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Introduction

Rényi’s parking problem concerns the following random process: given an interval of length x,
we repeatedly place intervals, or “cars” of unit length with position chosen uniformly from the
remaining space until no more cars can fit. The higher dimensional analogue, where, for instance,
balls or cubes are placed instead of intervals, has various practical applications, such as in the
kinetic theory of liquids, or the packing density of solid objects in a container.

The one-dimensional problem was first investigated by Rényi [19], who proved that if the
expected number of cars is M(x), then there is a constant C ≈ 0, 7476 such that M(x)/x → C

as x→ ∞. He also gave the analytic formula

C =

∫ ∞

0

exp

(
−2

∫ t

0

1− e−u

u
du

)
dt,

and additionally proved that M(x) = Cx + C − 1 + O(x−n) for all n. This was later improved
by Dvoretzky and Robbins [6] to

M(x) = Cx+ C − 1 +O

((
2e

x

)x−3/2)
.

These results are presented in Chapter 1. Dvoretzky and Robbins also proved that the number
of cars is asymptotically normal, furthermore, they gave an estimate for the variance. The
asymptotic normality was independently proved by Mannion [11].

Palásti [17] conjectured that in the two-dimensional case, when unit squares are placed in an
x × y rectangle, the expected number of squares M(x, y) has the asymptotic M(x, y) ∼ C2xy

as x, y → ∞, where C is the one-dimensional parking constant. This conjecture is still open,
however, numerical results [4] suggest that it is false.

Several variants of the parking problem have been a topic of research. An iterated version of
Rényi’s problem is discussed in [10]. One-dimensional variants where the intervals have random
length bounded from below were investigated in [1, 14, 15]. A review of some results about
the continuous problem can be found in [20]. A discrete version of the problem has also been
considered. Page [16] showed that if there are n points in a row and in each attempt, a pair of
adjacent points is chosen uniformly out of the remaining points, then after this process terminates,
the expected ratio of chosen points tends to 1− e−2 as n→ ∞. Some other discrete models were
studied in [2, 5, 7, 18].
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In this thesis, we consider a variant of the parking problem where intervals of random length
are placed. In this model, we make infinitely many attempts placing compact intervals in some
bounded open interval U . In each attempt, we pick a starting point of the interval I uniformly
in U , then we independently choose the (possibly zero) length of I from some fixed distribution
µ0. If the interval I obtained this way is contained in U and disjoint from all the previously
placed intervals, then it is placed down, otherwise, we do nothing in that attempt. It is easy
to see that when µ0 is a Dirac measure on a positive real number, this model is equivalent to
Rényi’s original problem.

The main goal of Chapter 2 is to answer the following question proposed by M. Abért:

Question. For what distributions µ0 do the placed intervals exhaust U in Lebesgue measure?

It is relatively easy to see that if µ0((0, r)) = 0 for some r > 0, then U is almost never
exhausted. We will see that this is the case also when µ0({0}) > 0. Somewhat surprisingly, it
turns out that except for these two cases, the Lebesgue measure of U is exhausted no matter
what µ0 is. More precisely, the following zero-one law is true:

Theorem 1. If either µ0({0}) > 0 or µ0((0, r)) = 0 for some r > 0, then the uncovered part of
U has positive Lebesgue measure almost surely. Otherwise, the uncovered part has zero Lebesgue
measure almost surely.

Instead of looking at the one-dimensional case, we will focus on a higher dimensional gener-
alization, from which the one-dimensional variant follows as a special case. In this generalized
model, U is taken to be an open set of finite Lebesgue measure in the Euclidean space Rd. Instead
of the length distribution µ0, we take a measure µ on the space of compact sets containing the
origin (more precisely, we take µ to be a Borel measure on the space of compact sets equipped
with the Hausdorff metric). In each attempt, we proceed as follows: we choose a set X with dis-
tribution µ and independently choose a point Y ∈ U uniformly. Then we take the set Z = X+Y

and place it down if it is contained in U and disjoint from all the previously placed sets. Note
that by the assumption that µ is concentrated on sets containing the origin, it is always true
that Y ∈ Z.

We will see that if the family of sets that µ is concentrated on satisfies the conditions defined
in Section 2.2, then U is exhausted almost surely. In particular, the following special case of the
main theorem is true:

Theorem 2. Suppose that µ is concentrated on a family of compact sets that contains finitely
many sets up to similarity, each of which has positive Lebesgue measure. If there is an r > 0 such
that µ a.e. set has diameter at least r, then the placed sets almost never exhaust U in Lebesgue
measure. Otherwise, U is exhausted almost surely.

For example, if we place compact balls with positive radius chosen from some fixed distribu-
tion, then U is exhausted if and only if the radius is unbounded from below. We will also see
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that if the radius is zero with positive probability, then U is not exhausted. More generally, we
will show the following theorem:

Theorem 3. Suppose that µ({{0}}) > 0. Then U is almost never exhausted in Lebesgue measure.

It is clear that in the one-dimensional case, combining Theorems 2 and 3 yields Theorem 1.
A further generalization of these results will be proved. Instead of choosing the translation

uniformly, it will be chosen from some probability distribution ν concentrated on U . This allows
us to pick a random point from Rd as well. We will see that if ν and the Lebesgue measure on
U are absolutely continuous with respect to each other and λ(U) < ∞, then Theorems 2 and 3
still hold. Furthermore, in the case λ(U) = ∞, Theorem 2 holds with the additional assumption
that each set is the union of convex sets with non-empty interiors, or there is a uniform bound
on the diameters. We do not know whether Theorem 3 holds when λ(U) = ∞.

The main idea of the proof is that instead of trying to determine the probability that a given
point x is covered, we can show that the Lebesgue density of the union of placed sets is positive
at x. If we take a ball B(x, r), then we can look at the first set Z that intersects this ball. If the
diameter of Z is large compared to r, then the conditions in Section 2.2 imply that either the
measure in a neighborhood is bounded from below, or x is contained in some set of arbitrarily
small measure. If the diameter of Z is small compared to r, then a lower bound can be given for
the conditional probability that Z is not too small. A Borel–Cantelli argument shows that if the
diameter can be arbitrarily small, then Z is infinitely often not too small, giving a lower bound
on the density using the condition on Z.

In Chapter 3, we return to the one-dimensional case with the goal of determining the Hausdorff
dimension of the uncovered part of the unit interval U . During the parking process, each time
an interval is placed, it splits a maximal uncovered interval into two pieces. If the length of
an interval can be arbitrarily small, then this gives a binary tree structure analogous to the
Cantor set. Using a theorem of Mauldin and Williams [12] about a certain type of random
recursive construction, we will first determine the Hausdorff dimension when F (t) = tα for some
α > 0, where F is the cumulative distribution function of the interval length. We will see
that the Hausdorff dimension of the complement is s(α) almost surely for some 0 < s(α) < 1.
Furthermore, s(α) can be expressed in terms of the beta function: it is the unique solution of
the implicit equation

2(α+ 1)B(α+ 1, s(α) + 1) = 1.

The main result in Chapter 3 is a condition for determining the Hausdorff dimension in the
general case. We will show the following theorem:

Theorem 4. Let F (t) be the cumulative distribution function of the interval length. Assume
that F (t) > 0 for t > 0. If there is an ε > 0 such that F (t)/tα is increasing (resp. decreasing)
on (0, ε), then the Hausdorff dimension of the complement at most (resp. at least) s(α) almost
surely.
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The proof of this theorem is based on constructing a coupling with the case F (t) = tα and
using the result from [12] to derive the bounds. Finally, we will construct an example where the
complement has Hausdorff dimension 0 almost surely and another example where the complement
has Hausdorff dimension 1, but zero Lebesgue measure almost surely.
Previous results. When the intervals can be arbitrarily small, this model was first studied by
Coffman, Mallows and Poonen [9] in the case when µ0 is uniform. Generalizing their results,
Baryshnikov and Gnedin [3] investigated the case when the cumulative distribution function of
µ0 is F (t) = tα for α > 0. They showed that for β ≥ 0, the expected sum of βth powers of
the gap lengths after N attempts is asymptotically c(β)N (s(α)−β)/(α+1) for some constant c(β),
where s(α) is the solution of the equation above. Substituting β = 1, it follows from this result
that the intervals placed exhaust U in Lebesgue measure almost surely. The main contribution
of this thesis is solving the problem of exhaustion for every distribution µ0 in one dimension and
generalizing the result to higher dimensions. However, unlike [3], our proof does not give explicit
estimates for the Lebesgue measure. The method of our proof is also completely different, as the
proofs in [3, 9] are based on solving a recursive integral equation similar to that used in Rényi’s
original proof.

The equation for the Hausdorff dimension s(α) was also obtained in [3]. The dimension in
the case α = 1 was computed in [12], though their model was not directly related to the parking
problem. The contribution of this thesis to the problem of determining the Hausdorff dimension
is the condition in Theorem 4. While the previous results are directly applicable only to F (t) = tα

due to the requirement of stochastic self-similarity, this theorem can be used for many choices of
F . Our proof depends crucially on the previous result by constructing a coupling with the case
F (t) = tα.
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Notations

U(x, y) uniform distribution on the interval (x, y)
Γ(x) gamma function

B(x, y) beta function
⌈x⌉ ceiling function
N set of natural numbers {0, 1, 2, . . . }

K(Rd) non-empty compact subsets of Rd

B(x, r) open ball of radius r centered in x
|A| cardinality of set A
χA indicator function of set A
intA interior of set A
∂A boundary of set A
A closure of set A

diamA diameter of set A
A∗ finite sequences made from A

λ Lebesgue measure
supp ν support of measure ν
σ(F) σ-algebra generated by F
F|A restriction of the σ-algebra to A ∈ F

(X | F) conditional distribution of X given F
|σ| length of sequence σ
σ|n initial segment of length n
σ ≤ ρ σ is an initial segment of ρ
σ < ρ σ is a strict initial segment of ρ
dimHA Hausdorff dimension of A
Hs(A) s-dimensional Hausdorff measure of A
Hs

δ(A) s-dimensional Hausdorff premeasure of A
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1. The one-dimensional parking problem

1.1 The parking constant

We will present Rényi’s [19] derivation for the parking constant in the one-dimensional case.
None of the results in this section are new.

Given an x > 0, we consider the following problem on the interval (0, x):

Definition 1.1.1. Let {Yi}∞i=1 be i.i.d. variables with distribution U(0, x). We define the interval
Ii = [Yi, Yi + 1]. The index set S ⊆ {1, 2, . . . } is defined recursively: i ∈ S if Yi < x− 1 and for
all j < i such that j ∈ S, Ii ∩ Ij = ∅.

Note that it does not matter whether the intervals are defined as open or closed, since the
probability that any two endpoints coincide is zero.

Let νx be the distribution of |S| when the interval has length x. One of the main questions
first investigated by Rényi is determining the expected number of intervals M(x) = E(νx). He
proved the following theorem about M :

Theorem 1.1.2 (Rényi). There is a constant C such that M(x)/x → C as x → ∞. The
constant C can be expressed as

C =

∫ ∞

0

exp

(
−2

∫ t

0

1− e−u

u
du

)
dt ≈ 0.7476.

Before we begin the proof, notice that M(x) = 0 for 0 < x ≤ 1. Also, M(x) = 1 for 1 < x < 2,
since Yi < x with positive probability and at most one interval can fit.

Lemma 1.1.3. If x > 0 and x ̸= 1, then xM ′(x+ 1) +M(x+ 1) = 2M(x) + 1.

Proof. Consider the parking process on the interval (0, x+1). Since the attempts are independent,
we may assume that 1 ∈ S. Conditioning on this event, Y1 is uniform in (0, x). If t = Y1, then I1
splits the interval (0, x+1) into intervals the intervals (0, t) and (t+1, x+1). It is easy to check
that given t, |{i ∈ S |Yi ⊆ (0, t)}| has the same distribution as νy and similarly, the number of
intervals in (t+ 1, x+ 1) has distribution νt−x. Therefore,

M(x+ 1) = E
(
νx+1

)
= E(E(|S| | t)) = 1 + E

(
E(νt | t) + E(νx−t | t)

)
=

= 1 +
1

x

∫ x

0

(
M(t) +M(x− t)

)
dt = 1 +

2

x

∫ x

0

M(t) dt.
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Multiplying by x, we obtain

xM(x+ 1) = 2

∫ x

0

M(t) dt+ x. (1.1.1)

This integral equation implies that M is continuous on the interval (1,∞). By the fundamental
theorem of calculus,

∫ x

0
M is differentiable on (1,∞), so M is differentiable on (2,∞). It is also

clear that M(x) = 1 for 1 < x < 2, hence M is also differentiable on (1, 2). The statement
follows by differentiating Eq. (1.1.1).

