We shall now turn our interest to Iwasawa algebras
with coefficient ring OK or K, and G profinite.

Proposition 2.3.3. Let G be any compact group, R ∈ Ring a topological ring.

1. If R is compact, then R[[G]] is compact.

2. If R is Hausdorff, then R[[G]] is Hausdorff.

Proof. If R is compact, then so is R[G/U ] for any open subgroup of G, since the topology on
R[G/U ] comes from the direct product topology of distinct copies of R. The inverse limit of
compact spaces is compact, since it is a closed subset of the product

∏
i∈I Ki. Similarly: if R is

Hausdorff, then so is R[G/U ]. The inverse limit of Hausdorff spaces is trivially Hausdorff.

Theorem 2.3.4. Let G be a compact p-adic Lie group. Then

1) OK [[G]] is left and right Noetherian.

2) K[[G]] is left and right Noetherian.

This theorem was proved by Lazard in [8].

Corollary 2.3.5. If G is a p-adic Lie group, then the category of finitely generated modules over
OK [[G]] (resp. K[[G]]) is Abelian.

The following proposition is the basis of the functor of Colmez. Both the theorem and the
proof are standard. For K = Qp, this proposition was first formulated by Serre, in a Seminaire
Bourbaki lecture on Iwasawa’s results in 1959.

Proposition 2.3.6. Let K/Qp a finite field extension, OK the ring of integers of K. Then

OK [[Zp]] ≃ OK [[T ]]

where OK [[T ]] is the formal power series ring of OK in one variable T . The isomorphism is
explicitly given by

1Zp
7→ 1 + T.

Note that one classically states the theorem for some multiplicative topological group Γ that is
isomorphic to the additive topological group Zp.
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Proof. Consider the map

ϕn : OK [Zp/p
nZp]→ OK [T ]/((1 + T )p

n

− 1)OK [T ],

1 + pnZp 7→ 1 + T + ((1 + T )p
n

− 1)OK [T ].

We claim that ϕn is an isomorphism of topological rings. As modules, both sides are free OK

modules of rank pn. The ”variable” on both sides generates the module together with OK , and
is of rank pn. We obtain that the two sides are isomorphic as topological modules. ϕn is clearly
a ring homomorphism. All of the ϕn are isomorphisms. We have compatible (via ϕn) inverse
systems of (OK [Zp/p

nZp])n∈N and
(
OK [T ]/((1 + T )p

n − 1)OK [T ]
)
n∈N. This shows the desired

isomorphism.

Corollary 2.3.7. OK/ϖ
n
KOK [[Zp]] ≃ OK/ϖ

n
KOK [[T ]] as topological rings. The images of the

reduction maps are precisely the two sides of the isomorphism in the statement.

Proof. The reduction mod ϖn is a surjective map both on OK [[Zp]] and on OK [[T ]]; and the
kernels correspond to each other via the isomorphism of proposition 2.3.6.

The following proposition is extremely important for our later discussion; it implies that
R[[H]]→ R[[G]] is a flat morphism of rings.

Proposition 2.3.8. Let G be a profinite group, R a compact, Hausdorff topological ring, H ≤c,o G
a compact and open subgroup of G. Then R[[H]] is a closed subalgebra of R[[G]]. Furhtermore, if
we denote a set of coset representatives of G/H by g1, . . . , gn, then R[[G]] =

⊕n
i=1 giR[[H]].

Proof. G is profinite, hence it has a neighbourhood basis of 1 consisting of open normal sub-
groups. This basis then gives a neighbourhood basis of 1 in H. But then this basis is cofi-
nal in the system of open subgroups of H, hence R[[H]] = lim←−U≤oG,U⊆H

R[H/U ]. Similarly,

R[[G]] = lim←−U≤oG,U⊆H
R[G/U ]. The first inverse system is injected in the second (”pointwise”),

hence by the left exactness of the inverse limit functor, we get an embedding R[[H]] ↪→ R[[G]]. By
proposition 2.3.3, R[[G]] is Hausdorff, and R[[H]] is a compact subspace of R[[G]], which shows
that R[[H]] is closed.

For the second statement; if N is an open subgroup of G, contained in H, then R[G/N ] =⊕n
i=1 giR[H/N ], because the cosets of H in G are disjoint. This decomposition is compatible

with the inverse system that defines the completed group algebra. Since G is profinite, the open
subgroups contained inH are cofinite in the inverse system of open subgroups ofG. The proposition
follows.

Proposition 2.3.9. Let G be a profinite group. Then the natural homomorphism OK [G] ↪→
OK [[G]], is injective with a dense image. Furthermore, composing this map with the embedding
G ↪→ OK [G], g 7→ 1OK

g, gives a continuous embedding G → OK [[G]] of topological spaces (in
particular, G is homeomorphic to its image).

A proof can be found for example in [9]. Note that the embedding G ↪→ OK [[G]]; g 7→ 1OK
g

has an image in OK [[G]]×, and G ↪→ OK [[G]]× is hence a continuous embedding of topological
groups.

Lemma 2.3.10. Let G be a profinite group, R a compact, Hausdorff topological ring, H ≤c,o G
a compact and open subgroup of G, and let M ∈ R[[G]]-Mod. Then M is finitely generated over
R[[G]] if and only if M is finitely generated over R[[H]].

Proof. By the first statement of proposition 2.3.8, R[[H]] is a closed subalgebra of R[[G]]. It
follows, that if M is finitely generated over R[[H]], then M is finitely generated over R[[G]]. For
the converse, by the second statement of 2.3.8, we have that R[[G]] =

⊕n
i=1 giR[[H]], for some

gi ∈ G. But then if M is finitely generated over R[[G]], then the finitely many generators of M ,
multiplied by the elements gi, give a finite generating set of M as an R[[H]]-module.
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We now consider a version of Nakayama’s lemma applicable to profinite modules over compact
rings. For any ring R, its Jacobson radical is denoted by J(R). The following theorem in this
precise form was given by Balister and Howson (who pointed out an error in earlier proofs), in [10].

Definition 2.3.11. Let R be a topological ring, I a left ideal of R. We write In → 0, if for any
open neighbourhood U of 0 in R, there is an n ∈ N such that In ⊆ U .

Theorem 2.3.12 (Nakayama Lemma). Let Λ be a compact topological ring, I a left ideal with
In → 0 in the sense that there exists a neighbourhood basis Un of . Let X be a profinite topological
module. Then

1. If IX = X, then X = 0.

2. If I is a two-sided ideal, X/IX is finitely generated as a Λ/I-module, then X is finitely
generated as a Λ-module.

We wish to apply theorem 2.3.12 for the augmentation ideal an Iwasawa algebra.
Now we prove that the Jacobson radical of the Iwasawa algebra OK [[G]] contains the augmenta-

tion ideal. This, together with the Nakayama Lemma will be an essential tool to handle admissible
representations in characteristic p.

Definition 2.3.13. Let G be any group, R a ring. The augmentation ideal of R[G] is is the kernel
of the ring homomorphism Aug :

∑
rigi 7→

∑
ri. The augmentation ideal is denoted by IG.

It is straightforward to show that IG is generated (as a two-sided ideal, or even as a left-ideal)
by elements of the form g− 1G, where g is any element of G. If F is a field, since F [G]/ kerAug ≃
imAug = F , we have that IG is a maximal two-sided ideal of F [G] (in fact, IG is a maximal
F -submodule of F [G]).

The following is a well-known lemma in the theory of group rings.

Lemma 2.3.14. Leg G be a finite p-group, and F a field with charF = p. Then IG is a nil ideal
(i.e. every element of IG is nilpotent).

Proposition 2.3.15. Let G be a finite p-group, F a field with charF = p. Then J(F [G]) = IG.

Proof. In non-commutative rings, like F [G], the Jacobson radical does not necessarily contain all
nilpotent elements, however it does contain all nil two-sided ideals. Indeed, if I is a nil ideal of a
ring R, then we need that for any i ∈ I, 1 − sir ∈ R×. Since I is a two-sided ideal, it is enough
to show that 1− i ∈ R×. in = 0 for some n. But then 1 + i+ . . . in−1 is an inverse of 1− i. The
claim follows from lemma 2.3.14.

We now return to the case of OK coefficients. The residue field is denoted by k = OK/ϖOK .

Corollary 2.3.16. Let G be a finite p-group. Then J(OK [G]) = (IG, ϖ).

Proof. We have a surjection π : OK [G] → k[G]. By proposition 2.3.15, IkG is the unique maximal
left ideal of k[G]. The image of any maximal left ideal of OK [G] is then either IkG or k[G]. The
only maximal left ideal of OK [G] with image IkG is (ϖ, IkG). If π(N) = k[G], then (N,ϖ) = OK [G],
i.e. ϖ /∈ N , for any maximal ideal N . But for such N , 1 ∈ π(N), i.e. ∃a ∈ OK such that a · 1 ∈ N .
Here a /∈ ϖOK , since then ϖ ∈ N would be the case; hence a is a unit. But then N contains a
unit of OK [G]. This is a contradiction.

Definition 2.3.17. Let G be a profinite group. Consider the the projection map

OK [[G]]→ OK [G/G]
≃−→ OK . (2.2)

The augmentation ideal IG of OK [[G]] is the kernel of this homomorphism.

LetH ◁o G be an open normal subgroup ofG, with a respective projection map πH : OK [[G]]→
OK [G/H]. Let τH : OK [G/H]→ OK [G/G] be the projection

∑
ai(gi+H) 7→

∑
ai(gi+G). Then

IG = π−1
H (ker τH), since both πH and τH are surjective, and πG = τH ◦ πH . Since ker τH is just

the augmentation ideal IG/H ◁ OK [G/H], we have that IG = lim←−H◁oG
IG/H .

Lemma 2.3.18. Let G be a pro-p group. Then (IG, ϖ) = J(OK [[G]]).
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Proof. We have seen (2.3.16) that (IG/H , ϖ) is a maximal left ideal of OK [G/H], hence its preimage
is a maximal left ideal of OK [[G]] (the projection is surjective). Hence the Jacobson radical is a
subset of (IG, ϖ). It is now enough to show that (IG, ϖ) is contained in the Jacobson radical.
The Jacobson radical of OK [[G]] is the intersection of all maximal left ideals. In the morphism
πH : OK [[G]] → OK [G/H], the preimage of a maximal left ideal is itself a maximal left ideal. If
x ∈ IG, then πH(x) is in J(OK [G/H]) = (IG/H , ϖ) (again, proposition 2.3.16 can be used since

G is pro-p). Now any maximal ideal of OK [G/H] is of the form π−1
H (M), since if Q is a maximal

ideal, then either πH(Q) = OK [G/H] for all H, or πH(Q) is a maximal ideal of OK [G/H] for some
H. In the first case, Q = OK [[G]] shows that Q would actually not be maximal. This shows the
proposition.

We also obtain the following corollary:

Corollary 2.3.19. Let G be an Abelian pro-p group. Then OK [[G]] is a local domain with unique
maximal ideal (IG, ϖ).

2.4 Admissible Representations

Definition 2.4.1. Let G be a locally profinite group. We say that a smooth representation
(π,M) ∈ SRepR(G) is admissible, if for any open subgroup H ≤o G the H-invariant submodule
MH = {m ∈ M | ∀h ∈ H : π(h)m = m} is finitely generated. The full subcategory of SRepR
spanned by the admissible representations is denoted ARepR(G)

Proposition 2.4.2. Let R be a left-Noetherian ring, G locally profinite, and (π,M) ∈ SRepR(G).
Then the following are equivalent:

a) (π,M) is admissible.
b) ∀K ≤o,c G compact open subgroup: MK is finitely generated.

Proof. a) =⇒ b) trivially.
b) =⇒ a): e has a neighbourhood basis consisting of open compact groups in G. If H is any

open subgroup, then ∃K compact open subgroup of G with K ⊆ H. But then MH ≤ MK is a
submodule. Since R is left-Noetherian and MK is finitely generated by our assumption, MH is
finitely generated as well.

Note that we have our representations over left-modules. If we instead work with right-modules,
we obviously get an analogous statement with R being right-Noetherian. Unlike for smooth rep-
resentations, the category of admissible representations is not Abelian in general. We will give
sufficient conditions for this to be the case.

Lemma 2.4.3. Let G be a locally profinite group, R ∈ Ring semisimple, such that there exists
an L ≤o,c G open compact subgroup of G for which ∀U ≤o L open subgroup satisfies that |L : U | ·
1R ∈ R×. Then 1 ∈ G has a neighbourhood basis consisting of compact open subgroups K, such
that for all smooth representations (π,M) ∈ SRepR(G), the restriction (π

∣∣
K
,M) ∈ SRepR(K) is

semisimple.

Proof. Fix some open set V ⊆ G. Since G is locally profinite, ∃K ≤o,c G open compact subgroup
such that K ⊆ L ∩ V . If W ≤o K is an open subgroup of K, then W is an open subgroup of L,
and K is an open subgroup of L. But then |L :W | = |L : K| · |K :W |, which shows that |K :W |
is invertible in R. We know that K is profinite, hence 1 ∈ K has a neighbourhood basis consisting
of normal open subgroup. Since the index of an arbitrary open subgroup in K is invertible by
the previous argument, the index of these normal subgroups (w.r.t K) is invertible as well. We
can then apply theorem 2.2.10 for K, to any smooth representation (π,M) ∈ SRepR(G). The
semisimplicity of (π

∣∣
K
,M) follows.

Lemma 2.4.4. Let G be a locally profinite group, R ∈ Ring any ring, K ≤ G any subgroup
satisfying that for all (π,M) ∈ SRepR(G): the restriction (π

∣∣
K
,M) ∈ SRepR(K) is semisimple.

Then the functor SRepR(G)→ Ab, M 7→MK , is exact.

Proof. This follows trivially from the fact that MK is a direct summand of M as an R[K]-module.
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Theorem 2.4.5. Suppose that G is a locally profinite group, R ∈ Ring a semisimple ring. Fur-
thermore, assume that there is an open compact K ≤o,c G that satisfies the following:

∀U ≤o K open subgroup: |K : U | · 1R ∈ R×.

Then ARepR(G) is an Abelian category.

Proof. We consider ARepR(G) as a full subcategory of SRepR(G), which is Abelian (proposition
2.2.8). We will use lemma 1.0.3. 0 is trivially an admissible representation. In a direct sum of
representations, the submodule (M ⊕N)K is just MK ⊕NK , which is clearly finitely generated,
if both MK and NK are. Hence the direct sum of two admissible representations is admissible.
It remains to show that if f is a morphism of admissible representations, then ker f and coker f
are both admissible. By lemma 2.4.3, there is a neighbourhood basis of 1 ∈ G consisting of
compact open subgroups, which satisfy that the restriction of any smooth representation of G
to these subgroups is semisimple. By lemma 2.4.4, taking the K-invariants w.r.t such groups
is an exact functor, hence if 0 → V → M → W → 0 is exact in SRepR(G), we have that
0 → V K → MK → WK → 0 is exact as well. If M is admissible, then MK is finitely generated;
since R is semisimple, R is Noetherian, hence both V K and WK are finitely generated. But
then for any open subgroup U ≤o G, V

U is finitely generated as well, since ∃K from the above
neighbourhood basis with K ⊆ U . Similarly for WU . This shows that both W and V are
admissible.

Corollary 2.4.6. If G is a locally profinite group that contains a compact open pro-p subgroup,
and F is a field with charF ̸= p, then ARepF(G) is Abelian.

