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Abstract

In the realm of games of incomplete information, modeling the beliefs among multiple
agents presents significant challenges, especially when considering belief hierarchies —
agents’ beliefs about others’ beliefs, and so forth. Harsanyi’s (1967) introduction of types
offers a notion to navigate these complexities, representing agents’ beliefs through a type
function. This research aims to adapt the type space model to the phenomenon of financial
bubbles, a concept that, surprisingly, lacks a universally accepted rigorous mathematical
definition in existing literature. We seek to formally define financial bubbles and establish
a common prior that facilitates the emergence of such a type space. By analyzing the
conditions necessary and sufficient for a financial bubble to form, our study seeks to provide
insights into the machinery underlying speculative bubbles within the context of type

spaces.
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Chapter 1

Introduction

1.1 Financial Bubbles

Financial bubbleql| are characterized by the escalation of asset prices beyond their intrinsic
values. That is, the investors are willing to make decisions based on speculating about
each other’s beliefs, rather than their own valuation of an asset as the sum of discounted
future cashflows. Explaining the phenomenon of financial bubbles presents significant
difficulties, mainly because they are driven by a complex web of beliefs and information
among investors. So far, there is no universally accepted theory describing the causes of
financial bubbles. One common explanation, described for example by Law]| (2016)), is the
Greater Fool Theory. It stipulates speculative episodes, which are marked by a mutual
reinforcement of overvaluation, where the price increases are fueled by the belief that
future buyers will be willing to pay even more. The essence of financial bubbles lies in
the interplay of beliefs, making them a quintessential example of a scenario dominated by

incomplete information and belief hierarchies.

1.2 Type Spaces

In addressing the challenges posed by incomplete information, Harsanyi’s (1967)) seminal
work introduced a groundbreaking approach through the concept of type spaces. Types

provide a structured way to model the knowledge-belief spaces, encapsulating not only the

1Some well-known examples include the Dutch Tulip Mania emerging in 1634 and collapsing in 1637

and the US Dot-com Bubble starting out in 1995 and peaking in 2000.



agents’ information but also their beliefs about other agents. By integrating the notion
of types into game theory, Harséanyi offered a method to analyze games of incomplete
information with clarity and precision that was previously unattainable, paving the way
for a deeper understanding of strategic interactions under uncertainty.

A key postulate in Harsanyi’s work is the existence of a common prior, which suggests
that agents’ beliefs can only differ because of their private information. Since then, the
study of type spaces has had common priors as its core focus. The key breakthrough
came when Aumann (1976|) showed that the presence of a common prior implies the
impossibility of an agreement to disagree. Specifically, if players’ posteriors are common
knowledge, they must align. This insight sparked a series of "no-trade theorems" by
various authors, who expanded on Aumann’s results in different contexts. Morris| (1994])
investigated heterogeneous priors to determine conditions under which trades would occur.
Hellman| (2013) introduced the concept of e-close priors as a variation to common priors.
Samet| (1998a)) and Feinberg| (2000) characterized priors through the analysis of posterior
distributions. Hellman and Pintér| (2020) further generalized the relationship between

disagreement and common priors to uncountably infinite type spaces.

1.3 Beliefs and Markov chains

Consider the scenario where Romeo contemplates how much he is willing to pay for a
gold ring. His personal valuation—his first-order belief—reflects what he initially thinks
the ring is worth. If he believes Juliet values the ring more highly, he might pay more
than his valuation so that he can sell it to her at a profit. His second-order belief is about
what her valuation might be. However. Juliet might be engaging in a similar thought
process and willing to pay even more if she believes Romeo values the ring highly. This
introduces Romeo’s third-order belief, which is his assumption about Juliet’s thoughts on
his valuation of the ring. He can continue the iterative reflections on mutual beliefs and
arrive at a price that neither of them believes to be anywhere close to the actual value.
The key insight by Samet| (1998a)) lies in recognizing that a Markov chain can model the

chain of beliefs.



Let (€4,.4;) and (£, A2) be measurable spaces. a map x: 1 X Ay — [0,00] is a
Markov kernel if:

1. wy = k(w1, Ag) is Aj-measurable V Ay € A,,
2. Ay — k(wy, Ag) is a probability measure on (€9, 43) Vw; € Q.

ti: Q= A(Q,.A) is the type function of player i, which assigns a probability distribution
to any state of the world w € €, representing ¢’s beliefs about which state we might be in.
We observe that a type function behaves as a Markov kernel, which allows us to define
a Markov process on the state space, effectively capturing the sequential chain of beliefs
among the participants.
Based on this, we define the Markov transition M; for each player . M; exhibits several

desirable properties:
e The set of priors of player i is exactly the set of invariant distributions of M;.

e Applying M; to a random variable yields its expectation with respect to player i’s

type.
e The elements of i’s knowledge partition are the irreducible classes of M;.

In this setting, we can also define the higher-order belief function of a chain of players
1,19, ...,1x, which gives the distribution of the beliefs of 7, about the beliefs of i;_; about
the beliefs of, and so on...about the beliefs of 7; about the state space.

After the necessary definitions and results for the Markov model, we turn to our main

objectives.