For s > 0, the Laplace transform of M is defined as

φ(s) =

∫ ∞

0

M(x)e−sx dx. (1.1.2)

The convergence of this integral is clear, since 0 ≤M(x) ≤ x for every x ≥ 0.

Lemma 1.1.4. lims→0+ s
2φ(s) = C.

Proof. Let w(s) = esφ(s). Since M(x) = 0 for 0 ≤ x ≤ 1, it is clear that∫ ∞

0

M(x+ 1)e−sx dx =

∫ ∞

0

M(x)e−s(x−1) dx = esφ(s) = w(s). (1.1.3)

It follows from Lemma 1.1.3 that M ′(x + 1) = O(1). Therefore,
∫∞
0
xM ′(x + 1)e−xs dx is

continuous as a function of s. Consequently,∫ ∞

0

xM ′(x+ 1)e−xs dx =
d

ds

(∫ s

0

∫ ∞

0

xM ′(x+ 1)e−xt dx dt

)
=

=
d

ds

(∫ ∞

0

∫ s

0

xM ′(x+ 1)e−xt dt dx

)
=

= − d

ds

(∫ ∞

0

M ′(x+ 1)e−xs dx

)
=

= − d

ds

([
M(x+ 1)e−xs

]∞
x=0+

+ s

∫ ∞

0

M(x+ 1)e−xs dx

)
=

= − d

ds
(−1 + sesφ(s)) = −w(s)− sw′(s).

(1.1.4)

Taking the Laplace transform of the equation in Lemma 1.1.3, we obtain∫ ∞

0

xM ′(x+ 1)e−xs dx+

∫ ∞

0

M(x+ 1)e−xs dx = 2

∫ ∞

0

M(x)e−xs dx+

∫ ∞

0

e−xs. dx

Substituting Eqs. (1.1.2) to (1.1.4), we get the equation

−w(s)− sw′(s) + w(s) = 2φ(s) +
1

s
,

hence,

sw′(s) + 2w(s)e−s = −1

s
. (1.1.5)
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We will solve this differential equation using variation of constants. First, we find a particular
solution of the homogeneous equation:

sw′
0(s) + 2w0(s)e

−s = 0

(logw0(s))
′ =

w′
0(s)

w0(s)
= −2e−s

s

logw0(s) = 2

∫ ∞

s

e−u

u
du

w0(s) = exp

(
2

∫ ∞

s

e−u

u
du

)
Now let w(s) = c(s)w0(s). Substituting into Eq. (1.1.5), we get the equation

sc′(s)w0(s) + sc(s)(w′
0(s) + 2w0e

−s) = −1

s

sc′(s)w0(s) = −1

s

c(s) = A+

∫ ∞

s

dt

t2w0(t)
.

The convergence of this integral is easy to see, since w0 ≥ 1. It follows that the general solution
for w is of the form

w(s) = Aw0(s) +

∫ ∞

s

w0(s)

t2w0(t)
dt

for some constant A. Since M(x) ≤ x, we can see that

0 ≤ w(s) ≤ es
∫ ∞

0

xe−xs dx =

[
−xe

−xs

s

]∞
x=0

+

∫ ∞

0

e−xs

s
dx =

1

s2
,

hence lims→∞ w(s) = 0. It is also clear that lims→∞ w0(s) = e0 = 1. Therefore,

lim
s→∞

w(s) = A+ lim
s→∞

∫ ∞

s

dt

t2w0(t)
= A,

consequently, A = 0.
An easy calculation shows that

s2w(s) =

∫ ∞

s

s2w0(s)

t2w0(t)
dt =

∫ ∞

s

s2

t2
exp

(
2

∫ t

s

e−u

u
du

)
dt =

=

∫ ∞

s

exp

(
−2[log u]tu=s + 2

∫ t

s

e−u

u
du

)
=

=

∫ ∞

s

exp

(
−2

∫ t

s

1− e−u

u
du

)
dt.

Since s2φ(s) = e−ss2w(s), it remains to show that s2w(s) → C as s→ 0+. We will assume that
s ≤ 1. Note that if u ≥ 1, then

1− e−u

u
≥ 1− e−1

u
≥ 3

5u
,
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which yields the bound

exp

(
−2

∫ t

s

1− e−u

u
du

)
≤ exp

(
−2

∫ t

1

3

5u
du

)
= e−6/5·log t = t−6/5

for t ≥ 1. On the other hand, the integrand of the outer integral is clearly bounded from above by
1. Since min

(
1, t−6/5

)
is integrable on (0,∞), we can apply the dominated convergence theorem:

lim
s→0+

s2w(s) = lim
s→0+

∫ ∞

0

χ{t>s} exp

(
−2

∫ t

s

1− e−u

u
du

)
dt =

=

∫ ∞

0

(
lim

s→0+
χ{t>s} exp

(
−2

∫ t

s

1− e−u

u
du

))
dt =

=

∫ ∞

0

exp

(
−2

∫ t

0

1− e−u

u
du

)
dt = C.

This calculation also shows that the constant C is finite.

To finish the proof, Rényi used the following variant of the Hardy–Littlewood Tauberian
theorem:

Theorem 1.1.5 ([8, Theorem 108]). Suppose that α : (0,∞) → R is increasing and for some
β > 0 and C,

lim
s→0+

sβ
∫ ∞

0

e−sx dα(x) = C.

Then
lim
x→∞

α(x)

xβ
=

C

Γ(β + 1)
,

where Γ is the gamma function.

By Lemma 1.1.4, applying this theorem to α(x) =
∫ x

0
M(t) dt and β = 2 yields

lim
x→∞

1

x2

∫ x

0

M(t) dt =
C

2
.

Using Eq. (1.1.1), we can conclude that

lim
x→∞

M(x)

x
= lim

x→∞

M(x+ 1)

x
= lim

x→∞

2

x2

∫ x

0

M(t) dt = C.

In the next section, an elementary way of finishing the proof will also be shown.

1.2 Estimate of the expectation

In this section, an estimate for M(x) due to Dvoretzky and Robbins [6] is proved. While they
also gave estimates for higher moments of νx, a simplified version of their proof is presented here,
giving only the estimate for M(x).

11



Theorem 1.2.1 ([6, Theorem 3]). There exists a constant C1 such that

M(x) = C1x+ C1 − 1 +O

((
2e

x

)x−3/2)
.

Proof. Let f(x) =M(x) + 1. It follows from Eq. (1.1.1) that for x > 0,

f(x+ 1) =
2

x

∫ x

0

f(t) dt. (1.2.1)

For x ≤ y, this implies that

f(y + 1) =
2

y

∫ x

0

f(t) dt+
2

y

∫ y

x

f(t) dt =
x

y
f(x+ 1) +

2

y

∫ y

x

f(t) dt. (1.2.2)

Notice that the function x 7→ x+ 1 is also a solution of Eq. (1.2.1). A similar calculation shows
that

y + 2 =
x

y
(x+ 2) +

2

y

∫ y

x

(t+ 1) dt. (1.2.3)

Let
Ix = inf

x≤t≤x+1

f(t)

t+ 1
, Sx = sup

x≤t≤x+1

f(t)

t+ 1
.

For 0 < x, y, it follows from Eqs. (1.2.2) and (1.2.3) that

f(y + 1)− Ix(y + 2) =
x

y
(f(x)− Ix(x+ 1)) +

2

y

∫ y

x

(f(t)− Ix(t+ 1)) dt ≥ 0 + 0 = 0,

hence
Ix+1 = inf

x≤y≤x+1

f(y + 1)

y + 2
≥ inf

x≤y≤x+1

Ix(y + 2)

y + 2
= Ix,

and similarly, Sx ≤ Sx+1.
Furthermore, for 0 < x ≤ y ≤ x+ 2,

f(y + 1)− f(x+ 1) =
x− y

y
f(x+ 1) +

2

y

∫ y

x

f(t) dt = O(1)

as x→ ∞, since f(x) = O(x). Consequently,

f(y + 1)

y + 2
− f(x+ 1)

x+ 2
=
f(y + 1)− f(x+ 1)

y + 2
+ f(x+ 1)

(
1

y + 2
− 1

x+ 2

)
= O

(
1

x

)
.

Therefore, Sx − Ix = o(1). Furthermore, for x ≤ y ≤ x+ 1, Ix − Iy = o(1) and Sx − Sy = o(1).
As a result, the limit C1 = limx→∞ Ix = limx→∞ Sx exists.

Let f∗(x) = f(x) − C1(x + 1) and fix an integer n ≥ 2. Note that In ≤ C1 ≤ Sn, hence f∗

takes on both non-negative and non-positive values on the interval [n, n+ 1]. The continuity of
f on (1,∞) implies that for some n ≤ y ≤ n+ 1, f∗(y) = 0. Clearly, f∗ also satisfies Eq. (1.2.1)
and consequently Eq. (1.2.2), which shows that for n ≤ x ≤ n+ 1,

f∗(x+ 1) =
y

x
f∗(y) +

2

y

∫ x

y

f∗(t) dt =
2

y

∫ x

y

f∗(t) dt.
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Let Tx = supx≤y≤x+1 |f∗(x)|. The previous equation implies that

Tn+1 ≤ 2

y

∫ n+1

n

Tn ≤ 2

n
Tn.

By induction,

Tn ≤ 2n−1

(n− 1)!
T2

for n ≥ 2. Hence, by Stirling’s formula,

Tn−1 ≤ 2n−2n(n− 1)

n!
T2 = O

(
2nn2√
n(n/e)n

)
= O

(
2e

n

)n−3/2

.

As the function x 7→ (2e/x)x−3/2 is decreasing for large x, we can conclude that

|f∗(x)| ≤ T⌈x⌉−1 = O

(
2e

⌈x⌉

)⌈x⌉−3/2

= O

(
2e

x

)x−3/2

.

Expanding the definitions of f∗ and f , we obtain the estimate to be proved.

Finally, we will prove that C1 = C, giving an alternative proof for M(x)/x→ C.

Corollary 1.2.2. lims→0+ s
2φ(s) = C1.

Proof. First, notice that

s2
∫ ∞

0

e−sxx dx = s2
[
−e

−sxx

s
+
e−sx

s2

]∞
x=0

= 1.

By Theorem 1.2.1, M(x) = C1x+O(1), hence,

s2φ(s) = s2
∫ ∞

0

e−sxM(x) dx = C1 +O(1) s2
∫ ∞

0

e−sx dx = C1 +O(s).
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2. The parking problem with random sets

Assume that µ is a Borel probability measure on the space of non-empty compact sets K(Rd)

with the topology induced by the Hausdorff metric. We will additionally assume that 0 ∈ X for
µ a.e. set X. Furthermore, let U ⊆ Rd be a non-empty open set and let ν be a Borel probability
measure on U . The parking process is defined analogously to the one-dimensional case:

Definition 2.0.1. Let {Xi}∞i=1 and {Yi}∞i=1 be independent sequences of i.i.d. variables, where
Xi ∼ µ and Yi ∼ ν. We define the set Zi = Xi + Yi. The index set S ⊆ {1, 2, . . . } is defined
recursively: i ∈ S if Zi ⊆ U and for all j < i such that j ∈ S, Zi ∩ Zj = ∅. Finally, let
A =

⋃
i∈S Zi.

The measurability of Zi is clear, since the map K(Rd) × Rd → K(Rd), (X,Y ) 7→ X + Y is
continuous. It is also easy to check that the set {(Z,Z ′) ∈ K(Rd)×K(Rd) |Z ∩ Z ′ = ∅} is open,
implying the measurability of the event {i ∈ S} for every i.

2.1 Singleton sets with positive probability

We will first show that if Zi is a singleton set with positive probability, then λ(U \A) > 0 almost
surely.

Proposition 2.1.1. The maps Z 7→ λ(Z) and Z 7→ ν(Z) with domain K(Rd) are Borel measur-
able.

Proof. It is enough to prove upper semi-continuity of the maps. Let Z ∈ K(Rd) such that
λ(Z) < t for some t. Since Z is closed, clearly Z =

⋂∞
n=1 Z1/n, where Z1/n is the open 1/n-

neighborhood of Z. The compactness of Z implies that Z1/n is bounded, therefore λ(Z1/n) is
finite. By measure continuity, there is an n such that λ(Z1/n) < t. Suppose that dH(Z,Z ′) < 1/n

for some Z ′, where dH denotes the Hausdorff metric. Then Z ′ ⊆ Z1/n, hence λ(Z ′) ≤ λ(Z1/n) < t.
This proves the upper semi-continuity.

For ν, the proof is the same, except that the measure continuity follows from the finiteness
of ν.

Lemma 2.1.2. Assume that µ({{0}}) = p0 > 0. Let Fm = σ(X1, . . . , Xm, Y1, . . . , Ym) and
suppose that Fm is given. Let Am =

⋃
i≤m,i∈S Zi, clearly Am is Fm-measurable. Also, let X ∼ µ

14



and Y ∼ ν be independent variables and let Z = X + Y . If ν(Am) < 1, then

P(ν(A) = 1 | Fm) ≤ P(ν(Z) > 0, Z ⊆ U \Am)

p0(1− ν(Am))
.

