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Preface

What is a knot? Intuitively we can think of it as a knotted piece of string, made of rubber,

with the ends glued together. We do not distinguish between a knot and its deformations.

But how can we tell whether two knots are the deformations of the same knot or not?

Oftentimes, we cannot.

There are some properties called knot invariants that can help us tell knots apart.

These properties of a knot never change, no matter how we deform the knot. So if a knot

invariant differs on two knots, then those two knots cannot be the same.

In Chapter 1 we discuss the basic concepts of knot theory mainly based on [1] and [5].

In Chapter 2 and 3 we introduce surfaces and then more specifically Seifert surfaces. The

trivial knot is the only knot that arises as the boundary of an embedded disc. Seifert’s

theorem provides us with an algorithm, however, showing that every knot arises as the

boundary of an embedded surface. It is hence natural to use the complexity (i.e. genus)

of such a surface to measure how complicated a knot is. In the Appendix at the end of

the thesis we collected a number of knots together with their Seifert surfaces obtained by

applying Seifert’s algorithm to them.

After the necessary preparations, we can finally present our main theorem, regarding

the connection between an alternating knot and its Seifert surfaces.

Alternating knots are a certain set of knots which are the simplest in a sense. The main

theorem of this thesis claims that Seifert’s algorithm gives us a Seifert surface of minimal

genus when applied to an alternating knot.

The theorem was proven by Richard H. Cowell and Kunio Murasugi independently in

1958, with the use of Alexander polynomials. The proof we present in this thesis roughly

follows the proof published by David Gabai in 1986 [3]. The Master’s thesis of Rasmus

Hedegaard [4] helped us a lot in re-enacting Gabai’s proof. Both [3] and [4] give a proof for

the theorem, however, we have found a case that neither of them discusses. We conclude

the thesis by providing a proof that covers all cases.
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Chapter 1

Introduction to knot theory

1.1 Knots

Definition 1.1.1. A knot K is an equivalence class of continuous embeddings k : S1 → S3

where k1 ∼ k2 if there exists an orientation preserving homeomorphism from (S3, im(k1))

to (S3, im(k2)).

Remark 1.1.2. Knots can be visualized by K = im(k) ⊂ S3. (Figure 1.1.1)

(a) The unknot. (b) The figure-8-knot.

Figure 1.1.1: Examples of knots.

Definition 1.1.3. An oriented knot is a knot together with a choice of orientation.

Remark 1.1.4. Oriented knots can be visualized by K = im(k) ⊂ S3 and small arrows to

indicate the orientation. Figure 1.1.2 shows a visualization of the oriented trefoil knot.

Definition 1.1.5. A knot K1 is said to be equivalent to a knot K2 if K1 and K2 represent

the same equivalence class of continuous embeddings k : S1 → S3 as defined in Definition

1.1.1. We define the equivalence of oriented knots analogously.

Remark 1.1.6. We could also define knots to be in R3. As it makes no difference whether

we use S3 or R3, we will use them interchangeably.
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Figure 1.1.2: The oriented trefoil knot.

The definition of knots does not exclude so called wild knots for which an example is

shown in Figure 1.1.3. In order to avoid these kinds of knots, we will define tame knots.

Tame knots can be defined in the following three equivalent ways:

Definition 1.1.7. If a knot K1 is equivalent to a knot K2 whose image in S3 is the union

of a finite number of line segments, we say that K1 is a tame knot.

Definition 1.1.8. A knot K is a tame knot, if for every p ∈ K there exists an open

neighbourhood Up of p such that (Up, Up ∩K) is homeomorphic to (R3,R).

Definition 1.1.9. A knot K is a tame knot if it is equivalent to a C∞ embedding of S1

into S3.

Figure 1.1.3: A wild knot.

Although it is not complicated to see the equivalence of these three definitions, we will

not prove it. From now on we will only work with tame knots and we will refer to them

simply as knots.

Definition 1.1.10 (Connected sum of two knots). Suppose that K1 and K2 are two

oriented knots in S3 that are separated by an embedded S2. Form the connected sum

K1#K2 of K1 and K2 as follows. First choose an oriented rectangular disc R with

boundary ∂R composed of four oriented arcs {e1, e2, e3, e4} such that K1∩R = −e1 ⊂ K1

and K2 ∩ R = −e3 ⊂ K2, and the separating sphere intersects R in a single arc and
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Figure 1.1.4: Connected sum of two knots.

intersects e2 and e4 in a single point each. Then define K1#K2 as

K1#K2 = (K1 \ e1) ∪ e2 ∪ e4 ∪ (K2 \ e3).

The resulting knot does not depend on the chosen band R. [6]

Definition 1.1.11. We say that a knot K is a prime knot if for any decomposition of K

as a connected sum of two knots, exactly one of the factors is the unknot.

Definition 1.1.12. We call the image of a knot K ⊂ R3 under a linear map p : R3 → R2

a projection of the knot.

Definition 1.1.13. We say that a projection of a knot is a regular knot projection if the

following two things apply:

(1) no three points of the knot project to the same point,

(2) if a point in the projection is the image of two points in the knot, the images of the

two strands of the knot containing the two points intersect each other transversally.

Transversality means that at an intersection point the two tangent vectors of the

projection are linearly independent. Figure 1.1.5 shows a transversal intersection on the

left and a non-transversal intersection on the right, which we wish to avoid.

Figure 1.1.5: A transversal and a non-transversal intersection.

Claim 1.1.14. For every knot K there exists a regular projection of K.

We do not prove this claim.
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Definition 1.1.15. Take a regular projection of a knot K. If two points of K map to

the same point in this projection, we call the image of these two points a crossing point

of the projection.

Take a crossing point of a regular projection. If we only look at the projection, we no

longer know how the preimage of the crossing point (which is composed of two points)

was positioned in the knot, which one was above the other one. To avoid losing this

information, we slightly modify the regular projection in small neighbourhoods of the

crossing points by ”breaking” one of the lines corresponding to the strands of the knot.