The above corollary shows that the category of admissible representations over some L/Qℓ

where ℓ ̸= p is Abelian, which is important for the local Langlands conjectures. For characteristics
p, however, different approaches are needed, and the theorem is not true in general. For the base
ring OK , an alternative description of admissibility is needed. To obtain an Abelian category, one
must impose additional conditions on the representations.

2.4.1 Admissibility in Characteristic p

We shall now focus on the question of admissibility in the case when the coefficient ring is OK ,
where K is a p-adic number field. Whenever U is a profinite group, OK [[U ]] denotes the Iwasawa
algebra of G with coefficients in OK , as defined in section 2.3.

We introduced the augmentation ideal of a group ring in section 2.3, for any group G. If M is
a G-module (i.e. a Z[G]- module), then M is a Z[H]-module as well, whenever H ≤ G.

Definition 2.4.7. The module of H-coinvariants of M is MH =M/IHM .

Lemma 2.4.8. Let M be a locally compact topological G-module. Then for any subgroup H ≤ G,
we have that (MH)∨ ≃MH and (MH)∨ ≃ (M∨)H .

Note: here ∨ is the Pontryagin duality functor.

Proof. We first show the second proposition: Both (MH)∨ and (M∨)H are submodules of M∨.
Now µ ∈M∨ satisfies µ ∈ (MH)∨ if and only if µ factors as µ = ν ◦ π, where π : M →MH . This
is further equivalent to the assertion that µ((h − 1)m) = 0 for all m ∈ M,h ∈ H. Equivalently:
h−1µ(m) = µ(m) for all m ∈M,h ∈ H. I.e: h−1µ = µ, µ ∈ (M∨)H .

For the second statement, we will use the first one. For any G-module N : (NH)∨ = (N∨)H .
Dualizing gives (NH)∨∨ = ((N∨)H)∨. But then NH ≃ ((N∨)H)∨. Applying this for N =M∨, we
get that (M∨)H ≃ ((M∨∨)H)∨ ≃ (MH)∨.

Proposition 2.4.9. Let G be a locally profinite group, R a ring, (π,M) ∈ SRepR(G) a smooth
G-representation (equipped with the discrete topology). Then the Pontryagin dual group M∨ has a
natural structure of an R[[K]]-module, for any compact open subgroup K of G.

Proof. (π,M) is a smooth representation. By 2.2.6,

M =
⋃

U≤oG

MU = lim−→
U≤oG

MU .
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Applying the Pontryagin dual (M is given the discrete topology), by lemma 2.4.8 and the fact that
the dual of a direct limit is the inverse limit of the dual groups, we obtain

M∨ = lim←−
U≤oG

MU .

For any fixed open subgroup U ≤o G, we have an R[G/U ]-action on MU . In general, for any
topological left S-module N , N∨ is a topological right S-module, where the induced S-action is
given by ϕ · s = [n 7→ ϕ(s−1n)]. This shows that MU is an R[G/U ]-module. Furthermore, the
action of R[G/U ] on MU and the action of R[G/V ] on MV are compatible for two open subgroups
U, V . But then R[[G]] acts on M∨.

We shall now prove the alternative description of admissibility in characteristic p in several
steps.

Lemma 2.4.10. Let G be a locally pro-p group, U ≤c,o G a compact open subgroup of G, which
is pro-p, and (π,M) a smooth and OK-torsion representation of G over OK , equipped with the
discrete topology. Consider the following two statements:

1.) MU is finitely generated over OK .

2.) M∨ is finitely generated over OK [[U ]].

Here 2.) =⇒ 1.) holds. If M is admissible, then 1.) =⇒ 2.) holds as well.

Proof. 2.) =⇒ 1.): suppose that M∨ is finitely generated over OK [[U ]]; then (M∨)U is finitely
generated as well (since it is a quotient OK [[U ]]-module of M). The action of OK [[U ]] on (M∨)U
factors through the projection map OK [[U ]]→ OK [U/U ] by definition; which is isomorphic to OK .
This shows that (M∨)U is finitely generated over OK . But finitely generated torsion OK-modules
are finite as sets (by the structure theorem of finitely generated modules over a principal ideal
domain). Hence its dual is also finite as a set; in particular, it is finitely generated over OK .

1.) =⇒ 2.): We now assume thatM is admissible. Suppose thatMU is finitely generated over
OK (again, it is then finite as a set), hence, (M∨)U is finitely generated over OK [[G]], by lemma
2.4.8. We wish to apply Nakayama’s lemma for compact modules (theorem 2.3.12), for I = IU
(the augmentation ideal of the Iwasawa algebra OK [[U ]]). We need that M∨ is profinite, and that
IU

n → 0. M =
⋃
MU where U runs on all compact open subgroups of G, as M is smooth. Since

M is admissible, each of the MU are finitely generated. But finitely generated torsion OL modules
are finite as sets. Dualizing gives M = lim←−MU , which shows that M is profinite We also need

that In → 0 in the sense of definition 2.3.11, for the augmentation ideal I = IG. I is nilpotent
in each of the quotients OK/ϖ

nOK [G/H] (H is an open normal subgroup), as it is nil in each of
OK [G/H], and OK/ϖ

nOK [G/H] is finite as a set. But since OK [[G]] = lim←−n,U
OK/ϖ

nOK [G/H],

we have that for an open neighbourhood basis {Uα} of 0, In is contained in U . This shows that
In → 0.

(M∨)U is finitely generated over OK ≃ OK [[G]]/I, and (M∨)U is just M∨/IM∨ by definition;
hence, from the second statement of the Nakayama lemma, we have that M∨ is finitely generated
over OK [[U ]].

Theorem 2.4.11. Let G be a locally pro-p group. Let (π,M) ∈ SRepOK
(G), which is OK-torsion.

Then (π,M) is an admissible representation over OK if and only if M∨ is finitely generated as a
OK [[U ]]-module, for any open compact pro-p subgroup U .

To be precise: if (π,M) is admissible, then for all compact open pro-p U , M∨ is finitely gen-
erated over OK [[U ]]. But if there exists just one compact open pro-p U for which M∨ is finitely
generated over OK [[U ]], then M is admissible.

Proof. Fix an open compact subgroup U ≤c,o G: then U is a pro-p group.
” =⇒ ”: if M is admissible, then MU is finitely generated over OK . By lemma 2.4.10, M∨ is

then finitely generated over OK [[U ]].
” ⇐= ”: Let V be any compact open subgroup of G. We wish to show that MV is finitely

generated over OK . By lemma 2.3.10, if V ≤ U , or U ≤ V , then M∨ is finitely generated over
OK [[V ]]. Now using lemma 2.4.10, we have that in this case, MV is finitely generated over OK .
For a general V , look at W = V ∩ U . W is again a compact open subgroup of G, and since
W ≤ U , MW is finitely generated over OK , by the previous argument. But OK is Noetherian, and
MV ≤MW is a sub-OK-module.
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Proposition 2.4.12. Let G be a locally pro-p group, with U ≤c,o G a pro-p subgroup, and suppose
that M is a finitely generated topological module over OK [[U ]], which is equipped with a compatible
continuous (w.r.t the canonical topology on M) G-action. Then M∨ is a smooth, admissible OK-
torsion representation.

Proof. Let M be a finitely generated OK [[U ]]- module. It is then compact, as it is the image of
OK [[U ]]n, which is compact; hence its dual is discrete. The G-action is continuous on M∨, which
means precisely that M is a smooth G-representation. M∨ is OK-torsion: the image of any µ in
M∨ (as a subset of T ⊆ C) is contained in K/OK . Now K/OK is discrete, since OK is an open
subgroup; and µ : M → K/OK is continuous. But then the image of µ is a compact subset of
a discrete space; hence finite. It is then of the form ϖ−rOK/OK , which is ϖr-torsion. Finally,
M∨ is admissible, since by the Pontryagin duality theorem, (M∨)∨ ≃ M , and M∨ is smooth and
OK-torsion. But then by theorem 2.4.11, M∨ is admissible.

Corollary 2.4.13. Pontryagin duality gives a contravariant equivalence between the category of
smooth, admissible, OK-torsion representations, and the category of finitely generated OK [[U ]]-
modules equipped with a compatible continuous (w.r.t the canonical topology on M) G-action.

Proof. It is clear that the morphisms correspond to each other in the categories.

Corollary 2.4.14. If G is a locally pro-p group, which is also a p-adic Lie group, then the category
of admissible and OK-torsion representatations of G over OK is Abelian.

Proof. Fix a compact open pro-p subgroup of G. By 2.3.4, OK [[U ]] is a Noetherian ring; hence
the category of finitely generated modules over OL[[U ]] is Abelian. The category of continuous
G-representations is Abelian. The intersection of these two full subcategories of OL[[U ]]-Mod is
also Abelian. By 2.4.13, category of admissible and OK-torsion representations of G over OK is
equivalent to the opposite of this category. Opposite categories of Abelian categories are Abelian.

Proposition 2.4.15. Let G be a locally pro-p group, M a smooth and OK-torsion representation
of G, which furthermore satisfies that for some n ∈ N, ϖn annihilates M . Then M is admissible
if and only if there exists an U ≤c,o G compact open pro-p subgroup of G, which satisfies that MU

is a finitely generated OK-module.

Proof. One direction is clear; admissibility implies that any compact open subgroup fixes only a
finitely generated submodule. In particular, this is true for U .

Let K be any compact open subgroup of G. We wish to show that MK is finitely generated
as an OK-module. Now U ∩K is again a compact open subgroup, which satisfies MK ⊆ MK∩U ,
hence we can assume that K ⊆ U . In particular, K is pro-p as well.

K is an open subgroup of U , hence of finite index. U/K is then a finite p-group; in particular
it has a normal subgroup of index p; which corresponds to a subgroup K ′ of U with index p. It
is actually enough to consider this special case, since we have a sequence of subgroups K < K1 <
. . . < Kc < U , such that each quotient is cyclic of order p. But then we iterate the special case for
each Ki.

Now it remains to show the statement for this special case: U/K is cyclic of order p. Let M [a]
be the set of elements annihilated by a. Since M is OK-torsion, we have that M =

⋃
r∈NM [ϖr].

In particular, MK =
⋃

rM
K [ϖr]. The residue field k = OK/(ϖ) acts on MK [ϖ]. Let g ∈ U/K,

and let us consider g as an element of the group ring k[U/K]. If v ∈ (g − 1)p−1MK [ϖ], then
(g− 1)v = (g− 1)p = gpv− v = v− v = 0, which shows that v ∈MU [ϖ]. Hence (g− 1)n−1MK [ϖ]
is finitely generated over OK . Now suppose that for some k ∈ N, (g − 1)n−sMK [ϖ] is finitely
generated over OK (we have just shown this for s = 1). Then multiplication with (g − 1) on
(g − 1)n−s−1MK [ϖ], has an image in (g − 1)n−sMK [ϖ], which is finitely generated over OK , and
the kernel of this map is in MU [ϖ], by definition. MU [ϖ] is finitely generated over OK as well;
but then so is (g− 1)n−s−1MK [ϖ] (OK is Noetherian). Iterating this argument gives that MK [ϖ]
is finitely generated over OK .

Now MK [ϖn] ↪→ MK [ϖn+t] for any t ∈ N. We can repreat the previous argument for
MK [ϖn]/MK [ϖn−1] to obtain that MK [ϖn] is finitely generated. Since some power of ϖ an-
nihilates M (by assumption), we have that MK [ϖn] =MK for some n. The claim follows.
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2.5 p-adic Banach Space Representations

In the p-adic Langlands correspondence, the representations on the ”GLn” side are actually p-
adic Banach space representations. As we will see, these spaces can be obtained as a limit of
smooth representations over finite rings. p-adic Banach were introduced in the the p-adic Langlands
program by Schneider and Teitelbaum in [11]. In this section, we fix the following notation: L/Qp

is a finite extension, OL is the ring of integers of L, pL is the unique maximal ideal of OL, and ϖ
is the uniformizer of OL.

Definition 2.5.1. Let L be as described above. An L-Banach space is a locally convex complete
topological vector space over L, such that the topology can be defined by a norm.

Note that we do not fix the norm in the definition, following the custom of the literature. Many
of the theorems that exist for R or C vector spaces exist in the p-adic setting as well. In particular,
bounded continuous linear operators are still continuous, and the open mapping theorem holds.
We denote the space of continuous automorphisms of an L-Banach space V by Autc(V ).

Definition 2.5.2. Let G be a locally profinite group, V an L-Banach space, π : G → Autc(V ) a
function. We say that (π, V ) is a continuous L-Banach space representation of G, if the map G×
V → V , (g, v) 7→ π(g)v is continuous. The category of continuous L-Banach space representations
is denoted by BanL(G); the morphisms are defined as G-equivariant continuous linear maps of
L-Banach spaces.

Note that unlike in the previous sections, we require the map G × V → V to be continuous
w.r.t. the predefined topology of V , and not the discrete topology on V (i.e. the representation
is continuous, but not ”smooth”). This is because ”most” of the L-Banach space representations
that are smooth are finite-dimensional, hence uninteresting in the p-adic Langlands setting.

Lemma 2.5.3. Let G be a profinite group. Then BanL(G) is an Abelian category.

Proof. We will use lemma 1.0.3. Clearly, kernels, cokernels and finite direct sums of Banach spaces
are again Banach spaces. Hence the category of G-representations on L-Banach spaces form an
Abelian category, and this category contains BanL(G) as a full subcategory. Hence we can apply
lemma 1.0.3 once more, this time for the subcategoty BanL(G) to obtain that BanL(G) is Abelian.
The conditions of the lemma are trivially satisfied.

Definition 2.5.4. Let V be an L-Banach space, equipped with a continuous L-linear G-action
π : G × V → V . Suppose that we fix a norm ∥.∥ on V . If G acts through norm preserving
automorphisms of V , i.e. ∥gv∥ = ∥v∥ for all g ∈ G, v ∈ V , then we say that (π, V ) is a unitary
L-Banach space representation.

Similarly to the R case, if ϕ : V → V is a linear operator such that for all v ∈ V : ∥ϕv∥ ≤
Cϕ∥v∥, then ϕ is continuous. In particular, for any fixed norm ∥.∥, in any unitary L-Banach
space representation, G acts through continuous linear operators. Note, however, that this does
not imply a priori that the representation is continuous, and this is why the restriction of the
continuity of G × V → V is imposed. If (π, V ) is a unitary L-Banach space representation of G
w.r.t. a fixed norm ∥.∥, we will say that the triple (π, V, ∥.∥) is a unitary representation.

Let BanUL (G) be the full subcategory of BanL(G) defined by objects (π, V ), which satisfy that
there exists a norm ∥.∥ on V which turns (π, V, ∥.∥) into a unitary representation.

Lemma 2.5.5. The full subcategory BanUL (G) of BanL(G) is Abelian.

Proof. We can apply lemma 1.0.3. The direct sum of unitary representations is still unitary (the
norm of the direct sum is the sum of norms), the kernels of unitary representations are trivially

unitary. For cokernels, the norm on V/U is defined as ∥x+ U∥ def
= infu∈U∥x+ u∥. ∥π(g)(x+ U)∥ =

∥π(g)x+ U∥ = infu∈U∥π(g)x+ u∥ = infu∈U∥π(g)x+ π(g)u∥, since π(g) is bijective on U . But
then ∥π(g)(x+ U)∥ = infu∈U∥π(g)(x+ u)∥ = infu∈U∥x+ u∥ = ∥x+ U∥

Lemma 2.5.6. Let G be a locally profinite group, and let (π, V, ∥.∥) be a unitary L-Banach space

representation of G. Let V0
def
= {v ∈ V : ∥v∥ ≤ 1} be the closed unit ball of V .