Proof. Let i > m. We will first give an upper bound on P(i ∈ S | Fm, Xi, Yi).
Suppose that m < j < i is such that Xj = {0} and Yj ∈ Zi. If j ∈ S, then Yj ∈ Zi ∩ Zj .

Otherwise, there is a k < j for which Yj ∈ Zk, hence Yj ∈ Zi∩Zk. In both cases i ̸∈ S. Therefore,
a necessary condition for i ∈ S is that there is no m ≤ j < i such that Xj = {0} and Yj ∈ Zi.
Another necessary condition is that Zi ⊆ U \Am. It follows from the independence that

P(i ∈ S | Fm, Xi, Yi) ≤

≤ P
(
(∄m < j < i : Xj = {0} ∧ Yj ∈ Zi), Zi ⊆ U \Am

∣∣Fm, Xi, Yi
)
=

=

i−1∏
m=j+1

(
1− P(Xj = {0}, Yj ∈ Zi |Xi, Yi)

)
· χ{Zi⊆U\Am} =

= (1− p0 ν(Zi))
i−m−1χ{Zi⊆U\Am}.

It is easy to see that the conditional distribution of Zi given Fm is the same as that of Z.
Therefore,

E
(
ν(A \Am)

∣∣Fm

)
= E

( ∞∑
i=m+1

χ{i∈S}ν(Zi)
∣∣∣Fm

)
=

=

∞∑
i=m+1

E
(
χ{i∈S}ν(Zi)

∣∣Fm

)
=

=

∞∑
i=m+1

E
(
P(i ∈ S | Fm, Xi, Yi) ν(Zi)

∣∣Fm

)
≤

≤
∞∑

i=m+1

E
(
(1− p0 ν(Zi))

i−m−1χ{Zi⊆U\Am}ν(Zi)
∣∣Fm

)
=

=

∞∑
i=m+1

E
(
(1− p0 ν(Z))

i−m−1χ{Z⊆U\Am}ν(Z)
)
=

= E
( ∞∑
i=m+1

(1− p0 ν(Z))
i−m−1χ{Z⊆U\Am}ν(Z)

)
.

If ν(Z) = 0, then every term of the sum is zero. Otherwise,

∞∑
i=m+1

(1− p0 ν(Z))
i−m−1ν(Z) =

ν(Z)

p0 ν(Z)
=

1

p0
.

Consequently,

E
(
ν(A \Am)

∣∣Fm

)
≤ E

(
χ{ν(Z)>0,Z⊆U\Am}

p0

)
=

P
(
ν(Z) > 0, Z ⊆ U \Am

)
p0

.
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Finally, we can apply Markov’s inequality:

P
(
ν(A) = 1

∣∣Fm

)
= P

(
ν(A \Am) = 1− ν(Am)

∣∣Fm

)
≤

≤
E
(
ν(A \Am)

∣∣Fm

)
1− ν(Am)

≤
P
(
ν(Z) > 0, Z ⊆ U \Am

)
p0(1− ν(Am))

.

Theorem 2.1.3. Suppose that µ({{0}}) > 0, ν ≪ λ and λ(U) <∞. Then λ(U \A) > 0 almost
surely.

Proof. Fix an ε > 0. If λ(U \ A) = 0, then there exists a minimal k such that λ(U \ Ak) < ε.
We will show that

P
(
λ(U \A) = 0

∣∣ k = m
)
≤ P(0 < λ(X) < ε)

p0
.

for every m.
Since Am is a compact subset of the open set U , it follows that U \Am is a non-empty open

set, therefore λ(U \ Am) > 0. If ν(Am) = 1, then for every i > m, Yi ∈ Am almost surely,
which implies that i ̸∈ S. Consequently, A = Am and λ(U \ A) = λ(U \ Am) > 0. Hence, it is
enough to consider the case when ν(Am) < 1. Note that {k = m}, {ν(Am) < 1} ∈ Fm. Further
conditioning on Fm, then applying Lemma 2.1.2, we obtain

P
(
ν(A) = 1

∣∣ k = m, ν(Am) < 1,Fm

)
≤

≤ P(ν(Z) > 0, Z ⊆ U \Am)

p0(1− ν(Am))
≤

≤ P(0 < λ(Z) ≤ λ(U \Am), Y ∈ U \Am)

p0(1− ν(Am))
≤

≤ P(0 < λ(X) < ε, Y ∈ U \Am)

p0(1− ν(Am))
=

=
P(0 < λ(X) < ε)P(Y ∈ U \Am)

p0(1− ν(Am))
=

=
P(0 < λ(X) < ε)

p0
.

As this inequality is true for all m, it follows from measure continuity that

P(λ(U \A) = 0) ≤ P(0 < λ(X) < ε)

p0

ε→0−→ 0.

Remark. When ν is uniform on U , we obtain Theorem 3 as a special case.
Generally, it is not true that ν(A) < 1 almost surely. For example, if supp ν ⊆ U is compact,

then µ can be chosen such that supp ν ⊆ Z1 ⊆ U with positive probability. This clearly implies
that P(ν(A) = 1) > 0.
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2.2 The density and neighborhood conditions

Definition 2.2.1. A family of compact sets D satisfies the density condition if there is an ε > 0

such that for every X ∈ D, every x ∈ X and 0 < r ≤ diamX,

λ(X ∩B(x, r)) ≥ εrd,

where B(x, r) is the open ball of radius r centered around x.

It is easy to check that if D1, . . . ,Dn satisfy the density condition, then so does D1∪· · ·∪Dn.
It is also clear that the definition is invariant under similarities.

An example of a family satisfying the density condition are the rectangular boxes

BK =
{
×d

i=1[0, ai]
∣∣ a1, . . . , ad > 0; ∀i, j : ai ≤ Kaj

}
.

for some K ≥ 1.

Definition 2.2.2. A shape is an equivalence class of K(Rd) modulo the similarities of Rd.

Proposition 2.2.3. Let D ⊆ K(Rd) be a family containing finitely many shapes, each of which
is the union of finitely many convex sets with non-empty interiors. Then D satisfies the density
condition.

Proof. We will first consider the case when D = {C} for some convex compact set C with non-
empty interior. Choose a ball B(x, r0) ⊆ C with r0 > 0. Suppose that y ∈ C and 0 < r ≤ diamC.
Let t = r/(diamC + r0) ∈ (0, 1). It follows from the convexity assumption that

B(y + t(x− y), tr0) = (1− t)y + tB(x, r0) ⊆ C.

It is also clear from |x− y| ≤ diamC that y + t(x− y) ∈ B(y, tdiamC), therefore

B(y + t(x− y), tr0) ⊆ B(y, t diamC + tr0) = B(y, r).

Hence,

λ(C ∩B(y, r)) ≥ λ(B(y + t(x− y), tr0)) = rdλ

(
B

(
0,

r0
diamC + r0

))
.

This means that the condition holds for ε = λ
(
B
(
0, r0

diamC+r0

))
.

Now let D = {X} for X = C1 ∪ . . . Cn, where each Ci is convex and has non-empty interior.
We know that for every Ci, there is an εi > 0 that satisfies the condition. Let

ε = min
1≤i≤n

εi

(
diamCi

diamX

)d

.

Let y ∈ X and 0 < r ≤ diamX. Then there is an i such that y ∈ Ci. It follows from the density
condition for {Ci} that

λ(X ∩B(y, r)) ≥ λ

(
Ci ∩B

(
y, r

diamCi

diamX

))
≥ εi

(
r diamCi

diamX

)d

≥ εrd,
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therefore {X} also satisfies the density condition.
Now assume that for X1, . . . , Xn ∈ K(Rd), each {Xi} satisfies the density condition with εi.

It is easy to check that the condition holds for D = {X1, . . . , Xn} with ε = min1≤i≤n ε. Finally,
since the definition is invariant under similarity, the same ε works if each set in D is similar to
some Xi.

Definition 2.2.4. The family N ⊆ K(Rd) satisfies the neighborhood condition if following two
properties hold:

(1) There is an R > 0 such that for every X ∈ N , diamX ≤ R.

(2) For every δ > 0, there is an η > 0 such that for every X ∈ N ,

λ({x ∈ Rd | 0 < d(x,X) < η diamX}) ≤ δλ(X),

where d(x,X) denotes the Euclidean distance between x and X.

Remark. If N satisfies Condition (2), then for some constant c > 0, the inequality diam(X) ≤
cλ(X)1/d holds for every X ∈ N . Therefore, if λ(U) <∞, then the diameter of a set X ∈ N that
can possibly fit in U is automatically bounded. It follows that if µ is concentrated on N , then
N can be replaced by a family that also satisfies Condition (1). Hence, Condition (1) matters
only in the case λ(U) = ∞.

Proposition 2.2.5. Let N ⊆ K(Rd) be family such that supX∈N diamX < ∞. If N con-
tains finitely many shapes, each of which has positive Lebesgue measure, then N satisfies the
neighborhood condition.

Proof. It is easy to check that Condition (2) is invariant under similarity. This implies that it
suffices to consider the case when N is finite.

Let δ > 0 and X ∈ N . Note that
∞⋂
l=1

{x | 0 < d(x,X) < diamX/l} = ∅.

Since X is bounded, the set {x | 0 < d(x,X) < diamX/l} is also bounded, so its Lebesgue
measure is finite. By measure continuity and the assumption that λ(X) > 0, there is an lX

such that {x | 0 < d(x,X) < diamX/lX} ≤ δλ(X). Finally, it easy to check that for η =

minX∈N 1/lX , the condition holds.

Theorem 2.2.6. Suppose that D satisfies the density condition, N satisfies the neighborhood
condition and µ(D ∪ N ) = 1. If there is an r > 0 such that µ({X | 0 < diamX < r}) = 0, then
λ(U \A) > 0 almost surely.

Proof. By the neighborhood condition, there is an η > 0 such that for every X ∈ N ,

λ({x ∈ Rd | 0 < d(x,X) < η diamX}) ≤ λ(X).
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Note that 0 ∈ X and diamX ≥ r for µ a.e. X. Consequently,

λ(B(0, ηr)) ≤ λ({x ∈ Rd | 0 ≤ d(x,X) < η diamX}) ≤ λ(X) + λ(X) = 2λ(X).

Therefore, λ(X) ≥ 1/2 · λ(B(0, ηr)).
If S = ∅, then clearly λ(A) = 0. Otherwise, let m = minS and choose an x ∈ ∂Zm. Since

Zm ⊆ U is closed, it follows that λ(B(x, 1) ∩ U \ Zm) > 0. Suppose for contradiction that
λ(U \ A) = 0. Let Ak =

⋃
i≤k,i∈S Zi. It follows from measure continuity that there is a k ≥ m

such that

λ(B(x, 1 +R) ∩ U \Ak) < min
(1
2
λ(B(0, ηr)), εrd, λ(B(x, 1) ∩ U \ Zm)

)
,

where ε and R are the constants from Definitions 2.2.1 and 2.2.4. We may assume that R ≥ r.
It is easy to check that

λ(B(x, 1) ∩ U ∩Ak \ Zm) = λ(B(x, 1) ∩ U \ Zm)− λ(B(x, 1) ∩ U \Ak) > 0,

in particular, B(x, 1) ∩ U ∩ Ak \ Zm is non-empty. Since Zm and Ak \ Zm are both closed, the
connectedness of B(x, 1) implies that B(x, 1) ∩ U ⊈ Ak. It follows that B(x, 1) ∩ U \ Ak is a
non-empty open set, hence it has positive measure.

It is enough to show that B(x, 1)∩A\Ak is countable, which implies that B(x, 1)∩U \A has
positive measure. If diamZi = 0 for some i, then Zi is a singleton, so such sets contribute only
countably many points. Suppose for contradiction that Zi ∈ D ∪ N is such that diamZi ≥ r,
Zi ⊆ U \Ak and Zi ∩B(x, 1) ̸= ∅. Choose a y ∈ Zi ∩B(x, 1). If Zi ∈ D, then

λ(Zi ∩B(x, 1 +R)) ≥ λ(Zi ∩B(y, r)) ≥ εrd > λ(B(x, 1 +R) ∩ U \Ak) ≥ λ(Zi ∩B(x, 1 +R)),

a contradiction. If Zi ∈ N , then diamZi ≤ R, which implies that Zi ⊆ B(y,R) ⊆ B(x, 1 + R),
therefore,

λ(Zi ∩B(x, 1 +R)) = λ(Zi) ≥
1

2
λ(B(0, ηr)) > λ(B(x, 1 +R) ∩ U \Ak) ≥ λ(Zi ∩B(x, 1 +R)),

which is also a contradiction.