We do this in a way that the modified projection represents which strand is above the

other in the knot as shown in Figure 1.1.6.

Figure 1.1.6: Modifying the projection in a small neighbourhood of a crossing point.

Definition 1.1.16. The diagram D of a knot K is a regular projection of K modified as

described in the previous paragraph. The small neighbourhoods of the crossing points we

modified are called the crossings of the diagram.

Figure 1.1.1 shows two knot diagrams, one with 0 and one with 4 crossings.

Definition 1.1.17. Let K be the set of knots. A knot invariant is a map I from K to

any other structure (often N). This implies that for any knot K1, if K1 is equivalent to a

knot K2 then I(K1) = I(K2).

The knot invariant which we will discuss the most in this thesis is the genus of a knot

K, g(K). We will define this in Chapter 3. Until then, here are some examples of knot

invariants.

Definition 1.1.18. The crossing number is a knot invariant cr : K → N. Given all

diagrams of a knot K, cr(K) is the number of crossings in a diagram with the minimal

amount of crossings.

Definition 1.1.19. We define the stick number s(K) of a knot K to be the least amount

of line segments needed to form an image of K as their union. This is an invariant of the

knot.
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Some other examples of knot invariants, which we will not discuss are 3-colourability,

the unknotting number, the bridge number and the Alexander polynomial.

For a brief moment think of the knot as a loop of a string on a table. It is evident that

we can move around the string without changing the knot, but we cannot cut open and

glue the ends back togerher. Moving the string around, however, can change the diagram

and the number of crossings in the diagram of the knot. It would only seem appropriate

to have something in knot theory that describes this ”moving around” of the string.

Definition 1.1.20. The Reidemeister moves provide us ways to change the relations

between the crossings of a diagram of a knot by changing the diagram itself. There are

three Reidemeister moves:

(1) untwisting or twisting a strand of the knot thus reducing or increasing the number

of crossings by one (Figure 1.1.7),

(2) removing or adding two crossings as shown in Figure 1.1.8,

(3) moving a strand of the knot from one side of a crossing to the other (Figure 1.1.9).

or

Figure 1.1.7: The first Reidmeister move.

or

Figure 1.1.8: The second Reidmeister move.

Claim 1.1.21 (Reidemeister). Two knots K1 and K2 are equivalent if and only if there

exists a series of Reidemeister moves and planar isotopies such that after applying them

to a diagram of K1 we obtain a diagram of K2.
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or

Figure 1.1.9: The third Reidmeister move.

1.2 Links

Definition 1.2.1. A link is a finite, ordered collection of knots that do not intersect each

other. Or equivalently, a continuous embedding l : S1 ⊔ . . . ⊔ S1 → S3. Each knot Ki is

said to be a component of the link.

Definition 1.2.2. An oriented link is a link together with a choice of orientation on each

component of the link.

(a) The unlink. (b) Hopf link. (c) Borromean rings.

Figure 1.2.1: Examples of links.

The disjoint union of two unknots, shown in Figure 1.2.1a is called the unlink. Other

basic examples of links are the Hopf link (Figure 1.2.1b) and the Borromean rings (Figure

1.2.1c). The disjoint union of n unknots (Figure 1.2.2) is called the n-component unlink.

Figure 1.2.2: n-component unlink
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Definition 1.2.3. We say that a link L = {K1, K2, . . . , Km} is equivalent to a link

L′ = {K ′
1, K

′
2, . . . , K

′
n} if

(1) m = n,

(2) there exists an orientation-preserving homeomorphism φ : R3 → R3, such that

φ(K1) = K ′
1, φ(K2) = K ′

2, . . . , φ(Km) = K ′
n.

Definition 1.2.4. A diagram of a link is said to be alternating if it has crossings that

alternate between over and under as one travels around the components of the link in a

fixed direction. An alternating link is a link that has an alternating diagram.

For example, the diagrams shown in Figures 1.1.1 and 1.2.1 are all alternating diagrams.
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Chapter 2

Surfaces

2.1 Closed surfaces

Definition 2.1.1. A topological space X is a surface if it is a two-manifold, meaning that

it is a T2 and M2 space in which every point has an open neighbourhood homeomorphic

to an open subset of R2.

Some important examples for surfaces are the 2-sphere (Figure 2.1.1a), the torus

(Figure 2.1.1b), the real projective plane (Figure 2.1.1c) and the Klein bottle (Figure

2.1.1d). Boy’s surface is an immersion of the real projective plane into a 3-dimensional

space. More about this construction can be found in [2].

(a) S2 (b) T2 (c) Boy’s surface (RP2) (d) Klein bottle

Figure 2.1.1: Examples of surfaces.

Definition 2.1.2. A closed surface is a surface which is compact.

Take a finite collection of pairwise disjoint triangles (together with their interiors) in

the plane such that all of their sides are the same length. Now form a topological space

S in the following way: Every side in a triangle is identified with exactly one other side

in another triangle. This defines a graph G with the corners of the triangles as vertices

11



and the sides as edges. It is easy to see that S is compact. If S is a closed surface, we say

that G is a triangulation of S and S is a triangulated surface.

Figure 2.1.2: A triangulation of S2 and T2.

Theorem 2.1.3. Every closed surface S is homeomorphic to a triangulated surface.

We will not prove this theorem as it falls outside of the scope of this thesis. However,

a proof can be found in [7]. This essentially means that every closed surface has a

triangulation.

Figure 2.1.2 shows a triangulation of the 2-sphere and a triangulation of the torus.

We can talk about the orientability of closed surfaces. Intuitively, we call a closed

surface orientable if it has two sides. Now we will define this more precisely.

The orientation of a triangle is defined by an orientation of the boundary of the triangle

as shown in Figure 2.1.3.

Figure 2.1.3: Orientation of a triangle.