1.) For any n ∈ N: ϖnV0 is mapped to itself via the G-action.
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2.) There is a natural OL/ϖ
nOL-action on V0/ϖ

nV0.

3.) V0/ϖ
nV0 is a smooth G-representation over OL/ϖ

nOL.

Proof. 1.): |ϖ| = q−k where q is the cardinality of the residue field of L, hence ϖkV0 = {v ∈ V0 :
∥v∥ ≤ q−k}. Since G acts through norm-preserving linear maps, GϖkV0 = ϖkV0.

2.): We define (x+ϖnOL)(v +ϖnV0)
def
= (xv +ϖnV0). This is clearly a well-defined action of

OL/ϖ
nOL.

3.): By 1.): V0/ϖ
nV0 is a quotient of two G-representations, hence itself a representation of G.

By 2.), it is also a module over OL/ϖ
nOL. We need that it is smooth. We assumed that (π, V ) is

a continuous representation. Hence G×V → V is continuous, which implies that G×V0 → V0 and
G × V0/ϖnV0 → V0/ϖ

nV0 are both continuous. The quotient topology on V0/ϖ
nV0 is discrete,

hence G × V0/ϖnV0 → V0/ϖ
nV0 is continuous w.r.t the discrete topology on V0/ϖ

nV0, showing
that the representation is smooth.

Lemma 2.5.7. Let (V, ∥.∥) be an L-Banach space. Then

V ≃

(
lim←−
n∈N

V0/ϖ
nV0

)
⊗OL

L ≃ V0 ⊗OL
L ≃ V0[ϖ−1] (2.3)

as L-vector spaces.

Proof. Clearly, V0 ≃ lim←−n∈N V0/ϖ
nV0 as an OL-module, since V0 is complete. V = V0[ϖ

−1], since

for any v ∈ V , there is a v0 ∈ V0 and c ∈ K such that v = cv0, and c is of the form ϖ−mc0, where
c0 ∈ OL. The last isomorphism follows from the fact that L is the quotient field of OL, and OL is
a DVR.

As a consequence of this lemma, if V0 is already equipped with an action of G, then this action
extends (linearly) to V .

Definition 2.5.8. Let G be a locally pro-p group, (π, V, ∥.∥) a unitary L-Banach space represen-
tation of G. We say (π, V, ∥.∥) is an admissible representation, if for all n ∈ N, V0/ϖnV0 is an
admissible representation.

By lemma 2.5.6, the reductions V0/ϖ
nV0 are smooth. Each of the V0/ϖ

nV0 are torsion OL-
representations, and we restricted our interest to locally pro-p groups; hence the theorems of section
2.4.1 apply. In particular, for any compact open subgroup U ≤c,o G, we have an action of the
Iwasawa algebra OL[[U ]] on (V0/ϖ

nV0)
∨. The usual definition of admissibility for L-Banach spaces

uses this dual Iwasawa-action.

2.6 Representations in the p-adic Langlands Setting

We now describe the three main categories of representations on which the functor of Colmez is
defined. We try to follow their notations, but will eventually deviate to avoid assigning multiple
meanings to the symbol RepOL

G. Let G be a p-adic Lie group, L a finite extension of Qp. Theorem
2.4.14 implies that in this setting, the category ARepOL

G of (smooth) admissible representations
over OL is Abelian.

Definition 2.6.1. ReptorsG is the full subcategory of G-representations (π,M) overOL, satisfying
the following conditions:

1. (π,M) is smooth and satisfies that for each open compact subgroup K of G, MK is of finite
length over OL (in particular, M is admissible).

2. M is of finite length over OL[G];

3. π acts through a central character.

Note that finite length submodules over OL are finite as sets, since the only simple module over
OL (up to isomorphism) is OL/ϖOL.

Proposition 2.6.2. Let (π,M) ∈ ReptorsG. Then M is a torsion OL-module. In particular, M
is a torsion OL[G]-module.
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Proof. Let m ∈M be any nonzero element. Then, since M is smooth, we have that Stab(m) is an
open subgroup of G (proposition 2.2.6). Since G is profinite, there is an open compact subgroup K
of G such that K ≤ Stab(m), but then m ∈MK . By the assumption on M , MK is of finite length
over OL. But then M

K is a finite p-group, since simple modules over OL are isomorphic to OL/ϖ,
which is a finite p-group, and extending a finite p-group with a finite p-group gives again a finite
p-group. The finite composition series of MK gives that MK is a finite p-group. In particular,
there is a power of p that annihilates MK , hence m.

Proposition 2.6.3. Suppose that M is a torsion module over OL. Then M equipped with the
discrete topology is a topological OL-module.

Proof. Suppose that ϖn annihilates M for some n. Then clearly we have an OL/ϖ
nOL-module

structure on M . Let fn : OL → OL/ϖ
nOL be the modulo ϖn map. fn is continuous, since

OL = lim←−OL/ϖ
n. Then in the commutative diagram

OL ×M OL/p
nOL ×M

M

fn×id

Φ

Φ

the map Φ is continuous, since its domain is discrete; and fn×id is continuous, since it is a product
of continuous maps.

Now lets consider a general torsion OL-module M ; in this case, M =
⋃

nM [ϖn] (since OL is
a DVR, separated in the ϖ-adic topology). We need that Φ : OL ×M → M is continuous. We
have that M [ϖn] = {m ∈ M | ϖnm = 0} is a topological module over OL, since ϖ

n annihilates
M [ϖn]. This means that Φn : OL ×M [ϖn]→M [ϖn] is continuous.

Let m ∈ M . We need that Φ−1(m) is an open set. m ∈ M [ϖn] for some large enough n.
Now fix an x ∈ Φ−1(m). For N large enough, m ∈ M [ϖn] and x ∈ Φ−1

N (m). Then Φ−1
N (m) is an

open set of OL ×M [ϖN ], which contains x. OL ×M [pN ] → OL ×M is a product of open maps
(M [pN ]→M is trivially an open map, since M is discrete), hence itself an open map. This shows
that Φ−1

N (m) is an open neighbourhood of x in Φ−1(m). In particular, Φ−1(m) is an open set of
OL ×M .

Proposition 2.6.4. ReptorsG is equal (as a subcategory of ARepOL
G) to the subcategory C defined

by the following properties of any object (M,π) ∈ C:

1. (M,π) is smooth and admissible as a G-representation;

2. (M,π) is of finite length over OL[G];

3. M is OL-torsion;

4. π acts through a central character.

Compared to the definition of ReptorsG, the admissibility condition is weaker (imposing that MK

is finitely generated instead of finite length), but the additional condition that M is OL torsion is
necessary.

Proof. It is enough to show that any finitely generated torsion OL-module is of finite length. This is
however trivial, since finitely generated torsion modules over OL are (by the fundamental theorem
of finitely generated modules over a PID) finite direct sums of OL/ϖ

n; these are finite as sets,
hence in particular of finite length as OL-modules.

Corollary 2.6.5. ReptorsG is an Abelian category.

Proof. We use the characterization of proposition 2.6.4. ReptorsG is a full subcategory of the
category of admissible and OL-torsion representations, which is Abelian by corollary 2.4.14. We
will use proposition 1.0.3. 0 is in ReptorsG, and it is closed under taking finite direct sums.
Kernels and cokernels of finite length modules are of finite length, and the G action is through
central characters on each of them.

Proposition 2.6.6. If (π,M) is in ReptorsG, then any OL-submodule of M that is finitely gen-
erated is of finite length over OL. In particular, for any open subgroup K of G, MK is of finite
length over OL.
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Proof. We proved this statement in the proof of proposition 2.6.4. Since (π,M) is admissible, MK

is a finitely generated OL-module, hence the previous lemma can be applied.

We have seen that anyM ∈ ReptorsG is OL-torsion. In fact, the following stronger proposition
holds as well:

Proposition 2.6.7. Let (π,M) ∈ ReptorsG. Then there exists an n such that ϖn annihilates M .

Proof. Since M is of finite length over OL[G], it is enough to show the proposition for irreducible
elements of ReptorsG (we can iterate the composition series to get a finite bound on n). Clearly,
the elements annihilated by ϖ form a sub-G-representation as well. Then by the irreducibility of
M , M [ϖ] = 0 or M [ϖ] = M . But in the latter case, M could not be a torsion module over OL.
Hence M [ϖ] = 0, and the claim follows.

To avoid using the same notation for two different categories, we will add an upper index C to
the notation in the following definitions.

Definition 2.6.8. RepCOL
G is the full subcategory of OL representations, consisting of objects

(π,M), such that

1. M is separated and complete in its p-adic topology;

2. M is torsion-free;

3. For all n ∈ N, M/pnM is in ReptorsG.

Definition 2.6.9. RepCL G is the category of L-representations that are equipped with an OL-
lattice, belonging to RepOL

G.

Such representations are complete, since their OL-net is already complete. We then obained an
L-Banach space, equipped with a complete G-stable OL-net. It can be proven that any element of
RepCL G is a unitary Banach-space representation. But then it is clear that any such representation
is admissible as an L-Banach space representation, in the sense of definition 2.5.8.

2.7 Fontaine’s Equivalence and (φ,Γ)-modules

We now consider one of the main steps in establishing the p-adic Langlands correspondence for
GL2(Qp), the category of étale (φ,Γ)-modules. This section is based on Fontaine’s and Ouyang’s
book [12] and Colmez’s article [2].

2.7.1 Important Power Series Rings

Consider a p-adic number field L/Qp, with ring of integers OL. Then OL is a local ring with
residue field kL, (unique) maximal ideal mL and uniformizer ϖ.

Definition 2.7.1. OE = {f(T ) =
∑

k∈Z akT
k | ak ∈ OL ∧ limk→−∞ ak = 0}. OE will turn out to

be a local ring. We denote its residue field by kE , its maximal ideal by mE , and its field of fractions
by E . Furthermore, O+

E = OL[[T ]] ≤ OE , E+ = O+
E [

1
p ] ≤ E , and k

+
E = kL[[T ]] ≤ kE . The fact that

X+ ≤ X follows from the next proposition (for X = OE , E , kE).

Proposition 2.7.2. The following are satisfied.

a) OE is indeed a local ring.

b) In fact, OE is a DVR with uniformizer ϖ.

c) kE = kL((T )).

d) E = OE [
1
p ].
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Proof. We first need that OE is indeed a ring. It is clearly an Abelian group. If p(T ) =
∑

n∈Z anT
n

and q(T ) =
∑

n∈Z bnT
n, then p ·q is well-defined: the coefficient of T k is an infinite sum with terms

tending to 0; and by basic p-adic analysis, such sums converge.
We show that the unique maximal ideal of OE is mLOE . It is enough to show that every element

a /∈ mLOE is a unit. By definition, a has a coefficient ak not in mL. By the condition that the
coefficients tend to 0 at −∞, we have a minimal such ak. Since T has an inverse, we can assume
without loss of generality that a0 is this minimal unit coefficient. If ϖ denotes the uniformizer of
OL, we have that a is of the form a = p(T ) + ϖh(T ) where p(T ) is a formal power series with
coefficients in OL, and with a constant coefficient in O×

L
∼= OL \mL; and h is some element of OE .

We know that p(T ) has an inverse (it even has an inverse in OL[[T ]]). Multiplying with p(T )−1, we
have that a is a unit if and only if 1+ϖhp−1 is. But since (1+ϖhp−1)(1−ϖhp−1+(ϖhp−1)2−. . .) =
1, hence a is a unit.

Since mL = ϖOL, by the previous reasoning we have mE = mLOE = ϖOLOE = ϖOE . In
particular, OE is a discrete valuation ring with uniformizer ϖ. Taking the quotient, we obtain
kE = kL((T )), because sufficiently small coefficients are always multiples of ϖ, by the definition.

Finally, we need that ϖ has an inverse if p has. Since ϖ divides p, if p is invertible, then so is
ϖ.

For ”mod p” representations there are two more families of rings we need to consider: the ring
of formal Laurent series OL/ϖ

nOL((T )) (kε is just the special case n = 1), and the ring of formal
power series OL/ϖ

nOL[[T ]]. Notice that these are the rings we obtain when reducing mod ϖn

either OE or O+
E . The above constructed rings (OE ,O+

E , kE , k
+
E , E , E+, OL/ϖ

nOL((T ))) are all
OL- modules, hence each of them has a natural p-adic topology, inherited from OZ

L (we call this
topology the strong topology). However, the topology we consider on these rings is not always the
strong topology:

1. We give OL/ϖ
nOL((T )) (in particular, kE), the strong topology.

2. On OE , the topology is the weak topology defined by the reduction mod ϖ map OE → kE .
A neighbourhood basis of 0 is given by pkOE +T

nOE . The reason for this choice of topology
is basically that we want proposition 2.7.3 to hold.

3. E is given the topology via E = lim−→n∈N p
−nOE .

4. The +-versions of the rings are given the subspace topology.

Proposition 2.7.3. OE ≃ lim←−n∈NOL/ϖ
nOL((T )) as topological rings.

Proof. Let P ∈ lim←−n∈NOL/ϖ
nOL((T )) ≃ lim←−n∈NOE/ϖ

nOE . We denote the image of P by the

reduction mod ϖn map in OL/ϖ
nOL((T )) by Pn. Clearly, Pn is a formal Laurent series, with

minimal nonzero coefficient cn. The kth coefficient of P is the inverse limit of the kth coefficient
of Pn, its valuation is the first n where it appears. But then P is of the form

∑∞
i=−∞ aiT

i where
ai ∈ OL. Since P has a nonzero coefficient of minimal index modϖn for all n, limi→−∞ ai = 0. Any
element of OE is the inverse limit of itself mod ϖn. Furhtermore, the collection (P mod ϖn)n∈Z
is uniquely defined by P . This shows that the two sides are isomorphic as rings. By definition, if
we endow OE with the projective limit topology (via the ring isomorphism we just proved), then
the map OE → OE/ϖOE = kE is continuous. For the weak topology on OE to coincide with the
projective limit topology, it is enough to show that the reduction mod ϖn maps are all continuous,
when OE is given the weak topology. The preimage of a basis element of OL/ϖ

nOL((T )) is clearly
a basis element of OE . The proposition follows.

We introduce a so-called (φ,Γ)-module structure on these rings. Consider the map φ : T 7→
(1 + T )p − 1, extended linearly to any of the rings above. We call φ the Frobenius endomorphism.

Proposition 2.7.4. Let A be one of OE ,O+
E , kE , k

+
E , E , E+, OL/ϖ

nOL((T )), φ the Frobenius en-
domorphism of A. Then

1.) φ is OL-linear

2.) φ is continuous

Proof. 1.): {Tn} (n ∈ Z or N, depending on the choice of A) is a free generating set of A over OL

(or OL/ϖ
nOL for some n), and φ is defined on each element of this set. By the adjointness of the

free and forgetful functors, we get that φ is a linear map over OL (resp. OL/ϖ
nOL). The claim

follows.
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2.): Continuity is clear on OL/ϖ
nOL((T )); since linear maps on finite rank free modules

are continuous; and here the image of
⋃K

n=1OLT
n has an image in a finite rank module. The

continuity on OE follows by 2.7.3. The continuity on the rest of the rings are immediate from the
constructions.