2.3 Proof of the main theorem

We will use the notation F (t) = µ({X | diamX < t}). The goal of this section is to prove the
following theorem:

Theorem 2.3.1. Suppose that D satisfies the density condition, N satisfies the neighborhood
condition and µ(D ∪ N ) = 1. If F (t) > 0 for every t > 0, µ({{0}}) = 0 and ν ≪ λ, then
ν(A) = 1 almost surely.

Remark. In general, it is not true that λ(A) = 1 almost surely. For example, if U contains a ball
B(x, 2r) such that ν(B(x, 2r)) = 0 and µ({X | diamX < r}) = 1, then A ∩ B(x, r) = ∅ almost
surely.
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In the whole section, we will assume that F (t) > 0 for every t > 0 and ν ≪ λ.
Let f be the density function of ν and let L ⊆ U be the set of Lebesgue points of f in U

where f > 0. By Lebesgue’s differentiation theorem, λ a.e. x ∈ Rd is a Lebesgue point of f . It
follows that

µ(U \ L) =
∫
U\L

f(x) dλ(x) =

∫
U∩f−1(0)

f(x) dλ(x) = 0,

therefore µ(L) = 1.

Lemma 2.3.2. For every x ∈ L and r > 0 such that B(x, r) ⊆ U , there exists a k ∈ S almost
surely such that Zk ∩B(x, 2r) ̸= ∅.

Proof. We will first prove that there is an i such that Zi ⊆ B(x, r) almost surely. Since Zi are
i.i.d., it is enough to show that P(Zi ⊆ B(x, r)) > 0. We can see that if diamXi < r/2 and
Yi ∈ B(x, r/2), then Zi ⊆ B(x, r). Therefore,

P(Zi ⊆ B(x, r)) ≥ P(diamXi < r/2, Yi ∈ B(x, r/2)) =

= F (r/2) ν(B(x, r/2)) ≥ 1

2
F (r/2) f(x)λ(B(x, r/2)) > 0.

If Zi ⊆ B(x, r), then either i ∈ S or there is a j < i such that j ∈ S and Zj ∩ Zi ̸= ∅, which
implies that Zj ∩B(x, r) ̸= ∅. In both cases the needed k exists.

Fix an x ∈ L. By the definition of L, there is an r0 > 0 such that B(x, r0) ⊆ U and for every
r < r0,

f(x)

2
≤ ν(B(x, r))

λ(B(x, r))
≤ 2f(x).

For an integer n ≥ 1, let rn = r0/2
n.

To avoid difficulties later around measurability, we will choose r0 = 1/l, where l is the smallest
positive integer such that B(x, r0) ⊆ U and for every n ≥ 1,

f(x)

2
≤ ν(B(x, rn))

λ(B(x, rn))
≤ 2f(x).

For n ≥ 1, let
kn = min{k ∈ S |Zk ∩B(x, 2rn) ̸= ∅}.

Note that kn exists almost surely by Lemma 2.3.2. Furthermore, let dn = 1 if diamZkn
≥ rn/2,

otherwise let dn = 0.

Lemma 2.3.3. For every i ≥ 1,

P(di = 1 | d1, . . . , di−1) ≥
1

4 · 3d

(
1− F (ri+1)

F (ri)

)
.

Proof. Clearly, the sequence {kn} is monotonic. Set k0 = 0. It is easy to see that there is a
unique pair (m, j) such that m ≥ 1, i > j ≥ 0 and ki = ki−1 = · · · = kj+1 = m > kj . Therefore,
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it is enough to prove the inequality by further conditioning on m and j. From now on, we will
consider m and j to be fixed.

We can further condition on F = σ(X1, . . . Xm−1, Y1, . . . , Ym−1). It is easy to check that for
i < m, the event {i ∈ S} is in F . It follows that given kj < m, the variables k1, . . . , kj are
F|{kj<m}-measurable, hence d1, . . . , dj are also F|{kj<m}-measurable. Therefore,

P(di = 1 | d1, . . . , di−1, m, j, F) =

= P(di = 1 | ki = ki−1 = · · · = kj+1 = m > kj , d1, . . . , di−1, F) =

= P(di = 1 | ki = ki−1 = · · · = kj+1 = m > kj , dj+1, . . . , di−1, F) =

= P(di = 1 | ki = m, kj+1 ≥ m > kj , dj+1, . . . , di−1, F).

If diamZm ≥ ri, then di = 1, so we can further condition on diamZm < ri. Since kj+1 = · · · =
ki = m, this implies that dj+1 = · · · = di−1 = 0. Consequently,

P
(
di = 1

∣∣ ki = m, kj+1 ≥ m > kj , diamZm < ri, dj+1, . . . , di−1, F
)
=

= P
(
diamZm ≥ ri/2

∣∣m ∈ S, Zm ∩B(x, 2ri) ̸= ∅, diamZm < ri, kj+1 ≥ m > kj , F
)
=

=
P(m ∈ S, Zm ∩B(x, 2ri) ̸= ∅, ri/2 ≤ diamZm < ri | kj+1 ≥ m > kj , F)

P(m ∈ S, Zm ∩B(x, 2ri) ̸= ∅, diamZm < ri | kj+1 ≥ m > kj , F).

We will now give bounds for both the numerator and the denominator. For the numerator, notice
that since ki ≥ kj+1 ≥ m, Zl ∩ B(x, 2ri) = ∅ for every l < m. It follows that if Zm ⊆ B(x, 2ri),
then m ∈ S. A sufficient condition for Zm ⊆ B(x, 2ri) is that diamXm < ri and Ym ∈ B(x, ri).
It is easy to see that {kj+1 ≥ m > kj} ∈ F . Since Xm, Ym and F are independent, we obtain

P(m ∈ S, Zm ∩B(x, 2ri) ̸= ∅, ri/2 ≤ diamZm < ri | kj+1 ≥ m > kj , F) ≥

≥ P(Ym ∈ B(x, ri), ri/2 ≤ diamXm < ri | kj+1 ≥ m > kj , F) ≥

≥ P(Ym ∈ B(x, ri))P(ri/2 ≤ diamXm < ri) ≥

≥ ν(B(x, ri))(F (ri)− F (ri/2)) ≥
1

2
f(x)λ(B(x, ri))(F (ri)− F (ri/2)).

For the denominator, it is easy to check that if diamZm < ri and Zm ∩ B(x, 2ri) ̸= ∅, then
Ym ∈ B(x, 3ri). Using the independence again,

P(m ∈ S, Zm ∩B(x, 2ri) ̸= ∅, diamZm < ri | kj+1 ≥ m > kj , F) ≤

≤ P(Ym ∈ B(x, 3ri), diamXm < ri | kj+1 ≥ m > kj , F) =

= P(Ym ∈ B(x, 3ri))P(diamXm < ri) =

= ν(B(x, 3ri))F (ri) ≤ 2f(x)λ(B(x, 3ri))F (ri) = 2 · 3df(x)λ(B(x, ri))F (ri).

Combining the inequalities yields the bound

P(di = 1 | ki = m, kj+1 ≥ m > kj , dj+1 = · · · = di−1 = 0, F) ≥

≥ 1/2 · f(x)λ(B(x, ri))(F (ri)− F (ri/2))

2 · 3df(x)λ(B(x, ri))
=

1

4 · 3d
· F (ri)− F (ri/2)

F (ri)
=

1

4 · 3d

(
1− F (ri/2)

F (ri)

)
.

This concludes the proof.
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Lemma 2.3.4. Suppose that 0 < xn ≤ 1 for every n ≥ 1. Then
∏∞

n=1 xn = 0 for if and only if∑∞
n=1(1− xn) = ∞.

Proof. Let log 0 = −∞, this extends the logarithm function continuously to [0,∞). Assume that∏∞
n=1 xn = 0. If xn < 1/2 for infinitely many n, then the sum is clearly infinite. Since xn > 0

for all n, finitely many factors do not affect convergence of the product to zero. Therefore, we
may assume that xn ≥ 1/2 for all n. By concavity of logarithm, log xn ≥ −2 log 2 · (1− xn) for
all n. It follows that

−∞ = log

∞∏
n=1

xn =

∞∑
n=1

log xn ≥ −2 log 2

∞∑
n=1

(1− xn),

which implies that
∑∞

n=1(1− xn) = ∞.
For the other direction, we can use the inequality log xn ≤ xn − 1:

log

∞∏
n=1

xn =

∞∑
n=1

log xn ≤
∞∑

n=1

(xn − 1) = −∞.

Lemma 2.3.5. Suppose that µ({{0}}) = 0. Then lim supn→∞ dn = 1 almost surely.

Proof. It is enough to prove that for every j, P(∀n ≥ j : dn = 0) = 0. It follows from Lemma 2.3.3
that

P(∀n ≥ j : dn = 0) = lim
i→∞

P(dj = dj+1 = · · · = di = 0) =

= lim
i→∞

i∏
n=j

P(dn = 0 | dj = · · · = dn−1 = 0) =

=

∞∏
n=j

P(dn = 0 | dj = · · · = dn−1 = 0) ≤

≤
∞∏
n=j

(
1− 1

4 · 3d

(
1− F (rn+1)

F (rn)

))
.

By Lemma 2.3.4, it is enough to prove that
∞∑
n=j

1

4 · 3d

(
1− F (rn+1)

F (rn)

)
= ∞,

or equivalently,
∞∑
n=j

(
1− F (rn+1)

F (rn)

)
= ∞.

Applying the other direction of Lemma 2.3.4, it suffices to show that

0 =

∞∏
n=j

F (rn+1)

F (rn)
= lim

i→∞

∞∏
n=j

F (rn+1)

F (rn)
= lim

i→∞

F (ri+1)

F (rj)
=
µ({X | diamX = 0})

F (rj)
,

which is clear from the assumption µ({{0}}) = 0.
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Remark. The proof of Lemma 2.3.5 is essentially the same as that of the second Borel–Cantelli
lemma, except that instead of independence, we have bounds on the conditional probabilities.

Lemma 2.3.6. It is almost surely true that for µ a.e. x, lim sup dn(x) = 1.

Proof. It follows from Fubini’s theorem and Lemma 2.3.5 that

E
(
ν({x | lim sup dn(x) ̸= 1})

)
= E

(∫
L

χ{lim sup dn(x)̸=1} dν

)
=

∫
L

P(lim sup dn(x) ̸= 1) dν = 0,

therefore, ν({x | lim sup dn(x) ̸= 1}) = 0 almost surely.
However, to use Fubini’s theorem, we must check that the integrand is measurable. Let

Ω =
(
K(Rd)×Rd

)N be the probability space. It suffices to show that the map dn : Ω×Rd → {0, 1}
is measurable.

For fixed r0 = 1/l, the condition B(x, r0) ⊆ U is closed. For every n, the set{
x

∣∣∣∣ f(x)2
≤ ν(B(x, rn))

λ(B(x, rn))
≤ 2f(x)

}
is measurable, since f is measurable and so is ν(B(x, rn)) =

∫
χ{B(x,rn)}f dλ. Since l was chosen

to be minimal, the measurability of r0 follows easily.
Finally, for fixed r0, n and m, the condition Zm ∩ B(x, 2rn) ̸= ∅ is open and the map

Zm 7→ diamZm is continuous, implying the measurability of dn.

Proof (Theorem 2.3.1). It is clear that Xi ∈ D∪N for all i almost surely. By Lemma 2.3.6, it is
almost surely true that for ν a.e. x, lim sup dn(x) = 1. We will show that these two conditions
imply that ν(A) = 1.

Let
d(x) = lim sup

r→0+

λ(A ∩B(x, r))

λ(B(x, r))

By Lebesgue’s density theorem, d(x) = χA(x) for λ a.e. x. By the assumption that ν ≪ λ, this
implies that d(x) = χA(x) for ν a.e. x. Hence, it is enough to show that for ν a.e. x, x ∈ A or
d(x) > 0.

Fix a y ∈ Rd and also fix a δ > 0. By the neighborhood condition, there is an η with the
property that for every i such that Xi ∈ N ,

λ({x ∈ Rd | 0 < d(x, Zi) < η diamZi}) ≤ δλ(Zi).

We may assume that η ≤ 1. Let

Nδ = B(y, 1) ∩
⋃

i∈S,Xi∈N
{x ∈ Rd | 0 < d(x, Zi) < η diamZi}

We will now show that if x ∈ U ∩ B(y, 1) and lim sup dn(x) = 1, then either x ∈ A ∪ Nδ or
d(x) > 0. Suppose that x ∈ U ∩ B(y, 1) and dn(x) = 1 for some n. Since kn ∈ S, clearly
Zkn

⊆ A.
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First, consider the case Xkn ∈ D. Choose a point z ∈ Zkn ∩B(x, 2ri). Let ε be the constant
from the density condition. Since diamZkn ≥ rn/2, we can use the density condition:

λ(Zkn
∩B(z, rn/2)) = λ(Xkn

∩B(z − Ykn
, rn/2)) ≥ ε(rn/2)

d.