1.4 Objectives

We propose that financial bubbles have not been adequately explained because they
lack a universally accepted rigorous mathematical definition. The main objective of this
paper is to apply the type space model to financial bubbles, establishing a definition
using Harsanyi’s structures. By doing so, we seek to unravel the causes that facilitate

the emergence and persistence of speculative bubbles. Specifically, we will investigate the

2See e.g. Klenke| (2014)



establishment of a common prior that enables the construction of a type space prone to
financial bubbles. We examine the relationship between financial bubbles and common
priors, similar to the no-trade theorems above. Additionally, we identify the conditions
necessary and sufficient for the formation of a financial bubble. These results are in Chapter

which, in its entirety, is our own contribution.



Chapter 2

Type spaces

2.1 Definitions

In this paper we employ a countable type space that is not necessarily finite (such as
the one described by [Samet| (1998b)), yet not as general as the framework proposed by
Hellman and Pintér (2020)). It is defined as follows:

Definition 2.1. A tuple (N, (Q,.A), (IL;)ien, (t;)ien) is a type space, if
e N is the non-empty, finite set of players,

Q) is the countable set of the states (of the world),

I1; us the knowledge partition of player ¢ € N, where each element of I1; is a finite

set, 1 € N,

A is the field of events over the state space € such that for each player i € N we
have 1I; C A,

ti: Q — A(Q, A) is the type function of player i € N meeting the properties

— for every pair w,w" € ™ € II; it holds that t;(w) = t;(W'),
— for every w € m € I1; it holds that t;(w)(m) = 1,

for alli e N.

The interpretation of type space we have in mind in this paper is that of a framework

to model the belief hierarchies of the agents.

5



The type function t; of agent ¢ assigns a probability distribution to any state w € €2,
representing her belief in that particular state of the world. The true power of the type
function lies in its ability to model not just what an agent believes about the world but
also what she believes about other agents’ beliefs, what she believes about the others’
beliefs about her beliefs, ad infinitum.

Any element 7 C € of the partition II; on €2 is a set containing states which to agent ¢
are indistinguishable, hence ¢; is constant on. Denote by II;(w) the element of II; containing
w. II; embodies the definitive knowledge of player i, as opposed to their beliefs. Agent ¢ in
the state w receives information about the world, so they can determine that the world
is in one of the states inside the set II;(w). This marks the boundary of knowledge, any
further distinction among the states enters the realm of beliefs about probabilities.

Harsanyi (1967) also introduced the pivotal "common prior assumption", which stip-
ulates that the players’ beliefs are consistent if their types are derived by updating the

same distribution based on each player’s unique information partition element. For that,

we need the following definitions.

Definition 2.2. A probability distribution p; € A(L2, A) is a prior for agent i if Vr € 11,
Vwemrm, VE € A it holds that p;(ENw) = t;(w)(E)p;(m).

Notice that this condition can be given equivalently as p;(E |7) = t;(w)(E) whenever
pi(m) > 0, motivating the intuition behind this notion.
A prior might be interpreted as a representation of the initial beliefs of an agent before

any specific information differentiates her type.

Definition 2.3. A probability distribution p € A(Q2,.A) is a common prior if it is a

prior for every agent i € N.

One perspective on the notion of a common prior is that its existence implies a possible
shared baseline belief among all agents before their private information leads to divergent

beliefs.

Definition 2.4. The meet Iy of (I1;);en is the finest partition of Q0 which is coarser

than any 11;.

The meet will prove to be an important tool for relating the knowledge partitions of

the players.



2.2 An example

Something similar to the following simple example was given by Allen and Morris| (2001)),
which demonstrates bubble behavior in a financial setting, due to the interplay between
the higher-order beliefs of the agents participating.

Romeo and Juliet are two depositors in a bank, and they have liquidity values wy, ws € Z.
Both of them know that the difference between their liquidity value is at most 1 (beyond
that they assume uniform distribution). If the liquidity value is smaller than 0, the player
has to withdraw, otherwise, he can choose between withdrawing and keeping it in the

bank with the following payoffs:

Remain  Withdraw
Remain | 110 | 110 | 0| 100
Withdraw 100 | 0 100 | 100

We can write this in the type space setting:
e The state space is as follows:

Q= {(wy,ws) € Z%: |w) —wy| <1}

e The player set:
N ={1,2}

e The knowledge partitions:
I, = {{(whwl - 1)7 (w17w1)7 (wlawl + 1)} S Z}

and

Hg = {{(WQ — ]_,CL)Q), (CUQ,CUQ), (WQ + 170)2)} Two € Z}

e The type functions: for every (wy,ws) € €
tr(wr, wa) ({(wr, w1 — 1)}) = tr(wr, we) ({(wr, w1) }) = t1(wi, wo) ({ (w1, w1 +1)}) = %

and

ta(wr, w2)({ (w2 — 1, wa) }) = ta(wr, w2)({ (w2, wa) }) = ta(wr, wa) ({ (w2 + 1,wa)}) = %



Suppose we are in the state w = (w1, ws) = (2,2). From Romeo’s perspective, there is
no apparent reason to withdraw as not only does he know that Juliet’s liquidity is non-
negative, but he also knows that Juliet knows that his liquidity is non-negative. Likewise,
the same can be stated from Juliet’s viewpoint. However, this chain of knowledge doesn’t
extend to higher degrees of belief, which can cause the phenomenon of a financial bubble.