The following proposition shows why φ is called Frobenius.

Proposition 2.7.5. By 2.3.6 and 2.3.7, we have isomorphisms

OK [[∆]] ≃ O+
E , OK/ϖ

n
KOK [[∆]] ≃ OK/ϖ

n
KOK [[T ]],

where ∆ is a topological group (with multiplicative notation), that is isomorphic to the additive
group of Zp. Then (via these isomorphisms) the φ of each power series ring corresponds to the
endomorphism v 7→ vp of the respective completed group algebra.

Proof. Let δ ∈ ∆ be a topological generator of ∆ (which, in additive notation can be chosen to be
1). The above isomorphisms are given by δ 7→ (1 + T ). But then φ(1 + T ) ←→ δp ←→ (1 + T )p

implies the proposition, by the continuity of φ (the set generated by δ is dense in ∆, and by 2.3.9,
OL[∆] is dense in the completed group algebra.

Corollary 2.7.6. Let A be either O+
E or k+E .

1. The Frobenius φ : A→ A is actually a ring endomorphism.

2. The Frobenius endomorphism φ : A→ A is flat.

Proof. From proposition 2.7.5, we obtain that ϕ is multiplicative: since δ 7→ δp is just the multi-
plication on Zp with p; which is clearly a group homomorphism. By OK-linearity, we have that
ϕ is multiplicative on OK [∆], which is dense in OK [[∆]. The product of limits is the limit of the
products; hence ϕ is multiplicative on OK [[∆]] as well.

For the flatness of φ: pZp is a a compact open subgroup of Zp (which is isomorphic to ∆).
This shows that φ(∆) is compact and open in ∆. Then by proposition 2.3.8, OK [[∆]] is free and
finitely generated over OK [[φ(∆)]] = φ(OK [[∆]]). In particular, it is a flat module over A.

Proposition 2.7.7. φ : k+E → k+E is a local ring endomorphism (i.e. it maps the unique maximal
ideal of k+E to itself).

Proof. T 7→ (1 + T )p − 1 = 1 + Tq(T ) − 1 = Tq(T ) for some polynomial q(T ), by the binomial
expansion.

Consider now the following OL-linear Z×
p -action σ on any of the above rings: σ(a) : T 7→

(1 + T )a − 1, extended OL-linearly.

Proposition 2.7.8. We have the following properties of σ for any of the rings defined above:

a) σ is indeed an OL-linear Z×
p -action on the rings.

b) For each a ∈ Z×
p , σ(a) is a continuous map.

c) σ(a) and φ commute.

d) σ(a) is a ring endomorphism for each a.

Proof. The linearity holds by definition. If a, b ∈ Z×
p , then σ(a)σ(b)(T − 1) = (1 + T )ab, which

shows that σ is indeed a group action. It is enough to check that the φ and σ(a) commute for the

OL-basis (1 + T )k. (1 + T )k
φ7−→ (1 + T )kp 7→ σ(a)(1 + T )kpa, and p-adic exponentiation satisfies

xuv = xvu.

Proposition 2.7.9. By 2.3.6 and 2.3.7, we have isomorphisms

OK [[∆]] ≃ O+
E , OK/ϖ

n
KOK [[∆]] ≃ OK/ϖ

n
KOK [[T ]],

where ∆ is a topological group (with multiplicative notation), that is isomorphic to the additive
group of Zp. Then (via these isomorphisms) the endomorphism σ(a) for some a ∈ Z×

p of each
power series ring corresponds to the endomorphism v 7→ va of the respective completed group
algebra.

Proof. The proof is basically the same as of proposition 2.7.5.
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2.7.2 (φ,Γ)-modules in General

We now define the general notion of (φ,Γ)- modules. (φ,Γ)- modules over the rings defined in the
previous section act as the intermediate objects of the p-adic Langlands correspondence: the D
functor of Colmez maps certain GL2 representations to étale (φ,Γ)-modules, and the functor of
Fontaine sends such modules to n-dimensional Galois-representations.

Definition 2.7.10. Let R ∈ Ring be a topological ring, equipped with a a continuous ring endo-
morphism φ : R → R. Suppose that Γ is a topological group, and that we have a fixed Γ-action
σ on R, satisfying that Γ × R → R, (γ, r) 7→ σ(γ)r is continuous. A (φ,Γ)-module over R is
a topological R-module M , finitely generated as a module, equipped with a continuous module
endomorphism φM : M → M , and an R-linear action σM of Γ, which satisfies that Γ×M → M ;
(γ,m) 7→ σM (γ)m is continuous, satisfying the following conditions:

i) φM and Γ commute: i.e. for any γ ∈ Γ, σM (γ) ◦ φM = φM ◦ σM (γ).
ii) φM is φ-semilinear.
iii) σM (γ) is σ(γ)-semilinear for each γ ∈ Γ.

If we do not require M to be finitely generated over R, we call M a possibly non- finitely generated
(φ,Γ)-module over R. We fully acknowledge the ridiculousness of this terminology (but at least it
avoids causing any confusion).

In the previous section, we proved that OE ,O+
E , E , E+, kE , and kE are (φ,Γ)-modules over

themselves. We now concentrate on one of these rings. In particular, we will describe how one can
obtain a (φ,Γ)-module over one of the rings from a (φ,Γ)-module over another. A natural way
to obtain a module over a different ring is to ”change the scalars”, i.e. take the tensor product
B⊗AM . In the case of (φ,Γ)-modules, a similar construction works; which we shall describe now.

We need the following well-known lemma (it can be found in most commutative algebra text-
books):

Lemma 2.7.11. Let A be a commutative Noetherian ring, I ◁ an ideal of A. Then the I-adic
completion of A is flat over A.

Lemma 2.7.12. OE is flat over OE
+.

Proof. We have that OK((T )) is the localization of OE+ at at the ideal (T ). OE is isomorphic to
the ϖ-adic completion of OK((T )) as rings, hence it is flat over OK((T )) by lemma 2.7.11. But
then OE is trivially flat over OE

+.

Proposition 2.7.13. Suppose that M is a module over OE
+.

1.) If M is finite as a set, then OE ⊗OE+ M = 0.

2.) If M,N ∈ O+
E -Mod, and M surjects to N with finite kernel, then

OE ⊗O+
E
M ≃ OE ⊗O+

E
N.

3.) If N ≤M is a submodule of finite index, then

OE ⊗O+
E
M ≃ OE ⊗O+

E
N.

Proof. Suppose that M is a module that is a finite set. We claim that TnM = 0 for some n.
Clearly, for some n, TnM = Tn+1M (otherwise TnM would be an infinite descending chain).

Then T acts bijectively on N
def
= TnM . If m ∈ N , we have that for some km, T kmm = 0. Take

ℓ =
∏

m∈N km. We have that (T ℓ − 1)N = 0. But T ℓ − 1 is invertible in OE
+, hence N = 0; i.e.

TnM = 0.
Now Tn is invertible in OE . T

m(a ⊗m) = a ⊗ 0 = 0. Hence Tm is an invertible element that
annihilates OE ⊗OE+ M . The first claim follows.

The tensor product functor with OE is right exact. But then an exact sequence of the form
0 → F → M → N → 0 where F is finite as a set, gives an exact sequence 0 → OE ⊗O+

E
M →

OE ⊗O+
E
N → 0

For the third proposition, we have the sequence 0 → N → M → F → 0 with F being finite.
By lemma 2.7.12, OE is a flat module over O+

E . But then, applying the tensor product with OE
on this sequence shows the desired isomorphism.
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Proposition 2.7.14. Suppose that M is a possibly non-finitely generated (φ,Γ)-module over O+
E .

Then

a) OE ⊗O+
E
M is a (φ,Γ)-module over OE .

b) In fact, M 7→ OE ⊗OE+ M is an exact functor between the categories of possibly non-finitely
generated (φ,Γ)-modules over OE

+ and possibly non-finitely generated (φ,Γ)-modules over
OE This functor clearly restricts to an exact functor from (φ,Γ)-modules over OE

+ to (φ,Γ)-
modules over OE .

Proof. The φ-action on the tensor product T = OE⊗OE+M is given by φT (a⊗m) = φ(a)⊗φM (m).
Similarly for the Γ-action. All the properties of a (φ,Γ)-module are trivially satisfied.

The most important property of (φ,Γ)-modules is them being étale. If M is a (φ,Γ)-module
over R, we use the notation Mφ = R ⊗φ M . Here R has an R-R-bimodule structure, where
multiplication from the left is just the usual multiplication of R, but multiplication from the right

is defined by φ; r′ ◦ r def
= r′ · φ(r).

Definition 2.7.15. Let R, φ, Γ as in definition 2.7.10, but we require that R is commutative.
We say that a possibly non-finitely generated (φ,Γ)-module M is étale, if the endomorphism φM

induces a surjective map 1⊗ φM :Mφ →M ; r ⊗m 7→ rφM (m).
We say that a (φ,Γ)-module M (i.e. M is now finitely generated over R) is étale, if the map

1⊗ φM is a linear isomorphism.

Notice that M is étale if and only if φ(M) generates M as an R-module.

Fact 2.7.16. A (φ,Γ)-module M that is finitely generated over R is étale w.r.t. one of the defini-
tions above, if and only if it is étale w.r.t. the other.

Proposition 2.7.17. Let M be a possibly non-finitely generated étale (φ,Γ)-module over OE
+.

Then OE ⊗OE+ M is étale over OE .

Proof. It is enough to show that the image of the module endomorphism φ⊗ generates OE⊗OE+M ,
where φ⊗ : r ⊗m 7→ φ(r) ⊗ φM (m). Here ϕ : R → R is a ring homomorphism, hence 1 is in its
image. φM : M → M satisfies that φM (M) generates M as an OE

+-module (M is étale). But
then 1⊗ φM (m) is in the image of φ⊗; and elements of this form clearly generate OE ⊗OE+ M as
an OE -module.

2.7.3 The Equivalence of Fontaine

There are several versions of the equivalence of Fontaine. The versions we need, and state here,
are the same as the ones from the article [2] of Colmez.

Definition 2.7.18. The following categories of (φ,Γ)-modules are considered.

1. The category of étale (φ,Γ)-modules over OE , which are of finite length over OE is denoted
by ΦΓet

tors.

2. The category of étale (φ,Γ)- modules over OE , are free (and of finite rank, by definition) over
OE , is denoted by ΦΓet(OE).

3. The category of finite-dimensional étale (φ,Γ)-modules over E is denoted by ΦΓet(E).

It is immediate, by proposition 2.7.14, that tensoring with E associates to any (φ,Γ)-module
in ΦΓet(OE) a (φ,Γ)-module in ΦΓet(E). In the following statements we will use the notation Gp
for the absolute Galois group of Qp.

Definition 2.7.19. On the Galois-side of the p-adic Langlands program, we have the following
categories of representations.

1. Reptors Gp is the category of continuous representations of Gp over OL, which are of finite
length over OL.

2. RepOL
Gp is the category of continuous representations V of Gp over OL, which are free, and

for each n, V/ϖnV is in Reptors Gp.
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3. RepOL
Gp is the category of continuous representations of Gp over L, which are finite-dimensional

vector spaces over L.

Theorem 2.7.20 (Fontaine). The categories 1., 2. and 3. of definition 2.7.18 and the categories
of definition 2.7.19 are eqivalent respectively.
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Chapter 3

The Montréal Functor

In this chapter, we give an overview of the functor of Colmez Then we switch to an algebraic
point of view, and use it to deduce a certain finitary property of the functor. We try to be as
thorough as possible, however we will omit proofs that depend on the characterization of irreducible
representations of GL2(Qp), and the properties of standard presentations of Reptors.

3.1 The Functor of Colmez

We now give a description of the functor of Colmez, for GL2(Qp)). We will then use the discussion
of the previous section, to derive some properties using ”purely algebraic” methods. The main
idea of Colmez was to establish a functor from smooth, admissible mod p representations to étale
(φ,Γ)-modules. Then, one can use the equivalence of Fontaine (section 2.7), to connect to the
Galois side of the Langlands philosophy.

3.1.1 (φ,Γ)-module structure on OL-modules

Let L/Qp be a finite extension, and suppose that G = GL2(Qp)). Whenever Π is a smooth,
admissible representation over OL, and of finite length over OL[G], we will give an étale (φ,Γ)-
module structure on certain subrepresentations of Π. Then, by taking an inverse limit on all such
representations, we obtain an étale (φ,Γ)-module D(Π). The map Π 7→ D(Π) will turn out to be
a functor with good properties. Throughout this section, we will always work with OL-modules
that are also objects of Reptors as wel. As we proved it in the previous sections, such modules are
actually modules over OL/ϖ

nOL as well (for some n).
An étale (φ,Γ)-module is necessarily a module over OE . The first idea in establishing the

functor D of Colmez is to find an O+
E -module structure, and then take the tensor product with

OE , to obtain an OE -module. The action of GL2(Qp) will give the O+
E -structure via the following

isomorphism:

Proposition 3.1.1. Using the notation of 2.7, we have that:

O+
E ≃ OL

[[(
1 Zp

0 1

)]]
(3.1)

where the ring on the right hand side is the Iwasawa algebra of
(
1 Zp

0 1

)
with coefficients in OL.

Proof. Notice that

(Zp,+) ≃
(
1 Zp

0 1

)
as topological groups. Then, by 2.3.6, OL[[T ]] ≃ OL

[[(
1 Zp

0 1

)]]
. But O+

E is just the formal power
series ring OL[[T ]].

From now on, let Π ∈ ReptorsG (defined in section 2.6), and let M be a subset of Π which is
stable under the action of N0 =

(
1 Zp

0 1

)
. Π is always given the discrete topology, andM is equipped

with the discrete topology as well.

Lemma 3.1.2. M has a natural structure of a topological OL

[[(
1 Zp

0 1

)]]
-module.

31
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Proof. Π is smooth, hence Π =
⋃

n Π
Hn , where Hn is the nth standard neighbourhood basis

element of 0: Hn = {g ∈ G : g ≡ 1G (mod ϖn)}. Now N0/p
n acts on M ∩ ΠHn . These actions

are compatible, hence define an action of OL[[N0]]. This action is continuous, since the action
of OL and N0 are both continuous, and together they form a dense set in OL[[N0]] (proposition
2.3.9).

The lemma implies that we have a continuous action of O+
E on M . To be precise (following the

notation of Colmez), we can write DPed(M) (Ped as in pedantic) for

DPed(M) = O+
E ⊗O+

E
M.

Fact 3.1.3. M ≃ DPed(M) as OL-modules.

Corollary 3.1.4. The Pontryagin dual M∨ is also equipped with a continuous action of OE
+.

In fact, this corollary will be used to define the functor of Colmez. From now on, we only
require M to be a topological OE

+-module; in particular M can be the original M or its dual M∨

as well. We shall give a (φ,Γ)- module structure on this new M over O+
E . In order to do that,

we need the stronger assumption on M ; that it is stable under the (continuous) P+-action (again
following the notations of Colmez’s original article), where

P+ =

(
ZP \ {0} Zp

0 1

)
.

We will denote the isomorphism of 3.1.3 by ι : M ≃ DPed(M). We define φM : DPed(M) →
DPed(M) by

φM (ι(v))
def
= ι

((
p 0
0 1

)
· v
)
,

and for each a ∈ Z×
p , we define σa : DPed(M)→ DPed(M) by

σa(ι(v))
def
= ι

((
a 0
0 1

))
.