As B(z, rn/2) ⊆ B(x, 4rn) ⊆ B(x, 4rn/η), we obtain the bound

λ(A ∩B(x, 4rn/η))

λ(B(x, 4rn/η))
≥ λ(Zkn

∩B(z, rn/2))

(rn/2)dλ(B(x, 8/η))
≥ ε

λ(B(x, 8/η))
.

Now assume that Xkn ∈ N . If d(x, Zkn) = 0, then x ∈ A. If 0 < d(x, Zkn) < η diamZkn , then
x ∈ Nδ. Otherwise, η diamZkn ≤ d(x, Zkn) < 2rn, therefore diamZkn ≤ 2rn/η. This implies
that Zkn ⊆ B(x, 2rn + 2rn/η) ⊆ B(x, 4rn/η). We know from dn(x) = 1 that diamZkn ≥ rn/2,
hence η diamZkn ≥ ηrn/2. By the neighborhood condition,

λ(B(x, ηrn/2)) ≤ λ({x ∈ Rd | 0 ≤ d(x, Zi) < η diamZi}) ≤ (1 + δ)λ(Zi).

Consequently,
λ(A ∩B(x, 4rn/η))

λ(B(x, 4rn/η))
≥ η2d

8d
· λ(Zkn

)

λ(B(x, ηrn/2))
≥ η2d

8d(1 + δ)
.

Note that in both cases, we obtained a lower bound that does not depend on n. Since dn = 1

for infinitely many n and rn → 0, we can conclude that if x ̸∈ A ∪Nδ, then d(x) > 0.
For ν a.e. x, lim sup dn(x) = 1 by Lemma 2.3.6. It follows that for ν a.e. x ∈ B(y, 1), either

d(x) > 0 or x ∈ A ∪Nδ. This is true for every δ > 0, so for ν a.e. x ∈ B(y, 1), either d(x) > 0

or x ∈ A ∪
⋂∞

l=1N1/l. Assuming that ν
(⋂∞

l=1N1/l

)
= 0, this implies that for ν a.e. x ∈ B(y, 1),

d(x) > 0 or x ∈ A, then we are done, since Rd can be covered by countably balls of the form
B(y, 1). By the assumption ν ≪ λ, it suffices to prove that λ

(⋂∞
l=1N1/l

)
= 0.

The neighborhood condition implies that there is an R such that diamZi = diamXi ≤ R

whenever Xi ∈ N . For every x ∈ Nδ, there is an i ∈ S such that Xi ∈ N and d(x, Zi) <

η diamZi ≤ diamZi ≤ R. Clearly, Zi ⊆ B(x, 2R) ⊆ B(y, 2R + 1). Combined with the disjoint-
ness of the sets {Zi | i ∈ S}, this implies that

λ(Nδ) ≤ λ

( ⋃
i∈S,Xi∈N

Zi⊆B(x,2R+1)

{x ∈ Rd | 0 < d(x, Zi) < η diamZi}
)

≤

≤
∑

i∈S,Xi∈N
Zi⊆B(x,2R+1)

λ({x ∈ Rd | 0 < d(x, Zi) < η diamZi}) ≤

≤
∑

i∈S,Xi∈N
Zi⊆B(x,2R+1)

δλ(Zi) ≤ δλ(B(x, 2R+ 1)).

Therefore, λ(Nδ) → 0 if δ → 0.

Combining Theorems 2.1.3, 2.2.6 and 2.3.1, we obtain the following zero-one law:
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Theorem 2.3.7. Suppose that λ(U) < ∞, ν ≪ λ and λ|U ≪ ν. Also, assume that for some
D,N ⊆ K(Rd), D satisfies the density condition, N satisfies the neighborhood condition and
µ(D∪N ) = 1. If either µ({{0}}) > 0 or there is an r > 0 such that µ({X | 0 < diamX < r}) = 0,
then P(λ(U \A) = 0) = 0. Otherwise, P(λ(U \A) = 0) = 1.

Remark. When ν is uniform, we can set D = 0 and by Proposition 2.2.5 we can choose N to be
a family containing finitely many shapes with positive Lebesgue measure. This gives Theorem 2
as a special case.

The zero-one law fails for P(λ(U \ A) = 0) when the condition λ|U ≪ ν is omitted. For
example, consider the case when d ≥ 2, U = B(0, 2) and ν is uniform on B(0, 2) \B(0, 1). If µ is
chosen such that the sets Zi are either balls or spherical shells of the form B(x, 2r)\B(x, r) (with
bounded radii), then it follows from Proposition 2.2.5 that the neighborhood condition is satisfied
(furthermore, an easy calculation shows that the density condition also holds for this family).
The measure µ can be chosen so that with positive probability, Z1 = B(x, 2r) \B(x, r) ⊆ U and
B(x, r) ⊆ B(0, 1) ⊆ B(x, 2r) for some x and r. Since all Zi are connected, after placing Z1,
no set in S can intersect B(x, r), since it is separated from the support of ν by Z1. Therefore,
λ(U \A) > 0 in this case. On the other hand, µ can be chosen such that, additionally, B(0, 1) ⊆
Z1 ⊆ B(0, 2) with positive probability. After placing such Z1, it follows from Theorem 2.3.1 that
ν(A) = 1 almost surely, which implies that λ(U \ A) = 0. As a result, P(λ(U \ A) = 0) ̸∈ {0, 1}
for this construction.

A similar construction shows that without the condition λ|U ≪ ν, the zero-one law fails also
for P(ν(A) = 1), which is possibly different from P(λ(U \ A) = 0) in this case. Let U = B(0, 2)

and let ν be uniform on B(0, 1). If we allow balls, spherical shells, plus singleton sets with
positive probability, then µ can be chosen such that ν(Z1) = 1 with positive probability. We can
choose µ such that additionally, there is a positive probability that B(0, 1) covers the hole in the
spherical shell Z1 ⊆ U . After placing such Z1, ν(A) < 1 by Theorem 2.1.3.
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3. Hausdorff dimension of the complement

We will consider a special case of the problem when d = 1, U = (0, 1) and ν = λ|U . We will further
assume that µ is the distribution of the interval [0, x], where x has some distribution µ0 defined on
[0,∞). Clearly, µ has cumulative distribution function F (t) = µ0([0, t)) = µ({X | diamX < t}).

The goal of this section is to give conditions for determining the Hausdorff dimension of the
set U \ A. Using the notation F (0+) = limt→0+ F (t) = µ0({0}), note that if F (0+) > 0 or
F (ε) = 0 for some ε > 0, then by Theorems 2.1.3 and 2.2.6, λ(U \ A) > 0 almost surely, hence
dimH(U \A) = 1. For the whole chapter, we will assume that F (0+) = 0 and F (ε) > 0 for every
ε > 0.

3.1 The binary tree of intervals

Let j ∈ {1, 2, . . . } and let I be a maximal interval of (0, 1) \
⋃

i<j,i∈S Zi. Rather than working
with the sequence {Zi}, it is more convenient to consider the first interval in S contained in
I. This first interval splits I into two smaller intervals, allowing us to define a binary tree of
intervals.

Definition 3.1.1. Let σ ∈ {0, 1}∗. We define the index iσ and the open interval Iσ recursively:

I∅ = (0, 1)

iσ = min{i |Zi ⊆ Iσ}

Iσ0 = (inf Iσ,minZiσ )

Iσ1 = (maxZiσ , sup Iσ)

Note that by Lemma 2.3.2, the assumption that F (ε)−F (0+) > 0 for every ε implies that iσ
exists almost surely. It is easy to check that the intervals {Ziσ}σ∈{0,1}∗ are disjoint, in particular,
the indices {iσ}σ∈{0,1}∗ are all distinct.

Proposition 3.1.2. S = {iσ |σ ∈ {0, 1}∗}.

Proof. We will prove by induction on k that k ∈ S ↔ k ∈ {iσ |σ ∈ {0, 1}∗}.

26



Suppose for contradiction that k ∈ S, but k ̸= iσ for every σ. We will define a sequence
b1, b2, . . . ∈ {0, 1} recursively such that Zk ⊆ Ib1b2...bi for all i ≥ 0. By the definition of S,
Zk ⊆ (0, 1) = I∅. Assume that b1, . . . , bi are already defined for some i ≥ 0. By the minimality
of ib1,...,bi , it follows that ib1...bi ≤ k. There cannot be equality here by the assumption, so the
induction hypothesis implies that ib1...bi ∈ S. Since k is also in S, this means that Zib1...bi

∩Zk = ∅.
Note that Zk is connected, consequently, Zk ⊆ Ib1...bibi+1 for some bi+1 ∈ {0, 1}. This way, we
have defined a sequence {bi}∞i=1 satisfying ib1...bi ≤ k for all i. This is a contradiction, since the
indices ib1,...,bi are all distinct.

Now assume that k ̸∈ S, but iσ = k for some σ. Then Zk ⊆ Iσ ⊆ (0, 1), so by the definition of
S, there is a j < k such that j ∈ S and Zj∩Zk ̸= ∅. By the induction hypothesis, j = iρ for some
ρ ∈ {0, 1}∗. Note that iσ ̸= iρ (therefore, σ ̸= ρ), so the disjointness implies that Ziσ ∩ Ziρ = ∅.
Hence, ∅ ≠ Zk ∩ Zj = Ziσ ∩ Ziρ = ∅, a contradiction.

For σ, ρ ∈ {0, 1}∗, we will use the notation σ ≤ ρ to denote that σ is an initial segment of ρ
and similarly, σ < ρ when σ is a strict initial segment of ρ.

For ρ ∈ {0, 1}∗, let lρ = diam Iρ and zρ = diamZiρ . We define the σ-algebra

Fρ = σ
(
{lγ}γ≤ρ, {zγ}γ<ρ

)
.

It is clear from the definitions that lρ = lρ0+ zρ+ lρ1. Since lρ is Fρ-measurable, it follows easily
that

Fρ0 = σ(Fρ, lρ0, zρ) = σ(Fρ, lρ1, zρ) = Fρ1.

Definition 3.1.3. For t > 0, let X ∼ µ0 and Y ∼ U(0, t) be independent variables. We define
Lt as the conditional distribution

Lt ∼ (X |X + Y < t).

Lemma 3.1.4. Let σ ∈ {0, 1}∗. Given Fσ, zσ has distribution Llσ . If we additionally know zσ,
then 0 ≤ zσ0 ≤ lσ − zσ is uniformly distributed. Formally,(

zσ
∣∣Fσ

)
∼ Llσ(

lσ0
∣∣Fσ, zσ

)
∼ U(0, lσ − zσ).

Proof. It suffices to prove the statement when further conditioning on iσ = k for each k, since
iσ has countably many possible values. Let Xi = [0, xi] and G = σ(x1, . . . , xk−1, Y1, . . . , Yk−1).
For every ρ < σ, it follows from the minimality of iρ that iρ < iσ = k. It is easy to check that
this implies that σ(Fσ, {iσ = k})|{iσ=k} ⊆ σ(G, {iσ = k})|{iσ=k}, furthermore, inf Iσ and sup Iσ

are both σ(G, {iσ = k})|{iσ=k}-measurable. Also, assuming iσ = k, we can see that zσ = xk and
lσ0 = Yk − inf Iσ. Therefore, it is enough to show that(

xk
∣∣G, iσ = k

)
∼ Llσ(

Yk − inf Iσ
∣∣G, iσ = k, xk

)
∼ U(0, lσ − xk).
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Let y = Yk − inf Iσ. Since Ziσ ⊆ Iσ if and only if inf Iσ < Yk ≤ Yk + xk < sup Iσ, clearly iσ = k

if and only if iσ ≥ k, 0 < y < lσ and xk + y < lσ. Notice that {iσ ≥ k} ∈ G. This means that it
suffices to show that (

xk
∣∣G, 0 < y < lσ, xk + y < lσ

)
∼ Llσ(

y
∣∣G, 0 < y < lσ, xk + y < lσ, xk

)
∼ U(0, lσ − xk).

Since G, xk and Yk are independent, it follows that given G and 0 < y < lσ, xk and y are
independent variables with distributions xk ∼ µ0 and y ∼ U(0, lσ). The statement about the
conditional distribution of xk now reduces to the definition of Lt. For the conditional distribution
of y, the conditional independence of xk and y implies that(

y
∣∣G, 0 < y < lσ, xk + y < lσ, xk

)
∼
(
y
∣∣xk, lσ, 0 < y < lσ − xk

)
∼ U(0, lσ − xk).