Romeo believes ws to be 1,2 or 3 with probabilities %, %, %, that is

t(w)({(w),wy) € 2wy =1}) =

t(w)({ (W), wy) € Q:wh =2}) =

Wl Wl =W

t(w)({(wy, wh) € Q: wh = 3}) =

Juliet believes with probability % that Romeo believes wy to be 0, 1, or 2 with proba-

RV 1 1 1
bilities 3, 3, 3.

Juliet also believes with probability < that Romeo believes ws to be 1, 2, or 3 with

W=

eqe g . 1 1
probabilities 3, 3,

SN

Juliet also believes with probability % that Romeo believes w, to be 1, 2, or 3 with
probabilities %, 3, 3.

Adding up the probabilities for the cases gives the expressions:

tale) ({0 € 25 @) € st = 0)) =

Wi Wl

o) ({! € 0 (W) € 25 = 1) =

o) ({o' € 0 (W) € 25 = 2) =

o) ({! € 05 () € 25 =3)) =

Wl Wl

Wl Wk W~k W~ Wl
N A U A
Il
-

tale) ({0 € 25 @) € s f = 3) =

Multiplyingﬂ the layers of beliefs, we get the distribution %, %, %, %, based on Juliet’s

1
9
second-order beliefs.

We can also continue this line of reasoning to get the following distributions of ws

based on the higher-order beliefs:

IThis is a sensible approach to what weight a player might assign to an event based on a chain of

beliefs. This is to be discussed and formalized in Section



1 1 1
T T T T
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
111
3 3 3
12 3 2 1
9 9 9 9 9
i 3 6 17 6 3 1
27 27 27 27 27 27 27
1 4 10 16 1 16 10 4 1
81 81 81 81 81 81 81 81 81
1 5 15 30 45 51 45 30 15 5 1
243 243 243 243 243 243 243 243 243 243 243
1 6 21 50 9 126 141 126 9 50 21 6 1
729 729 729 729 729 729 729 729 729 729 729 729 729

Notice that the distribution in the last row - based on Juliet’s sixth-order beliefs -
implies that she maximizes her utility by withdrawing, as

78 651
=== 0+ === - 110 < 100.

729 729

By the same argument, Romeo also withdraws.

The example, although straightforward, illustrates two crucial insights. First, it quan-
titatively demonstrates how higher-order beliefs can escalate to extreme outcomes in
interactive scenarios. Second, it reveals that even when utilizing the type space framework
to analyze a relatively simple problem, the process of calculating and articulating the
chain of beliefs remains complex and challenging. These observations pave the way for
the next section, where we explore higher-order beliefs in a new context, enabling clearer

definition of terms and more streamlined proof of results.

2.3 Type spaces as Markov chains

The results of this section are based on [Samet| (1998a), which first explored finite type
spaces in the Markov setting. For our model, we notice that the principal results also

extend to our countable state spaces, with identical proofs.

From now on we consider the type space (N, (2, A), (I1;);en, (t;)ien) and fix a linear

order over the state space ().

Also, from now on, suppose t;(w)(w) >0 Vi€ N, Yw € Q. This sensible assumption

ensures aperiodicity later on.

Note that for any player ¢ € N:



1. For any E* € A the map w — t;(w)(E*) is measurable.
2. For any w* € Q the map F +— t;(w*)(F) is a probability measure on (2, A4).

These conditions precisely define ¢;(-)(+): Q x A — [0, 1] as a Markov kernel. Thus, we

can also define a Markov chain.

Definition 2.5. Given a player ¢ € N. Then player i’s Markov transition matriz M; is

an infinite matrix with dimensions €2 x  such that
M;(w,w’) & ti(w)(W).

Hence the rows of M; are the types of player i: t;(w), w € Q.

For a distribution p over the state space €, the distribution p M; over ) describes what
player ¢ believes given the initial distribution p.

Then p M;, M;, is the distribution over {2 which describes what player 7, believes about
what player i, believes given the initial distribution p.

Any p M;, ... M,;, can be similarly interpreted.

The following statements can be derived straightforwardly from the definitions of

Markov chains and type spaces:

Proposition 2.6. A probability distribution p € A(Q,.A) is a prior of player i if and only
of
p=pM;,

that is, the prior’s of i are exactly the stationary/invariant distributions of i’s Markov

matriz.

Proposition 2.7. The elements of I1; are precisely the irreducible communicating classes

Of Mz
Proposition 2.8. For a random variable f
M f(w*) = / Flw) ti(w")(dw) Vo' € Q.
Q

The above statements provide the main motivation for the use of Markov models.

Samet| (1998b) makes the following observation:

Proposition 2.9. For any i € N, the set of priors of i is exactly the convex hull of i’s

types.

10



Corollary 2.10. For any i € N, M; is an idempotent operator, that is

Proof. For any distribution p € A(Q,.A), p M; is the convex combination of the rows of
M;, which are the types of i, so p M; is a prior for ¢ by Proposition Therefore by

Proposition

Idempotence is a sensible, consistent property of the Markov transition. It means that an
agent knows their own type/belief.
Now for the rest of this chapter, we explore the properties of the Markov transition

obtained by the composition of individual Markov transitions.