Definition 2.1.4. A closed surface S is orientable if there exists a triangulation G of S

such that the triangles in G can be oriented as follows. For each edge in G the orientations

of the two neighbouring triangles are opposite on the edge as shown in Figure 2.1.4. An

orientable surface has exactly two orientations. An oriented surface is an orientable surface

together with a choice of orientation.
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Figure 2.1.4: Edge in triangulation.

Definition 2.1.5. Take a triangulation of a closed surface and let V , E and F be the

number of vertices, edges and faces in this triangulation. We define the Euler characteristic

of the triangulation to be V − E + F .

Claim 2.1.6. If we take two different triangulations of the same surface, the Euler

characteristics of these two triangulations will be equal.

We will not prove this. However, from this follows that the Euler characteristic only

depends on the surface, not on which triangulation we use so from now on we will only

talk about the Euler characteristic of a surface. We will denote the Euler characteristic

of the surface S by χ(S).

In Figure 2.1.2 we see two examples of triangulations of surfaces. On the left side we

see a triangulation of S2 with 6 vertices, 12 edges and 8 faces, from which χ(S2) = 2

follows. On the right side we see a triangulation of T2 with 4 vertices, 12 edges and 8

faces, which determines χ(T2) to be 0.

Claim 2.1.7. Let S and T be closed surfaces. If S ∼= T then χ(S) = χ(T ).

This follows from the definition.

Definition 2.1.8 (Connected sum of closed surfaces). Let S and T be closed surfaces.

Now take S \D̊ and T \D̊ and let φ be a homeomorphism between ∂(S \D̊) and ∂(S \D̊).

Such homeomoprhism exists as these are both homeomorphic to S1. The connected sum

of S and T is the closed surface

S#T = ((S \ D̊) ⊔ (T \ D̊))/∼

where t ∼ φ(t) for every t ∈ ∂(S \ D̊).

Figure 2.1.5 depicts the connected sum of two tori.
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Figure 2.1.5: T2#T2

Claim 2.1.9. If S and T are closed surfaces then χ(S#T ) = χ(S) + χ(T )− 2.

Proof. Since a disc and a triangle are homeomorphic, we can construct S#T by cutting

out a triangle from a triangulation of each surface and gluing the two together along the

triangles’ boundaries, so that the vertices of the cut out triangle on S fall onto the vertices

of the cut out triangle on T . Now take the triangulation of S#T we get as the union of

the triangulations of S and T we took in the first place. Since we glued 6 vertices pairwise

together, VS#T = VS + VT − 3. Similarly, ES#T = ES + ET − 3. As for the faces, we cut

out one from each of the triangulations of S and T , so FS#T = FS + FT − 2. From these

follows that

χ(S#T ) = VS + VT − 3− (ES + ET − 3) + FS + FT − 2 = χ(S) + χ(T )− 2.

2.2 Classification of closed surfaces

Example 2.2.1. The connected sum of g tori is an orientable surface called the genus g

surface Σg. We call g the genus of Σg.

Figure 2.2.1: Standard triangulation of a genus g surface.
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Claim 2.2.2. χ(Σg) = 2− 2g.

Proof. This follows from either Claim 2.1.9 and induction by g or the triangulation of Σg

shown in Figure 2.2.1.

Example 2.2.3. The connected sum of k real projective planes is a non-orientable surface

Nk. The Klein bottle (Figure 2.1.1d) is the connected sum of two real projective planes.

Claim 2.2.4. χ(Nk) = 2− k.

Proof. This follows from either Claim 2.1.9 and induction by k or the triangulation of Nk

shown in Figure 2.2.2.

Figure 2.2.2: Standard triangulation of Nk = RP2# . . .#RP2.

Theorem 2.2.5. Every connected closed surface is homeomorphic to either a genus g

surface or the connected sum of some real projective planes.

We do not prove this theorem.

Corollary 2.2.6. From Theorem 2.2.5 and Examples 2.2.1 and 2.2.3 follows that for

every connected surface S and T , S ∼= T if and only if either both S and T are orientable

or both are non-orientable and χ(S) = χ(T ).

Remark 2.2.7. As the Euler characteristic of a connected closed orientable surface of genus

g is 2− 2g, the higher the Euler characteristic, the lower the genus.
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Chapter 3

Seifert surfaces

3.1 Surfaces with boundary

Definition 3.1.1. A topological space X is called a surface with boundary if it is a T2

and M2 space in which every point has an open neighbourhood homeomorphic to an open

subset of the closed half-plane.

Definition 3.1.2. Let S be a surface with boundary. We say that ∂S ⊂ S is the boundary

of S if p ∈ ∂S if and only if every homeomorphsim between an open neighbourhood of p

and an open set of the closed upper half plane p is mapped to the line y = 0.

Figure 3.1.1: Torus with one boundary component.

Claim 3.1.3. If S is a compact surface with boundary then ∂S is a compact 1-dimensional

manifold.

Claim 3.1.4. If M is a compact 1-dimensional manifold, then M ∼= S1 ⊔ . . . ⊔ S1.

Remark 3.1.5. We can define a triangulation (thus the orientability and the Euler

characteristic) of a compact surface S with boundary as we did for closed surfaces, with

the addition that ∂S must be covered with edges and vertices of the triangulation.
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Proposition 3.1.6. Let S and T be compact connected surfaces with boundary. S and T

are homeomorphic if and only if the following three things apply:

(1) either both S and T are orientable or both are non-orientable,

(2) χ(S) = χ(T ),

(3) S and T have the same number of boundary components.

Proof. It is easy to see that if S ∼= T then the three things listed apply.

Now for each boundary component of S take a disc which is bounded by said boundary

component and is disjoint from S and all the other discs we have chosen so far. Let Ŝ be

the surface we obtain by gluing these open discs to S along the boundary components of

S. We obtain the surface T̂ for T analogously.

It is easy to see that χ(Ŝ) = χ(S)+ l where l is the number of boundary components of

S. Evidently, χ(T̂ ) = χ(T ) + l, hence χ(Ŝ) = χ(T̂ ). By Corollary 2.2.6 the result follows.

If S is an orientable surface with boundary then an orientation of S induces an

orientation on ∂S by assigning the orientation of the edges that cover ∂S in a triangulation

of S to ∂S as shown in Figure 3.1.2.