Lemma 3.1.5. Let (X,M, ρ) be a probability space and let A1, A2, · · · ∈ X be a sequence of
i.i.d. variables with distribution ρ. Suppose that P ∈ M satisfies 0 < ρ(P ) < 1. Partition the
sequence {Ai} into two subsequences {A(0)

j } and {A(1)
j } as follows: if Ai ∈ S, then it is put in

{A(0)
j }, otherwise, it is put in {A(1)

j }. Then {A(0)
j } and {A(1)

j } are independent (almost surely)
infinite sequences of i.i.d. variables.

Proof. It is clear that if 0 < ρ(P ) < 1, then Ai ∈ P and Ai ̸∈ P both occur infinitely often
almost surely.

By the uniqueness of the product measure, it suffices to prove that for every sequence of sets
{E(0)

j } and {E(1)
j } in M and every n, the variables {E(b)

j } are independent for b ∈ {0, 1} and
j ≤ n. We will prove that

P(∀j ≤ n, b ∈ {0, 1} : A
(b)
j ∈ E

(b)
j ) =

∏
j≤n

ρ(E
(0)
j ∩ P )
ρ(P )

·
∏
j≤n

ρ(E
(1)
j \ P )

ρ(X \ P )
.

Setting all except one of the E(b)
i to X, we get that P(A(0)

i ∈ E
(0)
i ) = ρ(E

(0)
i ∩ P )/ρ(P ) and

P(A(1)
i ∈ E

(1)
i ) = ρ(E

(1)
i \ P )/ρ(X \ P ), from which the independence is clear.

Let i(0)j be the jth smallest i such that Aj ∈ P and similarly, let i(1)j be the jth smallest i
such that Aj ̸∈ P . It is clear that the values i(b)j are all distinct and A

(b)
j = A

i
(b)
j

. Since the

vector (i
(0)
1 , . . . , i

(0)
n , i

(1)
1 , . . . , i

(1)
n ) has countably many possible values, it is enough to prove the

equality above after conditioning on a particular value of this vector. Conditioning on this vector
gives information only on which A(b)

i are is P , hence they are conditionally independent (but no
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longer identically distributed). Therefore,

P(∀j ≤ n, b ∈ {0, 1} : A
(b)
j ∈ E

(b)
j | i(0)1 , . . . , i(0)n , i

(1)
1 , . . . , i(1)n ) =

=
∏
j≤n

P
(
A

i
(0)
j

∈ E
(0)
j

∣∣A
i
(0)
j

∈ P
)
·
∏
j≤n

P
(
A

i
(1)
j

∈ E
(1)
j

∣∣A
i
(1)
j

̸∈ P
)
=

=
∏
j≤n

ρ(E
(0)
j ∩ P )
ρ(P )

·
∏
j≤n

ρ(E
(1)
j \ P )

ρ(X \ P )
,

which completes the proof.

Lemma 3.1.6. Let σ ∈ {0, 1}∗. Given Fσ0, the subtrees {lσ0ρ}ρ∈{0,1}∗ and {lσ1ρ}ρ∈{0,1}∗ are
independent.

Proof. Let X ′
i = Xi+iσ and Y ′

i = Yi+iσ . We will first show that given Fσ0, the pairs (X ′
i, Y

′
i )

for i ≥ 1 are i.i.d.. We can prove this by further conditioning on iσ = k for some k. Let
G = σ(X1, . . . , Xk, Y1, . . . , Yk). It is clear that σ(Fσ0, {iσ = k})|{iσ=k} ⊆ G|{iσ=k}. Since G and
{(Xi, Yi)}i>k are independent, it follows that given Fσ0 and iσ = k, {(X ′

i, Y
′
i )}i≥1 is a sequence

of i.i.d. variables with distribution µ × ν. Since this is true for every k and the distribution
of the sequence does not depend on k, we can conclude that the distribution is the same when
conditioning only on Fσ0.

It is easy to see that inf Iσ0 and sup Iσ0 are both Fσ0-measurable. Let Z ′
i = X ′

i +Y
′
i = Zi+iσ .

We can apply Lemma 3.1.5 to the sequence {Z ′
i} with P = {Z |Z ⊆ Iσ0}, since we have seen in

the proof of Lemma 2.3.2 that Zi ⊆ Iσ0 and Zi ⊆ Iσ1 both have positive probability. We get
a partition of {Z ′

i} into independent subsequences {Z(0)
j } and {Z(1)

j } such that Z(0)
j ∈ P and

Z
(1)
j ̸∈ P for every j. It follows from the minimality of iσ that {lσ0ρ}ρ∈{0,1}∗ is determined by

{Z(0)
j } and {lσ1ρ}ρ∈{0,1}∗ is determined by {Z(1)

j } (since Iσ0 ∩ Iσ1 = ∅). The independence of
the subsequences implies that {lσ0ρ}ρ∈{0,1}∗ and {lσ1ρ}ρ∈{0,1}∗ are also independent.

Theorem 3.1.7. Let {Uσ}σ∈{0,1}∗ and {Vσ}σ∈{0,1}∗ be independent sequences of i.i.d. variables
uniform on (0, 1). We define the variables l′σ and z′σ for σ ∈ {0, 1}∗ recursively:

l′∅ = 1, z′σ = F−1
Ll′σ

(Vσ), l′σ0 = Uσ(l
′
σ − z′σ), l′σ1 = (1− Uσ)(l

′
σ − z′σ),

where F−1
Lt

(p) = inf{x |FLt
(x) ≥ p} is the generalized inverse of the cumulative distribution

function FLt
(x) = P(Lt < x). Then {lσ}σ∈{0,1}∗ and {l′σ}σ∈{0,1}∗ have the same distribution.

Proof. Denote by |ρ| the length of ρ ∈ {0, 1}∗. It suffices to prove that for every σ and n and
every tree of borel sets {Eσ}σ∈{0,1}∗ , there is a Borel measurable function f(t) such that for
every x = {xγ}γ≤σ and y = {yγ}γ<σ,

f(xσ) = P
(
∀|ρ| ≤ n : lσρ ∈ Eσρ

∣∣ {lγ}γ≤σ = x, {zγ}γ<σ = y
)
=

= P
(
∀|ρ| ≤ n : l′σρ ∈ Eσρ

∣∣ {l′γ}γ≤σ = x, {z′γ}γ<σ = y
)
.
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Since l∅ = l′∅ = 1, setting σ = ∅ and x∅ = 1, we get {lρ}|ρ|≤n ∼ {l′ρ}|ρ|≤n for all n, which implies
that {lρ} ∼ {l′ρ}.

We will use induction on n. The case n = 0 is trivial since both conditional probabilities are
χ{xσ∈Eσ}.

Assume that n ≥ 1. For b ∈ {0, 1}, the induction hypothesis implies that there is a Borel
measurable function fb(t) such that

fb(t) = P
(
∀|ρ| < n : lσbρ ∈ Eσbρ

∣∣ {lγ}γ≤σ, {zγ}γ<σ, lσb = t, zσ
)
=

= P
(
∀|ρ| < n : l′σbρ ∈ Eσbρ

∣∣ {l′γ}γ≤σ, {z′γ}γ<σ, l
′
σb = t, z′σ

)
.

It follows from Lemmas 3.1.4 and 3.1.6 that

P
(
∀|ρ| ≤ n : lσρ ∈ Eσρ

∣∣ {lγ}γ≤σ, {zγ}γ<σ

)
=

= E
(
P
(
∀|ρ| ≤ n : lσρ ∈ Eσρ

∣∣Fσ0

) ∣∣∣Fσ

)
=

= χ{lσ∈Eσ}E
(
P
(
∀|ρ| < n : lσ0ρ ∈ Eσ0ρ

∣∣Fσ0

)
P
(
∀|ρ| < n : lσ1ρ ∈ Eσ1ρ

∣∣Fσ1

) ∣∣∣Fσ

)
=

= χ{lσ∈Eσ}E
(
f0(lσ0)f1(lσ1)

∣∣Fσ

)
=

= χ{lσ∈Eσ}E
(
E
(
f0(lσ0)f1(lσ1)

∣∣Fσ, zσ
) ∣∣∣Fσ

)
=

= χ{lσ∈Eσ}E
(∫ 1

0

f0
(
u(lσ − zσ)

)
f1
(
(1− u)(lσ − zσ)

)
du

∣∣∣∣Fσ

)
=

= χ{lσ∈Eσ}Ez∼Llσ

(∫ 1

0

f0
(
u(lσ − z)

)
f1
(
(1− u)(lσ − z)

)
du

)
.

We will now do a similar calculation for {l′σ}. It is well-known that for fixed t, F−1
Lt

(Vσ) has
distribution Lt. Consequently, given l′σ, z′σ has distribution Ll′σ

. Since {l′γ}γ≤σ and {z′γ}γ<σ

depend only on {(Uρ, Vρ)}ρ<σ, the independence implies that

P
(
∀|ρ| ≤ n : l′σρ ∈ Eσρ

∣∣ {l′γ}γ≤σ, {z′γ}γ<σ

)
=

= E
(
P
(
∀|ρ| ≤ n : l′σρ ∈ Eσρ

∣∣ {l′γ}γ≤σ, {z′γ}γ<σ, Uσ, z
′
σ

) ∣∣∣ {l′γ}γ≤σ, {z′γ}γ<σ

)
=

= χ{l′σ∈Eσ}E
(
f0(l

′
σ0)f1(l

′
σ1)
∣∣ {l′γ}γ≤σ, {z′γ}γ<σ

)
=

= χ{l′σ∈Eσ}E
(
f0
(
Uσ(l

′
σ − z′σ)

)
f1
(
(1− Uσ)(l

′
σ − z′σ)

) ∣∣ {l′γ}γ≤σ, {z′γ}γ<σ

)
=

= χ{l′σ∈Eσ}Ez∼Ll′σ

(∫ 1

0

f0
(
u(l′σ − z)

)
f1
(
(1− u)(l′σ − z)

)
du

)
.

Therefore,

f(t) = χ{t∈Eσ}Ez∼Lt

(∫ 1

0

f0
(
u(t− z)

)
f1
(
(1− u)(t− z)

)
du

)
satisfies the condition.

Note that the tree {lσ} completely determines the set A. From now on, we can assume by
Theorem 3.1.7 that lσ = l′σ and zσ = z′σ.
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3.2 Random recursive constructions

We will now determine the Hausdorff dimension in the special case when F (t) = tα for some
α > 0. The main result used in the proof is the following theorem by Mauldin and Williams [12]
about a random recursive construction:

Definition 3.2.1. Let J ⊆ Rd be a non-empty compact set with the property J = int J . A
family of random compact sets J = {Jσ}σ∈N∗ , is called a construction if it satisfies the following
properties:

(1) J∅ = J and for every σ ∈ N∗, Jσ ⊆ Rd is either empty or similar to J .

(2) For every σ ∈ N∗, the sets Jσ0, Jσ1, . . . are subsets of Jσ with pairwise disjoint interiors.

(3) If Jσ ̸= ∅, let Tσi = diam Jσi/ diam Jσ and τσ = (Tσ0, Tσ1, . . . ) with the convention diam ∅ =

0. Then the vectors τσ are i.i.d..

Theorem 3.2.2 ([12, Theorem 1.1]). Let J be a construction. Define the set

K =

∞⋂
n=0

⋃
σ∈Nn

Jσ.

If E
(
|{i |Ti ̸= 0}|

)
> 1, then P(K ̸= ∅) > 0. Furthermore, if K ̸= ∅, then almost surely

dimHK = min
{
s ≥ 0

∣∣E(∑∞
i=0 T

s
i

)
≤ 1
}
> 0.

To use this theorem, we will take J = [0, 1], Jσ = Iσ for σ ∈ {0, 1}∗ and Jσ = ∅ for
σ ∈ N∗ \ {0, 1}∗. It is trivial that (1) and (2) are satisfied by this family.

Using Proposition 3.1.2, we can see that

U \A = U \
⋃

σ∈{0,1}∗

Ziσ = U \
∞⋃

n=0

⋃
|σ|<n

Ziσ =

∞⋂
n=0

(
U \

⋃
|σ|<n

Ziσ

)
=

∞⋂
n=0

⋃
σ∈{0,1}n

Iσ.

It follows immediately that U \A ⊆ K. We can easily see that

K \ (U \A) ⊆
∞⋃

n=0

⋃
σ∈{0,1}n

(Jσ \ Iσ) =
∞⋃

n=0

⋃
σ∈{0,1}n

∂Iσ,

which is countable. Since countably many points do not affect the Hausdorff dimension, this
shows that dimH(U \A) = dimHK.