Lemma 2.11. Let M = M;, M, ... M, for some iy,is, ... i, € N with | JS_{i;} = N.
Then the meet Il is a partition of ) into irreducible, aperiodic classes of M, therefore the

restriction of M to m € lly has a unique stationary distribution.
Proof. For w,w’ € m; € I1; :

M(w,w") > My, (w,w) M, (w,w) ... M;._ (w, w)M; (w,w")M;

i1 j J+1

(W ). .. M, (W' W) >0,

that is, elements of the same partition element communicate, so if w is in an equivalence
class, II;(w) is a subset of that class Vi € N. Hence each class is a union of elements in
IIy. For any w € Q we have II;(w) C IIy(w) Vj € N, so any 7 € Iy is irreducible and
therefore an equivalence class. M is aperiodic by the assumption that ¢;(w)(w) > 0 Vw €

2, Vie N. [ |
The above lemma enables us to prove the main result of this section:
Proposition 2.12. The following are equivalent:
(1) p is a common prior.
(2) p=pM,; VieN.

(3) p=pM; M, ... M Viy iy, ... i, € N with Ji_{i;} = N.

11



Proof.

(1) & (2) : It’s by Proposition [2.6]

(2) = (3) : It’s clear.

(3) = (2) : Suppose the former and let iy, s, ..., i € N with Ule{ij} = N. Then

pM;, M, ... Mik =D,

multiplying by M; gives
]9]\41‘1]\43'2 .. Mzk Mil = pMil,

therefore p M;, is a stationary distribution of M, ... M; M, , but we know so is p, and
it’s unique by Lemma [2.11} so
p=pM;.

As 71 can be chosen arbitrarily, we are done. [ |

Remark 2.13. The often present requirement Ule{ij} = N can be relaxed if we modify
our definitions to only concern a subset of players within N, adjusting the conditions and
results as needed. However, this approach is similar to viewing N as part of a broader
universe of players. In our analysis, it suffices to concentrate specifically on this chosen

subset N.

2.4 Higher-order belief functions

Considering the beliefs of a sequence of agents, an event’s probability in terms of the
agents’ types can only be given as a chain of nested probabilities: Romeo believes that
with probability p; Juliet believes that with probability p, Mercutio believes, and so on.
However, agents make decisions based on calculating their expected gains. Therefore, it’s
desirable to construct a merged probability measure with respect to which an expectation
can be taken. It should combine the information about the chain of probabilities. For
instance, it’s an imminently logical aim that if Romeo believes that with probability %
Juliet believes that with probability % the event happens (and for no other combination of
probabilities is that true), then the unified measure of Romeo and Juliet should assign
probability % to the event. Note that from Romeo’s point of view, the probability with
which Juliet believes the event E to happen is a random variable ¢yt () (E): Q© — [0, 1].
Therefore, Romeo’s beliefs about Juliet’s beliefs about the event should be described by

12



the expected value of that random variable with respect to Romeo’s type. Continuing this

line of reasoning, we arrive at the following definition.

Definition 2.14. For some state w* € €1, the higher-order belief functiorﬂ iy igoin

Q — A(Q,A) corresponding to the chain of beliefs of agents iy,is,...,i € N (not

necessarily distinct) is defined as
tuian@)B) 2 [ [ ] o)t tufniaon)] .. )@y
VE € A.

£ ¢

Notation 2.15. For / € N let t¢

01,8250k

that is, the higher-order

U15825eeey Tk 81,82 5wy Tl yeeey Tk 7

belief function iterated ¢ times. (Let N = {1,2,...}).

Lemma 2.16. t;,;, ; (w*) defines a probability measure on (£, A) for any state w* € Q

and players i1,14a,...,i € N.
Proof.

e Non-negativity:

biin,.ik <W*>(E> >0 VE € A,

because we integrate a non-negative function every iteration.

e The empty set has measure 0:

birigonin (W) (0)

:/Q { VQ {/Q()-tm(wg)(dwl)} tig(wg)(dwg)] 1 o (") (1) = 0.

e o-additivity:

Note that ¢;, ;, i (w*) has finite support, therefore additivity would also suffice.

For pairwise disjoint sets Ey, Fs, ... € A:

Z tivsin,in (W) (E)
=1

-3

j=17¢

] @) e @] a0

2Samet| (1998a) only defines the related notion of iterated expectations of random variables, we extend

this into a measure on (2, .4).
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_ /Q /Q — /Q ith(wl)(@-)tiQ(w)(dwl)] tis(ws)(dwz)]---] ti, (") (dwg_1)

:/Q /Q /sz'l(wl) (Q@) tz‘z(wz)(dwl)] tis(WB)(dWQ)] ] tiy, (w") (dwp—1)

= tiy i, (W) (U Ej) :
j=1

e The sample space has measure 1:

til,ig,...,ik (w*) (Q)

:/Q [ UQ [/thb(wg)(dwl)] tig(wg)(dwg)] ] (") (dwp ) = 1.

Therefore t;, 4,4, (-)(-): @ x A — [0, 1] is a Markov kernel and the following observation

comes from its definition.

Proposition 2.17. The higher-order belief function t;, i, . ;. s the Markov kernel corre-

M,

k

sponding to the Markov transition matriz M;, M;, , .

Now we are ready to state our desired results, which connect the convergence of

higher-order beliefs to the common prior assumption.

Lemma 2.18. For a bounded random variable f: 2 — R and iy,is,...,i4 € N with

U?Zl{ij} = N the mapping

w* elim flw)tt

11,8250k

(w")(dw)

exists Vw* € Q. Moreover, it’s constant on any w € Iy and it’s equal to the expectation of

f with respect to the unique invariant measure of M;, M;, ., ... M; on .

k—1

Proof. By Proposition [2.17] and Proposition [2.§ we have

/Q )t (@) (dw) = (M My, . M) f(w).