Proposition 3.1.5. The above φM , and the Z×
p -action defined by σa turn DPed(M) into a possibly

non-finitely generated (φ,Γ)-module over O+
E .

Proof. Clearly, the actions of φM and σa are OL-linear. Since the action of P+ is continuous on
M , the endomorphisms φM and σa are continuous as well. Furthermore, these actions commute
for all a ∈ Z×

p .
It remains to prove the semi-linearity conditions. To deduce that φM is φ-semilinear, consider

the embedding (
1 Zp

0 1

)
↪→ OL

[[(
1 Zp

0 1

)]]
.

By theorem 2.3.9, the OL-translates of the image of this embedding give a dense set, hence by the

continuity of φM , it is enough to show the φ-semi- linearity for λ =

(
1 a
0 1

)
, where a ∈ Zp.

φM (λι(v)) = ι

((
p 0
0 1

)
λv

)
= ι

((
p 0
0 1

)(
1 a
0 1

)
v

)
=

= ι

((
p pa
0 1

)
v

)
= ι

((
1 pa
0 1

)(
p 0
0 1

)
v

)
=(

1 a
0 1

)p

· φM (ι(v))

By proposition 2.7.5, v 7→ vp corresponds exactly to φ via the isomorphism of 2.3.6. The φ-semi-
linearity of φM follows. For the action σ of Z×

p , the exact same argument can be repreated, simply
by replacing ”p” with ”x” in the above calculation, where x ∈ Z×

p . At the end, one uses proposition
2.7.9.

By now, we can associate to any continuous P+-representation (or its dual) a (φ,Γ)- module
over OE

+. The difficulty is to associate a (φ,Γ)-module, that is étale, and finite-dimensional.
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Definition 3.1.6. We use the notation W(Π) for the set of sub-OL-modules W of Π, that satisfy
the following properties:

1. W is stable under the action on GL2(Zp) and Z(G),

2. W is finitely generated over OL.

3. W generates Π as an OL[G]-module.

The reason for these conditions will be explained in the next section. Note, that by lemma
2.6.6, W is actually of finite length over OL. Condition 2. and 3. forces any W ∈ W(Π) to be
both sufficiently small, and sufficiently large, in some sense. The reason for the conditions is that
these ensure that the compact induction I(W ) is well-defined and surjects to Π (see proposition
3.1.10).

Proposition 3.1.7. If Π ∈ ReptorsG, then W(Π) ̸= ∅. More precisely: there exists a compact
open subgroup K ≤c,o G such that ΠK ∈ W(Π).

Proof. The construction is explicit. By our assumption, Π is of finite length over OL[G]. We claim
that ∃n ∈ N such that the ”standard” open pro-p subgroup Kn = {g ∈ GL2(Qp) | g ≡ 1 mod pn}
satisfies that ΠKn generates Π. Let 0 = Π0 < . . . < Πn−1 < Πm = Π be a composition series of
Π, and vi ∈ Πi \ Πi−1. Then clearly {vi}mi=1 is a generating set of Π. By 2.2.6 part c), for each
i = 1, . . .m there exists an open subgroup Hi such that vi ∈ ΠHi . But then H =

⋂m
i=1Hi satisfies

that for each i: vi ∈ ΠH . H is a finite intersection of open sets, hence itself open. Since Kn forms
a neighbourhood basis of 1, ∃n s.t. Kn ⊆ H. But then ΠH ⊆ ΠK , hence ΠK generates Π. Since
Kn ≤ GL2(Zp), Π

Kn is clearly stable under the action of GL2(Zp) and the center of G. Since Π is
admissible, the subspace ΠK

n is finitely generated over OL.

Proposition 3.1.8. Let W ∈ W(Π). Then Π is generated as an OL-module by elements of the
form

(
pn a
0 1

)
w, where n ∈ Z, a ∈ Qp and w ∈W .

Proof. We know thatW generates Π as a left OL[G]-module. It is enough to show gW ⊆
(
pn a
0 1

)
W ,

whenever g ∈ GL2(Qp).

1. ( 1 0
0 x ) ∈ GL2(Zp) if |x|p = 1. But then by the GL2(Zp)-stability of W , we have

(
pn a
0 x

)
W =(

pn ax−1

0 1

)
( 1 0
0 x )W ⊆

(
pn x−1a
0 1

)
W . Hence it is enough to show that for any g ∈ G, gW ⊆(

pn a
0 x

)
W , where |x|p = 1.

2. Let ( x y
0 z ) ∈ GL2(Qp) be arbitrary. We have that z ̸= 0, and x/z = pnu where |u|p = 1. Then

by the Z(G)-stability of W ,

( x y
0 z )W =

(
pn yu−1z−1

0 u−1

)
( uz 0

0 uz )W ⊆
(

pn yu−1z−1

0 u−1

)
W.

We can apply point 1. From now on, it is enough to show that for each g ∈ GL2(Qp),
gW ⊆ BW where B is the subgroup of upper triangular matrices of GL2(Qp).

3. From the Iwasawa-decomposition of GL2(Qp), g = bk, where b is upper-triangular, and
k ∈ GL2(Zp). But then gW = bkW ⊆ bW by the GL2(Qp)-stability of W . The proof is
complete, using point 2.

Let us denote K = GL2(Zp), Z = Z(G) Let Π ∈ ReptorsG, W in W(Π). Then I(W ) is the
compact induction

C- IndGK·Z W = {ϕ : G→W such that ϕ is of finite

support modulo KZ, kϕ(h) = ϕ(kh) if k ∈ KZ}.

We give a G-action on I(W ) via gϕ(h) = ϕ(hg). If ϕ ∈ I(W ), then we can consider it as a function
on G/KZ (which is the Bruhat-Tits tree of G): if gh−1 ∈ KZ, then ϕ(h) = gh−1ϕ(h) = ϕ(g)
(as W is KZ-stable). The condition that ϕ should have finite support modulo KZ can then be
understood as ”ϕ has finite support in G/KZ”.
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Lemma 3.1.9. I(W ) ≃OL

⊕
g∈G/KZ W .

Proof. We map ϕ to the collection of its values on the inverses: the gth coordinate of ϕ is ϕ(g−1)
(we could map ϕ to ϕ(g), but we follow the notation of the article of Colmez). Since ϕ has finite
support in G/KZ, this collection is in the direct sum. Conversely, any element of the direct sum
defines a ϕ in I(W ).

Proposition 3.1.10. Consider the map Φ :
⊕

g∈G/KZ wg 7→
∑

g∈G/KZ g · wg.

i.) Φ is a well-defined I(W )→ Π map;

ii.) Φ is G-equivariant;

iii.) Φ is surjective.

Proof. i.): holds by the previous lemma: explicitly, ϕ 7→
∑

g∈G/KZ gϕ(g
−1). The image is a

well-defined element of Π, since W is assumed to be KZ-invariant. ii.): Φ(hϕ) =
∑
gϕ(g−1h) =∑

gϕ((h−1g)−1). By a change of variables r = h−1g, this is equal to
∑

r hrϕ(r) = hΦ(ϕ). All of
these summations are performed on on G/KZ. iii.): W generates Π as an OL[G]-module. This
means that any element can be written as

∑
giwi. The proposition follows.

We denote the kernel of Φ with R(W,Π); we have the short exact sequence

0 R(W,Π) I(W ) Π 0.Φ (3.2)

We give an alternative descrption of some elements of I(W ). Let g ∈ G, v ∈W .

[g, v](h) =

{
hg · v, if hg ∈ KZ
0, if hg /∈ KZ.

(3.3)

Here we consider [g, v] as a G→W function. We shall see that it is actually an element of I(W ).
We use the notation [g,W ] =

⋃
v∈W {[g, v]}

Proposition 3.1.11. [g, v] satisfies

1.) [g, v] is indeed in I(W );

2.) If we identify I(W ) with
⊕

g∈G/KZ Wg, where Wg ≃W , then [g, v] corresponds to v ∈Wg;

3.) Φ([g, v]) = gv;

4.) [g, v] = g[1, v].

Proof. If k ∈ KZ, then for any g, h ∈ G, we have that hg ∈ KZ ⇐⇒ khg ∈ KZ. But then

k[g, v](h) =

{
khg · v if hg ∈ KZ

0 if hg /∈ KZ

}
=

{
khg · v if khg ∈ KZ

0 if khg /∈ KZ

}
= [g, v](kh).

We need that [g, v] has constant support modulo KZ. hg ∈ KZ if and only if h−1KZ = gKZ.
Hence the only class on which [g, v](h) is nonzero, is Wh−1 =Wg (since the value of ϕ(h) of any ϕ
is in Wh−1 , see the proof of 3.1.9). I.e., the support of [g, v] module KZ is not only finite, but in
fact a single point. The proof of 1.) is finished. The value of [g, v] at this single point is hgv, for
any h such that h−1KZ = gKZ. But then we can choose h to be g−1, hence hgv = v. This shows
2.). 3.) follows from 2.) immediately. 4.) is trivial: [1, gv](h) = h1gv = hgv = [g, v](h).

To put it simply, [g, v] is the element of I(W ) that has a single non-zero coordinate, located in
the gth direct summand, with value v: I(W ) =

⊕
g∈G[g,W ].
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3.1.2 Standard Presentations

The use of standard presentations is essential to prove properties of the functor of Colmez. We will
only list the most important properties of standard presentations, and omit most of the proofs.

A standard presentation, to put it simply, is a choice ofW ∈ W(Π) such that the kernel R(W,Π)
has a ”nice” generating set. Fix an element g ∈ G. Suppose that y ∈ W ∩ g−1W . Then we have
that for the map Φ of proposition 3.1.10, Φ([g, y]) = gy = Φ([1, gy]). Both y and gy are elements of
W , hence Φ is well defined on [g, y] and [1, gy]. This shows that rg(y) := [g, y]− [1, gv] ∈ R(W,Π).
If g ∈ KZ, [g, y] = g[1, y] = [1, gy]; in this case rg = 0. If g /∈ KZ, then Wg ̸= W1 shows that
[g, y] ̸= [1, gv] (they are nonzero in different coordinates); hence rg(y) is a nonzero element of
R(W,Π).

Definition 3.1.12. We say that the sequence of diagram 3.2 is a standard presentation of Π, if
R(W,Π) is generated by elements of the form rP (y), where

P =

(
p 0
0 1

)
.

We use the notation W(0)(Π)
def
= {W ∈ W(Π), such that W gives a standard presentation of Π}.

The quotient set G/KZ is the Bruhat-Tits tree of G. It has naturally a root element, which we
denote by σ0; it corresponds to 1. The tree is indeed a tree graph, which has a well-defined notion
of distance on the set of its vertices, which we shall denote by d. Now for some n ∈ N, consider the
following sub-OL-module of Π: W [n] =

∑
d(s,σ0)≤n sW . Then we have that W [0] = W , and W ⊆

W [n], since W [i] ⊆ W [j] whenever i ≤ j. By the triangle inequality, we have (W [n])[m] = W [n+m].
Moreover, the action of K (and hence KZ) fixes σ0, and the action of G is distance-preserving on
the tree. Hence W [n] is preserved by the action of KZ. From this, the following fact is trivial:

Fact 3.1.13. If W ∈ W(Π), then W [n] ∈ W(Π).

Lemma 3.1.14. If V,W ∈ W(Π), then for sufficiently large N , V ≤W [N ].

Proof. Since W is in W(Π), V is finitely generated over OL. Since W ∈ W(Π), W generates Π as
an OL[G]-module, hence Π =

⋃
nW

[n]. But then each of the finitely many generators of V are in
some W [N ] for N sufficiently large.

We state the following lemma without proof.

Lemma 3.1.15. If W ∈ W(0)(Π), then W [n] ∈ W(0)(Π).

The lemma implies the following propositions immediately.

Proposition 3.1.16. If Π admits a standard presentation (i.e. ∃W ∈ W(0)(Π)), then for any
W ′′ ∈ W(Π), there exists a W ′ ∈ W(0)(Π) that contains W ′′. In other words, the subset W(0)(Π)
is cofinal in W(Π).

Proof. There exists a W ∈ W(0)(Π) by our assumption. By lemma 3.1.15, W [n] is also an element
of W(0)(Π). By lemma 3.1.14, since both W and W ′ are elements of W(Π), for large enough N ,
W ′ ⊆W [N ]. But then we can simply set W ′′ =W [N ].

Proposition 3.1.17. If W1,W2 ∈ W(0)(Π), then there exists a W ∈ W(0)(Π), such that Wi ⊆W .

Proof. By lemma 3.1.14, there exists an N , such thatW2 ⊆W [N ]
1 . Also, by definition,W1 ⊆W [N ]

1 .

By lemma 3.1.15, W
[N ]
1 ∈ W(0)(Π).

Theorem 3.1.18. Any Π ∈ ReptorsG admits a standard presentation.

We shall not prove this theorem here, due to the nature of the proof: it strongly depends on the
classification of irreducible admissible representations of GL2(Qp). Describing this classification is
out of the scope of this text. Most of the proofs and theorems we discussed until now would work
for GL2(K) for some p-adic number field K as well. However, theorem 3.1.18 may fail. Analogous
statements may also fail for generalizations defined for GLn, instead of GL2.
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We denote the Bruhat-Tits tree of GL2(Qp)/Z · GL2(Zp by T . Note that two vertices a, b ∈ T
are connected by an edge if and only if there exist representatives g, h ∈ G such that [g] = a, [h] = b
and g−1h =

(
p 0
0 1

)
. We set IA(W,Π) =

∑
a∈A aW ⊆ Π.

One of the most important properties of standard presentations is that the following lemma
holds.

Lemma 3.1.19. Suppose that W ∈ W(0)(Π). Let A1 ⊆ A2 be connected subtrees of T . Let
µ ∈ IA1

(W,Π)∨ such that µ is 0 on sW , whenever s represents an external vertex of the tree.
Then µ can be uniquely extended by zeros to an element µ ∈ IA2

(W,Π).

3.1.3 The definition of D

Let Π be an element of ReptorsG, and W ∈ W(Π). Recall that [g,W ] = {[g, v] : v ∈ W} is a
subset of I(W ).

Definition 3.1.20. Let IZp
(W ) be the sub-OL- module of I(W ), generated by [

(
pn a
0 1

)
,W ], where

a is an element of Qp, satisfying that a+ pnZp ⊆ Zp.

We use the notation D
^
W (Π)

def
= Φ(IZp(W ))∨, where ∨ is the Pontryagin duality functor, and

Φ is the surjection I(W )→ Π, defined in proposition 3.1.10.

If one thinks of I(W ) as the direct sum
⊕

g∈G/KZ Wg, then IZp
(W ) is generated by the elements

with coordinates only in Wx for x =
(
pn a
0 1

)−1
. But then the image by Φ is simply the OL-

submodule generated by {
(
pn a
0 1

)
·w}. It turns out that Φ(IZp

(W )) is more or less independent of
the choice of W , and is instead something that describes the representation Π itself.

Proposition 3.1.21. LetW2 ≤W1 be two elements ofW(Π). Then the induced map Φ(IZp(W2)) ↪→
Φ(IZp(W1)) turns Φ(IZp(W2)) into a finite index sub-OL-module of Φ(IZp(W1)).