Theorem 3.2.3. Suppose that F (t) = tα for 0 ≤ t ≤ 1 and some fixed α > 0. Let s = s(α) > 0

be the unique solution of the equation

2(α+ 1)B(α+ 1, s+ 1) = 1,

where B is the beta function. Then dimH(U \A) = s almost surely.
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Proof. We will first check that the distribution Lt/t does not depend on 0 < t ≤ 1. Let X ∼ µ0

and Y ∼ U(0, t) be independent. For 0 < u ≤ 1, we can see that

P(Lt/t < u) = P(X < tu |X + Y < t) =
P(X < tu, Y +X < t)

P(X + Y < t)
=

∫ tu

0
(t− x)/t · dF (x)∫ t

0
(t− x)/t · dF (x)

=

=

∫ tu

0
α(α+ 1)(t− x)xα−1 dx∫ t

0
α(α+ 1)(t− x)xα−1 dx

=
tα+1

∫ u

0
α(α+ 1)(1− x)xα−1 dx

[(α+ 1)txα − αxα+1]tx=0

=

=

∫ u

0

α(α+ 1)(1− x)xα−1 dx,

which does not depend on t. Hence, F−1
Lt

(v)/t = F−1
Lt/t

(v) depends only on v. Furthermore, the
previous calculation shows that the density function of Lt/t is

fLt/t(x) = α(α+ 1)(1− x)xα−1.

The next step is to show that Property (3) holds in this case, or equivalently, the vectors(
lσ0
lσ
,
lσ1
lσ

)
=

(
Uσ

(
1− zσ

lσ

)
, (1− Uσ)

(
1− zσ

lσ

))
are i.i.d.. This is clear, since zσ/lσ = F−1

Llσ
(Vσ)/lσ depends only on Vσ and the vectors (Uσ, Vσ)

are i.i.d..
We will now calculate E

(
(lσ0/lσ)

s + (lσ1/lσ)
s
)
. Using the formula for the density function,

we get

E
((

lσ0
lσ

)s

+

(
lσ1
lσ

)s)
= 2

∫ 1

0

∫ 1

0

us(1− x)s · α(α+ 1)(1− x)xα−1 du dx =

=
2α(α+ 1)

s+ 1

∫ 1

0

(1− x)s+1xα−1 dx =

=
2α(α+ 1)B(α, s+ 2)

s+ 1
= 2(α+ 1)B(α+ 1, s+ 1).

It is trivial that 0 ∈ K, so K ̸= ∅. Theorem 3.2.2 implies that dimHK is almost surely the
minimal s such that 2(α+ 1)B(α+ 1, s+ 1) ≤ 1. Note that the beta function is continuous and
strictly decreasing in its second argument and furthermore, 2(α+1)B(α+1, 1) = 2. This shows
that s > 0 is the unique solution of the equation 2(α+ 1)B(α+ 1, s+ 1) = 1.

Proposition 3.2.4. The function s(α) is a continuous, strictly decreasing bijection from (0,∞)

to (0, 1).

Proof. Let Φ(α, s) = 2(α + 1)B(α + 1, s + 1) for 0 ≤ α and 0 < s ≤ 1. It follows from the
properties of the beta function that Φ(α, s) = 2sB(α + 2, s). This shows that Φ is continuous
and strictly decreasing in both variables. Suppose that 0 < α < β. We can see that

Φ(α, s(α)) = 1 = Φ(β, s(β)) > Φ(α, s(β)),
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which implies that s(α) > s(β). Hence, s(α) is strictly decreasing.
We have seen earlier that s(α) > 0 for every α > 0. A simple calculation shows that

Φ(α, 1) = 2/(α + 2) < 1, therefore, s(α) < 1 for every α > 0. It remains to check that s(α) is
a surjection onto (0, 1), since combined with monotonicity, this implies that s(α) is continuous.
Let 0 < s < 1. We can check that Φ(0, s) = 2/(s + 1) > 1 and limα→∞ Φ(α, s) = 0. By
the intermediate value theorem, there is an α > 0 such that Φ(α, s) = 1, which implies that
s(α) = s.

Corollary 3.2.5. For every 0 < s < 1, there exists a µ0 such that dimH(U \ A) = s almost
surely.

Proof. By Proposition 3.2.4, there is an α such that s(α) = s. It follows from Theorem 3.2.3
that if F (t) = tα for 0 ≤ t ≤ 1, then dimH(U \A) = s(α) = s almost surely.

3.3 Bounds for the Hausdorff dimension

The goal of this section is to prove Theorem 4. The main idea is to define a coupling with the
tα case, then use the result from the previous section to obtain a bound.

Lemma 3.3.1. It is almost surely true that

lim
n→∞

max
σ∈{0,1}n

lσ = 0.

Proof. It is clear that lσ0 ≤ lσUσ and lσ0 ≤ lσ(1−Uσ). Since Uσ and 1−Uσ both have distribution
U(0, 1), it follows from the independence that if |σ| = n, then

E
(
l2σ
)
≤
(
E(U(0, 1)2)

)n
=

1

3n
.

Fix an ε > 0. It easily follows from Markov’s inequality that

P
(

max
σ∈{0,1}n

lσ ≥ ε
)
≤

∑
σ∈{0,1}n

P
(
l2σ ≥ ε2

)
≤ 2n

3nε2
.

Since this bound is exponentially small, the Borel–Cantelli lemma implies that for large enough
n, maxσ∈{0,1}n lσ < ε. As this is true for every ε > 0, the statement follows.

Lemma 3.3.2. Suppose that F and G are two cumulative distribution functions on [0,∞) that
are positive on the interval (0,∞). Let LF

t and LG
t be the corresponding distributions for µ0 ∼ F

and µ0 ∼ G, respectively. If there is an ε > 0 such that F/G is increasing on (0, ε), then for
every 0 < u ≤ t ≤ ε, P(LF

t < u) ≤ P(LG
t < u).

Proof. Let X ∼ F and Y ∼ U(0, t) be independent. It is clear from the definition of Lt that

P(LF
t < u) =

P(X < u,X + Y < t)

P(X + Y < t)
=

1
t

∫ t

0
P(X < u,X < t− x) dx
1
t

∫ t

0
P(X < x) dx

=

=

∫ t

0
F (min(u, t− x)) dx∫ t

0
F (t− x) dx

=

∫ t

0
F (min(u, x)) dx∫ t

0
F (x) dx

.
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Taking reciprocals, we obtain the formula

1

P(LF
t < u)

=

∫ t

0
F (x) dx∫ t

0
F (min(u, x)) dx

=

∫ t

0

(
F (min(u, x)) + χ{u<x}(F (x)− F (u))

)
dx∫ t

0
F (min(u, x)) dx

=

= 1 +

∫ t

u
(F (x)− F (u)) dx∫ t

0
F (min(u, x)) dx

.

A similar formula holds for LG
t . Therefore, it suffices to show that∫ t

u
(F (x)− F (u)) dx∫ t

0
F (min(u, x)) dx

≥
∫ t

u
(G(x)−G(u)) dx∫ t

0
G(min(u, x)) dx

.

Let c = F (u)/G(u). The monotonicity of F/G implies that F (x) ≤ cG(x) for x ≤ u and
F (x) ≥ cG(x) for x ≥ u. Consequently,∫ t

u
(F (x)− F (u)) dx∫ t

0
F (min(u, x)) dx

≥
∫ t

u
(cG(x)− cG(u)) dx∫ t

0
cG(min(u, x)) dx

=

∫ t

u
(G(x)−G(u)) dx∫ t

0
G(min(u, x)) dx

.

Theorem 3.3.3. Let α > 0. If there is an ε > 0 such that F (t)/tα is increasing on (0, ε), then
dimH(U \A) ≤ s(α) almost surely.

Proof. Let G(t) = tα for 0 ≤ t ≤ 1. Define the variables l̃σ and z̃σ recursively by the formulae

l̃∅ = 1, z̃σ = F−1
LG

l̃σ

(Vσ), l̃σ0 = Uσ(l̃σ − z̃σ), l̃σ1 = (1− Uσ)(l̃σ − z̃σ).

Note that l̃σ is the diameter of Jσ in the case µ0 ∼ G. By Lemma 3.3.1, lσ ≥ ε occurs finitely
many times, so there is a c > 1 such that for every σ ∈ {0, 1}∗ and b ∈ {0, 1}, if lσ ≥ ε, then
lσb/l̃σb ≤ c.

We will prove by induction on σ that lσ ≤ cl̃σ for every σ ∈ {0, 1}∗. This is clearly true for
σ = ∅. Now assume that lσ ≤ cl̃σ for some σ. We have to prove that lσb ≤ cl̃σb for b ∈ {0, 1}.
If lσ ≥ ε, then we are done by the choice of c. Otherwise, it follows from Lemma 3.3.2 that
FLF

lσ
≤ FLG

lσ
. We have seen in the proof of Theorem 3.2.3 that F−1

LG
t
(Vσ)/t depends only on Vσ,

therefore,

zσ
lσ

=
F−1
LF

lσ

(Vσ)

lσ
≥
F−1
LG

lσ

(Vσ)

lσ
=

F−1
LG

l̃σ

(Vσ)

l̃σ
=
z̃σ

l̃σ
.

By the induction hypothesis,

lσ0 = Uσ(lσ − zσ) = Uσlσ

(
1− zσ

lσ

)
≤ Uσlσ

(
1− z̃σ

l̃σ

)
≤ cUσ l̃σ

(
1− z̃σ

l̃σ

)
= cl̃σ0.

A similar calculation shows that lσ1 ≤ cl̃σ1.
We will finish the argument based on the proof of [12, Theorem 1.3]. We have seen in the

proof of Theorem 3.2.3 that the vectors (l̃σ0/l̃σ, l̃σ1/l̃σ) are independent and s = s(α) satis-
fies the equation E

(
(l̃σ0/l̃σ)

s + (l̃σ1/l̃σ)
s
)
= 1. Let Ss,n =

∑
σ∈{0,1}n l̃sσ. It follows from the
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previous equation that {Ss,n}∞n=0 is a positive martingale, therefore it converges almost surely.
Consequently, there is an M > 0 such that Ss,n ≤M for every n.

Fix a δ > 0. By Lemma 3.3.1, lσ < δ whenever n = |σ| is large enough. Note that
K ⊆

⋃
σ∈{0,1}n Jσ, hence,

Hs
δ(K) ≤

∑
σ∈{0,1}n

(diam Jσ)
s =

∑
σ∈{0,1}n

lsσ ≤ cs
∑

σ∈{0,1}n

l̃ sσ = csSs,n ≤ csM.

Taking the limit δ → 0, this implies that Hs(K) ≤ csM <∞, therefore dimHK ≤ s.

Corollary 3.3.4. There exists a µ0 such that dimH(U \A) = 0 almost surely.

Proof. Let F (t) = tlog(1/t) for 0 < t ≤ 1. For every α > 0, we can see that

F (t)

tα
= tlog(1/t)−α = exp

(
− log

1

t
·
(
log

1

t
− α

))
.

It is easy to check that this function is increasing on the interval (0, e−α). By Theorem 3.3.3,
dimH(U \ A) ≤ s(α) almost surely. Since this is true for every α > 0, we can conclude from
Proposition 3.2.4 that dimH(U \A) = 0 almost surely.

Before we begin the proof of the lower bound, we need the following lemma. The proof is
based on ideas by Moran [13, Theorem III].

Lemma 3.3.5. Let {Jσ}σ∈N∗ be a family of compact sets in Rd satisfying properties (1) and (2)
of Definition 3.2.1. We will additionally assume that limk→∞ maxσ∈Nk diam Jσ = 0 and there
is an ε > 0 such that for every σ ∈ N∗ and i ∈ N, if Jσi ̸= ∅, then diam Jσi ≥ εdiam Jσ.
Let K =

⋂∞
n=0

⋃
σ∈Nn Jσ and suppose that Hs(K) < ∞ for some s ≥ 0. Then there exists a c

such that for every δ > 0, there is a set Σ ⊆ N∗ such that 0 < diam Jσ < δ for every σ ∈ Σ,
K ⊆

⋃
σ∈Σ Jσ and

∑
σ∈Σ(diam Jσ)

s ≤ c.

Proof. Fix an M > Hs(K). By the definition of the Hausdorff metric, there are sets C1, C2, . . .

such that diamCi < min(δ, diam J∅) for every i, K ⊆
⋃∞

i=1 Ci and
∑∞

i=1(diamCi)
s < M . By

slightly enlarging the sets, we may assume that 0 < diamCi for every i. For each i, let

Σi =
{
σ ∈ N∗ \ {∅}

∣∣ Jσ ∩ Ci ̸= ∅, diam Jσ ≤ diamCi, diam Jσ||σ|−1
> diamCi

}
,

where σ|p denotes the initial segment of length p.
We will first show that Ci ∩ K ⊆

⋃
σ∈Σi

Jσ. Let x ∈ Ci ∩ K. Choose a k such that
maxσ∈Nk diam Jσ < diamCi. By the definition of K, there is a σ such that |σ| = k and x ∈ Jσ.
There is a minimal 0 < j ≤ k such that diam Jσ|j < diamCi. Clearly, x ∈ Jσ ⊆ Jσ|j , so it follows
from the minimality of j that σ|j ∈ Σi.