M;, M; . M;, is irreducible and aperiodic on any 7 € IIy by Lemma [2.11] so by the

k—1 "

¢

Markov ergodic theorem ¢;

L (W) converges weakly to its unique invariant measure,
therefore, as f is bounded, its expectation also converges to the expectation with respect

to the unique invariant measure. [ |

14



Theorem 2.19. Suppose Iy = {Q}. Then there is a common prior p if and only if for
any bounded random variable f: 2 — R it holds that

| 1)t @) = [ ) pla)
Q Q
Vi is, ... i, € N with J;_ {i;} = N.

Proof. By Lemma [2.18] the limit exists and is the expectation of f with respect to the

unique invariant measure of M; M, ... M, on . For any bounded f, this is the same

k—1
for any choice of iy, s, ...,7 € N with U§:1{ij} = N if and only if the invariant measure
is the same for any choice of iy, 1o, ...,7, € N with U?:l{ij} = N. This, by Proposition

[2.12]is equivalent to p being a common prior. [

15



Chapter 3

Financial bubbles

Now that we are equipped with the necessary tools, we proceed to define the concepts of
unusual market behavior in the type space setting.

As previously, we suppose t;(w)(w) >0 Vi€ N, Yw € Q throughout this chapter.

3.1 Illusions

We have observed an interesting phenomenon: even if all players agree that an event is
impossible, their higher-order beliefs may not align with this consensus. To explore this,

we introduce the concept of an ’illusion’ in the context of our model.

Definition 3.1. An event E € A is an illusion in the state w* € Q if
ti(w)(E)=0 Vie N

but iy, is,...,ix € N (not necessarily distinct) with U?:l{ij} = N, such that

t; () (Tt (@iet)(e . (fwr st (@) (E) > 0})... > 0}) > 0.

That is, every player thinks that the event has probability zero, but there is a sequence
of players 41, 29, ..., %, for which 4; thinks, that with non-zero probability ¢;_; thinks, that
with non-zero probability ¢;_o thinks, and so on...that with non-zero probability ¢; thinks

that with non-zero probability the event happens.

Ezample 3.2. Note that in Section[2.2] the event £ = {(z1,22) € Q : z; < 0} is an illusion
in any state w* with ¢, (w*)(F) = ta(w*)(E) = 0.

16



Proposition 3.3. Suppose there is a common prior p and Iy = {Q}. Let w* € Q such
that p(w*) > 0. Let E € A and suppose t;(w*)(FE) =0 Vi€ N. Then E is an illusion in
the state w* if and only if p(E) > 0.

Proof. Suppose E is an illusion for iq,is,...,i € N with U§:1{ij} = N. This means:

[ 150 (7)) > 0.
Q
Therefore by Proposition [2.§ and Proposition [2.17}

L= M;, M;, | ... M; 1 >0,

k—1

where 1, is the probability distribution that assigns probability 1 to the state w* and 0

to all other states. As p(w*) > 0, this also means

k—1

Suppose p(F) = € > 0. By Theorem [2.19} Jiy,4,...,7 € N with Uj’:l{ij} = N and
3¢ € N such that

< E.

/Q Lp() 8, o (") (de) — / 15() pldw)

As [ 1p(w) p(dw) = p(E), this implies [, 1p(w) ¢ (w*)(dw) > 0 so we are done. W

11,825.0+50

3.2 Bubbles

The key property that defines financial bubbles is that nobody believes the asset to be
worth as much as they are willing to pay for it, based on the thought process of the chain of
beliefs. As a player keeps on applying Markov transitions, she eventually arrives at a price
higher than anybody’s personal valuation. We also assume the bubble to be robust, i.e. no
matter how many times a player iterates the chain of Markov transitions that lead to the
overpricing of the asset, it stays uniformly larger than any individual player’s valuation.

Formally:

Definition 3.4. We say that a random variable f: Q — [0,00) is a financial bubble in

the state w* € Q if e >0, Jiy, iy, ... 1, € N with Ule{z'j} = N such that
/Qf(w) £ (W) dw) 2 /Qf(w) L) (dw) +2 VjeNVLeN.

17



The condition that f is non-negative does not reduce generality significantly, as f
could represent a transformation of any financial product.

We say that f is p-integrable if either it is bounded or there exists a sequence of simple
functions each dominated by f such that the integral of these simple functions with respect

to p goes to infinity, in which case the integral is defined to be infinity.

Theorem 3.5. Suppose there is a common prior p and Iy = {Q}. A p-integrable random

variable f: Q — [0,00) is a financial bubble in the state w* € Q if and only if

/f p(dw) /f *)(dw) Vj € N.

Proof. Suppose f is a financial bubble in the state w* € Q with ¢ > 0, iy,40,...,7 € N.
Then F¢: Q — R simple function such that p(w) < f(w) Vw € Q and

[ 0@t @) 2 [ F@)ti)(@) +5 ViEN, vEEN
Q Q
We have

/ Pt o (@)(dw) 25 [ w) pldw)
Q Q

by Theorem [2.19] therefore

/f / p(dw) /f “)(dw) V7€ N.