Proof. We have that W1 ≤ W
[n]
2 for n sufficiently large; and that (W

[n]
2 )[1] = W

[n+1]
2 . Hence it is

enough to show the proposition for W2 ≤W [1]
2 . This means that W1 ⊆ Φ(IZp

(W2)) +
(

p−1 0
0 1

)
W2.

Now if n ≥ 1, then
(
pn i
0 1

)(
p−1 0
0 1

)
∈ P+. Hence Φ(IZp

(W1)/Φ(IZp
(W2) is a quotient of

(
p−1 0
0 1

)
W2,

which is of finite length over OL, hence finite as a set. The proposition follows.

Proposition 3.1.22.

OE ⊗OE+ D
^
W1

(Π) ≃ OE ⊗OE+ D
^
W2

(Π)

Proof. By the previous proposition 3.1.21, and the exactness of the Pontryagin duality functor, we
have that

0→ K → D
^
W1

(Π)→ D
^
W2

(Π)→ 0

is an exact sequence with K a finite module. The claim follows from proposition 2.7.13.

Definition 3.1.23. For Π ∈ ReptorsG, we define

D(Π) = lim←−
W∈W(Π)

OE ⊗OE+ D
^
W (Π)

via the isomorphisms OE ⊗OE+ D
^
W1

(Π) ≃ OE ⊗OE+ D
^
W2

(Π).

By theorem 3.1.18, the set W(0) and hence by 3.1.16, we have that D can be defined as an inverse
limit on W(0)(Π), instead of W(Π). In fact, Colmez defines D as a limit on W(0)(Π). We use the
above definition instead, since it makes the analogue to other Montréal functors (where standard
presentations are not present) more apparent. The main point of standard presentations is that
they have nice properties, and due to the cofinality ofW(0)(Π) inW(Π), these properties translate
to properties of D(Π). We shall see (but it is intuitively clear, since it is a limit via isomorphisms)

that D is essentially D
^
W , but it does not depend on the choice of W ∈ W(Π). Π is a smooth G-

representation, hence it is a continuous G-representation when endowed with the discrete topology.
Note that Π with the discrete topology is also a topological module over OL, by proposition 2.6.3
4.). But then D

^
W (Π) = Φ(IZp

(W ))∨ is the Pontryagin-dual of a discrete topological OL-module,

hence compact. The dual action of OL is still continuous, hence turning D
^
W (Π) into a topological

OL-module.
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Proposition 3.1.24. D(Π) ≃ OE ⊗OE+ D
^
W (Π) as topological OE -modules, for any W ∈ W(Π),

via the natural projection map of the inverse limit.

Proof. By proposition 3.1.22, the projective limit in the definition of D(Π) is the limit of iso-
morphisms. Furhtermore, if W1,W2 ∈ W(Π), there is a common upper bound W of Wi, by
proposition 3.1.14 in W(Π). Hence an element of D(Π) is uniquely determined by its image in

OE ⊗OE+ D
^
W (Π).

We wish to apply the discussion at the beginning of this section, in particular lemma 3.1.2, to
define a (φ,Γ)-module structure on M . However, Φ(IZp

(W )), and hence its dual are not closed
under the action of P+. The P+-action is instead given on a finite-index (and complete) submodule

D+
W (Π) of D

^
W (Π); by proposition 2.7.13,

OE ⊗OE+ D+
W (Π) = OE ⊗OE+ D

^
W (Π),

and from the (φ,Γ)-module structure of D+
W (Π) over OE

+, we obtain a (φ,Γ)-module structure on
OE ⊗OE+ D+

W (Π), over OE .

Definition 3.1.25. Let W ∈ W(Π). D+
W (Π) is the set of µ ∈ Π∨, which are 0 on

(
pn a
0 1

)
·W

whenever a+ pnZp is not fully contained in Zp.

An element µ of D+
W (Π) is a function on Π, hence we can consider the restriction µ

∣∣
Φ(IZp (W ))

,

which is just an element of D
^
W (Π). We claim that r : µ 7→ µ

∣∣
Φ(IZp (W ))

is an injective map

D+
W (Π)→ D

^
W (Π).

Proposition 3.1.26. We have that

1.) D+
W (Π) is a finite index topological submodule of D

^
W (Π) via r.

2.) D+
W (Π) is stable under the P+-action inherited from Π∨.

3.) D+
W (Π) is a complete OL-module.

Proof. 1.): By proposition 3.1.8, we know that elements of the form
(
pn a
0 1

)
w generate Π as an

OL-submodule, where w ∈ W,a ∈ Qp, n ∈ Z. Notice that since W is an OL submodule and OL-
elements commute with elements of G, we have that these elements generate Π as a Z-submodule
as well.

Let µ ∈ D+
W (Π). The restriction of µ to Φ(IZp

(W )) is a linear map from D+
W (Π) to D

^
W (Π). Its

kernel consists of the µ which are zero on Φ(IZp
(W )) = ⟨

(
pn a
0 1

)
w : a+pnZp ⊆ Zp⟩. But then such a

µ is zero on all elements of the form
(
pn a
0 1

)
w, where w ∈W,a ∈ Qp, n ∈ Z, hence µ = 0 in Π∨ (since

these elements generate Π as an Abelian group, and µ is a group homomorphism). We obtained

that D+
W (Π) ≤ D

^
W (Π) but still need that this is a topological embedding (i.e. the restriction

r : µ 7→ µ
∣∣
Φ(IZp (W ))

gives a homeomorphism to its image. The embedding i : Φ(IZp
(W )) ↪→ Π is

a topological embedding, hence i∨ (which is just the precomposition with the embedding i) is a

quotient map Π∨ → D
^
W (Π); in particular, it is a closed map.

Closed subgroups of Π∨ are precisely the annihilators of closed subgroups of Π. W is a closed
subgroup of Π, hence

(
pn a
0 1

)
W is a closed subgroup as well. The annihilator of any such subgroup

is closed in Π∨. Now take J =
⋂
Ann(

(
pn a
0 1

)
W ) where the intersection is over matrices where

a+ pnZp ̸⊆ Zp. But J is precisely D+
W (Π). This shows that D+

W (Π) is a closed subgroup in Π∨.
The restriction of a continuous closed map to a closed subset is still a closed map. In particular,

i∨
∣∣
D+

W (Π)
is a closed map. Now clearly r = i∨

∣∣
D+

W (Π)
; which gives that r is bijective (as we have

proved at the beginning of the proof), and closed and continuous; hence a homeomorphism.

It remains to show that D+
W (Π) is of finite index. Elements of D

^
W (Π) which are also elements

of D+
W (Π) are precisely the continuous group homomorphisms from Φ(IZp(W )) to T that can be

extended as 0 to Π continuously. Let ν ∈ D
^
W (Π) We claim that if ν

∣∣
W
≡ 0, then ν extends to Π

via zeros. This is an immediate consequence of 3.1.19. We set N = {µ ∈ D
^
W (Π) : µ

∣∣
W
≡ 0}. We

have just seen hat N ⊆ D+
W (Π). NowW is a finite set, since it is torsion, and finite length over OL.

N is the annihilator of W , hence taking the quotient by N corresponds to taking the embedding
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W ↪→ Φ(IZp
(W )); hence the quotient D

^
W (Π)/N is a finite set. But then clearly D

^
W (Π)/D+

W (Π)
is finite as well.

2.): It is enough to show that whenever µ ∈ D+
W (Π), then gµ ∈ D+

W (Π), for any g ∈ P+. P+

is clearly generated by
(
p 0
0 1

)
and

(
Z×
p Zp

0 1

)
, hence it is enough to show the proposition for g of

this form. Let v ∈ Π be of the form
(
pn a
0 1

)
w where w ∈ W and a + pnZp ̸⊆ Zp. By definition,

gµ ∈ D+
W (Π) if and only if gµ(v) = 0 for any such v. As a reminder: gµ(v)

def
= µ(g−1v). Now for

g =
(
p 0
0 1

)
:

(
p 0
0 1

)
µ(v)

def
= µ

((
p 0
0 1

)−1

·
(
pn a
0 1

)
· w

)
= µ

((
pn−1 p−1a
0 1

)
w

)

Here p−1a+ pn−1Zp is a circle with a larger radius and origin of larger norm than a+ pnZp, which
was not contained in Zp. Hence clearly p−1a + pn−1Zp ̸⊆ Zp. The assumption on µ implies then
that the above expression is 0.

Now for g = ( u z
0 1 ) with u ∈ Z×

p , z ∈ Zp:(
u z
0 1

)
µ(v)

def
= µ

((
u z
0 1

)−1

·
(
pn a
0 1

)
· w

)
=

= µ

((
u−1 −u−1z
0 1

)
·
(
pn a
0 1

)
· w
)

= µ

((
u−1 0
0 1

)
·
(
pn a− z
0 1

)
· w
)

Let ρ ∈ Zp be such that a + pnρ /∈ Zp. Such a ρ exists by the assumption on v. We claim
that |a− z + pnρ|p > 1. Here −z ∈ Zp and a + pnρ /∈ Zp shows that |a+ pnρ|p > |−z|p. But
if |s|p ̸= |t|p, then |s+ t|p = max(|s|p, |t|p) for any s, t ∈ Qp. In particular, |a− z + pnρ|p =

max(|a+ pnρ|p, |−z|p) = |a+ pnρ)|p > 1. This shows that (by the assumption µ ∈ D+
W ), that

µ
((

pn a−z
0 1

)
· w
)
= 0. But then µ

((
u−1 0
0 1

)(
pn a−z
0 1

)
· w
)
= ( u 0

0 1 ) · µ
((

pn a−z
0 1

)
· w
)
= 0, as desired.

3.): It is enough to show that r(D+
W (Π)) is closed in D

^
W (Π); since D

^
W (Π) is a profinite

group, and closed subgroups of profinite groups are again profinite, via the ”same” projective
limit. D

^
W (Π) is profinite via a ϖ-adic limit, hence r(D+

W (Π)) is too; i.e. r(D+
W (Π)) is complete.

As observed in the proof of 1.), r = i∨
∣∣
D+

W (Π)
, and i∨ is a closed map, D+

W (Π) is a closed set;

hence r(D+
W (Π)) is a closed set.

We obtain that, by proposition 2.7.13, OE⊗OE+D
^
W (Π) ≃ OE⊗OE+D+

W (Π), and by proposition
2.7.14, OE ⊗OE+ D+

W (Π) is a (φ,Γ)-module over OE . To apply this proposition, we needed that
D+

W (Π) has a continuous P+-action; but this is clearly satisfied, since the action of P+ is the
restriction of the action of P+ on Π∨, which is the dual of a continuous P+-representation (by the
smoothness of Π), hence itself a continuous P+-representation.

Corollary 3.1.27. The P+-action on each of the OE ⊗OE+ D
^
W (Π) turns D(Π) into a possibly

non-finitely generated (φ,Γ)-module over OE.

Proof. If W1 ⊆ W2 are elements of W(Π), then D+
W2

(Π) → D+
W1

(Π) is a surjective map of pos-
sibly non-finitely generated (φ,Γ)-modules; since the P+-action on both is the restriction of the
P+-action on Π∨. When the tensor product with OE is applied to compatible (ϕ,Γ)-modules,
the resulting modules will be compatible (φ,Γ)-modules by 2.7.14. Hence the (φ,Γ)-action is
compatible with the inverse limit.

3.1.4 The Étale Property

So far, we have established that D(Π) is a possibly non-finitely generated (φ,Γ)-module over OE .
Now we wish to prove the following:

1. D(Π) is a (φ,Γ)-module over OE , i.e. it is finitely generated over OE .

2. D(Π) is étale as a (φ,Γ)-module over OE .
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We prove the first point only with the algebraic approach of Emerton ([5]), in section 3.3. For
now, we prove that D(Π) is an étale, possibly non-finitely generated (φ,Γ)-module over OE .

We will use the notation

IΠU (W )0 = {µ ∈ Π∨ : µ
∣∣(

pn a
0 1

)
W

= 0 if a+ pnZp ̸⊆ U}.

Note that with this notation, D+
W (Π) = IΠZp

(W )0.

Lemma 3.1.28. Consider the map ψΠ :
⊕p−1

i=1 ϖ
∨ = (ϖ∨)p → ϖ∨, defined by

(µ0, . . . , µp−1) 7→
p−1∑
i=0

(
p i
0 1

)
µi.

The restriction of ψΠ to (D+
W (Π))p is denoted by ψ. Then ψ is an injective map, with its image

contained in D+
W (Π); and its cokernel in D+

W (Π) is finite as a set.

Proof. D+
W (Π) is closed under the action of P+, by proposition 3.1.26. As µi ∈ D+

W (Π), and(
p i
0 1

)
∈ P+, the image of ψ is in D+

W (Π).

For the injectivity of ψ, we claim that
(
p i
0 1

)
µ is an element of IΠi+pZp

(W )0, whenever µ ∈ D+
W (Π).

We have to show that if v ∈
(
pn a
0 1

)
W for some a, n with a+pnZp ̸⊆ i+pZp, then

((
p i
0 1

)
µ
)
(v) = 0.

We set v =
(
pn a
0 1

)
w for some w ∈W .((

p i
0 1

)
µ
)
(v) = 0 ⇐⇒ µ

((
p−1 −p−1i
0 1

)(
pn a
0 1

)
w
)
= 0 ⇐⇒ µ

((
pn−1 p−1(a−i)
0 1

)
w
)
= 0.

We know that a + pnZp ̸⊆ i + pZp. Multiplying both sides with p−1, and subtracting p−1i
gives p−1a − p−1i + pn−1 ̸⊆ Zp. But then since µ ∈ D+

W (Π) = IΠZp
(W )0, we have that the above

expression is indeed 0, and the claim is true. Now, Zp =
∐p−1

i=0 i + pZp. By proposition 3.1.8, Π
is generated by

(
pn a
0 1

)
W , where a ∈ Qp, n ∈ Z. But on such elements,

(
p i
0 1

)
µi is nonzero if and

only if a+ pnZp ⊆ i+ pZp. Hence the supports of
(
p i
0 1

)
µi are pairwise disjoint. The injectivity of

ψ follows.
Let Ri ⊆ Φ(I(W )) be

∑(
pn a
0 1

)
W , where a + pnZp ⊆ i + pZp. By lemma 3.1.19, if µ ∈

Φ(Ii+pZp
(W ))∨, which also happens to be 0 on

∑(
p i
0 1

)
W , then µ can be extended with zeros to

some λi ∈ Π∨. We claim that then λi =
(
p i
0 1

)
µi for some µi D

+
W (Π). Indeed, consider µi

def
=(

p−1 −p−1i
0 1

)
λi. Let a, n such that a+ pnZp ̸⊆ Zp. Then

µi

((
pn a
0 1

)
w
)
= λi

((
p i
0 i

)(
pn a
0 1

)
w
)
= λi

((
pn+1 pa+i
0 1

)
w
)
= 0,

since i + ap + pn+1Zp ̸⊆ i + Zp and λi is supported elements generated with a, n, where this
continment is fulfilled.

But then the image of ψ contains any µ which is 0 on W and on
(
p i
0 1

)
for each i = 0, . . . p− 1.

The set of these µ is denoted by N . Then for the cokernel: D+
W (Π)/ imψ ⊆ N , and N is the

annihilator of Q
def
= W +

∑(
p i
0 1

)
W in D+

W (Π). But quotients with the annihilator are the duals of
the objects they annihilate; in this case, N is the dual of Q. This shows that N is of finite length
over OL, hence finite as a set.