Next, we will give an upper bound on |Σi|. Note that by Property (2), if neither σ nor σ′

is an initial segment of the other, then the interiors of Jσ and Jσ′ are disjoint. It is also clear
that if σ < σ′, then at most one of σ and σ′ can be in Σi. Therefore, the sets {int Jσ}σ∈Σi
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are disjoint. Fix an x ∈ Ci, clearly Ci ⊆ B(x,diamCi). It follows from the definition of Σi

that Jσ ⊆ B(x, 2 diamCi) every σ ∈ Σi. We can also see that if σ ∈ Σi, then diam Jσ ≥
εdiam Jσ||σ|−1

≥ εdiamCi. Therefore,

λ(B(x, 2 diamCi)) ≥ λ

( ⋃
σ∈Σi

int Jσ

)
=
∑
σ∈Σi

λ(int Jσ) =
∑
σ∈Σi

(
diam Jσ
diam J∅

)d

λ(int J∅) ≥

≥ |Σi|
(
εdiamCi

diam J∅

)d

λ(int J∅).

Since λ(int J∅) > 0, we obtain the bound

|Σi| ≤
λ(B(x, 2 diamCi))

(εdiamCi/ diam J∅)dλ(int J∅)
=

λ(B(0, 2))

(ε/diam J∅)dλ(int J∅)
.

This bound does not depend on either δ or i, hence there is a constant N such that |Σi| ≤ N for
every i.

It remains to show that Σ =
⋃∞

i=1 Σi satisfies the condition. Clearly, diam Jσ < δ for every
σ ∈ Σ. Also,

K =

∞⋃
i=1

(K ∩ Ci) ⊆
∞⋃
i=1

⋃
σ∈Σi

Jσ =
⋃
σ∈Σ

Jσ.

Finally, ∑
σ∈Σ

(diam Jσ)
s ≤

∞∑
i=1

∑
σ∈Σi

(diam Jσ)
s ≤

∞∑
i=1

N(diamCi)
s ≤ NM.

We will need an additional lemma about a modified version of the construction in the case
F (t) = tα. This lemma, though not stated separately, was proved more generally as part of the
proof of [12, Theorem 3.6].

Lemma 3.3.6. Let 0 < α, 0 < s′ < s(α) and 0 < η < 1. Define l̃σ as in the proof of
Theorem 3.3.3 (with G(t) = tα). For some n > 0, define the construction J̃ = {J̃σ}σ∈{0,1}∗

recursively:

J̃∅ = [0, 1]

J̃σ0 =

[min J̃σ,min J̃σ + l̃σ0] if J̃σ ̸= ∅ and l̃σ0/l̃σ ≥ 1/n

∅ otherwise

J̃σ1 =

[max J̃σ − l̃σ1,max J̃σ] if J̃σ ̸= ∅ and l̃σ1/l̃σ ≥ 1/n

∅ otherwise

Let K̃ =
⋂∞

k=0

⋃
J̃σ∈Nk . If n is large enough, then P(K̃ = ∅) < η, furthermore, if K̃ ̸= ∅, then

dimH K̃ > s′ almost surely.
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Proof. We will first check that J̃ is indeed a construction. Property (1) is obvious. Property (2)
is also clear, since l̃σ0 + l̃σ1 = l̃σ − z̃σ ≤ l̃σ. Finally, Property (3) follows from the independence
of the vectors (l̃σ0/l̃σ, l̃σ1/l̃σ).

We have seen that the vectors (l̃σ0/l̃σ, l̃σ1/l̃σ) are identically distributed. Since l̃σ0 and l̃σ1

are positive, it follows from measure continuity that there exists an n0 such that

P

(
min

(
l̃σ0

l̃σ
,
l̃σ1

l̃σ

)
≥ 1

n0

)
>

1

η + 1
.

Let Φ(t) = E
(
(l̃σ0/l̃σ)

t + (l̃σ1/l̃σ)
t
)

and

Φn(t) = E
(
χ{l̃σ0/l̃σ≥1/n}(l̃σ0/l̃σ)

t + χ{l̃σ1/l̃σ≥1/n}(l̃σ1/l̃σ)
t
)
.

It is clear that Φ is strictly decreasing, therefore, Φ(s′) > Φ(s) = 1. Since l̃σb > 0, it follows
from the bounded convergence theorem that Φn → Φ pointwise, in particular, there exists an n1
such that Φn(s

′) > 1 for n ≥ n1. From now on, we will assume that n ≥ max(n0, n1). We can
see that

E
(
|{b ∈ {0, 1} | J̃b ̸= ∅}|

)
= E

(
χ{l̃σ0/l̃σ≥1/n} + χ{l̃σ1/l̃σ≥1/n}

)
≥ Φn(s

′) > 1.

It follows from Theorem 3.2.2 that P(K̃ = ∅) < 1, furthermore, if K̃ ̸= ∅, then Φn(dimH K̃) ≤ 1.
Since Φn is decreasing, this implies that dimH K̃ > s′.

It is easy to check that

K̃ =

∞⋂
k=0

⋃
σ∈Nk

J̃σ =
⋃

b∈{0,1}

∞⋂
k=0

⋃
σ∈Nk

J̃bσ.

Note that given Jb and Jb ̸= ∅, the set
⋂∞

k=0

⋃
σ∈Nk J̃bσ has, the same distribution as K̃, trans-

formed by the similarity that takes J∅ = [0, 1] to Jb. Let Ci = P
(
χ{l̃σ0/l̃σ≥1/n}+χ{l̃σ1/l̃σ≥1/n} = i

)
for i ∈ {0, 1, 2}, clearly C0 + C1 + C2 = 1. It follows from the independence that p = P(K̃ = ∅)
satisfies the equation p = ψ(p), where ψ(x) = C0 + C1x+ C2x

2. Since n ≥ n0, the choice of n0
implies that C2 > 1/(η + 1). Consequently,

ψ(η) = C0 + C1η + C2η
2 ≤ C0 + C1 + C2η

2 = 1− C2(1− η2) < 1− (1− η) = η.

Notice that ψ(p) = p, ψ(η) < η and ψ(1) = 1. Since p < 1 and ψ is strictly convex, this implies
that p < η < 1, hence P(K̃ = ∅) < η.

Theorem 3.3.7. Let α > 0. If there is an ε > 0 such that F (x)/tα is decreasing on (0, ε), then
dimH(U \A) ≥ s(α) almost surely.

Proof. Fix 0 < s′ < s = s(α) and 0 < η < 1. We will show that P(dimHK < s′) ≤ 2η. Taking
the limits η → 0, then s′ → s, it follows that dimH(U \A) = dimHK ≥ s almost surely.
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It follows from Lemma 3.3.1 that there is an n > 0 almost surely such that lσb ≥ 1/n whenever
lσ ≥ ε. By measure continuity, for large enough n,

P
(
∃σ ∈ {0, 1}∗, b ∈ {0, 1} : lσ,≥ ε, lσb <

1

n

)
≤ η.

By Lemma 3.3.6, if n is large enough, then P(K̃ = ∅) < η, furthermore, if K̃ ̸= ∅, then dimH K̃ >

s′. Consequently,

P
(
dimH K̃ ≤ s′ ∨

(
∃σ ∈ {0, 1}∗, b ∈ {0, 1} : lσ ≥ ε, lσb <

1

n

))
≤ 2η.

It remains to prove that if dimH K̃ > s′ and lσb ≥ 1/n whenever lσ ≥ ε, then dimHK ≥ s′.
First, assume that lσ < ε for some σ. It follows from Lemma 3.3.2 that FLF

lσ
≥ FLG

lσ
, where

G(t) = tα (note that the inequality is reversed compared to Theorem 3.3.3). Like in the proof of
Theorem 3.3.3, this implies that

zσ
lσ

=
F−1
LF

lσ

(Vσ)

lσ
≤
F−1
LG

lσ

(Vσ)

lσ
=

F−1
LG

l̃σ

(Vσ)

l̃σ
=
z̃σ

l̃σ
,

We will check that for every σ ∈ {0, 1}∗ and b ∈ {0, 1}, if l̃σb ≥ l̃σ/n, then lσb ≥ lσ/n.
This is clear if lσb ≥ 1/n. If lσb < 1/n, then by the assumption, lσ < ε, which implies that
zσ/lσ ≤ z̃σ/l̃σ. Therefore,

lσ0
lσ

= Uσ

(
1− zσ

lσ

)
≥ Uσ

(
1− z̃σ

l̃σ

)
=
l̃σ0

l̃σ
≥ 1

n
,

and a similar calculation shows that lσ1/lσ ≥ 1/n.
Next, we will prove by induction on σ that l̃σ ≤ nlσ. This is clearly true for σ = ∅. Assume

that l̃σ ≤ nlσ, we need to prove that l̃σb ≤ nlσb. If lσ ≥ ε, then we are done by the assumption
that lσb ≥ 1/n. Otherwise, zσ/lσ ≤ z̃σ/l̃σ, hence,

l̃σ0 = Uσ(l̃σ − z̃σ) = Uσ l̃σ

(
1− z̃σ

l̃σ

)
≤ Uσ l̃σ

(
1− zσ

lσ

)
≤ nUσlσ

(
1− z̃σ

l̃σ

)
= nlσ0,

and similarly, l̃σ1 ≤ nlσ1.
Define the set

Ĵσ =

Jσ if J̃σ ̸= ∅

∅ otherwise,

and let K̂ =
⋂∞

k=0

⋃
σ∈Nk Ĵσ. It is immediately clear that K̂ ⊆ K. If Ĵσb ̸= ∅, then l̃σb/l̃σ ≥ 1/n,

so diam Ĵσb/diam Ĵσ ≥ 1/n. Hence, {Ĵσ} satisfies the conditions of Lemma 3.3.5. Suppose for
contradiction that dimHK < s′. It follows that Hs′(K̂) = 0. Fix a δ > 0. By Lemma 3.3.5, there
is a Σ ⊆ {0, 1}∗ such that 0 < diam Ĵσ < δ for every σ ∈ Σ, K̂ ⊆

⋃
σ∈Σ Ĵσ and

∑
σ∈Σ(diam Jσ)

s ≤
c, where c does not depend on δ.

We will show that K̃ ⊆
⋃

σ∈Σ J̃σ. Let x ∈ K̃. By the definition of K̃, there is a sequence
σ0, σ1, · · · ∈ {0, 1}∗ such that |σi| = i and x ∈ Jσi

for every i. Since z̃ρ > 0 almost surely
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for every ρ, this sequence is unique, hence σ0 < σ1 < . . . . By compactness, there exists a
y ∈

⋂∞
i=0 Ĵσi ∈ K̂, as the sets Ĵσi are nested and non-empty. Choose a σ ∈ Σ such that y ∈ Ĵσ.

It is easy to see that zρ > 0 almost surely for every ρ, which implies that the sets {Jρ}|ρ|=|σ| are
disjoint. Therefore, σ = σ|σ|, consequently, x ∈ J̃σ.

We know that l̃σ ≤ nlσ for every σ. Therefore, l̃σ ≤ nlσ < nδ for every σ ∈ Σ. It follows that

Hs
nδ(K̃) ≤

∑
σ∈Σ

l̃ s
′

σ ≤ ns
′ ∑
σ∈Σ

ls
′

σ ≤ c.

Taking the limit δ → 0 yields the bound Hs′(K̃) ≤ c, since c does not depend on δ. This
implies that dimH K̃ ≤ s′, contradicting the assumption that dimH K̃ > s′. This shows that
dimHK ≥ s′.

Corollary 3.3.8. There exists a µ0 for which λ(U \A) = 0 and dimH(U \A) = 1 almost surely.

Proof. Let

F (t) =

 1
log(1/t) if 0 < t < e−1

1 if e−1 ≤ t.

Clearly, F (0+) = 0, so λ(U \A) = 0 almost surely by Theorem 2.3.1.
Let α > 0. A simple calculation shows that(

log
F (t)

tα

)′

=

(
α log

1

t
− log log

1

t

)′

= −α
t
+

1

t log(1/t)
=

1

t

(
1

log(1/t)
− α

)
,

which is negative if t < e−1/α. It follows from Theorem 3.3.7 that dimH(U \ A) ≥ s(α) almost
surely. By Proposition 3.2.4, this implies that dimH(U \A) = 1 almost surely.

Remark. It is easy to construct distributions for which the conditions of Theorems 3.3.3 and 3.3.7
do not hold. However, for many “natural” continuous distributions, it is true that for every α > 0,
F (t)/tα is monotonic in a neighborhood of zero. In this case, we can use Theorems 3.3.3 and 3.3.7
combined with the continuity of s(α) to find the s such that dimH(U \A) = s almost surely.
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