Suppose [, f(w) p(dw) > [, f(w)tj(w*)(dw) +e¢ Vj € N for some gy > 0. That means
that F¢: Q — R simple function such that p(w) < f(w) Vw € 2 and

/ p(dw) /f dw)+§0 VjeN

Let N ={1,2,...,n}. We know that

/Q P) g, ) ) Z2 [ ()l

by Theorem [2.19] therefore V& > 0 94y € N such that

/w(w)tiz ..... )(dw) /f dw)+5—5 VjeN, V>l
Q

Now choosing k = lp-n and i1 = 1,99 = 2,...,0p = Nylpyr1 = Lty = 2,... 01 =

n — 1,4 = n, we have

[ 1@ s @) 2 [ )t 7))

/f dw)—f—;—é VjeN, VleN.
Choosing5<%°and€€(0,70—5),We are done. [ |
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Remark 3.6. From the proof it’s clear that with these assumptions, f is a financial bubble
for some choice of players if and only if it’s a financial bubble for any choice of players

it,ia, ... i, € N with UY_ {i;} = N.

Corollary 3.7. Suppose there is a common prior p and Iy = {Q}. Let w* € Q such that
p(w*) > 0. Suppose E € A is an illusion in the state w*. Then 1g is a financial bubble in

the state w*.
Proof. By Proposition 3.3
/Q 1p(w)p(dw) = p(E) > 0 = t,(w")(E) = /Q 1p(@) (") (dw) V)€ N,
so by Theorem [3.5 we are done. [

Proposition 3.8. Suppose there is a common prior p and Iy = {Q}. Suppose f: Q —
[0,00) (p-integrable) is a financial bubble in the state w* € Q. Then 3K € R such that

{f > K} is an illusion in the state w*.
Proof. By definition 3¢ > 0 such that

/Qf(cu)tfhi2 _____ i (W) (dw) > /Qf(w)tj(w*)(dw) +e VjeN, VleN.
Also, tj(w*) has finite support Vj € N. This means that 3K > 0, 3 such that

t‘f’

iin i W > K) > 45w (f > K)+6 VjeN, vLeN.
If t;(w*)(f > K) =0 Vj € N, then we are done. Suppose for a contradiction that

tj(w*)(f > K) > 0 for some j € N. By taking | — oo, by Theorem we have
p(f > K) > t;(w*)(f > K) +0.

Also p(f < K) < t;(w*)(f < K), therefore

S E) ) < K)
P> E) T @) > )

However, ¢;(w*) is a posterior of p and ¢;(w*)(f < K) and ¢,;(w*)(f > K) are both non-zero,

therefore the ratio must be equal, so we arrive at a contradiction. [ |

The following question presents itself quite naturally: what if repeating a chain of
Markov transitions keeps increasing the perceived price, not just above any individual
valuation, but above any value? We occasionally see the hyperbolic rise in the price of
certain assets, which would indicate it reaching unbounded value in a bounded time

interval. That motivates defining the notion of hyperbolic financial bubbles:
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Definition 3.9. We say that a random variable f: Q — [0,00) is a hyperbolic financial
bubble in the state w* € Q if VK € R Jiy,ia,...,1 € N with U?:1{ij} = N such that

f)tl i o (W) (dw) > K VEEN,

Note that for any f: Q — [0,00), we have
/f(w) tj(w")(dw) <oo VjeN, Vw" €Q
Q
as tj(w*) has finite support Vj € N, Vw* € Q. Hence the following:

Proposition 3.10. Any hyperbolic financial bubble in the state w* € € is a financial
bubble in the state w*.

Also note that since t;(w*) has finite support Vj € N, Vw* € €, there is a maximum
value that any random variable takes with positive probability according to any player’s
beliefs. Therefore, beyond a certain point, any hyperbolic financial bubble must be an

illusion.

Proposition 3.11. Suppose f is a hyperbolic financial bubble. Then 3 Kq € R such that
{f > K} is an illusion ¥V K > K.

Theorem 3.12. Suppose there is a common prior p and Iy = {Q}. Let f: Q — [0, 00)

be a p-integrable random variable. Then the following are equivalent:
(1) f is a hyperbolic financial bubble in some state w* € €.
(2) f is a hyperbolic financial bubble in any state.
(3) Jo f(w)p(dw) = oc.

Proof.
(2) = (1): It’s clear.

(1) = (3): Suppose f is a hyperbolic financial bubble in a state w* € €.
Let K € R and [, f(w)t (w*)(dw) > K V¢ € N for some iy,1s,...,ix € N. Then

11,8250k

Jp: Q — R simple function such that p(w) < f(w) Yw € 2 and
o)t ale@) > K veEN
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and

/Q<p<w>t£12 ..... w6)d) 22 [ ol p(ae)

by Theorem [2.19] therefore
[ @pan = [ pwpn) = K VKR,
0 Q

50 [ f(w) p(dw) = oo.

(3) = (2):
Suppose [, f(w)p(dw) = oo. That means that V Ky € R 3¢: © — R simple function such
that p(w) < f(w) Yw € Q and [, ¢(w) p(dw) > Ko. Let w* € Q. We know that

zgwmg ..... J@)(dw) 22 [ p(w) pldw)

Q

by Theorem [2.19] therefore Ve > 0 3¢y € N such that

Now choosing k = /¢y -n and 11 = 1,i5 =2,... 9,41 = 1,ip10 = 2,...,7, = n we have

[ F@ @) 2 [ o)t (7)) 2 Ko = WEEN.