Figure 3.1.2: Orientation of the boundary of a surface S.

Remark 3.1.7. Vice versa, if the boundary of an orientable surface is oriented, it gives us

an orientation of the surface in the following way: take a triangulation of the surface and

let the orientation of the boundary determine the orientation of the triangles around the

boundary, thus determining the orientation of every triangle in the triangulation.

From now on we will only work with orientable surfaces with boundary.
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3.2 Seifert surfaces

Definition 3.2.1. Let K be a knot. A Seifert surface for K is an embedding i : S → R3,

where S is a connected oriented surface with boundary, such that i(S̊) ⊂ R3\K, i(∂S) = K

and the orientation of K coincides with the induced orientation of ∂S.

Figure 3.2.1: A Seifert surface for the trefoil knot.

In Figure 3.2.1 we take a Seifert surface for the trefoil knot and show that it is actually

a torus with a one component boundary. It is fairly easy to see that the boundary of

the surface in the first picture is the trefoil knot. We slowly isotope this into the surface

shown in the second to last picture by moving it around in the 3-dimensional space. In

the last step, we cut the surface open along the two lines marked with arrows, untwist

both of the bands two times and then glue the ends back together so that the arrows are

pointing in the right directions. We can do this as these two surfaces are homeomorphic.

What we obtain after this procedure is the torus with one boundary component.

Definition 3.2.2. Let L be a link. A Seifert surface for L is an embedding i : S → R3,

where S is an oriented surface with boundary, such that i(S̊) ⊂ R3 \ L, i(∂S) = L, the

orientation of L coincides with the induced orientation of ∂S and there are no disjoint

closed surfaces in S.

Remark 3.2.3. In this definition we allow S to be composed of multiple connected

components, except for disjoint closed 2-spheres.
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Theorem 3.2.4 (Seifert). Every link in S3 admits a Seifert surface.

Proof. Suppose that D is a diagram of a link L. To prove this theorem, we are going to

use Seifert’s algorithm:

(1) At every crossing point of D, let us cut the strings of L and reconnect them based

on the orientation of the link as shown in Figure 3.2.2. As the result of this, D has

now decomposed into disjoint simple closed curves called Seifert circles.

(2) We may now span these circles by pairwise disjoint embedded discs in R3. To be able

to do this, we might have to lift or push down some of the circles in our R3 space.

Figure 3.2.2: Oriented resolution in Seifert’s algorithm.

(3) Finally, for each crossing of the original diagram we connect the discs with twisted

bands as shown in Figure 3.2.2.

As a result of this algorithm, we get an oriented surface S such that the boundary

of this surface is the link L and the orientation of S is the orientation induced by L (as

described in Remark 3.1.7).

Figure 3.2.3: Cutting and reconnecting at the crossings to get Seifert circles.

In Figure 3.2.3 and Figure 3.2.4 we show Seifert’s algorithm on an alternating knot,

thus getting a Seifert surface of said knot.

In Figure 3.2.1 we showed a Seifert surface of genus 1 for the trefoil knot. It is clear that

we can artificially increase the genus of a Seifert surface, Figure 3.2.5 shows an example.

For this reason, we wish to find a Seifert surface for a knot K that is of minimal genus.
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Figure 3.2.4: After connecting the circles with twisted bands we get the Seifert surface.

Definition 3.2.5. The genus of a knot K is an invariant of the knot, g(K), defined by

the genus of a Seifert surface of minimal genus for K.

Remark 3.2.6. In the case of links, it is not obvious how one can define the genus of a

link. So instead of a minimal genus, we will look for a Seifert surface of maximal Euler

characteristic. By Remark 2.2.7, this serves the same purpose as the minimal genus for

knots.

Figure 3.2.5: A Seifert surface of genus 2 of the trefoil knot.

Note that in the case of links, the Seifert surface of maximal Euler characteristic can

differ based on the orientation of the link components. Examples of this can be found in

the appendix.

Theorem 3.2.7. For any knots K1 and K2 in S3, g(K1#K2) = g(K1) + g(K2).

Proof. We first show that g(K1#K2) ≤ g(K1) + g(K2). Let S1 and S2 be Seifert surfaces

of minimal genus for K1 and K2 and define R as in the definition of the connected sum

of two knots (Definition 1.1.10). It is easy to check that

S = S1 ∪R ∪ S2
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is a Seifert surface for K1#K2 and the genus of S is g(K1) + g(K2).

Now we proceed to show that g(K1#K2) ≥ g(K1)+g(K2). Let T0 be an arbitrary Seifert

surface for K1#K2 and take an S2 that separates K1 and K2 in S3. By transversality we

may assume that T0 ∩S2 is composed of a finite number of simple closed curves and arcs,

where the endpoints of the arcs fall onto K1#K2. As |(K1#K2)∩S2| = 2, there is only one

arc in T0 ∩ S2. Each simple closed curve in T0 ∩ S2 bounds a disc in S2. We will perform

a series of surgeries on T0 in order to remove all the simple closed curves in T0 ∩ S2.

Let C be a simple closed curve in T0 ∩S2 such that the disc that C bounds in S2 does

not contain another component of T0∩S2. Such curve C exists. By cutting T0 open along

C and gluing in a disc on each side of S2 we obtain a surface T1 with T1∩S2 having fewer

components than T0 ∩ S2. It is easy to check that χ(T1) > χ(T0) applies.

Figure 3.2.6: Performing a finite number of surgeries..