Theorem 3.1.29. D(Π) is an étale possibly non-finitely generated (φ,Γ)-module over OE .

Proof. From lemma 3.1.28, we have that ψ is injective with finite cokernel. If we consider D+
W (Π)

as a module over OE
+, the map ψ becomes (D+

W (Π))p → D+
W (Π); (µ0, . . . , µp−1) 7→

∑p−1
i=0 (1 +

T )iφ(µi). This shows, that the image of φ generates a finite cokernel submodule of D+
W (Π).

Taking the tensor product with OE , we get that ψ induces an isomorphism D(Π)p → D(Π),
by proposition 2.7.13. But then ψD shows that the image of φ(D(Π)) generates D(Π) as an
OE -module. Equivalently, the possibly non-finitely generated (φ,Γ)-module structure on D(Π) is
étale.

Our main goal is to more or less prove the following theorem.
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Theorem 3.1.30 (Main Theorem). D is an exact functor from ReptorsG to ΦΓet
tors(OE).

The exactness of D follows from the properties of standard presentations. The proof is not
particularly complicated, but we will not include it here.

Theorem 3.1.31. D is an exact functor.

It remains to show that D(Π) is finitely generated over OE , whenever Π ∈ ReptorsG. We will
prove this statement with a completely different, mostly algebraic machinery.

3.2 Skew Polynomial Rings

Reminder: in the introduction, we used the notation F ∗M = R ⊗F M , whenever F : R → R is a
ring endomorphism.

Definition 3.2.1. Suppose that R is a ring, F : R → R is a flat ring endomorphism. We define
the ring R[F ] to be the quotient of the free R-algebra generated by a single variable F̂ , which
satisfies the relations F̂ r = F (r)F̂ for any r ∈ R. We call R[F ] the skew polynomial ring in one
indeterminate over R, twisted by F .

In non-commutative algebra, one usually considers a more general definition of skew polynomial
rings: the ring endomorphism of the ring does not need to be flat; furthermore, the commutation
relation is of the less restrictive form aF̂ = F (a)F̂ + δ(r) for some derivation δ. For our goals,
however, the above definition is sufficiently general.

Example 3.2.2. If F is just the identity R → R, we obtain the usual polynomial ring: R[F ] ≃
R[X].

Theorem 3.2.3 (Skew Hilbert basis theorem). If R is a left (right) Noetherian ring, then for any
automorphism α : R→ R, the skew polynomial ring R[α] is again left (right) Noetherian.

For a proof (even when a derivation δ is present) see [13]. However, if the endomorphism F
is not an automorphism, the theorem might fail, even if we require F to be flat. However, it is
true that a skew polynomial ring (in the sense of 3.2.1) for a flat endomorphism F , over a (left)
Noetherian ring R is still (left) coherent.

Since we have an injection of rings R ↪→ R[F ], any left R[F ]-module M ∈ R[F ]-Mod has a left
R-module structure. Additionally, the multiplication from the left by F̂ gives a map M → M ,
defined by m 7→ F̂m. This map is F -semilinear, since F̂ (am) = (F̂ a)m = F (a)F̂m. It hence gives
a linear map F ∗M →M ; a⊗m 7→ aFm.

Proposition 3.2.4. The map ϕ : F ∗M →M ; r ⊗m 7→ rFm is indeed R-linear.

Proof. Additivity is clear. rϕ(r′ ⊗m) = r(r′Fm) = (rr′)Fm = ϕ(rr′ ⊗m) = ϕ(r(r′ ⊗m)).

We shall now prove the following theorem. The proof is a transcription of the proof found in
[5] (although we work with non- commutative rings, and sometimes give more details).

Theorem 3.2.5. Suppose that R ∈ Ring is left-Noetherian, F : R → R is a flat endomorphism.
Then R[F ] is left-coherent.

Suppose that the following is an exact sequence of left R[F ]-modules.

0 M ′ M M ′′ 0

Then the following diagram (over R) has exact rows, since F is flat:

0 F ∗M ′ F ∗M F ∗M ′′ 0

0 M ′ M M ′′ 0

ϕM′ ϕM ϕM′′ (3.4)

We can use the snake lemma (or the long exact sequence of the homology of chain complexes) to
obtain an exact sequence:

0→ kerϕM ′ → kerϕM → kerϕM ′′ →
→ cokerϕM ′ → cokerϕM → cokerϕM ′′ → 0

(3.5)



3.3. THE ALGEBRAIC POINT OF VIEW 41

Lemma 3.2.6. Let M ∈ R[F ]-Mod, M ≤ R[F ]. Then M is finitely generated over R[F ] ⇐⇒
cokerϕM is finitely generated over R.

Proof. ” =⇒ ”: Suppose that we have surjection R[F ]m → M , then we have an exact sequence
of R[F ]- modules, given by 0 → Z → R[F ]m → M → 0. Considering the diagram 3.4, we get
the kernel-cokernel sequence 3.5; which ends with cokerϕR[F ]m → cokerϕM → 0. We claim that
Rm ≃ cokerϕR[F ]m . This finishes the proof of this direction of the lemma.

cokerϕR[F ]m ≃ R[F ]m/ imϕR[F ]m ≃ (R[F ]/ imϕR[F ])
m. Consider ϕR[F ] : F

∗R[F ]→ R[F ], it is
given by r⊗ p(F ) 7→ rFp(F ), where p is some polynomial of F . But then clearly, the image is just
F ·R[F ], hence cokerϕR[F ] = R.

” ⇐= ”: suppose that cokerϕM is finitely generated. Since M ≤ R[F ], the following is a
well-defined subset of M :

M≤d def
= M ∩

D⊕
i=0

RF i.

Clearly, M≤d is a left R-submodule of M . Since R is Noetherian and
⊕D

i=0RF
i is a finitely gen-

erated left R-module, M≤d is finitely generated over R for each d. Furthermore, M =
⋃

d≥0M
≤d.

We claim that there is an index D such that the mapM≤D → cokerϕM is surjective. R is Noethe-
rian, hence cokerϕM is a Noetherian R-module. If there was no such D, then the images of the
modules ϕM (M≤d) would form an infinite ascending chain in cokerϕM .

Since M≤D → cokerϕM is surjective, for any q ≥ D, we have that M≤q ≤ M≤D + FM .
Furthermore, FM ∩M≤q ⊆ FM≤q−1; hence M≤q ⊆ M≤D + FM≤q−1. Recursively, we obtain
that M≤q ⊆ A[F ]M≤D. q was arbitrary; thus we have M = A[F ]M≤D. But M≤D is finitely
generated over A; its finite generating set finitely generates M over A[F ].

Lemma 3.2.7. Let M be a finitely generated left R[F ]-module. Then M is finitely presented ⇐⇒
kerϕM is finitely generated over R.

Proof. M is finitely generated over R[F ], hence we have an exact sequence 0 → M ′ → R[F ]m →
M → 0 for some R[F ]-module M ′. Then we have a diagram of the form 3.4, from which we obtain
a short exact sequence

kerϕR[F ]m → kerϕM → cokerϕM ′ → Rm → cokerϕM → 0,

since we have shown that Rm ≃ cokerϕR[F ]m in the proof of lemma 3.2.6. kerϕR[F ]m = 0, since
1⊗ p(F ) 7→ Fp(F ) is injective. Hence the above sequence is changed to

0→ kerϕM → cokerϕM ′ → Rm → cokerϕM → 0.

But then, since R is Noetherian, kerϕM is finitely generated over R if and only if cokerϕM ′ is.
By 3.2.6, cokerϕM ′ is finitely generated over R if and only if M ′ is finitely generated over R[F ];
but this is furthermore equivalent to M being finitely presented via the sequence M ′ → R[F ]m →
M → 0.

Proof of Theorem 3.2.5. Suppose that M ≤ R[F ] is a finitely generated left submodule. We need
that M is finitely presented. We have an exact sequence 0 → M → R[F ] → M ′′ → 0 for some
R[F ]- module M ′′. The associated kernel cokernel sequence begins with 0→ kerϕM → kerϕR[F ].
We have seen in the proof of 3.2.7, that kerϕR[F ] = 0; it follows that kerϕM = 0. In particular,
kerϕM is finitely generated over R, hence, by 3.2.7, M is finitely presented over R[F ].

3.3 The Algebraic Point of View

Now, we shall consider a general theory of DVRs, that will allow us to deduce finitary properties
of the functor of Colmez. This section is closely following the article [5].

Suppose that A is a discrete valuation ring, with uniformizer t, residue field k, and equipped
with a flat local endomorphism F : A → A. Clearly A is Noetherian, hence, by 3.2.5, A[F ] is left
coherent. For us, this ring A will be one of the ”+”-version power series rings, defined in section
2.7.1. If M is a module over A, then we will use the notation M [t] to denote the submodule of M
annihilated by t.
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Definition 3.3.1. We say that an A-module M is admissible as an A-module, if M is A-torsion,
and M [t] is finite dimensional over k.

Here if m ∈M [t] and if a− b ∈ tA, then (a− b)m ∈ Atm = 0; which shows that M [t] is indeed
a k-vector space. If A is a DV R, we have an embedding A ↪→ Â, where Â is the t-adic completion
of A.

Lemma 3.3.2. Let M ∈ A-Mod be admissible as an A-module. Then M [tn] is of finite length
over A. As a consequence, since M [tn] is torsion, and finitely generated over a PID, M [tn] ≃⊕k

i=1(A/t
iA)ri .

Proof. M [t] is of finite length, since it is finite-dimensional over k. We proceed by induction. In
the exact sequence

0→M [t]→M [tn+1]
·t−→ tM [tn+1]→ 0

the last term tM [tn+1] is contained in M [tn], which is of finite length by the induction hypothesis.
Hence tM [tn+1] is of finite length as well, and M [tn+1] is then a finite length extension of a finite
length module, i.e. itself of finite length.

Proposition 3.3.3. Let M ∈ A-Mod be admissible as an A-module. Then

M ≃ (K/A)r ⊕
N⊕
j=1

(A/tjA)rj .

Proof. We have that M [t] =
⊕r

(1)
1

i=1 A/t Consider the exact sequence Clearly, M [t] ⊆ M [tn]. We

have thatM [tn] ≃
⊕Nn

i=1(A/t
iA)r

(n)
i . But each of the A/tiA submodules contain precisely one copy

of A/tA. This shows that r
(1)
1 =

∑Nn

i=1 r
(n)
i . In particular, when n is increased, the total number

of direct summands stays the same. Some of the direct summands ”terminate” in some A/tkA,
while others do not. Since M is torsion, M = lim−→n

M [tn]. The non-terminating direct summands

give lim−→A/tnA ≃ K/A ≃ K̂/Â.

Corollary 3.3.4. Let M ∈ A-Mod be admissible as an A-module. Then

M∨ ≃ Âr ⊕ torsion part.

Definition 3.3.5. We call the integer r the corank of the module M ; it is simply the free rank of
the dual module M∨.

Proposition 3.3.6. If M is an admissible A-module, then M is Artinian.

Proof. By the structure theorem 3.3.3, it is enough to show that K/A is an Artinian A-module.
K/A ≃ A[t−1]/A ≃

⋃
t−nA/A as A-modules. We claim that the only submodules of K/A are of

the form A/tnA. This follows from the fact that the submodule generated by any element is of
this form. But submodules of this form can not form an infinite strictly decreasing chain.

Now that the basic properties of admissible A-modules are established, we investigate the
interaction of such modules with the endomorphism F .

Let AddFA be the full subcategory of A[F ]-modules that are finitely generated over A[F ] and
admissible as an A-module.

Lemma 3.3.7. If M ∈ AddFA, then F
∗M and M have the same corank.

Proof. F is local, hence A⊗F (K/A)r = A⊗F (lim−→A/tnA)r = lim−→(A⊗F A/t
nA) ≃ (K/A)r.

Theorem 3.3.8. AddFA satisfies the following:

1.) If M ∈ AddFA, then M is finitely presented over A[F ].

2.) AddFA is an Abelian category.

3.) If M ∈ AddFA, then M is of finite length over A[F ].
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Proof. The map ϕM : F ∗M →M , which is a module homomorphism. M is finitely generated over
A[F ], hence cokerϕM is finitely generated over A, by lemma 3.2.6. By lemma 3.2.7, it is enough to
show that kerϕM is finitely generated over A. Now F ∗M and M have the same corank. Consider
cokerϕM . It is finitely generated over A by lemma 3.2.6 as M is finitely generated over A[F ]. But
then kerϕM is finitely generated over A as well. 3.2.7 implies that M is finitely presented over
A[F ].

2.): We will use proposition 1.0.3. Clearly, 0 is in AddFA, and if two modules are in AddFA, then
so is their direct sum. We need that quotients and submodules of M ∈ AddFA are again in AddFA.
If N is quotient of some M ∈ AddFA, then N is again trivially finitely generated over A[F ], M [t]
surjects to N [t], and N is A-torsion. Now suppose that N is an A[F ]-submodule of M ∈ AddFA.
Then N [t] ≤M [t], hence it is finite-dimensional over k. N is A-torsion, since M is A-torsion. By
1.), M is finitely presented over A[F ], and M/N is in AddFA by the previous reasoning, so M/N
is finitely presented as well. Hence M →M/N is a morphism of finitely presented A[F ]-modules.
By 3.2.5, A[F ] is left coherent, implying that the category of finitely presented modules over A[F ]
is Abelian. In particular, it contains all kernels, hence N is also finitely presented. This shows
that N is finitely generated as an A[F ]-module.

3.): By proposition 3.3.6, M is Artinian as an A-module, hence it is Artinian as an A[F ]-
module. By 2.), any submodule of M is finitely generated over A[F ], hence M is Noetherian. Any
module that is both Noetherian and Artinian is of finite length.

The following holds in general:

Lemma 3.3.9. For any regular local ring A, the global dimension of A is equal to its Krull
dimension. In particular, if A is a DVR, its global dimension is 1. Furthermore, if A is a DVR
with uniformizer t and residue field k = A/t, M ∈ A-Mod, then Tor0(M,k) = M/tM , and
Tor1(M,k) =M [t].

In our setting, each of the Tor-modules is equipped with a k[F ]-module action: on M/tM ,

F : m + tM 7→ F (m) + tM is well defined. On M [t], the action F : m 7→ F (t)
t F (M). By the

locality of F , F (t) ∈ tA, and hence F (t)/t is well-defined (A is a UFD).

Proposition 3.3.10. Suppose that M is a finitely generated left A[F ]-module, which is torsion
over A. Then if M/tM is torsion over k[F ], then M is admissible as an A-module.

Proof. It is enough to show that M [t] is finite-dimensional over k. First, let M = ⟨m⟩ be a cyclic
A[F ]-module, andM0 = Am be the A-module generated by m. A is a DVR,M is A-torsion, hence
M0 ≃ A/tr for some r ∈ N. Taking the tensor product with A[F ], the injection M0 →M gives an
exact sequence:

0→ N → A[F ]⊗A M0 →M → 0. (3.6)

Modding out by t, we get a short exact sequence

N/tN → A[F ]⊗A M0/t(A[F ]⊗A M0)→M/tM.