77777

We can choose K| as large and ¢ as small as we like, so we are done. [ |

3.3 Asset pricing

Let’s establish the pricing of an asset inside the type space setting.
Let B(R) denote the Borel o-algebra on R.
Let f: Q — [0,00) be a random variable that represents the asset the players are thinking

about. We define the valuation variables Vi, V5, ..., V,: Q — [0, 00) as follows:

/f “)(dw) Vw* e Q.

Suppose Romeo and Juliet are two of the players. They are theorizing about each other’s
valuation. A logical assumption to be made is that there exists some notion of distance for
which Romeo’s beliefs about the distance of Juliet’s valuation from his own don’t depend
on his valuation and vice versa. In other words, there should be some form of homogeneity

in their beliefs.
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We define the distance as the difference of some transform of the asset valuations, as

follows:

&= h(Vi) VieN,

Mi.j £ &—& Vi,j€N,
where h: [0,00) — R is some B(R)-measurable function.

V; is constant under ¢;(w*) Vw* € Q, Vi € N, therefore ¢ is also constant under the
distribution ¢;(w*) Vw* € Q, Vi € N (the players know their own valuation).

Take for example the case where 7, 5 is the difference between the asset’s log returns
that Romeo and Juliet predict for this year. That would mean f is the (proportional)
value of a security next year and h(-) = log(-).

Suppose that if Romeo predicts the log return to be £romeo = 5% then he believes that
with probability % Juliet predicts the log return to be & u0¢ = 6%. Assuming homogeneity
would mean that if Romeo predicted the log return to be 6% then he would believe that
with probability 3 Juliet predicts the log return to be 7%.

In general, this would mean that the distribution of 7, ; under ¢;(w) doesn’t depend on

w, in which case calculations can be significantly simplified by the following lemma:

Lemma 3.13. Let &: Q2 — R: 1 € N be random variables, let w* € Q and suppose &; is
constant under t;(w*) Vie N. Letn;; =& — & Vi,j€N.
Suppose that for any i,j € N, , the distribution of n;; under t;(w) is v;; for all w € Q.

Then for any ig,11,%2,...,i € N:

birsig,eonin (W) (&g € B) = (Vigiy * Vig iy * - % Viy_ 3, ) (B — &, (w"))
for any B € B(R), where * denotes the convolution of probability measures.

Proof.
By induction on k:

For k = 1:

tiy (W) (&io € B) = ti, (WD) (& + Miin € B) = (Vig.ir)(B = &, (7))

by the definition of 7, ; and because §; is constant under ¢;(w*) Vw* € Q, Vi e N.
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Now suppose the statement is true for £ — 1. Then

til,i2 ~~~~~ ik (wﬁ(gio € B)

= [ L] o e Byt et | .0 @

/

-

tig,ig_1 (Wk—1)(&ig €B)
= /Q(Vio,n * Vigig * - % Vi) (B = &iy_y (we—1)) iy (07) (deo—1)

= Wigiy * Vigsin %+ ¥ Viy_pir_, * (i, (W*) © 5;:))(3)

= (Vig.iy * Vigsin % -+ ¥ Viy_pip, * (ti, (W*) 0 (& 4+ 1)) (B)

= (Vigiy * Vigiig * + - * Viy_in_, * (Li, (W) © 77;:%) * (t;, (W) o fi’kl))(B)
= (Vigyis * Viryip * - - - % Vig_p iy * (L, (@) 0 ' ))(B — &, (w"))

= (Vio,il * Vg %0 % l/ik—l,ik)<B o £Zk<W*>>

Remark 3.14. Note that Lemma [3.13] also applies to Section 2.2 with &, &> as the liquidity
values and 1y 2 ~ U(—1,0,1) under ¢t5(w) Yw € Qand sy ~ U(—1,0,1) under t;(w) Vw €
Q.

Ezxample 3.15. Suppose h(-) = log(-) and

mi; ~ U(=1,0,1) under t;(w) Yw € Q, Vi,j €N, i#j.

By Lemma [3.13] we get the convolution of discrete uniform variables, so for w* € {2 and

il,iz, Ce ,ik € N with ir 7é ir+1 Vor:

k m—&;, (w* i < <¢& ’
tirigoin, (W) (&g = m) = 3 &, (W) 4 k .

=}

otherwise,

where m € Z and (Z) is the trinomial coefficient, that is, the coefficient of z%** in the

2
expansion of (1 + z + z?)%.

Let w* € Q and 19,41, 42,... € N be a sequence of players such that ¢, # i,,1 Vr. Let
P e A(Q,.A) be a probability measure and let Uy, Us, ...:  — R be a sequence of random

variables independent, identically distributed under P, such that
Us ~U(—1,0,1) under P Vs e N.
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Then by Lemma [3.13}

/Qf(w)tio,il,iz,.‘.,ik(W*)(dw) Z/QGXP{WO(M)}%,z'z ..... i (W) (dw)
exp <Z Us>

Also, note that the sequence is increasing as k increases. The only restriction we had

=Ep

Lil+e]” iom
3 7

= HEP [exp(U,)] = Ep [exp(Uy)]* = l

on ig,i1,1%2,... € N was that i, # 4,1 Vr, therefore the above implies that VK > 0
iy, 19,...,1 € N with Ule{ij} = N such that

fw) tfm ,,,,, i (W) (dw) > K V{eN.