After a finite number of iterations we obtain a Seifert surface T for K1#K2 such that

χ(T ) > χ(T0) and T ∩ S2 is just one arc. It is a simple matter to check that if the genus

of T is g then g ≥ g(K1) + g(K2). As T0 was an arbitrary Seifert surface, the result

follows.

Proposition 3.2.8. g(K) = 0 if and only if K is the unknot.

Proof. If K is the unknot, a Seifert surface of minimal genus is a disc, which is of Euler

characteristic 1. This means that the genus of this Seifert surface is 0, and there is no

surface of negative genus.

Now assume that g(K) = 0. This means that there exists an embedding f of D2 into

R3 such that ∂(f(D2)) = K. By slightly perturbing f we can obtain a C∞ embedding of

D2 thus we may assume that f is C∞. If f is C∞ then for every p ∈ f(D̊2) there exists an

open neighbourhood Up of p such that (Up, f(D̊
2) ∩ Up) ∼= (R3,R2).
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There exists a small disc D2
ε ⊂ D2 such that f(D2

ε) ⊂ Up ∩ f(D2). K = ∂(f(D2)) is

equivalent to ∂(f(D2
ε)) therefore K is equivalent to a knot lying in R2 ⊂ R3 hence K is

the unknot.

Corollary 3.2.9. Let K be the set of knots. With the connected sum as an operation,

(K,#) is not a group.

Proof. We show that no element of K has an inverse.

Suppose that for a knot K1 exists a knot K2 such that K1#K2 is the unknot, and

assume that K1 is not the unknot. From Theorem 3.2.7 follows that

g(K1) + g(K2) = g(K1#K2) = 0.

This is only possible if both g(K1) and g(K2) are 0, meaning that both K1 and K2 are the

unknot. This contradicts our hypothesis, showing that K1 has no inverse in (K,#).

There is another very important corollary of Theorem 3.2.7, about prime knots.

Corollary 3.2.10. Let K be a knot. If g(K) = 1 then K is a prime knot.

Proof. Assume that K = K1#K2 where neither K1 nor K2 are the unknot, so both

g(K1) ≥ 1 and g(K1) ≥ 1 are true. Now from Theorem 3.2.7 follows that

g(K) = g(K1#K1) = g(K1) + g(K2) ≥ 2

which contradicts the assumption that g(K) = 1
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Chapter 4

Disjoint Seifert surfaces

The lemma we prove in this section plays a crucial part in the proof of the main theorem

of this thesis. However, to prove the lemma, we must use arguments for which the theory

and reasoning falls outside the scope of this thesis. We will denote these arguments by

”Black Box”.

Black Box 4.0.1. Let T and S be Seifert surfaces for a link L. By transversality we may

assume that after perturbing T and S slightly, T∩S is the disjoint union of a finite number

of simple closed curves and arcs, where the endpoints of the arcs fall onto L. Using tools

such as the long exact sequence of homology groups, Poincaré-Lefschetz duality, and the

universal coefficient theorem, we may even assume that T ∩ S contains no arcs.

Definition 4.0.2. Take an oriented link L, a Seifert surface S for L and an oriented

closed curve γ : S1 → S3 \ L. We may assume that γ intersects S transversally, hence

γ ∩ S = {p1, . . . , pn} is a finite set. We define ind(γ ∩ S, pi) for every i ∈ {1, . . . ,m}

(a) ind(γ ∩ S, pi) = +1 (b) ind(γ ∩ S, pi) = −1

Figure 4.0.1: We define ind(γ ∩ S, pi) via the right hand rule.

to be ±1 via the right hand rule as depicted in Figure 4.0.1. We say that the algebraic
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intersection number of γ and S is

⟨γ , S⟩ =
n∑

i=1

ind(γ ∩ S, pi).

Black Box 4.0.3. ⟨γ , S⟩ is well defined in the sense that if the oriented closed curves γ1

and γ2 are homotopic in S3 \ L then ⟨γ1 , S⟩ = ⟨γ2 , S⟩.

Black Box 4.0.4. For homological reasons it follows that if T is another Seifert surface

for L then ⟨γ , S⟩ = ⟨γ , T ⟩.

Lemma 4.0.5. If L is an oriented link in S3 and S is a Seifert surface of L which is

not of maximal Euler characteristic, then there exists a Seifert surface T for L such that

χ(T ) > χ(S) and T̊ ∩ S̊ = ∅.

Proof. By Black Box 4.0.1 we may assume that S∩T consists of a finite number of pairwise

disjoint simple closed curves. If S̊ ∩ T̊ = ∅ then the lemma follows. Now we show that we

may assume that neither of the connected components of S∩T bounds a disc in S, nor in

T . This is to make sure that later on in this proof we do not accidentally create disjoint

2-spheres which would artificially increase the Euler characteristic of the Seifert surface.

Let C be a simple closed curve in S ∩ T . If C bounds a disc in S then by cutting T

open along C and gluing in a disc on each side of S we obtain a surface T ′ with T ′ ∩ S

having fewer components than T ∩S (Figure 4.0.2). It is easy to check that χ(T ′) > χ(T )

thus χ(T ′) > χ(S) applies.

Figure 4.0.2: If C bounds a disc in S.

If C bounds a disc in T but does not bound a disc in S we can create a Seifert surface

T ′ by taking a copy of S, cutting it open along C, gluing in a disc on each side of T and

then pushing it slightly away from S based on the orientation of S (Figure 4.0.3). This

new surface T ′ has the property that χ(T ′) = χ(S) + 2 and S̊ ∩ T̊ ′ = ∅.
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Figure 4.0.3: If C bounds a disc in T but not in S.

With these surgeries we can remove all components of S∩T that bound a disc in either

S, T or both, hence we may assume that neither of the connected components of S ∩ T

bounds a disc in S, nor in T .

For compactness reasons L ∪ S ∪ T divides S3 into a finite number of connected open

sets (regions) such that S3 \ (L ∪ S ∪ T ) = {J0, J1, . . . , Jm}.