Since M0 ≃ A/tr, we have that

A[F ]⊗A M0/t(A[F ]⊗A M0) ≃ k[F ]
(A[F ]⊗A M0)[t] ≃ k[F ]

as A[F ]-modules.
Using the first isomorphism, we obtain

N/tN → k[F ]→M/tM,

where M/tM is k[F ]-torsion. But then there exists an element n ∈ N such that its image in
A[F ] ⊗A M0/t(A[F ] ⊗A M0) is non-zero (the kernel of k[F ] → M/tM can not be zero). Let us
then denote the A[F ]-submodule of A[F ]⊗AM0, generated by the image of this n (denoted by n′).
Then since the n′+t(A[F ]⊗AM0) ̸= 0, clearly n′ ̸= 0, henceM ′ ̸= 0. LetM ′′ = (A[F ]⊗AM0)/M

′,
i.e. we have the exact sequence

0→M ′ → A[F ]⊗A M0 →M ′′ → 0.
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The associated long exact sequence of Tor-modules, by lemma 3.3.9, and the two isomorphisms
above, gives

0→M ′[t]→ k[F ]→M ′′[t]→M ′/tM ′ → k[F ]→M ′′/tM ′′ → 0.

M ′ is a cyclic A[F ]-module, since it is generated by n′: but then M ′/tM is cyclic over k[F ]. By
the construction of n′, its image in k[F ] = A[F ]⊗A M0/t(A[F ]⊗A M0) is non-zero. But then the
image of any m′ ∈ M ′ is nonzero (its generator is not in the kernel); i.e. M ′ injects to k[F ]. But
then we have the short exact sequence:

0→M ′[t]→ k[F ]→M ′′[t]→ 0.

M ′ is a non-zero submodule of a torsion A-module, hence M ′[t] ̸= 0. Now M ′′[t] is a quotient
of k[F ], by the non-zero M ′[t]; and any such quotient is finite- dimensional (k[F ] is just the
standard polynomial ring k[X]). But then M ′′ is admissible, and in fact M ′′ is an object of AddFA.
By theorem 3.3.8, AddFA is Abelian, hence any quotient of M ′′ is again in AddFA. By the exact

sequence of the diagram 3.6, 0
ϕ−→ N → A[F ]⊗AM0 →M → 0. As M ′′ = (A[F ]⊗AM0)/M

′, with
M ′ ⊆ im(ϕ), M ′′ surjects to M . The claim for cyclic M follows.

Suppose now thatM is generated by the elementsm1, . . .mn, as an A[F ]-module. LetM ′ be the
A[F ]-module generated bym1, andM

′′ =M/M ′, i.e. 0→M ′ →M →M ′′ → 0 is exact. NowM ′′

is generated by n−1 elements, and it is torsion over A; furthermore,M ′′/tM ′′ ≃ (M/M ′)/t(M/M ′)
is a quotient of M/tM , hence k[F ]-torsion. By induction, M ′′ is admissible over A. Now the long
exact sequence of Tor-modules, associated to 0→M ′ →M →M ′′ → 0 gives, by lemma 3.3.9

0→M ′[t]→M [t]→M ′′[t]→M ′/tM ′ →M/tM →M ′′/tM ′′ → 0.

M ′′ is admissible, henceM ′′[t] is finite-dimensional over k, hence torsion over k[F ]. By assumption,
M/tM is k[F ]-torsion. But then M ′/tM ′ is an extension of k[F ]-torsion modules, i.e. itself k[F ]-
torsion. By induction, M ′ is admissible as well. Actually, both M ′ and M ′′ are admissible as
A-modules and finitely generated over A[F ], hence elements of AddFA, which is an Abelian category
by theorem 3.3.8. Hence M is also admissible.

We shall now focus on the application of the theory established in this section to the functor of
Colmez. Throughout section 3.1, we considered representations from the category ReptorsG, with
G = GL2(Qp), and coefficients in OL, where L is a p-adic number field. Whenever Π is an object
of ReptorsG, the module D+

W (Π) is a (φ,Γ)-module over OE
+. OE

+ = OL[[T ]] is a local ring with
maximal ideal (T,ϖ), hence we can not choose it as the ring ”A” of this section. Instead, we work
with A := k+E ≃ kL[[T ]], which is indeed a DVR. Also, φ : kL[[T ]]→ kL[[T ]] is a flat endomorphism
(by corollary 2.7.6), and it is local (by proposition 2.7.7).

Suppose that Π ∈ ReptorsG. Then there is an A-action on Π[ϖ], since Π is smooth: indeed,
Π =

⋃
ΠU where U runs on compact open normal subgroups of G; hence k[G/U ] acts on ΠU [ϖ],

and these actions are compatible. For now, we will simply assume that Π is ϖ-torsion. The general
case will follow easily.

Proposition 3.3.11. Let M be an A-module which is a topological A-module with the discrete
topology. Then M is admissible as an A-module (in the sense of definition 3.3.1). if and only if
M is admissible as a Zp-representation over OK (in the sense of 2.4.1).

Proof. A = k[[t]] is isomorphic to the Iwasawa-algebra k[[Zp]], by proposition 2.3.6. We can
consider M as a OL[[Zp]]-module, via the surjection OL[[Zp]]→ k[[Zp]].

First suppose that M is admissible as an A-module. Then M is smooth by assumption, and
trivially OK-torsion. We also have that M [t] is finite-dimensional over k, hence finitely generated
over OL. Since ϖ annihilates M , we can apply proposition 2.4.15, hence it is enough to show that
there is one pro-p subgroup U of Zp which satisfiesMU is finitely generated over OL. Equivalently:
MU is finite-dimensional over k. Let δ be a topological generator of Zp, and we write addition in
Zp multiplicatively. We have that δ corresponds to 1 + t in k[[t]], hence t corresponds to δ − 1. If
v ∈M [t], then tv = 0, i.e. (δ − 1)v = 0. By the assumption, M [t] is finite dimensional over k; but
this means precisely that MZp is finitely generated over OK .

Conversely: if M is admissible as a Zp- representation over OL, then any pro-p subgroup of Zp

fixes only a module that is finitely generated over OL (hence finite- dimensional over k). But then
M [t] is finite- dimensional over k.
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Note that since ReptorsG is Abelian (by theorem 2.6.5), any subrepresentation would be ad-
missible as a G-representation. However, being admissible as an A-module (or, equivalently, by
the above proposition, being admissible as a Zp-representation) is a much stronger statement, as
it requires the fixed point submodule of smaller groups to be finitely generated.

Proposition 3.3.12. If M is an admissible A-module, which is a topological A-module with the
discrete topology, then the Pontryagin dual of M , M∨ is a finitely generated topological A-module.

Proof. This is immediate from the previous proposition (3.3.11), and using proposition 2.4.11.

Our main goal is to show the following theorem:

Theorem 3.3.13. Let Π ∈ ReptorsG, which satisfies Π = Π[ϖ]. LetW ∈ W(Π). Then Φ(IZp
(W ))

is admissible as a k+E = OL/ϖOL[[t]]-module.

Note that by proposition 3.3.12, we immediately obtain that the Pontryagin-dual of Φ(IZp
(W ))

is finitely generated. But Φ(IZp(W ))∨ is just D
^
W (Π). Taking the tensor product with OE gives:

Proposition 3.3.14. Let Π ∈ ReptorsG be such that Π = Π[ϖ]. Then D(Π) is finitely generated
over OE .

Theorem 3.3.15. Let Π ∈ ReptorsG. Then D(Π) is finitely generated over OE .

Proof. ReptorsG is Abelian. Hence Π[ϖk] is also in ReptorsG. By proposition 2.6.7, there exists
some n such that Π[ϖn] = Π. We can apply the previous statement for Π[ϖk]/Π[ϖk−1]. By
theorem 3.1.31, D is an exact functor. We obtain the proof with induction on k, and proving the
claim for Π[ϖk] (which terminates in finitely many steps, as Π[ϖn] = Π for some n).

In the rest of this section, we prove theorem 3.3.13. Now Φ(IZp(W )) is just
∑(

pn a
0 1

)
W , where

a + pnZp ⊆ Zp. Clearly, this is the case if and only if a ∈ Zp. Also, the Frobenius F of A is just
the multiplication with

(
p 0
0 1

)
. But then:

Proposition 3.3.16. Φ(IZp
(W )) is the A[F ]-submodule of Π, generated by W .

We can reformulate the above theorem as:

Theorem 3.3.17. Let Π ∈ ReptorsG with Π = Π[ϖ]. Let W ∈ W(Π), and let M(Π,W ) the
A[F ]-submodule of V , generated by V0. Then M(Π,W ) is admissible as an A-module.

Note that since V0 is finite-dimensional over a finite field, it is finite as a set. But then
M(Π,W ) is finitely generated over A[F ]. We can hence use 3.3.10. It remains to show that
M(Π,W )/tM(Π,W ) is torsion over k[F ].

Proposition 3.3.18. In the setting of 3.3.17 M(Π,W )/tM(Π,W ) is k[F ]-torsion.

Proof. Since W ∈ W(Π), we have that GW = Π. If P is the Borel subgroup of G, then by the
Iwasawa-decomposition Π = k[P ]W (as mentioned in the proof of 3.1.8). Furhtermore, by the
same proof, P ⊆ F−N( 1 Qp

0 1

)
FN GL2(Zp)Z(G). This shows (since W is GL2(Zp)Z(G)-invariant)

that Π = k[F−1]M(Π,W ). In particular, every element of Π/M(Π,W ) is annihilated by some
power of F . It implies that the TorA-modules of Π/M(Π,W ) are k[F ]-torsion. Now we have a
short exact sequence of A-modules

0→M(Π,W )→ Π→ Π/M(Π,W )→ 0

From the long exact sequence of Tor-modules (taking the tensor product w.r.t k = A/t), it is enough
to show that Π/tΠ is k[F ]-torsion (since then Π/M(Π,W )[t] and Π/tΠ are both torsion, hence
M(Π,W )/tM(Π,W ) is torsion as well. This is precisely the statement of proposition 3.3.19.

Proposition 3.3.19. Let Π in ReptorsG. Then Π/ (( 1 1
0 1 )− 1)Π is

(
p 0
0 1

)
-torsion.

The proof we give is based on Emerton’s proof of a much more general theorem in [14]. Through-
out this proof, Hi denotes group cohomology.

Let N0 =
(
1 Zp

0 1

)
of G, VK =

(
1+pkZp Zp

pkZp 1+pkZp

)
, and Uk =

(
1+pkZp pkZp

pkZp 1+pkZp

)
Then clearly,

N0 =
⋂

k Vi = lim←−Vi.
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Lemma 3.3.20. Π/tΠ ≃ H1(N0,Π).

Proof. Clearly, H0(N0,Π) = ΠN0 . Furthermore, we have that ΠN0 ≃ Homk[[N0]](k,Π), via the
homomorphism ρ : v 7→ [µv : 1 7→ v]. ρ is trivially k[[N0]]-linear and injective. It is surjective,
because any µ : k → Π (as N0 acts trivially on k) must map 1 to an element on which N0 acts
trivially, i.e. to some v ∈ ΠN0 . It is then enough to show that the Ext1 functor is Π/tΠ. It can be

calculated via the projective resolution of k. One such resolution is 0 → k[[t]]
·t−→ k[[t]] → k → 0.

Applying the Hom functor and removing the ”-1th” term, we get the half-exact sequence

0→ Homk[[t]](k[[t]],Π)→ Homk[[t]](k[[t]],Π)→ 0.

Then clearly Ext1(k,Π) = Π/tΠ, and we have shown the claim.

Lemma 3.3.21. H1(N0,Π) ≃ lim−→k
H1(Vi,Π).

Proof. We have N0 =
⋂

k Vi, hence
⋃

k Π
Vi . Similarly for any injective resolution: we have a

diagram of chain complexes of the form

0 0 0

0 ΠV1 IV1
1 IV1

2 . . .

0 ΠV2 IV2
1 IV2

2 . . .

. . . . . . . . .

This is a direct limit of cochain complexes, which commutes with taking cohomology of cochain
complexes. The claim follows.

Lemma 3.3.22. Each of the H1(Vi,Π) are F -invariant.

Proof. Let f =
(
p 0
1 0

)
. The action of F is the multiplication with

(
1 p
0 1

)
. For upper-triangular

matrices, this is precisely the conjugation with f . The action of F on the first cohomology groups
H1(Vi,Π) is given by the Hecke action

(Fµ)(g) =
∑

u∈N0/F (N0)

F (µ(gu−1))

(where µ is a crossed homomorphism). This action is induced by the map F : ΠVi → ΠfVif
−1

composed with the summation on the FN0F
−1-cosets. A direct calculation shows the F -invariance

of the H1 spaces.

Lemma 3.3.23. Each of the Hm(Vi,Π) are finitely generated over k; and hence F -torsion.

Proof. We can choose an injective resolution of Π that is admissible. This is because by theorem
2.4.11, the dual of torsion admissible representations are finitely generated over the Noetherian
Iwasawa-algebra OL[[U ]] for some pro-p compact open subgroup U of G that contains Vi. But the
category of finitely generated modules over any Noetherian ring has enough projectives. Dualizing
gives an injective resolution consisting of admissible representations. Now in such an injective
resolution, each of the (Ir)Vi is finitely generated over k, as Vi is an open subgroup of G, and Ir is
admissible. Clearly, the cohomology groups Hm(Vi,Π) are then also finitely generated over k. In
particular, H1(Vi,Π) is finite as a set, hence F -torsion.

The proof of proposition 3.3.19 follows from the previous lemmas, since Π/tΠ is the direct limit
of F -torsion modules.
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3.3.1 Final Notes

We completely proved, in several steps, the following theorem:

Theorem 3.3.24. Let C be the full subcategory of ReptorsG, which consists of objects annihilated
by ϖ. Then D is a functor from C to the category of finitely generated (ϕ,Γ)-modules over OE .

We did not prove any statements about standard presentations, but we used the fact that all
object of ReptorsG admit them. Using a property of standard presentations, we showed that, in
fact, the image of D consists of étale (φ,Γ)-modules. Without proof (the proof again depends on
the properties of standard presentations) we claimed that D is exact. Using this statement, we
proved (3.3.15) that D(Π) is finitely generated for all Π ∈ ReptorsG.

Top sum things up, we obtained:

Theorem 3.3.25. D is an exact functor from ReptorsG to ΦΓet
tors(OE).

Now we define the functor D for the other two categories defined in section 2.6.
For Π ∈ RepCOL

G, we define D(Π) as the inverse limit of lim←−n∈N D(Π/ϖn). For Π ∈ RepCL G

with OL-lattice Π0, we define D(Π) to be L⊗D(Π0).
We shall not prove the following theorem (but we did prove many parts of it).

Theorem 3.3.26. Using the above definitions

1. D is an exact functor from Π ∈ RepCOL
G to ΦΓet(OE).

2. D is an exact functor from RepCL G to ΦΓet(E)

There are actually several generalizations of the functor of Colmez, even for any reductive
algebraic groups over Qp, or even K, where K is a p-adic number field (which is distinct, in
general, from L). For details, see [4], [3]. Surprisingly, many of the properties of D exist in this
much more general setting. The difference comes from two main points: on the one hand, one
can not guarantee the existence of standard presentations. Hence these generalizations are only
half-exact. On the other hand, the algebraic point of view of Emerton (and section 3.3) relies
heavily on the fact that k[[Zp]] is a DVR. This fails for k[[OK ]] where K is a p-adic number field,
and the analogues in higher-dimensional algebraic groups do not seem to allow to deduce finitary
properties. In fact, one does not know whether or not the image of these generalized Montréal
functors are finitely generated as (φ,Γ)-modules.
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