Hence, f is a hyperbolic financial bubble in any state w* € €.

Remark 3.16. By the proof we can see that f is a hyperbolic financial bubble in any state
if h(-) = log(-) and

ni; ~ v under t;(w) Ywe Q, Vi,j €N, i#j.

where v is any distribution for which the expectation of its exponential is greater than 1.
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Chapter 4

Conclusions

In this paper, we rigorously explored the often debated concept of financial bubbles within
a mathematical framework, specifically leveraging belief hierarchies represented as Markov
chains. By applying Bayesian game theoretical approaches, we effectively modeled unusual
market behaviors. Our contributions include three distinct definitions: illusions, defined
as events possible only in higher-order beliefs; financial bubbles, characterized as random
variables valued more highly by higher-order beliefs than by any player’s individual beliefs;
and hyperbolic financial bubbles, which are random variables assigned unbounded values
by higher-order beliefs.

Our analysis revealed significant interconnections among these concepts and their
relation to common priors. Specifically, Corollary demonstrated how illusions can imply
the existence of financial bubbles. Conversely, Propositions and established the
conditions under which financial and hyperbolic financial bubbles respectively imply the
presence of illusions. Furthermore, Proposition and Theorems and provided
necessary and sufficient conditions for the existence of illusions, financial bubbles, and
hyperbolic financial bubbles, based on the properties of the common prior.

This research contributes robust tools for the quantitative analysis of speculative
bubbles, enhancing our understanding of complex market dynamics within knowledge-

belief spaces.
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Osszefoglalo

A nem-teljes informécios jatékok tertiletén a tobb szerepld kozotti vélekedések modellezése
jelentds kihivasokat jelent, kiilonosen a vélekedési hierarchidk figyelembevételével — azaz
az lgynokok vélekedései masok vélekedéseirdl, és igy tovabb. Harsanyi (1967) tipusainak
bevezetése egy modszert kinédl ezen bonyodalmak kezelésére, a jatékosok vélekedéseit egy
tipusfiiggvénnyel reprezentélva. A kutatasunk célja az volt, hogy a tipustér modellt adap-
taljuk a pénziigyi buborékok jelenségére, mely meglepé médon nem rendelkezik egyetemesen
elfogadott, szigort matematikai definiciéval a korabbi irodalomban. Térekedtiink a pénzii-
gyi buborékok formalis meghatarozasara és egy olyan kozos prior felallitasara, amely
megengedi egy ilyen tipustér kialakulasat. Tanulmanyunk betekintést kivant nydjtani a
spekulativ buborékok mogott rejlé folyamatokba a pénziigyi buborékok kialakuldsahoz
sziikséges és elégséges feltételek elemzésével, mindezt a tipusterek kontextusaban.

A pénziigyi buborékok gyakran vitatott fogalmét szigort matematikai keretben, kiilonésen
Markov-lancként abrézolt vélekedési hierarchiakat alkalmazva vizsgaltuk meg. Bayesi
jatékelméleti megkozelitésben hatékonyan modelleztiik a szokatlan piaci viselkedéseket.
Hozzajarulasaink harom kiilonallo definiciot tartalmaznak: illuziok, amelyeket csak maga-
sabb rendd vélekedések szerint lehetséges eseményekként definidlunk; pénziigyi buborékok,
amelyeket olyan valoszintiségi valtozoként jellemziink, amelyek magasabb rend vélekedések
szerint nagyobb értékkel birnak, mint barmely jatékos egyéni vélekedései szerint; és hiper-
bolikus pénziigyi buborékok, amelyek olyan valoszintségi valtozok, amelyekhez a magasabb
rendd vélekedések korlatlan értéket rendelnek.

Elemzésiink jelentGs Osszefiiggéseket téart fel ezen fogalmak kozott és azok kozos pri-
orokkal valo kapcsolataban. A [3.7 Kovetkezmény megmutatta, hogyan kévetkeznek pénziigyi
buborékok illiziokbol. Forditva, a|3.8| és Allitasok meghataroztak azokat a feltételeket,
amelyek mellett a pénziigyi és hiperbolikus pénziigyi buborékok illiziok létezését jelentik.

Tovabba a Allitas és a és Tételek megadtak az illaziok, pénziigyi buborékok
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és hiperbolikus pénziigyi buborékok létezésének sziikséges és elégséges feltételeit a kozos

priorok tulajdonsagai alapjan.
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Szo6szedet

English

Magyar

aperiodic

aperiodikus

common prior

koz0s prior

convex hull

konvex burok

expectation/expected value

varhato érték

field of events

eseményteér

financial bubble

pénziigyi buborék

higher-order belief function

magasabb rendd vélekedési fliggvény

hyperbolic financial bubble

hiperbolikus pénziigyi buborék

illusion

illazio

invariant /stationary distribution

stacionarius eloszlés

irreducible communicating class

kapcsolatos osztaly

knowledge partition

tudasparticio

liquidity

likviditas

Markov chain

Markov lanc

Markov transition matrix

Markov atmenetmétrix

measurable mérhets
meet halometszet
prior prior

probability measure

valoszintiségi mérték

random variable

valoszintiségi valtozo

set of the states allapottér
type function tipusfiiggvény
type space tipustér
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