Take an x0 ∈ S3 \ (L ∪ S ∪ T ) and for every x ∈ S3 \ (L ∪ S ∪ T ) let γ be an oriented

path from x0 to x. We define

ϕ0 : S
3 \ (L ∪ S ∪ T ) → Z by

ϕ0(x) = ⟨γ , S⟩ − ⟨γ , T ⟩.

We argue that ϕ0 is well defined in the sense that ϕ0(x) does not depend on which

oriented path γ we choose. Take two oriented paths γ and η from x0 to x. From Black

Box 4.0.4 follows that ⟨γ − η , S⟩ = ⟨γ − η , T ⟩ as γ − η is a closed curve. By definition we

get

⟨γ , S⟩ − ⟨γ , T ⟩ = ⟨η , S⟩ − ⟨η , T ⟩

which leads us to the conclusion that ϕ0 is well defined.

It is evident that for every i ∈ {0, . . . ,m}, ϕ0 is constant on Ji. We show that we can

choose x0 so that ϕ0 ≥ 0. Since im(ϕ0) ⊂ Z is a finite set, there exists a region Jk which

minimizes ϕ0. Let us choose x0 from Jk. It is a simple matter to check that with this

choice of x0, ϕ0 ≥ 0.

We claim that if S̊ ∩ T̊ ′ ̸= ∅ then maxϕ0 ≥ 2. Since S and T intersect each other

transversally, a small neighbourhood of S ∩T can be visualized locally as in Figure 4.0.4.
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Figure 4.0.4: S ∩ T locally.

Locally S ∩ T divides S3 into four regions. In Figure 4.0.5 a, b, c and d are the values

of ϕ0 in these regions. It is easy to check that these quadrants must contain at least three

different numbers which leads us to the conclusion that maxϕ0 ≥ 2.

Figure 4.0.5: The values of ϕ0 locally around S ∩ T .

Now let J be a region which maximizes ϕ0. In order to obtain a new Seifert surface T ′

we separate the following two cases:

If χ(J ∩ S) ≥ χ(J ∩ T ) then T ′ = (T \ (J ∩ T )) ∪ (J ∩ S), (4.1)

If χ(J ∩ S) < χ(J ∩ T ) then T ′ = (S \ (J ∩ T )) ∪ (J ∩ T ), (4.2)

where J denotes the closure of J . In both cases we perturb T ′ slightly if necessary to

assure that T ′ and S are again in a position described in Black Box 4.0.1.

Figure 4.0.6: A region J which maximizes ϕ0.

Note that the way we illustrate this in Figures 4.0.6, 4.0.7 and 4.0.8 is not entirely

representative as J can be immensely complicated.

26



Figure 4.0.7: If χ(J ∩ S) ≥ χ(J ∩ T ). Figure 4.0.8: If χ(J ∩ S) < χ(J ∩ T ).

We argue that if we ever get to the second case (4.2), the lemma follows. Since we

obtained T ′ by copying S, changing a part of S to something that is disjoint from S

and then pushing this modified copy slightly away from S based on the orientation of S,

S̊ ∩ T̊ ′ = ∅ applies. χ(T ′) > χ(S) as

χ(S) = χ(J ∩ S) + χ(S \ (J ∩ S)) < χ(J ∩ T ) + χ(S \ (J ∩ S)) = χ(T ′).

So in this case T ′ is a Seifert surface for L such that χ(T ′) > χ(S) and S̊ ∩ T̊ ′ = ∅.

Now let us take a look at the first case (4.1). Similarly to the second case, it is easily

seen that

χ(T ) = χ(J ∩ T ) + χ(T \ (J ∩ T )),

so from χ(J ∩ S) ≥ χ(J ∩ T ) it follows

χ(T ′) = χ(J ∩ S) + χ(T \ (J ∩ T )) ≥ χ(T ) > χ(S).

If S̊ ∩ T̊ ′ = ∅ then the lemma follows. If S̊ ∩ T̊ ′ ̸= ∅, we examine how ϕ0 changes when T ′

takes the place of T . Define the map ϕ1 : S
3 \ (L∪S ∪ T ′) → Z as we defined ϕ0 but with

T ′ instead of T .

We may assume that Ji are arranged so that ϕ0(J0) ≤ ϕ0(J1) ≤ . . . ≤ ϕ0(Jm) where J0

contains x0 and Jm = J . For every i ∈ {0, 1, . . . ,m− 1}, ϕ0 = ϕ1 in Ji. When T ′ took the

place of T we merged J with some neighbouring regions and the value of ϕ0 was maximal

in J therefore ϕ1 < ϕ0 in J . By this procedure we either achieved that maxϕ1 < maxϕ0

or we strictly decreased the number of ϕ0-maximal regions. It follows inductively that

after a finite number of iterations we obtain a Seifert surface T such that χ(T ) > χ(S)

and T̊ ∩ S̊ = ∅.
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Chapter 5

Seifert surfaces of alternating links

Seifert’s algorithm gives us a Seifert surface for any link L, however nothing guarantees

that the surface we obtain by applying the algorithm to an arbitrary diagram of L will

be of maximal Euler characteristic. Let us take the unknot as an example. In Figure 5.0.1

we apply Seifert’s algorithm to a diagram of the unknot. The surface we get is the torus

Figure 5.0.1: Applying Seifert’s algorithm to a non-alternating diagram of the unknot.

with one boundary component even though we know that the genus of the unknot is 0.

Notice that the diagram we worked with is not alternating which leads us to the main

theorem of this thesis.

Theorem 5.0.1. Let L be an oriented link in S3, and let S be the surface obtained from

Seifert’s algorithm by applying it to an alternating diagram of L. Then S is a Seifert

surface of maximal Euler characteristic.

Proof. We prove the theorem by induction by the number of crossings.

For a link with a diagram of zero crossings, Seifert’s algorithm gives us a finite number

of disjoint discs. We prove that this is a maximal Euler characteristic Seifert surface for L.

If L has zero crossings, then L is an m-component unlink. Let S be a Seifert surface for L
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and S1, S2, . . . , Sk be the connected components of S so that S = S1⊔S2⊔. . .⊔Sk. For every

i ∈ {1, 2, . . . , k}, the boundary of Si is a disjoint union of ki circles (∂(Si) = S1
1⊔ . . .⊔S1

ki
),

and

χ(Si) = 2− 2gi − ki,

where gi is the genus of Si. Since S is a Seifert surface for L, S does not have disjoint

closed components which leads to the conclusion that for every i, ki ≥ 1. For every Kj

connected component of L there is exactly one component Si of S such that Kj ⊂ ∂Si,

meaning that
k∑

i=1

ki = n.

From these follows that k ≤ m. Now we calculate the Euler characteristic of S from the

Euler characteristics of the Si:

χ(S) = χ(S1 ⊔ S2 ⊔ . . . ⊔ Sk) =
k∑

i=1

χ(Si) =
k∑

i=1

(2− 2gi − ki).

Now using what we know about the sum of ki, that k ≤ m and that for every i, gi ≥ 0

we get that

χ(S) =
k∑

i=1

(2− 2gi − ki) ≤ 2k −m ≤ 2m−m = m.

Knowing that by applying Seifert’s algorithm to L we get a surface with Euler

characteristic m, we see that for a diagram with zero crossings the theorem is true.

Now we assume that the theorem is true for all links with alternating diagrams of

n crossings or less. Let L be a link with an alternating diagram of n + 1 crossings. We

show that by applying Seifert’s algorithm to this diagram of L we get a maximal Euler

characteristic Seifert-surface.

Let S be the Seifert surface we got by applying Seifert’s algorithm to the alternating

diagram of n+1 crossings of L and suppose that S is not of maximal Euler characteristic.

Now S is composed of discs and twisted bands.

We define a graph GS with the Seifert circles of S as its vertices and edges that

correspond to the twisted bands connecting the Seifert circles. We show that we can

assume that GS has no leaves. If a Seifert circle C represents a leaf, it has exactly one

twisted band connected to it. Now we can untwist said band by turning C over and then
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merge the two Seifert circles connected by the now untwisted band, as shown in Figure

5.0.2.

Figure 5.0.2: Removing a leaf.

The diagram we have now is still an alternating diagram of L and by doing this we

do not change the Euler characteristic of S. This corresponds to removing a leaf and the

edge connected to it from GS. By repeating this procedure, we can get to an alternating

diagram of L such that when applying Seifert’s algorithm to it, the corresponding graph

of the surface we got has no leaves. Untwisting bands this way leads to a diagram with

less than n+ 1 crossing, for which the induction hypothesis is true.

From this follows that when GS is a forest, the Euler characteristic of S is m where m

is the number of connected components in GS, so S is in fact a Seifert surface of maximal

Euler characteristic. Hence from now on we may assume that GS contains a cycle.

We are going to prove the theorem in two steps. In the first step, we are going to prove

it for the cases where all Seifert circles are unnested (meaning that S can be isotoped

to lie in S2 in a way that the Seifert circles bound pairwise disjoint disks in S2). In the

second step, we are going to prove the theorem for cases where there are nested Seifert

circles in S.

Step 1. All Seifert circles are unnested.

Since all the Seifert circles in S are unnested, the way we defined GS gives us a planar

embedding of the graph. Therefore, we can look at S as being embedded in S2 except

for small neighbourhoods of the crossings. Figure 5.0.3a shows what we mean by this

embedding, the parts of the surface coloured yellow (the lightest gray in monochrome)

are above, the parts coloured blue (the darkest gray in monochrome) are below and the

parts coloured red lie in S2.

Near every crossing one of the strings is below and one is above S2. Since L is

alternating, when traveling around the knot, between any two adjacent crossings we have
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(a) S in S2 (b) L ∩ S2

Figure 5.0.3: S embedded in S2 except for small neighbourhoods of the crossings.

to pass trough S2. At the moment L∩S2 consists of some arcs, as shown in Figure 5.0.3b.

Now we perturb S slightly in a small neighbourhood of ∂S in the following way: we either

lift it up or lower it down, which results in ∂S intersecting S2 in 2n+2 points. The result

of this perturbation is shown in Figure 5.0.4 where as before, the parts of the surface

coloured yellow are above, the parts coloured blue are below and the parts coloured red

lie in S2. Figure 5.0.5 shows S ∩ S2 before and after we perturb S.

Figure 5.0.4: S in S2 after perturbing.

When perturbing S we also isotope L so that ∂S = L still applies. Now L intersects S2

in finitely many points, each point corresponding to an arc in Figure 5.0.3b. These points

are marked with an x in Figure 5.0.4. For every Seifert circle, the number of twisted bands

around the circle equals the number of points where L intersects S2 on the boundary of

the circle.
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Figure 5.0.5: S ∩ S2 before and after we perturb S.

Because we assumed that S is not of maximal Euler characteristic, by Lemma 4.0.5

there exists a be a Seifert surface T for L such that χ(T ) > χ(S) and T̊ ∩ S̊ = ∅. After a

small isotopy, we may assume that T and S2 have transversal intersection. Since L ∩ S2

consists of 2n+ 2 points and ∂T = L, T ∩ S2 consists of n+ 1 arcs and some finite set of

simple closed curves. By performing surgeries on T as described in the proof of Lemma

4.0.5, thus removing the circles from T ∩S2, we may assume that T intersects S2 in n+1

arcs.

Figure 5.0.6: A connected component D in S2 \ S.

Now take a look again at the planar embedding of GS we described earlier. If we

take a connected component D in S2 \ S, the Seifert circles and twisted bands bounding

D correspond to the vertices and edges of an innermost cycle in GS (Figure 5.0.6). D

is homeomorphic to a disc and we also know that ∂D ⊆ S2 ∩ S. Since S is orientable

we know that there must be an even number of twisted bands around D, thus L must

intersect ∂D in some 2k points. It follows that T ∩D consists of k arcs.
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We say that an arc in T ∩D is innermost if it runs between two neighbouring points

of ∂D ∩ L. It is easy to check that T ∩ D contains at least one innermost arc and if

|∂D ∩ L| ≥ 4, there must be at least two innermost arcs in T ∩D.

Figure 5.0.7: α and β.

Take an innermost arc β in T ∩D, and an arc α in S ∩D that has the same endpoints

as β (Figure 5.0.7). Now we are going to cut S open along α, in the following way. We

perturb S slightly so that ∂S = L intersects S2 as shown in Figure 5.0.8a. Our goal with

this is the two endpoints of α and β to be on one twisted band. While doing this, we

perturb T as well, so that ∂T = L still applies. We call the part of D that is bounded

by α ∪ β now Dβ (Figure 5.0.8b). From now on we no longer look at S and L as being

(a) Moving the intersection points. (b) α and β now.

Figure 5.0.8: Perturbing S to move the endpoints of the arcs.

embedded in S2. We take the twisted band that contains α and twist it once, thus moving

the twist further up on the band (Figure 5.0.9). Now we see that α runs across the band,

so we cut S open along α. By doing this, we obtain a new surface S ′, and we call the
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Figure 5.0.9: Moving the twist further up on the band.

boundary of this new surface L′. From the way we constructed S ′, it is evident that L′ has

a trivial crossing where L had the crossing we cut open. By undoing this trivial crossing

using the first Reidemeister move, the new diagram of L′ is still alternating, and S ′ is now

exactly the Seifert surface for L′ that we get by applying Seifert’s algorithm to this new

Figure 5.0.10: Cutting S open and undoing a trivial crossing.

diagram. It is easy to check that χ(S ′) = χ(S) + 1. This diagram of L′ has n crossings,

thus from the induction hypothesis follows that S ′ is of maximal Euler characteristic.

Parallel to this, we cut T open along β and glue in a copy of Dβ on each side of the cut

as shown in Figure 5.0.11. The surface T ′ we obtain this way has L′ as its boundary and

Figure 5.0.11: Creating T ′.
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χ(T ′) = χ(T )+1 applies. From χ(T ) > χ(S) follows that χ(T ′) > χ(S ′). This contradicts

the induction hypothesis, since S ′ and T ′ are both Seifert surfaces for the link L′ and

S ′ is of maximal Euler characteristic. Thus we have proven that S is a Seifert surface of

maximal Euler characteristic for L.

Step 2. There are nested Seifert circles in S.

For this step, we will arrange the Seifert circles of S into levels. The Seifert circles which

are not contained by any other Seifert circles (so they are the ”maximal” ones in a sense)

go on the first level. On the second level there are the circles which are only contained

by the ones on the first level. On the third level the ones that are only contained by the

ones on the first and the second level, and so on. The way we arranged the Seifert circles

guarantees that twisted bands will only go within a level or between neighbouring levels.

An example for this is shown in Figure 5.0.12 where C0 is on the second level, C1, C2 and

C3 are on the third.

Figure 5.0.12: Arranging Seifert circles into levels.

Take a Seifert circle C0 from the second highest level and let C1, . . . , Cm be the Seifert

circles C0 contains. Since C0 is on the second highest level, C1, . . . , Cm are on the highest,

meaning that they do not contain any other Seifert circles. Now take the part of S that is

bounded by C0, C1, . . . , Cm and the twisted bands going between them and isotope them

to lie in an S2 except for small neighbourhoods of the crossings. (We can view this as

C0, C1, . . . , Cm spanning a 2-sphere as shown in Figure 5.0.13.)

Now we perturb this part of S slightly along with L similarly to Step 1 with the

addition that we choose all twisted bands leaving from C0 that are not connected to any

Seifert circles in {C1, . . . , Cm} to go outside of S2. We can achieve this by choosing the
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Figure 5.0.13: C0, C1, C2 and C3 in S2.

intersection points of L and S2 wisely. Figure 5.0.14 depicts this, where yellow represents

the parts of the knot that are outside of S2 and blue the parts that are inside.

Figure 5.0.14: L after we perturb S. Figure 5.0.15: A connected component D in S2 \S.

If there are at least two twisted bands between C0 and {C1, . . . , Cm}, take a connected

component D in S2 \ S (Figure 5.0.15) and do as in Step 1 with one additional rule: if

there are twisted bands in L leaving from C0 between the endpoints of the arc β and

|∂D ∩ L| ≥ 4 then choose another innermost arc β′ and apply the procedure (described

in Step 1) to β′ instead of β. If |∂D ∩ L| = 2 then there are two arcs in S ∩D with the

same endpoints as β, let us choose α to be the one that does not go around the twisted

bands leaving from C0. This is shown in Figure 5.0.16.

If there is only one twisted band between C0 and {C1, . . . , Cm} then untwist it by

turning {C1, . . . , Cm} upside down as a whole, similarly to the leaf removal we described
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Figure 5.0.16: If |∂D ∩ L| = 2 then we choose α as shown here.

at the beginning of this proof (Figure 5.0.2), but do not merge this time. This removes a

crossing in L, giving us an alternating link diagram with n crossings. This completes the

proof of the theorem.
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[2] Arnaud Chéritat. A model of Boy’s surface in Constructive Solid Geometry.

[3] David Gabai. Genera of the alternating links. Duke Mathematical Journal, 1986.

[4] Rasmus Hedegaard. Seifert Surfaces of Maximal Euler Characteristic. Master’s thesis,

University of Copenhagen, 2010.

[5] Bohdan Kurpita Kunio Murasugi. Knot theory and its applications. Boston:
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Appendix

In this appendix we collected a number of alternating knots and links with their Seifert

surfaces obtained from Seifert’ algorithm and computed their Euler characteristic.
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